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The theory of complex systems, which has been applied successfully in evolutionary 

biology, is gaining popularity for the modeling and analysis of complex product 

development (PD) systems. Modeling complex PD systems is essential to understand 

how system elements and their dependencies impact system properties in several 

aspects such as performance, convergence, and evolution. In this thesis we use the 

NK and NKC models to simulate and analyze complex PD systems, which are 

represented by the design structure matrix (DSM). The main objective is to assess 

whether these models can be useful in analyzing DSMs; particularly, assessing the 

effect of architecture and system decomposition on product performance and 

evolution. All in all, this thesis mainly focuses on the effect of system decomposition 

when dealing with complex systems and how it helps in reducing the convergence 

time. However, we show that this comes at reduced system performance, represented 

by the fitness values. In addition, we include situated learning and design rules in this 

thesis to examine their impact on system convergence time and process performance 

and how they contribute to reaching system resolution. Once systems are 

decomposed, we use design rules through the process of standardization in which 

components agree in advance, upon each other, on some of the interfaces between 

the various decomposed subsystems Finally, we present our case study of a gas 

turbine aero engine decomposed into seven subsystems, each with a different number 

of components, with external interdependencies among them, to demonstrate our 

model and present the corresponding results. The case study shows how design rules 

play an important role in reaching system resolution faster and how standardization 

of the components’ state and fitness saves the system from running any additional 

needed iterations. This has shown to be a major reason of system convergence with 

less cost. 
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CHAPTER 1  

INTRODUCTION 

 

1.1  Background  

The theory of complex systems, which has been applied successfully in evolutionary biology (to 

study the dynamics and evolution of biological systems), is gaining popularity in product 

development (PD) to model and analyze man-made systems (e.g., Frenken and Mendritzki, 2012; 

Oyama et al., 2015). In fact, the biological domain is considered an analogy to a complex PD 

system where the genes in biological organisms correspond to the components in a complex PD 

system, and genes in biological organisms depend on each other in a similar way to the 

components in man-made systems. Complexity of biological organisms is reflected by the 

dependencies between the genes. That is, when one gene is mutated, it may not just affect its 

own functionality but also affects the functionality of all other interdependent genes (Frenken, 

2006). The main difference between the two systems is that man-made systems are designed by 

designers who are responsible for making the design decisions whereas biological systems 

depend on natural selection (Beesemyer et al., 2011). 

This analogy between biological organisms and man-made complex systems is valid in terms of 

product evolution as well. Products evolve throughout the generations due to the continuous 

changes in the (interdependent) components’ design, which increases the systems’ performance. 

It has been argued that the way these interdependencies are distributed between the system’s 

components (which constitute the product architecture) affects the product’s performance and its 

evolvability (Rivkin and Siggelkow, 2007; Luo, 2015). In this context, modeling complex PD 
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systems is essential to understand how the system elements and their dependencies impact 

system properties in several aspects such as product/process  performance, development cost, 

product quality, convergence time, and evolution dynamics. 

In this thesis we model the Product development (PD) process as a search on rugged landscape . 

In particular, we use the NK model to simulate this search. According to the NK model, a 

product system can be defined as a complex system consisting of a set of N components (or 

modules), each of which is intended to deliver a specific functionality (Kauffman, 1993). Hence, 

each component delivers a specific function and, in turn, contributes some value to the overall 

product system. This value is referred to by the performance or the fitness value of the 

component. This component’s performance depends on its own (design) decision and the 

decisions of one or more other components (depending on the system architecture). The 

decisions made at the component level are binary. That is, each component is available in two 

variants, which represent two alternative designs. A complete product contains exactly one 

variant of each component. A vector of length N whose ith element represents a variant of the ith 

component is called a design configuration. Standard practice in the NK literature denotes the 

variants by 0 and 1, which allows a configuration to be represented by a binary string (e.g., 0010 

for a vector of length N = 4). The N-dimensional possibility space is called the design space and 

a specific component configuration defines a product design. Moreover, a complete product has 

a corresponding product (system) fitness that depends on the fitness values of its components. 

The actual resemblance of this product fitness is a measure of the performance of the system as a 

whole. For example, if the system is a team of employees, then the fitness of the system 

resembles the problem-solving effectiveness of this team (Solow et al., 2000). 
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1.2  Motivation 

Many studies have discussed various approaches to examine the performance of Product 

Development (PD) projects. These studies were not able to show how design decisions are 

impacted by the product decomposition and the resulting independencies between the various 

subsystems. For this, we need a new model to be able to study decomposition and also include 

important features such as learning and design rules.  

In this thesis, we first perform a comprehensive study of the NK model in the literature review 

section to establish a better understanding of this model. We thoroughly examine the effect of 

dependencies between components within the same subsystem and between different 

subsystems. Given our findings in the literature review section, we define a new variant of the 

NK model in which we divide the whole system into subsystems, taking into consideration both, 

internal and external, dependencies between components. We extend our model to include the 

concept of design rules in which we standardize certain components based on well-defined, non-

random choosing strategies. 

 

1.3 Research Objectives 

The goal of the thesis is to investigate the NK model, to study how decomposition affect the 

product and process performance of the PD project. We define the product performance as the 

final design’s quality/fitness, and we define the process performance in terms of convergence 

time. Moreover, we consider additional features in the NK model and examine different 

scenarios (dividing the system into sub-blocks, NKC model, complementary and conflicting 

dependencies…) to assess the behavior of the NK model in each of these scenarios. The thesis 
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also aims to introduce a new model, based on the concept of situated learning and design rules, 

to test the effect of components’ standardization and consequently the impact of lower 

complexity on the system’s performance. The objective of the proposed model is to reach the 

whole system’s resolution with the least cost, i.e. needed number of iterations, and at the highest 

possible performance. 

 

1.4 Thesis Outline 

The thesis is divided into six chapters. The next chapter represents our literature review in which 

we will present theoretical background related to our research area, in addition to introducing the 

fundamentals, contributions and applications of NK and NKC models. Chapter 3 represents our 

model, based on the concept of design rules and situated learning. In chapter 4, we perform 

several sensitivity analyses test cases to investigate the effect of product/system decomposition 

on the product performance and convergence time. In chapter 5, we present our case study 

highlighting the results obtained from applying our model. Finally, we conclude in chapter 6 

with suggestions for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Product Development (PD) projects require the collective effort of various teams and members 

with different backgrounds and conflicting objectives sometimes (Yassine, 2004). Processes in 

PD projects follow a sequential manner as the completion of a certain task requires the 

completion of another. This dependency between tasks and hierarchy in information transition in 

PD projects is a main cause of resulting in complex systems. Complexity makes projects harder 

to develop and optimize, the thing that results in unexpected outcomes in the system (Simon, 

1969, pg. 195). To address this complexity, projects should be well-modeled in a way to manage 

interconnection between modules and keep track of information within components. 

The Design Structure Matrix (DSM) has been introduced to model the relationships between 

systems and processes and keep track of information from one stage into another. Various 

project management tools have been previously used to model this flow between processes, 

however they failed to completely capture the interdependency between the tasks, which is a 

major complicating factor in PD projects (Yassine, 2004).  

 

A DSM is a matrix representation of a complex system which includes all patterns of 

information exchange between the dependent elements or components of the system. One of the 

main advantages of the DSM compared to traditional project management tools is the fact that it 

keeps track of the feedback between components by marks between the components’ nodes. For 

example, consider the graph in Figure 1, where C feeds A, E, D and F at the time A is being fed 

by B,C and E. This means that element or component C affects elements A, E and D and element 



6 

 

A depends on elements B,C and E. This dependency between the elements shows how one 

element needs and uses the information of another which highlights the dependency structure 

between the elements. 

 

 

 

 

 

 

 

Figure 1: Graph representation of the dependencies between components in 

the DSM 

 

 

Table 1: DSM Representation 

 A B C D E F 

A X X X  X  

B  X  X   

C   X    

D   X X   

E   X  X  

F   X   X 

 

A 

C 

D 

B 

F 

E 
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Moreover, the DSM can be partitioned which decreases the number of dependencies between 

elements or components, reduces complexity and thus ease the search process. We will discuss 

this further in details in the coming sections.  

 

In this paper, we will use the DSM as a modeling tool of complex PD projects then will apply the 

NK model on projects represented by DSMs. Moreover, we will focus on the effect of 

introducing the learning factor into our model, as well as how design rules help in reaching the 

desired output with less cost. 

 

2.1 NK Model  

We consider a system of N components, where each component depends on K other components 

(Kauffman, 1993). The NK Model is a mathematical representation of these dependencies, i.e. it 

assigns to each component a mathematical measure that represents the component’s fitness 

value, taking into account the dependencies between components. To apply the NK model, a N 

size Design Structure Matrix (DSM) is used to model and represent the system and its 

components’ dependencies, as illustrated in Figure 2. Suppose we have 3 components in a 

system, where the performance of each component depends on its own (design) decision and on 

the decisions of other components. In this case, N=3 and K=1. 

 1 2 3 

1  X  
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Figure 2: DSM Representation of a Complex System 
 

Figure 2 represents the scenario where each off-diagonal mark “X” represents a dependency 

between two components (Yassine and Braha, 2003). For example, the DSM (assuming that row 

i depends on column j) shows that the performance of component 1 depends on its own (design) 

decision and the decisions of component 2. Similarly, component 2 depends on component 3, 

and component 3 depends on component 1. 

The NK model starts by randomly assigning to each of the N components discrete random states 

(either 0 or 1) and corresponding random fitness values sampled from a uniform distribution 

ranging between 0 and 1. The fitness of the system, call it F1, is the average of the fitness values 

of the N components and can be calculated according to the formula in Equation (1). 

     F1=⅀fi/N          (1) 

Where fi is the fitness value of component i. In our case, shown in Figure 2, i ranges between 1 

and 3 (1≤i≤3)since there are 3 components in the system.  

Then, one of the N components is randomly chosen to change its state and its corresponding 

fitness value. Furthermore, we change the fitness values of all the components that depend on 

this chosen component. For example, if we choose to change the state of component i (1≤i≤N), 

2   X 

3 X   
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then if its state is 0 it becomes 1 and vice-versa. Then, we change the fitness value of component 

i as well as the fitness values of all the components j (1≤j≤N) that depend on component i. 

Finally, the average fitness is recalculated, to obtain a new average fitness, call it F2. If F2 is 

greater than F1, then we repeat the above process starting with the new obtained string of states 

and their corresponding fitness values. If F2 is less than F1, then we repeat the above process 

after choosing a component other than one previously chosen. This simulation process continues 

until a maximum average fitness is reached. Note that if a string of states is revisited, then their 

corresponding fitness values should be retained.  

For the DSM in Figure 2, the NK model works as follows. After randomly initializing the states 

and the fitness values of these components, we obtain initial states 110 and their corresponding 

fitness values 0.85, 0.57 and 0.63, resulting in an initial average fitness F1=0.68 (Refer to the 7th 

row in Table 1). Then, the third component is randomly chosen so its state changes from 0 to 1 

and its corresponding fitness value as well as that of component 2 change to 0.02 and 0.55 

respectively, resulting in the 8th row in Table 2 

 

Table 2: Enumeration of the fitness values of the DSM in Figure 2 

 States f1 f2 f3 F 

1 000 0.31 0.72 0.37 0.47 

2 001 0.31 0.42 0.51 0.41 

3 010 0.38 0.57 0.37 0.44 

4 011 0.38 0.55 0.51 0.48 

5 100 0.15 0.72 0.63 0.5 

6 101 0.15 0.42 0.02 0.2 

7 110 0.85 0.57 0.63 0.68 

8 111 0.85 0.55 0.02 0.47 
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This iteration results in the new average fitness F2=0.47<0.68=F1. For this, we return to the initial 

‘110’ string states and randomly choose a new component, i.e. any component other than the 3rd 

component. This process is repeated until a maximum average fitness Fmax is reached. Table 2. 

enumerates the total 8 cases of this DSM. It is worth noting that the fitness values are almost 

always between 0.5 and 0.7 since we are sampling from a Uniform distribution between 0 and 1. 

 

2.1.1 Effect of Varying K on the fitness values in the NK Model 

To study the effect of K on the evolution of the fitness values, we ran the NK model on three 

DSMs of size 5, but with different number of dependencies K: a) K=0, b) 0<K<N-1 and c) K=N-

1. The variation of the fitness values in these 3 cases is shown in Figure 3. 

Figure 3: Evolution of the Fitness for Various Values of K (N=5) 

Figure 3a represents the case where K=0, i.e. the system has no interactions among its 

components. In this case, there will only be one state (either 0 or 1) for each element that is 

responsible for making the highest fitness contribution to the system. This maximum fitness, i.e. 

the only global optimum, is represented by the highest single peak in Figure 3a. All other sub 

(a) K=0 (b) 0<K<N-1 (c)  K=N-1 
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optimal fitness values will eventually reach the global optimum after having passed through all 

their neighboring states, which obviously have lower fitness than the global optimum.   

We notice from Figure 3b that as the number of dependencies increases to take any value 

between 0 and N-1 (K=2 in our case), the number of fluctuations increases, and the graph 

becomes multi-peaked. In this case, each element depends on multiple other elements in the 

system, causing the number of the local optima to increase significantly and thus making it 

harder for each element to reach an optimum. 

