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An Abstract of the Thesis of

Kafa Abdallah Alameh for Master of Science
Major: Physics

Title: Minimal Model of Active Matter with Attraction: Phase Behavior and Kinetics

Physicists’ fascination of the phenomena of collective motion/behavior that we often
see in nature on many scales (from fish to bacteria and down to intra-cellular units) has
led to the emergence of the field of active matter. An active system is a collection of many
interacting self-driven active particles capable of converting stored energy into systematic
movement. They are out-of-equilibrium systems characterized by the interplay of noise,
activity, and interactions which give rise to a wealth of novel phases. The simplest model
consisting of self-propelled disks with purely repulsive interactions, exhibits surprising
behavior; it phase separates into a dense fluid phase and a gas phase. This phenomena of
phase separation in the absence of attractive interactions is termed motility-induced phase
separation (MIPS). It is controlled by the Péclet number (Pe), which characterizes the
persistence of self-propelled motion. Recent advances in understanding the novel phases
of active matter are based on the concept of swim or active pressure that measures the
strength of propulsive forces. Another contribution is termed passive pressure which
measures the direct contribution of interaction forces. In this thesis, we add a layer of
complexity by studying the phase behavior of active particles with attraction. When the
attraction strength is much larger than the self-propulsion, this results in clustering of
particles. We study the kinetics of cluster-cluster aggregation by measuring the time-
evolution of the domain size and the number of particles in a cluster as a function of
time. We identify three regimes: in the first low Pe regime attraction forces dominates
leading to clustering. An intermediate regime in which neither of the two forces is strong
enough to produce macroscopic phase separation. And a high Pe regime where phase
separation is expected. Finally, we attempt at characterizing the reentrant behavior
through a pressure equation of state calculation.
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Chapter 1

Introduction to Active Matter

How can the events in space and

time which take place within the

spatial boundary of a living

organism be accounted for by

physics and chemistry?

Erwin Schrödinger

1.1 What is Active Matter?

Cells migrate, birds fly, fish swim. Have you admired the intricate coordinated dynamics
of these systems? Motivated by such complex systems spanning macroscopic (flocking
of birds) to microscopic scales (crawling of cells, swimming of bacteria), scientists study
“active matter.” Often, they are interested by how do individual self-driven units, such
as starlings, can generate large scale complex dynamical pattern, such as ordering? What
type of physical principles underlie the behavior of such systems? How can we elucidate
their balletic maneuvers? Which state of matter do they generate? What parameter
should we tune to go from one state to another? And finally, how can we classify their
behavior and identify their properties?

Describing these systems as self-propelled particle systems whose individual units have
their own propulsion mechanism which evolve via update rules and/or while interacting
with each other, provides a way to study the physical principles governing their collective
behavior.

Active matter systems are out of equilibrium systems that di↵er from other class of
systems that are driven out of equilibrium by shear flow, forces at the boundaries, tem-
perature gradients, imposed fields, etc. The former are driven out of equilibrium by a
drive that acts on each individual unit. This drive can be internally generated by trans-
forming chemical energy into motion. In addition, the state of the particle is depicted by
the direction in which each particle moves and not the direction of the external field. In
addition, these systems exhibit interesting behavior absent in systems in thermal equi-
librium. Orientational order is thus a crucial characteristic of active matter. An example
of an ordered state that is obtained in thermal equilibrium is the nematic liquid crystal
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in which anisotropic particles align along a common axis. It is important to di↵erenti-
ate between “self-propelled particles” and “active nematics.” The former occurs in the
description of “swimmers” in a fluid, while the latter is used in describing “living liquid
crystals” of orientationally ordered states of active matter [1].
Thus, the term “active matter” describes a discrete or continuum systems, whose individ-
ual units are driven out of equilibrium through an internal (or external) energy reservoir
into kinetic work. These systems are characterized by the emergence of coherently mov-
ing, large scale spatial patterns, such as clusters and swirls.

Living matter in which active units interact, reproduce, and adapt, such as animal
flocks, motile microorganisms, biofilaments, molecular motor, are a paradigmatic example
of active matter. These systems are characterized by a wide variety of active agents and
behavior which renders having a comprehensive theoretical description of their complex
nature challenging.

In this thesis, we di↵erentiate between two classes of active matter: dry and wet and
we focus on the former. Dry active matter systems are systems in which hydrodynamic
interactions are absent. Thus, momentum is not conserved due to the presence of friction
caused by the background fluid. Examples of such systems are the bacteria or granular
beads gliding on a frictional surface.

1.2 Examples of Active Matter

1.2.1 Biological Systems

1.2.1.1 Bacterial Suspensions

Some experimental realization of a bacterial suspension includes studying the velocity
fields prompt by bacterial motion of sessile and pendent drops containing the bacterium
B. subtilis [2].
Fig. 1.1 shows bacterial flows in a sessile drop. The image is viewed from below through
the bottom of a petri dish. The horizontal white line at the top of the image is the air-
water-plastic contact line and gravity is perpendicular to the plane of the picture. The
frame rate is 1/30 seconds is not enough to capture the collective motion, which resulted
in a low resolution image. The scale bar is 35 µm.
These fields highlight how a concentration gradient of bioconvective plumes down a
slanted meniscus in order to concentrate cells at the drop edge or bottom. This e↵ect
is mediated by the interchange between buoyancy e↵ects and bacterial chemotaxis. This
concentration results in interesting motion exhibited by groups of bacteria such as vorti-
cal structures and other complex patterns. From a model point of view, Dombrowski et.
al. proposes a mechanism to explain the resulting large scale coherent structures using
hydrodynamics interactions between swimming cells. Consequently, these experiments
are crucial in highlighting the role of hydrodynamic interactions, along with the motion
of individual swimmers, in understanding the process of the generation of self-organized,
large-scale dynamical structures in the constituent fluid.

1.2.1.2 Cytoskeletal Filaments and Molecular Motors

Starting from an initially disordered state of a mixture of cytoskeletal and molecular mo-
tors elements (such as kinesis complexes, ATP, and microtubules) in a two-dimensional
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Figure 1.1: Bacterial Suspension

Figure 1.2: a. Kinesin–streptavidin construct moving simultaneously along two micro-
tubules. b. A self-organized aster observed by dark-field microscopy.
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geometry in vitro, Nedelec et. al. find self-organized states [3]. By carrying the concen-
tration of the components of the model, they observe the formation of asters and vortices.
Fig. 1.2 b shows an image of the experiment carried in [3]. A self-organized aster formed
by mixing polymerized and taxol-stabilized microtubules were mixed with motor con-
structs and ATP.
Dynamic asters are found in mitotic and meotic spindles, thus the usage of microtubules
is essential for the understanding of cellular structures. The formation of such large-scale
structures is a non-equilibrium process since it is mediated by the presence of ATP. Hy-
drodynamical theories of these models have been proposed. The theory and experiments
are summarized in [4].

1.2.2 Macroscopic Systems

1.2.2.1 Vibrated Granular Rods

Using a system of a fluidized monolayer of macroscopic rods in the nematic liquid crys-
talline phase in a two-dimensional cell, Narayanan et. al. [5], study the collective behavior
of the elongated rods by vertically shaking the system.
Fig. 1.3 is a snapshot from the experiment. We can observe a sparse region between 10
and 11 o’clock showing a large density fluctuation.
The shaking is essential in maintaining the system out of equilibrium. They observe
long-lived fluctuations in the dynamical regions. These fluctuations mimic the flocking,
coherent motion observed in moving flocks of birds. These experiments provide insights
on the giant number fluctuations in non-equilibrium systems, which deviates from the
known equilibrium central limit prediction of the behavior of the number fluctuations as
function of the number of particles N. Details on number fluctuations will be presented
in Chapter 3.

1.2.2.2 Flocking of Birds

The literature includes several numerical models inspired by biological systems [6] and
physics [7] aiming to understand the emergence of collective behavior. These models
include simple rules of interaction among the constituent elements of the system that
produce collective behavior. However, these models lack the precise nature of interaction
between the individuals. Ballerini et. al. [8] use novel stereometric and computer vision
techniques to measure the number of individual birds positions in a flock of up to 2600
starlings. They find that, contrary to what have been previous expected, birds adjust
their motion in the flock by measuring the behavior of topologically, rather than met-
rically, neighboring birds. Hence, at each instant in time, each bird would compare its
instantaneous position and velocity to their neighboring birds (found to be around 5 to
7). By making such adjustment, birds maintain coherent flocks. This result thus high-
lights that topological interaction is more robust than a metric interaction. The former
has the same strength regardless of the density of the system. However, the latter is less
robust in the sense that when inter-individual distance becomes larger than the metric
range, the interaction between birds will vanish, and cohesion would be lost.
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Figure 1.3: Giant number fluctuations in active granular rods

1.2.3 Synthetic Systems

During the last decade, diverse artificial active agents have been synthesized. Bechinger
et. al. present a summary of these systems in [9]. These active motors range from tens
of nanometers to micrometers and exploit various propulsion mechanisms. Experimen-
tal realizations include thermophoresis such as thermal gradients, di↵usiophoresis such
as concentration gradients, and inhomogeneous charge distribution of electrolytes using
electrophoresis. By synthesizing micro and nano machines, we will have a better quan-
titative understanding of non-equilibrium phenomena, in addition to the design of novel
propulsion mechanisms, crucial for novel technological applications.
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1.3 Scope of Thesis

Two phenomena are commonly occurring in equilibrium behavior of passive matter: phase
separation at intermediate densities and glassification (jamming) near the dense packing
limit. Recent simulations explored extensively the e↵ects of self-propulsion in active
matter on these two phenomena. In particular, it was demonstrated that self-propulsion
shifts the boundary between the fluid and jammed regimes. It was also shown that phase
separation emerges even in the case of purely repulsive interaction between active col-
loidal particles. This phenomena, termed motility-induced phase separation (MIPS) will
be revised in Chapter 2. However, the literature lacks some work on the phase behavior
of active particles interacting through attractive interactions. Redner et. al. [10] study
a system of self-propelled colloids interacting through short range attraction and found
that the phase diagram is reentrant as a function of activity. In the presence of attrac-
tive interactions, one may intuitively think that including attraction in the potential will
promote phase separation. However, phase separation may be suppressed depending on
the activity level. So self-propulsion can either enhance or suppress phase separation by
either acting cooperatively or competing with inter-particle attractions. Attractive active
particles show a reentrant phase behavior in which phase separation occurs at a certain
Péclet number. Phase separation is then suppressed as we increase the Péclet number
and phase separation appears again for higher Péclet numbers. Péclet number is a dimen-
sionless parameter, which will be defined in Chapter 3. Péclet number is proportional
to the persistence length. The phase diagram studied by Redner et. al. is a function of
attraction strength and Péclet numbers, at a fixed density. In this thesis, we investigate
the phase behavior of attractive active particles, in the density-Péclet number plane, at a
fixed attraction strength, which is much larger than the scale of self-propulsion. We make
use of these simulations to study the kinetics of cluster-cluster aggregation and the time-
evolution of the domain size of our system. We then move to investigate the reentrant
behavior at a fixed density and fixed attraction strength, and we take limiting values
of the self-propulsion, in such a way that we explore the phase behavior of the system
for self-propulsion less than, equal to, and larger than the attraction strength. In other
words, we study the reentrant phase behavior as we vary the strength of attraction and
self-propulsion, simultaneously. Lastly, recently there has been a lot of interest in char-
acterizing the pressure of active systems. It was shown that these systems have a unique
contribution to pressure, termed swim or active pressure. Due to their self-propulsion
motion, active particles exert a pressure that measures the strength of propulsive forces
across a bulk plane. Significant progress in theoretical e↵orts to understand phase be-
havior of active matter was achieved very recently by introducing the notion of active
pressure and eventually lead to a formulation of generalized thermodynamics of active
matter [11]. Numerical exploration of active colloids with purely repulsive interactions
supports the theory. Whether the generalized thermodynamics is applicable to a broader
class of interactions including attraction remains an open question. We investigate the
applicability of the recent thermodynamic formulation of active matter by measuring,
from simulation, active and passive pressure. Passive pressure measures the direct trans-
mission of interaction forces across a bulk plane. When phase separation takes place,
we observe a suppression in active pressure which leads to the non-monotonic behavior
of the full equation of state (active and passive pressure). This usually happens at high
densities. This instability is captured in MIPS and in our system. It describes a system
transitioning from a homogeneous to an in-homogeneous state. This is controlled by the
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suppression of active pressure. However, in systems depicting reentrant behavior, the first
instability is not trivial to obtain and it describes the transition form a phase separated
state to a homogeneous state by the breaking down of clustering due to attraction. We
did not observe this instability in our pressure calculations and it raises the question
to whether one can measure, from simulations, passive pressure due to attraction. In
chapter 4, we revisit the pressure equation of state calculation found in MIPS and we
highlight our unsuccessful attempt in passive pressure calculation for active systems with
attraction.
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Chapter 2

