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AN ABSTRACT OF THE THESIS OF

Ramzi Mohamad Sabra     for    Master of Engineering

Major: Electrical and Computer Engineering

Title: Robustness Guided Verification

Exhaustive and thorough testing is the ideal form of testing for any system; it would not be possible 
for such a system to fail when all possible outcomes of its operation are known to succeed. 
However, with complex systems where the factors can be practically infinite, exhaustive testing is 
not feasible nor efficient. Novel approaches to testing systems and verifying that they adhere to 
their specifications are much needed. These approaches have to be able to test a wide variety of 
systems without necessarily knowing how these systems work. Such approaches to testing could 
potentially expose failures in systems with certain conditions that the tester could not have possibly 
imagined and consciously tested for. However, such approaches would be delegated to testing 
systems of high complexity, often with practically infinite parameter spaces. Therefore, testing 
algorithms have to be able to work with a limited set of possibilities, aiming to discover areas in 
which certain combinations of input parameters cause a failure in the system under test. Rare fail 
estimation is of particular importance in non-volatile memory cells such as the STT-MTJ based 
latch. Applying such novel approaches to non-volatile memory cells may accelerate yield estimation
beyond what traditional tools are capable of. However, multiple tools are required to interoperate to 
integrate simulation of electric circuits with frameworks that implement such approaches. The tools 
required need to easily integrate Verilog-AMS models into ngspice, parametrize SPICE circuits 
from code, run several SPICE simulations in parallel. This allows to compute the ground truth in 
order to verify the accuracy of the Active Learning algorithm’s predictions, run SPICE simulations 
from within the Active Learning framework, be efficient with resource usage (such as memory), and
execute in minimal time in order for the approach to be useful over more traditional approaches.
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CHAPTER 1

INTRODUCTION

In our current technological world, where various systems are relied on daily by billions of 

users worldwide, safety is a vital aspect of any technological system to be accepted, to succeed, and 

to proliferate. System failure is a common concern for any technology maker; a manufacturer has to

avoid critical failure whenever possible. Every technological component can fail, whether it is a 

matter of time or simply a matter of being exposed to scenarios that are too stressful for proper and 

correct operation. Often, with complex systems, failures can manifest themselves in unforeseen 

situations, untested combinations of factors that passed deployed testing methodologies without 

alarm.

Exhaustive and thorough testing is the ideal form of testing for any system; it would not be

possible for such a system to fail when all possible outcomes of its operation are known to succeed. 

However, with complex systems where the factors can be practically infinite, exhaustive testing is 

not feasible nor efficient.

Autonomous cars are such an example. A tester might perform evaluations of the object 

recognition system based on specific factors such as size, shape, proximity, or speed. However, 

untested scenarios whereby a failure would have been discovered are particularly disastrous; 

hackers were able to fool Tesla’s Model S in Autopilot mode to perceive objects that weren’t there 

and even miss objects that were[1]. In other situations, the same car model seems to have a blind 

spot, which already lead to a fatal accident[2]. This immediately implies that blind spots were not a 

factor that the testers had involved or focused on while laying down their test suites.
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Novel approaches to testing systems and verifying that they adhere to their specifications 

are much needed. These approaches have to be able to test a wide variety of systems without 

necessarily knowing how these systems work. Such approaches to testing could potentially expose 

failures in systems with certain conditions that the tester could not have possibly imagined and 

consciously tested for. However, such approaches would be delegated to testing systems of high 

complexity, often with practically infinite parameter spaces. Therefore, testing algorithms have to 

be able to work with a limited set of possibilities, aiming to discover areas in which certain 

combinations of input parameters cause a failure in the system under test.

Rare fail estimation is of particular importance in non-volatile memory cells such as the 

STT-MTJ based latch. [11] Applying such novel approaches to non-volatile memory cells may 

accelerate yield estimation beyond what traditional tools are capable of. However, multiple tools are

required to interoperate to integrate simulation of electric circuits with frameworks that implement 

such approaches.
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CHAPTER 2

LITERATURE REVIEW

2.1 Temporal Logic Falsification for Hybrid Systems

Temporal verification is concerned with proving or falsifying temporal logic properties of 

systems under analysis[4]. In [4], Annapureddy et al. develop a tool called S-TaLiRo that is used for 

temporal logic falsification of non-linear hybrid systems. S-TaLiRo searches for counterexamples to

the Metric Temporal Logic (MTL) properties of the system through the global minimization of a 

robustness metric. This global optimization is carried out by stochastic optimization techniques that 

perform a random walk over the initial states, controls, and disturbances of the system in order to 

obtain a robustness score. S-TaLiRo simulates the system and returns the trace with the smallest 

robustness value found. A negative robustness score represents a falsification of the temporal logic 

properties. A low robustness score indicates proximity to falsifying traces.