In the third case, as K reaches it maximum value, i.e. K=N-1 (K=4 in our case), the DSM 

become a completely rugged landscape where each element depends on all other elements in the 

system. This property causes the search process for the maximum fitness to be very difficult, as 

represented by the huge increase in the peaks of the graph, in Figure 3c.  

 

2.1.2 Effect of N and K on the NK Model 

To study the effect of the number of elements N and number of dependencies K on the system’s 

behavior, the NK model is applied on several DSMs having different N and K. The 

corresponding changes in the fitness values and number of iterations are observed and shown in 

Figure 4. 
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Figure 4: Effect of N and K on the DSM’S behavior 

Observation 1: As shown in Figure 4, for a fixed N (the number of components) and as K (the 

number of dependencies) increases, both the fitness and the number of iterations are not 

significantly affected. However, both the fitness and the number of iterations increase with N for 

a fixed K. 

 

2.1.3 NK Model using Sub-blocks 

The NK model is also applied in this section; however, the DSM is divided into sub-blocks prior 

to simulation. In this case, K is divided into two components; Ki and Ko, where Ki+Ko=K, Ki is 

defined as the number of dependencies within the same sub-block, and Ko as the number of 

dependencies outside the sub-block. For example, consider Figure 4b, where a DSM of size 12 

and K=2 (Ki =1 and Ko=1), is divided into three sub-blocks of four components each. 

Both Figures 5a and 5b have the same number of components N and dependencies K; however, 

the main difference is the way these dependencies are distributed. In Figure 5a, interactions 

between components are randomly distributed, however, in Figure 5b, they are classified 

according to the number of dependencies within and outside each sub-block, as described above. 

For example, the first DSM row has 2 marks (i.e. K=2). One of these marks is within the first 

block in the grey part of the row (since Ki =1) and the other mark is within the white part of the 

first row (since Ko=1). The rest of the marks are similarly allocated for each row in the DSM. 
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(a) 12 sized Random DSM (b) 12 sized DSM with sub-blocks 

Figure 5: Sample of 12 sized DSMs having different dependencies’ 

distribution 

 

2.1.4 Effect of N and K on Random NK model and NK model with Sub-blocks  

To study the behavior of the DSM with sub-blocks and test how it differs from the random DSM, 

the NK model is tested for 200 runs on both random and sub-blocks DSMs. This test is applied 

on DSMs with different number of components (N=6, 12 and 15) and dependencies (K=2, 3 and 

4) to compare the maximum average fitness values and the average number of iterations 

executed by different cases. Also, note that two cases have been considered for K=3; either Kin 

=1 and Kout =2 or Kin=2 and Kout=1. 
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Observation 2: As shown in Figure 6, both random and sub-blocks DSMs behave similarly with 

an increase in K. We can conclude that the effect of distributing the dependencies between the 

components using sub-blocks is almost negligible on the system’s fitness and number of 

iterations. 

A DSM can be divided into different number of sub-blocks. For example, the 12 sized DSM, 

shown in Figure 5b, is divided into three sub-blocks of 4 components each; however, it can be 

divided into 2 sub-blocks of 6 components each, or into 4 sub-blocks of 3 components each, etc. 

Accordingly, we tested the NK model on a 12 sized DSM, with K=4, divided into different 

number of sub-blocks to study the effect on the fitness values and the number of iterations. We 

observed that changing the number of sub-blocks did not significantly impact the fitness values 

nor the number of iterations.   

 

(a) Variation of the fitness Values (b) Variation of the number of 

iterations 

Figure 6: Variation of the fitness and number of iterations of the 

random and sub-blocks DSMs as a function of K 
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2.2 NK Model Extensions 

As discussed in the introduction, the NK model is a system of N components that are related 

through interdependencies in which a change in the fitness of one component may affect the 

fitness of others. Frenken (2006) has introduced an Altenberg’s generalized NK model in which 

the interactions do not have to be between the N components, but occur between N components 

and F functions, where N and F do not have to be equal. This model has resulted in reducing the 

static and dynamic transaction costs. Static transaction cost of an element increase as the element 

depends on more functions whereas the dynamic transaction cost represents the long-term cost, 

i.e. the cost to reach a local optimum, which requires changes in the fitness values of multiple 

elements (Frenken 2006).  

Product architecture is another major component that affect the system’s performance where it 

has been proven that product architectural patterns play an important role in affecting product 

evolvability (Luo 2015). Luo concludes that a single change in highly integral complex systems 

require changes of many other components, unlike the case in highly modular systems. Thus, as 

the product evolves, less cyclic architectures are favored. A similar approach concerning the 

effect of product architecture on design evolvability over time has been studied through the 

Genetic Algorithm (Brabazon et al., 2002). Brabazon concluded that the searching process 

becomes more difficult as K increases and that a combination between the NK model and the 

genetic algorithm (GA) is a suitable framework to study the effect of different modular 

architectures on the evolution of product designs. 

 

2.3 A state only model 
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A system represents a network of interdependent components where each component can have 

either a resolved or unresolved state, i.e. state is either 1 or 0 respectively. The state of a 

component is affected by the number of unresolved elements on which it depends, i.e. the greater 

the number of unresolved dependencies of a component is, the less the probability of it being 

resolved (Braha and Bar-Yam, 2007). Other reasons that affect the resolution of the states are the 

strength of the dependencies between the elements, i.e. how much does a component knows 

about its unresolved dependencies, which will be discussed in more details in the situated 

learning section, and the completion rate of a task or a component.  

Braha presents his model by introducing two possible cases, either the component’s state is 

initially resolved or unresolved at certain time t. The component will either retain its state , at 

time t+1, or switch from resolved to unresolved or vice-versa, according to the equations 

presented by the model’s piecewise function, represented by the below set of Equation 2 (Braha 

and Bar-Yam, 2007).  Moreover, the policies on which a component is modified accordingly 

influences the final output and specifically affects the number of iterations needed to reach a 

completely resolved system. It has been shown by Braha and Bar-Yam that modifying 

components based on a specified planned scheme results in a better performance and less cost 

than when selecting random components to modify. 

In addition, statistical properties of organizational networks represent a significant factor in 

improving the decision-making process of the organizations. It has been shown that planned task 

modification policies, that specify the way changes are applied to PD performances, resulted in 

increasing the performance of the processes to become twice its original value. (Braha et al. 

2007).  
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As a summary of Braha’s model, Equation 2 represent the probability of component i retaining 

its current state or changing from a resolved state to an unresolved one or vice versa, as per cases 

1 and 2. 

Case 1: If component i is resolved at time t 

𝒄𝒊(𝒕 + 𝟏) = {
𝟎   𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   (𝐭𝐚𝐧 𝐡(Ꞵ𝒊 ∗ 𝐲𝐢 (𝐭)))

𝟏    𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   (𝟏 − 𝐭𝐚𝐧 𝐡(Ꞵ𝒊 ∗ 𝐲𝐢 (𝐭)))
                   (2a) 

Case 2: If component i is unresolved at time t 

𝒄𝒊(𝒕 + 𝟏) = {
       𝟎   𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   𝟏 − 𝒓𝒊(𝟏 − 𝐭𝐚𝐧 𝐡(Ꞵ𝒊 ∗ 𝐲𝐢 (𝐭)))

𝟏 𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   𝒓𝒊(𝟏 − 𝐭𝐚𝐧 𝐡(Ꞵ𝒊 ∗ 𝐲𝐢 (𝐭)))
               (2b) 

Where tanh (𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 , 𝒓𝒊 is the completion rate, Ꞵ𝒊 is the sensitivity parameter of 

component i with respect to its neighboring unresolved components and 𝐲𝐢 (𝐭) is the number of 

unresolved components on which component i depends on. 

 

2.3.1 Simulation Results 

We applied Braha’s model on the matrix shown in Figure 7, where N=6 and K=3. We considered 

that each component is affected with a percentage of 35% by its neighboring unresolved 

components (Ꞵ𝒊 =0.35) and that all components are provided with the needed resources to be 

internally resolved (𝒓𝒊 =1).  
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Figure 7: DSM Representation of a Complex System 

 

After running Braha’s model on the matrix in Figure 7, for 100 runs, we obtained an average of 

145.3 needed number of iterations for the whole system to resolve.  

In order to further test the effect of the completion rate and betta values on the needed number of 

iterations for the system to resolve, we performed a sensitivity analysis by varying their 

corresponding values between 0 and 1. Obtained results are summarized in the below Table 3. 

 

  Table 3: Sensitivity Analysis Results on Braha’s Model 

   

 

 

 

 1 2 3 4 5 6 

1  X X  X  

2 X  X   X 

3 X X  X   

4   X  X X 

5  X  X  X 

6  X  X X  

Number of Iterations 

betta/completion rate 0 0.5 0.75 1 

0.1 diverge 48.5 19.2 11.2 

0.35 diverge diverge 1808.3 145.3 

0.75 diverge diverge diverge diverge 

0.95 diverge diverge diverge diverge 
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In addition, it has been noticed that the product of betta and the number of unresolved states 

(Ꞵ𝒊 ∗ 𝐲𝐢) must be less than the  completion rate 𝒓𝒊 or else we will not obtain a definite  number of 

iterations for the system to resolve. This is justified and proved mathematically by Braha and 

Bar-Yam (Braha and Bar-Yam, 2007).  

 

2.4 Complementary and Conflicting Dependencies 

Another significant contribution to the NK model is classifying dependencies into 

complementary and conflicting dependencies, in addition to sampling the fitness values from a 

triangular distribution instead of a uniform one. Having a large number of complementary 

dependencies leads to increase in the average maximum fitness with the incline of K at a lower 

rate than the original NK model, unlike the conflicting dependencies that result in a decline in 

the fitness values at a faster rate than the original NK model. Sampling from the triangular 

distribution results in lower fitness values than when sampling from uniform distribution. (Kyle 

Oyama et al. 2015).  

In this model, the basic NK model is extended in which the following two arguments hold 

(Oyama et al., 2015). 

1. There are two types of dependencies: complementary and conflicting dependencies. 

A complementary dependency exists if component A depends on component B and 

any increase in the fitness of component B will thus lead to an increase in the fitness 

of component A. As for the conflicting dependency, it is the opposite of the 

complementary where an increase in the fitness of component B will decrease that of 
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component A. However, if the fitness of component B decreased, no change will 

occur in the fitness of component A. 

This is illustrated in the set of Equations (3) below: 

 

Y’=y+
(x′−x)

(1−x)
(1 − 𝑦)   for complementary dependencies, when x’>x    (3a) 

Y’=y+
(x′−x)

(1−x)
(−𝑦)    for conflicting dependencies, when x’>x           (3b) 

Y’=y    when x’<x, irrespective of the dependency type (3c) 

 

Where y’ is the new fitness value of the affected component, y=old fitness values of the affected 

component, x’=new fitness value of the focal component and x=old fitness value of the focal 

component. 

The focal component is the component that has its state, and thus its fitness, changed. The 

method to calculate the new fitness value of the focal component is explained in assumption 2 

below. 

In this section, the extreme cases will be tested, i.e. when all dependencies are complementary 

(Allcomp model) and when all dependencies are conflicting (AllConf model). 

2. The second assumption is removing the uncertainty when sampling for the new 

fitness value of the focal component where in the original NK model the sampling 

used to be random from a uniform distribution. In this assumption, the sampling will 

be from the triangular distribution by applying the following steps: 

✓ Set a probability p that represent the probability that the fitness of the focal 

component will increase. 

p=0.75 in all the following results 
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✓ Model the fitness using the triangular distribution parameters: min, max, mode 

and p. 

mode=x 

max=x+0.5*(1-x) 

min=(mode-max*(1-p))/p 

where x is the old fitness value of the focal component 

 

2.4.1 Simulation Results: AllComplementary and AllConflicting 

In this test, we ran each of the original NK model, the Allcomp and the AllConf models over 500 

iterations to compare the change of their maximum average fitness values and their average 

number of iterations, as the number of dependencies K change. 

The results of the average fitness and average number of iterations are shown in Figures 8(a) and 

8(b) respectively. 
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Figure 8(a): Variation of the maximum average fitness as a function of K for the 

standard NK model, AllComp and AllConf 
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Figure 8(b): Variation of the average number of iterations as a function of K for the 

standard NK model, AllComp and AllConf 

Figure 8: Variation of the maximum average fitness and average number of iterations 

as a function of K for the standard NK model, AllComp and AllConf 

 

Observation 3(a): As a conclusion from Figure 8, as the number of dependencies increase in the 

original NK model, the fitness slightly decreases, as observed in previous experiments. However, 

as the number of complementary dependencies increase the average maximum fitness increase 

significantly. On the contrast, the average maximum fitness decreases significantly as the 

number of conflicting dependencies increase. 

Observation 3(b): As for the number of iterations, they are slightly decreasing as K increases in 

the original NK model and the AllComp model, as shown in Figure 8(b). However, they are 

sharply decreasing in the AllConf model as the dependencies increase to somehow become 

constant at the end. 

