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An Abstract of the Thesis of

Alexios Boutros Rustom for Master of Engineering
Major: Mechanical Engineering

Title: Stochastic Transport and Identification of Moving Passive Tracer Sources
with Application to Marine Traffic in the Mediterranean Sea

Source Reconstruction Problems are widely used for the aim of determining
the sources of contaminants and pollutants in the case of deliberate or accidental
release scenarios. This involves the inverse problem and inference of the sources
parameters given a set of observed and measured data for direct emergency ac-
tions and services while estimating at the same time the nature of the threat in
order to avoid and manage escalating consequences.

The aim of this thesis report is to introduce the methodology and results of the
inference and source reconstruction problems with an application to contaminants
and pollutants transport in the Mediterranean Sea in the presence of a stochastic
velocity field. This will allow immediate and accurate actions in emergency cases
such as any unexpected release scenario.

The forward Lagrangian model, adopted in transporting the pollutants, is
first introduced followed by a detailed discussion of the full implementation of
the stochastic transport of moving passive tracers in the Mediterranean Sea in the
presence of a stochastic velocity field. This also involves building the probability
maps for various release scenarios along a given ship path.

In addition, a new sampling based approach, similar to MCMC algorithms
and based on the evaluation of the cost function between the modelled likelihood
of the contributing events and the observation patch, is introduced. This algo-
rithm allows the inference of single and multiple sources in the Mediterranean
Sea with a quantitative measure of the relative contribution of these sources to
the observation patch while quantifying the uncertainty in the solution. The
results obtained from this proposed inference algorithm are illustrated and are
in accordance with the true solution obtained using a deterministic optimization
approach.
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Chapter 1

Introduction

In the case of a chemical, biological, and radiological release events, either de-
liberately or accidentally, extensive research studies have been conducted in the
purpose of determining quickly and accurately the probable sources of contami-
nants as well as their corresponding characteristics (release time, strength, etc.)
for direct emergency actions and services with an estimate of the nature of the
threat in order to manage the consequences. Some examples of catastrophic
releases are listed below:

• In 1995, 12 people were killed and more than 50 were injured in a Tokyo
subway where a nerve agent Sarin was intentionally released [1].

• It has been reported by the China Statistical Yearbook that 9339 events of
water contamination took place between 1997 and 2008 and caused many
damages on the social and economic levels [2].

• In November 2005, around 100 tons of benzene were spilled in the Songhua-
jiang River in China [2].

• The Jiyeh oil spill after explosion of the storage tanks at the thermal power
station in 2006. Fiigure 1.1a illustrates the contaminated beaches of Beirut.

• In 2012, 3 million deaths were caused by air pollution [3].

• In 2019, a pipeline firm Plains All American Pipeline gets $3.3 million fine
for causing in 2015 the worst California coastal spill in 25 years in Refugio
State Beach in Santa Barbara County. This has blackened popular beaches,
killed widlife, and hurt both tourism and fishing. This was due to the fact
that the firm failed to quickly detect the ruptured pipeline and responded
slowly to this release event. Figure 1.1b illustrates the effects of the crude
oil spill on the Refugio State Beach.
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Furthermore, according to the International tanker Owners Pollution Federa-
tion (ITOPF), most of the locations of oil spills due to oil tankers are present in
the Middle East region and most specifically in the Mediterranean Sea as shown
in figure 1.2. Therefore, this report will introduce the development and imple-
mentation of source reconstruction approaches with an application to Marine
traffic in the Mediterranean Sea for future immediate emergency actions in case
of pollutants and contaminants release accidents.
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(a) Contaminated beaches of Beirut due to the Jiyeh Oil Spill.

(b) Ruptured pipeline spilled 140, 000 gallons of crude oil into the Refugio State
Beach.

Figure 1.1: Examples of oil spills accidents.
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Figure 1.2: Oil spills locations due to oil tankers according to ITOPF.
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Chapter 2

Literature Review

The objective of this literature survey is to give a general overview about some
important concepts related to the thesis work. An overview of the techniques
and concepts used in solving the inverse problem and source term reconstruction
is addressed. Several algorithms and methods used in the identification of the
source parameters (location, strength, release time, etc.) are introduced. This
general literature review will help in directing the work of this thesis and its aim
and purpose of identifying probable sources of contaminants with application to
marine traffic in the Mediterranean Sea using a stochastic velocity field.

2.1 Problem Statement

2.1.1 Source Term Estimation

The most general term of the problem of interest is called Source Determination
that involves the inference of the parameters of some given sources (location,
strength, ON-OFF time, size, area, and even the identity of any pollutant be-
ing released). This determination is also characterized and known as a source
inversion problem or a Source Term Estimation (STE) which corresponds to the
inverse problem that consists of characterizing the source and its parameters
based on a set of observations [4] and sensor measurements.

Those kind of problems are present in many areas of science and mathematics
and are a very challenging research field. They have been applied in many re-
search areas including the localization of pollutants, chemicals, and contaminants
in the Atmosphere [3] [5] [6][7][8] [9] Sea [10], ground water aquifer [11],rivers [2],
quantification of the emission of certain chemicals from the ground to the at-
mosphere, determination of the origin and decay rate of non-conservative scalar
[12], as well as the determination of the parameters of extra solar planets. These
problems were also applied to the estimation of the parameters (mostly the com-
position) of solid objects using X-rays tomography, determination of explosives
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in an airport luggage or in mail packages, and identification of unknown number
of Land Mines [13].

2.1.2 Forward and Inverse Problems

Most of the work in the literature focuses on the determination of the disper-
sion of a certain passive quantity given some known parameter sources. This
is called the forward problem and it involves the modelling and dispersion of
tracers in the environment (atmosphere, river, ocean, etc.). On the other hand,
the estimation and inference of the parameters of an unknown source given a
certain output characterized by certain observations and measurements is called
the inverse problem. Both forward and inverse problems are related through an
operator A which is non-linear in most cases. This operator relates the system
output D (data measurements and observations) to a system input (parameters
M of the source):

D = A(M) (2.1)

In other terms, this operator A maps from the Hilbert space of the parameters
M to the Hilbert space of the data D:

A :M→D (2.2)

The inverse problem is solved by constructing the inverse operation A−1, and
the determination of the parameters M from the set of measured data D using
the inverse of the operator A:

M = A−1(D) (2.3)

Those inverse problems are ill-posed:

• A may be singular and an inverse transformation may not exist.

• The solution may not be unique and multiple input solutions for a given sys-
tem output may exist. Any small perturbation in the measured or observed
data may change dramatically the solution.

• The solution to this problem is highly affected by measurement and model
errors because of the limited amount of collected data.

2.2 Inverse Problem Approaches

Two different approaches are used in solving the source reconstruction problem:
the deterministic optimization approach that seeks to obtain a single optimized
solution for the inverse source reconstruction problem while taking input without
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uncertainty, and the stochastic Bayesian approach that seeks multiple solutions
to the ill-posed problem while evaluating the degree of plausibility of each con-
figuration of the solution.

To note that the goal of the STE methods consists of the estimation and
inference of the unknown source parameters by a simple fusion of observations or
measurement data with any prior information of the model parameter space.

Before discussing the various approaches in the STE problems, it is important
to note that the modelled data is determined using some dispersion and transport
models. The most used models in the literature consist of the Lagragian and
Eulerian dispersion models[14].

2.2.1 Deterministic Optimization Approaches

These methods involve the selection of an optimum configuration “best guess”
from a possibly an infinite set of configurations of the source distributions in
the presence of incomplete and noisy data while optimizing the objective or cost
function in order to obtain a deterministic solution of the parameters of the source
without any quantification of the uncertainty of this solution.

A broad range of deterministic optimization approaches was derived from the
sum of the square difference between the measured and modelled data, and will
be introduced sequentially.

The optimum solution M̂ of the parameters is determined by minimizing the
residual:

M̂ = arg min
M∈M

‖A(M)−D‖2 (2.4)

Where ‖•‖ represents the Euclidean norm. For linear problems, the solution is
straightforward. However, in many real-world applications (non-linear problems),
the solution to this problem is not unique and unstable given the ill-posed inverse
problem under study.