Passive vs. Active Matter -

Phenomenological Di↵erences

We cannot, indeed, without the

most careful scrutiny, decide

whether the movements of our

minutest organisms are

intrinsically ‘vital’ (in the sense of

being beyond a physical

mechanism, or working model) or

not.

D’Arcy Thompson

2.1 Passive Brownian Particles

Active matter such as migrating cells and motile bacteria are systems performing their
motion in a liquid environment. They are out of equilibrium systems whose constituent
elements convert harvested or internal energy into kinetic motion. These systems are
subject to viscous forces which oppose their velocity. Additionally, since they are im-
mersed in a fluid, they are also subject to thermal noise due to the collision between fluid
molecules and molecules constituting the active system.
Via numerical integration, Molecular Dynamics (MD) simulations solve Newton’s equa-
tions of motion:

mẍi(t) = �riU(xi) (2.1)

We are often interested in the time evolution of the particle’s positions ẋi(t) and veloci-
ties v̇i(t). Since the ergodicity hypothesis allows us to compute the time average as the
ensemble average of quantities of interest, we can compute the latter by averaging over
the time evolution of particles positions ẋi(t) and velocities v̇i(t) of all particles in the
system.
Nonetheless, we are often interested in studying some degrees of freedom in our system
such as particles suspended in a liquid. More specifically, we are interested in the behavior
of the suspended particles rather than the dynamics of the liquid’s molecules. However,
taking account of the liquid’s molecules mean that we need to tune our integration time
step to the fast dynamics of the molecules in the liquid, which would result in keeping
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track of all the liquid molecules positions and velocities. This is computationally ex-
pensive and thus, unfeasible. Since the solvent a↵ects the dynamics of the suspended
particles, we cannot completely drop the liquid out of the picture. Instead, we treat the
solvent’s molecules stochastically and we focus on studying the trajectories (and veloci-
ties) of the suspended particles.
The suspended particles interact with the molecules constituting the fluid. These colli-
sions result in a slow down in the velocities of the suspended particles.This slow down is
modeled by a friction term. An additional term, called fluctuation force, will be added
to the equation. This term is due to the fluctuation in the movement of particles’ due
to collisions. The influence on the suspended particles is caused by collisions with the
solvent’s atoms or molecules. On average, this slows down the velocity of the suspended
particles which can be modeled by a friction term. Nonetheless, there are additional
fluctuations of the particles’ movements due to the collisions, which results in the need
for a stochastic force. This treatment gives rise to a second order ordinary stochastic
di↵erential equation, called the Langevin equation:

mẍi(t) = ��mẋi(t) + ⇠i(t) (2.2)

< ⇠i(t) >= 0 (2.3)

< ⇠(t1)⇠(t2) >= g�(t1 � t2) (2.4)

where ⇠i(t) is a stochastic random force giving the e↵ect of background noise due to the
fluid on the particles. The random force has zero mean and variance g = 2�mkBT where
kB is the Boltzmann’s constant and T is the absolute temperature. g is a measure of the
fluctuating force and the delta function means that there is no correlation between the
impacts. In other words, any memory between collisions at di↵erent times will be lost
due to collisions. The fluctuating force has a Guassian distribution determined by these
moments. The randomness of Brownian noise is fully determined by the initial state of
the heat bath. In other words, the results of any calculation are expected to be indepen-
dent of the initial state and to involve only the statistical distribution of the noise. There
are three timescales involved in such systems. A short atomic timescale ⌧s ⇠ 10�12s, a
Brownian timescale for the relaxation of the particles velocity ⌧B ⇠ m

� , and a relaxation
time for the Brownian particle ⌧r, which is the time needed for a particle to di↵use its
own radius. In general, we have ⌧s << ⌧B << ⌧r.
Let us assume we have a transparent silica particle of mass m = 10�14 kg and of diameter
3 µm floating in a water solution, deposited on a microscopic glass slide. Using a micro-
scope, we can watch the erratic motion of the particle. We can also track the particle’s
displacement by measuring its position between di↵erent time intervals �t. We will find
that the particle’s motion is purely di↵usive with a di↵usion coe�cient given by:

Dt =
kBT

�
(2.5)

This is Einstein’s fluctuation-dissipation relation. Note that in the bulk of the liquid
solution, the friction coe�cient is given by � = 6⇡⌘R, where ⌘ is the viscosity of the fluid
and R is the radius of the particle.
Often, the particles have a tiny mass and thus inertia can be neglected. Moreover,
inertial forces acting on such particles suspended at low Reynolds numbers are negligible
compared to viscous forces caused by the liquid. This is the overdamped limit. In
addition, the relaxation timescale needed to forget the inertial e↵ects, termed ⌧B, is of
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order of 0.1 µs for silica particles. Comparing this relaxation time to the time intervals
for sampling in experiments, which is of order of ms for an acquisition via a standard
CMOS camera, this relaxation time is much smaller [12]. Therefore, equation (2.2) can
be simplified to the overdamped Langevin equation:

ẋi(t) = ⇠i(t) (2.6)

2.2 Active Brownian Particles

2.2.1 Methods of Simulating Active Matter

In the introduction, we discussed a non-exhaustive review of some experimental real-
ization of active matter. They included activating particles using di↵erent propulsion
mechanisms, designing particles with di↵erent properties, in addition to carrying the ex-
periments in di↵erent environments. When it comes to mimicking the behavior of such
systems in a computer simulation, we need a theoretical description capturing the inter
particle interaction, the propulsion mechanism, such as a fixed propulsive speed, the envi-
ronment in which the particles are embedded, such as a fluid, and finally a comprehension
of how these parameters a↵ect each other.
In the following, we will discuss two eminent techniques to account for the propulsion
mechanism of active matter.

2.2.1.1 Active Brownian Particles in a Solvent

Imagine you have a swimmer flowing in a fluid. In order to swim, the swimmer must
generate a flow. This will result in a long range hydrodynamic interaction between the
swimmers and the constituent particles of the fluid. A brute force approach to the prob-
lem is to take into account the inter-particle interaction between the swimmers and its
surrounding fluid molecule, and to fully integrate the full equations of motion using New-
ton’s 2nd law. Taking into account of all of the above is computationally expensive since
we are interested in simulating a large number of active particles.
In order to overcome this di�culty, we can coarse-grain the solvent. This is doable since
we are interested in the behavior of active matter rather than the surrounding fluid. Dif-
ferent simulation techniques adapt this idea.
In the following simulation techniques, one has to assume some constant momentum
transfer from the solvent to the swimmers or a velocity profile of the fluid on the bound-
aries of the active particles. This will result in the conservation of linear and angular
momentum of the system. Such active systems are termed wet active matter. One sim-
ulation technique, called multi-particle collision dynamics (MPCD), explicitly takes into
account a small number of the fluid molecules by solving modified equation of motion [13].
A second approach is obtaining the flow of the solvent through solving discrete Boltz-
mann equation. This is the lattice Boltzmann (LB) technique [14]. A third procedure
involves calculating, for each swimmer, the modes of velocity and force fields, by solving
Stokes equations [15].
In the following, we will discuss another class of systems called dry active matter in
which linear and angular momentum of the system is not conserved. This results from
modeling the activity mechanism through an explicit force or torque that acts on the
active particle. In [16], Hagen et. al. argued that modeling self-propulsion using forces
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and torques can be also be made for anisotropic particles and in the presence of external
fields. However, it is still an open question whether this simplification can be used in the
limit where hydrodynamics e↵ects are dominant.

2.2.1.2 Dry Active Matter

Another route of coarse-graining includes writing an e↵ective equation of motion for each
swimmer and completely ignoring the hydrodynamics between the colloidal particles and
the solvent. In the absence of inter-particle interaction, the equation of motion should
recover the limit of Brownian motion. Such a stochastic di↵erential equation was intro-
duced in 1908 by Paul Langevin [17]. Throughout this thesis, the Langevin equation will
be used. Consequently, in the following a detailed description of the equation is presented.

We describe, using the following Langevin equation, the motion of a colloidal particle
i suspended in a solvent whose constituent elements have a size much smaller than the
colloidal particle. Time is denoted by t and the particle’s position is given by the vector
ri

m
d2ri
dt2

= �⌘dri
dt

+

r
2⌘

�s
⇠tri (2.7)

D
⇠tri (t)

E
= 0 (2.8)

D
⇠tri (t)⇠trj (t0)

E
= Id�ij�(t� t0) (2.9)

m is the particle’s mass, ⌘ is the particle’s damping coe�cient which is a measure of
the viscosity of the solvent. The temperature of the solvent (and not that of the whole
system) is given by Ts which is given by �s = 1/kBTs, where kB is the Boltzmann constant.
We have introduced two forces to account for the collisions between the molecules of the
solvent and the colloidal particles.
On the right-hand side of (2.7), the first term, from the left side, is the drag force, and
the second term is the noise term describing a stochastic force.
Eq. (2.8) shows that the vector ⇠tri is a unit-variance random vector with 0 mean. Eq.
(2.9) dictates that the vector ⇠tri has delta correlations in time, where Id is the unit
matrix in d dimensions, and �ij and �(t) are the Kronecker and Dirac deltas, respectively.
The brackets in (2.8) and (2.9) denote an average over noise realizations of the stochastic
components of random vectors from a Gaussian probability distribution.
If we follow the particle’s trajectory, we would find that the particle undergoes Brownian
motion. On average, the particle’s displacement is 0, and its mean squared displacement
(MSD) is given by the following

⌦
ri(t)� ri(0)

↵
= 0 (2.10)

⌦
(ri(t)� ri(0))

2
↵
=

2dt

�s⌘
(2.11)

The particle, hence, undergoes Brownian motion with a di↵usion coe�cient

Dtr =
1

�s⌘
(2.12)

which is coincides with the Einstein-Smoluchowski relation [18].
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2.2.1.3 Interacting ABPs

Now we wish to include a set of interacting particles via a pairwise potential U(r). We
proceed by modifying the Langevin equation. We make the colloidal particles active
by introducing a self-propelling force, of constant magnitude f0. We assume that the
particles self-propel along their body-axis via a d-dimensional unit vector ui. In other
words, this unit vector describes the direction of motion of the particle. The modified
Langeving equation is given by

m
d2ri
dt2

= �
X

j 6=i

@U(rij)

@ri
� ⌘

dri
dt

+ f0ui +

r
2⌘

�s
⇠tri (2.13)

where rij = rj � ri is the interparticle separation.