 

2.4.2 Simulation Results: Low, Moderate and High Complementarity 

In this test, both assumptions 1 & 2 are combined where 2 different models are run over 500 

iterations. The first model is the regular NK model in which the sampling is from a uniform 

distribution, while in the second model the sampling is from a triangular distribution, as 



24 

 

described in assumption 2 above. These two models are tested in three cases; low, moderate and 

high complementarity. 

• Low complementarity is when 25% of the dependencies are complementary 

• Moderate complementarity is when 50% of the dependencies are complementary 

• High complementarity is when 75% of the dependencies are complementary 

The following results average maximum fitness values are obtained. 

Table 4(a): Maximum Average Fitness of the uniform and triangular distribution with 

low complementarity 

 

 

 

 

Table 4(b): Maximum Average Fitness of the uniform and triangular distribution with 

moderate complementarity 

 Uniform Triangular 

K=0 0.655 0.495 

K=1 0.644 0.5 

K=2 0.612 0.506 

K=3 0.606 0.484 

K=4 0.607 0.494 

K=5 0.634 0.497 

 

Table 4(c): Maximum Average Fitness of the uniform and triangular distribution with 

high complementarity 

 Uniform Triangular 

K=0 0.665 0.5 

K=1 0.595 0.489 

K=2 0.52 0.45 

K=3 0.491 0.451 

K=4 0.51 0.455 

K=5 0.52 0.451 

 Uniform Triangular 

K=0 0.664 0.498 

K=1 0.694 0.537 
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The results are shown more clearly in below in Figure 9(a) and 9(b). 

 

 

 

 

 

 

 

Figure 9(a): Variation of the maximum average fitness as a function of K with low 

complementarity 

 

 

 

 

 

K=2 0.697 0.535 

K=3 0.73 0.522 

K=4 0.756 0.535 

K=5 0.76 0.545 
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Figure 9(b): Variation of the maximum average fitness as a function of K with 

moderate complementarity 

 

  

 

 

 

 

 

Figure 9(c): Variation of the maximum average fitness as a function of K with high 

complementarity 

Figure 9: Variation of the maximum average fitness as a function of K with low, 

moderate and high complementarity 

 

Observation 4: Starting with the low complementarity case (the conflicting dependencies are 

dominant over the complementary ones), it is noticed that as K increases, the maximum average 

fitness decrease in both the uniform and triangular distributions, as seen in Figure 9(a). As the 

number of complementary dependencies increase to become equal to the conflicting 

dependencies (50%-50% distribution), the maximum average fitness doesn’t have a clear 

variation path, i.e. it varies between increasing and decreasing with the increase of K, as shown 

in Figure 9(b). However, as the number of complementary dependencies increase to 75%, the 

behavior of the maximum average fitness in Figure 9(c) becomes completely opposite to that in 

Figure 9(a), since as K increases the maximum average fitness increase in both uniform and 

triangular distributions. This is reasonable since the number of complementary dependencies 



27 

 

increased, that is the chance of having higher fitness values increased as well. As a conclusion, 

as the number of complementary dependencies increase, there is a higher chance of having the 

maximum average fitness increase with K. 

Note that the maximum average fitness of the uniform distribution is always greater than that of 

the triangular distribution in the three cases; low, moderate and high complementary. 

 

2.5 Applications of the NK Model 

Despite the origin of the NK model from a biological perspective and its application in genetics, 

it has been used for modeling and analysis purposes in different separate areas. In fact, the NK 

model has become a popular option for an organization to refer to in its decision-making 

processes (McCarthy, 2002). In this section, we will discuss the general fields in which the NK 

model is been recently used. 

In general, the idea of evolution is usually linked to the biological context and away from 

technological, industrial, social, etc. perspectives, however evolution is present and valid in 

various fields of product development. In the process of searching for the best solution or the 

optimal state of a product, we always tend to change the behavior/elements/components of the 

system, the thing that reflects the product’s evolution (Oyama et al., 2015). This validates the 

application of NK model in real life product development projects, rather than just biological 

ones.  

 

2.5.1 Manufacturing Fitness 
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A more specific application of the NK model in the NPD field is the Manufacturing Fitness area. 

McCarthy has translated the original definition of the NK model, by Kauffman, to the strategy 

and management domain such that, despite the system’s nature, the NK model can be applied as 

long as this system evolves with time. McCarthy focused on the evolutionary process of the 

system where he described the term “fitness” as the  “Darwinian fitness” which resembles the 

components’ capacity to survive and reproduce. (McCarthy , 2002).  

When applying the NK model in the manufacturing domain, McCarthy describes the N 

parameter to be the number of parts in an organization, K to the number of interconnectedness 

between these and A to represent the number of states that an organizational part can have.   

 

2.5.2 Organizational Design  

Besides the number of components and the number of their corresponding dependencies, the way 

in which these components interact plays an important role in product development. This 

interaction between components and the location of dependencies in a DSM is referred to as the 

organizational design which is also known by system architecture.  

In this context, the NK model is used to explore how the structure of systems can affect product 

performance. (Yuan & McKelvey, 2004) has applied the NK model to real life relationship 

where the parameter N represents the number of people in a team and K represents the number of 

communication linkages between these people. It has been shown that there will an initial 

increase in the team performance as the number of communication linkages increase. However, 

if these linkages continue to increase more, the team performance would decrease (Yuan & 
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McKelvey, 2004). This obtained conclusion from the NK model reflects the expected theoretical 

consequences, according to Yuan.  

Moreover, it has been claimed through the NK model that modular product architecture increases 

the speed of performance evolution (Luo, 2015).”Modular” product architecture is referred to 

when dividing the system into smaller modules with maximum interactions within these modules 

and eliminating or minimizing the external dependencies between them (Baldwin and Clark, 

2000).  

 

2.5.3 Situated Learning 

Several interactions occur in a complex system, whether between the subsystem’s internal 

components or between the components of different subsystems. Components having internal 

dependencies within the same module are familiar with the design characteristics of their 

neighboring elements more than those having interactions with components in a different 

module. This knowledge between the subsystems’ components resembles the weight of these 

interactions and how familiar a component is with the strength of the connections (Songhori et 

al., 2017).  

Search processes in complex systems need the effort of components from different modules in 

order to govern for both, internal and external interconnections which require local and global 

searches respectively. In local search, components conduct individual learning to improve their 

internal design choices within their own subsystem. As for global search, elements have limited 

knowledge about the search domains in other subsystems and are not certain enough about the 

strength of the external dependencies. To deal with these unknown external connections, 
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components perform coupled learning, a trial and error-based process, to improve their 

knowledge and learn more about the invisible outer connections. It is shown that when focusing 

and allocating the weight to the inner interactions, search is concentrated within the one module 

which makes the learning process easier and thus reaching the design solutions faster than when 

paying attention to the density of external dependencies interactions (Songhori et al., 2017). 

 

2.6 Integration vs Modularity in Complex Systems  

As shown above, in the NK model organizations follow a structured search process within the 

system taking into consideration the entire system’s components simultaneously. Applying the 

NK model to a system and dealing with it as a one integrated block might be difficult to manage 

especially in complex systems where the number of the components N and their corresponding 

dependencies K is high. 

To make complexity more manageable, another approach can be followed, where the 

organization can rather divide the system into smaller modules in a way that each module is 

responsible for a certain number of the entire system’s components. This form of splitting the 

system into smaller parts is called “Modularity”. Dividing the system into modules is not enough 

as, besides being responsible for its internal components, each module must account for the 

external dependencies between its components and components in other modules. Having these 

external dependencies obliges the subsystem to consider the effect of changing the fitness or 

state of any of its components on the dependent components in other subsystems. For example, 

the effect of any change in the performance or configuration of a task A in subsystem 1 has to 

be taken into consideration when visiting task B in subsystem 2, knowing that task B in 
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subsystem 2 depend on task A in subsystem 1. By this, the system is changed from being 

integrated to modular. The way these external dependencies are designed and how teams decide 

on them will be discussed later in the Design Rules section. 

The concept of integration in one system as a whole was clearly illustrated in the NK model, as 

shown in the previous section, however modularity will be modeled in the following section 

when discussing the extended version of the NK model-the NKC model. 

 

2.7 NKC Model Fundamentals 

In this section, we introduce the NKC model (Hordijk and Kauffman, 2005) in which the 

components’ dependencies are divided into teams/units/subsystems. The NKC model classifies 

the dependencies of each component between internal and external dependencies and calculates 

the system’s average performance based on this classification as described below. 

We consider a system of size N, but with S subsystems, where: 

- N: number of total components that are distributed along S sub systems 

- K: number of inter dependencies inside the sub system 

- C: number of external dependencies, that is each component in each sub system depends on 

C other components from other sub systems 

- Nj’: number of components inside subsystem j. Note that the number of components within a 

one subsystem may differ from the number of components in another subsystem 

 We start by randomly assigning discrete random states (either 0 or 1) and random fitness values 

sampled from a Uniform distribution ranging between 0 and 1 to all components in all 
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subsystems. Then, a random subsystem j (1≤j≤S) is selected and a component i from subsystem j 

is randomly chosen to change its state and its corresponding fitness value. Next, we randomly 

sample for the fitness of all components in subsystem j that depend on component i. The average 

fitness of subsystem j is calculated as follows in Equation 4: 

Fj=⅀fi /Nj’                (4) 

where fi represent the fitness value of component i in subsystem j. 

If the new average fitness of subsystem j is greater than the previous average fitness, then we 

sample for the fitness values of components, in subsystems other than subsystem j, which depend 

on component i. While if the new average fitness of subsystem j is lower than the previous 

average fitness, we chose another component from subsystem j. 

These steps are repeated until a maximum average fitness of subsystem j is reached. After 

applying the above scenario for all subsystems S, the maximum average fitness of the whole 

system is calculated as follows in Equation 5.   

        F= ⅀Fj /S   (5) 

 

 

 

 

 Figure 10: DSM matrix for NKC model 

 

 s1n1 s1n2 s1n3 s2n1 s2n2 

s1n1 x X   X x 

s1n2   X x X x 

s1n3 x   X X x 

s2n1 X X  X x 

s2n2  X X X x 
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Table 5: Detailed Simulation of the NKC model  

n1 n2 n3 s2n1 s2n2 f1 f2 f3 favg  n1 n2 n3 s2n1 s2n2 f1 f2 favg 

0 0 0 0 0 0.81 0.63 0.50 0.57  0 0 0 0 0 0.13 0.06 0.10 

0 0 0 0 1 0.85 0.02 0.49 0.45  0 0 0 0 1 0.13 0.72 0.43 

0 0 0 1 0 0.43 0.89 0.27 0.53  0 0 0 1 0 0.56 0.16 0.36 

0 0 0 1 1 0.74 0.45 0.60 0.60  0 0 0 1 1 0.56 0.14 0.35 

0 0 1 0 0 0.81 0.13 0.37 0.44  0 0 1 0 0 0.06 0.06 0.06 

0 0 1 0 1 0.85 0.29 0.14 0.43  0 0 1 0 1 0.06 0.72 0.39 

0 0 1 1 0 0.43 0.24 0.90 0.52  0 0 1 1 0 0.75 0.16 0.46 

0 0 1 1 1 0.74 0.02 0.24 0.33  0 0 1 1 1 0.75 0.14 0.45 

0 1 0 0 0 0.34 0.34 0.50 0.39  0 1 0 0 0 0.72 0.69 0.71 

0 1 0 0 1 0.42 0.18 0.49 0.36  0 1 0 0 1 0.72 0.06 0.39 

0 1 0 1 0 0.92 0.99 0.27 0.73  0 1 0 1 0 0.51 0.40 0.46 

0 1 0 1 1 0.14 0.04 0.60 0.26  0 1 0 1 1 0.51 0.09 0.30 

0 1 1 0 0 0.34 0.23 0.37 0.31  0 1 1 0 0 0.22 0.69 0.46 

0 1 1 0 1 0.42 0.94 0.14 0.50  0 1 1 0 1 0.22 0.06 0.14 

0 1 1 1 0 0.92 0.83 0.90 0.88  0 1 1 1 0 0.76 0.40 0.58 

0 1 1 1 1 0.14 0.10 0.24 0.16  0 1 1 1 1 0.76 0.09 0.43 

1 0 0 0 0 0.86 0.63 0.37 0.62  1 0 0 0 0 0.94 0.80 0.87 

1 0 0 0 1 0.22 0.02 0.31 0.18  1 0 0 0 1 0.94 1 0.97 

1 0 0 1 0 0.29 0.89 0.13 0.44  1 0 0 1 0 0.01 0.28 0.15 

1 0 0 1 1 0.26 0.45 0.07 0.26  1 0 0 1 1 0.01 0.59 0.30 

1 0 1 0 0 0.86 0.13 0.05 0.35  1 0 1 0 0 0.23 0.80 0.52 

1 0 1 0 1 0.22 0.29 0.90 0.47  1 0 1 0 1 0.23 1 0.62 

1 0 1 1 0 0.29 0.24 0.23 0.25  1 0 1 1 0 0.95 0.28 0.62 

1 0 1 1 1 0.26 0.02 0.17 0.15  1 0 1 1 1 0.95 0.59 0.77 

1 1 0 0 0 0.54 0.34 0.37 0.42  1 1 0 0 0 0.77 0.22 0.50 

1 1 0 0 1 0.23 0.18 0.31 0.24  1 1 0 0 1 0.77 0.08 0.43 

1 1 0 1 0 0.89 0.99 0.13 0.67  1 1 0 1 0 0.21 0.04 0.13 

1 1 0 1 1 0.78 0.04 0.07 0.30  1 1 0 1 1 0.21 0.92 0.57 

1 1 1 0 0 0.54 0.23 0.05 0.27  1 1 1 0 0 0.86 0.22 0.54 

1 1 1 0 1 0.23 0.94 0.90 0.69  1 1 1 0 1 0.86 0.08 0.47 

1 1 1 1 0 0.89 0.83 0.23 0.65  1 1 1 1 0 0.12 0.04 0.08 

1 1 1 1 1 0.78 0.10 0.17 0.35  1 1 1 1 1 0.12 0.92 0.52 
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Note that changing the fitness values of components in other subsystems, due to the external 

dependencies, may not necessarily improve the average fitness values of those subsystems 

For the DSM in the Figure 10, the NKC model work as follows. After randomly initializing the 

states and fitness values of these components, we obtain initial states of 101 in subsystem 1 and 

01 in subsystem 2 resulting in a string of states 10101, in the first table, with fitness of 0.47 and 

in a string of states 01101, in the second table, with fitness 0.14. 