A more stabilized formulation of the cost function is based on the regularized
least-square approach where the objective function J in the residual method is
optimized with the use of some regularized parameters β that apply a stable
approximation to the inverse operator:

J = ‖A(M)−D‖2 + βΦ(M) (2.5)

The first term indicates the discrepancy between the measured and modelled
concentration and the second term Φ(M) is the regularization functional that is
adopted for treating instabilities in the inverse problem, and β is the regularizing
parameter.

A common choice for the regularization functional is the Tikhonov regular-
ization and the optimal M̂ is:

M̂β = arg min
M∈M

‖A(M)−D‖2 + β2‖M‖2 (2.6)
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In general, gradient search algorithms seek to minimize the discrepancy be-
tween the measured and observed data, and the direction of the descent is deter-
mined by the gradient (first or second derivative) of the objective function. Such
optimization approach is a local search algorithm that is highly dependent on the
initial guess of the parameters.

More sophisticated algorithms in the literature are the Genetic Algorithm
(GA), Pattern Search Method (PSM), and the hybrid algorithm.

2.2.1.1 Genetic Algorithm (GA)

The GA is a global search approach which is a widely used AI global optimization
approach in the source reconstruction problems (especially non-linear and non-
convex ones). The intelligent optimization algorithm behind the GA is based on
the process of natural evolution. It consists of the following steps [11]:

a. Generation of a random population of the source parameters called chro-
mosomes (initialization). These source parameters are then encoded.

b. The cost function is evaluated in order to measure the fitness F of the
solutions (selection).

c. A mating of high quality solutions is performed in order to generate new
estimates of the parameters and a second generation population of the so-
lutions that are higher in quality than the previous generation (Mating).

d. Similar to the process of evolution, a selection of chromosomes are mutated
in order to generate another set of solutions (Mutation).

e. The termination is checked. If convergence is not satisfied, steps (b) to (e)
are repeated.

The used model is solved for a number of times that is equal to the popula-
tion size in order to obtain for example the modelled concentrations at specific
locations, and therefore suffers from being time-consuming for a high dimesional
parameter space.

To note that in this algorithm, it is of great importance to tune the population
size, the mutation rate, the mating strategy, and the range of parameters in order
to yield accurate and efficient results for the model parameters.

2.2.1.2 Pattern Search Method (PSM)

The PSM is a local search algorithm, and consists of the following steps:

A. The theoretical parameters, that will be determined, are defined with their
initial guesses.
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B. The algorithm will vary these parameters by increasing or decreasing them
using a constant factor.

C. The objective function is then calculated directly for the new set of param-
eters without any use of derivatives.

D. If there is no variation in the cost function from the previous iteration, the
pattern moves (step size is halved) and the previous steps are repeated until
the convergence criteria is satisfied.

This method was tested in the literature [14] and was highly dependent on
the initial guess of the model parameters. For this purpose, a hybrid algorithm
was developed in [14],where the PSM was coupled with a Genetic Algorithm
(GA) (a global optimization method) that serves as a tool for the generation
of a reasonable initial guess for the parameters in the Pattern Search Method
PSM. This hybrid algorithm has yielded more accurate and more efficient results
compared to the case where the PSM is only used because of benefiting from
both the local and global search methods [15].

2.2.1.3 Summary on Deterministic Optimization Approaches

An overview of the most used optimization approaches was addressed in solving
the inverse and the Source Term Estimation (STE) problems. In the optimiza-
tion approach, a requirement of no or little prior information gives advantage
over other methods such as the Bayesian Approach. However, the presence of
contextual information will yield more efficient and accurate results.

2.2.2 Bayesian Probabilistic Approaches

Probabilistic methods (probability modelling methods) [12] in which the inverse
and source reconstruction problems are solved from a Bayesian perspective, and
the final solution to this problem takes the form of a probability density func-
tion that encapsulates all the relevant information about the parameters of the
source with an estimation of the uncertainty in the solution. In addition, these
methods provide a logical framework for source determination, and deal well with
uncertainty in the input data and the model.

These methods, based on Bayes’ theorem, consist of determining the solution
to the inverse problem using some incorporated prior knowledge of the parameters
and some limited and noisy observations and data measurements.

Furthermore, this method overcomes the convergence issue to local minima
that exists in most of the optimization methods. If this method is used with an
efficient sampling scheme, it is less sensitive to the starting point and initial guess
of the chain of the algorithm.
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2.2.2.1 Baye’s Theorem

Baye’s theorem is formulated in the following equation:

P (M|D, I)︸ ︷︷ ︸
Posterior

=

prior︷ ︸︸ ︷
P (M|I)

Likelihood︷ ︸︸ ︷
P (D|M, I)

P (D|I)︸ ︷︷ ︸
Evidence

(2.7)

Where M represents the model parameters, D represents the data (measured
or observed) used to improve our estimates of the model, and I represents the
background information related to the data and the model.

The parameters of equation (2.7) are:

• The prior probability P (M|I) represents our state of knowledge about the
model parameters M given the background information I before the arrival
of the collected data D. Usually, no prior information is known and is
required to reflect the ignorance about the proposal they describe (based
on the Maximum Entropy Principle). The prior probability is assumed to
be a uniform distribution for Cartesian variables (quantities that lie from
(−∞,+∞) like position and velocity), and should satisfy scale invariance
for Jeffreys variables (positive quantities defined by their inverse).

• The likelihood function (as function of M) quantifies the discrepancy be-
tween the synthetic and the measured data. In general, for fixed parameters
M, the likelihood represents the probability of having a certain data D given
a selected model.

• The evidence P (D|I) is usually independent of M and plays only the role of
a normalization constant when only a single hypothesis is being considered.
When for example, the number of sources is unknown (existence of many
hypothesis), the evidence is calculated for each model and the higher the
value, the better is the model in predicting the data D. This parameter is
obtained by marginalizing the likelihood over the entire hypothesis space
M and is used to ensure proper normalization of the posterior distribution:

P (D|I) =

∫
allM

P (D|M, I)P (M, I)dM (2.8)

• The posterior PDF P (M|D, I) represents the full solution to the inverse
problem and source reconstruction problem. This PDF encapsulates all
the information related to our model parameters and expresses our state
of knowledge of M. Low values of the posterior PDF indicate that the
numerical value of M is improbable while high probability values indicate
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higher plausibility. In [16], the prior, likelihood and posterior probabilities
are called the three amigos.

To note that the Posterior PDF whose dimension can be very high (very
large dimenion of M) is not analytically tractable and should be sampled
instead of being marginalized for every source parameter. A variety of
sampling methods were developed such as the Markov Chain Monte Carlo
(MCMC).

2.2.2.2 Markov Chain Monte Carlo Sampling

For a very low dimensional parameter space, the marginal distributions of all the
parameters can be obtained by integrating the posterior distribution.

However, in the case of a very high dimensional parameter space, the analyti-
cal solution is not tractable and some stochastic sampling techniques are needed
such as th Markov Chain Monte Carlo (MCMC) algorithm.

MCMC sampling technique is used to draw samples iteratively from some dis-
tributions until convergence to the posterior distribution of the model parameters
which is the target distribution.

MCMC algorithms work in the following manner [2] [9] [14] [17]:

A. Given some initial value for the parameter M(0), some random steps are
done in order to generate some random sample of the parameter M. These
samples will be either accepted or rejected based on some acceptance crite-
ria.

B. The series of samples generated by the MCMC algorithm are a Markov
chain, and the distribution of these samples will tend asymptotically to the
target distribution.

One well-known algorithm is the Metropolis-Hasting (MH) algorithm that
accounts for assymmetric proposal distributions that is used in the acceptance
criteria.

It is of great importance to note that the choice the proposed samples depend
on the selection of a proposal distribution which should be chosen adequately
in order to generate representative samples of the distribution. If its width is
very large, the chain may remain at the same point for a large number of steps.
On the other hand, if the width is small, the convergence may be slow and the
exploration of regions of high probability will be very slow. Furthermore, it is
very important to consider monitoring the evolution of the Markov chain for a
given parameter and for a given proposal distribution. This will automatically
give an idea about its convergence.

