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Title: Machine Learning Based Models Coupled with Data Assimilation Techniques for 

Pavement Rutting Prediction 

 

 

 

 

Rutting is one of the critical distresses affecting the safety and serviceability of 

flexible pavements. Modeling the progression of rutting remains a challenge due to its 

numerous interacting factors. There exist many empirical and probabilistic models for 

predicting rutting propagation in the literature. However, these models are limited by 

their ability to accurately simulate local conditions, their high input requirements, and 

their local calibration requirements. Provided the significance of predicting rutting to 

ensure timely and strategic maintenance interventions, this study aims at developing a 

framework that achieves accurate rut depth predictions and quantifies the relative 

contribution of the different factors. This framework is characterized by low input 

requirements that can accommodate data scarcity and resource limitations in local road 

agencies, mainly in developing countries, that are initiating their pavement management 

systems.  

For the scope of this research, historical rutting time-series, climate, traffic, and 

pavement design and materials data are acquired from the Long-Term Pavement 

Performance database (LTPP) and employed in training a Deep Neural Network 

(DNN). Ultimately, a model requiring twenty-nine inputs was determined. The findings 

show that the developed DNN model has significantly superior performance as 

compared to a multiple-linear regression model developed using the same dataset, the 

mechanistic-empirical rutting prediction model provided in Pavement-ME, and the 

world bank’s HDM-4 models. The model estimations were further used to capture and 

rank the relative importance of the different variables, which confirmed the high 

influence of traffic and climatic conditions. Generic family performance curves that 

correspond to certain traffic, climate, and mix design combinations are developed to 

further simplify the problem and assist road agencies that cannot acquire the data 

required for utilizing the DNN. Family curves introduce additional inaccuracies due to 

the mathematical simplifications; therefore, an Ensemble Kalman Filter (EnKF) 

framework is proposed to probabilistically calibrate the family models as new 

measurements become available.   
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CHAPTER 1  

INTRODUCTION 

 

 Background 

Transportation infrastructure is critical for the economic prosperity of all 

nations  [1]. Thousands of kilometers of paved roads are traveled daily to transport 

people and goods, where a total of 3.2 trillion miles were traveled on the United States 

(U.S.) roads in 2016 [2], [3]. Currently, more than 32% of the U.S.’s pavements are in 

poor or mediocre conditions costing users more than $120 billion for vehicle repair and 

extra operating costs [3]. The Federal Highway Administration (FHWA) estimates that 

a total of $170 billion in capital investment is required to maintain and improve all U.S. 

highways to adequate performance levels [4]. With continuous budgetary constraints 

and downsizing, highway maintenance and preservation is foregone for achieving short-

term savings where only 60% of the annual funding requirements are being invested for 

these purposes [1], [5]. As a consequence, pavement management systems (PMS) have 

been on the rise as governments and departments of transportation (DOTs) realize the 

need for strategic, efficient, and cost-effective pavement maintenance and rehabilitation 

practices. Such practices will optimally preserve the national highway networks while 

minimizing the negative impacts on motorists and the overall economy [6], [7].  

Traditionally, highway agencies relied on present pavement conditions and 

certain priority schemes in deciding their immediate maintenance needs [7]. However, 

with the increased maintenance costs, decreased availability of funds, shortages in 

energy and materials, and growth of awareness in management methods, agencies are 
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becoming more interested in developing strategic and systematic decision support 

systems that are capable of managing, planning and allocating budgets based on 

advanced economical and engineering concepts [6], [7].  

In order to achieve such objectives, developed pavement management systems 

must rely on reliable data collected from continuous evaluation and monitoring of the 

roadway networks as well as future condition prediction processes to forecast pavement 

needs before the pavement fails [2], [7]. The use of such systems was further 

emphasized by the Moving Ahead for Progress in the 21st Century Act (MAP-21), 

which requires all states to develop asset management systems capable of providing 

supporting information that justifies proposed investments [8], [9]. MAP-21 provided 

the legislative platform that mandates transportation asset management systems to 

include consistent data collection methodologies, deterioration models, potential work 

types and their effect on performance and management strategies to minimize life-cycle 

costs [10]. Thus, deterioration modeling and condition data collection in the context of 

pavement management are crucial for establishing effective PMS.  

With time, the pavement performance deteriorates mainly due to traffic loading 

and weather conditions [6]. As such, a good PMS should have the capacity of 

forecasting deterioration as a function of age or accumulated traffic as well as other 

relevant variables. The latter will ensure timely maintenance interventions, preserve the 

required level of performance of the pavement network, and guarantee significant 

budget savings [11], [12]. In addition to their pivotal role in PMSs, accurate 

performance prediction models allow for quantifying the contribution of relevant 

variables on pavement deterioration, which in turn has significant implications on road 

pricing and regulation [11], [13]. 
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Evident signs of pavement deterioration include the manifestation and 

development of distresses such as cracking and rutting that reflect a reduction in the 

functional or structural performance [14]. Repeatable measurements and collection of 

pavement distresses such as cracking and rutting, as well as structural properties are 

indispensable since current and historical performance trends are required for 

developing deterioration prediction models. These models either predict an overall 

condition index or individual distress indices [6], [14].  While forecasting the 

progression of specific distresses is more complex, it introduces further insights about 

the specific corrective actions required based on the prevailing defects [11], [15]. 

Asphalt rutting is one of the most critical distresses affecting the performance 

of asphalt concrete (AC) pavements. Rutting results from the accumulation of 

permanent deformations or depressions along the wheel-path. The rutting behavior is 

characterized by three distinct stages; primary, secondary, and tertiary. The primary 

stage corresponds to the rapid densification of newly constructed asphalt layers 

followed by a reduction in the rate of rutting during the secondary stage, after which 

high rutting progression rates corresponding to shear failure are observed in the tertiary 

stage [16]. Rutting is a major concern due to its impacts on road safety and 

serviceability [16]. The presence of rutting endangers the safety of road users due to its 

hydroplaning potentials, where water accumulates in the ruts resulting in the loss of 

contact between the pavement and the vehicle tires, as well as steering problems [17], 

[18]. In addition to the safety concerns, rutting is a major economic burden on road 

agencies since it cannot be addressed by low-cost preventive maintenance activities. 

Therefore, substantial costs are incurred when rutting occurs in in-service pavements 

due to the need for major maintenance and rehabilitative treatments [19].  
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Provided its significance, PMSs rely heavily on rutting depth prediction. The 

prediction of asphalt rutting through accurate deterioration models is essential for 

forecasting the progression of rutting and developing maintenance and rehabilitation 

plans for transportation networks [20]. As a result, transportation agencies have been 

widely calibrating or developing deterioration models that aid in maintenance and 

rehabilitation planning, and fund allocation [21]. 

 

 Problem Statement 

Models have been developed by several DOTs such as those of Mississippi, 

Minnesota, North Dakota, and Oklahoma [21], [22]. In the current state of practice, 

performance models are commonly developed based on deterministic or probabilistic 

approaches. The former is further subdivided into empirical and mechanistic-empirical 

(M-E) models [23]. Empirical models are data-intensive techniques relating pavement 

performance (e.g., rut depth) to a set of variables (e.g., age, traffic, temperature, and 

pavement structure) [21]. They are typically based on regression analysis where the 

mathematical form of the model is predefined, which may not be practical due to the 

lack of knowledge on the interaction between inputs. M-E approaches can also be used 

to relate pavement mechanical responses such as strains and deflections to distresses 

using empirical transfer functions. The most commonly accepted M-E rutting prediction 

model is the plastic strain relationship, which emerged from the NCHRP Project 1-37A 

[16]. However, the globally calibrated model tends to over-predict rutting resulting in 

additional local calibration requirements [24]. While these models can be refined and 

used for pavement management, they require a daunting set of inputs that may not be 

available or are of poor quality in regions outside the United States due to the lack of 
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budgets and expertise. Furthermore, local calibration may not be feasible in developing 

countries where historical data is unavailable. Neural Networks (NNs) have also been 

studied to deal with the challenges imposed by the predetermined mathematical models 

and calibration requirements of the deterministic models [25]–[27]. However, these 

models were not trained using large datasets, and their applicability is restricted to the 

locality of their development.  

Although much research has been conducted on rutting deterioration models 

and several models have been proposed, their application in PMS remains complicated, 

tedious, and suffers from inherent inaccuracies [2], [6]. Modeling asphalt rutting faces 

profound challenges due to its sensitivity to the local microclimate and a large number 

of interacting factors. Additionally, developing such models requires large sets of field 

data that take into account the uncertainties of the input variables [17], [18]. As such, 

accurate prediction models with sufficient generalization abilities, that allow the 

identification of significant milestones in the pavement’s life, are still not available [28]. 

This is particularly challenging for transportation agencies in developing countries that 

lack adequate technical and financial resources for collecting materials, traffic, and 

climate properties that affect pavement performance. Additionally, with the absence of 

extensive datasets holding historical pavement condition data, initiating PMS with 

reliable deterioration models remains a difficult task.  

 

 Research Objective 

To address the previously discussed limitations, this thesis aims to develop an 

accurate rutting prediction model that requires a limited number of input parameters 
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without the need for local calibration. Within this context, the specific objectives of this 

thesis are as follows:  

1. Develop universal regression models using Neural Network techniques 

that predict rutting depth along with the pavement’s lifespan. Employing 

such models alleviates the need for the pre-specification of the 

mathematical form of the model and implicitly takes into account the 

interaction between the different features. These models are also 

developed using a low number of input features to accommodate data 

scarcity and resource limitations in developing countries that are initiating 

their pavement management systems. For the scope of this study, the data 

used to develop the models is extracted from the Long-Term Pavement 

Performance (LTPP) database.  

2. Identify the relative importance of the different features on rutting 

prediction to assist road agencies in planning and minimizing the expenses 

associated with data collection. 

3. Develop a framework that updates and improves the developed rutting 

models to minimize the mismatch between predicted and measured rut 

depths. This particularly targets road agencies that are initiating their PMS 

and do not have sufficient information to utilize the model developed as 

part of the first objective. This involves employing an Ensemble Kalman 

Filtering (EnKF) approach as local field experiments and new data become 

available. 
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 Thesis Organization 

This thesis is divided into eight chapters.  

- Chapter 2 provides background information about PMSs, pavement 

condition evaluation, and rutting development mechanisms. It also 

discusses and evaluates the current state of practice regarding rutting 

deterioration models.  

- Chapter 3 presents a brief overview of the LTPP database as well as the 

modeling and analysis methods that contribute to the study objectives. 

- Chapter 4 details the methodology followed to synthesize the dataset, 

develop the required models, and introduce the EnKF updating framework. 

- Chapter 5 discusses all the pilot studies and troubleshooting efforts that are 

required to achieve the final results.  

- Chapter 6 presents the final model results and discusses the sensitivity of 

the model to the input variables. It also examines the requirements and 

outcomes of the EnKF framework. 

- Chapter 7 showcases the graphical user interface (GUI) that was developed 

to deploy the NN model. 

- Chapter 8 summarizes the research contributions, results, limitations, and 

recommendations for future research. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 Pavement Management Systems  

 Overview on Pavement Management Systems 

The twentieth century was characterized by the shift of transportation agencies 

from the emphasis on expanding the roadway networks to managing the existing 

infrastructure [6]. The concept of pavement management has been studied and expanded 

since the 1970s; however, practical employment of such management processes 

remained limited [29].  Much of the interest in pavement management originated from 

the realization of road agencies that the investment of billions of taxpayer dollars on the 

maintenance of pavements requires sound management to achieve cost-effective 

solutions that maximize long and short-term benefits of the limited funds [7], [30]. 

Emphasis has increased over the last few decades as budgets became more limited and 

incapable of attending to the rapidly deteriorating performance, and as accountability in 

transportation investments became stricter [31]. 

An additional factor that promoted the application of performance-based 

management practices, specifically in the United States, is the requirement to adopt 

strategic and systematic methods for operating, maintaining, and improving 

transportation assets to sustain adequate performance at minimum cost for pavements 

and bridges on the National Highway System (NHS). This requirement was enforced in 

2012 through The Moving Ahead for Progress in the 21st Century Act (MAP-21) [8]. 
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The American Association of State Highway and Transportation Officials 

(AASHTO) defines pavement management as the set of tools that aim at providing 

optimum strategies for maintaining the serviceability of pavement conditions over time 

and supporting road agencies in the decision-making process. In a broad sense, PMSs 

encompass all the functions involved in assessing past, current and future pavement 

conditions, optimizing funds allocation in terms of planning pavement maintenance and 

rehabilitation, estimating and justifying funding needs, and evaluating the outcomes of 

different alternatives. These functions contribute to more economically efficient 

management strategies [29].  

 

 Pavement Management System Levels  

Pavement Management Systems are used to assist in decision making at three 

levels: strategic, network, and project levels [7], [29]. The strategic level involves the 

least detail and is utilized by policymakers to devise long-term strategic decisions 

regarding performance targets, funding allocations, and performance preservation 

strategies [7], [29]. Network-level management involves more detailed analyses of 

current and future network conditions and overall network needs in order to evaluate 

different investment strategies and develop multi-year network improvement plans [7], 

[29]. Project level analysis focuses on short-term decisions for a specific part of the 

network. Decisions made at this level are based on more sophisticated and reliable data 

collection activities to evaluate material properties, traffic levels, and environmental 

factors. The obtained information is used to recommend immediate maintenance 

treatments, perform required pavement design for rehabilitation projects, and select 

maintenance material types [7], [29], [32]. 
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 Pavement Management System Components 

A PMS is comprised of three key modules including, but not limited to, an 

inventory or database module, an analysis module, and a reporting module. The 

inventory module stores all the related pavement information such as road network 

details, traffic data, pavement design, maintenance history, and historical pavement 

condition data. This database serves as a basis for the analysis module [29]. The 

analysis component involves predicting future pavement conditions for the entire 

network or a specific project based on pre-defined deterioration models, evaluating the 

effect of different pavement treatments, making decisions based on objective rules, and 

quantifying the economic and financial requirements of different strategies [10], [29], 

[32], [33]. The outcome of these tasks including the different funding levels, 

maintenance recommendations, and future condition estimates are reported and used to 

backup future projects and funding requests. The final component includes a feedback 

process to keep the databases up-to-date in response to any changes in the network, 

update and recalibrate deterioration models, and adjust the unit costs of the treatment 

activities [10], [29], [32], [33]. 

 

 Overview of Pavement Performance Indicators 

Defining pavement performance deterioration is fundamental for managing 

pavement networks and identifying treatment needs. The overall pavement condition is 

typically a combination of structural and functional characteristics [29]. Pavement 

conditions that directly influence the safety and serviceability of a roadway network 

reflect the pavement’s functional performance, while the extent of pavement damage 

that limits its capacity to carry traffic loads is considered a structural characteristic [34]. 



 

11 

 

Pavement performance is evaluated based on four key aspects including surface 

roughness, surface distresses, structural capacity, and safety [29], [35]. The extent of 

data collection for evaluating pavement conditions varies between network and project 

levels. Functional characteristics do not provide sufficient information to describe the 

overall pavement condition, therefore the structural performance is required for project-

level decisions [36], [37]. 

Pavement roughness strongly correlates to motorists’ comfort and satisfaction 

with the ride quality. Pavement roughness refers to the unevenness of the pavement’s 

longitudinal profile arising from construction imperfections or performance-related 

distortions that result in a rough pavement-vehicle interaction [29], [35]. The 

International Roughness Index (IRI) is the most internationally used index to reflect 

pavement roughness [29], [35], [38].  

 Pavement surface distresses are indispensable factors for evaluating pavement 

performance and selecting maintenance treatments [35]. Each distress type is a visible 

damage on the pavement surface that reflects the existence of performance problems 

[29]. Information regarding prevalent distresses on a pavement’s surface are measured 

through visual manual or automated surveys [29], [32], [35]. Distresses on AC 

pavements include different types of cracks, ruts, potholes, patches, and other surface 

defects [39]. There exists no universal approach for characterizing pavement 

performance as affected by prevalent distresses [29]. As a result, pavement performance 

can be evaluated in terms of the extent and severity of each distress, individual distress 

indices that are linked to general treatment categories (i.e. distresses that prompt the 

same treatment are included), and overall indices such the Pavement Condition Index 
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(PCI), the Surface Distress Index (SDI), and the Pavement Surface Evaluation and 

Rating (PASER) [21], [35]. 