S-TaLiRo is available as a MATLAB toolbox with a Command-Line Interface. It can 

interact with any system as long as its simulator is implemented as a Simulink Stateflow model, as a

MATLAB function, or in any other framework that provides a MATLAB interface. Currently, S-

TaLiRo provides Monte Carlo and Ant Colony Optimization as stochastic optimization algorithms. 

It is also possible to substitute the built-in robustness metric computation algorithms with external 

ones.

S-TaLiRo consists of a temporal logic robustness analysis engine and a stochastic sampler. 

The sampler feeds in input parameters to the simulator and the output results are analyzed by the 

robustness analysis engine in order to return a robustness score. The score is then used by the 

sampler to decide what next input to feed into the simulator. Results for which the computed 
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robustness score is negative, those that falsify the temporal logic properties of the system, are 

reported to the user. If no falsification is found, the least robust trace, that with the lowest 

robustness score, is reported.

Several benchmarks are provided with the toolbox as a proof-of-concept. One of interest is 

the HEAT30 room heating benchmark from, shown in Figure 1 [5]. The benchmark involves 10 

rooms with 3,360 discrete locations and 4 heaters. Each room starts at a temperature in the range 

[17, 18] (initial conditions) and the input signal is in the range [1, 2]. The temporal logic of the 

system states that no room should ever drop below its threshold temperature in [14.5 14.5 13.5 14.0 

13.0 14.0 14.0 13.0 13.5 14.0]. S-TaLiRo found a falsifying trace with a robustness score of -0.429 

and with initial conditions [17.4705 17.2197 17.0643 17.8663 17.4316 17.5354 17.9900 17.6599 

17.8402 17.2036].
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Figure 2.1: Room heating benchmark HEAT30 [3]

S-TaLiRo was conceived in response to the dearth of publicly available tools that can 

tackle the problem of temporal logic falsification for hybrid systems. While MathWorks provides 

comprehensive design verification tools, S-TaLiRo, on the other hand, aims to focus solely on 

solving the problem it was created to solve.
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It is worth noting that S-TaLiRo requires absolutely no knowledge of the inner workings of

the system under simulation. The system is treated as a black box with only the output of the 

simulation, resulting from the input chosen by the sampler, visible to S-TaLiRo as a basis for the 

robustness score to be calculated in order to determine whether a falsification of the system’s 

temporal logic properties has been found.

2.2 Active Learning Framework

In [6], Settles defines Active Learning as a subfield of machine learning, a semi-supervised

instance as opposed to a supervised one. Supervised machine learning systems are trained on large 

data sets that are labelled by human beings. Often, this labelling is very difficult and expensive 

time- and effort-wise. An example of supervised machine learning is speech recognition, in which 

the system is trained on extensive data sets prepared by trained linguists. Word annotation takes a 

large amount of time, let alone when a rare language or dialect is involved. On the other hand, semi-

supervised machine learning involves sporadic reliance on an oracle (in this case, a human expert) 

by selecting, out of a large unlabeled pool of training data, a subset that it requires to be labelled in 

order to proceed with building the model it is concerned with. It requests the labelling of such in the

form of queries to the user.

In [7], Bryan discusses an Active Learning framework useful for learning a level-set of a 

target function over an entire parameter space based on a limited set of observations. Active 

Learning frameworks are particularly useful and efficient in cases where the target function’s 

parameter space is of high dimensionality as it becomes computationally infeasible to sweep over 

the entire parameter space in order to learn the entire function. Even more efficient are Active 

Learning algorithms that learn only specific properties of the target function.
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Since the parameter space is assumed to be large or infinite, it is not feasible to estimate 

the value of the target function for all input parameter vectors. Thus, from an initial set of points in 

the parameter space, the algorithm selects a set of candidates uniformly at random and scores them 

according to a kriging model. Robustness is computed at the point with the highest score and the 

result is added to the data set. The selected point best refines the model (approximation) of the 

target function.

The next point is always chosen based on the robustness scores of the previously chosen 

points. A model of the function is constructed gradually. A greedy learning algorithm is used to 

choose the best set of points to sample in order to construct that model.

The function is approximated using Gaussian process regression. A weighted combination 

of the robustness scores for the points that have already been chosen before directs where to look 

next. A distance-based kernel function weighs the robustness scores of nearby points significantly 

more than distant points.

A simple weighted Euclidean distance function for the computation of robustness is 

deemed suitable as long as each dimension is linearly scaled such that the semi-variance along the 

axis is unity. This gives the parameters equal consideration considering their different ranges of 

values and derivatives.