Now, after obtaining all the samples for the marginal distribution of a given
parameter, summary statistics can be obtained [18] [19] [20]:
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• The maximum a posteriori estimate of M is the mode of the corresponidng
marginal posterior distribution:

M̂MAX = arg max
M

P (M |D, I) (2.9)

• Posterior mean of each source parameter:

M̄ =

∫
MiP (M |D, I)dM (2.10)

• Posterior standard deviation that measures the uncertainty in the estimate
of Mi :

σ2(Mi) =

∫
(Mi − M̄i)

2P (M |D, I)dM (2.11)

• A p% credible interval or highest posterior density (HPD) that contains the
source parameter Mi with p% probability (the values of the PDF inside the
interval are everywhere larger than outside it).

To note that the Bayesian Inference was applied to the determination of the
origin and decay rate of non-conservative scalar [12] or to a complex urban en-
vironment [21] or a real world application [22], and in the investigation of the
number of sources as a parameter estimation problem [23] or as a model selection
analysis [24].

2.2.2.3 Summary on Bayesian Probabilistic Approaches

Despite all the advantages provided in terms of probabilistic representation of
the solution with a quantification of the uncertainty, the probabilistic Bayesian
approach suffers from some inaccuracies when applied to a real world application
because of the difficulties in modeling the errors (model and measurement errors)
[22]. In addition, a major limitation of the Bayesian Probabilistic approach is the
expensive computational cost in the case of a highly dimensional parameter space
regardless of the improvements because of the time-consuming sampling process,
and the need of the prior information in order to evaluate the posterior distri-
bution. This has led to the inefficiency of the Bayesian Probabilistic approach
compared to the optimization methods in cases of emergency.

Finally, figure 2.1 illustrates the steps required in either the optimization or
Bayesian inference based approaches [14].
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Figure 2.1: Steps required for any inverse problem or source reconstruction
approach.
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Chapter 3

Methodology

The purpose of this chapter is to layout the framework of the problem statement
and the methodology involved in the identification of moving passive tracers in
the Mediterranean Sea using a stochastic velocity field.

3.1 Problem Statement

The section consists of introducing the aim of this research work and a brief
discussion of the main elements of the inference of sources of pollutants in the
Mediterranean Sea.

3.1.1 Stochastic Velocity Field

Given the source location ~xs and observation time t0, the problem is to identify
probable locations of a passive particle carried by a stochastic flow field, repre-
sented in terms of an ensemble of velocity fields, available at every assimilation
step ta,

~ui(~xg, ta), ta = kTa, k ∈ N, i = 1, . . . , Ne (3.1)

where Ta is the assimilation time and is equal to 1 day, ~xg denotes the grid
coordinates, and Ne = 50 is the ensemble size, and i is the realization of the
velocity.

An ensemble of daily flow fields for the month of January 2006 was generated,
resulting in a dataset of 30 sampled time steps that are used in the advection of
passive tracers in the Mediterranean Sea. This will allow building the velocity
map enabling by that the advection of passive tracers in the Mediterranean Sea.

Basically, an initial particle located at ~xtai at t = ta will arrive at N2
e equally

probable destinations, ~xta+∆t
ij at ta + ∆t. Note that N2

e is the product of Ne

equally probable velocities at ta and Ne equally probable velocities at ta + Ta, as
illustrated in figure 3.1. Note that the calculation of the velocity at intermediate
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time steps is accomplished by using linear interpolation between the velocities at
t = ta and t = ta + Ta.

Furthermore, a binning procedure was implemented in order to control the
exponential growth in the number of elements. This procedure enabled the cre-
ation of probability maps that provide a quantitative measure of the probability
of having a particle at a given location and time. This binning methodology
merges all advected particles that fall in the same bin, and are associated with a
particular realization, into a single particle that belongs to the same realization
while conserving the total probability, the mean position, and the variance.

Figure 3.2 illustrates the steps of Lagrangian model developed in [25].

Figure 3.1: Advection of a particle at time ta.

3.1.2 Observations

The observations are described as ~x
(m)
o (to),m = 1, . . . , No, where ~x

(m)
o (to) is the

location of observation m at time to, and No is the number of observations.
These observation locations would be typical satellite images that will be

discussed in details in further sections.

3.1.3 Moving Source

The type of scenario that is addressed in this work is related to the identification
of moving passive tracers along the same path with a release of contaminants and
sources of pollutants at different times. This investigation is referred to by the
Same path - different time case.
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Figure 3.2: Flow chart of the forward advection algorithm.

The path of the ship is selected from the MarineTraffic: Global Ship Tracking
Intelligence website (https://www.marinetraffic.com) where the real-time infor-
mation about ships trajectories around the world can be accessed. In this work,
the zone of interest is the Mediterranean Sea where only oil tankers are consid-
ered.

The selection of a given trajectory is based on the density maps of ships
provided in the website. By varying the opacity of these maps as shown in
figure 3.3, the coordinates of the path (decomposed into 5 stages) are chosen in
approximated locations of high densities starting from the Suez Canal through
Sardegna (Italy), Spain, and the Strait of Gibraltar. Figure 3.4 illustrates the
different stages of the ship path.

Now, Given observations ~x
(m)
o (to),m = 1, . . . , No, a stochastic velocity map

~ui(~xg, ta), ta = kTa, k ∈ N, i = 1, . . . , Ne, and a set of moving sources ~x
(j,k)
s (t), k =

0, . . . , (Nτ − 1), j = 0, . . . , (Ns(k) − 1), the question is the following: What are
the most likely sources and their relative contributions q̂(j,k) that have caused the
observed spill in the Mediterranean Sea?

Note that Nτ is the number of trajectories and Ns(k) is the number of sources
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along a given trajectory k. Note that all the release events in all the carried
experiments will be instantaneous. Now, the pdf of observation ~x

(m)
o (to) due

to a ship ~x
(j,k)
s (t) is defined as f(~x

(m)
o (to)|~x(j,k)

s (t)). This likelihood function is
constructed from the forward simulations following a source oriented approach.

To note that the problem can be also formulated using a one index notation
instead of a double index notation where:

r = kNs(k) + j (3.2)

Throughout the whole report, the double index notation (j, k) is replaced by the
one index notation (r).

Figure 3.3: Density Maps in the Mediterranean Sea.

3.2 Building the likelihood

The likelihood function is determined from the forward simulations for a sin-
gle path. Typical speeds of oil tankers are in the range of 12-15 knots, which
corresponds to 22.22 - 27.78 km/hr.
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Figure 3.4: Path of the ship from Suez Canal until the Strait of Gibraltar.

A. Divide the path of the trajectory, ~xs, into Ns = 1037 segments of approxi-
mate length ∆s ' 4km.

B. For the speed range 22.22 - 27.78 km/hr, the tanker traverses the 4 km in
8.639 - 10.81 minutes. The time is adjusted to be 10 minutes, so that it
is an integer fraction of the assimilation interval. The tanker speed is set
equal to 4 km/10 minutes = 24 km /hr.

C. Therefore, a tanker is used moving at a speed of Vs = 24 km/hr. The tanker
traverses the trajectory segment ∆s = 4 km over a time period ∆TR = 10
minutes.

D. NsNτ release events are simulated where Nτ = 22, one event at a time,
characterized by release locations ~x

(j,k)
s and release times t

(j,k)
R . Where k =

0, 1, 2, . . . , (Nτ − 1) and j = 0, 1, 2, . . . , (Ns(k)− 1).

E. The release locations correspond to the centers of the segments ∆s compo-
rising the trajectory.

F. Each trajectory is denoted by DayShiftk where k = 0, 1, 2, ..., (Nτ − 1).
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(a) Discretization of the first stage of the ship path.

(b) Discretization of the last stage of the ship path.

Figure 3.5: Discretized Ship Path.

G. The release times are t
(j,k)
R = to − k × 1day − j∆TR. Note that to in all the

carried simulations is set to the 29th day.

Figures 3.5b and 3.5a illustrate the part of the discretized path in the last
and first stages of the ship, respectively.

3.2.1 Simulations

In order to reduce the computational cost of the simulations, several strategies
were adopted:

A. Limiting the number of particles using a threshold for the maximum number
of particles Nmax.
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Figure 3.6: Difference between the observation and injection times for the 1037
events and 22 trajectories under study.

B. Increasing the advection time ∆tadv.

C. Restricting the simulation to the surface flow.

The path, illustrated in figure 3.4, is studied:

• The ship goes from Suez Canal to the Strait of Gibraltar with a total
duration of motion around 7 days.