When choosing a subsystem at random, we chose the first subsystem with a randomly chosen 

component (component 2). So, the string of states becomes 111 in subsystem 1 and 01 in 

subsystem 2, which results in states 11101, in the first table. In the first subsystem. we sample 

for the fitness of the second component and component 1 as well since it depends on component 

2 in the 1st subsystem from a uniform distribution, resulting with an average of 0.69 in the first 

subsystem. 

Since the new average fitness of subsystem 1 (0.69) is greater than the old average fitness of 

subsystem 1 (0.47), so we now deal with the external dependencies, i.e. we sample for the fitness 

values of components in subsystem 2 which depend on component 2 in subsystem 1, which are 

both, components s2n1 and s2n2. So, we sample from a uniform distribution the fitness values of 

components 1 and 2 in subsystem 2, resulting in an average fitness of 0.43 in subsystem 2. 

Now we continue our search in subsystem 1, until we reach a maximum fitness in it (like 

applying the NK model on the 1st subsystem). When choosing another random component from 

the string 11101, and sampling for the fitness values of this randomly chosen component and its 

dependents, it turns that the string 11101 has the greatest average fitness in subsystem 1 among 

its neighboring states. This can be summarized in Table 6 below. 
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Table 6: Average Fitness when having different components’ states  

States Subsystem 1 Average Fitness 

11101  0.69 (highest) 

10101 0.47 

01101 0.5 

11001 0.24 

 

So now that we have reached the maximum average fitness in subsystem 1, which is 0.69, with a 

string of states 11101, we move to the 2nd subsystem. We start with the states at which we have 

reached the maximum fitness in subsystem 1, i.e. 11101. This string corresponds to the string 

01111 in subsystem 2, with the average fitness 0.43. 

We choose component 2 in the 2nd subsystem at random and we change its state and the 

corresponding fitness and that of component 1 in the 2nd subsystem. We end up with the string of 

states 00111 in subsystem 2 with an average fitness of 0.45. Since 0.45 is greater than 0.43, then 

we go with the new configuration 00111, in the second subsystem, which corresponds to 11100 

in the 1st subsystem. Here we account for the external dependencies and we resample for the 

fitness values of all 3 components in the 1st subsystem, since they all depend on the 2nd 

component in subsystem 2, resulting in an average fitness of 0.27.  

We keep searching all local neighbors of the string 00111, in the 2nd subsystem to end up with 

the string 10111 having the maximum average fitness 0.77, This corresponds to the states 11110  

in the 1st subsystem with an average fitness 0.65. 

Finally, the total fitness of the system is the average of the two, which is the average of 0.77 and 

0.65, which is 0.71. 
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2.8 Examining the Difference between NK and NKC Models 

To notice the difference between the NK and NKC models, both models were run in parallel for 

1000 runs on the 12 sized DSM, represented in Figure 5b. The variables of this DSM, 

represented in both NK and NKC models, are shown in Table 7. 

Table 7: Variables of the DSM in Figure 5b in NK and NKC Models 

 
NK Model NKC Model 

N 12 12 

K 2 1 

C 0 1 

S 1 3 

N’ - 4 

 

The average fitness values and average number of iterations of the 1000 runs are recorded in 

Table 8. The simulated 1000 maximum fitness values and number of iterations are displayed in 

Figure 11. 

 

Table 8: Average maximum fitness and number of iterations in along the 1000 runs 

 
NK Model NKC Model 

Average Maximum Fitness 0.6505 0.5874 

Average Number of Iterations 32.99 24.468 
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Figure 11: Fitness Values (Left) and Number of Iterations (Right) in NK & NKC 

Models 

 

Observation 5: As shown in Table 8 and Figure 11, the NKC model reach a lower maximum 

fitness, on average, than the NK model and at a lower average number of iterations as well. 

However, along the 1000 runs, there is not a clear relation between the maximum fitness of the 

NK and NKC models in each run. As for the number of iterations, the NKC model clearly takes 

less iterations than the NK model, almost throughout all the 1000 runs, as shown in Figure 11 

(right). 

 

2.8.1 Effect of N and K on the Performance of NK and NKC models 

To test the effect of changing N and K on the system’s performance in each of the NK and NKC 

models, both models are applied on DSMs of different sizes (N=6, 9 and 12) and different 

dependencies (K=1, 2, 3 and 4). Note that changing the number of dependencies in the NKC 

model is done by either increasing the number of internal dependencies K or the number of 

external dependencies C. 
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(a) Random (b) Block Diagonal (c) Centralized 

1 2 3 4 5 6 7 8 9 10 11 12

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X

11 X X

12 X X

1 2 3 4 5 6 7 8 9 10 11 12

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X

11 X X

12 X X

1 2 3 4 5 6 7 8 9 10 11 12

1 0 X X

2 X 0 X

3 X X 0

4 X X 0

5 X X 0

6 X X 0

7 X X 0

8 X X 0

9 X X 0

10 X X 0

11 X X 0

12 X X 0

 

 

(a)Variation of the average maximum 

fitness  

(b)Variation of the avg. number of 

iterations 

Figure 12: Variation of the average max. fitness as a function of K in the NK 

& NKC models 

 

Observation 6: As shown in Figure 12, as the number of dependencies K increase, the (average) 

maximum fitness of both the NK and NKC models generally decrease. In the NK model, the 

decrease occurs slowly as K increases and the curve somehow remains flat, however the fitness 

in the NKC model decreases at a faster rate, and this is clear from the slopes that appear to be 

steeper in the NKC model.  

 

2.8.2 Effect of N, K and Architecture on NK and NKC Models 

In this section, we perform a comprehensive study in which we test both, the NK and NKC 

models, on different numbers of elements N (12 and 16), different number of dependencies K 

(1,2 and 3) and different architectures (Random, Block-Diagonal, and Centralized).  
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Figure 13: Sample DSM architectures (N=12, K=2) 

 

Sample DSMs of the different architectures is shown in Figure 13. The results of this test (fitness 

and number of iterations), for each of the three architectures, in the NK and NKC models are 

presented in Figure 14. 

Observation 7: When comparing the fitness values of the DSMs of different architectures in 

Figure 14 (left-side panels) it is noticed that the Random DSM almost has the lowest fitness 

values for both values of N=12 and N=16 in the NK and NKC models. On the other hand, we 

can see that the Centralized DSM always has the highest fitness values. As for the Block-

Diagonal DSM, its fitness values vary between those of the Random and Centralized DSMs.  

In Figures 14 (right-side panels), we can see that the Centralized DSM execute the highest 

number of iterations, whereas the Block-Diagonal takes the lowest number of iterations for both 

values of N=12 and N=16 in the NK and NKC models. It is noticed that the difference in the 

number of iterations executed between the three architectures increase in each of the NK and 

NKC models as N increases, i.e. the difference in the number of iterations between the three 

architectures is greater when N=16 than when N=12. Also, when comparing the variation of the 

number of iterations for the different values of K (Figures 14 (b), (d), (f)), it is noticed that the 

behavior and pattern of variation is the same.  
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Figure 14: Variation of the fitness values (left-side panels) and the number of iterations 

(right-side panels) as a function of N in NK and NKC models for different DSM 

architectures 
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2.9 Design Rules 

As previously mentioned, modularity is essential to manage system complexity that promotes the 

concurrent development of various modules in the system. However, these separate subsystems 

are just chunks of one whole system and are designed independently of each other where each 

perform its work internally separate from the others. This internal work accounts for the internal 

dependencies between the subsystem’s components. After the internal work, all dependent 

modules must work together and collaborate as a whole (Baldwin and Clark, 2000). For this, 

external dependencies occur between the system’s modules in order to ensure that coherence 

between dependent components in separate modules is taken into account.  

To account for these external dependencies and for modules to function as one system, design 

rules are introduced to the model.  

Design rules are developed through the agreement between the system’s components on 

standardizing certain decisions, which are modeled by the external dependencies in the DSM. By 

standardization it is meant that organizations ensure that early design decisions that impact a 

number of downstream tasks or components in the system will be fixed early on by mutual 

agreement by both upstream and downstream teams. Such early agreement prevents against 

possible future iteration, which can be expensive (Baldwin and Clark, 2000). So, when 

components in a certain subsystem start working to enhance their performance, they won’t be 

affected by the external dependencies developed as design rules as they will follow the standard 

decision previously set. 
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Before determining a design rule, the designers have to be familiar with the details of the system. 

This is essential because good knowledge of the system and its options and dependencies allows 

for efficient development of design rules. Once components define the unnecessary external 

dependencies and come up with the design rule, these dependencies are removed (Woodard and 

Clemons, 2014).  

Consequently, design rules reduce system complexity by minimizing the number of interactions 

between modules through eliminating the unnecessary ones, which decrease the development 

time by reducing iterations. Introducing design rules is essential to decrease system complexity 

and thus reducing the possibility of Kauffman’s “Complexity Catastrophe”, as it is shown that 

overwhelming the system with interdependencies results in inefficient output (Yuan & 

McKelvey, 2004).  

Irrespective of the advantages of design rules and their benefits in resulting in a better overall 

system performance, it is costly to decide on a design rule and establish it. Organizations will 

have to employ their components in an experimentation process, i.e. R&D, to determine which 

components are compatible with the system and end up with the best possible result (Baldwin 

and Clark, 2000). Basically, the cost of specifying the design rule is the time and effort 

organizations spend to agree on the standardization process of a dependency. Therefore, 

organizations must look deeper into this when specifying a design rule to check whether it is 

worth the cost or not.  
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CHAPTER 3 

MODEL 

 

In this chapter, we introduce a new model of product development based on complex systems. 

We assess the model’s behavior through measuring the product/system performance using the 

average fitness value and convergence time (i.e. the number of iterations) within each subsystem 

and in the overall system. The objective of our model is to resolve all components in all 

subsystems taking into consideration the interdependencies between components and subsystems 

(that is the resolution of some components may lead to a change of state for other components). 

We present our base model in section 3.1 and our extended model, in which we introduce design 

rules, in section 3.2.  

 

3.1 Base Model 

Our base model consists of three main parts: (a) description and specification of the model 

landscape over which the search process occurs, (b) the methodology of the search processes in 

which the states and fitness values of components are updated, (c) the resolution of components 

which were unresolved due to the update of external dependencies. Table 9 contains a summary 

of all notations used in our model. 

 

Table 9: Used Notations in the Model 

Notation Representation 
N Number of total components 

S Number of subsystems 

Kin Number of internal dependencies 

Kout Number of external dependencies 
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cij (t) State of component i in subsystem j at time t 

fij (t) Fitness value of component i in subsystem j at time t 

𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡) 
Dependency (Sensitivity) value of component i in subsystem j on component i’ in subsystem 

j’ at time t 

ri Internal completion rate of component i sampled from U(0,1) 

xij (t) Number of unresolved components in subsystem j on which component i depends on at time t 

yij (t) Number of internal and external unresolved components at time t 

𝐭 Threshold to check whether to update the external dependencies’ states or not 

0≤Φ≤1 Reinforcement learning parameter 

 

 

3.1.1 Model Landscape 

Consider a system with N components where each component has a state and a corresponding 

fitness value that represents its performance. The state of a component is either “one”, i.e. 

resolved, or “zero”, i.e. unresolved. The whole system of N components is divided into S 

subsystems, where each subsystem j is composed of Nj components. 

Let cij(t) be the state of component i in subsystem j at time t and fij(t) be its corresponding fitness 

value. We begin by assigning the components in all subsystems at time 0 to a random state 

configuration C(0)={c11(0), c21(0),…, c12(0), c22(0), …} and randomly sampling their fitness 

values from a uniform distribution between zero and one, U(0,1), which is represented by the 

fitness contribution F(0): {f11(0), f21(0),…, f12(0), f22(0), …}. The fitness of each subsystem j is 

the average of the fitness values of each component i in subsystem j. We denote the fitness of 

subsystem j by Fj(t) as in Equation (6). Furthermore, the fitness of the whole system is the 

average of the fitness values of each subsystem j as shown in Equation (7) 

     Fj(t) =
∑ fij(t)

Nj 
i=1

Nj
                             (6) 

F(t) =
∑ Fj(t)N

j=1

N
                              (7) 
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Each component is affected by its own state/decisions and the decisions/states of other 

components on which it depends and in return affects its dependent components. A change from 

an unresolved to a resolved state depends stochastically on the number of unresolved 

components it depends on and its internal completion rate (Braha and Bar-Yam, 2007).  