2.3 Rob-Guided-Verif

Rob-Guided-Verif is a dedicated suite written by Houssam Abbas available in the GitHub 

repository in [8]. The suite makes use of S-TaLiRo for simulation and returns robustness scores for 

input vectors specified for the system under analysis. Other features of S-TaLiRo such as the 

temporal logic analysis engine are unused; instead, S-TaLiRo is used to compute the ground truth – 
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the set of robustness scores of each and every point in the search space of the system. Then, the 

Active Learning framework is summoned with no knowledge of the ground truth – the algorithms 

involved select a set of candidate points, summon S-TaLiRo to compute the robustness score of the 

candidate point with the highest candidate score, then chooses the next point for S-TaLiRo to 

compute its robustness score. Based on all the scores of the points that are gathered, the algorithm 

proceeds in picking the next point, proceeding iteratively up until a stopping criterion is met (see 

Figure 2). Examples of such are:

• The confidence level that the predicted model matches the actual system model reaches the 

required threshold

• The number of iterations reaches a determined timeout maximum

Figure 2.2: Sample run of S-TaLiRo

2.4 NVLatch Benchmark

2.4.1 Introduction

In the modern era, the focus on driving down power consumption, particularly with the 

emergence of Internet of Things (IoT) devices, has led to a great interest in processors that can 
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preserve their memory state and shut down without having to maintain power to their memory 

elements. Therefore, it is essential that non-volatile, rather than volatile, memory elements 

accessible to the CPU are developed and utilized[11]. Here, we investigate a non-volatile latch, the 

circuit diagram of which is shown below in Figure 6.

2.4.2 Circuit Diagram

Figure 2.3: Circuit diagram of a non-volatile latch

2.4.3 Math Equations

The components of most interest in the circuit are the STT-RAM memory cells. The 

component is modeled in SPICE with the following equations:

9



[12]

2.4.4 Correct Behavior

The STT-RAM memory cell is required to transition from the parallel state to the anti-

parallel state in 7ns and from the anti-parallel state to the parallel state in 4ns.

After writing a value (‘0’, ‘1’) to the non-volatile memory (in backup mode), then, 

restoring the value to the latch (in recovery mode), the output should match the written value.

2.4.5 Search Space Dimensions

We are concerned with only the backup mechanism and most particularly the parallel to 

anti-parallel transition. This mechanism is affected by the STT-RAM memory cells as well as the 

write transistors. The design contains 2 STT-RAM memory cells and 2 write transistors. Each STT-
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RAM memory cell contains 1 MTJ and 1 transistor. In total, the backup mechanism thus contains 4 

transistors and 2 MTJs [10].

For each transistor, the length can be varied to affect the circuit behavior. For each MTJ, 

the radius can be varied to affect the circuit behavior. The design is symmetrical across the y-axis, 

and the anti-parallel to parallel transition is not particularly worrisome. This means that the set of 

components {MP1, MTJ0, MN2} or {MP2, MTJ1, MN1} is enough on its own to be studied. 

Therefore, the search space has 3 dimensions.

2.4.6 System Inputs

The circuit has two modes of operation: backup and recovery. Backup mode is used to 

write the contents of the latch to the non-volatile memory, while recovery mode is used to restore 

the contents of the non-volatile memory to the latch. [10]

In backup mode, the active-low input “Write0” is used to write a ‘0’ to the non-volatile 

memory, while the active-low input “Write1” is used to write a ‘1’ to the non-volatile memory. 

“Write0” and “Write1” cannot be asserted at the same time, so the combinations of values for the 

input signals are:

• Write0 = 1, Write1 = 1 (no backup)

• Write0 = 0, Write1 = 1 (write a ‘0’)

• Write0 = 1, Write1 = 0 (write a ‘1’)

In recovery mode, the active-low input “Sense” is used. The possible values for the input 

signal are:

• Sense = 1 (no restore)

• Sense = 0 (restore)
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The “Sense” input cannot be asserted at the same time as the “Write0” or “Write1” input. 

Therefore, we can condense all three input signals into a single input signal with the following 

possible values:

• 00: Write0 = 1, Write1 = 1, Sense = 1 (no backup, no restore)

• 01: Write0 = 0, Write1 = 1, Sense = 1 (backup: write a ‘0’)

• 10: Write0 = 1, Write1 = 0, Sense = 1 (backup: write a ‘1’)

• 11: Write0 = 1, Write1 = 1, Sense = 0 (restore)

2.4.7 Benchmark Significance

Due to variability in the transistor threshold voltages and the MTJ memory cells radii, the 

backup mechanism can be affected in terms of latency, potentially failing STT-RAM memory cell 

timing requirements[10]. It is vital that the pulse width be large enough to accommodate proper 

transitions for the slower cells. This would ensure correct operation given a particular level of 

variability; however, it also has the negative effect of forcing a pulse width that might be too long 

for cells that transition quickly. It is thus in our interest to find the ranges of parameters for which 

the STT-RAM cells can transition with a sufficiently low delay so that the pulse width is lowered 

for the non-volatile memory of lower write latency, allowing the processor to power off earlier.