Figure 2.1: Schematic representation of an active particle

Fig. 2.1 is a schematic representation of an active particle modeled by Eq. (2.13). On
the right hand side of Eq. (2.13), the first term, from the left side, is the force of inter-
action between the particles, the second term is the previous drag fore, the third term is
the self-propulsive force, and the forth term is the previously introduced stochastic force.
As we have previously mentioned, the absence of an explicit solvent and the presence of
self-propulsion violate conservation of momentum in the system.

To further simplify the description of a swimmer, we compare the strength of viscous
forces and inertial forces. It turns out that the latter are negligible with respect to the
former [19]. The ratio of inertial forces to viscous forces is called Reynolds number.
Colloidal systems have a low Reynolds number so that we can neglect the inertial term
on the left hand side of Eq. (2.13). This is the overdamped Langevin equation

dri
dt

= �1

⌘

X

j 6=i

@U(rij)

@ri
+ v0ui +

p
2Dtr⇠

tr
i (2.14)

where we have defined a self-propulsion speed as

v0 =
f0
⌘

(2.15)

Thus we will refer to Eq. (2.13) as the underdamped Langeving equation and to Eq.
(2.14) as the overdamped Langevin equation. We will proceed by only considering the
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overdamped equation. This equation describes the translational motion of the particles.
However, one should also take into consideration the rotational motion of the particles.
Thus, we will write an overdamped rotation Langevin equation for particles that do not
exert any torques on each other as

dui

dt
=

p
2Dr(ui ⇥ ⇠ri ) (2.16)

where the unit-variance random vector ⇠ri satisfies relations similar to Eqs. (2.8) and
(2.9).
Rotational di↵usion is an important parameter in active matter systems. Experimentally,
its importance was shown in di↵erent systems subject to athermal rotational di↵usion,
such as bacterial colonies [20]. For this reason, di↵erent models in the literature take
into account rotational di↵usion by treating it as an independent parameter that can be
varied in order to explore the di↵erent behavior of the system [21].

The systems we described in this section are referred to in the literature as Active
Brownian Particles (ABP). They are colloidal particles immersed in a solvent. The equa-
tions described in this section can be slightly modified to describe dry active matter, in
which the solvent is absent. To do so, the friction term is dropped from the equation
of motion. In addition, translational noise can be ignored due to the fact that thermal
fluctuations is absent in dry active matter systems [22]. Furthermore, it was shown in sim-
ulations of active matter systems that the phase behavior is independent of translational
noise [23, 24].

2.2.2 Simple Simluation Approaches to Active Matter

In this section, we present a literature review of two prominent models of active matter
that we investigated before delving into our model which we will present in Chapter 3.
These are the Vicsek model [7], and the model of self-propelled, purely repulsive disks [24].
They present novel types of behavior and phases acquired by active matter systems. We
proceed by concisely reviewing their phase behavior.

2.2.2.1 Flocking Transition in the Vicsek Model

The simplest model of collective motion was introduced by Vicsek et. al [7] in 1995. The
model describes the behavior of a two-dimensional point-particles system on a square
shaped lattice of size L with periodic boundary conditions. The simulation is carried
as follow: at time t = 0, N particles were randomly distributed in an area L ⇥ L. All
particles have the same self-propulsion velocity v0 and a randomly distributed direction
✓. At each time step, �t = 1, the position ri of particle i is updated using the following
discretized update equation

ri(t+�t) = ri(t) + v0ui�t (2.17)

where ui denotes the direction of self-propulsion of particle i along its predefined axis,
and is given by

ui = (cos(✓i), sin(✓i)) (2.18)

The update equation of the direction of self-propulsion of particle i is given by

✓i(t+�t) = h✓i(t)ir +�✓i (2.19)
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where h✓i(t)ir denotes the average direction of velocities of particles, including particle
i, within a circle of radius r = 1 surrounding particle i. The term �✓i represents noise.
It is a random number chosen from a uniform probability distribution from the interval
[�⌘

2 ,
⌘
2 ] .

The free parameters considered by Vicsek et. al are the noise strength ⌘, the self-
propulsion speed v0, and the density of the system defined by

⇢ =
N

L2
(2.20)

Even though the update equation of the system does not include any explicit interaction
term, on the right hand side of equation (2.19), the first term from the right tend to align
the direction of particles, and hence act as an attractive term.
The interesting behavior of this model appears when we vary the strength of noise and
density, at a fixed self-propulsion speed. The particles do not move in the limit of v0 ! 0
and hence the system becomes similar to the well-known XY model. In the limit of
v ! 1, the particles are always completely mixed. This is the limit of the mean-field
behavior of a ferromagnet. Accordingly, we use a value of v0 for which we ensure that
the particles always interact with their neighbors and that the configuration of particles
would change after some time updates.
Small groups of coherently moving particles is formed at small densities and noise. How-
ever, particles move randomly with some correlation at higher densities and noise. The
novel behavior appears for small noise and large densities; this is when the particles order
their motion and move together in a randomly selected direction as a flock. This suggests
that the system transitions from a homogeneous state in which correlation between the
positions and velocities of the particles is absent (isotropic, disordered regime), to an or-
dered state in which all particles move collectively in the same direction (polar, ordered
regime). Hence, as we decrease noise or increase the density, the system transitions from
a homogeneous phase to an ordered polar phase. Fig. 2.2 illustrates the Vicsek model
phase diagram in the (⇢, ⌘) plane. The transition can be explained by the following: small
groups of particle moving coherently is formed initially due to alignment interaction. As
the system evolves in time, di↵erent particles cluster will collide with each other leading
to an exchange of velocities between those clusters, and hence driving the system to an
ordered state. However, it was shown in [25] that the phase diagram has a central region
of coexisting phases in which liquid domains are observed in a disordered background.
Fig. 2.3 shows snapshots of the model in di↵erent states.
It is beneficial to highlight the similarities and di↵erences between the Vicsek model up-
date equations and the previously introduced overdamped Langevin equations for ABP.
If we ignore the interaction term and translational noise term in Eq. (2.14), Eq. (2.17) is
the integration of Eq. (2.14) using the Euler method. However, the update equation for
the angles in Eq. (2.19) include an alignment interaction term and the noise results from
a uniform probability distribution, in contrast to a Gaussian probability distribution in
Eq. (2.16).
Despite the simplicity of the Vicsek model, it is one of the first models of active matter
systems and contributed to the emergence of several new models including hydrody-
namics, steric repulsion in addition to translational and rotational noise, and mean field
theories models of active matter [26–29].
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Figure 2.2: Schematic representation of the Vicsek model phase diagram
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Figure 2.3: Snapshots of the Vicsek model in four regions of phase space. a. Homogeneous
State b. Groups of particles moving coherently in random directions for small densities
and noise. c. Particles moving randomly with some correlations at high densities and
noise. d. Ordered motion at higher densities and small noise.

2.2.2.2 Motility Induced Phase Separation of Self-Propelled Disks

Novel type of phases in active matter systems were reported first in 2012, by Fily et. al.
in [24], and later in 2014 by the same authors [23]. In the following, we highlight the
results obtained in these two papers as well as other literature inspired by these results.
Fily et. al. study a model of N purely repulsive discs in a box of size L with periodic
boundary conditions. Their equations of motions are overdamped Langevin equations
similar to those introduced previously in Eqs. (2.14) and (2.16). However, in their
numerical simulations, in order to highlight the importance of orientational noise, they
set the translational noise term to zero.
The particles interact through short ranged soft repulsive forces given by the following

Fij =

⇢
k(2a� rij)r̂ij if rij < 2a

0 otherwise
(2.21)

where a = 1 is the particle radius and k is the strength of interaction. After fixing the
values of rotational noise and interaction strength, the remaining free parameters are the
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self-propulsion speed v0 and the density or packing fraction of the system defined as

� =
N⇡a2

L2
(2.22)

Despite the fact that the model include only repulsive interaction between the particle,
the system shows phase separation in an intermediate range of packing fractions and ac-
tivity (self-propulsion). We obtain a high density cluster surrounded by a gas at packing
fractions below close packing, and a hole of gas phase inside a dense packed liquid at
packing fractions above close packing. This suggests that the system undergoes a phase
transition, as the self-propulsion speed v0 is varied, from a homogeneous state to a phase
separated state, at high densities. Equivalently, as the density of the system is increased,
the system undergoes a phase transition from a homogeneous state to a phase separated
state for high self-propulsion speed v0.
Fig 2.5 shows a series of the phase behavior of a system of repulsive hard disks. As we
increase the self-propulsion speed from 0.001 to 0.1 at a fixed packing fraction of � = 0.5
(from figure a to b), the system goes from a homogeneous state to a phase separated
state. Phase separation remains as we increase the packing fraction from 0.5 to 0.9 at a
fixed v0 = 0.1. However, at high densities we obtain a gas of active particles surrounding
a high density liquid (figure b), whereas at low densities we obtain a gas of active particles
surrounded by a liquid (figure c).
The mechanism by which we observe this change in behavior of active particles is novel
and di↵erent than the flocking transition of the Vicsek model driven by alignment in-
teraction. As particles start colliding together, they form small clusters. The particles
in the cluster need some time proportional to the reorientational timescale set by the
simulation before they can turn their direction of motion and escape from the cluster.
Fig. 2.4 illustrates this process. Before this happens, particle from the dilute phase may
bump into the clusters and consequently slow down. For high density and self-propulsion
of the particles, this will lead to a positive feedback which allow the cluster to grow in
size and hence, we will obtain a phase separated state.
This phenomena of phase separation with only repulsive interactions between the active
colloids is referred to in the literature as motility induced phase separation (MIPS) [30].
The idea of MIPS is the following: self-propelled particles tend to accumulate where they
move more slowly. This slow down creates a positive feedback which induced MIPS. The
accumulation of active particles where they move more slowly lead to the formulation of
density dependent propulsion speed: the speed of the active particles decreases as their
local density increases. A comprehensive review of MIPS can be found in [31] by Cates
et. al.
Redner et. al. study a similar model of active colloidal self-propelled particles [32] and
report that the phase diagram of MIPS can be mapped onto an equilibrium phase dia-
gram, despite the non-equilibrium transition found in MIPS. This suggests that we need
an extended theory of thermodynamics and statistical mechanics in order to understand
active matter systems. In fact, extensive theoretical studies on repulsive active mat-
ter systems involve numerical simulations, field theories, and continuum models [33–35].
Moreover, as we will discuss in the next section, attempts to describe active matter from
thermodynamic and statistical mechanics perspective are being extensively studied in the
literature.
As a final remark on MIPS, it was shown in the literature that MIPS takes place regard-
less of the interaction potential form as long as it has a repulsive core and for a variety
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of particle shapes. However, the shape of active particles a↵ects the collective behavior
of the system and hence allow the emergence of an ordered state [36–38].
In this thesis, we modify the force of interaction presented in this section to study the
phase behavior of a system of active particles with attractive interactions.