 The structural capacity is described as the pavement’s ability to carry traffic 

loads and is obtained through destructive (e.g., material sampling) and non-destructive 

testing (e.g., Falling Weight Deflectometer). Current structural capacity indices describe 

the maximum load-carrying capacity of a pavement or its remaining service life [35].   

Pavement safety aspects are described by the condition of the surface texture 

and skid resistance. The interaction between the pavement surface and tires and its 

impact on safety is measured using several indices such as the Friction Number (FN) or 

the Skid Number (SN) [29], [35]. 

Pavement condition can also be summarized by a single overall index that 

combines roughness, distresses, structural capacity, and safety factors. Overall indices 

are agency-specific and reflect its information needs and experiences to provide high-

level performance indications to be used at the network and strategic levels [21], [35]. 

 

 Rutting as a Pavement Distress  

 Rutting Overview 

The pavement community’s concern with the importance of the safety and 

serviceability impacts of rutting originated in the mid-1950s as part of the AASHO road 

test project [40]. Rutting is characterized by surface depressions in the wheel-path 

stemming from the accumulation of permanent deformations in the asphalt concrete 

(AC) and/or the subgrade layers as a function of load repetitions. As such AC 
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pavements are prone to the development of two types of rutting referred to as subgrade 

or base rutting and asphalt rutting [18], [41]. 

Rutting in the subgrade arises from structural deficiencies due to the absence of 

proper drainage measures, under-design in layers thicknesses for the existing traffic 

volume and loads, insufficient compaction, or inappropriate construction processes. 

These deficiencies render the pavement’s structure unable to support vertical stresses on 

top of the subgrade and consequently result in the densification of the base, sub-base, or 

subgrade layers. Subgrade rutting can be avoided by increasing pavement thickness, 

improving the stiffness of the materials constituting the various layers, stabilizing the 

subgrade layer, as well as improving drainage conditions [18]. Since the causes and 

solutions of this type of rutting are well defined and easily tractable, it is typically 

successfully addressed in the design process. Consequently, it is not a major concern for 

pavement managers and maintenance decision-makers [18], [41].  

On the other hand, asphalt rutting reflects deformations in the asphalt layers 

and appears as longitudinal depressions in the wheel-paths accompanied by small 

upheavals to the sides resulting from a combination of densifications and shear 

deformations [42]. Unlike subgrade rutting, asphalt rutting is the result of a more 

complex mechanism that is affected by the local microclimate, material variability, as 

well as other interacting factors. Hence, asphalt rutting remains one of the most 

important, challenging, and common distresses making it the focus of this study [17], 

[18]. The following chapters will focus on the asphalt rutting mechanism. 

The behavior of permanent deformation is characterized by three distinct stages 

(Figure 1) [43]. The first phase is referred to as the primary stage and is characterized 
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by the rapid accumulation of permanent deformation which reflects unrecoverable strain 

caused by volumetric change due to densification. Initially, this phase starts with a high 

strain rate that decreases as the permanent strain approaches the secondary stage where 

it remains constant [43]. Volumetric changes continue in the secondary stage; however, 

shear deformations are also observed [44]. In the tertiary stage, permanent deformation 

accumulates at an increasing rate, reflecting excessive shear deformations in the absence 

of volume reduction [44]. The number of load repetitions to reach the tertiary zone is 

referred to as the “Flow Point” or “Flow Number” and it represents the cumulative 

traffic loading required for failure [43]–[45].  

 

 

Figure 1: Typical Permanent Deformation Behavior of Pavement Materials as a Function 

of Repeated Loads [43]. 
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 Factors Affecting Asphalt Rutting 

The sensitivity of the rutting mechanism to different variables has been studied 

through laboratory experiments and analysis of field data over several decades. More 

than thirty interacting factors that influence rutting with varying levels have been 

identified [17]. These inputs fall under three categories: material properties, traffic 

loading, and climatic conditions. A study conducted on data collected from Iowa’s DOT 

concluded that temperature has the highest effect on rutting, followed by pavement 

thickness and age [46]. Other studies conducted on data collected in China found that 

age and maintenance information significantly affect rutting predictions, while traffic 

had a lower impact [27]. Random forest analysis proved that air voids, traffic, 

precipitation, thickness of the base, and percentage of aggregates retained on the 3/8-

inch sieve are among the most influencing factors [47]. Schwartz et al. established that 

asphalt mix dynamic modulus, binder performance grade, pavement thickness, and 

traffic are the most influential contributors to rutting [48]. Results of an earlier study on 

LTPP data revealed that presumably thin pavements exhibit more rutting. However, the 

effect of base layers properties, climatic conditions, and subgrade types was found to be 

insignificant [49]. Results of laboratory testing using the Hamburg-Wheel tester and the 

Asphalt Pavement Analyzer (APA) were also studied in [50], [51]. Based on these 

analyses, asphalt mixture properties such as the dynamic modulus, percentage of air 

voids, asphalt content, asphalt binder grades followed by temperature, and traffic 

conditions were identified to impact rutting. Most of the reviewed studies exhibited 

inconsistent conclusions regarding the main factors that need to be considered to predict 

rutting accurately. Additionally, there is a lack of consensus in the literature regarding 
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the extent of the contribution of each variable and its effects on the performance of 

prediction models.  

 

 Rutting Indices 

Several indices were developed to characterize and quantify rutting [52]. Two 

primary categories of indices that characterize rutting either in terms of area or depth 

were calculated as part of the Long-Term Pavement Performance Program (LTPP) [52]. 

The positive and negative area indices represent the areas above and below a straight 

line connecting the transverse profile’s start and end points. The fill area index 

represents the total area delineated by straight lines connecting the peak elevations 

along with the transverse profile. The main advantage of the latter index is that it 

reflects the material quantity requirements for rut filling projects. The water depth index 

reflects the direct safety implications of rutting related to water ponding and 

corresponding accident potential. Finally, the rut depth (RD) is the most universally 

applied index. RD is the maximum vertical distance between the bottom of the rut and 

wireline or a straightedge as defined by ASTM E1703 [42], [52].  

 

 Rutting Considerations for Pavement Management 

 Maintenance Thresholds  

Rut depth intervention levels or threshold values refer to the rut depths that 

trigger relevant maintenance treatments [53]. These values are commonly used by DOT 

personnel, specifically maintenance decision-makers; however, to-date, there does not 

exist a consensus regarding the assessment of rutting severity and its implications on 
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maintenance and pavement management in general. In fact, most highway agencies 

classify rutting severity based on their respective experience [54]. 

Regardless of the exact values, information regarding current and forecasted rut 

depths is crucial for efficient maintenance planning and scheduling [55]. The 

Mechanistic-Empirical Pavement Design Guide (MEPDG) suggests a maximum 

allowable rut depth of 10 mm for interstates and 13 mm for primary roads, while 

Austroads considers a terminal rut depth value of 20 mm [56], [57]. Rut depths 

exceeding these limits compromise road user safety due to elevated hydroplaning risks. 

Additionally, the FHWA encourages State DOTs to take action even before these limits 

are reached [55]. For example, AASHTO’s Guide Specifications for Highway 

Construction suggests that a rut depth of 6 mm prompts milling and resurfacing, while a 

depth of 13 mm requires removing the entire distressed area [58]. On the other hand, 

maintenance is triggered for rut depths exceeding 25.4 mm in Caltrans [59].  

Some DOTs base their maintenance decisions on the rutting severity instead of 

a fixed trigger value. In the current state of practice, three rut depth severity levels are 

developed and defined in ASTM D6433 regardless of maintenance [60]. The low 

severity category includes rut depths between 6 and 13 mm, medium severity 

encompasses rut depths between 13 and 25 mm, and high severity rutting is attributed to 

rut depths that exceed 25 mm. However, ruts that are shallower than 6 mm are not 

typically counted as pavement distresses [61]. There are significant discrepancies in the 

severity level classifications as presented in Table 1. In addition to rating levels in 

practice, critical rut depth values were studied by numerous researchers. Most studies 

concluded that a rut depth greater than 12.7 mm poses safety risks on travelers, while 

others stated that a depth of 5 mm is sufficient for creating hydroplaning threats [53]. 
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Table 1: Rutting severity levels used in international practice. 

Road Agency Rutting Severity Levels References 

Illinois DOT 

Maryland DOT 

NC DOT 

Low: <12.7 mm 

Medium: 12.7 – 25.4 mm 

High: >25.4 mm 

[62] 

[63] 

[64] 

Nevada DOT 

Low: <5 mm 

Medium: 5 – 10 mm 

High: >10 mm 

[65] 

Texas DOT 

Shallow: 6 – 13 mm 

Deep: 13 – 25 mm 

Severe: 25.4 – 50.8 mm 

Failure: > 50.8 mm 

[66] 

Washington DOT 

Low: 6.3 – 12.7 mm  

Medium: 12.7 – 19.1 mm 

High: >19.1 mm 

[67] 

Arizona DOT  

Low: 0 – 6.3 mm   

Medium: 6.3 – 12.7 mm  

High: >12.7 mm 

[68] 

British Colombia Ministry of 

Infrastructure 

Low: 3 – 10 mm   

Medium: 10 – 20 mm  

High: >20 mm 

[69] 

Ontario Ministry of Transportation  

Very Slight: 3 – 6 mm  

Slight: 7 – 12 mm 

Moderate: 13 – 19 mm 

Severe: 20 – 25 mm 

Very Severe: >25 mm 

[70] 

 

 

 

 

 Pavement Performance Modeling 

 Overview and Significance of Pavement Performance Models 

Pavement performance modeling, also referred to as pavement deterioration 

prediction serves as an essential pillar in the pavement management process. 

Performance prediction is considered a prerequisite for establishing most PMS outputs 

including maintenance treatment strategies and priority programming [71]. Pavement 

performance models are defined as mathematical representations to forecast the change 

in pavement conditions as a function of traffic and environmental conditions [72].  
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Pavement management systems which originally did not include a predictive 

component, have historically evolved to include simplistic models that are based on 

engineering judgment. Later, complex models that relate pavement performance to 

multiple variables based on condition survey data and regression analyses were utilized. 

However, achieving reliable models is complicated due to the involvement of a large 

number of parameters [71]. Currently, research is shifting towards employing artificial 

intelligence concepts to improve pavement performance modeling and overcome the 

existing challenges [72]. 

Deterioration models can be developed to predict several aspects of pavement 

performance including distresses, individual indices, or overall composite indices as 

described in section 2.2. A decision regarding which index to predict depends on the 

objective of the model and the management level (project or network). While predicting 

overall indices provides a general overview of pavement performance, it does not 

provide sufficient information to develop maintenance and rehabilitation strategies since 

different distress combinations can produce the same value of the index. On the other 

hand, predicting the extent and severity of each distress is a highly complicated and 

data-intensive approach. A more realistic approach involves predicting individual 

indices that reflect a combination of severities to allow pavement managers to estimate 

future maintenance needs and action times [21], [29].  

 

 Rutting Deterioration Models  

The models used to predict and assess pavement performance are classified 

into three main categories: deterministic, probabilistic, and neural network models 
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(Wolters and Zimmerman, 2010). This section includes a review of the different 

modeling techniques used in the context of rutting prediction.  

 

 Deterministic Models 

Initial attempts for rutting prediction were heavily based on deterministic 

models that use regression analysis to generate linear relationships between rutting and 

its influencing factors [21]. Among the most used models are the Highway 

Development and Management models (HDM-4), which were developed by the World 

Bank to assist developing countries in implementing PMS and optimizing maintenance 

strategies [6], [73]. The main inputs required by these models include strength related 

parameters, thickness, traffic, speed, construction quality, and calibration factors [74]. 

These models were derived from a sample of 2,546 data points obtained from a UNDP 

study conducted in Brazil. Therefore, they require local calibration to provide reliable 

predictions [75]. However, local calibration requires time-series rutting data from field 

surveys because the HDM-4 does not take asphalt material properties directly into 

account [73], [76]. Such data is not typically available in transportation agencies, 

especially in developing countries. Other empirical models implementing multi-linear or 

non-linear regression were later developed to predict rutting for several DOTs in North 

America, such as that of Arkansas, Mississippi, Minnesota, and Oklahoma [21], [22], 

[77]. The Mississippi DOT developed a power regression model to predict rutting based 

on three years of field data stored in its inventory. The resulting models did not yield 

satisfactory predictions and were not able to capture the effect of material properties on 

rutting [22]. Similar efforts were also conducted by Arkansas DOT that applied linear 

regression using only age as an explanatory variable. This model also resulted in poor 
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predictive performance [77]. In addition to the United States, deterministic models that 

predict the accumulation of rutting over time as a function of traffic, the Thornthwaite 

Moisture Index, and the subgrade strength were developed by Austroads for the 

Australian pavement network [78]. 

To improve the existing empirical approaches that were not able to achieve 

satisfactory results, the Mechanistic-Empirical Pavement Design Guide (MEPDG) was 

developed [16]. The MEPDG uses a Mechanistic-Empirical (M-E) model for rutting 

prediction that empirically correlates mechanistically calculated pavement responses 

(stresses, strains, and deflections) to field manifested distresses (i.e., rutting) [16]. The 

corresponding model uses a thorough set of inputs representing three main influencing 

criteria: climate, traffic, and material properties [6].  Although this model was able to 

achieve better results than the previous empirical models, studies have shown that it 

requires significant calibration efforts to adhere to site-specific conditions [24]. Also, it 

requires many inputs that are either not available or difficult to collect since they require 

advanced testing [79]. As for any regression model, and in addition to the previous 

limitations, the effectiveness of both the empirical and M-E models depends heavily on 

the engineer’s ability to comprehend the mathematical form beforehand. Moreover, due 

to the large number of variables and the complex way in which they affect one another, 

simple regression is insufficient to recognize the trends in empirical data resulting in 

underestimated errors [80]. The MEPDG model, however, remains the most commonly 

used for rut depth prediction because it is the only model that allows generalization in 

opposition to other models developed for specific DOTs and because it is available to 

the public through a software package. 
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 Probabilistic Models  

Inaccuracies in the M-E models may be attributed to the variability in 

parameters and the uncertainties in the model itself. This problem was addressed by 

introducing probabilistic models, which consider pavement conditions to be random 

variables [6], [23]. Markov models have been used extensively in pavement 

deterioration applications [23], [81]. These models rely on transition probability 

matrices (TPM), which describe the probability of deteriorating from one condition to 

another [23]. These probabilities are obtained from historical field condition data or 

may be based on expert knowledge. Saha et. al. have used a discrete-time Markov 

process to develop rutting prediction models for low-volume roads in Colorado based 

on five years of field data. This model performed better than the previous deterministic 

models [82]. However, this modeling approach does not consider the time dependency 

of the rate of rutting progression along the analysis period. The time dependency of the 

deterioration rate was considered in [83] through using five-year staged time-periods 

having different TPMs. However, implementing the latter approach entails more 

complexity and requires more data [23]. Additionally, Markov models have several 

shortcomings related to the requirement of discretizing rutting depth and the restricted 

generalization ability as they do not explicitly consider how different predictors (e.g., 

levels of traffic, environmental exposure, pavement materials, or structural deficiencies) 

affect rutting. These restrictions limit the use of probabilistic models for developing 

rutting prediction models. 
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 Neural Network Models 

More recently, the application of machine learning, specifically artificial neural 

networks (ANN) in pavement applications has been explored [84]. Yang et al. were 

among the first to develop an ANN model to forecast pavement surface conditions (i.e., 

crack, ride, and rut indices) for different time intervals for the Florida highway network 

[27]. Although the proposed model showed more accurate predictions than traditional 

linear regression models, it presented several shortcomings. The rutting index could 

only be forecasted up to a 5-year interval, and the model required knowledge of the 

current and all past values of this index. Similarly, an ANN model was developed in 

[26] to predict rutting for low volume roads in India. The model utilizes the current 

rutting depth (at the time of prediction) as an input to forecast the rut depth at the next 

time-step. The comparison with the previously calibrated HDM-4 model in India reveals 

the superiority of the new ANN model [85]. However, the model only considered 

subgrade material properties, while other features related to the asphalt and base layers 

that are key contributors to rutting were neglected. In [25], data corresponding to eleven 

expressways in China was used to develop a rutting prediction model. The model fails 

to account for environmental and subgrade conditions since these factors were similar 

for all the studied roads. Deep neural network models were developed in [47] based on a 

broad set of input variables (i.e., material, climate, traffic parameters, and pavement 

deformations). Compared to the predictive performance of a multi-linear regression 

model developed using the same dataset, the deep NN model achieved significant 

improvements in terms of mean squared errors of up to 50% [47]. However, because of 

their limited dataset, the authors did not have a hold-out set for testing, and they only 

relied on four-fold cross-validation [47]. Therefore, the generalization performance of 
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the model is not well proven, and the model’s ability to achieve superior prediction 

accuracy without overfitting is questioned. 