2.5 Yield Estimation via Multi-Cones

Rare fail event estimation relying on Monte Carlo often does not converge for a reasonable

amount of samples. In [16], the Multi-Cones approach is laid out. The spherical input parameter 

space is divided into non-overlapping, approximately equi-probable cones by generating random 

equi-probable vectors from the center. Then, the failure region boundary is located using binary 
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search. The approach assumes that there are potentially multiple, necessarily monotonic failure 

regions.

Due to potential bias from random sampling of a limited set of direction vectors, weight 

refinement may then be performed to estimate the weight contribution of each vector. This involves 

issuing additional random vectors, preferably a sufficiently large multiple of the number of 

direction vectors. Then, the additional vectors are clustered around the direction vectors. The ratio 

of the cluster size of each direction vector to the total number of issued weight refinement vectors 

constitutes the weight contribution of the direction vector.

Devices are assumed to yield according to a Gaussian distribution, so the probability of a 

device falling in a discovered failure region is computed according to the Gaussian probability 

density function corresponding to the dimensionality of the parameter space. The sum of products 

of each probability of failure and the weight contribution of the corresponding direction vector 

estimates the yield.

The aforementioned steps of the algorithm are repeated until the yield estimate converges, 

using a suitable convergence scheme.

Yield estimates via this approach converge much more quickly than Gaussian sampling 

Monte Carlo.

2.6 ngspice

ngspice is a mixed-level / mixed-signal circuit simulation that is originally based on 

BERKELEY SPICE. [17] It is free, open-source software available for download and compilation on 

Linux, macOS, and Windows. It is written in C and is maintained by Holger Vogt. It is battle-tested 

and stable, being used in many projects.
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According to the ngspice manual in [18], ngspice implements intra-simulation parallelism 

via OpenMP, mostly for complex transistor models. CUDA is available as well, in the form of 

cuspice. The speedups observed are modest.

Ngspice provides a C API for running SPICE simulations from a C / C++ program. 

However, the C API does not provide explicit support for inter-simulation parallelism – instead, the 

programmer would have to rely on loading and closing copies of the ngspice shared library for each

simulation that is run.

2.6.1 ADMS

According to [19], ADMS is a code generator that converts models written in Verilog-AMS

into C code that is compatible with the target SPICE simulator. The generated code becomes part of 

the simulator and the entire codebase is compiled into an executable that is now compatible with the

Verilog-AMS model.

A guideline for integration of Verilog-AMS models in ngspice using ADMS is provided. 

The process involves modification of several entries in ngspice source code, the creation of specific 

directories for ADMS to generate C code into, and the re-compilation of ngspice now with the 

generated C code added to the existing codebase.

Testing the implementation after the compilation process is complete is necessary to ensure

correct operation of the integrated model.

2.7 mp-units

According to [20], mp-units is a compile-time enabled Modern C++ library that provides 

compile-time dimensional analysis and unit / quantity manipulation. The library handles quantity 
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conversion ratios at compile-time, ensuring that such operations are error-free, highly precise / 

exact, and zero-cost at run-time.

The library provides electrical, time, and length SI units, among others, along with SI 

prefixes (nano, micro, milli, etc...). Resistance (Ohm), capacitance (Farad), inductance (Henry), 

voltage (Volt), and current (Ampere) are the electrical units most frequently used for electric circuit 

simulations. Length SI units are necessary to control transistor model parameters such as oxide 

thickness. Time SI units are necessary to control simulation time step, start, and stop.

The library utilizes some of the latest C++20 and C++23 features such as Concepts and 

classes as NTTPs (Non-Type Template Parameters) and targets the latest versions of available 

compilers such as GCC [21] and Clang [22] where support for these features can often be very recent 

and experimental.

The library’s author, Mateusz Pusz, is working with various C++ groups on potentially 

having the library standardized for C++23.
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CHAPTER 3

PROBLEM DESCRIPTION

The active learning framework is implemented in MATLAB. The robustness computation 

function that it relies on, which is part of S-TaLiRo, is implemented in C with MATLAB hooks and 

compiled with mex. [23] The STT-MTJ non-volatile memory model is implemented in Verilog-AMS. 

The STT-MTJ SPICE circuit is simulated in ngspice.

Tools need to be developed that can:

• Easily integrate Verilog-AMS models into ngspice

• Parametrize SPICE circuits from code

• Run several SPICE simulations in parallel, for the Multi-Cone approach and to compute the 

ground truth in order to verify the accuracy of the Active Learning algorithm’s predictions

• Run SPICE simulations from within the Active Learning framework

• Be efficient with resource usage (such as memory)

• Execute in minimal time in order for the approach to be useful over more traditional 

approaches

MATLAB, being an interpreted language with dynamic typing [22], suffers from several 

common overheads for operations such as function calls. Furthermore, licensing can be expensive 

and this potentially forms a barrier to entry for other researchers or institutions wanting to use these 

tools, particularly in commercial, non-academic environments. In addition, enhancing performance 

and extending the framework beyond what is currently implemented is best performed in a 

compiled language with static typing and compiler optimizations for architecture-specific 
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performance improvements (such as AVX support in modern processors). While MATLAB does 

call performance-oriented libraries such as MKL where it is suitable to do so [25], not all 

functionality in MATLAB can be guaranteed to rely on such libraries, particularly that which does 

not extensively rely on built-in functions or toolboxes.