In our model, Kin represents the number of internal dependencies a component i in subsystem j 

has with components in the same subsystem j. As for the external dependencies, Kout represents 

the number of external dependencies component i in subsystem j has with components in other 

subsystems.  K= Kin + Kout. 

Each component has a dependency strength that represents how much component i in subsystem 

j knows about the influence of component i’ in subsystem j’, irrespective if component i’ is in the 

same module (subsystem) with component i or not (i.e. j=j’). We symbolize this dependency 

value by 𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡). Another major factor which affects the search process is the completion rate 

which we refer to by rij(t). Completion rate represents the resource allocation intensity allocated 

for each component to be successfully resolved (Braha and Bar-Yam, 2007).  

Starting with the initialization process, summarized in Figure 15, we set the betta values 𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡) 

for each component i with respect to every dependent component j to a random value, sampled 

from a Uniform distribution U(0,1). We continue with the initialization process by defining a 

threshold parameter 𝒕 which specifies whether component i should attend to the external 

dependencies from other subsystems or not. That is 𝒕 specifies when we must apply 

modifications on the external dependent components. In addition, 𝒕 is also a metric that defines 

the interval in which we update the dependency values, 𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡), according to the recent changes 

in the system.  
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                     Figure 15: Initialization Process 

 

3.1.2 Methodology of the Search Process 

Since our model aims to have a resolved state for all components, we start dealing with systems 

that contain components in an unresolved state, as we do not apply any intended changes on 

resolved components, whose state is one. First, we randomly choose a subsystem j on which we 

will apply one of two  learning processes, as shown in Figure 16. 

 

 

 

 

 

 

 

              

 

 

                        Figure 16: Choosing a random subsystem j on which learning will be applied 
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There are two types of learning and improvement that occur during the system simulation. The 

following is a description of each type: 

1- Individual Learning: In individual leaning, subsystem j chooses itself and performs 

local search among its components to resolve its states. At time t, a random unresolved 

component i is chosen from subsystem j on which Equation (8) is applied, where xij (t) is 

the number of unresolved components in subsystem j on which component i depends, 

rij(t) and  is the internal completion rate of component i, which is randomly sampled from 

a uniform distribution between 0 and 1, U(0,1). So, according to Equation (8), the lower 

the number of unresolved components xij (t), the higher the possibility component i 

would be resolved (Braha and Bar-Yam, 2007). 

𝒄𝒊𝒋(𝒕) = {
       𝟎   𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   𝟏 − 𝒓𝒊𝒋(𝒕) (𝟏 − 𝒕𝒂𝒏𝒉 (𝜷 𝒊,𝒋

𝒊’,𝒋’
(𝑡) ∗ 𝒙𝒊𝒋(𝐭))

𝟏 𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   𝒓𝒊𝒋(𝒕) (𝟏 − 𝒕𝒂𝒏𝒉 (𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡) ∗ 𝒙𝒊𝒋(𝐭))
   (8) 

(Braha and Bar-Yam, 2007). 

 

Where tanh (𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 

According to Equation (8), the component’s new state depends on the number of 

unresolved states that it depends on inside subsystem i, as previously explained. When 

applying Equation (8) to change the focal component’s state, the corresponding fitness of 

component i is affected as well. To adapt for this change, a new fitness of component i is 

sampled from a Uniform distribution U (0,1).  Individual learning steps are shown in 

Figure 17. 
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          Figure 17: Individual Learning Process  

 

2- Social learning: As for social learning, summarized in Figure 18, subsystem j chooses 

another subsystem j’, provided that there are dependencies between the components of 

the two subsystems. A random unresolved component i of subsystem j is selected to be 

partially imitated from a random component i’ from subsystem j’. So, the state of 

component i will be equal to that of component i’, thus, component i will either stay 

unresolved or becomes resolved by imitating a selected design choice from subsystem j’. 

By this, resolution of the focal component is achieved through social learning between 

interdependent subsystems. Similar to individual learning, after applying changes to the 

state of the focal component i, its fitness is affected and thus a new fitness is sampled 

from a Uniform distribution U (0,1).  

 

Figure 18: Social Learning Process  
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After changing the focal component’s state and fitness, whether in the individual or social 

learning approach, the state and performance of components which depend on the focal 

component i, internally and externally, will be affected. For this, the states and corresponding 

fitness values of these dependent components have to be updated by the current changes which 

happened internally in the system. So, as shown in Figure 19, Equation (8) is applied on 

components which depend on component i within subsystem j, taking into account the updated 

number of unresolved components in subsystem j. 

 

 

 

 

 

 

                                   Figure 19: Updating Internal Dependencies 

 

After applying the needed changes on the focal component and its dependent internal 

components, the result must be evaluated to decide whether to continue with the new 

configuration and contribution of the subsystem or to keep the old one. This is based on the new 

state of the focal component i after applying Equation (8), i.e., it may become resolved or stay 

unresolved.   

In the first scenario, in which the new state of the focal component becomes resolved, we 

continue with the new updated subsystem j’s configuration and its corresponding fitness 

contribution, regardless if the new subsystem j’s average fitness is better than the original or not, 
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as our aim is to resolve the whole system’s states with the highest possible performance. Figure 

20 summarizes this scenario and the simulation steps performed as discussed next. 

 

  Figure 20: Steps when the focal component becomes resolved 

 

After changing the state and the fitness of the focal component i, and taking into account its 

dependent internal components, we must deal with the dependent components in other 

subsystems as well. Updating external dependent components with the changes of the focal 

component depends on the parameter 𝒕, defined earlier. This is illustrated by the fact that 

changing the design choices of a certain subsystem or department in a company does not have to 

be always announced or communicated (from other subsystems) to other departments. For this, 𝒕 

represents a specification metric to which the focal subsystem j refers when deciding whether to 

update external dependent components or not. This is done by checking the value of t mod 𝒕; if 

it’s equal to 0, then we must inform the external dependencies with the recent changes and adapt 

them accordingly, else we do not. Informing the external dependencies is done by applying 

Equation (9) on the dependent external component on the focal component i. 
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Equations (8) and (9) are somehow similar, where the main difference is parameter yij (t). In 

Equation (9), the number of unresolved components, resembled by yij (t), represents both, 

internal and external unresolved components which each dependent external component depends 

on. 

𝒄𝒊𝒋(𝒕) = {
       𝟎   𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   𝟏 − 𝒓𝒊𝒋(𝒕)(𝟏 − 𝐭𝐚𝐧 𝐡 (𝜷 𝒊,𝒋

𝒊’,𝒋’
(𝑡) ∗ 𝒚𝒊𝒋 (𝐭)))

𝟏 𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚  𝒓𝒊𝒋(𝒕)(𝟏 − 𝐭𝐚𝐧 𝐡 (𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡) ∗ 𝒚𝒊𝒋 (𝐭)))
      (9) 

 

Product Development (PD) usually requires mutual effort from different departments for 

functional groups in a firm, where each department has its own specialization. Each 

department has limited knowledge about other departments, at the time where one employee 

in the department can have a higher (lower) level of knowledge than another employee 

(Songhori et al.,, 2017). For this, knowledge is earned along the search process and each 

person in the firm will learn more about his relationships and strength of dependency with his 

colleagues. In out model, fitness values are being updated and components tend to learn more 

about the strength of their interdependencies. This is obvious because when components are 

being resolved and their corresponding fitness values are being updated accordingly through 

the search process, the focal component is having more knowledge about its internal and 

external dependencies. For this, after the update of the fitness values through the search 

process, the level of knowledge of the strength between these dependencies is updated 

accordingly. This is accomplished by updating the dependency values, if t mod 𝒕 is within 

the acceptable range, as shown in Equation (10) below.  

𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡) = 𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡 − 1) +  Φ[(𝑓𝑖(t) − 𝑓𝑖(t − 𝑡)) − 𝜷 𝒊,𝒋
𝒊’,𝒋’

(𝑡 − 𝑡)     (10) 
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Where Φ is called the reinforcement learning factor which is sampled randomly from a uniform 

distribution U (0,1). 

As for the second scenario, represented in Figure 21, if the focal component remains unresolved, 

then we look into the subsystem’s average fitness in this case. We check whether the new 

subsystem j’s average fitness has improved (i.e. is greater than the previous subsystem’s average 

fitness). Based on this comparison, we go with the subsystem states’ contribution having a 

greater average fitness. In this scenario, there is no need to update the external dependencies 

accordingly as the state of the focal component do not change. Similar to the first scenario, 

components need to learn about the strength of the dependencies within other components, 

irrespective whether the focal component remained unresolved or not. For this, we check if t 

mod 𝒕 is within the acceptable range to update the dependency values, accordingly, as stated 

previously in Equation (10).  

 

 

                                 

Figure 21: Steps when the focal component stays unresolved 

 

3.1.3 Impact of external dependencies on resolved components 
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As subsystems are being resolved, the process of updating the dependent external dependencies 

(in other subsystems) may render some already resolved components to become unresolved 

again. For this, a check must be done on these components. An unresolved component i is 

chosen from a randomly chosen subsystem j, on which we apply Equation (9) and sample for its 

fitness from a uniform distribution U(0,1). Then, we adapt the states and fitness values of the 

internal dependencies of component i accordingly through applying Equation (9) on all internal 

dependent components within the subsystem j, and sample for their fitness values from U(0,1), 

as shown in Figure 22.  

 

 

 

Figure 22: Dealing with Unresolved External Dependencies (1) 

 

After applying these changes, we check whether the state of component i has been resolved or 

not. If the new state of component i is 1, i.e. resolved, we go with the new subsystem j' states’ 

configuration and its corresponding fitness contribution, regardless if the new average fitness is 

better or not, as shown in Figure 23. 
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Figure 23: Dealing with Unresolved External Dependencies (2) 

 

Otherwise, if the state of the focal component i remained unresolved, then we check if the new 

average fitness contribution of subsystem j is better than the old one and go with the states’ 

configuration and corresponding fitness contribution having higher average fitness, as shown in 

Figure 24.  

 

Figure 24: Dealing with Unresolved External Dependencies (3) 
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After we finish with component i, we deal with all unresolved states within subsystem j, until it 

becomes resolved. Then, we choose another subsystem j’, having unresolved components, at 

random, until we have all subsystems within the whole system totally resolved. In the Appendix, 

we show the full flowchart of the base model in Figure A1.  

 

3.2 Extended Model: with Design Rules 

In this section, we introduce into our base model the concept of design rules. As discussed earlier 

in the literature review section, design rules help in decreasing system complexity by providing 

upfront mutual agreement in design decisions between components in different subsystems.  

Design Rules are based on the concept of cyclic dependencies between components, i.e. if 

component A depends on component A’, component A’ depends on component A’’ and 

component A’’ depends on component A, we have a cyclic dependency of length 3. After 

initializing the states and fitness values for all components in subsystems, dependency values, 

completion rate and defining the parameter 𝒕, we check if cyclic dependencies exist to start 

setting the design rules, else, we proceed similar to our base model, i.e. without design rules, as 

shown in Figure 25.  
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Figure 25: Design Rules Model (1) 

 

If cyclic dependencies occur, we specify a certain number of design rules to be developed and 

the corresponding size of the cycle connecting the components, i.e. the number of the 

components to be included in the design rule. Specifying which design rules upfront might be 

more beneficial for the system than randomly selecting the design rules and this is due to the 

knowledge of the system (some maybe easier than others to be developed as design rules). After 

specifying the number of design rules to be developed, we search for cyclic dependent 

components through the Depth First Search (DFS) Algorithm (Morin, P., 2013). Depth First 

Search Algorithm (DFS) is an algorithm used in graph data structures and network theory. The 

algorithm begins the search process starting from the root node and “explores one subtree before 

returning to the current node and then exploring another subtree”. For the selected cyclic 

dependencies, we standardize the states of all components involved in this cycle, i.e. we set their 

states to 1, as shown in Figure 26. In addition, the fitness of all components within the same 

cycle is set to the minimum fitness value of all components within the cycle1.  

 

 

 

 

 

 

 

 
1 Alternatively, we can take the average, but we chose the minimum as a worst-case situation since Design Rules 

usually reduce the design freedom and potential for innovation/increase 
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Figure 26: Design Rules Model (2) 

 

After specifying the design rules and standardizing the states and fitness values of the 

corresponding components, we continue similar to the base model. We first start with either 

individual or social learning, depending on the chosen subsystem, as in our base model. We 

apply Equation (8) on the state of the focal component i, provided that the chosen focal 

component i is not involved in a design rule and change its corresponding fitness value by 

sampling from a Uniform distribution U (0,1), as shown in Figure 27.  
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Figure 27: Design Rules Model (3) 

 

First, we update the internal dependent components on the focal component i and we check if the 

internal dependencies are design rules or not. If an internal component that depends on 

component i is a design rule, we keep its state standardized, i.e. equal to 1, and its fitness fixed. 