• 1037 simulations are carried out with each simulation corresponding to a
release at a given location and time along the path of the ship.

• The releases are 10 minutes apart corresponding to a travelling distance of
around 4 km.

Some examples of the trajectories, considered in this study, are listed in table
3.1, and figure 3.6 illustrates the difference between the observation and injection
times for the 1037 events and 22 trajectories under study.

• The first mentioned trajectory (Trj. DayShift0) is studied when the ship
reaches the Strait of Gibraltar at the same time of the observation time
(29 days). This means that the simulation times go from 0 (for a release of
the particle occurring at the observation time) to 7 days (for a release of
the particle occurring near the Suez Canal). The total real time duration
of these simulations was equal to 18.22569 days. Figure 3.7 illustrates the
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Table 3.1: Some considered stochastic trajectories

Type to − t(j,0)
R Nmax ∆tadv (hour) Cost (days)

Trj. DayShift0 Stoch. 0 100× 106 1 18.22569
Trj. DayShift7 - Case 1 Stoch. 7 100× 106 1 50.80208
Trj. DayShift7 - Case 2 Stoch. 7 10× 106 1 12.21597
Trj. DayShift7 - Case 3 Stoch. 7 10× 106 3 9.3368

Trj. DayShift13 Stoch. 13 10× 106 3 15.02708
Trj. DayShift21 Stoch. 21 10× 106 3 18.99583

full stochastic probability map obtained from the superposition of the 1037
probability maps.

• The second mentioned trajectory (Trj. DayShift7) (illustrated in figure 3.8)
is studied when the ship reaches the Strait of Gibraltar 7 days prior to the
observation time. In this case, the simulation times go from 7 days (for an
injection near the Strait of Gibraltar) to 14 days (for an injection near the
Suez Canal). In this set, three cases were studied:

A. The first case (Trj. DayShift7 - Case 1) is studied for a maximum
number of particles Nmax equal to 100 × 106 and an advection time
∆tadv equal to 1 hour. These simulations were terminated, and the
total real time duration until the termination process was 50.80208
days.

B. The second case (Trj. DayShift7 - Case 2) is studied for a maximum
number of particles Nmax equal to 10 × 106 and an advection time
∆tadv equal to 1 hour. The simulations were done with a total real
time duration equal to 12.21597 days.

C. The third case (Trj. DayShift7 - Case 3) is studied for a maximum
number of particles Nmax equal to 10 × 106 and an advection time
∆tadv equal to 3 hours. The simulations were done with a total real
time duration equal to 9.3368 days.

Figure 3.9 compares some events with different parameters (advection
time ∆tadv, maximum number of particles Nmax) along Trj. DayShift7.
It can be clearly seen that an advection time ∆tadv = 3hrs and a
maximum number of particles Nmax = 10 × 106 yielded good results
similar to the case where ∆tadv = 1hr and Nmax = 100 × 106. This
option of parameters was used throughout the whole simulations of
the different trajectories and resulted in a good balance between the
accuracy of the probability maps and the computational cost of the
simulations.
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• The third mentioned trajectory (Trj. DayShift13) is studied when the ship
reaches the Strait of Gibraltar 13 days prior to the observation time. In
this case, the simulation times go from 13 days (for an injection near the
Strait of Gibraltar) to 20 days (for an injection near the Suez Canal). These
simulations are done with a total real time duration equal to 15.02708 days.

• The last mentioned trajectory (Trj. DayShift21) is studied when the ship
reaches the Strait of Gibraltar 21 days prior to the observation time. In
this case, the simulation times go from 21 days (for an injection near the
Strait of Gibraltar) to 28 days (for an injection near the Suez Canal). These
simulations are done with a total real time duration equal to 18.99583 days.

Note that all probability maps for the different trajectories were obtained
using a probability cutoff equal to 10−7.

3.2.1.1 Studied Cases for speed improvement of the simulations

In addition, another set of simulations were carried out in one specific event in
(Trj. DayShift21) as listed in table 3.2 in order to investigate further improve-
ments in the speed of the simulations.

Table 3.2: Several Cases for the Probability Map for Event400 of Trj.
DayShift21.

Type Nmax Cost (minutes)
Stoch. Type 1 Stoch. 200000 9
Stoch. Type 2 Stoch. 106 10
Stoch. Type 3 Stoch. 10× 106 24

Determ. Type 1 Determ. 10201 <1
Determ. Type 2 Unopt. Stoch. (x2) + Determ. 125000 1.5
Determ. Type 3 Opt. Stoch. (x2) + Determ. 125000 1.5

The cases for the probability map were studied for Event400 of Trj. DayShift21
in table 3.2:

• The first probability map (Stoch. Type 1) was generated following a stochas-
tic simulation using a maximum number of elements Nmax equal to 200000.
The corresponding simulation time was equal to 9 minutes.

• The second probability map (Stoch. Type 2) was generated following a
stochastic simulation using a maximum number of elements Nmax equal
to 106. The corresponding simulation time was equal to 10 minutes.
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To note that there was no decrease in the amount of time between Stoch.
Type 2 and Stoch. Type 1 because of reaching a certain overhead time
for reading the velocity fields, and any further decrease in the maximum
number of particles Nmax will not affect significantly the simulation time.

• The third probability map (Stoch. Type 3) was generated following a
stochastic simulation using a maximum number of elements Nmax equal
to 10× 106. The corresponding simulation time was equal to 24 minutes.

• The fourth probability map (Determ. Type 1) was generated following a
pure deterministic simulation (without diffusion) using a total number of
elements equal to 10201. The corresponding simulation time was less than
1 minute. This simulation only predicted the high probability region with
no further information about regions of low probabilities.

• The fifth probability map (Determ. Type 2) was generated following a
stochastic simulation over two assimilation intervals followed by a de-
terministic simulation with a total number of elements equal to 125000.
The corresponding simulation time was equal to 1.5 minutes and the prob-
ability map was generated with σx, σy, and σz equal to

√
tpt where tpt is

the particle travel time (artificial diffusion added).

• The sixth probability map (Determ. Type 3) was generated following a
stochastic simulation over two assimilation intervals followed by a de-
terministic simulation with a total number of elements equal to 125000.
The corresponding simulation time was equal to 1.5 minutes and the prob-
ability map was generated in an optimized way with σx, σy, and σz equal to√
D × tpt where D is the diffusion coefficient, and tpt is the particle travel

time. The optimized D coefficient was determined using the Golden Search
algorithm by finding the minimum of the l2-norm between the optimized
deterministic and stochastic probability maps.

For this specific event in Trj. DayShift21, the optimized diffusion coefficient
D was found equal to 1416 and the corresponding optimized probability
map was generated.

Figures 3.10 and 3.11 illustrate the pure stochastic and deterministic proba-
bility maps, respectively. To note that the hybrid case (Determ. Type 3) did not
yield desirable results in terms of minimizing the computational cost of the whole
simulations because of the need to calculate the artificial diffusion coefficient for
each stochastic probability map.

This is why, the only simulations that were carried out are Stoch. Type 3
which provided a good balance and trade-off between accuracy and computational
cost.

23



Figure 3.7: Ship path (white line) and the full stochastic probability map for
Trj. DayShift0 (Nmax = 100× 106, ∆tadv = 1 hr).

Figure 3.8: Ship path (white line) and the full stochastic probability map for
Trj. DayShift7 (Nmax = 106, ∆tadv = 3 hr).
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step 300

�t = 1hr

Nmax = 100million

step 300

�t = 1hr

Nmax = 10million

step 300

�t = 3hr

Nmax = 10million

Figure 3.9: Comparison between the three cases (Trj. DayShift7) for Event300.
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(a) Stoch. Type 1 with Nmax = 200000.

(b) Stoch. Type 2 with Nmax = 106.

(c) Stoch. Type 3 with Nmax = 10× 106.

Figure 3.10: Pure Stochastic Probability maps of Trj. DayShift21 for Event400.
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(a) Determ. Type 1 with N = 10201.

(b) Determ. Type 2 (Unoptimized deterministic) with N = 125000.

(c) Determ. Type 3 (Optimized deterministic) with N = 125000.

Figure 3.11: Deterministic Probability maps of Trj. DayShift21 for Event400.