 

 Updating Existing Pavement Deterioration Models 

Several inevitable issues regarding the unobserved heterogeneity of pavement 

performance data, inherent variability in the measurement of distresses, the small 

number of available observations, and uncertainties within the adopted mathematical 

models have detrimental effects on the reliability and applicability of pavement 

deterioration prediction models [86], [87]. Consequently, AASHTO’s Pavement 

Management Guide emphasizes the importance of periodically reviewing the adopted 

models to ensure a proper representation of the prevalent deterioration trends and the 

continuous improvement in the efficiency of the management system [29]. Since 

highway agencies with well-developed PMS or those initiating pavement management 

collect pavement condition data on an on-going basis, the newly available data could be 

used to update and enhance the existing models [23]. Bayesian approaches have been 

adopted by several researchers to perform model updates. One of the earliest 

implementations of such frameworks was conducted by Li in 1997 to update transition 

probability matrices used to predict deterioration using a Markov process at the end of 

each year [88]. An enhancement of the AASHO deterioration model was also 

introduced through the application of a Bayesian updating approach [89]. Park et al. 

also proposed a Bayesian data analysis tool that provides a sound engineering and 

statistical framework for updating distress prediction [87]. A case study was conducted 

on highways in Texas, where generic deterioration curves were updated when road-

specific data were obtained [87].  
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CHAPTER 3  

THEORETICAL BACKGROUND  

 

 Data Sources 

The Long-Term Pavement Performance (LTPP) database is the most 

comprehensive database that encompasses a wide range of pavement distress, material, 

climate, and traffic data. It was founded in 1991 by the Federal Highway Administration 

(FHWA) as part of the Strategic Highway Research Program (SHRP) [55]. The purpose 

behind the development of the LTPP program was to support pavement and 

transportation researchers' needs for data while reducing the time required for data 

collection. Additionally, the LTPP program was also established to evaluate the long-

term performance of pavements provided different structural designs, materials, 

maintenance activities, traffic loads, and climatic conditions [90].  

The total number of pavement sections that are monitored by the LTPP 

program exceeds 2,500 sections located in North America [91]. The LTPP hosts two 

types of experiments, generally known as the general pavement studies (GPS) and the 

specific pavement studies (SPS) that cover asphalt concrete (AC) and Portland cement 

concrete (PCC) pavements. SPS sections are specifically constructed for monitoring 

purposes and for evaluating the effects of different engineering factors. In contrast, the 

GPS sections include existing roadway sections that have been incorporated into the 

LTPP program or SPS sections that underwent maintenance and rehabilitation. The SPS 

category consists of a total of ten different experiments that study the influence of 

structural factors, preventive maintenance, rehabilitation, environmental factors, 
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Superpave specifications and mix design, and warm mix asphalt overlays on the 

performance of flexible and rigid pavements. For each of the latter experiments, the 

pavement performance is examined by collecting data on distress, roughness, structural 

capacity, traffic, and other variables [91]. Typically, SPS project sites include several 

coexisting test sections, each having different characteristics depending on the factor 

whose effect is being tested. On the other hand, GPS project sites include only 

individual test sections. The typical layout of SPS and GPS sections is illustrated in 

Figure 2. 

 

 Data Analytics and Modeling 

 Overview of Neural Networks  

Artificial neural networks are models inspired by the biological neuron system 

and are currently being used to solve problems in all fields [92]. Artificial Neural 

Networks (ANN) are nonlinear statistical data modeling techniques capable of capturing 

 

 

Figure 2: SPS and GPS site layout. 
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complex relationships between inputs and outputs. As a result, ANN models have the 

ability to identify meaningful patterns from noisy data commonly encountered when 

developing performance models [93]. NN’s are defined as an assembly of 

interconnected processing units. These units are driven by the weights of the 

connections between them, and their functionality is determined by the learning method, 

architecture, and the neuron activation function [94]. Two main classes of neural 

networks are distinguished: feedforward NN, which presents the output as a non-linear 

function of the inputs, and recurrent NN, which are used to model time sequence data 

where the output is also a function of its past values [95]. Feedforward networks are 

commonly used to solve most engineering problems [96].  

Training the NN is achieved by altering the weights of the connections between 

the units to minimize model errors using the backpropagation approach. Supervised 

learning through backpropagation consists of a forward pass, which involves processing 

inputs in the network based on random weighting factors to calculate the outputs. It also 

includes a backward pass that handles the predicted outputs compared to the actual ones 

provided by the training data to adjust the weights and minimize errors in the prediction 

[97].  The network’s architecture refers to the number of inputs, outputs, hidden 

neurons, and layers whose interconnection contributes to the computational power of 

the NN. On the receiving end of each neuron, weighted signals are summed to 

contribute to its activation through predefined activation functions. Activation functions 

ensure a non-linear relationship between the input and output neurons. Applying non-

linear activation functions can help the network learn complex patterns and provide 

more accurate predictions. The most common activation functions used in feedforward 

network analyses are the sigmoid function 𝑙𝑜𝑔ℎ(𝑧), the rectified linear activation 
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function 𝑅𝑒𝐿𝑢(𝑧) and the hyperbolic tangent function tanh(𝑧), which are 

mathematically described as [98]: 

𝑙𝑜𝑔ℎ(𝑧) =
1

1 + 𝑒−𝑧
 (1) 

𝑅𝑒𝐿𝑢(𝑧) = max(0, 𝑧) (2) 

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (3) 

Where z is the output from the previous layer. 

The number of neurons in the hidden layer and the number of layers are 

generally determined by trial and error, where the network that achieves an optimal 

performance is selected [99]. The performance of regression models is evaluated by the 

coefficient of determination (R2), the mean square error (MSE), the mean absolute error 

(MAE), and/or the mean absolute percentage error (MAPE) [99]. One hidden layer 

could be highly efficient in modeling complex functions if the number of selected 

neurons was large enough and depending on the complexity of the problem at hand. 

Increasing the depth of the NN becomes essential as the complexity of the problem 

increases. However, the bigger the number of hidden layers, the higher the risk of 

overfitting the data [100]. Once the network training is completed, an independent out-

of-the-bag testing dataset is used to validate the model’s generalization potential [99]. 

 

 Feature Engineering and Feature Importance 

Although NN models exhibit superior performance compared to traditional 

modeling techniques, they are referred to as black-box models that lack interpretability 

and understanding regarding the contribution and the influence of variables [101]. 
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However, several methods exist for quantifying the importance of variables within 

networks either at the feature selection stage or after modeling for interpreting the 

results. The variables used in machine learning models have a significant impact on 

their performance [102]. As such, the accuracy of developed models is strictly tied to 

the selection of a proper feature subset. Feature selection techniques can be divided into 

three categories: filter, wrapper, and embedded methods [102]. Filter algorithms are 

typically used as a data preprocessing step to evaluate the intrinsic properties of each 

feature separately, and they are independent of the models. Examples of filter 

techniques include correlation analysis, Chi-Squared statistical test, and linear 

discriminant analysis [102], [103]. Filter methods are very efficient; however, they do 

not take into account the importance of the features on the overall model [104]. 

Wrapper methods, also known as greedy algorithms, overcome this disadvantage by 

aiming to find the best feature subset that results in the best model performance [102], 

[104]. These algorithms entail either forward selection, backward selection, or a 

variation of both [102]. In forward selection, a null model is evolved iteratively by 

adding features that improve the overall performance. Backward selection algorithms 

begin with a full model and iteratively remove features that result in performance 

improvements [102]. Additional implementations of wrapper methods include 

permutation importance and drop-column importance algorithms where feature 

importance is examined based on the change in the performance when a model is tested 

based on a permuted dataset or a dataset with missing features [105]. In addition to 

feature selection, the latter methods can be used to quantify the contribution of different 

features to the output and consequently provide further insight into the developed 

models. On the downside, the requirement of developing and evaluating many models 
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that require parameter tuning, drastically increases computation time [102]. Embedded 

techniques incorporate feature selection in model training such as regularization 

methods and decision tree-based feature importance methods. These methods balance 

the advantages and disadvantages of the filter and wrapper feature selection algorithms 

[102], [104]. 

 

 Sequential Data Assimilation  

Sequential data assimilation (filtering) techniques are applied in situations 

where the forward propagation of a system’s state in time is required. The main goal of 

this method is to rectify the current model state estimate obtained from physical models 

as observations become available. Then future states are forecasted based on the 

inferred information [106]. This technique has been widely used in damage detection 

and on-line health monitoring of systems [107]. The two sequential data assimilation 

approaches that are mostly used include the Bayesian probabilistic approach and the 

Kalman filtering approach [108]. 

The traditional Kalman filter approach provides an optimal solution to linear 

systems subject to Gaussian noise perturbations, and therefore, it is only applicable for 

limited problems. Variants of the traditional KF, such as the extended Kalman filter 

(EKF), allow performing sequential data assimilation in a broader range of complex and 

non-linear systems [109]. However, the extended Kalman filter suffers from several 

shortcomings due to its impracticality, high computational requirements, bias, and 

possible divergence potential [109], [110]. The Ensemble Kalman filter (EnKF) 

overcomes the previous limitations and outperforms other adaptations of the traditional 
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KF [110]. EnKF algorithms are attractive due to their applicability to complex non-

linear models and non-gaussian noise, simplicity, and low computational cost [110].  

 

 Mathematical Formulation of Ensemble Kalman Filters (EnKF) 

The Ensemble Kalman filter (EnKF) provides a sub-optimal Monte Carlo 

estimation of the traditional KF. The probability distribution of the model states is 

randomly sampled to obtain an ensemble of model states. The EnKF algorithm includes 

two phases, the first phase consists of the prediction or forecasting step, and the second 

phase is the update or analysis step. The prediction step entails propagating an ensemble 

of realizations at time t forward in time; then, updating or correcting the variables at 

time t+1 when actual measurements are collected. The EnKF algorithm is presented 

below [111], [112]: 
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1. Initial/Previous State (t):   

   1.1 

   1.2 

ModelStateVector: 

InitialEnsembleMatrix: 

 

𝑋0 

𝐴 = (𝑥1, 𝑥2, … , 𝑥𝑁) 
∈ 𝑅𝑛 

∈ 𝑅𝑛×𝑁 

Where N is the number of ensemble members, n is the model state vector size, 

and 𝑥𝑖 is the ith ensemble member 
 

2. Forecast Step (t+1):   

   2.1 PredictedStateEnsembleMatrix: 𝐴𝑡+1
𝑓

= 𝑓(𝐴𝑡
𝑎) +𝜀𝑖 ∈ 𝑅𝑛×𝑁 

   2.2 EnsembleMean: 𝐴𝑡+1
𝑓̅̅ ̅̅ ̅̅

= 𝐴𝑡+1
𝑓

1𝑁 ∈ 𝑅𝑛×𝑁 

   2.3 EnsemblePerturbation: 𝐴𝑡+1
𝑓 ′

= 𝐴𝑡+1
𝑓

−  𝐴𝑡+1
𝑓̅̅ ̅̅ ̅̅

= 𝐴(𝐼 − 1𝑁) ∈ 𝑅𝑛×𝑁 

   2.4 EnsembleCovarianceMatrix: 𝑃𝑒 =
𝐴𝑡+1
𝑓 ′

(𝐴𝑡+1
𝑓 ′

)
𝑇

𝑁 − 1
 

 

∈ 𝑅𝑛×𝑛 

Where 𝑓 is the mathematical representation of the forward model, 𝜀𝑖 is the process 

noise, 1𝑁 ∈ 𝑅𝑛×𝑁with all elements equal to 1/N, and I is an identity matrix 
 

3. Update Step (t+1):   

   3.1 ObservationVector: 𝑑𝑡+1 ∈ 𝑅𝑚×𝑁 

   3.2 EnsembleofObservations: 𝐷𝑡+1 = dt+1 +𝜀𝑗 ∈ 𝑅𝑚  

   3.3 EnsemblePerturbations: Υ = (𝜖1, 𝜖2, … , 𝜖𝑁)  ∈ 𝑅𝑚×𝑁 

   3.4 MeasurementErrorCovariance: 𝑅𝑒 =
Υ(Υ)𝑇

𝑁 − 1
 ∈ 𝑅𝑚×𝑚 

   3.5 KalmanGainMatrix: 𝐾𝑡+1 = Pe. 𝐻
𝑇(𝐻Pe𝐻

𝑇 + Re)
−1 ∈ 𝑅𝑛×𝑚 

   3.6 

 

AnalysisMatrix: 

 

 𝐴𝑡+1
𝑎 = 𝐴𝑡+1

𝑓
+ 𝐾𝑡+1 (𝐷𝑡+1 − 𝐻𝐴𝑡+1

𝑓
) 

 

∈ 𝑅𝑛×𝑁 

Where m is the number of measurements, 𝜀𝑗is the measurement noise, and 𝐻 ∈

𝑅𝑚×𝑛 is an observation matrix  
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CHAPTER 4  

RESEARCH METHODS 

 

The research methodology to achieve the study objectives is presented in the 

flowchart in Figure 3 and elaborated in the following subsections. The work is divided 

into three main components covering the data acquisition process, the development of 

rutting prediction models based on NN, and the development of a model calibration 

framework using an EnKF approach.  

 

 Synthesis of the Analysis Dataset 

 Data Mining and Transformation  

The decision about the data to be extracted from the LTPP database is based on 

the factors that are expected to affect rutting as established by common engineering 

practice and the results of the literature review. Features that do not require advanced 

testing and that are easily attainable in data-scarce locations are considered. Data 

availability is also considered throughout the selection process since a large dataset is 

needed for training a NN model. This results in a set of inputs reflecting climatic and 

traffic conditions as well as material and structural properties for the asphalt, base and 

subgrade layers. The following subsections explore the criteria behind the selection of 

the different input factors, as well as the LTPP data sources that are used to extract and 

populate the dataset to be used for modeling. Table 5 lists all the extracted data items 

and their corresponding sources in the LTPP database. 
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Figure 3: Research methodology flowchart. 

 

 LTPP Experiment Selection Criteria 

This study aims at predicting the accumulation of rutting in flexible pavements 

while excluding the effects of maintenance. Therefore, SPS sections corresponding to 

new AC pavements were given the highest priority. In order to further expand the 

available sections, SPS and GPS sections corresponding to asphalt pavements that were 

subjected to major rehabilitation involving milling and overlaying with more than 1.5 
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inches of asphalt are considered. GPS sections other than those experiencing 

rehabilitation are excluded since their maintenance history might not be complete [91]. 

Table 2 lists the LTPP experiments used in this study and their description. 

The outcome is a dataset corresponding to rutting measurements from different 

regions that accounts for the variability in factors affecting rutting, mainly climatic 

conditions, and soil types. Thus, ensuring the generalization abilities of the model.  

 

 General Section Information  

Relevant general section information includes section SHRP ID, section 

location, construction year, opening dates to traffic, and project ID which correlates co-

located test sections having the same material properties. The IDs and location of the 

available test sections are essential for extracting the remaining data from the other 

LTPP modules. The construction and traffic opening dates were also extracted and used 

to calculate the pavement age corresponding to the date of each distress survey. The 

tables and fields required to obtain the latter information are detailed in Table 5. 

 

Table 2: LTPP Experiments included in the analysis dataset. 

LTPP Experiment Description 

SPS 1 Strategic Study of Structural Factors for Flexible Pavements 

SPS 5 Rehabilitation of Asphalt Concrete Pavements 

SPS 8 Study of Environmental Effects in the Absence of Heavy Loads 

SPS 9 
Validation of Strategic Highway Research Program Asphalt 

Specification Mix Design (Superpave) 

GPS 6 Asphalt Concrete Overlay of Asphalt Concrete Pavement 
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 Maintenance and Rehabilitation History 

The maintenance and rehabilitation (M&R) history for the test sections were 

extracted from the MNT_IMP, RHP_IMP, and the EXPERIMENT_SECTION tables. 