Else, if the dependent component is not a design rule, we apply Equation (8) on it and sample for 

its fitness from U(0,1).  These steps are shown in Figure 28. Similar to the base model, we will 

have two cases based on the current new state of the focal component i. as follows: 

 

 

 

 

 

Figure 28: Design Rules Model (4) 

 

In the first scenario, the new state of the focal component becomes resolved, hence we continue 

with the new updated subsystem j’s configuration and its corresponding fitness contribution, 

regardless if the new subsystem j’s average fitness is better than the original or not. Then, we 

deal with the external dependencies of component i, after checking the value of t mod 𝒕, as 

discussed earlier in the base model. If it is equal to 0, we must inform the external dependencies 

with the recent changes and adapt them accordingly, else we do not. Informing the external 
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dependencies is done by applying Equation (9) on the dependent external components on the 

focal component i. Similar to the internal dependencies, external dependencies which are 

categorized as design rules, are kept standardized, i.e. we do not change neither their states nor 

their fitness values, as shown in Figure 29. After dealing with internal and external 

dependencies, we update the dependency values accordingly through applying Equation (10), for 

the components to be up to date with the amount of strength with its dependencies. 

As for the second scenario, if the focal component remains unresolved, we look into the 

subsystem’s average fitness in this case. We check whether the new subsystem i’s average 

fitness is greater than the previous subsystem’s average fitness and we go with the states of the 

subsystem having a greater average fitness. As previously stated, in this case we don’t update the 

external dependencies accordingly as the state of the focal component didn’t change. Similar to 

the first scenario, components need to learn about the strength of the dependencies within other 

components, irrespective whether the focal component remained unresolved or not. For this, we 

check if t mod 𝒕 is within the acceptable range to update the dependency values, accordingly, by 

applying Equation (10).  

 

 

 

 

 

Figure 29: Design Rules Model (5) 
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Finally, we check whether the resolution of some systems forced already resolved external 

dependent components to become unresolved again. For this, an unresolved component i is 

chosen from a randomly chosen subsystem j, on which we apply Equation (9) and sample for its 

fitness from a uniform distribution U(0,1). Then, we adapt the states and fitness values of the 

internal dependencies of component i accordingly through applying Equation (9) on all internal, 

non-design rules, dependent components within the subsystem j, and sample for their fitness 

values from U(0,1). After applying these changes, we check whether the state of component i has 

been resolved or not. If the new state of component i is 1, i.e. resolved, we go with the new 

subsystem j states’ configuration and its corresponding fitness contribution, regardless if the new 

average fitness is better or not. Otherwise, if the state of the focal component i stayed 

unresolved, then we check if the new average fitness contribution of subsystem j is better than 

the old one and go with the states’ configuration and corresponding fitness contribution having 

higher average fitness. After we finish with component i, we deal with all unresolved states 

within subsystem j, until it becomes resolved. Then, we choose another subsystem j’, having 

unresolved components, at random, until we have all subsystems within the whole system totally 

resolved.  

The main aim of introducing the design rules concept into our model is to reach system 

resolution with the least needed cost and effort during the search process. In the Appendix, we 

show the full flowchart, of the extended-design rules model, in Figure A2. 
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CHAPTER 4 

ANALYSIS AND DISCUSSION 

 

In this chapter, we perform several sensitivity analyses using test cases (i.e. experiments) to 

improve our understanding of the dynamics of the model. First, we investigate product 

performance and convergence time in various systems having different number of components N 

and different architectures (i.e., decompositions); that is, different values of S and K. Then, we 

study the variation in the unresolved components (i.e., tasks) due to varying the dependency 

value 𝜷. Moreover, we check how the average performance and average convergence time of 

systems with different decompositions are impacted by the value of 𝒕. We also investigate how 

the average performance and convergence time is impacted using design rules. In the last section 

of this chapter, we perform sensitivity analysis on the learning procedure as we examine the 

variation of the product performance and convergence time with the variation of the 

reinforcement learning parameter Φ. 

 

4.1 Investigation of product performance and convergence time with different N and S  

In this section, we examine the variation of the average number of unresolved tasks (i.e., process 

performance) and the average (product) performance (i.e., fitness values) of three systems, each 

having a different number of components N. We assume that all required resources to reach a 

resolution are available (i.e. the completion rate 𝒓𝒊 =1 for all subsystems), and that the 

dependency value  𝜷 is fixed to 0.15. The value of 𝜷 is constant and not variable as stated in the 

Model section, per Equation (10), since learning is suspended in this section so that the effect of 
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system decomposition will not be tainted by the learning feature. As for the value of 𝒕, we fixed 

it to be 1 in this section. Moreover, for each system with number of components N, we divide the 

whole system into different number of subsystems (blocks) to examine whether different 

decompositions have any effect on the average product and process performance (i.e. the number 

of unresolved tasks and fitness values). 

We first consider a system of ten components and make different system decomposition: one 

subsystem of ten components, two subsystems of five components each, five subsystems of two 

components each and 10 subsystems of 1 component each. Then, we simulate our base model in 

each of these four different decompositions to obtain the results shown in Figure 30. 

The same simulation is repeated on a system of twenty components, where we take into 

consideration six cases: one subsystem of twenty components, two subsystems with ten 

components each, four subsystems with five components each, five subsystems with four 

components each, ten subsystems with two components each and finally twenty subsystems with 

one component each. Simulation results are shown in Figure 31. 

Finally, we study large systems, of fifty components and take into consideration six cases: one 

subsystem made up of fifty components, two subsystems with twenty-five components each, five 

subsystems with ten components each, ten subsystems with five components each, twenty-five 

subsystems with two components each and finally fifty subsystems of one component. The 

variation of the number of unresolved tasks and fitness values of these six scenarios are shown in 

Figures 32. 
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(a) Average Number of Unresolved Components / Tasks 

 

 

 

 

 

 

 

 

 

 

(b) Average Performance (i.e. fitness) 

Figure 30: Variation of the number of unresolved tasks and average performance with time 

for a system of N=10 



64 

 

0

2

4

6

8

10

12

14

16

18

20

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

A
ve

ra
ge

 N
u

m
b

er
 o

f 
U

n
re

so
lv

ed
 T

as
ks

Convergence Time/Iteration

1 system of 20 components 2 subsystems of 10 components each

4 subsystems of 5 components each 5 subsystems of 4 components each

10 subsystems of 2 components each 20 subsystems of 1 component each

0

2

4

6

8

10

12

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

A
ve

ra
ge

 N
u

m
b

er
 o

f 
U

n
re

so
lv

ed
 T

as
ks

Convergence Time/Iteration

2 subsystems of 10 components each 4 subsystems of 5 components each

5 subsystems of 4 components each 10 subsystems of 2 components each

20 subsystems of 1 component each

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Average Number of Unresolved Components / Tasks 

 

 

 

 

 

 

 

 

 

 

(b) Average Number of Unresolved Tasks (without the 1 system with 20 components) 
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(c) Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) Average Performance (i.e. fitness) (without the 1 system with 20 components) 

 

Figure 31: Variation of the number of unresolved tasks and average performance with time 

for a system of N=20 
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(a)Average Number of Unresolved Components / Tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)Average Number of Unresolved Tasks (without the 1 system with 50 components) 
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(c)Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d)Average Performance (i.e. fitness) (without the 1 system with 50 components) 

Figure 32: Variation of the number of unresolved tasks and average performance with time 

for a system of N=50 

 

We can observe that the average number of unresolved tasks (components), in all three systems, 

decreases along the simulation process, which means that the system converges to a solution (i.e. 

reaches resolution). It is also noticed that the number of unresolved tasks is not monotonically 

decreasing. It goes down then up and then down, several times, before eventually converging to 

zero, a phenomenon described earlier as design churn (Yassine et al. 2004). The resolution of 
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tasks in small systems (N=10), as shown in Figure 30 (a), is smooth and achieved fast 

convergence due to the small “complexity” in the system. Here, complexity is reflected by the 

number of dependencies in the system, denoted by the parameter K, defined earlier in our model. 

The number of dependencies K is changing in response to varying the system decomposition; 

that is, the number of subsystems (sub-blocks) S is considered during system decomposition. For 

example, in our case, when a system having N=10 components is decomposed into two 

subsystems, each of five components, the number of inner dependencies Kin is =3 and that of 

outer dependencies Kout is=1. However, when the same system is decomposed into five 

subsystems, with each having two components, the number of dependencies automatically 

change to become Kin is =1  and Kout is=3. As such, the complexity of the system consequently 

changes when changing the system decomposition. 

As for the medium sized systems (N=20), as shown in Figure 31, the variation of the 

components’ states between resolved and unresolved is greater than that in smaller systems, as 

some resolved components are revisited and are  forced to become unresolved again until 

complete system resolution is reached. This is expected as more dependencies occur in larger 

systems, which renders the search and resolution processes harder to achieve.  

Finally, in large sized systems (N=50) we obtain the widest variations to reach convergence, as it 

is shown in Figure 32. As the number of components in a system increases, the trend and 

variation of the number of unresolved tasks is more rigid and less smooth and it becomes more 

time consuming to reach system resolution. Comparing the average number of unresolved tasks 

between different system’s decomposition, for the fixed number of components N, we 

significantly observe that as we divide the whole system into more subsystems (sub-blocks), it 

takes a smaller number of iterations to reach system resolution. For example, in Figure 32, when 
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we had one whole system of 50 components, system resolution was achieved after 420 iterations. 

As for the other extreme case, when we divided the system into 50 subsystems, each having only 

one component, it took only 58 iterations to achieve system resolution. This applies as well in 

small and medium sized systems, i.e. N=10 and N=20 respectively. Therefore, the higher the 

number of subsystems, the faster system convergence is reached. When we are dividing the 

system more and thus having a higher number of subblocks, system complexity is affected, i.e. 

the distribution of the number of inner and outer dependencies (Kin and Kout) changes, as 

discussed earlier. So, as the number of subsystems increase, having a lower number of 

components within each subsystem (subblock), the number of inner dependencies Kin is 

decreasing while that of the outer dependencies Kout is increasing (conserving the total number of 

K= Kin+ Kout), which makes the system complexity highly dependent on or represented by the 

external, rather than the internal, dependencies. Hence, we conclude that system convergence is 

mainly impacted by the complexity within the subsystems internally more than that represented 

by the external interactions and that “when teams give more weight to paying attention to their 

own subsystem than to between-subsystem interactions, they concentrate their search efforts on 

small search domains, and converge to a local optimum in a short time period” (Songhori et al., 

2017). 

As for the average performance values, as shown in Figures 30, 31 and 32 that average fitness 

values are almost stable where they vary between values of 0.44 and 0.47 maximum. Comparing 

how the fitness values are varying according to the system decomposition, in small sized systems 

(N=10), we reach the highest performance when the system is decomposed into two subsystems, 

each with five components, whereas the lowest performance is reached in this system when we 

decompose it into ten systems, each with one component, as shown in Figure 30 (b). As for 
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medium sized systems (N=20), the highest performance is achieved when we decompose the 

system into four subsystems, each with five components, where the system reaches an average 

fitness of 0.46. As for the lowest performance, it mainly occurs in two decompositions: one 

system, each with twenty components in which the system performance remains low, in a range 

between 0.44 and 0.45 , despite the several iterations the system passes through in the resolution 

process, as shown in Figure 31 (c and d), and when we decompose the system into five systems, 

each of four components. Finally, in large systems (N=50), the lowest performance is reached 

when we decompose the system into fifty subsystems, each with one component, as shown in 

Figure 32 (c and d), where the highest fitness values are when the system is decomposed into 

twenty five subsystems, each with 2 components. All in all, we conclude that system 

decomposition has an impact on the system performance, where as shown in Figures 30 (c and 

d), 31 (b) and 32 (c and d), one decomposition may cause the system to have the lowest 

performance at the time this performance increases significantly when we decompose the system 

to a different number of subsystems and components (S, Kin and Kout). 

 

4.2 Divergence of the Number of Unresolved Tasks 

As discussed in the previous section, the number of unresolved tasks in the system vary along the 

convergence time until resolution is reached. However, the system might not converge to achieve 

complete resolution under certain conditions. As proved by Braha and Bar-Yam (2007), 

convergence is achieved if the result of multiplying 𝛽  with the number of unresolved 

components (𝛽i * yi) is less than the completion rate ri , in the system as a whole.  

To investigate this case, we performed a sensitivity analysis by varying the value of parameter 𝜷 

in one of the scenarios of each of the above subsystems (N=10, 20 and 50), keeping the value of 
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𝒕 and ri fixed at 1. In this case, we applied the analysis on a system of N=10 with five 

subsystems, each of two components, on a N=20 system divided into five subsystems each of 

four components, and on a N=50 system representing five subsystems each with ten components. 

The results are respectively shown below in Figures 33, 34 and 35. 