27



3.3 Observation Patches

An observation patch is a typical satellite image which represents the spatial
distribution of a physical quantity, and will indicate whether a pollutant is present
or not in the Mediterranean Sea. Therefore, there exists a great challenge in the
mapping between an observation patch (or a satellite image) and the spacial
distribution of the probability obtained using the forward Lagrangian model.

Now, an observation patch is in the form of a binary representation, where
Y = 1 indicates the presence of a pollutant, whereas Y = 0 is related to the
absence of a pollutant in a satellite image. This observation patch can be regarded
as a probability map with a probability equal to 1 when there exists a pollutant,
and a probability equal to 0 when there is no pollutant.

Instead of placing randomly Y = 1 observations (presence of pollutants)
within our probabilistic model, the observation patch can be synthesized or de-
termined from the probability map generated from the deterministic advection
of pollutants using three realizations of the velocity field at every grid point in
the Mediterranean Sea. Note that an artificial diffusion is added in the post
processing of the probability map. The locations of the presence of pollutants
(or Y = 1) are selected within the generated observation patch, while for the ab-
scense of pollutants (or Y = 0), they are within a box of specific size surrounding
the generated patch.

The generation of such kind of observation patches is achieved in two different
ways that will be discussed sequentially.

3.3.1 Deterministic simulation using the mean (MEAN)
of the stochastic velocity field

In order to construct the observation patch, deterministic simulations of a set of
events are carried out with an incorporation of an artificial diffusion in order to
generate the observation patch. Note that the deterministic simulations are done
using the mean of the velocity field at every grid point of the Mediterranean
Sea. Mimicing again the presence of a satellite image, the Y = 1 and Y = 0
observations are selected as discussed previously.

3.3.2 Synthetic Observation patches

In this case, the observation is synthesized using the stochastic probability maps
obtained using the forward Lagrangian model.

Therefore, an observation patch can be a synthesized patch or a deterministic
probability map which will mimic the availability of a satellite image, where the
Y = 1 observations are selected over all the grid cells within the generated patch
and the Y = 0 observations are selected in its outer region and within a pre-
defined box. The box and the number of Y = 0 observations are defined by the
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extension of the box from the synthetic or generated patch, and is denoted by
”BoxExtension”. Note that BoxExtension0 does not extend from the observation
patch, and is associated with the lowest number of Y = 0 observations, and used
in all the carried inference problems unless otherwise mentioned.

3.3.3 Scaling Coefficient Calculation

A mapping between the satellite image and the stochastic probability map is
achieved using a scaling coefficient that will converts the likelihood function into
a value between 0 and 1.

In the case of Ns sources contributing with different weights to the observation
patch in a given trajectory, the scaling coefficient is calculated as such:[∫

D
q̂(r1)f(~xg|~x(r1)

s )dA+

∫
D
q̂(r2)f(~xg|~x(r2)

s )dA+ . . .+

∫
D
q̂(rNs )f(~xg|~x(rNs )

s )dA

]
=

Ng∑
i=1

[
f(~xg|~x(r1)

s )∆xi∆yi + f(~xg|~x(r2)
s )∆xi∆yi + . . .+ f(~xg|~x(rNs )

s )∆xi∆yi
]

=

Np∑
p=1

C∆xp∆yp

(3.3)

Where f(~xg|~x(r)
s ) is the likelihood probability (not normalized) at grid points

~xg due to ship of index r at location ~x
(r)
s . Ng is the number of grid points, ∆x

and ∆y are the size of a grid cell in the x and y direction, respectively.
In the case of one single event, the scaling coefficient calculation reduces to:

∫
D
f(~xg|~x(r)

s )dA =

Ng∑
i=1

f(~xg|~x(r)
s )∆xi∆yi

=

Np∑
p=1

C∆xp∆yp

(3.4)

3.4 Cost Function

When multiple events with different weights are contributing to an observation
patch, the cost function is formulated using the Logistic Regression approach.

Logistic Regression is a classification algorithm that is widely used in ma-
chine learning applications. Unlike the linear regression cost function that aims
at minimizing in general the square difference between modelled and measured
data, the logistic regression one avoids ending up with non-convex function where
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the detection of the global minimum, and subsequently the true identity of the in-
ferred sources, becomes quite impossible when dealing with a binary classification
problem.

The scaling coefficient discussed previously serves as a tool to map the predic-
tions (likelihood function f which is not normalized) into probabilities in a similar
fashion to the sigmoid function that is used in machine learning problems.

Since the problem of interest involves classified observations (Y = 1 and
Y = 0 observations), the logistic regression cost function is used in this case, and
is found to yield better results, when dealing with multiple sources, compared to
the linear regression one. This cost function is given by:

J(r) =

Np∑
p=1

[
−Y (~x(p)

o (to)) log

(
rNs∑
r=r1

q̂(r)f(~x
(p)
o (to)|~x(r)

s (t))

C

)]

+
Nn∑
n=1

[
−
[
1− Y (~x(n)

o (to))
]

log

(
1−

rNs∑
r=r1

q̂(r)f(~x
(n)
o (to)|~x(r)

s (t))

C

)] (3.5)

Where No is the number of observations, Y is the observation (0 or 1), Np

is the number of Y = 1 observations, Nn is the number of Y = 0 observations,
q̂(r) is the relative strength of the contributing source j along trajectory k and
f(~x

(m)
o (to)|~x(r)

s (t)) is the likelihood function.
Figure 3.12 illustrates the process of the calculation of the distance between

the observation and stochastic maps in order to yield the minimum cost function
associated with the probable sources contributing to an observation patch. A
satellite image (a) will be converted into a binary representation (Y = 0 and
Y = 1) (b) and will be compared to a likelihood map (c) obtained using the
forward Lagrangian model. Note that this likelihood map is scaled with a scaling
factor and converted into probability map in the same space as the observation
patch. The distance between these two images is calculated (d) through the cost
function in equation (3.5) that operates in the same space of the observation
patch, and the aim is to find the minimum value that will be associated with the
most probable sources contributing to an observed patch.

3.5 Sampling Algorithm

In order to infer for the probable sources contributing to the observation patches,
as well as their relative contributions, a sampling algorithm is adopted.

This algorithm consists of sampling the model parameters in a similar way to
the Metropolis Hastings algorithm, with the use of the logistic cost function in the
acceptance criterion instead of the posterior probability. The general idea of this
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Figure 3.12: Flow Chart of the minimization of the calculation of the distance
between a satellite image (a) and a probability map (c).

sampling approach is to adapt the value of the hyperparameter λ and the value
of the standard deviation of the sources σr in order to yield converged chains that
are well-mixed. Note that the standard deviation of the relative weights σq̂ is not
adapted during sampling since the correponding chains are already well-mixed
for any values of λ and σr.

The algorithm consists of the following essential steps that can be carried out
over multiple chains Nchains:

A. Initialization:

• The initial vector of model parameters M(0) is randomly initialized.
The indices of the sources r

(0)
1 through r

(0)
Ns

are randomly sampled from
a uniform distribution between 0 and 1036 (since 1037 release scenarios
occur along the path of the ship). For the relative weights of the

sources q̂
(0)
1 through q̂

(0)
Ns

, they are sampled from a uniform distribution
between 0 and 1. Note that the sum of the relative weights should be
equal to 1. In addition, the user specifies the number of samples Ms

required to have a good representation of the model parameters.
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• The initial guesses of the standard deviations (σ
(0)
r and σ

(0)
q̂ ) of the

proposal density functions are also set by the user.

• The initial guess of the hyperparameter λ(0), as well as its adaptation
factors (uλ and lλ) are also specified by the user.

B. Adaptation of the hyperparameter λ:

• A sampling subroutine (sample) is called. This function takes as an
input the initial guess of the model parameters M(0), as well as the
adaptation parameters σ

(0)
r , σ

(0)
q̂ , and λ(0). This function also takes as

an input the number of samples Ms required to obtain a good represen-
tation of the probability density function of every source parameter.
The output of the sampling function is the acceptance rate AR0 and
the chain of the accepted samples M(Ms).

• The algorithm will converge when the acceptance rate is between 30%
and 50%. If the AR is less than 30%, the hyperparameter λ(0) is
increased by a factor lλ to enhance the acceptance of samples. On
the other hand, if the AR is greater than 50%, the hyperparameter is
decreased by another factor uλ. This way of updating λ will ensure
that the AR is in the optimum range.