The CN_ASSIGN_DATE and CN_CHANGE_REASON fields include the date at 

which any M&R activity took place. However, some activities were not reported in this 

table and alternatively were mentioned in the MNT_IMP or RHB_IMP tables. This 

prompted the use of the three tables collectively to determine the timings when M&R 

activities that could influence rutting took place. Treatments expected to affect rutting 

included activities in the following categories: reconstruction, overlays, different types 

of patching, and surface treatments and coatings. Rutting data reported after the 

implementation of these activities were discarded from the analysis.  

 

 Rut Depth Data 

4.1.1.4.1 Data Sources  

For each test section, rutting depth is monitored for several years at different 

locations along its length. A measurement is performed at 15.2-meter (50 ft) intervals 

on both the left and right halves of the wheel-path, as shown in Figure 4. This results in 

a total of 22 measurements for each section during each data collection survey. Rut 

depth values are reported using two measurement methods. The first is based on the 1.8-

m straight edge reference method and the second corresponds to the wireline reference 

method. The rutting shape affects the rut depth measurement corresponding to each 

method, while the wireline reference method is the most used in the literature [41]. For 

this reason, rut depths obtained from the wireline method were used in this study. Only 
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test sections having three or more distress surveys were extracted as considered in 

[113].  

In the LTPP, time-series rutting data is reported on a station basis with two 

measurements every 50-ft, as available in the MON_T_PROF_INDEX_POINT table, or 

as a representative section average value, as reported in the MON_T_PROF_INDEX_ 

SECTION table. The required rutting data is extracted from the former table in order to 

quantify the construction variability within individual sections. In controlled laboratory 

experiments, the same rut depth should be obtained at all stations because they have the 

same characteristics and are subjected to the same climatic and traffic conditions. 

However, for in-service road conditions, construction techniques and other uncontrolled 

variables result in construction variability along the section. Since the pavement 

material properties are reported per section and not per station, the effect of the 

construction variability is not readily quantifiable. Therefore, the construction 

variability is calculated, for each road section, as the coefficient of variation (C.O.V.) of 

the varying rut depths at different stations. 

 

 

Figure 4: Rutting data collection layout. 
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4.1.1.4.2 Data Quality Control  

Even after eliminating the effect of maintenance, the extracted data revealed 

frequent fluctuations in the measured rut depth across different surveys where the rut 

depth decreases with time. Such fluctuations have been examined previously in the 

literature and attributed to several measurement and climatic factors [42]. Frost heave or 

swelling soils can cause the rut depth to increase or decrease with time. Additionally, in 

some situations, the PASCO RoadRecon unit and the Dipstick were used to collect 

rutting data causing variability in the measurements. Fluctuating depths can also be 

caused by errors in locating the data collection stations over the years. Instrument errors 

associated with the data collection technologies can also contribute to introducing 

additional noise to the measurements where an average error of ±2 to 3 mm is expected 

[42]. In such instances, an increasing rut depth is forced for each station and wheel-path 

individually by selecting the higher value when the depth decreases with time.  

Another limitation present in the dataset is the unavailability of rutting 

measurements over the first few years after the construction of the test sections. This 

issue will restrict the capability of the developed models to predict rutting at an early 

age. The depth of rutting is interpolated over 0.5-year increments between age of zero 

and that corresponding to the first data point. The age of the pavement at which the first 

rutting measurement was collected is very critical for estimating the missing trend and 

determining whether it should be smooth or steep (Figure 5 and Figure 6). For 

practicality purposes, this rationale is executed by reviewing the depth of rutting for the 

first two collected observations. If the latter values do not vary significantly, it can be 

concluded that the rutting trend is stable. Consequently, the trend to be estimated should 

increase steeply in the beginning and then flatten as it approaches the values of the 
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actual measured data, as illustrated in Figure 5. On the other hand, a significant increase 

in the rut depth between the first two observations indicates that the progression of 

rutting is in a steep phase, which should be reflected by the estimated trend (Figure 6). 

These considerations are achieved through interpolating the missing early age rutting 

data for each test section individually using second-degree polynomials and the rutting 

depth of the first two measurements. Examples of this process are presented in Figure 5 

and Figure 6, which show a case that requires a steep trend and another that requires a 

smoother one. In some instances, the second-degree polynomial estimation does not 

result in a good fit and is substituted with linear interpolation.  

 

 

Figure 5: Plot illustrating a smooth estimated trend for missing rutting depths. 
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Figure 6: Plot illustrating a steep estimated trend for missing rutting depths. 

 

4.1.1.4.3 Data Smoothing   

The use of point-based observations proved to be impractical since no 

information is available regarding the spatial variability of input variables along the 

length of the road. In other words, the 22 rut depth values under each wheel-path and 

each station, all of which having identical input features, cannot be used. Instead, an 

average representative rut depth is used to represent the performance of a test section 

during each data collection survey.  

Several techniques were examined to achieve the latter. This includes using the 

average value of measurements for every year, fitting a regression for rut depth versus 

age for each road, or performing Locally Weighted Regression (LOESS). The use of 

average values of measurements has several limitations as it results in unsmooth curves 

and un-reasonable trends in numerous cases. Rut depth is expected to increase with time 

and traffic repetitions; however, the average method resulted in constant rutting values 
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over time in some instances, as shown in Figure 7 (grey line). On the other hand, using 

regression analysis is disregarded as well because reasonable fits that represent the data 

with minimal errors were unattainable due to the complex trends in the data. This 

limitation is overcome with LOESS analysis, a non-parametric technique used to obtain 

smooth lines through scatters of data [114]. Unlike regression analysis, this method 

works because it does not require stringent specifications about the mathematical 

structure that may exist within the data. The rut depth is smoothed as a function of age 

in a moving fashion analogous to moving average computations [114]. The LOESS 

technique is adopted to smoothen the data and get rutting depths at 0.5-year increments. 

Obtaining the data at equal time intervals provides several advantages, especially if it 

were to be used in time-series analysis.  

 

 

Figure 7: Rutting depth as a function of age using the average and LOESS methods. 
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 Climate Data  

The LTPP provides two sources for climatic data. These sources include data 

obtained from weather stations in the vicinity of LTPP test sections and data obtained 

from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

database that was developed by NASA through the analysis of ground, satellite, ocean, 

and atmospheric observations [91]. The MERRA data was selected since its availability 

is not restricted to the United States.  

To account for climatic effects, variables required to calculate the effective 

temperature conditions were used. The concept of the effective temperature was 

introduced to provide a single temperature that accounts for seasonal fluctuations while 

inducing similar cumulative damage [115]. In its latest form, Teff is calculated using 

Equation 4. 

𝑇_𝑒𝑓𝑓 = 14.62 − 3.361ln(𝐹𝑟𝑒𝑞) − 10.940(𝑧) + 1.121(𝑀𝐴𝐴𝑇) + 1.718(𝜎𝑀𝑀𝐴𝑇)

− 0.431(𝑊𝑖𝑛𝑑) + 0.333(𝑆𝑢𝑛𝑠ℎ𝑖𝑛𝑒) + 0.08(𝑅𝑎𝑖𝑛) 

(4) 

 

Where:  

- 𝑇𝑒𝑓𝑓 is the effective temperature in (oF) 

- 𝑧 is the critical depth (inches) 

- 𝐹𝑟𝑒𝑞 is the loading frequency (Hz) 

- 𝑀𝐴𝐴𝑇 is the mean annual air temperature (oF) 

- 𝜎𝑀𝑀𝐴𝑇  is the standard deviation of the mean monthly air temperature (oF) 

- 𝑊𝑖𝑛𝑑 is the mean annual wind speed (mph) 

- 𝑅𝑎𝑖𝑛 is the annual cumulative rainfall depth (inches) 

- 𝑆𝑢𝑛𝑠ℎ𝑖𝑛𝑒 is the annual percentage of sunshine (%) 



 

43 

 

The individual variables required to calculate the effective climatic conditions 

were extracted to be used as inputs into the model from the sources detailed in Table 5.  

Yearly could cover, wind velocity, precipitation, freezing index, and 

temperature measurements are extracted and used to compute annual averages from at 

least 20 years of data. Monthly temperature measurements were also obtained to 

evaluate the monthly standard deviation. The average of the monthly temperature 

standard deviation (𝜎𝑀𝑀𝐴𝑇) associated with more than 20 years of measurements was 

calculated for all the test sections.   

 

 Traffic Data  

4.1.1.6.1 Traffic Inputs and Data Sources 

Traffic is one of the most influencing factors in predicting rutting which is a 

load-related distress. Several measures may be used for reflecting the amount of traffic 

experienced by a pavement including the Average Annual Daily Traffic (AADT), the 

Equivalent Single Axle Load (ESAL), and the elaborate traffic load spectra [116]. The 

traffic load spectra measure provides the most detailed and accurate representation of 

traffic as it records the number of axles, configuration, and weight of each vehicle. 

However, this method involves high complexity and a large number of variables; 

therefore, it could not be used for the fulfillment of the objectives of this study. On the 

other hand, AADT, which approximates the average daily traffic volume traversing a 

roadway, does not correlate traffic to the associated pavement damage. Consequently, 

the number of ESALs is used as a metric to overcome the complexity of using load 

spectra while taking into account the corresponding pavement damage potential [116], 
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[117]. The number of ESALs is the equivalent number of 18-kip single axle loads that 

result from a combination of different axle loads, configurations, and pavement 

characteristics. The damage caused by different axle loads and configurations is related 

to that of a standard axle by Equivalent Axle Load Factors (EALF) that were developed 

in the 1993 AASHTO guide. This guide lists the numerical values of EALF for single, 

tandem, and tridem axles of varying weights. Additionally, several DOTs provide 

estimates of EALF as a function of FHWA’s truck classification criteria. Since the 

ESAL simplifies the complexity of the load spectra in one value while providing DOTs 

with sufficient flexibility to make assumptions and estimations when data is not 

complete, it is considered the most appropriate traffic metric for the objective and scope 

of this research [116], [117]. 

Annual ESAL data are available in two tables in the LTPP. The 

TRF_MON_EST_ESAL table includes ESAL estimates provided by highway agencies 

over several years, while the TRF_ESAL_COMPUTED table includes ESAL values 

obtained from instrumented sections. The evaluation of data availability revealed that 

data in the TRF_ESAL_COMPUTED table is limited as it is either unavailable for 

many sections or it does not cover the years of the rutting surveys. Therefore, the bulk 

of data were extracted from the TRF_MON_EST_ESAL table and the use of the 

TRF_ESAL_COMPUTED table was restricted to cases where data was unavailable in 

the former.  
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4.1.1.6.2 Cumulative Traffic Calculation 

The ultimate objective is to obtain the cumulative value of ESALs at every 

point in the pavement timeline corresponding to rut depth measurements. The 

cumulative ESALs is calculated using Equation 5. 

𝐶𝐸𝑆𝐴𝐿𝑖 = ∑𝐸𝑆𝐴𝐿𝑛

𝑖

𝑛=0

 (5) 

Where: 

- 𝐶𝐸𝑆𝐴𝐿𝑖 = cumulative traffic at the end of year 𝑖. 

- 𝐸𝑆𝐴𝐿𝑛 = annual traffic at the end of year 𝑛. 

 

However, the persistent unavailability of 𝐸𝑆𝐴𝐿𝑛 information for some years of 

the pavement’s life introduced several challenges to the calculation process. 

Consequently, several methodologies were assessed to estimate the annual ESALs and 

calculate the cumulative traffic. These methodologies require the calculation of the 

growth rate which is then used to estimate the number of ESALs for the missing years. 

The GR is calculated using Equations 6 and used to estimate the missing values based 

on Equation 7. 

𝐺𝑅i = (
ESALj

ESALi
)
(
1
j−i

)

– 1 
(6) 

Where: 

- 𝐺𝑅i = growth rate at year 𝑖. 

- ESALi/j = traffic at the end of year i/j. 

- j − i = the analysis period in years.   
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𝐸𝑆𝐴𝐿𝑖 = 𝐸𝑆𝐴𝐿0(1 + 𝐺𝑅)𝑖 (7) 

Where: 

- 𝐸𝑆𝐴𝐿𝑖 = annual traffic at the end of year 𝑖. 

- 𝐸𝑆𝐴𝐿0 = traffic at the construction year. 

 

• Method 1:  

This procedure involves obtaining the initial ESALs corresponding to the 

construction year and calculating the GR for consecutive measurements. It is worth 

noting that the consecutive measurements are not necessarily done at equal time 

intervals. This results in a set of GR values corresponding to the list of available years.  

The average GR and the ESALs at construction are obtained and used to populate the 

traffic data at one-year intervals between the construction year and the year 

corresponding to the last rut depth measurement (Equation 6 and Equation 7). The 

cumulative ESALs are then acquired by applying Equation 5. 

This method exhibited significant shortcomings due to its sensitivity to the 

annual fluctuations in the reported ESALs. The corresponding limitations are illustrated 

in the following example where traffic data over fifteen years for an SPS 5 section in 

Alabama were extracted and analyzed (Table 3). A spike in the reported ESALs is 

experienced in year 9, where the number of annual ESALs increases from 82,000 to 

290,000. This increase is equivalent to a growth rate of 254% which skews the average 

and results in a significantly high GR (Table 3). Computing the annual ESALs based on 

the calculated average GR of 19% and the annual value of 65,000 ESALs leads to 

unrealistic estimates of annual ESALs. For example, at year 4 the outcome will be 

129,000 ESALs, which is much higher than the actual value of 73,000 ESALs (Table 3). 
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Following deliberate evaluation of the entire dataset, it was concluded that using this 

method can result in erroneous calculations and therefore it is not suitable for estimating 

the ESAL values for missing years. 

 

Table 3: Example of traffic data processing. 

Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

kESAL 65 67 69 71 73 75 78 80 82 290 293 290 287 288 298 294 

kESAL0 65 

Annual GR 3 3 3 3 3 4 3 3 254 1 -1 -1 0 3 -1 - 

Average GR 19% 

Estimated 

ESAL 
65 77 91 108 129 152 181 214 254 301 357 424 502 596 706 838 

 

 

 

 

• Method 2: 

Method 2 was introduced to account for the limitations of method 1. Instead of 

using an average GR to repopulate all the traffic data, all the growth rates corresponding 

to consecutive traffic observations are used to estimate the annual ESALs for the 

missing years only. This approach involves extracting the construction date and the date 

of the last rut depth measurements for each section and listing all the years between 

these dates at one-year intervals. Annual ESALs obtained from the database tables are 

matched with the listed years and the years with missing data are identified. The GR 

values between each two consecutive traffic measurements are calculated using 

Equation 6. It should be reiterated that consecutive traffic measurements are not 

necessarily reported at one-year intervals causing gaps in the available data. The 

missing ESAL values are subsequently estimated on a case-by-case basis based on two 

considerations: 
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o In case the missing years belong to the upper bound of the 

available data (e.g., years 13, 14, and 15 in Table 3), the average 

GR of the last few available years is used to estimate the missing 

information. This can only be done provided that the data was 

consistent over the last few years. As such, a GR of 0.25% is 

applied to a value of 287,000 ESALs (year 12) to estimate future 

traffic using Equation 7 (Table 3). Conversely, if the GR values 

fluctuate significantly, the general growth trend over all the 

available years is evaluated. 

o In case there were gaps in the reported traffic data (i.e.j − i >1), 

the value of ESALs for the missing years are obtained based on 

the GR value corresponding to the relevant range of years. For 

example, if traffic data was not available for year 4 (Table 3), the 

GR value between years 3 and 5 is calculated, using Equation 6, 

and used to calculate the annual ESAL at year 4.  

 

The completed set of annual traffic data is utilized to obtain the cumulative 

traffic each year. The final stage includes coupling the cumulative traffic values with the 

exact rutting survey dates. Rutting surveys are not specifically conducted at the end of 

the year; consequently, the end of year cumulative ESALs that are obtained from 

Equation 5 need to be corrected. The adjustment is achieved by subtracting the ESALs 

that are expected to traverse the road after the date of the survey according to Equation 

8.  
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𝐶𝑜𝑟𝑟𝐶𝐸𝑆𝐴𝐿𝑖 = 𝐶𝐸𝑆𝐴𝐿𝑖 − (
𝑁𝑜. 𝑑𝑎𝑦𝑠𝑢𝑛𝑡𝑖𝑙𝑠𝑢𝑟𝑣𝑒𝑦𝑑𝑎𝑦

𝐷𝑎𝑦𝑠𝑖𝑛𝑎𝑦𝑒𝑎𝑟
)𝐸𝑆𝐴𝐿𝑖

= 𝐶𝐸𝑆𝐴𝐿𝑖 −(
(𝑀𝑜𝑛𝑡ℎ − 1) × 30 + 𝐷𝑎𝑦

365
)𝐸𝑆𝐴𝐿𝑖  

(8) 

 

Where: 

- 𝐶𝑜𝑟𝑟𝐶𝐸𝑆𝐴𝐿𝑖 = corrected cumulative ESALs at rutting measurement date 𝑖. 