C++ is the perfect candidate for the implementation of all the missing tools as well as the 

re-implementation of the Active Learning framework.
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CHAPTER 4

IMPLEMENTATION

4.1 mp-units

mp-units provides SI units as strong types to spice-circuit-generator. This reduces 

programmer error in contrast to using raw floating-point types – any quantity which unit does not 

match a generator setter function’s argument type cannot be passed as an argument and the program

will fail to even compile.

4.1.1 ASCII-Only Output Support

mp-unit’s default unit symbols are in Unicode format. [26] ngspice supports ASCII characters 

only, so any Unicode symbols present in a SPICE circuit that is loaded into ngspice would not be 

read correctly and would very likely cause ngspice to crash. It is therefore imperative that spice-

circuit-generator does not generate circuits that contain Unicode symbols; however, spice-circuit-

generator relies on mp-units for string formatting related to quantity, prefix symbol, and unit 

symbol.

We implemented ASCII-only output support [27] [28] in mp-units. This required the 

implementation of a basic_symbol_text class that integrates two basic_fixed_string objects, one 

for Unicode and another for ASCII. Several constructs throughout the library required a change 

from using basic_fixed_string for their only Unicode symbol to using basic_symbol_text. The 

constructors provided to basic_symbol_text ensured that contributors to the library would not have 

a harder time declaring singular unit symbols in duplicate fashion as the majority of units had a 

single symbol that was available in both the ASCII and the Unicode character set.
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The SI resistance unit ohm would incur the following change:

It was crucial to avoid having to refactor all other units to declare two symbols, even if duplicated, 

in the following manner:

The following constructor for basic_symbol_text avoided this duplication issue:

The definition of farad would therefore stay the same as before:

The string formatter specification parser had to be modified to accept the A modifier that forces 

ASCII-only output.

Unit tests were added to verify that the implementation is correct.

4.1.2 Alias Units

Many prefixed SI units, such as nanometer, were missing. Nanometer is crucial for SPICE 

circuits as modern transistors have many parameters that operate at that scale.

In the process of adding missing prefixed SI units, megagram conflicted with tonne as it 

was considered a redeclaration. We implemented alias units – units that are operated on as if they 

were an equivalent unit but with a substituted symbol. [29] Alias units allow prefixing when suitable, 
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even when their equivalent units do not. Megagram, for instance, does not allow any prefix to be 

added (since it is already a prefixed unit), but its alias unit, tonne, does, (e.g. kilotonne).

Implementing alias units in such a manner avoids any further modifications to the library 

that might disturb core functionality and allows the implementation to be relatively unaffected by 

later modifications to the core.

Unit tests were similarly added  to ensure that the implementation is correct.

4.1.3 Random Number Distributions

monte-carlo requires the generation of quantities following a Gaussian random distribution.

We implemented wrappers for the STL (Standard Template Library) random distributions. [30] [31] 

This allows us to generate random quantities straight from mp-units without having to use the raw 

STL random distribution classes then wrap the raw floating-point value in a quantity object.

Similar to how an STL random distribution is utilized:

mp-units random distributions, which are available in the units namespace, can be utilized:
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4.2 ngspice C++ wrapper

ngspice-cpp is a C++ wrapper for ngspice. [32] It provides:

• straightforward simulation object creation and usage

• easy iteration over results after completion

• feedback simulations

• explicit support for inter-simulation parallelism

4.2.1 Simulation Object

To load a SPICE circuit, run a simulation, and output a vector after completion:

4.2.2 Feedback Simulation

Often, SPICE simulations reach a certain point at which the needed property has been 

realized. Beyond that point, it is wasteful to keep the simulation running. We implemented 

feedback simulations in ngspice-cpp. The programmer would derive the FeedbackSimulation 

base class and implement initialization, step, and finish callback functions that ngspice-cpp would 

use to pass information to the simulation object so that it could figure out when to stop the 

simulation. This saves a sizeable portion of execution time in many instances.
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4.2.3 Explicit Parallelism

Inter-simulation parallelism is handled via OpenMP, [33] TBB, [34] or any shared memory 

parallel programming library that can either provide directives to the compiler to parallelize a for 

loop or that implements parallel for loops.

ngspice-cpp transparently handles the process of loading and closing ngspice shared library copies 

when multiple simulations are being instantiated, run in parallel, and destroyed.