Figure 2.4: An active particle leaves a cluster after a time proportional to the reorientation
time-scale
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Figure 2.5: Snapshots of repulsive active particles. a. Homogeneous fluid at low self-
propulsion speed below close packing. b. Phase separated state below close packing,
consisting of high density liquid surrounded by a gas of active particles. c. Phase sep-
arated state above close packing, consisting of a hold filled by a gas of active particles
surrounded by a high density liquid. d Homogeneous liquid above close packing. e.

Glassy phase.
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2.3 Towards a Statistical and Thermodynamic De-

scription of Active Matter

Statistical mechanics was established by Ludwig Boltzmann towards the end of the 19th

century. Further development of thermodynamics and statistical mechanics was for-
mulated by Josiah Willard Gibbs and James Clerk Maxwell in the early 20th century.
Classical statistical mechanics and thermodynamics describe the theory behind thermal
equilibrium systems such as passive matter. Thermodynamics theories describe systems
containing a large number of particles, using macroscopic observables, such as pressure
and temperature. Hence, as a result of many-particle statistics, we need to link the
macroscopic behavior of the system to its microscopic properties using mathematical
constructions that are o↵ered by statistical mechanics, such as the free energy and the
partition function. In addition, statistical mechanics sets the needed machinery to study
the stability of systems and explains the physics behind phase transitions using the no-
tions of minimizing free energy or maximizing entropy. As a result, thermodynamics
defines state quantities characterizing the macrostate, and relate these quantities using
universal equations such as the equation of state and the laws of thermodynamics [39].

We have previously described that the novel phases observed in active matter systems
arise from their out of equilibrium behavior. Consequently, we cannot directly apply the
notions of equilibrium statistical mechanics. Nevertheless, in recent years, intense re-
search has been done on the relevance of some statistical mechanics notions such as pres-
sure, temperature, entropy, and surface tension to active matter systems [11,30, 40–43].

What we will discuss below is still an active area of research among scientists with
di↵erent approaches to the exciting ideas that arise from the behavior of active matter
systems.

2.3.1 Temperature

Systems in thermal equilibrium, such as a colloidal suspension, have a well defined thermal
energy kBT , where T denotes the temperature of the system, that describes the particles
kinetic energy. However, for active matter systems, the notion of temperature is still a
debatable topic among scientists. Studies of active matter systems in a thermal bath find
that a newly defined e↵ective temperature, of the whole system, take a value higher than
the temperature of the thermostat [44]. In addition, an experimental work, by Palacci et.
al., study chemically activated colloidal particles and define an e↵ective temperature as a
function of the activity level of the particles [45]. Using this e↵ective temperature, they
map the equation of state of chemically activated colloids onto an equilibrium equation
of state. However, MIPS is not captured by an e↵ective temperature because as we have
mentioned before, fluctuations in the system described by translational noise does not
a↵ect the phase behavior of active matter undergoing MIPS.

2.3.2 Pressure

In recent years, the notion of pressure for active matter systems, specifically dry active
matter, has been an intensive field of study. Takatori et. al. [46] introduced the notion of
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swim pressure using the following arguments. Given that active matter systems generate
their self-motion using self-propulsion, such systems have a unique pressure, called active
or swim pressure, that is athermal in origin.

2.3.2.1 Stress in Active Matter: Swim Pressure

In the following, we motivate the definition of swim pressure as it was introduced by
Takatori in [46]. In general, we obtain an equation for the stress � (or pressure) on a
system, using the virial theorem, in terms of the forces acting on the system. The stress
is given by

� = � 1

V

D NX

i

xiFi

E
(2.23)

where Fi are the forces acting on the particle i, xi is the position of particle i, and V is the
volume of the system. Suppose we have a particle in a fluid. We write the overdamped
Langevin Equation as

�⇣V (t) + F (t) = 0 (2.24)

where the drag is given by ⇣, the particle velocity is V , and F is any force acting on the
system. We write the position of the particle at time t as

x(t) =

Z
V (t0)dt0 (2.25)

so that we can write the stress on a particle as

� = �nhxF i = �n⇣

Z D
V (t0)V (t)

E
dt0 = �n⇣D (2.26)

where n = N/V denotes the number density and the time integral of the velocity auto-
correlation is the di↵usivity of the particle, D. This shows that any particle undergoing
any type of random motion exerts a pressure ⇧ = �tr�/2 = n⇣D. This applies to any
source of random motion and to particles of arbitrary shape. As an example, the source
of random motion for Brownian motion is thermal energy, and we write the di↵usivity
as D = kBT , and we recover the ideal-gas (Brownian osmotic) pressure law ⇧B = nkBT .
This can be interpreted as a mechanical pressure resulting from the fluctuated motion of
the solvent.
Similarly, this applies to active matter with di↵usivity given by

Dswim =
v20⌧r
6

(2.27)

and we arrive to an swim pressure similar to an ideal-gas as

⇧swim(�! 0) =
n⇣v20⌧r

6
(2.28)

Now we define the swim stress using the virial theorem as

�swim = �nhxF swimi (2.29)

where we have taken the forces F i to be the swim force F swim, and the swim pressure
is the trace of the swim stress. Eq. 2.29 defines the swim stress using the self-propulsive
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force of a particle and the position of this particle. This is a crucial interpretation of
swim force that gives a single-particle self contribution to stress, unlike the familiar inter-
particle interactions of passive systems �hxijF iji.

Additional recent work on the pressure of active systems include e↵orts by Solon et.
al. [47]. They studied the mechanical pressure as a function of density for a system of
spherical ABP. They show that the pressure is a state function and two terms contribute
to it: the first is called passive or direct contribution to pressure known from passive sys-
tems and is given by Irving and Kirkwood stress tensor, and the other is a newly defined
pressure term which is due to the slow down of particles that drive MIPS. In addition,
they show that the pressure is independent from the particle-wall interaction. Moreover,
Bialké et. al. use this definition of mechanical pressure to measure a negative interfacial
tension associated with MIPS between two coexisting phases [42].

We now review a work presented by Solon et. al. [11] in 2018 which is crucial for our
results in Chapter 4.

2.3.2.2 Phenomenological Hydrodynamic Description of Motility Induced

Phase Separation

We describe a continuum description of non-aligning active particles interacting through
isotropic interactions. The hydrodynamic description does not include the degrees of
freedom corresponding to the particle orientations since they are fast. Thus we define the
conserved density field ⇢(r, t), obeying ⇢̇ = �r.J . The current J vanishes in homoge-
neous phases, by symmetry. The gradients expansions of the current in density involves
only odd terms under space reversal. We use at third order the following

⇢̇ = r.(Mrg[⇢]) (2.30)

where g[⇢] is given by

g[⇢] = g0(⇢) + g1[⇢] where g1 = �(⇢)(r⇢)2 � (⇢)�⇢ (2.31)

Note that g[⇢] cannot be written as a derivative of a free energy for general (⇢) and �(⇢).
Equations 2.30 and 2.31 present a simple generalization of the Cahn-Hilliard equation out
of equilibrium. This generalization has been relevant for the phase separation of active
particles. The free energy structure breaks down for generic functions �(⇢) and (⇢),
which do not satisfy 2�(⇢) + 0(⇢) = 0. The gradient terms in g, thus, cannot be written
as a functional derivative as follows

g1[⇢] = �(⇢)(r⇢)2 � (⇢)�⇢ 6= � F

�⇢
(2.32)

Correct coexisting densities are then not obtained from the common tangent construction
on a free energy density defined through f 0(⇢) = g0(⇢). However, one can write g as a
functional derivative of a generalized free energy G with respect to a new non-trivial
variable denoted by R, which depends on the functional forms of  and �. We define a
one-to-one mapping R(⇢) defined by

R00 = �(2�+ 0)R0c (2.33)
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g can now be written as a functional derivative with respect to R as

g =
�G

�R
(2.34)

with

G =

Z
drG[R] ⌘

Z
dr

h
�(R) +



2R0 (rR)2
i

(2.35)

where we have defined a generalized free energy density �(R) such that

d�

dR
= g0 or alternatively � =

Z ⇢

g0(⇢̂)R
0(⇢̂)d⇢̂ (2.36)

We can now write the dynamics of ⇢ as the derivative of a generalized free energy func-
tional

⇢̇ = r.
h
M [⇢]r�G

�R

i
(2.37)

The structure of Eq. 2.37 is di↵erent from the equilibrium case since the functional
derivative is taken with respect to R rather than ⇢. Moreover, we can say that the
dynamics is driven by gradients of a generalized chemical potential given by

g =
�G

�R
(2.38)

We can also write the dynamics in 2.37 as to appear driven by the divergence of a
generalized stress tensor, so that we can write the current J as

J = �Mrg =
M

R
r.� (2.39)

and the tensor in Cartesian coordinates is given by

�↵� = �
h
h0 +Rg1 �

R0

2
(r⇢)2

i
�↵� � R0(@↵⇢)(@�⇢) (2.40)

where we have defined

h0 = R
d�

dR
� � (2.41)

Finally, we identify the diagonal coe�cients of �, the normal stresses, with generalized
pressures. We split h = �xx into two contributions, one as a local function and the other
as interfacial contribution

h = h0(⇢) + h1[⇢] where h1 = Rg1 �
R0

2
(r⇢)2 + R0(@x⇢)

2 (2.42)

Note that � and h here do not have any connection to momentum transfer and mechanics.
As a final remark, we can recover the equilibrium limit by setting 2� + 0 = 0 and

Eq. 2.33 then shows that R = ⇢ up to additive and multiplicative constants that do not
play any role in phase equilibria and can thus be discarded. Hence, all the generalized
quantities reduce to their equilibrium counterparts.
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2.3.3 Chemical Potential

Lastly, some work has been done on the notion chemical potential in active matter sys-
tems. Takatori et. al. [40] describe an out of equilibrium definition of chemical potential
by using mechanical arguments based on the swim pressure. This was done by generating
a phase diagram with a spinodal and binodal. This attempt hints that we need a general-
ized thermodynamics in order to describe non-equilibrium systems and to predict phase
coexistence. Additionally, Solon et. al. in 2018 [11] use a generalized thermodynamic
description of the free energy to account for the binodal cure of MIPS. In Chapter 4, we
use the formalism presented in [11] to test the definition of active pressure in our system.

As a final note, we have briefly reviewed some of the di↵erent approaches to the ther-
modynamics of active matter systems. In the literature, there is a plethora of di↵erent,
sometimes contradicting, results on the definition and applicability of the presented ther-
modynamic variables. However, it is evident that it is an exciting route of research that
will continue to grow and attract attention in the coming years.
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Chapter 3

Attractive Active Brownian Particles

Essentially, all models are wrong,

but some are useful.