C. Sampling subroutine:

• The chain of samples M(Ms) is obtained in this case by using a component-
wise sampling algorithm instead of sampling the whole vector of pa-
rameters. This will enhance the mixing and convergence of the chains
especially for a high dimensional parameter space.

• For every source parameter, the proposed sample is an increment of
the current value. If the index of the source r is sampled, the pro-
posed index is sampled from a normal distribution having as a mean
the current value of the index and as a standard deviation σr. If the
relative weight of the source q̂ is sampled, the proposed index is sam-
pled from a normal distribution having as a mean the current value
of the index and as a standard deviation σq̂. Note that vector of rel-
ative weights should be always normalized. Note that in the case the
proposed model parameters are outside their ranges, we can resample
again until the model parameters are in their ranges or we can adapt
a refelction strategy that reflects the model parameter to its mirrored
value within the range of the model parameters.

• When a model parameter is proposed, the cost function of the new
vector of model parameters is compared to the one associated with
the current model parameters. The aim is to find the minimum cost
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function that will be automatically related to the optimal source pa-
rameters. If the acceptance criteria is satisfied, the vector of model
parameters in the chain is updated. Otherwise, the model parameters
are not modified. This process continues until we sample Ms samples.

• The adaptation of the standard deviation of the indices of the sources
σr is adapted every Mu samples are drawn. This update of σr will
enhance the mixing of the chains of the samples. This adaptation is
achieved by calculating the autocovariance at lag 0 (s

(d)
0 ) for every

source parameter over these Mu samples which represents the auto-
correlation between the values themselves. If the chain of the samples
is locked over the Mu samples (or the algorithm is not accepting new

model parameters), s
(d)
0 is equal to zero. In this case, σr is decreased

by a factor aσ specifed by the user. If this is not the case, σr is not
updated. The adapation step is achieved every Mu steps until Ms sam-
ples are obtained. Note that this modified σr is used in the normal
distribution for proposing the indices of the sources.

• The acceptance rate AR for this sampling process is calculated, and
it is required to be between 30% and 50% to reach convergence.

D. Summary Statistics:

• The distribution of the samples obtained from multiple chains should
tend asymptotically to the true distribution of the model parameters
and the chain convergence and mixing will be visualized.

• Correlation maps are also generated when the number of sources is
greater than 1. These maps will illustrate the correlation between the
different model parameters, and the regions of high occurrences and
probability.

• Posterior probability density functions (or marginal) are also generated
representing the uncertainty in the inferred model parameters and how
close are the true source parameters (obtained using the global opti-
mization algorithm) to the maximum occurred ones obtained using the
sampling algorithm.

The previously discussed steps for the inference of the source indices r and
their relative contributions to the observation patches q̂(r) are illustrated in the
following algorithm:
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Run Nchains (c = 1, · · · , Nchains)

Initialize M(0)(c) =
[
r

(0)
1 , r

(0)
2 , · · · , r(0)

Ns
, q̂

(0)
1 , q̂

(0)
2 , · · · , q̂(0)

Ns

]
(c) and Ms

Set (σ
(0)
r (c), σ

(0)
q̂ (c))

Set λ(0)(c), uλ(< 1), and lλ(> 1)

repeat until stop
if AR0 < 0.3 or AR0 > 0.5 then

call sample(M(0)(c), Ms, σ
(0)
r (c), σ

(0)
q̂ (c) , λ(0)(c), AR0, M(Ms)(c))

if (AR0 < 0.3): λ(0)(c) = lλλ
(0)(c)

if (AR0 > 0.5): λ(0)(c) = uλλ
(0)(c)

end if
end repeat until stop
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This is the component by component sample subroutine:

Subroutine sample(M(in), Ms, σr, σq̂, λ, AR, M(out))
M(out) = M(in)

k = 0
Set aσ (aσ < 1 ) and Mu

do i=1 to Ms

do d = 1 to 2Ns

M∗ = M(out)

If 1 ≤ d ≤ Ns: Sample M∗(d) ∼ N (M(out)(d), σr)
If Ns < d ≤ 2Ns: Sample M∗(d) ∼ N (M(out)(d), σq̂)
Sample again or Reflect when out of range
Normalize M∗(q̂)

Calculate J(M∗) and J(M(out))

Sample α ∼ U(0, 1)

If e−
J(M

∗)
λ

e−
J(M

(out))

λ

> α

M(out) = M∗.
k = k + 1

end if
end do d
If ∼ mod(i,Mu):

Calculate s
(d)
0 (autocovariance at lag 0) for d = 1, · · · , Ns

If any s
(d)
0 is zero: σr = aσσr

end if
end do i
AR = k

2NsMs
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3.6 Optimization Algorithm

Formulating this inference exercise using an optimization approach reduces our
problem of interest into minimizing equation (3.5) to determine the optimum
model parameters with their associated weights. Note that this deterministic
algorithm is used for the validation of the results obtained with the sampling
algorithm.

This optimization problem is non-convex, and a global optimization algorithm
is crucial in this case. This is why, the “Global Search” algorithm implemented
in MATLAB is used. It is a scatter-search based global optimization solver.

The aim of this algorithm is to locate the solution with the lowest cost function
value. This algorithm starts by generating a set of trial points using a Scatter
Search Method, and these points are then filtered based on the values of the cost
functions and the constraint filters. It starts by finding solutions from each of the
filtered points in order to obtain a global solution vector of the several variables
under study.

In order to decrease the computational cost of the inference problem, an-
other similar global optimization algorithm called ”Multi-Start” is used. This
algorithm enables parallel processing of the algorithm and allows reaching faster
the solution of the inference problem. Another optional step that will reduce
the computational cost of this algorithm relies in the initial determination of the
range of probable sources of contaminants through the identifaction of the events
contributing positively to the observation locations, and the optimization algo-
rithm will try to find the most probable combination of pollution sources out of
this reduced range.

It is of great importance to note that the deterministic optimization approach
and the sampling approach, inspired from Baye’s Theorem, are direcly linked.
Assuming that our prior likelihood on the model parameters is uniform, the
Maximum A Posteriori (MAP) and the Maximum Likelihood Estimation are the
same. This means that the Bayesian Probabilistic approaches are directly linked
to an optimization procedure. Therefore, the results obtained using the global
optimization algorithm and the sampling algorithm inspired from the Bayesian
approach will be compared in the results section.
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Chapter 4

Results and Discussion

The purpose of this chapter is to illustrate the results obtained using the sampling
algorithm in the source reconstruction problem in the Mediterranean Sea in the
presence of a stochastic velocity field.

4.1 Forward Problem

Trajectory DayShift17 is used in the inference problem. This trajectory corre-
sponds to a ship moving for 7 days in the Mediterranea sea and reaches the Strait
of Gibraltar 17 days prior to the observation time (Day 29).

The 1037 release events in this trajectory were simulated using a maximum
number of particles equal to 10×106 and an advection time equal to 3 hours. Note
that this combination of parameters yielded a good balance and tradeoff between
the computational cost of the simulations and the accuracy of the representation
of the probability maps.

Figure 4.1 illustrates the generated probability map obtained from the super-
position of the individual probability maps of the 1037 events, as well as some
indiviual probability maps in trajectory DayShift17 with discretized ship path in
white.

4.1.1 Impact of Adaption of λ and σr on the inference
problem

The implementation of an adaptation of λ and σr in the inference algorithm
is to ensure that the chains converge to the true sources and relative weights
while investigating the regions of high probability and being well-mixed. Figure
4.2 illusrates the behavior of the cost function for multiple input parameters for
the algorithm, and these parameters involve the values of λ and whether the
adaptation of σr is set in the sampling process. Note that these investigations in
the inference algorithm were carried out for a double source inference problem.
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(a) Composite Map of Trj. DayShift17 obtained from the superposition of the 1037
events.

(b) Some selected individual probability maps in Trj. DayShift17 along the ship path.

Figure 4.1: Probability Maps in Trj. DayShift17 along the ship path (white
line).
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(a) Cost function variation with λ = 500
with no adaptation of σr.

(b) Cost function variation with λ = 1
with no adaptation of σr.

(c) Cost function variation with converged
optimum λ with adaptation of σr.

(d) Cost function variation with converged
optimum λ with adaptation of σr.