- 𝐶𝐸𝑆𝐴𝐿𝑖 = calculated cumulative ESALs at the end of the year 

corresponding to rutting measurement date 𝑖. 

- 𝐸𝑆𝐴𝐿𝑖 = annual ESAL at the end of the year corresponding to rutting 

measurement date 𝑖. 

 

 Layer Thickness and Material Data  

Layer thickness and material type information are extracted for all layers that 

are reported in the SECTION_LAYER_STRUCTURE table for the required road 

sections. It is worth noting that the number of layers is not consistent across all the test 

sections. This becomes challenging while inputting the properties for the different layers 

into the NN model since it only accepts a fixed number of inputs. Consequently, a 

manipulation process was performed based on the maximum possible number of layers 

within each layer category (e.g., original surface layer, binder layer, etc.), in order to 

have the same number of layers for all test sections. 
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4.1.1.7.1 Asphalt Concrete Layers 

A surface layer and a binder layer are typically present in any pavement 

structure. Volumetric information as well as binder and mix properties are extracted for 

these layers. The thicknesses of the layers are extracted from the SECTION_LAYER_ 

STRUCTURE table. The extracted volumetric information includes bulk and maximum 

specific gravities, percentage of air voids, percentage of asphalt content, and the 

aggregate gradation. Volumetric data is available for every core taken on a specific test 

section in and out of the wheel path. After investigating the data, the difference between 

the two was obtained to be insignificant, therefore all available values were averaged for 

every layer. Additionally, the gradation data is used to calculate the Nominal Maximum 

Aggregate Size (NMAS). The mixture volumetric information is scattered over multiple 

TST, SPS, INV, and RHB LTPP tables. TST tables were given the highest priority as 

they contain the most data. When the required information is missing from the TST 

tables, the SPS, RHB, and INV tables were checked. Details about the specific tables 

and fields are available in Table 5. 

The penetration value at 25 oC was used to represent binder properties for the 

surface and binder layers. Following the preliminary statistical analysis of the extracted 

data, it was concluded that the penetration grade does not vary significantly between the 

different asphalt layers. Hence, only the penetration grade for the top layer is 

considered. Although the LTPP is populated with dynamic modulus data, it was not 

considered in this study because it only considers inputs that do not require advanced 

laboratory testing.  
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4.1.1.7.2 Base and Subbase Layers 

Layer thickness, material type, and resilient modulus values were extracted 

from the LTPP database. General material types for the base and subbase layers were 

obtained from the SECTION_LAYER_STRUCTURE table and grouped into several 

categories in an attempt to reduce the number of variables while accounting for their 

different characteristics that affect pavement deterioration. As a result, five base 

categories were distinguished, including unbound base (DGAB), asphalt treated base 

(ATB), permeable asphalt treated base (PATB), nonbituminous treated base (NONBIT), 

and no base (NONE) [49]. Material types were classified into different categories based 

on Table 4. 

Additionally, average resilient modulus (MR) data was extracted for granular 

base materials and the average resilient modulus at 4, 25, and 40 oC for treated base 

materials if they exist. The resilient modulus of the unbound layers is stress-dependent 

and is measured using the triaxial test at different confining pressure and deviatoric 

stress states. The obtained MR values corresponding to 15 measurements at different 

stress states were extracted from the TST_UG07_SS07_WKSHT_SUM table and used 

to fit a predictive equation. This equation serves to obtain the required resilient modulus 

at any stress state. NCHRP Project 1-28A recommends using Equation 9 for that 

purpose. This equation was solved to obtain k1, k2, and k3 of all the layers available in 

the LTPP via a MATLAB code. For pavements, the NCHRP Project 1-28A proposes 

using a 𝜎3 of 5 psi and a 𝜎1 of 15 psi for the aggregate base and subbase layers and a 𝜎3 

of 2 psi and a 𝜎1 of 6 psi for the subgrade [118].  

𝑀𝑟 = 𝑘1𝑃𝑎 (
𝜃

𝑃𝑎
)
𝑘2

(
𝜏𝑜𝑐𝑡
𝑃𝑎

+ 1)
𝑘3

 (9) 
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𝜃 = 𝜎1 + 2𝜎3 (10) 

𝜏𝑜𝑐𝑡 =
√2

3
(𝜎1 − 𝜎3) 

(11) 

Where:  

- k1, k2, k3 = regression constants. 

- 𝑃𝑎 = atmospheric pressure equal to 14.7 psi. 

- 𝜃 = bulk stress. 

- 𝜏𝑜𝑐𝑡 = octahedral shear stress. 

- 𝜎1𝑎𝑛𝑑𝜎3 = principal stresses. 

 

Table 4: Material code classifications for the different base categories [49]. 

Base 

Category 

Base 

Description 
Material Description 

DGAB Unbound Base 

Gravel (uncrushed) 

Crushed stone 

Crushed gravel 

Crushed slag 

Sand 

Soil-aggregate mixture (fine-grained) 

Soil-aggregate mixture (coarse-grained) 

Fine-grained soils 

ATB 
Asphalt 

Treated Base 

Hot mix asphalt concrete (HMAC) 

Sand asphalt 

Asphalt treated mixture 

Dense graded, hot laid, central plant mix 

Dense graded, cold laid, central plant mix 

Dense graded, hot laid, mixed in-place 

Recycled asphalt concrete, plant mix, hot laid 

Recycled asphalt concrete, plant mix, cold laid 

PATB 

Permeable 

Asphalt Treated 

Base 

Open-graded, hot laid, central plant mix 

Open-graded, cold laid, mixed in-place 

Open-graded, cold laid, central plant mix 

NONBIT 
Non-bituminous 

Treated Base 

Cement aggregate mixture 

Econocrete 

Cement-treated soil 

Includes treated soils (e.g., lime, calcium chloride 
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4.1.1.7.3 Subgrade Layer  

Regarding the subgrade layer, the AAHSHTO soil classification was used 

instead of the material description provided in the SECTION_LAYER_STRUCTURE 

table since it provides a clear distinction among the different soil types. The data 

revealed that more than one soil class can coexist on a test section. In such cases, the 

most frequent soil class was assumed to be representative of the entire test section. The 

average resilient modulus of the subgrade was also extracted and calculated using 

Equation 9. 

 

Table 5: LTPP database source tables and corresponding calculations. 

Data Item LTPP Database Table Field ID 
Calculated 

Value 

General Section Information  

Section ID 

EXPERIMENT_SECTION 

SHRP_ID - 

State STATE_CODE - 

Construction 

year  
ASSIGN_DATE Age 

Project ID SPS_PROJECT_STATIONS PROJECT_ID - 

Climate Data  
Annual 

Average 

Cloud Cover 

MERRA_SOLAR_YEAR CLOUD_COVER_AVG 

Average 

Annual 

Sunshine 

Annual 

Average 

Wind 

Velocity  

MERRA_WIND_YEAR WIND_VELOCITY_AVG 

Average 

Annual Wind 

Velocity 

Annual 

Average 

Precipitation  

MERRA_PRECIP_YEAR PRECIPITATION 

Average 

Annual 

Precipitation 

Annual 

Average 

Freezing 

Index 

MERRA_TEMP_YEAR FREEZE_INDEX 

Average 

Annual 

Freezing 

Index 

Annual 

Average 

Temperature 

MERRA_TEMP_YEAR TEMP_MEAN_AVG 

Average 

Annual 

Temperature 

Monthly 

Average 

Temperature 

CLM_VWS_TEMP_MONTH MEAN_MON_TEMP_VG 

Standard 

deviation of 

the mean 

monthly air 

temperature 
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Table 5: LTPP database source tables and corresponding calculations (Continued). 

Data Item LTPP Database Table Field ID 
Calculated 

Value 

Rutting Data  

Rut Depth 
MON_T_PROF_INDEX_ 

POINT 

LLH_DEPTH_1_8 

RLH_DEPTH_1_8 

COV Rut 

Depth 

LOESS Rut 

Depth 

Maintenance and Rehabilitation History  
Maintenance 

Dates and 

Types 

MNT_IMP 
IMP_DATE 

IMP_TYPE 
- 

Rehabilitatio

n Dates 
RHB_IMP 

IMP_DATE 

IMP_TYPE 
- 

Construction 

No. Change 

Date and 

Reason  

EXPERIMENT_SECTION 
CN_ASSIGN_DATE 

CN_CHANGE_REASON 
- 

Traffic Data  
Equivalent 

Single Axle 

Loads 

TRF_ESAL_ESTIMATED ANL_KESAL_LTPP_LN_YR 
Cumulative 

ESALs TRF_ESAL_COMPUTED KESAL_YEAR 

Thickness and Material Data  
Layer 

Number 

SECTION_LAYER_ 

STRUCTURE 

LAYER_NO - 

Layer Type DESCRIPTION - 

Thickness 

(mm) 
REPR_THICKNESS - 

Layer 

Material 

Type 

MATL_CODE Base Category 

Group Project 

Layers 
PROJECT_LAYER_CODE - 

Gradation for 

AC Layers  

TST_AG04 

RHB_ACO_AGGR_PROP 

INV_GRADATION 

ONE_AND_HALF_PASSING 
→  

NO_200_PASSING 

NMAS 

Subgrade 

Material 

Type 

TST_SS04_UG08 AASHTO_SOIL_CLASS - 

Air Voids 

(%) 

TST_AIR_VOIDS_CALC 

SPS*_PMA_MIXTURE_PROP 

RHB_ACO_MIX_PROP 

INV_PMA_ORIG_MIX 

AIR_VOIDS 

PCT_AIR_VOIDS_MEAN 
Average AV 

Bulk Specific 

Gravity  

BSG 

BULK_SPEC_GRAVITY_MEA

N 

Average Gmb 

Maximum 

Specific 

Gravity 

MSG 

MAX_SPEC_GRAVITY 
Average Gmm 

Asphalt 

Binder 

Content (%) 

TST_AC04 

SPS#_PMA_MIXTURE_PROP 

RHB_ACO_MIX_PROP 

INV_PMA_ORIG_MIX 

ASPHALT_CONTENT_MEAN Average Pb 
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Table 5: LTPP database source tables and corresponding calculations (Continued). 

Data Item LTPP Database Table Field ID 
Calculated 

Value 

Penetration 

SPS_PMA_AC 

RHB_ACO_PROP 

INV_PMA_ASPHALT 

PENETRATION_77 

ORIG_PENETRATION_77 
- 

Resilient 

Modulus at 4, 

25 and 40 oC 

TST_AC07_V2_MR_SUM 
TEST_TEMPERATURE 

TOTAL_MR_AVG 
- 

Average 

Resilient 

Modulus for 

Unbound 

Layers 

TST_UG07_SS07_WKSHT_ 

SUM 
RES_MOD_AVG 

Solve 

Equation 9 

 

 

 

 

 Data Pre-processing  

 Handling Missing Data 

Following the data extraction operations elaborated in section 4.1.1, the 

obtained tables are combined in a complete dataset storing all the required modeling 

inputs and outputs in their final form after conducting transformations when applicable. 

The outcome is a dataset corresponding to rutting measurements from different regions 

that accounts for the variability in factors affecting rutting. Thus, ensuring the 

generalization abilities of the model and that local calibration is not crucial for 

meaningful results. For each road section, the collected information includes a set of 52 

input features that reflect the studied factors.  

Upon merging the datasets, frequent occurrences of incomplete sets of inputs 

were recognized. In such cases, one or more inputs are missing making the sample 

unsuitable for model development purposes. Data pre-processing and data imputation 

refer to all the operations executed to handle missing data. Three approaches 
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corresponding to increasing levels of interventions were performed to manage missing 

values and ensure a large and reliable dataset for modeling. These methods include 

deletion, using information of similar observations, and imputation based on logical 

rules [119].  The number of roads with complete data is identified after the application 

of each of the methods and a detailed breakdown of the number of sections 

corresponding to each experiment is presented in Table 6. Furthermore, Figure 8 shows 

the distribution of the missing data across the different input categories. The analysis of 

this distribution assists in identifying the most problematic variables in the LTPP. 

 

4.1.2.1.1 Deletion Method 

Deletion, also known as the do-nothing approach, involves removing all 

observations with missing data [119]. Filtering out all the roads with missing 

information was significantly disadvantageous as it resulted in the elimination of 

approximately 98% of all the available roads. The dataset was further examined for 

missing data belonging in three categories including AC layers volumetric properties, 

AC penetration grade, and base, subbase, and subgrade resilient moduli. 

 

Table 6: Number of test sections available as a function of the data handling method. 

Criteria  SPS 1 SPS 5 SPS 8 SPS 9 GPS 6 Total 

Total No. of Available 

Sections 
240 91 38 50 149 568 

No. of Sections with complete data 

Deletion Method 2 0 8 0 5 15 

Information of Similar 

Observations Method 
15 5 14 0 21 55 

Imputation Based on Logical 

Rules Method 
191 44 27 24 84 370 
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All other inputs including traffic, climate, and layer thicknesses were not 

included as they did not have any missing information. The evaluation revealed that 

more than 50% of the roads had missing information on one or more of the volumetric 

properties which include specific gravity, air voids, binder content, and aggregate 

gradation (Figure 8). While approximately 70% and 85% of the roads lacked 

penetration and resilient modulus data, respectively (Figure 8). As a result, only 15 

complete cases of that 568 test sections were available which necessitates exploring 

further methods for expanding the dataset (Table 6).  

 

4.1.2.1.2 Information on Similar Observations Method 

The different layers in each test section are identified by a unique layer code. In 

addition to the layer code, a project layer code is assigned to SPS pavement layers with 

the same material properties as other sections along the same site. Therefore, the 

unavailable information can be populated with data from SPS sections co-located on the 

same project site and having an identical project layer code (Figure 4). This step 

increased the number of available test sections (i.e., roads) from 15 to 55, which 

corresponds to less than 10% of the total number of available roads (Table 6). The bulk 

of the unavailable data belongs to the base, subbase, and subgrade properties followed 

by the penetration grade of AC layers. In fact, more than 60% of the roads had missing 

data in the latter categories (Figure 8). An additional level of data imputation is applied 

for the remaining layers that continue to have missing fields in order to enlarge the 

dataset. 
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4.1.2.1.3 Imputation Based on Logical Rules Method 

The imputation based on logical rules method involves replacing the missing 

values by the average properties of other layers and sections based on specific criteria. 

Regarding the penetration grades of the top layers, the availability of penetration grade 

information for the adjacent layers of the same test section is examined. In the cases 

where the adjacent layers did not include the required information, the penetration 

grades of other roads in the same State were sought to acquire the missing information. 

Regarding resilient modulus values for the base, subbase, and subgrade layer, the 

average MR of the same material type was used when measurements for adjacent layers 

of the same type were not available. If the same material type is used in the neighboring 

test sections in the same State, their average MR is used. However, if that was not the 

case, the overall average of the specific material types in the entire LTPP dataset was 

used to fill the missing cells. Missing gradation data were handled according to the 

number of missing sieves. If the percentage of aggregates passing all sieve sizes are 

missing, the data is compensated from the neighboring AC layers in the same section. 

On the other hand, if the percentage passing some sieves are available but some are 

missing, the missing values are estimated by interpolation. The interpolation 

methodology involved searching the LTPP database for mixes having the same NMAS 

and similar percentages to those available for the mix that is missing some values. This 

methodology is explained in Figure 9. Each missing input corresponding to other AC 

mix volumetric properties was estimated based on the average properties of the layers 

below or above them on a case-by-case basis.  

Imputation based on logical rules results in a significant improvement in the 

number of roads having complete inputs which increases to 370 (Table 6). Despite all 
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the assumptions, several roads were disqualified as they continued to include missing 

inputs. These cases occurred when the penetration grade could not be determined, the 

average MR for a certain material type could not be obtained, when traffic values were 

unavailable or unrealistic, and as a result of some quality control measures. Quality 

measures targeted roads having a significantly different number of layers; for example, 

sections with no base layers, three base layers, or more than one sublayer. 