George E. P. Box

3.1 Introduction

Motivated by prominent literature of active systems with purely repulsive interactions, we
add a layer of complexity by introducing attractive interactions between active particles.
We study the phase behavior and kinetics using two di↵erent approaches. The first
method is by setting a strength of attraction much larger than the strength of self-
propulsion. This will result in clustering of particles. This phenomena is similar to
clustering of particles found in some experiments [48]. Additionally, we try to make use
of this model to study the kinetic of cluster-cluster aggregation. Our second approach in
studying active matter with attraction is more fruitful, qualitatively, at least! We study
the phase behavior of active particles with attraction for various strengths of attraction
and we show that the phase behavior is reentrant as a function of activity as reported
by [10].

3.2 Clustering and Kinetics

3.2.1 Model

In this section, we study the phase behavior of a well established minimal model of a
two-dimensional system of N self-propelled particles modeled as disks in an area L ⇥ L
with periodic boundary conditions. We identify the particles by the position vector ri of
its center and a unit vector n̂i = (cos(✓i), sin(✓i)) defining the the axis of self-propulsion,
where ✓i is the orientation of the polar axis. We follow the model introduced by Fily et.
al in [23] and modify the interaction forces to account for attractive interactions.
The dynamics is overdamped and is governed by the following equations

@iri = v0n̂i + µ
X

j 6=i

Fij (3.1)

@i✓i = ⌘i(t) (3.2)
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where v0 denotes te single-particles self-propulsion speed and µ the mobility.
On the right hand side of Eq. (3.1), the first term, from the left side, is the self-propulsive
force term, and the second term is the force of interaction between the particles. For
simplicity, we neglect translational noise in Eq. (3.1). The angular dynamics is described
in Eq. (3.2) and is controlled by Gaussian rotational noise ⌘i(t) with zero mean and delta
correlations in time ⌦

⌘i(t)
↵
= 0 (3.3)

⌦
⌘i(t)⌘j(t

0)
↵
= 2⌫r�ij�(t� t0) (3.4)

where ⌫r denotes the rotational di↵usion rate. The brackets in (4.7) and (4.8) denote an
average over noise realizations of the stochastic components of random vectors from a
Gaussian probability distribution.
Each disk i has a radius ai, uniformly distributed with mean a = 1 from the interval
[0.8, 1.2]. Fig. 3.1 illustrates a schematic representation of a self-propelled particle. The

Figure 3.1: Schematic representation of a self-propelled particle

particles interact through the a modified repulsive forces introduced in Eq. (2.21)

Fij =

⇢
k(ai + aj � rij)r̂ij if rij < 1.2⇥ (ai + aj)

0 otherwise
(3.5)

where we have extended the range of the force by extending the range of interaction from
ai + aj to 1.2⇥ (ai + aj). Fig 3.2 shows a plot of the force of interaction between active
particles.

In Eq. (3.5), r̂ij = (ri � rj)/rij, where rij = |ri � rj |.
We simulate the system in a square box of area L2 with periodic boundary conditions.
We adjust the size of the box L to obtain the desired packing fraction given by

� =

P
i ⇡a

2
i

L2
(3.6)

In the following, we explain how we make the equations of motion dimensionless. We
write the equation of motion in its x-component to illustrate the steps taken.
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Figure 3.2: A plot of the force of interaction between attractive active particles

Starting from the following equation

@txi = v0cos(✓i) + µ
X

j 6=i

k(ai + aj � rij)(
xi � xj

rij
) (3.7)

• We use a = 1 and (µk)�1 = 1 as units of length and time, respectively

• We denote the new dimensionless variables with a prime

• x0 = x
a ) x = ax0

• t0 = µkt ) t = t0

µk

The equation becomes

aµk ⇥ @t0x
0
i = aµk ⇥ v0cos(✓i) + aµk ⇥

X

j 6=i

(2�
ar0ij
a

)(
x0
i � x0

j

r0ij
) (3.8)

Accordingly, we define the scaled single-particle propulsion speed, which controls the
overlap due to activity, as

ṽ ⌘ v0
aµk

(3.9)

and the scaled rotational di↵usion constant as

⌫̃r ⌘
⌫r
µk

(3.10)

Furthermore, we define an important dimensionless parameter, called the Péclet number.
The distance traveled by a free particle before it loses it orientation is denoted by Pe and
is given by

Pe =
v0
a⌫r

=
ṽ

⌫̃r
(3.11)

27



The following are the three time-scales contained in the model

• a
v0

is the time needed for a particle to travel its own radius

• ⌧r ⌘ 1
⌫r

is the orientation correlation time

• 1
µk is the elastic time scale

In the following, we will explain the computational approach used to integrate the equa-
tions of motion numerically.

3.2.2 Computational Approach Throughout the Thesis

We often encounter the following ordinary di↵erential equation (ODE) when we simulate
dynamical systems

dx

dt
= f(t, x) (3.12)

where we define a function f with arguments time t and state x. Note that in our model,
the function f is independent of time. However, we proceed by keeping time for generality.
In order to solve the di↵erential equation, we need to specify some initial conditions, i.e.
x(t = 0) and propagate x forward in time at a fixed time interval, which we denote by
�t. Hence, we need to update the current position x(t) to x(t+�t).
Doing a Taylor expansion on f(t, x), we get

f(t+�t, x+�x) = f(t, x) +
@f

@t
�t+

@f

@x
�x+

1

2!

@2f

@t2
�t2

+
1

2!

@2f

@t@x
�t�x+

1

2!

@2f

@x@t
�x�t+

1

2!

@2f

@x2
�x2 + ...

(3.13)

The simplest method to solve an ODE is the forward Euler method. It is given by looking
at the the right hand side of Eq. (3.13) and picking only the first two terms from the
left. Hence writing the forward method in terms of x gives

x(t+�t) = x(t) +
dx

dt
�t = x(t) + f�t (3.14)

The forward Euler method neglect high order terms (�t2 and above). Hence it is first
order accurate.
We use this formula to integrate the rotational dynamics Eq. (3.2) as

✓(t+�t) = ✓(t) +
p
2⌫r ⇥Gaussian Distribution⇥

p
�t (3.15)

To solve the overdamped Langevin euqation, Eq. (3.1), we implement a second order
Runge-Kutta method given by

k1 = �tf

k2 = �tf(t+�t/2, x(t) + k1/2)

x(t+�t) = x(t) + k2

(3.16)

Note however that in our Langevin equation, f in independent of time t and depends on
the two-dimensional coordinates x and y.
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By using a second order Runge-Kutta method, we obtain a second order accuracy be-
cause we include terms of order two. We prove it by showing that the coe�cient k2 is
approximated using a Taylor series

x(t+�t) = x(t) +�tf +�t2
h@f
@t

+
@f

@x
f + ...

i

= x(t) +�t
dx

dt
+

�t2

2

dx2

dt2
+ ...

(3.17)

Hence we can write k2 as

k2 = �tf(t+�t/2, x+ k1/2)

= �t
h
f +

�t

2

@f

@t
+

k1
2

@f

@x
+ ...

i

= �t
h
f +

�t

2

@f

@t
+

�t

2

@f

@x
f + ...

i
(3.18)

So in this way we can see that second order terms are captured in a second order Runge-
Kutta method.
As a final note, in our integration scheme, we treat self-propulsion as a constant and
do not evolve its value in time. A first order correction would be by implementing the
following update equation:

Z t+�t

t

v0,i(t)dt =
v0,i(t) + v0,i(t+�t)

2
�t (3.19)

The diagram in Fig. 3.3 summarizes the algorithm for integrating the equations of motion.
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Figure 3.3: Diagram summarizing the numerical integration algorithm

The most time-consuming part of our simulation is the force calculation. In a typical
pairwise additive forces interactions, in order to compute forces of interactions, to calcu-
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late the force on particle i, we need to consider the contribution to the force from all its
neighbors. This means we have to compute N(N-1)/2 pair distances. This suggests that
if we do not optimize our algorithm, the evaluation of forces time scales as N2. Several
e�cient techniques exist to speed up this calculation in such a way that the time scales
as N3/2 [49]. Some of the techniques are

1. Verlet list

2. Cell of linked list

3. Combination of Verlet and cell lists

In our simulations, we use the Verlet list method to speed up our calculations. Given
a simulation of some system, by using a cuto↵ that is smaller than the simulation box,
while calculating the force on a particle i, several particles will not contribute to this
force. Hence, it is crucial not to include particles that do not interact with particle i
from the force calculation. For this reason, we use a Verlet list or neighbor list, which
is illustrated in Fig. 3.4. We introduce a second cuto↵ radius denoted by rv, which is
greater than the interaction radius rc. Before doing the force calculation, we make a list
of all the neighboring particles of particle i, within a radius rv. In the next calculation,
only the particles in the Verlet list have to be considered for calculating the interaction
forces. So far we have not saved any CPU time. We gain the time when we calculate
the next interactions. We next calculate the displacement of particles, if the maximum
displacement is less than rv � rc, then we only consider the particles in the Verlet list
of particle i. Once any particle is displaced more than rv � rc, we need to update the
Verlet list. This update operation is of order N2. However, this step is not performed
each time. Hence, the use of the Verlet list in our simulation is important to reduce the
computing time scale from N2 to N3/2.
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Figure 3.4: The Verlet list: particle i interacts with particles within the interaction radius
rc. The Verlet list contains all particles within a radius rv > rc

The free parameters in our system are the following: the scaled rotational di↵usion
constant ⌫̃r, the scaled single-particle propulsion speed ṽ, and the packing fraction �. We
study the phase behavior of our system by fixing the value to ⌫̃r = 5⇥ 10�4 and vary the
self-propulsion speed and the packing fraction. In the simulations of this model, we set
N = 2000 particles and we run our simulations to tf >> ⌧r, where ⌧r = ⌫̃r

�1 = 2000 is
the rotational relaxation time. We choose our integration time step in such a way that it
is much smaller than ṽ. Quantities of interest are averaged over N and over time for the
mean squared displacement and for the number fluctuation calculations, respectively.

3.2.3 Mean Squared Displacement

In order to quantify the phase behavior of active particles, it is constructive to evaluate
numerically the mean squared displacement (MSD), in the center of mass frame, defined
as:

h[�r(t)]2i = 1

N

X

i

[ri(t)� ri(0)]
2 (3.20)

Since momentum is not conserved, the center of mass is not fixed and moves with a
drifting velocity vCM . We subtract this contribution from the MSD by calculating it
in the center of mass frame. We can write the MSD of a single self-propelled particle
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performing a random walk. The MSD is given by:

h[�r(t)]2i = 4D0

"
t+

e�⌫rt � 1

⌫r

#
(3.21)

where D0 = v20
2⌫r

is the di↵usion coe�cient. At short time scales, the MSD is ballistic

and it grows as t2. At larger time scales such as t � ⌫̃r
�1, the MSD is di↵usive and

h[�r(t)]2i ⇠ 4D0t.

Figure 3.5: Mean square displacement for ⌫̃r = 0.0005, � = 0.1 for various values of Pe.
The dashed lines correspond to the theoretical MSD that a single particle performs. At
short time, the dashed lines correspond to slope of 2 (ballistic) and at large times, the
dashed lines correspond to slope of 1 (di↵usive).