Figure 4.2: Effect of the adaptation parameters on the cost function variation
(minimum cost function shown in red dashed line).

It can be seen from figure 4.2a that the cost function of the accepted samples
in the chain of the algorithm would undergo abrupt changes and deviate towards
high values when the hyperparameter λ is large. With the absence of effect of
λ (equal to unity) (figure 4.2b), the cost function of the samples fluctuates near
the minimum value with no significant changes, and the highest encountered
difference in cost functions in the samples is around 8. This implies the need for
an optimum value of the hyperparameter λ that will allow relatively significant
changes in the cost function of the accepted samples, as illustrated in figure 4.2c,
without causing the algorithm to deviate towards regions of low probability (when
λ and the cost function are high).

Figure 4.2d illusrates that the implementation of the adaptation of σr de-
creases the jumps in the cost function compared to the case where the adapation
of the standard deviation of the sources is not set. However, the fluctuations near
the minimum cost function are higher than the case when λ = 1, and this will
enhance the chain mixing as will be illustrated in the following sections.
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4.2 Inference Problem

In this section, the inference of source parameters, given a set of observations in
the Mediterranean Sea, is applied for single and multiple sources. The identity
of the sources and their corresponding weights are determined, and compared to
the true values obtained using the global optimization algorithm.

Note that all observation patches consist of Y = 1 and Y = 0 observations
(presence or absence of pollutants, respectively). The Y = 1 and Y = 0 are
represented by white and magenta points, respectively.

4.2.1 Inference of a Single Source

The sampling algorithm was applied to the single source reconstruction problem,
where the observation patch was generated by solving an advection-diffusion prob-
lem using the MEAN realization of the velocity field at every grid point in the
Mediterranean Sea. The events, used to generate this typical satellite image, are
349 to 353, and the global optimization algorithm was used to predict the true
identity of the index of the source.

Table 4.1 illustrates the studied case, and the associated figure for the obser-
vation patch and the inferred results, and table 4.2 illustrates the parameters of
the sampling algorithm that are specified by the user.

Table 4.1: Single Source Inference problem in Trj. DayShift17.

Events Observation Patch Figures
Case 1 349 to 353 Determ.+ Diff. + MEAN 4.3 and 4.4

Table 4.2: Sampling Algorithm parameters of the Single Source Inference
problem in Trj. DayShift17.

nChains uλ lλ Ms Mu aσ burn-In
Case 1 5 0.1 2 10000 10 0.7 1000

Figures 4.3a illustrates the generated observation patch of the MEAN real-
ization.

It can be seen from the brute force calculations of the cost function for the
different indices of the sources while varying the box Extension (or the number of
Y = 0 observations), that the increase in the Y = 0 observations does not affect
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significantly the index of the source associated with the lowest value of the cost
function. This is illustrated in figure 4.3b.

In addition, it can be seen from figure 4.4a that the chain obtained from the
sampling algorithm converged to the true identity of the event obtained using
the global optimization algorithm (represented in a red dashed line). With the
implementation of the adaptation of the hyperparameter λ and the standard
deviation of the index of the contributing source σr, the chain is also well-mixed.
Note that a MEAN realization, which is a good representation of the stochastic
velocity field, yielded event 349 that is associated with the lowest cost function.
Note that this event is also a member of the subset of events used to generate
the observation patch.

Finally, figure 4.4b illustrates the posterior probability function and the un-
certainty in the solution when using the MEAN realization. It is clear that the
maximum occurred event in the chain is the true identity of the source obtained
using the global optimization algorithm.

4.2.2 Inference of Multiple Sources

In this case, the sampling algorithm was applied to the inference of multiple
sources contributing to a given observation patch in the Mediterranean Sea. The
indices of the sources as well as their relative weights are inferred. Note that
the relative weights represent the relative contributions of the sources to the
observation patch under study. Note that in all cases, the algorithm was able to
predict the sources and their relative contributions to the observation patches.

Table 4.3 illustrates the studied cases with the identity of the events used to
generate the observation patches, as well as the numbers of the figures of the
satellite images and the inferred sources and their weights. In addition, table 4.4
illustrates the parameters of the sampling algorithm of the studied cases in the
multiple sources inference problems that are specified by the user.

Cases 2 and 3 are associated with a double source inference problem, where
the observation patch is common to two events. In this case, the typical satellite
image is synthesized using the stochastic probability maps. In any case, the
Y = 1 observations are common to the two intersecting maps and the Y = 0
observations are within a box of Extension0. The generated observation patches
of these 2 cases are illustrated in figures 4.5 and 4.9.

In these cases, which are associated with a number of sources Ns equal to 2,
the chains of the sampling algorithm converged to the true sources and weights
obtained using the global optimization algorithm, and the chains are also well-
mixed. This well-mixing of the chains is illustrated in figure 4.6 of Case 2 or 4.10
of Case 3, where the adaptation of σr clearly enhances the mixing.

In addition, figures 4.7 and 4.11 illustrate the correlation maps between the
different combinations of inferred sources or weights in Cases 2 and 3. Clearly, the
true combinations of the sources and weights are in regions of high occurrences
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of the inferred results of the chains obtained using the sampling algorithm. This
is also validated in the marginal posterior probabilities of each model parameter
for these two source inference cases as illustrated in figures 4.8 and 4.12.

Now, in Case 4, which is associated with the inference of 4 sources contributing
to 4 separate patches in the Mediterranean Sea, the sampling algorithm detected
the sources and their relative weights while also quantifying the uncertainty in
the inferred solution. The generated observation patches are shown in figure
4.13 which were generated by solving an advection diffusion problem with the
MEAN realization of the velocity field. Figure 4.14 illustrates the converged and
well-mixed chains of each model parameter in this 4 sources inference problem.
Furthermore, figure 4.15 illustrates the correlation maps of the different possible
combinations of source indices or relative weights obtained using the proposed
sampling algorithm where clearly the algorithm predicts robustly the identity
of the model parameters contributing to the observation patches. This is also
validated in figures 4.16 and 4.17 that illustrate the marginal posterior probability
of each source index and its relative weight.

Table 4.3: Multiple Source Inference problems in Trj. DayShift17.

Events Observation Patch Figures
Case 2 549 - 599 Synthetic (stoch. maps) 4.5, 4.6, 4.7, and 4.8
Case 3 300 - 400 Synthetic (stoch. maps) 4.9, 4.10, 4.11, and 4.12

Case 4

200 to 203
349 to 353
668 to 671
799 to 802

Determ.+ Diff. + MEAN 4.13, 4.14, 4.15, 4.16, and 4.17

Table 4.4: Sampling Algorithm parameters of the Multiple Source Inference
problems in Trj. DayShift17.

nChains uλ lλ Ms Mu aσ burn-In
Case 2 5 0.5 2 10000 50 0.7 1000
Case 3 5 0.5 2 10000 100 0.7 1000
Case 4 5 0.5 2 10000 50 0.3 1000
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(a) Observation patch due to Events 349 to 353 using the MEAN realization of the
velocity field.

(b) Cost function variation for a subset of events for different box extensions.

Figure 4.3: Investigation of the effect of the size of the box on the cost function
in Case 1.
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(a) Inferred Events in a given chain in Case 1.

(b) Posterior Probability of the Source Index.

Figure 4.4: Summary of Results in Case 1.

44



Figure 4.5: Synthetic Observation Patch of Case 2 obtained from the
probability maps of Events 549 and 599.
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(a) Inferred events and weights in a chain in Case 2 with no adaptivity of σr.

(b) Inferred events and weights in a chain in Case 2 with adaptivity of σr.

Figure 4.6: Results in Case 2.

46



Figure 4.7: Correlation Maps in Case 2.
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(a) Marginal Posterior Probabilities of Source 1.

(b) Marginal Posterior Probabilities of Source 2.

Figure 4.8: Marginal Posterior Probabilities in Case 2.
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Figure 4.9: Synthetic Observation Patch of Case 3 obtained from the
probability maps of Events 300 and 400.
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(a) Inferred events and weights in a chain in Case 3 with no adaptivity of σr.

(b) Inferred events and weights in a chain in Case 3 with adaptivity of σr.

Figure 4.10: Results in Case 3.
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Figure 4.11: Correlation Maps in Case 3.
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(a) Marginal Posterior Probabilities of Source 1.