 

  

 

 

 

 

 

 

 

 

Figure 33: Variation of the number of unresolved tasks with time for a system of N=10 for 

different 𝛃 values 
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Figure 34: Variation of the number of unresolved tasks with time for a system of N=20 for 

different 𝛃 values 

 

 

 

 

 

 

 

 

 

 

Figure 35: Variation of the number of unresolved tasks with time for a system of N=50 for 

different 𝛃 values 

 

As we can see from Figures 33, 34 and 35, each system has a specific value for 𝜷  at which it 

diverges. For example, at 𝜷 = 0.75, the small sized systems (N=10) diverge, unlike the medium 

sized system (N = 20) which diverges at 𝜷  = 0.5. As for the large sized systems (N = 50), we can 

see from Figure 35 that they diverge at 𝜷  = 0.45. So, we conclude that as the number of 

components in a system increases, it becomes more possible to diverge at lower values of the 

sensitivity parameter 𝜷. For this, when the system becomes very large (≥500 component), it will 

eventually diverge at small values of 𝜷,  which makes it difficult for very large systems to reach 

resolution unless a proper and careful decomposition is applied to the system.  

It is worth checking whether system decomposition has any effect on the system convergence, 

i.e. if a system converges, in case it is decomposed into subsystems, will it convergence in case it 

wasn’t decomposed? 
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First, we assume a system A, decomposed into N subsystems, where each subsystem i converges 

and has its own number of unresolved components, resembled by y1, y2 …., yN respectively. As for 

the values of the completion rate r and 𝛽, they are constant in all subsystems. 

According to Braha’s equation, and since each subsystem converges, this validates the following 

set of  N formulas, in each of the subsystems: 

y1 < 
𝑟

𝜷
  ... (1) 

 y2 < 
𝑟

𝜷
 … (2)  

    …….. 

 yN < 
𝑟

𝜷
 … (N) 

Now, we combine the N subsystems into one system A, and we check if the system converges as 

a whole at the dependency value 𝜷, or not. Adding the two sides of the above set of the N 

equations, we obtain the below: 

➔ (y1 + y2 + …+ yN) < (
𝑟

𝜷
 + 

𝑟

𝜷
  +… 

𝑟

𝜷
 )  

 N times 

➔ (y1 + y2 + …+ yN) < 
𝑁∗𝑟

𝜷
 (To note here that the dependency value and completion rate are 

same and fixed in all subsystems) 

➔ yA< 
𝑁∗𝑟

𝜷
 

So here we have two scenarios: yA< 
𝑟

𝜷
  or yA> 

𝑟

𝜷
 

Then, system A here can either diverge or converge at the time it was converging when divided 

into smaller subsystems. Hence, we conclude that system decomposition plays an important role 

in system convergence in which a system can converge when dividing it into smaller subsystems, 
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where each subsystem converge under the following condition: y < 
𝑟

𝜷
, at the time the system was 

diverging as a whole. 

To validate the proof and check whether system decomposition has any effect on system 

divergence, we simulate the large sized system, of fifty components, at 𝜷  =0.3 over 100 runs, in 

two different cases: one system of fifty components and two subsystems, each with twenty-five 

components. The simulation of these two cases resulted in the divergence of the subsystem when 

it is undecomposed; that is, one subsystem with fifty components. It converges, at an average of 

186 iterations, when we decompose it into two subsystems, each with twenty-five components. 

The results of these two cases are shown in Figure 36. To note here that the system diverges, in 

all its decompositions at 𝜷  =0.35, 0.4 and 0.45. Thus, we conclude that system decomposition 

affects divergence at certain values of 𝜷. These values of 𝜷,  at which the system converges when 

decomposing it at the time it diverges as a whole, can be determined through a trial and error 

process. To minimize the options of the 𝜷  values in the trial and error method, we first solve for 

the 𝜷  value in equation yA< 
𝑟

𝜷
, i.e. 𝜷  < 

𝒓

𝒚𝑨
. By this, we are assuring that the system as a whole is 

converging, so we start increasing the obtained value of 𝜷 to reach a value at which the system as 

a whole diverges. After obtaining the 𝜷 value at which the whole system diverges, we 

decompose it into N subsystems and start testing if the decomposed system will converge or not 

at the obtained 𝜷 value and so on to obtain a converging decomposed system using the trial and 

error process. 
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Figure 36: Variation of the number of unresolved tasks with time for two different systems’ 

decompositions of N=50 at 𝛃=0.3 

 

4.3 Sensitivity Analysis of the threshold value 𝐭 

In this section, we test the variation of the average convergence time and average performance 

values, over 100 runs, as a function of the threshold value t. We perform this test on small, 

medium and large-sized systems (N=10, 20 and 50) and results are obtained in Figures 37, 38 

and 39 respectively. As mentioned in section 4.1, we assume that the completion rate for all 

subsystems ri is 1 and that the sensitivity value 𝜷 is fixed at 0.15.  

We notice that as the value of t increases from 0 to 0.5, i.e. when the probability of dealing with  

external dependencies increase, almost in all systems, with different N and different  

corresponding decomposition, the number of iterations increases. Then, as the value of  

t continues to increase from 0.5 to 1, at which we always deal with all external  

dependencies, the average convergence time stays the same.  

As for the fitness values, it can be shown that the trend of all average fitness values is similar and  

vary in a range between 0.44 and 0.46. Investigating how the fitness values vary according  

to the system decomposition, it can be shown from Figures 37 (a), 38 (a) and 39 (a) that  

average performance values are not impacted directly by the system decomposition. For 

example, in small sized systems (N=10), highest performance is achieved when we decompose  
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the system into ten subsystems, with one component each, when t is between 0 and 0.5.  

However, as t increases from 0.5 to 1, the system decomposed into ten subsystems, with one  

component each, tends to have the lowest performance values. Similar analysis is observed in  

medium (N=20) and large (N=50) sized systems, where there is no specific system  

decomposition which has the highest/lowest performance, across all values of t. Hence,  

according to our simulation results, it can be concluded that system decomposition does not  

matter for the average fitness values as we vary t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)Average Performance (i.e. fitness) 
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(b)Average Convergence Time 

Figure 37: Variation of the average fitness values and average number of iterations as a 

function of t bar for N=10 

 

 

 

 

 

 

 

 

 

(a)Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

 

(b)Average Convergence Time 

Figure 38: Variation of the average fitness values and average number of iterations as a 

function of t bar for N=20 
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 (a)Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

(b)Average Convergence Time 

Figure 39: Variation of the average fitness values and average number of iterations as a 

function of t bar for N=50 

 

 

 

4.4 Investigation of product performance and convergence time considering Design Rules  

To study the effect of design rules on the system convergence and fitness (i.e., product and 

process performance), we examine the variation of the needed number of iterations to reach a 
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resolution (i.e. convergence) as a function of the number of developed (i.e. implemented) design 

rules. We simulate this experiment on a system of twenty components, decomposed into five 

subsystems with four components each, where Kin =3 and Kout =4, as represented in the DSM of 

Figure 40. The cyclic dependencies of size 2, developed in this system are the off block-diagonal 

elements highlighted (in yellow) in the DSM, as shown in Figure 40. As for the rest of the 

dependencies, they either represent the external dependencies between components from 

different subsystems which cannot be developed as design rules, or higher order design rules, i.e. 

cyclic dependencies of size higher than 2. It should be noted that not all external dependencies 

can be developed as design rules, since, for example, if a component X depends on component 

Y, then component Y doesn’t necessarily depend on component. 

 

X X X X   X     X  X   X    

X X X X  X        X  X X    

X X X X  X   X       X X    

X X X X       X X  X    X   

X  X X X X X X     X        

    X X X X  X  X     X X   

    X X X X    X     X X X  

    X X X X X   X     X   X 

   X X   X X X X X  X       

X X X  X    X X X X         

 X    X  X X X X X   X      

  X    X  X X X X X  X      

  X X X  X      X X X X     

   X X     X   X X X X  X   

      X   X X  X X X X  X   

 X   X  X   X   X X X X     

 X    X   X  X      X X X X 

     X   X  X  X    X X X X 

   X     X  X  X    X X X X 

          X  X X X  X X X X 
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Figure 40: Matrix representing a system of N=20 components, before the selection of 

design rules 

 

To have a detailed view of these design rules, Table 10 represents the components between 

which these two-cyclic design rules are developed. It is worth noting here that the DSM in 

Figure 40 is symmetric. 

 

Table 10: Two Cyclic Design Rules between Components 

Design Rule # Component # Subsystem #  Component 

# 

Subsystem 

# 

1 2  1 With 4 4 

2 2  1 With 1 5 

3 4  1 With 2 4 

4 1  2 With 1 4 

5 2  2 With 1 5 

6 2  2 With 2 5 

7 3  2 With 4 3 

8 4  2 With 1 3 

9 3  3 With 3 4 

 

After developing and selecting all the design rules that represent the dependency cycles of size 

two, shown in Table 10, these dependencies are removed from the original DSM (Figure 40) and 

the resultant  DSM becomes as shown in Figure 41. 

 

X X X X   X     X  X   X    

X X X X  X        X       

X X X X  X   X       X X    

X X X X       X X      X   

X  X X X X X X             

    X X X X  X  X         

    X X X X         X X X  

    X X X X    X     X   X 

   X X    X X X X  X       
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Figure 41: Matrix representing a system of N=20 components, after the selection of 

design rules 

 

Obtained simulation results are shown in Figure 42. 

 

 

 

 

 

 

 

 

 

Figure 42 (a): First run showing the variation of the average number of iterations 

with the number of design rules developed 
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Figure 42 (b): Second run showing the variation of the average number of iterations 

with the number of design rules developed 

 

 

 

 

 

 

 

 

 

Figure 42 (c): Third run showing the variation of the average number of iterations 

with the number of design rules developed 

 

As it can be shown from Figures 42(a), (b) and (c), the number of iterations decrease as the 

number of developed design rules increase (considering only dependency cycles of size two). It 
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should be noted here that the design rules selected in Figures 42 (a), (b) and (c) are selected 

randomly, and not in the order shown in Table 10 as the search algorithm chooses randomly the 

pairs of developed design rules, based on the specified number. This is because as we develop 

more design rules, a higher number of components are standardized, i.e. their corresponding state 

becomes “one”, and thus no need to dedicate any effort (and / or resources) to resolve them. 

Therefore, we will need a smaller number of iterations to resolve all system’s components, which 

will consequently reduce system complexity. To note here that the trend and linearity of the 

decrease of the number of iterations is not linked to a certain number of developed design rules. 

For example, in Figure 42 (a) we can see that number of iterations decreased significantly when 

increasing the number of developed design rules from three to five, unlike in Figure 42 (b) where 

we observed this significant decrease when increasing the number of design rules from five to 

seven. As for the third run, represented by Figure 42 (c), we notice that the number of iterations 

decreased notably when increasing the number of developed design rules from seven to nine.  

In order to check the effect of design rules on both number of iterations and average fitness 

values, we apply a simulation of our model, without and with design rules respectively on a 

DSM of size 20 (i.e., N=20). To note here that we removed all design rules, that is all design 

rules with all cycles’ size (cycles of 2, cycles of 3, etc..), and not only design rules with cycles of 

two, shown in Table 10. The obtained results are shown in Tables 11 and 12. 

 

Table 11: Average Fitness Values with and without Design Rules 
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Table 12: Average Number of Iterations with and without Design Rules 

 

Tables 11 and 12 show the variation of the average fitness values and average number of 

iterations respectively in a N=20 system, with and without design rules. In Table 11, it can be 

shown that the average fitness value of the whole system, over 100 runs, before introducing 

design rules into the system was 0.464. This value slightly decreases to become 0.397 when 

introducing design rules.  

As for Table 12, we can observe that the average number of iterations decreases dramatically 

from 34.75 to ≈0.6. From this, we can conclude that despite the design rules restrict the design 

freedom of the system’s components, which may lead to a less fitness value; however, this 

occurs at the advantage of a huge reduction in the cost, i.e. needed number of iterations. It is 

noticed from Table 12 as well that the first four subsystems are completely resolved as 

everything is decided upon developing the design rules, unlike the case in subsystem 5 as it took 

≈0.6 to become resolved. 

 

4.5 Investigation of product performance and convergence time and dynamics as a function 

of the reinforcement learning  

In this section, we introduce reinforcement learning to investigate the variation of the product 

performance and convergence time as a function of the reinforcement learning parameter Φ. 

Similar to earlier sections, we perform this analysis on small, medium and large sized systems. 
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We fix the values of the completion rate ri and  𝐭 to 1 in all our simulations, where the average is 

done over 100 runs. Results are shown below in Figures 43, 44 and 45. 

 

 

 

 

 

 

 

 

(a)Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

 

(b)Average Convergence Time 

Figure 43: Variation of the average fitness values and average number of iterations as a 

function of Φ for N=10 
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 (a)Average Performance (i.e. fitness) 

 

 

 

 

 

 

 

(b)Average Convergence Time 

Figure 44: Variation of the average fitness values and average number of iterations as a 

function of Φ for N=20 
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(a)Average Performance (i.e. fitness) 

 

 

 

 

 
 

 

 

 

 

 

(b)Average Convergence Time 

Figure 45: Variation of the average fitness values and average number of iterations as a 

function of Φ for N=50 

 

As shown from Figures 43, 44 and 45, we notice that the average convergence time to reach 

system resolution is decreasing as we increase the value of the reinforcement learning parameter 

Φ. In addition, when comparing the average convergence time for a fixed 𝜷  value, (i.e. without 
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learning presented in section 4.3), and the average convergence time presented in this section 

after introducing the learning feature, we notice that the needed number of iterations to achieve 

system resolution has significantly decreased. For example, in large sized systems (N=50), when 

having a system divided into 50 subsystems with 1 component each, the average convergence 

time was around 76 iterations, at 𝐭 set to 1, as shown in Figure 39. However, when introducing 

learning, we see that this value decreased to vary between 21 and 8, according to the 

reinforcement learning parameter, as shown in Figure 45(b). This decrease in the average 

convergence time applies for all sized systems and their corresponding different decompositions. 