Fig. 3.5 is a loglog plot of the MSD as a function of time, a fixed packing fraction
� = 0.1, for various Pe. The phase behavior of the particles is shown in the first column
of Fig. 3.7. In the MSD plot, the dashed lines correspond to the MSD performed by a
single self-propelled particle using Eq. 3.21. The simulations data show ballistic show
time behavior. However, the long time behavior is slowed down due to clustering of
particles that move with vCM = 1

N

P
i ṽ.

3.2.4 Giant Number Fluctuations

In order to identify phase separation in our simulations, we measure the number fluctua-
tions h[�N2]i, which is the spatial variance of the number of particles in a sub-box as a
function of the average Ns of particles in the sub-box. We divide our quadratic domain
of size L into b2 sub-domains (or boxes) of size L

b . We calculate the average number of
particles hNi and the standard deviation for each size. The spatial variance is given by:

h[�N ]2i = hN2i � hNi2 (3.22)
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A power law given by

h[�N2]i = N�
s (3.23)

is observed for large sub-domains, with � = 1 corresponds to the equilibrium (ideal gas)
limit and � > 1 corresponds to phase separated regions.

Figure 3.6: Number fluctuations for ⌫̃r = 0.0005, ṽ = 0.1 corresponding to Pe = 200, for
various values of �. The dashed lines correspond to slopes 1 (black) and 2 (red). Inset:
the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data at large Ns.

Fig. 3.6 show the results of a loglog plot of the number fluctuations calculations for
various packing fractions, at fixed Pe = 200 corresponding to ⌫̃r = 0.0005 and ṽ = 0.1.
The dashed lines correspond to slopes 1 (ideal gas) and 2 (phase separated). The inset
shows the value of � obtained by the power law fit of Eq. 3.23 of the data. Error bars
are obtained as the error on the slope. Phase separating regions show large number
fluctuations corresponding to � > 1, as shown in the inset. The tf particle configurations
are shown in the phase diagram in Fig. 3.7. The first row from above (Pe = 200)
correspond to the various packing fractions (� = 0.1 � 0.6) of the number fluctuations
calculations.
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3.2.5 Long Time Behavior Configurations

Figure 3.7: Phase diagram of active particles as function of Péclet and packing fraction
at tf
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3.2.6 Kinetics of Cluster-Cluster Aggregation

In order to gain some knowledge about the structure and kinetics of our clusters, we
measure, at low packing fractions, the structure factor, which is given by [50]:

S(q) =
1

N

⌦ NX

j,k=1

e�i�!q .(�!rj��!rk)
↵

(3.24)

where �!q denotes the wave vector, which is an integer multiple of 2⇡
L . The density fluc-

tuations probed by S(q) have a wave vector �!q . Angular brackets represents an average
over non-equilibrium stationary state. In general, the wave vector �!q is on a square grid
and takes positive and negative values. Since our system is inherently disordered, we take
the limit of an infinite system and assume we have rotational symmetry. We then expect
the structure factor to be a function of the modulus of the scattering vector. By angular
averaging over the complex exponential, we obtain the Debye scattering function. Aver-
aging over di↵erent directions gives the Bessel function of the first kind. The structure
factor as function of the scalar q > 0 simplifies to:

S(q) =
1

N

X

j,k

J(0, qrjk) (3.25)

where rij is the scalar distance between particle j and particle k, |rj � rk| and J(0, z) is
the Bessel function of the first kind evaluated at z = qrjk.
As a note on our calculation scheme, we assumed spherical symmetry, which is a crude
assumption. The proper way of calculating the structure factor is by averaging over wave
vectors in the x and y directions.
Since we set our radius a = 1, our diameter is 2. So the position of the first peak in S(q)
reflecting interparticle distance that usually occurs at q⇤ = 2⇡ will occur in our system
at q⇤ = ⇡. The sharpness of the peak indicates how pronounced ordering is. For phase
separation due to clustering, we expect the intensity of the peak to grow with time. We
make use of the static structure to estimate some properties of our clusters. For instance,
the position of the peak indicates the separation between clusters. Moreover, we make
a crude assumption that the intensity of the peak gives us the number of particles in
a cluster. In this way, we measure the maximum number of particles in a cluster over
time, and we compare our results to a previously established theory on cluster-cluster
aggregation [51]. We define M(t) to be the average number of particles in a cluster as
a function of time. Following [51], we write M(t) = t�, with � = 0.5. Note that we
will stick to cluster aggregation at low packing fractions because aggregation is harder to
characterize when we have a percolating cluster at high packing fractions.

In the following, we present some of our results from the structure factor calculation.

36



Figure 3.8: Structure factor at tf for ⌫̃r = 0.0005, � = 0.1, and Pe = 2.

Figure 3.9: Structure factor at tf for ⌫̃r = 0.0005, � = 0.2, and Pe = 2.

Figures 3.8 and 3.9 show the structure factor, at tf and Pe = 2, for packing fractions
0.1 and 0.2, respectively. The graphs show that the intensity of the highest peak is larger
at � = 0.2 than at � = 0.1. This is expected as we expect bigger cluster sizes at higher
densities.
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Figure 3.10: Number of particles in a cluster as a function of time for ⌫̃r = 0.0005,
� = 0.2, and Pe = 8. The dashed line corresponds to a slope of 0.5

Fig. 3.10 is a loglog plot of the number of particles in a cluster as a function of time.
A power fit gives an exponent � = 0.576± 0.025.

Figure 3.11: Number of particles in a cluster as a function of time for ⌫̃r = 0.0005,
� = 0.2, and Pe = 10. The dashed line corresponds to a slope of 0.5

Fig. 3.11 is a loglog plot of the number of particles in a cluster as a function of time
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for � = 0.2, and Pe = 10. A power law fit gives an exponent � = 0.534± 0.022.

Figure 3.12: Number of particles in a cluster as a function of time for ⌫̃r = 0.0005,
� = 0.2, and Pe = 20. The dashed line corresponds to a slope of 0.5

Fig. 3.12 is a loglog plot of the number of particles in a cluster as a function of time
for � = 0.2, and Pe = 20. A power law fit gives an exponent � = 0.571± 0.021.

Another important calculation that can be deduced from the structure factor is the
time evolution of the characteristic domain size L(t), which can be obtained from the
inverse of the first moment of the structure factor as follows [30]:

L(t) = 2⇡

"R qcut
2⇡
L

qS(q, t)dq
R qcut

2⇡
L

S(q, t)dq

#�1

(3.26)

where L and qcut denote the size of the box and the upper cut-o↵ taken to be the minimum
in S(q), respectively. L(t) ⇠ t↵ is a power-law growth of the domain size, which is
expected from classical models of phase separation kinetics. In general, the exponent is
dependent on the transport mechanism of the system. An exponent of 1/3 is expected
for phase separating di↵usive systems neglecting hydrodynamics [52]. We will next show
that we obtain an exponent ↵ < 1/3.

The velocity of the center of mass of the cluster is given by:

vCM =
1

M

MX

i=1

ṽi (3.27)

So that we can write

< v2CM >=
1

M2
Mṽ2 =

ṽ2

M
(3.28)
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Recall that the di↵usion coe�cient for a single particle is given by:

D0 =
v0
2⌫r

(3.29)

So that we can write the e↵ective di↵usion coe�cient for a cluster as:

Deff =
ṽ2CM

2⌫r
=

ṽ2

2⌫rM
(3.30)

The size of a compact cluster grows with the size of the box, M ⇠ L2 ⌘ L.
Hence when we have M(t) = t0.5, we predict

L(t) = t0.25 (3.31)

Figure 3.13: Time=dependent domain length L(t) for ⌫̃r = 0.0005, � = 0.1, and Pe =
100. The dashed line corresponds to a slope of 0.25

Fig. 3.13 is a loglog plot of the domain length as a function of time for � = 0.1, and
Pe = 100. A power law fit gives an exponent ↵ = 0.246± 0.008.
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Figure 3.14: Time-dependent domain length L(t) for ⌫̃r = 0.0005, � = 0.2, and Pe = 100.
The dashed line corresponds to a slope of 0.25

Fig. 3.14 is a loglog plot of the domain length as a function of time for � = 0.2, and
Pe = 100. A power law fit gives an exponent ↵ = 0.226± 0.008.
As a final note, by looking at the phase diagram in Fig. 3.7, it is evident that the tf
configurations at low Pe correspond to the configurations we obtain at small time scales
for large Pe. In other words, if we run the small Pe regime for longer simulation times,
we expect to see a kinetically evolving cluster similar to what is shown in Fig. 3.7 for
large Pe.

3.3 Reentrant Phase Behavior

3.3.1 Model

In this section, we study the phase behavior of a minimal model of N self-propelled
particles modeled as disks in an area L ⇥ L with periodic boundary conditions. We
follow the definition of the model introduced in Subsection 3.2.1 and we use the same
overdamped Langevin Eqs. 3.1 and 3.2. Redner et. al. showed in [10] that the phase
behavior of active particles experiencing short-range attraction is reentrant as a function
of activity. In other words, a homogeneous fluid exists between two phase separating
regions that occur at low and high activity regimes. For simplicity, they use the standard
Lennard-Jones (LJ) potential. However, we investigate this reentrance behavior using
the following force:

Fij =

⇢
k(ai + aj � rij)r̂ij if rij < ai + aj

(2� rij)(1 +
2�rij

� )r̂ij if rij > ai + aj and rij < ai + aj + �
(3.32)

where ai and � denote the radius of particle i and the width of the potential, respectively.
The force Fij = 0 otherwise. The particles in this model are monodispersed, each having
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a size a = 1. � sets our attraction strength, which we define as �
4 . Fig. 3.15 shows the

attractive force, for various �. The depth of the force sets our attraction strength.

Figure 3.15: Plot of the quadratic attractive force for various �

In our simulations, we fix N = 815 and L in such a way to obtain a packing fraction
� = 0.4 as in [10]. At this density, for high enough Pe, a system of purely repulsive
self-propelled particles undergo athermal phase separation. We set rotational di↵usion
⌫̃r = 0.0005. For each strength of attraction, we explore the phase diagram by varying ṽ,
which sets our Pe. We choose the values of self-propulsion in such a way that we scan the
range of ṽ ⌧ attraction strength, ṽ ⇠ attraction strength, and ṽ � attraction strength. In
the following, we show particle configurations at tf for various Pe and attraction strength.
To identify the intermediate homogeneous phases, we measure the number fluctuations
and report that homogeneous states have � ⇠ 1, while phase separated regions have
� > 1. Note that since we are only using N = 815 particles, this resulted in poor
averaging of the number fluctuations. As a consequence, while fitting �N2 to a power
law, we excluded anomalous points from our fitting, which resulted in large error bars
for some exponents. It will be evident from the particles phases, that phase separated
regions at low Pe correspond to phase separation due to attractive interactions since
ṽ ⌧ attractionstrength. This results in phase separation due to clustering. Particles
form percolating clusters and need much longer simulation time to form one big cluster.
This is due to slow kinetics caused by small self-propulsion. However, phase separation
at large Pe occurs for ṽ � attraction strength. The resulting phase separation is then
similar to the one induced by MIPS. Further attempts to characterize the dynamics
of reentrance were using MSD calculations. However, these calculations were not very
informative; they just show a cross-over from ballistic to di↵usive behavior. Hence, we
switched to structure factor calculations to study the kinetics of reentrance. Nevertheless,
we do not show the corresponding results and we leave it for future work. Note that in
the MSD results shown below have an anomalous behavior at short times for small Pe.
We have investigated the cause of this behavior. It is just the left over of initial relaxation
time due to particle overlaps from initial conditions. Since the low Pe limit in this model
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correspond to very small ṽ, we need to run the simulations for longer times than the
previous model for particles to relax. A faster way of getting rid of this anomaly is by
calculating MSD from a di↵erent moment in time. In other words, instead of measuring
MSD from t(0), we measure it from a later time, say t(5).