Approximately 20% of the obtained dataset had missing penetration grades which could 

not be estimated, in addition to another 20% corresponding to other missing variables 

(Figure 8).   

 

 

 

Figure 8: Distribution of the missing data based on several data handling methods. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
C

 V
o

lu
m

et
ri

cs

A
C

 P
en

et
ra

ti
o
n

B
a

se
/ 

S
u

b
b

a
se

/ 
S

u
b

g
ra

d
e

A
C

 V
o

lu
m

et
ri

cs

A
C

 P
en

et
ra

ti
o
n

B
a

se
/ 

S
u

b
b

a
se

/ 
S

u
b

g
ra

d
e

A
C

 V
o

lu
m

et
ri

cs

A
C

 P
en

et
ra

ti
o
n

O
th

er

Deletion Information of Similar

Observations

Imputation Based on Logical

Rules

P
er

ce
n

ta
g

e 
o

f 
th

e 
D

a
ta



 

60 

 

\

 

Figure 9: Missing sieve size interpolation. 
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 Final Rutting Data 

The final selection of roads includes a total of 370 test sections distributed 

among five different LTPP experiments. Rut depth data corresponding to several 

distress surveys conducted on the selected roads was extracted from the original dataset. 

This resulted in 75,641 data points that increased to 112,998 after being processed as 

discussed in 4.1.1.4.2. Ultimately, rut depth measurements obtained at 22 different 

locations of the test sections are smoothed to obtain a total of 8,603 data points. 

 

 Final Dataset 

Following all the estimations and assumptions that were performed on the data, 

Table 7 provides the summary statistics of the data available for all the input and output 

parameters. Additionally, Figure 10 through Figure 12 present the data distribution of 

rutting and key features, including traffic and average temperatures.  

 

 

Figure 10: Rut depth distribution. 
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Figure 11: Cumulative traffic distribution. 

 

 

Figure 12: Average annual temperature distribution. 
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Table 7: Summary statistics of the adopted dataset. 

Input Parameter Mean 
Standard 

Deviation 
Min Max 

Rutting 

Rut Depth (mm) 5.02 3.40 0.00 31.00 

Traffic 

1. Cumulative Traffic Range (Thousand 

ESALs) 
2386.22 4715.70 0.00 48826.15 

Climate 

2. Precipitation (inches) 35.55 14.29 6.86 64.99 

3. Evaporation (inches) 29.13 11.26 6.50 50.57 

4. Standard Deviation of the Monthly 

Mean Air Temperature (MMAT) (oF) 
15.22 3.44 6.81 24.58 

5. Mean Annual Air Temperature 

(MAAT) (oF) 
58.74 10.67 34.49 75.28 

6. Average Wind Velocity (mile per 

second) 
5.69 2.54 0.00 11.51 

7. Average Cloud Cover (%) 45 8 28 60 

8. Average Freezing Index 218.46 340.69 0.00 1772.27 

9. Average Shortwave Surface 13978.10 1535.99 10370.10 16970.62 

10. Teff (oF) 76.17 7.70 51.21 89.47 

Surface AC Layer 

11. Thickness (cm) 2.82 1.80 0.80 8.10 

12. Bulk Specific Gravity (Gmb) 2.31 0.10 1.98 2.56 

13. Maximum Specific Gravity (Gmm) 2.47 0.06 2.21 2.68 

14. Air Voids (%) (A.V) 6.43 3.01 1.33 19.71 

15. Asphalt Content (%) (Pb) 4.92 0.82 2.00 7.50 

16. Penetration (.1 mm) 77.41 21.67 41.00 185.00 

17. Nominal Maximum Aggregate Size 

(mm) 
14.46 4.20 9.50 25.00 

Gradation (% Passing) 

18. 1½” 

19. 1” 

20. 3/4” 

21. 1/2” 

22. 3/8” 

23. # 4 

24. #10 

25. #40 

26. #80 

27. #200 

 

100.00 

99.82 

96.69 

91.59 

81.86 

57.03 

37.11 

19.33 

10.88 

5.60 

 

0.13 

1.37 

3.84 

9.29 

10.92 

10.63 

8.52 

5.44 

3.28 

1.41 

 

98.00 

84.00 

71.00 

40.00 

26.00 

16.00 

13.86 

8.00 

5.00 

1.00 

 

100.00 

100.00 

100.00 

100.00 

100.00 

84.00 

57.00 

40.00 

20.00 

11.60 

Binder AC Layer 

28. Thickness (cm) 3.50 2.72 0.00 17.10 

29. Bulk Specific Gravity 1.85 0.96 0.00 2.62 

30. Maximum Specific Gravity 1.96 1.02 0.00 2.70 

31. Air Voids (%) 4.36 3.57 0.00 23.79 

32. Asphalt Content (%) 3.70 2.02 0.00 6.90 

33. Nominal Maximum Aggregate Size 

(mm) 
19.59 4.78 9.50 25.00 
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Table 7: Summary statistics of the adopted dataset (Continued). 

Input Parameter Mean 
Standard 

Deviation 
Min Max 

Binder AC Layer 

Gradation (% Passing) 

34. 1½” 

35. 1” 

36. 3/4” 

37. 1/2” 

38. 3/8” 

39. # 4 

40. #10 

41. #40 

42. #80 

43. #200 

 

78.92 

78.73 

75.11 

66.02 

56.89 

39.96 

28.35 

15.55 

9.31 

4.62 

 

40.84 

40.76 

39.22 

35.44 

31.16 

22.40 

16.59 

10.44 

7.61 

2.82 

 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

 

100.00 

100.00 

100.00 

100.00 

99.00 

79.00 

74.49 

86.31 

91.23 

11.50 

Base Layer 1 

44. Thickness (in) 7.94 3.98 0.00 28.00 

45. Resilient Modulus (psi) 440873.97 450871.30 0.00 2863050.12 

Base Layer 2 

46. Thickness (in) 2.25 3.28 0.00 13.40 

47. Resilient Modulus (psi) 118854.14 298303.27 0.00 1586135.57 

Subbase Layer 1 

48. Thickness (in) 5.75 7.52 0.00 54.00 

49. Resilient Modulus (psi) 8934.94 9165.28 0.00 27712.13 

Subgrade 

50. Resilient Modulus (psi) 10338.60 3336.54 3606.01 30791.75 

Other 

51. Equivalent Base Thickness (in) 33.31 20.20 0.00 100.75 

52. Construction Quality  0.39 0.13 0.14 0.92 

 

 

 

 

 Rutting Deterioration Model Development 

 Correlation Analysis and Feature Selection 

Correlation analysis is an efficient method for feature selection. It is crucial to 

identify highly correlated features as they are considered to degrade model performance 

[120]. Strongly correlated features are deemed redundant and non-informative and will 

result in a low-quality output. As a rule of thumb, a good feature subset contains 

features that are strongly correlated with the output but not with each other [120]. The 

dataset at hand is expected to include highly correlated features. Aggregate gradation, 

for example, includes the percentage of aggregates passing consecutive sieve sizes. 



 

65 

 

Other instances include the asphalt mixture percentage of air voids, binder content, and 

bulk and maximum theoretical specific gravity. Spearman’s rank correlation coefficient 

is used to measure the correlation among the features while accounting for non-

linearity. Features with correlations exceeding a predetermined threshold of 0.4 are 

eliminated. If features are considered important from a technical perspective, they are 

not removed even if they exceed the correlation threshold. This results in reducing the 

number of variables from 52 to 28. Table 8 lists the features based on their numbers 

presented in Table 7.  

 

 NN Model Development 

The developed NN models are based on the feedforward backpropagation 

learning process available in the Keras library in Python. Developing the proposed NN 

models requires configuring the network architecture (number of hidden layers and 

neurons in each layer), the activation function to be used at each layer, and the 

optimization algorithm that will be used in training the model. For the purpose of 

training and tuning the model, 80% of the original dataset is used, and the remaining 

20% is reserved for testing the final trained model and estimating the generalization 

error. In the process of model tuning, five-fold cross-validation is applied, and the 

performance metric used for model evaluation is the mean squared error (MSE).  

 

Table 8: List of the selected features after correlation analysis. 

Model  List of Selected Features No. Features 

Model -2- 
1, 2, 4, 5, 6, 11, 13, 14, 16, 17, 23, 27, 28, 30, 31, 32, 

33, 39, 43, 44, 45, 46, 47, 48, 49, 50, and 52 
28 
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 Feature Scaling 

Feature scaling is performed to transform all features to a similar scale. This is 

necessary for all machine learning algorithms when the used features significantly differ 

in scale. Normalization and standardization correspond to rescaling the data to a range 

of [0,1] or [-1,1], and to a distribution of mean 0 and a standard deviation of 1, 

respectively. Both methods were examined, and the standardization method was 

selected as it resulted in a better performance based on the preliminary analysis.  

 

 Activation Functions 

Different activation functions could be used for the hidden layers and the 

output layer. The results of preliminary studies on the obtained dataset justify the use of 

ReLU for all the hidden layers. Regarding the output layer, activation functions are not 

typically used for regression problems. However, predicting rutting depth introduces a 

constraint of having positive predictions. This can be enforced either by normalizing the 

rutting data to a range of [0,1] and applying a sigmoidal activation function or by 

applying a ReLU activation function. After experimenting with both methods, the ReLU 

activation function achieved better results as shown in Figure 13.  

 

 Weight Initialization 

The weight initialization scheme selected has a significant impact on the 

training process and the model performance as it speeds up the process and prevents 

deadlocks. The default initialization method used by Keras is the glorot uniform 
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initialization [121]. However, since the RELU activation function is used, the He 

initialization method is recommended [122].  

 

 

Figure 13: Effect of the output layer activation function on the model performance. 

 

 Hyperparameter Tuning 

Hyperparameters are parameters that define the NN’s architecture and the 

overall learning process [121]. These parameters cannot be learned; however, they are 

tuned through different approaches. In essence, all the hyperparameter tuning 

approaches rely on training the NN using different combinations of hyperparameters 

and selecting the ones that result in the best performance. Unlike other machine learning 

algorithms, hyperparameter tuning is very critical for deep neural networks because they 

have a higher dependency on the network’s configuration [123]. As such, a rigorous 

search of the hyperparameter space is required. The considered hyperparameters include 

the number of hidden neurons in each layer, the batch size, the learning rate, and the 
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regularization penalties (L1 & L2). The traditional grid search method is typically used 

to search the hyperparameter space and find the best solution [100]. Since considering 

all combinations is very computationally expensive, tuning is performed on each 

parameter separately. Hyperparameter tuning starts with the number of hidden neurons 

and layers, then the learning rate followed by the batch size and regularization. Table 9 

lists the explored space for each of the considered hyperparameters. 

 

Table 9: Explored hyperparameter space for developing neural network models. 

Hyperparameter Description [121] Range 

No. Hidden Layers 

A container of a 

collection of hidden 

neurons 

1, 2, and 3 

No. Hidden Neurons 

Computational units that 

calculates the weighted 

sum of inputs and maps it 

based on the activation 

function 

Increments of 10 ∈ [10,1000] 

Learning Rate 

The size of the step taken 

to adjust the weights with 

respect to the loss 

gradient 

0.0001, 0.0003, 0.001, 0.003, 

0.01, 0.03, and 0.1 

Dropout 

Regularization 

A technique that 

randomly deactivates 

neurons during each 

iteration based on a 

predefined dropout rate or 

probability in order to 

prevent overfitting 

0 and 0.2 

L1 
Regularization penalties 

that are added to the loss 

function to reduce the 

value of the weights and 

intimately avoid 

overfitting 

0.0001, 0.001, 0.01, and 0.1 

L2 0.0001, 0.001, 0.01, and 0.1 

Batch Size 

The number of training 

samples utilized during 

one iteration 

32, 64, 128, 256, and 1024 
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 Additional Data Filtering for Model Improvement 

The feature subset is further examined to improve the obtained trained and 

tuned models. In this process, the model performance and errors are analyzed to identify 

any problematic features or values. Features that negatively impact the model 

performance, in terms of MSE, MAE, and MAPE, are either removed or adjusted to 

improve the performance. After training the model with 28 features, the errors 

corresponding to each individual road section are calculated. It is worth noting that the 

feature combinations that result in the highest MSE do not necessarily result in the 

highest MAE or MAPE. Mainly because MAPE is more sensitive to low values of 

rutting while MSE is more sensitive to large rutting depths. Therefore, all three metrics 

should be considered in order to identify any features or values that are deteriorating the 

model’s performance. This is achieved by clustering the MSE, MAE, and MAPE using 

the Kmeans algorithm. The outcome is four clusters corresponding to low, medium, 

high, and extremely high errors that are clustered based on the value of the three error 

metrics. Finally, the distribution of values of each input within each error cluster is 

evaluated and illustrated using boxplots to detect problems. This method is 

supplemented by evaluating the correlation between the errors and the features. Features 

that are highly correlated with the errors would require further analysis. These 

procedures are depicted in Figure 14. 

 

 Feature Importance Study 

The importance of the different variables is quantified to achieve the second 

objective of this study. Feature importance is examined using the permutation 

importance algorithm. In essence, the permutation importance algorithm includes 
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shuffling the values of each feature individually and comparing the performance to the 

benchmark error [124]. The permutation feature importance is calculated either as the 

difference between or the ratio of the estimated permutation error and the original 

benchmark error [124]. 

 

 

Figure 14: Process for identifying problematic features and values to improve model 

performance. 

 

 Sensitivity Analysis 

Sensitivity analysis aims to study the influence of changes in model input 

values on the model output. The profile sensitivity method is used to analyze the NN 

model sensitivity. It aims at analyzing each input individually by varying its values 
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between the minimum and maximum at equal subintervals while keeping all other 

inputs constant [125], [126]. Inputs, excluding the one under study, are set at five levels 

corresponding to the minimum, first, second and third quartile, and the maximum 

values. The result is five values corresponding to different input parameters at each 

subinterval. The median is calculated and plotted with respect to the subintervals to 

form a profile. A profile for each input is required to evaluate the contribution of each 

of the variables [125]. The elasticity, which describes the percentage change in outputs 

as the input changes by 1%, is also calculated to quantify and rank the contribution of 

the different features.  

 

 Family Models 

Models developed for groups of pavements are known as family models. After 

finalizing the NN model, family models corresponding to certain traffic, climate, and 

mix design combinations are obtained. The micro-climate, traffic and pavement 

structural and material characteristics are expected to remain unchanged within each 

family. The development of general family models introduces additional simplifications 

to agencies in data-scarce regions since it allows them to benefit from the outputs of the 

NN even if they do not have detailed information about the required inputs.  

Family models are divided based on three distinct criteria, including traffic and 

climatic conditions, in addition to rutting resistance potential. The functional class for 

all the available roads in the LTPP database was extracted and descriptive statistics of 

the annual ESALs were determined. These statistics are used to obtain the limits for the 

local, collector, arterial and interstate roads. Additionally, the climate groups were 
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obtained based on the LTPP climate zoning criteria [127]. The traffic and climate 

classification criteria are summarized in Table 10.  

The NN model is used to predict rutting over a standard 20-year analysis period 

for all the available roads within each traffic and climate class. Based on the predicted 

rutting values, the models were classified into three distinct groups. These groups 

represent pavements with a high, medium, or low resistance to rutting. Achieving these 

subgroupings requires identifying the rut depth (i.e., performance) limits for each 

pavement performance family. Once these limits are determined, all the predictions 

within that family are averaged to determine a representative family rutting curve. This 

is accomplished by applying an optimization algorithm that divides the data within each 

traffic-climate family into three performance groups in a way that minimizes the 

obtained family curve errors. Excel’s evolutionary optimization algorithm is employed 

for this purpose.  

 

Table 10: Traffic and climate grouping criteria. 

Criteria Range 

Traffic 

Collector: 32 – 80 Annual Thousand ESALs 

Arterial: 80 – 350 Annual Thousand ESALs 

Interstate: >350 Annual Thousand ESALs 

Climate 

CZ 1: Dry Freeze 

CZ 2: Dry Non-Freeze 

CZ 3: Wet Freeze 

CZ 4: Wet Non-Freeze 
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 Ensemble Kalman Filter Application to Update the NN Model 

The third objective of this study is to formulate a robust tool to achieve the 

most accurate rutting depth predictions. This is achieved by combining the predictions 

of the NN models with the EnKF. A framework that uses the EnKF technique to update 

the family models discussed in section 4.5 is devised to utilize new data and enhance the 

prediction performance. The mathematical background of EnKF is presented in section 

3.2.3. Figure 15 illustrates the framework that is proposed to improve and update the 

generic rut deterioration models. 