(b) Marginal Posterior Probabilities of Source 2.

Figure 4.12: Marginal Posterior Probabilities in Case 3.
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(a) Patch generated using Events 200-203. (b) Patch generated using Events 349-353.

(c) Patch generated using Events 668-671. (d) Patch generated using Events 799-802.

Figure 4.13: 4 Separate Patches in Trj. DayShift17 generated using the MEAN
of the velocity field.
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(a) Inferred events and weights for sources 1 and 2 in a chain.

(b) Inferred events and weights for sources 3 and 4 in a chain.

Figure 4.14: Inferred Results in Case 4 with adaptivity of σr.
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(a) Correlation Maps of the events.

(b) Correlation Maps of the weights.

Figure 4.15: Correlation Maps in Case 4.
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(a) Marginal Posterior Probabilities of Source 1.

(b) Marginal Posterior Probabilities of Source 2.

Figure 4.16: Marginal Posterior Probabilities of sources 1 and 2 in Case 4.
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(a) Marginal Posterior Probabilities of Source 3.

(b) Marginal Posterior Probabilities of Source 4.

Figure 4.17: Marginal Posterior Probabilities of sources 3 and 4 in Case 4.

57



Chapter 5

Conclusion and Future Work

To sum up, this thesis report included a detailed discussion of the methodology
implemented in the stochastic transport of moving passive tracers in the Mediter-
ranean Sea in the presence of a stochastic velocity field. This consisted of the
selection of a suitable ship path along which pollutants are released instanta-
neously at different times and advected using a stochastic velocity field, as well
as the generation of the corresponding probability maps.

The work was also extended to the development and implementation of a
sampling algorithm that allows the inference of single and multiple sources on a
given trajectory while quantifying the uncertainty in the solution for both the
identity of source and its relative contribution to a given observation patch. In
addition, a deterministic optimization algorithm was also implemented in order
to validate the results obtained from the chains of the sampling algorithm.

Note that the observation patches were either synthesized or generated using a
deterministic advection-diffusion model with the mean of the velocity field. Each
observation patch is a typical satellite image, represented in a binary form, and
indicates whether a pollutant is present or not.

Finally, future work will consist of the extension of the inference algorithm
to multiple sources in multiple trajectories, as well as, the incorporation of the
modelled and measured concentration data in both optimization and sampling
approaches.
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Appendix A

Abbreviations

D Data measurements and observations
M Model Parameters
A Mapping operator
M Hilbert Space of the parameters
D Hilbert Space of the data
A−1 Inverse Mapping Operator

M̂ Optimum Solution of the model parameters
J Objective function
β Regularized parameter
Φ(M) Regularization functional
F Fitness function
I Background information
P (M|I) Prior probability
P (D|M, I) Likelihood probability
P (D|I) Evidence
P (M|D, I) Posterior probability
Nchains Number of Chains of the MCMC algorithm

M̂MAX Maximum a posteriori estimate of M
M̄ Posterior mean of M
σ2(Mi) Posterior standard deviation of M
p% Credible Interval of M
U Velocity field
~xs Source Location
ta Assimilation step
Ta Assimilation time
~xg Grid coordinates
Ne Ensemble size
~ui Realization i of the velocity
~xo Observation location
to Observation time
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m Observation index
No Number of observations
j Index of the source
k Index of the trajectory
tR Release time

~x
(s)
R Release Location s
Ns Number of sources along a given trajectory
Nτ Number of trajectories

f(~x
(m)
o (to)|~x(j,k)

s (t)) Pdf of observation ~x
(m)
o (to) due to a ship ~x

(j,k)
s (t)

Y Actual observation (0 or 1)
r Compact variable combining the indices of the sources and trajectories
∆s Approximate length of a segment along the ship path
∆TR Ship motion duration over ∆s
Vs Tanker speed
DayShiftk kth trajectory
Nmax Maximum number of particles
∆tadv Advection time
C Scaling coefficient
∆xp and ∆yp x and y observation cell sizes
Np Number of Y = 1 observations
Nn Number of Y = 0 observations
Ng Number of grid points
σx x-standard deviation of the generated Gaussian probability
σy y-standard deviation of the generated Gaussian probability
σz z-standard deviation of the generated Gaussian probability
tpt Particle travel time
D Artificial diffusion coefficient
nx Number of x-grid points
ny Number of y-grid points
nz Number of z-grid points
PS Stochastic probability
PD Deterministic Probability
q̂(r) Relative weight of source r
σr Standard deviation of the source index r
σq̂ Standard deviation of the source relative weight q̂
λ Hyperparameter
fλ Adaptive factor of the Hyper-parameter λ
AR Acceptance rate of the MCMC chain
Ms Number of samples in the MCMC chain
aσ Adaptive factor of σr
Mu Number of samples for adapting σr
s0 autocovariance at lag 0

60



Bibliography

[1] L. Zeng, J. Gao, B. Du, R. Zhang, and X. Zhang, “Probability-based inverse
characterization of the instantaneous pollutant source within a ventilation
system,” Building and Environment, vol. 143, pp. 378–389, 2018.

[2] L. Jing, R. Chen, X. Bai, F. Meng, Z. Yao, Y. Teng, and H. Chen, “Uti-
lization of a bayesian probabilistic inferential framework for contamination
source identification in river environment,” in MATEC Web of Conferences,
vol. 246, p. 02035, EDP Sciences, 2018.

[3] X. Zhou, V. Amaral, and J. D. Albertson, “Source characterization of air-
borne emissions using a sensor network: Examining the impact of sensor
quality, quantity, and wind climatology,” in 2017 IEEE International Con-
ference on Big Data (Big Data), pp. 4621–4629, IEEE, 2017.

[4] A. Stohl, A. Prata, S. Eckhardt, L. Clarisse, A. Durant, S. Henne, N. I.
Kristiansen, A. Minikin, U. Schumann, P. Seibert, et al., “Determination of
time-and height-resolved volcanic ash emissions and their use for quantitative
ash dispersion modeling: the 2010 eyjafjallajökull eruption,” Atmospheric
Chemistry and Physics, vol. 11, no. 9, pp. 4333–4351, 2011.

[5] R. Humphries, C. Jenkins, R. Leuning, S. Zegelin, D. Griffith, C. Caldow,
H. Berko, and A. Feitz, “Atmospheric tomography: a bayesian inversion
technique for determining the rate and location of fugitive emissions,” En-
vironmental science & technology, vol. 46, no. 3, pp. 1739–1746, 2012.

[6] I. V. Kovalets, G. C. Efthimiou, S. Andronopoulos, A. G. Venetsanos, C. D.
Argyropoulos, and K. E. Kakosimos, “Inverse identification of unknown
finite-duration air pollutant release from a point source in urban environ-
ment,” Atmospheric Environment, vol. 181, pp. 82–96, 2018.

[7] C. Jenkins, T. Kuske, and S. Zegelin, “Simple and effective atmospheric mon-
itoring for co2 leakage,” International Journal of Greenhouse Gas Control,
vol. 46, pp. 158–174, 2016.

61



[8] G. Turbelin, S. Singh, P. Ngae, and P. Kumar, “An optimization-based
approach for source term estimations of atmospheric releases,” Earth and
Space Science, vol. 5, no. 12, pp. 950–963, 2018.

[9] J. Wang, R. Zhang, Y. Yan, X. Dong, and J. M. Li, “Locating hazardous
gas leaks in the atmosphere via modified genetic, mcmc and particle swarm
optimization algorithms,” Atmospheric environment, vol. 157, pp. 27–37,
2017.

[10] O. Paladino, A. Moranda, and M. Seyedsalehi, “A method for identifying
pollution sources of heavy metals and pah for a risk-based management of a
mediterranean harbour,” Scientifica, vol. 2017, 2017.

[11] T. Borah and R. K. Bhattacharjya, “Development of an improved pollu-
tion source identification model using numerical and ann based simulation-
optimization model,” Water resources management, vol. 30, no. 14,
pp. 5163–5176, 2016.

[12] A. Keats, E. Yee, and F.-S. Lien, “Efficiently characterizing the origin and
decay rate of a nonconservative scalar using probability theory,” ecological
modelling, vol. 205, no. 3-4, pp. 437–452, 2007.
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