3.3.2 Attraction Strength = 0.005

Particles configurations for various Pe are shown in Fig. 3.16. This strength of attraction
resulted in clustering and phase separation for all the Pe numbers we have investigated.

3.3.3 Attraction Strength = 0.0025

Particles configurations for various Pe are shown in Fig. 3.17. Number fluctuations
calculations in Fig. 3.18 show an exponent � = 0.97± 0.14 at Pe = 40.

3.3.4 Attraction Strength = 0.00125

Particles configurations for various Pe are shown in Fig. 3.20. Number fluctuations
calculations in Fig. 3.21 show an exponent � = 0.99± 0.18 at Pe = 20.

3.3.5 Attraction Strength = 0.0008

Particles configurations for various Pe are shown in Fig. 3.23. Number fluctuations
calculations in Fig. 3.24 show an exponent � = 0.93± 0.17 at Pe = 11.2.

3.3.6 Attraction Strength = 0.000625

Particles configurations for various Pe are shown in Fig. 3.26. Number fluctuations cal-
culations in Fig. 3.27 show an exponent � = 0.89± 0.15, 0.91± 0.17, 0.96± 0.14, 0.95±
0.12, 0.95± 0.08, 0.96± 0.08, 0.85± 0.12 for Pe = 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, respec-
tively.

3.3.7 Attraction Strength = 0.0005

Particles configurations for various Pe are shown in Fig. 3.29. Number fluctuations
calculations in Fig. 3.30 show an exponent � = 0.98 ± 0.14, 0.83 ± 0.27 for Pe = 8, 9,
respectively.
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Figure 3.18: Number fluctuations for ⌫̃r = 0.0005 for various self-propulsion, for an
Attraction Strength = 0.0025. The dashed lines correspond to slopes 1 (black) and 2
(red). Inset: the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data
at large Ns.

Figure 3.19: Mean square displacement for ⌫̃r = 0.0005 for various self-propulsion, for
an Attraction Strength = 0.0025. The dashed lines correspond to the theoretical MSD
that a single particle performs. At short time, the dashed lines correspond to slope of 2
(ballistic) and at large times, the dashed lines correspond to slope of 1 (di↵usive)
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Figure 3.21: Number fluctuations for ⌫̃r = 0.0005 for various self-propulsion, for an
Attraction Strength = 0.00125. The dashed lines correspond to slopes 1 (black) and 2
(red). Inset: the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data
at large Ns.

Figure 3.22: Mean square displacement for ⌫̃r = 0.0005 for various self-propulsion, for
an Attraction Strength = 0.00125. The dashed lines correspond to the theoretical MSD
that a single particle performs. At short time, the dashed lines correspond to slope of 2
(ballistic) and at large times, the dashed lines correspond to slope of 1 (di↵usive)
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Figure 3.24: Number fluctuations for ⌫̃r = 0.0005 for various self-propulsion, for an
Attraction Strength = 0.0008. The dashed lines correspond to slopes 1 (black) and 2
(red). Inset: the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data
at large Ns.

Figure 3.25: Mean square displacement for ⌫̃r = 0.0005 for various self-propulsion, for
an Attraction Strength = 0.0008. The dashed lines correspond to the theoretical MSD
that a single particle performs. At short time, the dashed lines correspond to slope of 2
(ballistic) and at large times, the dashed lines correspond to slope of 1 (di↵usive)
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Figure 3.27: Number fluctuations for ⌫̃r = 0.0005 for various self-propulsion, for an
Attraction Strength = 0.000625. The dashed lines correspond to slopes 1 (black) and 2
(red). Inset: the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data
at large Ns.

Figure 3.28: Mean square displacement for ⌫̃r = 0.0005 for various self-propulsion, for
an Attraction Strength = 0.000625. The dashed lines correspond to the theoretical MSD
that a single particle performs. At short time, the dashed lines correspond to slope of 2
(ballistic) and at large times, the dashed lines correspond to slope of 1 (di↵usive)
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Figure 3.30: Number fluctuations for ⌫̃r = 0.0005 for various self-propulsion, for an
Attraction Strength = 0.0005. The dashed lines correspond to slopes 1 (black) and 2
(red). Inset: the values of � obtained by the power-law fit �N2(Ns) ⇠ N�

s for the data
at large Ns.

Figure 3.31: Mean square displacement for ⌫̃r = 0.0005 for various self-propulsion, for
an Attraction Strength = 0.0005. The dashed lines correspond to the theoretical MSD
that a single particle performs. At short time, the dashed lines correspond to slope of 2
(ballistic) and at large times, the dashed lines correspond to slope of 1 (di↵usive)
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Chapter 4

Pressure of Active Matter

If someone points out to you that

your pet theory of the Uni- verse

is contradicted by experiment,

well, these experimentalists do

bungle things sometimes. But if

your theory is found to be against

the Second Law I can give you no

hope; there is nothing for it but

to collapse in deepest humiliation.

Sir Arthur Eddington

4.1 Introduction

Minimal models of active Brownian particles interacting through steric repulsion have
been the subject of recent extensive numerical and analytical investigations. Such systems
exhibit a rich phase diagram showing active phase separation in the absence of attractive
interactions. Recent advances in characterizing the mechanical properties of the novel
phases of active matter include a theoretical description of the active gas and its swim
pressure. Theoretical e↵orts include describing this non-equilibrium system by a pressure
equation of state. It is then useful to recall the definition of pressure in equilibrium
systems. For a fluid in equilibrium [53], we can define the pressure as:

1. Mechanical description: force exerted by particles on walls of the container, which
is the force per unit area

2. Thermodynamic description: pressure is the derivative of a free energy

3. Momentum flux definition, which originates from continuum mechanics as the pres-
sure being the steady state flux of momentum. Pressure is then the trace of the
hydrodynamic stress tensor of the fluid

In equilibrium systems, all of the above definitions of pressure are equivalent and hence
pressure is a state function. Recent work on ABP with purely repulsive interactions show
that the pressure is a state function for an active fluid [21, 47]. However, the pressure
becomes wall dependent when active particles exert torques on the walls or on each other.
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4.2 Methods

In the following, we highlight the pressure calculations found in the literature for purely
repulsive self-propelled particles exhibiting MIPS. We study the active (swim) and passive
(direct) pressure as function of density for two di↵erent potentials and for di↵erent set
of parameters. The first potential is given by the linear force introduced in Chapter 2
using Eq. 2.21. For this model, we use the previously introduced definition of Pe as a
dimensionless run length. However, for the model introduced in the following subsection,
in order to better compare our pressure calculations to the results found in [11], we use
their definition of Pe as

Pe =
3v0
�Dr

(4.1)

Péclet number was defined historically as

Pe =
v0�

Dt
(4.2)

where Dt denotes translational di↵usion with rotational di↵usion given by

Dr =
3Dt

�2
(4.3)

However, simulations of active particles interacting through pairwise additive forces
showed that translational di↵usion’s e↵ect on the phase diagram is insignificant. For
this reason, there is an additional factor of 3 in the definition of Pe. Note that in
this Chapter, we use two notations to denote the same parameter. Rotational di↵usion
⌫̃r ⌘ Dr and self-propulsion ṽ ⌘ v0.

4.2.1 Model: MIPS Revisited

We study the phase behavior of a two-dimensional system of N self-propelled particles,
interacting via pairwise additive, Weeks-Chandler-Anderson (WCA) potential, with a
cut-o↵ at r = 21/6, beyond which the potential is set to zero. This is the Lennard-Jones
(LJ) potential:

V (r) = 4✏
h
(
�

r
)12 � (

�

r
)6
i
+ ✏ (4.4)
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Figure 4.1: A plot of the potential and force of interaction given by LJ

Fig. 4.1 presents a plot of the potential and force, where � defines the particle diam-
eter, r is the center-to-center separation between two particles, and ✏ sets the strength
of interaction. We denote the position of particle i by ri. The dynamics is overdamped
and is governed according to the Langevin equations

ṙi = �µ
X

j

riV (|ri � rj|) +
p

2Dt⇠i + v0ui (4.5)

✓̇i =
p

2Dr⌘i (4.6)

As introduced earlier in Chapter 3, v0 denotes the self-propulsive speed, ui = (cos✓i, sin✓i)
indicates the direction of self-propulsion, and ⌘i. ⇠i are unit Gaussian white noises with
zero mean and delta correlations in time. For simplicity, in our simulations we only
include rotational di↵usion ⌦

⌘i(t)
↵
= 0 (4.7)

⌦
⌘i(t)⌘j(t

0)
↵
= �ij�(t� t0) (4.8)

We use the same dimensionless parameters used in Chapter 3. In our simulations, we
set ✏ = 1, µ = 1, � = 1, Dr = 5 ⇥ 10�4 (unless otherwise noted) and vary the packing
fraction (or density) ⇢ and v0. In other words, we study the model as function of the
Péclet number and packing fraction.

4.2.2 Hydrodynamic Description

In this section, we follow standard procedures available in the literature [11,47] to obtain a
macroscopic description of the model through a coarse grain of the microscopic dynamics
given by Eq. 4.9. Note that the dynamics of the solvent is not included in our description
and by “hydrodynamic” we mean slowly varying dynamics in space and time. Using the
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microscopic Eq. 4.9, we use Itō calculus to write down the microscopic density of particles
given by

 ̂(r, ✓) =
NX

i=1

�(r � ri)�(✓ � ✓i) (4.9)

and write down a stochastic dynamical equation for the evolution of the density of particle
at position r with orientation ✓ as

@t ̂ = �r.
h
v0u ̂ + Î

✓ �Dtr ̂ +

q
2Dt ̂⌘

i
+ @✓

h
Dr@✓ ̂ +

q
2Dr ̂⇠

i
(4.10)

where ⌘ and ⇠ are unit-variance 2-d vectors of Gaussian white noises. We define Î(r, ✓)
as

Î(r, ✓) = �
Z

dr0µrV (|r0 � r|)⇢̂(r0) ̂(r, ✓) (4.11)

We define the zeroth, first, and second angular harmonics of the microscopic density
 ̂(r, ✓), the fluctuating density

⇢̂(r) =

Z
 ̂(r, ✓)d✓ (4.12)

the orientation vector as

m̂ =

Z
d✓u ̂(r, ✓) (4.13)

and the nematic tensor as

Q̂(r) =

Z
d✓(u : u� /2) ̂(r, ✓) (4.14)

where is the identity matrix. We denote averages over noise realizations by brackets,
we define ⇢(r) = h⇢̂(r)i, m = hm̂(r)i, and Q(r) = hQ̂(r)i.
Now we assume that our system is in a steady state. The time derivatives vanish. To
obtain the dynamics of ⇢(r, t), we integrate Eq. 4.10 over ✓ and perform an average over
noise realizations, we find that