 

 

Figure 15: EnKF implementation framework. 
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 EnKF Framework Formulation  

The formulation of the EnKF framework includes defining the stochastic state 

vector. The state vector in this study incorporates the progressed rutting depth value as 

well as the model parameters, as shown in Equation 12.  

𝐴 = [𝑅𝐶1𝐶2𝐶3…𝐶𝑖]
𝑇 (12) 

Where 𝑅 reflects the rutting depth state and the 𝐶𝑖’s represent the model 

coefficients of the family curve that is being updated.  

At the initialization stage, which corresponds to a newly constructed pavement, 

rutting depth (𝑅) is expected to be zero. The model coefficients (𝐶𝑖) are based on the 

regression-based family model obtained from the procedures of section 4.5. The initial 

state vector is used to obtain the initial ensemble matrix which reflects the statistical 

distribution of the initial guess (Equation 13). The initial ensemble matrix is obtained by 

perturbing the initial state vector through adding some error value.   

𝐴 = (𝐴1, 𝐴2, … 𝐴𝑁) (13) 

Where A is the initial ensemble matrix, 𝐴𝑖 corresponds to the state vector of 

the ith ensemble, and N is the ensemble size. A sensitivity analysis is typically 

performed to identify the optimal ensemble size.  

Realizations of the state vector are propagated forward in time using the 

governing dynamical equations. The dynamic model is represented by an ordinary 

differential equation (ODE) which describes the incremental variation of rut depth as a 

function of time, as presented in Equation 14. 

𝑑𝑟

𝑑𝑡
= 𝐶0 + 𝐶1𝑡

1 +⋯+𝐶𝑖𝑡
𝑖  (14) 
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Where 
𝑑𝑟

𝑑𝑡
 is the rut depth ODE, 𝑡 is the time measure, and 𝐶𝑖 corresponds to the 

model parameters.  

The Forward Euler Discretization time integrating method is implemented to 

propagate the system state forward in time at a 0.01-year timestep for all the ensembles. 

This timestep is determined based on sensitivity analysis. The mathematical 

representation of the rutting propagation model is presented in Equation 15. 

𝑟𝑡+1 = (𝑟𝑡 + 𝛥𝑡 ×
𝑑𝑟

𝑑𝑡
) + 𝜖 (15) 

Where 𝑟𝑡 is the predicted rut depth at time𝑡, 𝛥𝑡 is the model progression 

timestep that is equivalent to 0.01, and 𝜖 represents the model error. 

Field rutting measurements are used to calibrate the model parameters. The 

update frequency reflects typical distress survey timings, which are typically conducted 

on an annual basis. Each year a rutting observation is collected and used to update the 

model while taking into account the associated uncertainties. 

 

 Uncertainty Quantification  

Several sources of uncertainty must be considered and quantified in prognostic 

formulations of naturally occurring phenomena. These uncertainties can be attributed to 

the adopted mathematical models and the measured data. 

Uncertainty in the initial guess of the model states reflects the confidence in the 

selected model parameters to represent existing conditions. This error is expected to be 

higher when sufficient information to select an appropriate family curve is not available. 
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Mathematical models cannot simulate natural phenomena with absolute 

accuracy. Model errors arise due to simplifications associated with the adopted 

mathematical model or unknown details that cannot be identified and incorporated. The 

model error is quantified for each family model independently and it is represented as 

an additive Gaussian white noise with a C.O.V. equivalent to the average residual errors 

of the data points.  

The parameters in this study are based on the fitting of field data. Parametric 

uncertainty arises from limitations in the amount of data available to estimate the 

parameters. The parametric error or process noise is represented as an additive Gaussian 

noise with a C.O.V. obtained from sensitivity analysis. 

The sources of error associated with rut depth measurements are twofold. The 

first source of error is associated with the accuracy and reliability of the used 

instruments. The second factor resulting in measurement uncertainty includes the spatial 

variability of the obtained measurements. Based on the literature, instrumentation errors 

are estimated to have an average of 2 mm [36], [42], [128]–[130]. Therefore, 

instrumentation error is represented with a Uniform distribution between -2 and 2. 

Additionally, an additive Gaussian white noise perturbation with a C.O.V. obtained 

from the variability in the available data is used to simulate the spatial variability.  
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CHAPTER 5  

EXPLORATORY PILOT STUDIES 

 

Additional analyses on the models developed using the features selected in 

section 4.2.1 were conducted to identify problems. Details about the followed 

methodology are available in section 4.2.3. Additional issues related to the methods 

used to sample the testing and training data were also explored. Changing the sampling 

methods revealed additional complications related to the selected inputs, their values, 

and the model itself. This chapter discusses the complications and summarizes the 

lessons learned from the troubleshooting processes. 

 

 Data Sampling Methods 

 Conceptual Overview of Sampling Methods 

In common practice, 80% of the entire dataset is used for training and 20% for 

testing. This means that the data for most of the 370 test sections are included in the 

training dataset. However, for each of the roads, a random portion of the points is used 

for testing and another for training, as presented in Figure 16a. This indicates that the 

model is tested on data whose features were introduced during training. This approach is 

not completely representative of the way the model is applied. The model is used to 

predict a rut depth value corresponding to a specific value of cumulative ESALs, 

constant climatic conditions, and pavement characteristics. Then, iteratively, the model 

is run again at different traffic values while keeping all other inputs the same. 

Ultimately, a set of rut depth predictions are obtained and used to develop a 
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deterioration curve (Figure 16a). This is repeated 370 times for every road with unique 

local conditions. Therefore, when sampling is done randomly from the dataset 

containing 8,603 observations, all the available values corresponding to climate and 

pavement features are included in the training dataset. Hence, the testing dataset is not 

capable of validating the model’s ability to learn the effects of these properties.  

A different sampling method is explored to address this limitation. Instead of 

randomly sampling 80% of the entire dataset (i.e. 8,603 data points), the new method 

involves sampling 80% of the roads (i.e. 370 feature combinations) then using their 

associated datapoints for training (Figure 16b). This method ensures that the model is 

tested on completely new features that have not been introduced in training.  

 

 

Figure 16: Training and testing dataset sampling methods illustration: a) Method 1 and b) 

Method 2. 
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 Effect of Data Sampling on Model Performance 

A model comprising of 28 inputs was tuned to obtain a configuration 

consisting of 3 hidden layers, 40 hidden neurons in the first layer, 40 hidden neurons in 

the second layer, and 10 hidden neurons in the third layer. The model uses the ReLU 

activation functions and has a learning rate of 0.003, and L1 and L2 regularization 

parameters of 0.0001. The performance of the model after being trained based on the 

two sampling methods is summarized in Table 11. When sampling is done using 

Method 2, the model overfits and the errors increase drastically relative to the original 

sampling method (i.e. Method 1). The model obtained using sampling Method 2 has a 

testing MSE of 12.58 mm2, an R2 of 0.1, and an MAE of 2.56 mm compared to 1.03 

mm2, 0.92, and 0.62 mm, respectively, for sampling Method 1. The high errors obtained 

for the model trained using sampling Method 2 are unacceptable and unjustifiable; 

therefore, additional in-depth examinations are crucial to rationalize the results. 

 

 Investigating the Sources of Errors  

Since sampling Method 2 is more conceptually relevant in this study, detailed 

experiments are conducted to examine the causes of high errors by evaluating the 

testing and training data distributions and the procedures discussed in section 4.2.3. 

 

Table 11: Summary of modeling results of the different sampling methods. 

Sampling  Method 1 Method 2 

Metric 
MSE 

(mm2) 

MAE 

(mm) 
R2 

MSE 

(mm2) 

MAE 

(mm) 
R2 

Training 0.88 0.56 0.93 2.11 2.01 0.81 

Testing 1.03 0.62 0.92 12.85 2.56 0.1 
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 Testing and Training Dataset Distributions 

The first experiment involved studying the data distributions of the testing and 

training datasets. It is essential when splitting the data into testing and training sets to 

ensure that the distribution is preserved [131]. Randomly splitting the data as described 

in Method 2 could result in an imbalanced dataset causing an inferior model 

performance. The Kolmogorov-Smirnov Goodness-of-Fit (KS) Test is conducted to 

compare the testing and training distributions for each feature independently [132]. All 

the obtained p-values are greater than 0.05 indicating the training and testing datasets 

belong to the same distribution. The KS test is repeated for several random splits to 

confirm the results. Therefore, it could be concluded that the high errors are not caused 

by imbalances in the data distributions. 

 

 Investigating Features and Values 

In-depth investigations of the values of each of the 28 features are performed 

over multiple iterations as discussed in section 4.2.3. 

 

 Iteration 1 

The correlation between the errors for each combination of inputs and the 

features is analyzed. Ranking the correlation coefficients shows that the MSE is highly 

correlated to the maximum cumulative ESALs that a road encounters, the rutting depths, 

the volumetric properties of the binder AC layers, and the MR of the first base layer. 

Table 12 lists the topmost 15 variables that are correlated with the MSE. Additionally, 

the errors for each road are clustered as mentioned in section 4.2.3. The boxplot in 
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Figure 17a shows that clusters 1 and 3 which have the highest errors correspond to 

roads having low traffic. This is also illustrated in Figure 17b which validates that the 

model is unable to predict the rutting trend for a road having a maximum traffic value of 

40,000 ESALs. Therefore, roads having maximum cumulative traffic values that are less 

than 500,000 ESALs or greater than 30,000,000 ESALs are eliminated from the dataset. 

Additionally, the MR values for the base layer are evaluated. Figure 18 reveals that the 

clusters corresponding to high errors have a low MR. On average DGAB materials have 

an average MR of 20,000 psi, while that of ATB is 700,000 psi. This large gap between 

the two types can cause intertype variability to be neglected when the data is scaled 

before training. Consequently, the numerical MR value is replaced with two categories. 

The first is for layers having an MR that is less than 300,000 psi corresponding to 

granular bases, while the second is for layers having an MR greater than 300,000 psi 

corresponding to asphalt treated bases. At the end of this iteration, the number of roads 

decreased from 370 to 317 roads. 

 

Table 12: Correlation coefficients for iteration 1. 

Parameter Correlation Coefficient  
Maximum Cumulative ESALs 0.45 
% Passing #4 for Binder Layer 0.32 
MSG for Binder Layer 0.31 
Rutting Depth (2nd Quantile) 0.30 
Binder Layer Thickness 0.29 
Rutting Depth (3rd Quantile) 0.29 
Asphalt Content for Binder Layer 0.28 
Surface Layer Thickness 0.28 
AV for Binder Layer 0.26 
Rutting Depth (4th Quantile) 0.26 
Rutting Depth (1st Quantile) 0.25 
Base 1 MR  0.24 
Wind Velocity 0.22 
% Passing #200 for Binder Layer 0.22 
NMAS for Binder Layer 0.22 
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Figure 17: Effect of traffic values on the model errors. 

 

 

Figure 18: Effect of Base 1 resilient models on the model errors. 

 

 

a)                                                             b) 
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 Iteration 2 

The conclusions obtained in iteration 1 are applied and a new model is trained 

from the resulting dataset. The correlation analysis of the new model indicates that 

traffic is no longer highly correlated with the errors, while the correlation coefficients 

associated with the properties of the binder layer, and the third and fourth quantiles of 

the rutting values are still significant. The box plot in Figure 19 shows that clusters 1 

and 2 having the highest errors correspond to distributions having an average rut depth 

of 5 and 16 mm, respectively. Therefore, the model performs poorly when predicting 

extremely low or high rutting values. Also, the boxplot corresponding to the 4th quantile 

of rutting values for all the data indicates that all values exceeding 16 mm are outliers 

(Figure 19). Consequently, roads having maximum rut depth values that are less than 5 

mm or greater than 20 mm are removed. Roads having high rut depths (i.e. exceeding 

20mm) were individually evaluated to decide whether the high values are justifiable. 

Such cases include roads located in very hot climates, having a high percentage of air 

voids, or experiencing high traffic volumes.  

In addition to rutting values, the properties of the binder layers are assessed. It 

is determined that road sections that do not have binder layers are highly correlated with 

the model errors. The boxplots in Figure 20 show that values of air voids and bulk 

specific gravity that are equivalent to zero belong to cluster 2 which has the most 

extreme errors. Therefore, there is a need to address roads that do not have binder 

layers. This problem is solved by replacing the zero values with the volumetric 

properties of the surface layer and by dividing the thickness of the surface layer into 

both AC layers. At the end of this iteration, the number of roads decreased from 317 to 

282 roads corresponding to 6,946 data points. 
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Figure 19: Effect of rutting values on the model errors. 

 

 

Figure 20: Effect of binder layer properties on the model errors: a) Bulk specific gravity, 

and b) Percent air voids. 

 

 Iteration 3  

After retraining the model based on the results of iteration 2, it is concluded 

that no additional valuable conclusions could be drawn from correlating the values and 

features to the errors.   

a)                                                                   b) 
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CHAPTER 6  

RESULTS AND DISCUSSION  

 

 Neural Network Rutting Prediction Model 

 Model Configuration  

The results of the exploratory pilot studies discussed in CHAPTER 5 are 

employed to obtain the final dataset used for training the final model. The second 

sampling method which was previously explained in section 5.1 is used for obtaining 

the training, validation, and testing datasets. The average MSE of the cross-validation 

results is obtained and used to determine the optimal network configuration that 

provides the best performance.  

 

 Dropout Regularization 

Despite improving the model performance by conducting forensics on the 

dataset, the model still exhibited significant overfitting. The large cross-validation errors 

that are obtained due to overfitting, hinder the ability to study the effect of the different 

hyperparameters on the model’s performance. In that case, the disparity of errors 

between the different validation subsets is larger than the effect of changing the 

hyperparameters. Therefore, it is essential to address the overfitting problem by tuning 

the dropout regularization parameter first. The effect of the dropout technique is studied 

by comparing the average validation MSE for models having one hidden layer and 

hidden neurons ranging between 8 and 1024. The results reveal that the inclusion of a 

dropout rate of 0.2 for the hidden units uniformly reduces the average validation MSE 
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by approximately 15% for the different numbers of hidden neurons (Figure 21). A high 

dropout rate was avoided to prevent underfitting. A dropout rate of 0.2 is then used for 

all subsequent tuning processes.  

 

 

Figure 21: Effect of dropout rate on model performance. 

 

 Number of Hidden Layers and Hidden Neurons 

Several numbers of hidden layers are tested, starting from one hidden layer and 

adding one layer at a time (Figure 24). Figure 24 shows that the standard deviation of 

the different cross-validation datasets is significantly high. Thus, the standard deviation 

should be assessed to decide on the best network architecture. Additionally, the 

complexity of the network is also considered in order to select the simplest network that 

can provide the best performance. The 10th percentile of all the obtained validation MSE 

is calculated to be 5.07 mm2.  All architectures that result in an average MSE below the 

10th percentile were filtered out and compared. The minimum obtained MSE is 
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equivalent to 4.67 mm2 and was achieved for a network having four hidden layers and 

128 hidden neurons in the first, 32 in the second, third and fourth layers. However, if the 

average validation MSE values, standard deviation, and training performance are 

assessed for all the architectures in the lowest 10th percentile, it can be concluded that 

their results are similar. Therefore, the network with the least complexity which is 

comprised of three hidden layers and has 128 neurons in the first hidden layer, 32 

neurons in the second hidden layer, and 8 neurons in the third one is selected (Figure 

24).  This network has a mean validation MSE of 4.96 mm2. 

 

 Learning Rate and Batch Size 

Following the selection of the optimal number of hidden layers and neurons, 

the remaining hyperparameter space is explored to find the optimal learning rate and 

batch size. The learning rate is one of the most influential hyperparameters and it 

dictates the size of the update steps in each iteration. In conjunction with tuning the 

learning rate, the batch size which refers to the number of observations used to update 

the network at each iteration is also tuned. It is observed that the effect of the learning 

rate on model performance is dependent on the batch size (Figure 22). The combination 

of a learning rate of 0.001 and a batch size of 128 achieves the lowest average 

validation MSE. In fact, 0.001 is the default value for the Adam optimization algorithm 

being used.  
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 L1 and L2 Regularization  

Elastic Net regularization is selected as it provides a middle ground between 

Ridge Regression (L2) and Lasso Regression (L1). It overcomes the limitations of 

Lasso regression which performs poorly with the presence of multicollinearity and 

Ridge regression which is not effective in eliminating irrelevant variables [133]. Being a 

convex combination of Ridge and Lasso, Elastic Net regularization requires tuning L1 

and L2 penalties. Figure 23 shows that the optimal performance is obtained at an L1 

penalty of 0.0001 and an L2 penalty of 0.0001. 