Various usage examples can be found in the repository at [35].
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4.3 SPICE Circuit Generator

ngspice can load SPICE circuit text files and simulate the loaded SPICE circuit. However, 

fixed circuits are of limited benefit – we need to be able to parametrize circuits on-the-fly often 

using complex metrics that are not directly supported in and provided by SPICE simulators.

Such metrics have to be able to parametrize a SPICE circuit straight from code. 

Furthermore, it is obligatory to have a general approach to parametrization so that SPICE circuit 

generation is not re-implemented from scratch every time a different type of SPICE circuit, with a 

different set of parameters, is used.

4.3.1 Grammar

We implement a Parsing Expression Grammar (PEG) [36] as an extension on top of basic 

SPICE syntax.

An example of a basic RC SPICE circuit is:

With the PEG extension, a template RC SPICE circuit looks like:

The grammar allows for default values to be provided in the template so that they do not necessarily

have to be specified in code. The specific grammar for a template SPICE circuit is:
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4.3.2 Code Generation

We used parsimonious, a Python PEG parser, [37] to parse template SPICE circuits 

according to the aforementioned grammar. Then, from the generated Abstract Syntax Tree (AST), 
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we populate a Jinja2 [38] template to produce C++ code that can be included in projects that require 

parametrization of these SPICE circuits.

The generated code provides a SPICE circuit generator that can set the parameters and 

generate different circuits based on sthe template circuit. The circuit generator relies on mp-units to

ensure that the quantities passed do not use the wrong units. A generator can be instantiated and 

used in the following manner:

Integrating the generator with ngspice-cpp allows parametrization of the SPICE circuit with

complex metrics entirely in code, without having to resort to the SPICE simulator implementing 

such functionality.

4.4 ngspice STT-MTJ Integration

Following the integration guide in [19], we integrated the STT-MRAM Verilog-AMS 

models according to the model manual in [12]. Due to how SPICE simulators function, the Verilog-

AMS code required a few modifications to transform current input into voltage input and voltage 

output into current output. Consequently, SPICE circuits have to use current-controlled voltage 

sources on the input and output terminals in order to use these models.
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The integrated models were unit tested extensively, using ngspice-cpp and googletest, [39] 

to ensure that they function according to specification in the model manual [12]. Test SPICE circuits 

were also run to graphically ensure that the models respond in the same way as the manual indicates

they would.

 Figure 4.4.1: P -> AP Transition (manual)           Figure 4.4.2: P->AP Transition (ngspice)

Figure 4.4.3: AP -> P Transition (manual)          Figure 4.4.4: AP -> P Transition (ngspice)

Build scripts, code patches to fill in missing C code that the ADMS compiler did not 

generate, as well as scripts to facilitate integration of future Verilog-AMS models, are provided in 

[40]. These additions are continuously rebased on top of ngspice source code and the entire build 

process is performed to ensure that new changes to ngspice source code do not break the 

integration.

4.5 Monte Carlo
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We implemented the Monte Carlo approach for the STT-MTJ model using:

 uniform real distributions with mp-units to generate random radii and transistor threshold 

voltages

 STT-MTJ parallel to anti-parallel state transition SPICE circuit generator with spice-circuit-

generator

 ngspice feedback simulations running in parallel with ngspice-cpp, stopping when the STT-

MTJ cell has fully transitioned from parallel to anti-parallel state

Yield estimation is performed by counting the number of passing circuits and dividing the count by 

the number of tested circuits.

4.6 Yield Estimation via Multi-Cones

We implemented the Multi-Cones approach in modern C++, relying heavily on template 

metaprogramming. This allows the determination of container sizes at compile-time, keeping heap 

allocations to a minimum. The floating-point type can be chosen as well, improving either 

precision, performance, or memory usage, or a combination thereof. The random number generator 

engine can be swapped, improving either quality or performance or both.

The implementation heavily utilizes C++17 parallel STL algorithms, [41] allowing for shared 

memory parallelism via TBB. [34]

A KDTree [42] was used for weight refinement clustering in order to speed up nearest 

neighbor searches.

4.7 Robustness Guided Verification (C++)
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We reimplemented rob-guided-verif as a header-only library in C++20 with extensive unit

tests, benchmarks, and examples. [43]

4.7.1 Language Features

The implementation relies on the following C++ features:

 Concepts: [44] allow constraining template arguments such that only specific types are 

permitted, such as floating-point or particular user-defined types

 Variadic Templates: [45] allow an arbitrary number of entities to be aggregated into one 

container type (such as input signals) despite being of different types (template class 

instantiations with different template arguments)

 Non-Type Template Parameters: [46] allow passing in sizes as template arguments so that 

matrix and vector dimensions are determined at compile-time, avoiding heap allocations

 Function Objects: [47] allow passing in functions at compile-time so that they are inlined by 

the compiler to avoid function calls

 Execution policies (parallelism): [48] allow the explicit use or disabling of shared memory 

parallelism using TBB [34] for algorithms that can run in parallel, [41] including user-defined 

algorithms explicitly using TBB

4.7.2 Dependencies

Several libraries were used for the framework:

 Eigen: [49] C++ template library for linear algebra – provides matrix and vector types

 Boost: [50] a collection of portable C++ libraries – provides ODE solvers [51] and interpolators

[52]
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 CGAL: [53] a collection of geometric algorithms in C++ - provides quadratic programming 

solver [54]

 googletest: [55] C++ test framework – provides unit tests for various components

 google/benchmark: [56] C++ benchmark library – provides benchmarks for various 

components

The robustness computation function was ported over from C with MATLAB hooks. Parts 

of the code were replaced with C++ constructs to facilitate interoperability with the rest of the 

framework. Memory corruption bugs due to uninitialized variables were fixed.

4.7.3 Models

The framework supports several models:

 Stiff / non-stiff ODEs: in the form of function objects that derive a base class and specify 

the equations as well as the Jacobian matrix (for stiff ODEs)

 MATLAB Simulink models: in the form of .mdl files, provided with an input signal

 Function objects: can implement any functionality in C++, provided with an input signal

4.7.4 ODE Solver

All features of the ODE solver are provided by Boost.Numeric.Odeint:

 Integration:

◦ constant step

◦ adaptive step

 Output:

◦ controlled
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◦ dense

 Steppers:

◦ rosenbrock4

◦ runge_kutta_dopri5

◦ other steppers provided by Boost.Numeric.Odeint

4.7.5 Input Signal Interpolation

Several types of input signal interpolators are supported:

 Constant

 Piecewise Constant

 Linear

 Uniform Random

 Cardinal Cubic B-Spline (provided by Interpolation in Boost.Math)

 PCHIP (provided by Interpolation in Boost.Math)

4.7.6 Ground Truth Sweepers

For ground truth computation, several types of sweepers are supported:

 Grid: the number of points per dimension can be specified independently

 Uniform Random Distribution Monte Carlo: the lower and upper bounds for each 

dimension can be specified independently

 Gaussian Distribution Monte Carlo: the mean and standard deviation for each dimension 

can be specified independently

4.7.7 Estimation Algorithms
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For any estimation algorithms currently implemented or to be implemented in the future, distance 

metrics, certainty metrics, and candidate selection metrics are provided. [7]

4.7.7.1     Distance Metrics  

The distance metrics provided are: [7]

 Kriging

4.7.7.2     Certainty Metrics  

The certainty metrics provided are: [7]

 Entropy

 Minmax

4.7.7.3     Candidate Selection Metrics  

The candidate selection metrics provided are: [7]

 Uniform Random

 Variance

 Entropy

 Straddle

 Probability of Incorrect Classification

4.7.8 Active Learning Algorithm

We implement the Active Learning algorithm specified in [7] in C++ utilizing the 

aforementioned distance metrics, certainty metrics, and candidate selection metrics.
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4.7.9 Benchmarks

4.7.  9  .1     quadprog  

We benchmark our C++ implementation of a distance function that relies on the quadratic 

program solver provided by CGAL against the “quadprog” function provided in MATLAB [57].

4.7.  9  .2     ode15s  

We benchmark our C++ implementation of the stiff ODE solver that relies on 

Boost.Numeric.Odeint against the “ode15s” function provided in MATLAB [58].

4.7.  9  .3     compute_robustness  

We benchmark our C++ porting of the robustness computation function against the C 

version with MATLAB hooks built with mex. [23]

4.7.  9  .4     nonlinear  

We provide an example of a stiff ODE model using this framework, “nonlinear”. The 

model is already implemented in the MATLAB version of the framework as a benchmark. We 

measure only the tight loop where robustness computation is performed in MATLAB. Meanwhile, 

we record the entire C++ program execution time.

4.7.  9  .5     nonlinear_al  

We run the “nonlinear” example model under the Active Learning framework for 20 

iterations on a grid of 300x300 (90000) points in both the C++ version and the MATLAB version.
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4.7.9.6     Results  

Figure 4.7.9.6.1: MATLAB vs C++ Benchmark Results

4.7.10 Verification

Aside from extensive unit tests, we verify the correctness of the framework 

implementation by plotting several figures of robustness values that match the MATLAB 

implementation figures.
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Figure 4.7.10.1: “nonlinear” example robustness (1)

Figure 4.7.10.2: “nonlinear” example robustness (2)
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Figure 4.7.10.3: “nonlinear” example robustness (3)

Figure 4.7.10.4: “bmk_modulator” example robustness (1)
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Figure 4.7.10.5: “bmk_modulator” example robustness (2)

Figure 4.7.10.6: “bmk_modulator” example robustness (3)
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CHAPTER 5

EXPERIMENTAL RESULTS

Due to differences in parameters used between our SPICE model and the model in [11], we 

test the STT-MTJ circuit with two nominal delays: 5.4ns and 5.6ns. This helps highlight differences 

in number of samples to converge between Monte Carlo, Multi-Cones, and Active Learning when 

failures become rarer. We use the same means and standard deviations for STT-MTJ cell radius and 

transistor threshold voltage.