@t⇢ = �r.J ; J = v0m+ I(0) �Dtr⇢ (4.15)

where J is the particle current and I(0) is given by

I(0) =

*Z
d✓Î

(✓)
(r, ✓)

+
= �

Z
dr0µrV (|r � r0|)h⇢̂(r)⇢̂(r0)i (4.16)

The dynamics of m is obtained by multiplying Eq. 4.10 by u and integrating over ✓. This
gives, with a summation over repeated indices,

@tm↵ = �@�
h
v0
⇣
Q↵� +

⇢�↵�
2

⌘
+ (1)

↵� �Dt@�m↵

i
�Drm↵ (4.17)

where we have defined

I(1)↵� = �
Z

dr0µrV (|r � r0|)h⇢̂(r0)m̂↵(r)i (4.18)

58



m is a fast mode decaying at a rate Dr such that on time scales much larger that D�1
r ,

we can assume that m↵ relaxes locally to

m↵ = � 1

Dr
@�
h
v0
⇣
Q̂↵� +

⇢�↵�
2

⌘
+ I(1)↵� �Dt@�m↵

i
(4.19)

Then we can write the current in Eq. 4.15 as

J↵ = �
h
Dt +

v20
2Dr

i
@↵⇢�

v0
Dr

@�I(1)↵� + I(0)↵ � v20
Dr

@�Q↵� +
Dtv0
Dr

@��m↵ (4.20)

We again rewrite the current in Eq. 4.20 as the divergence of a stress tensor

J↵ = µ@��↵� (4.21)

with

�↵� = �
hDt

µ
+

v20
2µDr

i
⇢�↵� �

v0
µDr

I(1)↵� + �IK
↵� � v20

µDr
Q↵� +

Dtv0
µDr

@�m↵ (4.22)

where we have written I(0)↵ as
I(0)↵ = µ@��

IK
↵� (4.23)

where �IK
↵� is the Irving and Kirkwood expression for the stress tensor [54] given by

�IK
↵� (r) =

1

2

Z
dr0 (r � r0)↵(r � r0)�

|r � r0|
dV (|r � r0|)
d|r � r0|

Z 1

0

d�h⇢̂(r + (1� �)r0)⇢̂(r � �r0)i

(4.24)
We now make a connection with the formalism derived previously in Chapter 2.

4.2.3 Generalized Pressure and Equation of State

The derived dynamics for ⇢, with the current given by 4.23, should be compared to the
generalized Cahn-Hilliard equation of Chapter 2 with the current driven by a generalized
stress tensor as in Eq. 2.39. We see that our model of self-propelled particles interacting
via pairwise forces correspond to the special case of M/R = µ, the mobility. This is
important for the mechanical interpretation of �. Imposing an external potential U on
the particles lead to

J = µr.� � µ⇢rU (4.25)

Eq. 4.25 becomes a force balance in a flux free steady state with J = 0. By integrating
Eq. 4.25 from a point in the bulk to infinity, we find that the normal component of � to
be equal to the total force per unit area exerted on a boundary. It was verified that the
normal component of � exactly coincides in homogeneous phases with the equation of
state found previously for the mechanical pressure of self-propelled particles interacting
through pairwise forces [47]. Thus, generalized and mechanical pressure coincide for such
systems and we write following the notation in Chapter 2

h ⌘ ��xx =
Dt

µ
⇢+ PA(x) + PD(x) +

v20
µDr

Qxx �
Dtv0
µDr

@xmx (4.26)

where we have defined, following [47], an “active” contribution to pressure PA and a
“direct” (passive) contribution part PD as

PA =
v20

2µDr
⇢+

v0
µDr

I(1)xx PD = ��IK
xx (4.27)
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The value of the pressure in a homogeneous phase of density ⇢0 is given by

h[⇢(x) = ⇢0] ⌘ h0(⇢0) = ⇢0
Dt

µ
+ PA

0 + PD
0 (4.28)

where PA
0 and PD

0 are the values takes by PA and PD in homogeneous phases of density
⇢0. We can thus, in analogy with Eq. 2.42, to identify

h = h0(⇢(x)) + h1([⇢], x) (4.29)

where h1 is an exact expression containing gradients of all orders. It is given by

h1 = PA
1 [⇢] + PD

1 [⇢] +
v20
µDr

Qxx �
Dtv0
µDr

@xmx (4.30)

where PA/D
1 ⌘ PA/D�PA/D

0 contains the interfacial contribution to the active and direct
pressures. The interfacial terms mx and Qxx vanish in disordered bulk phases.

4.3 Passive and Active Pressure

For our passive pressure calculation due inter-particle interactions, we follow the algo-
rithm found in [55] for calculating the pressure tensor from our simulations. Following
Solon et. al. in [47], the exact expression for active pressure in a homogeneous system is
given by:

µP 0
A(⇢) =

v0
2Dr

v(⇢)⇢ (4.31)

where v(⇢) is the single particle contribution to the active pressure. It is a density
dependent swim velocity projected along the particle’s orientation:

v(⇢) ⌘ v0 +
2Ixx
⇢

= v0 + hu(✓i).
X

j 6=i

F (rj � ri)i = hṙi.uii (4.32)

In the following we simulate a system of N = 815 self-propelled particles, with periodic
boundary conditions for various packing fractions given by

� =
N⇡�2

L2
(4.33)

We vary L in order to get the desired �. We run our simulations for at least 50⌧r, where
⌧r is the rotational relaxation time given by ⌫�1

r . We vary our integration time step in
such a way that it is much smaller than the self-propulsion v0. We average our data over
di↵erent configurations in which the system is homogeneous.

4.3.1 Linear Force

Fig. 4.2 shows the passive pressure calculation at a fixed v0 = 0.2 for two di↵erent
rotational di↵usion values ⌫̃r = 0.02 and ⌫̃r = 0.01 corresponding to Pe = 10 and Pe = 20,
respectively. The graph shows that the passive pressure scales with self-propulsion. At
low densities, the data points corresponding to two di↵erent ⌫r collapse on the same
curve. This is expected since at low densities the particles move ballistically with a
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velocity proportional to v0. However, at higher densities, particles start bumping into
each other. They will then move due to their self-propulsion v0 and their inter-particle
interaction. This is why at high densities, the passive pressure for two di↵erent ⌫̃r does
not necessarily scale in the same way.

Figure 4.2: Passive pressure for a fixed self-propulsion v0 = 0.2 for two di↵erent rotational
di↵usion values ⌫̃r = 0.02 and ⌫̃r = 0.01 corresponding to Pe = 10 and Pe = 20,
respectively. Solid lines are guide for the eye.

Active pressure for a fixed rotational di↵usion ⌫̃r = 0.0005 for Pe = 20 and Pe = 40
is shown in Fig. 4.3. At low densities, active pressure is an increasing function of density
and it then starts decreasing at the onset of phase separation, for high enough densities
(⇡ ⇢0 = 0.6). It is evident from Eq. 4.27 that how active pressure scales depends on
which parameter we fix and which parameter we vary. The slope of active pressure is

/ v20
2µDr

. In this case the active pressure scales with v0Pe. In other words, in order to

extrapolate PA
0 curve for Pe = 40 from PA

0 curve for Pe = 20, we would have to divide
the latter by (v0 = 20)2 and multiply it by (v0 = 40)2.
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Figure 4.3: Active pressure at fixed ⌫̃r = 0.0005 for v0 = 0.01 and v0 = 0.02 corresponding
to Pe = 20 and Pe = 40, respectively. Solid lines are guide for the eye.

4.3.2 Lennard-Jones Potential

Following [11], we fix v0 = 24 and using the definition of Pe given by Eq. 4.1, we get
Dr = 1.8 for Pe = 40. We calculate the active and passive contributions to pressure from
simulations and add them to obtain the equation of state given by Eq. 4.28. Starting
from our earlier statement about the slope of the active pressure, since we fixed self-
propulsion, the active pressure in this case scales linearly with Pe. In other words, we
can extrapolate the PA

0 curve for Pe = 40 from PA
0 curve for Pe = 20 by multiplying

PA
0 curve for Pe = 20 by 2. By adding the passive and active pressure contributions to

pressure, we obtain an equation of state given by h0(⇢0), which develops an instability
due to phase separation.
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Figure 4.4: Construction of the equation of state. Active and passive pressure at a fixed
v0 = 24. Solid lines are guide for the eye.

4.3.3 Adding Attraction

Our attempts in characterizing the reentrant phase behavior of active particles using
an equation of state were not successful. We initially started by calculating the direct
pressure for particles interacting through attractive interactions by preparing our homo-
geneous system using repulsive positions, and then we only included attraction while
calculating the direct pressure. However, the resulting direct pressure did not produce
any non-monotonic behavior as we initially anticipated. Further attempts include trying
to estimate the shape of the direct pressure using scaling arguments. In the previous
subsection, we established that the direct pressure scales with self-propulsion in case of
active particles with purely repulsive interactions. Given PD

0 (⇢0) for attractive active
matter, in the case when strength of attraction is comparable to self-propulsion (as in the
case of MIPS), PD

0 (⇢0) / v0 and this corresponds to the caging of particles in a cluster.
However, when a particle is able to escape a cluster, the unstable part of PD

0 (⇢0) will not
scale with v0. It will instead scale with ⇠ energy of attraction times ⇢0. Thus, calculation
of the direct pressure with attraction is not trivial.
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Chapter 5

Conclusion

In order to study the collective behavior of living matter, we use active matter systems,
made of self-driven units. Minimal model of active matter have been extensively studied
analytically, numerically, and experimentally. Most of the numerical work found in the
literature on active systems focus on purely repulsive interactions between active parti-
cles. Phase separation in the absence of attractive interactions is referred to as MIPS.
The idea of MIPS is the following: self-propelled particles tend to accumulate where they
move more slowly. This slow down creates a positive feedback which induced MIPS. The
accumulation of active particles where they move more slowly lead to the formulation of
density dependent propulsion speed: the speed of the active particles decreases as their
local density increases. A step into adding complexity is including attractive interactions.
We study two such models. One may intuitively think that including attraction in the
potential will promote phase separation. However, phase separation may be suppressed
depending on the activity level (self-propulsion). So self-propulsion can either enhance or
suppress phase separation by either acting cooperatively or competing with inter-particle
attractions. In this model, we vary the attraction strength and self-propulsion, simul-
taneously, in order to create a competition between the two parameters. In the second
model, we fix the attraction strength to be much larger than self-propulsion. In this case,
clustering is inevitable. We make use of this model to study the kinetics of cluster-cluster
aggregation by predicting the time dependent growth exponent. Concerning the reen-
trant phase behavior, we had an unsuccessful attempt in characterizing this behavior by
constructing a pressure equation of state.
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Appendix A

Abbreviations

ABP Active Brownian Particles
ATP Adenosine Triphosphate
GNF Giant Number Fluctuation
LB Lattice Boltzmann
LJ Lennard-Jones
MIPS Motility Induced Phase Separation
MPCD Multi-Particle Collision Dynamics
MSD Mean Squared Displacement
ODE Ordinary Di↵erential Equation
WCA Weeks-Chandler-Anderson
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