Moreover, it should be noted here that the impact of learning is more effective on the 

convergence time in large systems than in small ones, as the decrease in the convergence time, as 

shown in Figure 45(b), is more recognizable than in small and medium sized systems, 

represented in Figures 43(b) and 44(b) respectively. This is expected, as in large systems, and 

due to the big number of components and dependencies, complexity is more than in small 

systems, which makes the decrease in the convergence time, caused by learning, more effective. 

Comparing the average convergence time of different systems’ decompositions, we recognize 

that as we decompose the system into more subsystems, the average convergence time is 

decreasing more with the increase of the reinforcement learning parameter. For example, in 

Figure 45(b), when the system was one big subsystem of fifty components, the average 

convergence time decreased from 9.86 to 8.38 iterations with the increase of Φ from 0.25 to 1. 

However, when the system is decomposed into fifty subsystems, each with one component, the 

average convergence time decreases significantly from 20.57 to 11.41 iterations.  

As for the average performance values, they are roughly varying between 0.44 and 0.46, for all 

systems with different number of components N and different decompositions. Observing the 
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effect of system decomposition on the variation of the average performance, in Figures 43(a), 

44(a) and 45(a), we can see that average fitness is not directly impacted by system 

decomposition as the values of highest and lowest performance in small, medium and large 

systems are sometimes achieved when the system is decomposed into a small number of 

subsystems. However, they are also noticed when we decompose the system into a larger number 

of subsystems. For this, we conclude that decomposition has no direct effect on the trend of 

average performance values. 
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CHAPTER 5 

CASE  STUDY 

 

In this chapter, we apply our base and extended models, in sections 5.1 and 5.2 respectively, on a 

real-life system. This system is a gas turbine aero engine which is mainly composed of two 

building blocks: the high-speed spool and the low speed spool. In these two units, we have the 

following subunits: fan, low pressure compressor (LPC), high pressure compressor (HPC), the 

diffuser/combustor, high pressure turbine (HPT) and the low-pressure turbine (LPT). A simple 

representation of the system is shown in Figure 46 (Mascoli, 1999). 

 

 

 

 

 

 

 

 

 

Figure 46: Representation of the gas turbine aero engine (Mascoli, 1999) 

 

This engine performs three functions which allows it to provide propulsive thrust to the aircraft: 

compression of air, combustion of the compressed gas and exhaust of the combusted gas 

(Mascoli, 1999). A briefly description of this engine is as follows. The air (gas) is compressed in 
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the Compression Systems Module, which is composed of the fan, the LPC and the HPC. Then, 

the compressed air leaves the HPC to enter into the diffuser/combustor in which it is mixed with 

fuel and burned. Finally, the process of the combusted gas exhaust is accomplished in the 

Turbine  Systems Module, which is composed of the HPT and the LPT.  

To simulate the above gas turbine aero engine, we model it as a square (non-symmetric) matrix 

with N=81, which is divided into seven subsystems and each subsystem has its own number of 

components. Number of components per each subsystem are represented in Table 13 below. 

 

Table 13: Distribution of the number of components in the subsystems 

Subsystem S Number of components in subsystem S 

1-Fan 12 

2-LPC 12 

3-HPC 16 

4-Diffuser/Combustor 7 

5-HPT 13 

6-LPT 14 

7-Bearing Design and Rotor Support 

System 

7 

 

The above described system is as shown below, in Figure 47, however we didn’t take into 

consideration the below highlighted part to ensure system decomposition. 
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Figure 47: DSM of the Complete Gas Turbine Aero Engine 

 

The unhighlighted system, taken into consideration in our case study, can be represented in the 

DSM shown in Figure 48 below. 

Figure 48: DSM of the Considered Gas Turbine Aero Engine 
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5.1 Case Study Simulation-Without Design Rules  

In this section, we apply our base model on the system, described above, to check the 

convergence time of this system and the final performance value. We fix the value of the 

completion rate ri to 1, that is each component has all the needed resource allocation intensity to 

be successfully resolved. As for the value of betta 𝜷, it is variable since our model hosts the 

learning feature, however we set the initial value of the learning parameter 𝜷, in this case study, 

to be 0.15. As for the reinforcement learning parameter Φ, we set it to be 1, that is the maximum 

value at which the system benefits from the learning process. Finally, we set the value of  𝐭 to 1, 

i.e. we always inform the external dependencies about the internal changes of the system. Noting 

that we set the value of 𝐭 to 1 to accommodate for the worst-case scenario, which is represented 

by the fact that the number of iterations will increase consequently when we deal with more 

external dependencies, the thing that increases the cost. We simulated the case study, over an 

average of 100 runs, and ended up with reaching system resolution after an average of 32.36 

iterations. As for the average system performance value, it ended to be 0.4538. In Figures 49 and 

50, we show the variation of the performance value and number of unresolved tasks, 

respectively, over an average of 100 runs. 
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Figure 49: Variation of the average performance values of the case study system 

 

 

 

 

 

 

 

Figure 50: Variation of the average number of unresolved tasks of the case study system 

 

We can observe from Figure 49 that the average performance of the gas turbine aero engine 

varies between 0.453 and 0.458 to finally get fixed at an average of 0.4538 after approximately 

33 iterations. As for the convergence time, Figure 50 shows that the number of unresolved tasks 

in our case study decreases exponentially to reach complete system resolution after 33 iterations. 

 

5.2 Case Study Simulation-With Design Rules 

In this section, we apply our extended model, i.e. with design rules, on the system. In Table 14, 

below, we list all design rules, with all sized cycles, in our case study matrix, represented in 

Figure 48. 

 

Table 14: All Cyclic Design Rules between Components 
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Design Rule # Cycle Size Components of the cyclic 

design rules 

1 2 2 in subsystem 2 and 1 in 

subsystem 6 

2 2 9 in subsystem 2 and 1 in 

subsystem 6 

3 2 12 in subsystem 2 and 1 in 

subsystem 6 

4 2 4 in subsystem 3 and 1 in 

subsystem 5 

5 2 4 in subsystem 3 and 5 in 

subsystem 5 

6 2 10 in subsystem 3 and 1 in 

subsystem 6 

7 2 10 in subsystem 3 and 1 in 

subsystem 7 

8 2 1 in subsystem 4 and 1 in 

subsystem 5 

9 2 2 in subsystem 4 and 1 in 

subsystem 5 

10 2 4 in subsystem 5 and 6 in 

subsystem 7 

11 2 10 in subsystem 5 and 1 in 

subsystem 6 

12 2 1 in subsystem 6 and 1 in 

subsystem 7 

13 2 1 in subsystem 6 and 3 in 

subsystem 7 

14 2 2 in subsystem 6 and 1 in 

subsystem 7 

15 2 2 in subsystem 6 and 3 in 

subsystem 7 

16 2 5 in subsystem 6 and 6 in 

subsystem 7 

17 3 1 in subsystem 6, 1 in subsystem 

7 and 10 in subsystem 3 

18 5 10  in subsystem 3, 1 in 

subsystem 7, 2 in subsystem 6, 3 

in subsystem 7 and 1 in 

subsystem 6 

 

After listing the cyclic dependencies occurring in the case study, we need to decide which of 

these dependencies to select to be developed as design rules. This decision usually depends on 
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how subsystems interact with each other and on the importance and certainty of the interactions 

between components. Checking further the relation between the subsystems of the gas turbine 

aero engine, we notice that the dependency is highly dense and important between the HPC and 

HPT, that is subsystems 3 and 5, and between LPC and LPT as well, that is subsystems 2 and 6. 

This means that these subsystems are highly related to each other and that the role and function 

of components in one subsystem depend on the role and function of the components in the other 

subsystem. This is due to the fact that HPC and HPT are mechanically coupled through a shaft 

and HPT extracts enough energy to drive the HPC. As for the LPT, it is coupled with the LPC 

through the low speed shaft as well where the LPT extracts energy to drive the LPC (Mascoli, 

1999). For this reason, we decided to select the cyclic dependencies which are between 

subsystems 2 and 6 and subsystems 3 and 5 respectively, represented by the first five listed 

design rules in Table A14. 

As for the values of the system’s parameters, we kept them constant as specified in section 5.1. 

When simulating the case study, considering the five selected design rules, we reach system 

convergence after 30 iterations with an average system performance of 0.412. 

Another approach we considered is to select all two sized cyclic dependencies as developed 

design rules, which resulted in reaching convergence time in 17 iterations with average fitness of 

0.4. 

Comparing results obtained in sections 5.1 and 5.2, we can see that design rules play an 

important role in decreasing the cost of system resolution. As managerial and design decisions 

are taken in the whole system, the design rules are developed and thus their corresponding 

components become standardized, that is their states become resolved and their fitness values are 



97 

 

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

A
ve

ra
ge

 P
er

fo
rm

an
ce

 V
al

u
es

Time/Iteration

without Design Rules with Design Rules

constant. This process, as previously mentioned, has proven to save the system from running 

additional iterations as specifying a design rule will fix the role of the components, involved in 

the design rule, and will restrict any changes to be done on them, neither from components in 

external subsystems nor those in internal subsystems. To have a clearer view about the difference 

in the trend of system performance and number of unresolved components between the system 

with and without design rules, we present the results below in Figures 51 and 52 respectively. 

 

 

 

 

 

 

 

Figure 51: Variation of the average performance values with and without design rules 
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Figure 52: Variation of the average number of unresolved tasks with and without design 

rules 
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CHAPTER 6 

CONCLUSION 

 

The last decade witnessed a proliferation of product development (PD) research using complex 

systems and network theories. These studies aim to examine the nature of interactions between 

the systems’ components and how they are affected by the system’s properties, parameters and 

architecture. In this thesis, we focused on the effect of system’s decomposition (i.e., the number 

of blocks to which the system is divided and the corresponding number of components in each of 

these subsystems). The overarching objective is to test how decomposition impacted the 

system’s behavior which is mainly reflected by development process performance (i.e. the 

number of iterations to reach convergence), and on system or product performance (i.e. the 

overall system or product fitness value). Several sensitivity analyses and simulations were 

performed to check how different system decompositions are affected when varying the system 

parameters (the learning parameter 𝜷, percentage of updating the external dependencies 𝐭, 

reinforcement learning parameter). We studied the importance of design rules as well as we 

presented the results of a system with and without design rules and compared the results in both 

cases. Furthermore, the presented case study demonstrated how the design rules can be effective 

in achieving system resolution faster, provided that these developed design rules are agreed 

upon. That is designers/managers must specify which interactions between subsystems can or 

should be standardized and developed as design rules. 

 PD managers can benefit from this model, as it is an efficient methodology to apply in systems, 

especially in large ones, such as companies, departments, etc. This model helps PD managers to 
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choose, experiment, and test the proper decomposition for their systems, which will 

consequently help in reaching system convergence faster. Moreover, product development 

managers can refer to the simulation results to generate (relative) metrics on the needed 

convergence time and expected system performance when reaching system resolution. Also, 

product development managers can benefit from the reinforcement learning feature in our model, 

which captures the increase in the amount of knowledge of the subsystems’ components about 

each other and consequently result in lower cost to achieve system resolution. In addition, the 

design rules feature in our model introduces an additional leverage for organizations where 

managers and decision makers can enhance their system’s convergence by standardizing the 

interdependencies between subsystems and thus decreasing the needed convergence time.  

Our proposed model suffers from several limitations. One limitation to the model is the fact that 

the system can freely simulate without having a certain threshold on the number of iterations, 

unlike the case in real companies. In addition, in our model, design rules are based on random 

selection, rather than on certain finite selection. Selecting specific interdependencies as design 

rules, based on managers’ knowledge and experience, may help in reaching system resolution 

more realistically than when being randomly selected. Another limitation of our model is that it 

disregards the effect of the type of dependencies between components, where each dependency 

between components might have either a positive or a negative effect on system performance, 

but this was not taken into consideration in our model. 

For future work and research, the model can be extended to include additional parameters 

through introducing new restrictions to the system, such as limited budget and scheduled 

deadlines. For example, systems in real life cannot just evolve freely to reach resolution and 

convergence as they face specific limitations. Moreover, choice of the component to work on is 
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also not random but a deliberate choice is made by the development team. In addition, specifying 

the type of dependencies between the components; that is, when the performance of one 

component increases, the performance of its dependent components may increase or decrease 

depending on the nature of this dependency. Finally, we can study how we can achieve higher 

system performance when reaching system resolution, as the main focus in our model was more 

to resolve the system with an acceptable fitness value rather than reaching a high fitness. 
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APPENDIX 1 
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Figure A1 (a): Flowchart of the Base Model 

Figure A1 (b) : Flowchart of the Base Model-Continued  
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Figure A2 (a): Flowchart of the Extended Model 
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Figure A2 (b): Flowchart of the Extended Model-Continued 