Cell radius: mean = 52nm, standard deviation = 1/3nm

Transistor threshold voltage: mean = 0.469V, standard deviation = 0.1250667V

Figure 5.1: STT-MTJ circuit, 5.4ns nominal delay – Gaussian Random Monte Carlo Sweeper

Ground Truth – 1,000,000 points
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Figure 5.2: STT-MTJ circuit, 5.4ns nominal delay – Grid Sweeper Ground Truth – 300x300

(90,000) points

We run each experiment in Monte Carlo for 500,000 samples. Convergence is estimated by 

a rolling window of size 500.

We run each experiment in the Multi-Cones approach for 900 experiments each with 100 

direction vectors, 1000 weight refinement vectors, and 8 search iterations for binary search. On 

average, each experiment runs around 440 samples.

For the Active Learning algorithm, we start with a seed training set of 15 samples.

5.1 STT-MTJ 5.4ns Nominal Delay
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Figure 5.1.1: Gaussian Random Monte Carlo Yield Estimate

Figure 5.1.2: Gaussian Random Monte Carlo Convergence Estimate
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Figure 5.1.3: Multi-Cones Yield Estimate

Figure 5.1.4: Multi-Cones Convergence Estimate
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Figure 5.1.5: Active Learning Accuracy / Certainty

The Multi-Cones approach converges faster than Monte Carlo for the same number of 

samples. Both require in excess of 100,000 samples in order to converge. The Active Learning 

approach, on the other hand, requires only 237 iterations (252 samples) to learn the function with 

99.98% accuracy and 79.41% certainty. As the number of iterations increases, certainty increases to 

88.20% and accuracy decreases to 99.95%. When running the Active Learning algorithm on a 

model for which we have no ground truth, certainty is the metric which we can observe and use as 

the stopping criterion.

5.2 STT-MTJ 5.6ns Nominal Delay
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Figure 5.2.1: Monte Carlo Yield Estimate

Figure 5.2.2: Monte Carlo Convergence Estimate
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Figure 5.2.3: Multi-Cones Yield Estimate

Figure 5.2.4: Multi-Cones Convergence Estimate
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Figure 5.2.5: Active Learning Accuracy / Certainty

We chose a higher nominal delay so that failure becomes rarer. Similarly, the Multi-Cones 

approach converges faster than Monte-Carlo. Active Learning requires only 152 iterations (167 

samples) to learn the function with 99.99% accuracy and 75.41% certainty. As the number of 

iterations increases, certainty increases to 89.5% and accuracy decreases to 99.94%.
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CHAPTER 6

FUTURE WORK

6.1 SPICE Circuit Generator

The SPICE circuit generator currently relies on components implemented in the ngspice C+

+ wrapper. Separating those components into an independent project would allow the circuit 

generator to be used in conjunction with any other SPICE simulator if a C++ interface for the 

simulator is provided.

6.2 ngspice STT-MTJ Integration

Verilog-AMS model integration into ngspice using ADMS is an experimental feature that 

does not readily have support from ngspice maintainers. Documenting the integration process, from 

satisfying dependencies to compilation to C code, patching, building, then extensively unit testing 

would go a long way to transform this from an experimental feature to one that could be provided 

and maintained in the main trunk.

6.3 Robustness Guided Verification (C++)

Various benchmarks that are provided in the MATLAB version are not yet ported to the C+

+ version. Porting them in order to demonstrate the concise, yet expressive interface and 

performance improvements would be beneficial. Speeding up the active learning algorithm through 

running embrassingly parallel matrix operations on the GPU would make the algorithm much more 

attractive due to significantly lower execution time. Adding more estimation algorithms, either 

inspired by the active learning approach or otherwise, would aid in making the framework the go-to

framework for robustness guided verification in its various approaches, algorithms, and metrics.
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CHAPTER 7

CONCLUSION

The dearth of readily-available tools to simulate electric circuits under the Active Learning

approach required the synthesis of such tools, often from the ground up. Obtaining experimental 

results was made vastly easier due to the simplification of the needed interfaces, significant 

improvements to performance, and improvements to maintainability and extensibility while 

maintaining strong performance due to the use of modern C++.

Memory circuits stand to benefit greatly from the Active Learning approach over the use 

of Monte Carlo or the Multi-Cones approach, particularly circuits that are expensive to simulate (in 

terms of execution time). The Active Learning approach spends almost all of its execution time 

predicting the model iteration after iteration. At a certain point, the expensiveness of simulation, as 

well as the orders of magnitude more samples needed for the aforementioned two approaches, 

favors the use of the Active Learning approach to obtain experimental results more quickly.
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