 

 

Figure 22: Effect of learning rate and batch size on model performance. 
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Figure 23: Effect of regularization penalties on model performance.
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Figure 24: NN architecture tuning.
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 Summary  

The selected hyperparameters for the model trained using the 29 inputs are 

summarized in Table 13. 

 

Table 13: Results of hyperparameter tuning. 

Hyperparameter Value  

No. Inputs 29 

No. Outputs 1 

No. of Hidden Layers 3 

No. of Hidden neurons 128|32|8 

Activation Function ReLu – ReLu 

Optimizer  Adam 

Learning Rate 0.001 

Dropout rate 0.2 

L1 0.0001 

L2 0.001 

Batch Size 128 

 

 

 

 

 NN Model Results  

The NN was fitted based on the configuration in Table 13. Table 14 presents a 

summary of the modeling results of the training and testing datasets.  

 

Table 14: Summary of modeling results. 

Evaluation Metric MSE (mm2) MAE (mm) R2 

Training 0.79 0.52 0.94 

Testing 2.43 1.22 0.81 
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Figure 25a shows the mean squared error of the training and testing datasets as 

a function of the number of epochs. It reveals that the model converges without any 

overfitting problems. The model based on NN performs well with a coefficient of 

determination value (R2) ranging between 0.94 and 0.81 for training and testing datasets 

respectively (Figure 25b and Figure 25d). The testing dataset has an MSE of 2.43 mm2, 

while that of the training data is 0.79 mm2. To further evaluate the prediction 

capabilities of the model, the absolute error of the testing dataset is plotted as a function 

of the value of rutting depth (Figure 25c). It can be observed that the largest errors occur 

at the high end. Higher errors are expected for large rut depths due to the low data 

availability in these ranges. The mean absolute error (MAE) of the NN ranges from 0.52 

to 1.22 mm for the training and testing datasets. Figure 26 shows prediction examples 

for two roads that are part of the testing dataset.  

Furthermore, the results obtained from the final model are compared to the 

results obtained before improving the dataset as discussed in CHAPTER 5 and before 

incorporating the dropout technique. The testing MSE improved by approximately 81%, 

the MAE by 52%, and the R2 by 710%. This is also verified in Figure 27 that 

demonstrates the predicted versus measured rut depths for the testing dataset before and 

after incorporating the improvements. It is evident that the trend is less scattered and 

most of the data are concentrated around the line of equality.  
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Figure 25: Modeling results: a) Learning curve, b) Measured vs. predicted rut depth 

regression plot for the training dataset, c) Absolute error vs. measured rut depth, and d) 

Measured vs. predicted rut depth regression plot for the testing dataset. 

c)                                                                  d) 

a)                                                                  b) 
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Figure 26: Examples of prediction results from: a) New Mexico SHRP section 103 and b) 

Texas SHRP section 120. 

 

 

Figure 27: Model performance comparison: a) Before improvements and b) After 

improvements. 

 

a) New Mexico 35-103                                b)   Texas 48-120 

a) Before Improvements                         b)   After Improvements 
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 NN Model Evaluation 

 Comparison with Multiple Linear Regression Results 

The model developed using NN is evaluated against a model developed based 

on traditional multivariate linear regression (MLR) techniques and relying on the same 

dataset (Figure 28).  Fitting the data using an MLR model results in a low coefficient of 

determination (R2) of 0.28 for the testing and training datasets. The MSE for the testing 

dataset is 8.49 mm2, while that for the training dataset is 7.84 mm2. Additionally, the 

MAE is 2.07 and 2.03 mm for testing and training. The overall performance of the MLR 

model is poor as expected due to its inability to model the complex interactions between 

the features affecting rutting. This provides strong evidence regarding the superiority of 

the NN rutting prediction model and therefore justifies its selection (Figure 28). 

 

 

Figure 28: Comparison between MLR and NN modeling methods for predicting rutting 

depth. 

 

MSE = 2.43 

MAE = 1.22 

R2 = 0.82 

MSE = 8.49 

MAE = 2.07 

R2 = 0.28 
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 Comparison with the Current State-of-Practice 

To date, the M-E rutting prediction models that are incorporated in Pavement-

ME are the most common due to their ability to generalize to different climates and 

material properties as opposed to other models that are developed using location-

specific data. The M-E model was developed based on 334 data points and had an R2 of 

0.57 [56]. Therefore, the developed NN model having an R2 exceeding 0.9 improves 

rutting prediction by 45%. Additionally, it is worth noting that the developed NN model 

requires a total of 29 inputs that fall into three main categories compared to the M-E 

model that requires more than 80 inputs. For the M-E model to provide acceptable 

prediction, meticulous laboratory testing of materials and traffic assessments are 

essential. In contrast, the developed NN model works using simple inputs that can be 

attained at a low cost and minimal efforts. In addition to the Pavement-ME models, the 

obtained NN model is also superior to the available HDM-4 rutting prediction models 

which have a low coefficient of determination of 0.42 [134]. It is not until local 

calibration efforts are conducted that the HDM-4 models start performing comparably 

to the developed NN model [26]. Similarly, the cumulative rutting prediction model 

reported by Austroads was developed using 144 data points and has an R2 of 0.44 [135].  

 On the other hand, it is not possible to compare the results with other NN 

models that are available in the literature mainly due to the difference in the adopted 

sampling methods. As discussed previously in section 5.1 and as demonstrated in Figure 

16 and Table 11, the sampling method has a significant impact on the performance of 

the model. The second sampling method, which is considered more representative, adds 

restrictions to the model; thus, resulting in increased errors. Most studies that employ 

NNs for similar applications, utilize the first sampling method which results in slightly 
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better performance in contrast to this study which uses a more challenging approach. 

However, if the dataset developed in this study is used with the first sampling method, 

comparable results to the literature are obtained, as provided in Table 11. 

Overall, this model delivers significantly better results due to its ability to 

model the different input interactions while requiring simplistic and limited inputs 

unlike the other available models which exhibit relatively higher errors, require local 

calibration, and involve meticulous materials laboratory testing and traffic assessments. 

 

 Model Interpretation  

 Permutation Importance Analysis 

The developed model is also utilized to identify the significant factors affecting 

rutting depth to provide decision-makers with guidance regarding the most critical 

features so that they prioritize their collection. The importance of the different features 

is evaluated using the Permutation Feature Importance method which measures the 

importance of any feature by calculating the increase in errors as a result of shuffling or 

permuting the features’ values [136]. Figure 29 shows the feature importance of all the 

studied variables. It is observed that the local climate and traffic conditions are the 

highest contributors to rutting prediction. Familiarity with the local construction 

technologies is also important for performing accurate rutting predictions where 

construction variability was the second most influential factor. Regarding material 

properties, aggregate gradation characteristics are amongst the most important variables 

for all AC layers. Particularly, the percentage passing #4 and #200 sieves as well as the 

NMAS are among the top 10 most contributing features. On the other hand, AC 
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thickness variables did not exhibit high importance. This is in line with common 

technical knowledge which attributes asphalt rutting to material and environmental 

factors rather than thickness. It can also be concluded that on average, the properties of 

the surface and binder layers contribute comparably to the rutting prediction, while the 

properties of the base layers are significantly less influential. Regarding subsurface 

layers, Figure 29 shows that the material types for base layers are more important than 

their thickness. As a result, municipalities can decide to focus their investments on 

collecting material information of the top asphalt layers as opposed to collecting data 

for the base and subgrade layers. While permutation importance analysis provides a 

general indication of the importance of the different features, it holds several limitations 

that may affect the results. The main limitation is that it does not take into account the 

correlation between the different features while it permutes one feature at a time. This is 

specifically critical when permuting base material properties which are categorical 

variables, or asphalt mix volumetric and gradation properties.  
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Figure 29: Feature Importance results. 

 

 Sensitivity Analysis 

To further interpret the developed model, a detailed sensitivity analysis is 

conducted to quantify the effects of the different variables. Figure 30 shows the 

relationships between rutting depth and some of the key input variables. A reference 

input vector is generated based on the minimum, first, second, third, and fourth 

quantiles. Appendix B provides detailed documentation of the used values. Figure 30a 

complements the findings of section 6.2.1 regarding the importance of traffic for 

predicting rutting. It also mirrors the rutting mechanism as it starts with a high rate until 

the traffic reaches 5 million ESALs and slows down as rutting and the cumulative traffic 

increase (Figure 30a). This notable impact reflects an average elasticity value of 0.26. 

Another important variable is the construction variability which reflects the coefficient 

of variation of rutting depth on a road section. Figure 30b shows a significant decrease 

in rut depth as the C.O.V variable increases. While this may be a result of many factors, 
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the main reason for the decreasing trend is mathematical. The C.O.V is calculated as the 

standard deviation divided by the mean and as the value of the mean increases the 

C.O.V decreases and vice versa.  

Additionally, the permutation importance analysis revealed the significant 

importance of climate-related variables, especially the average annual temperature and 

the wind velocity. As expected, rutting increases with temperature at an average rate of 

0.95% for a 1% increase in temperature (Figure 30c). Similarly, the increase in wind 

velocity results in an increased rutting depth corresponding to an elasticity value of 0.63 

(Figure 30d). This is inconsistent with previous research which suggests that the 

presence of high wind speeds contributes to cooling the pavement’s surface through 

convention, thus reducing the accumulation of rutting. Therefore, the inconsistency may 

arise since the effect of wind speed was studied independently of temperature [127], 

[137].  

The effect of the thickness of the different asphalt layers was also evaluated 

(Figure 30e). Rutting increases as the thickness of the surface AC layer increases until 

reaching 6 cm (2.5 in.) beyond which rutting becomes relatively insensitive to 

thickness. On the other hand, the thickness of the binder AC layer appears to affect 

rutting in a strictly increasing manner at an average elasticity of 0.26 as opposed to 0.07 

for the surface layer (Figure 30e). This contradicts previous findings that discuss that 

thicker pavements generally develop higher rutting resistance [138]. 

In addition to thickness, the maximum specific gravity of the asphalt mixes 

used in both layers was studied. Rutting is relatively insensitive to the surface layer’s 

Gmm but extremely susceptible to that of the binder layer (Figure 30f). A decreasing 
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relationship is obtained where rutting decreases by more than 4% for every 1% increase 

in Gmm (Figure 30f). While this was the highest obtained elasticity value, it is worth 

noting that a 1% increase in Gmm is considered a relatively high increase as compared to 

a 1% increase in traffic for example which is considered negligible. Other volumetric 

properties are also studied as shown in Figure 30g and Figure 30h. The rutting depth 

does not appear to be sensitive to the change in the percentage of air voids and binder 

content. Rutting remains constant as the percentage of air voids in the surface layer 

increases but increases slightly with the percentage of air voids in the binder layer 

(Figure 30g). On the other hand, an increase in the binder content in the surface AC 

layer results in an average reduction in the rut depth (Figure 30h). The effect of 

changing the binder content in the binder layer is not uniform, where the rut depth 

increases with Pb then decreases as it exceeds 4.5%. Comparing these trends with 

previous studies is not straightforward since no constant trends have been observed and 

documented regarding these factors [139]. 

The effect of the percentage of aggregates passing the #4 and the #200 sieves 

are compared (Figure 30i and Figure 30j). The effect of the percentage of material 

passing sieve #4 is highly significant for both AC layers. Regarding the surface AC 

layer, as the percentage passing the #4 sieve increases by 1%, the percentage of rutting 

increases by 0.72% (Figure 30i). Similarly, increasing the percentage passing the #200 

sieve results in increasing the rut depth with an elasticity of 0.2 (Figure 30i). Generally, 

mixes with excessive fine-grained aggregates are more susceptible to rutting which 

might justify the increase in rutting associated with the increase in the percentage of 

aggregates passing the #4 and #200 sieves [17]. However, the analysis of the sensitivity 

of the rut depth with respect to the gradation of the binder layer reveals a lower 
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sensitivity than that of the surface layer (Figure 30h). Additionally, a negative 

relationship is observed between the percentage of aggregates passing the #4 sieve with 

an elasticity value corresponding to -0.29. On the other hand, the model is not sensitive 

to the percentage of aggregates passing the #200 sieve (Figure 30h). 

Regarding the penetration grade of the asphalt binder, the rut depth tends to 

decrease slightly as the penetration increases to 75 .1 mm and then starts to increase as 

the binder becomes softer (Figure 30k). The overall elasticity of this variable is 

quantified as 0.3 which reflects a 0.3% increase in rutting as a response to a 1% increase 

in penetration (Figure 30k). However, the exact sensitivity of rutting to the penetration 

grade may be masked because agencies generally use binders that satisfy the penetration 

values specified in their materials specifications.  

Finally, the properties of the base and subgrade layers were studied. The results 

show that rut depth is not significantly sensitive to the change in the base thicknesses, 

material types, and the subgrade resilient modulus. A negative relationship between rut 

depth and the total base thickness is expected since that thickness contributes the most 

to the structural rutting component (Figure 30l). However, the obtained positive 

correlation between rutting and the subgrade resilient modulus defies common 

engineering judgment (Figure 30n).   
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   g)    h) 

  

   i)    j) 

  

   k)    l) 
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Figure 30: Sensitivity of rutting depth with respect to: a) Cumulative traffic, b) 

Construction variability, c) Average annual temperature, d) Wind velocity, e) Thickness of 

AC layers, f) Bulk specific gravity, g) Percent air voids, h) Binder content, i) Gradation od 

surface layer, j) Gradation of binder layer, k) Penetration, l) Thickness of base layers, m) 

Base material types, n) Subgrade resilient modulus. 

 

The results of the sensitivity analysis are summarized in Figure 31 that presents 

the elasticity and the rank corresponding to all the continuous variables. The ranking 

scheme obtained from the sensitivity analysis resulted in a different order than that 

obtained from the permutation importance analysis (Figure 29). This is to be expected 

since both methods rank the different variables based on different metrics and a 

different methodology. The permutation importance relies on fitting a model for several 

permuted datasets and comparing the loss of accuracy, while the sensitivity analysis 

relies on the final trained and tuned model. Additionally, both methods do not explicitly 

account for collinearity in the models and therefore their results are not comprehensive. 
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Figure 31: Sensitivity analysis results. 

 

 Family Models 

Family models discussed herein are developed in accordance with the 

methodology described in section 4.5. It is worth noting that data was not available to 

develop family models for all combinations, therefore, only the 27 families will be 

provided. Figure 32 demonstrates all derived rutting prediction curves for different 

highway functional classes, climate zones, and rutting resistance capabilities. All the 

obtained family curves have a mathematical structure of a third-degree polynomial. 

While the freezing and non-freezing climate zones have similar deterioration trends for 

interstates in dry climates as observed in Figure 32a and Figure 32b, it is evident from 

Figure 32c and Figure 32d corresponding to wet regions that the effect of freezing is 

more pronounced. Figure 32c shows that the mix that is the least resistant to rutting 

reaches a rut depth value of approximately 11 mm after 20 years in a WF zone while a 



 

107 

 

higher depth of almost 22 mm is obtained for WNF zones as illustrated in Figure 32d. 

Similar conclusions can also be obtained if the different mix types are compared. 

Additional observations are made from analyzing the family curves for interstates 

regarding the effect of moisture where wet regions experience higher rutting values than 

dry regions. 

 In contrast, the conclusions obtained for interstates were reversed in the case 

of arterial roads where the freeze regions exhibit significantly higher rutting depths than 

non-freeze regions (Figure 32e, f, g, and h). Investigating the data reveals that regions 

located in a freeze zone tend to use softer binders for arterial roads compared to 

interstates. On average, binder grades having an average penetration of 75 .1mm is used 

for interstates in freezing regions compared to an average penetration of 100 .1mm for 

arterials in the same climatic regions. This justifies the higher rutting values in freeze 

regions (Figure 32e and g) as opposed to lower values in non-freeze regions (Figure 32f 

and h). Additionally, the effect of moisture conditions was not significant for arterials as 

opposed to interstates.   

Limited data was available for determining family deterioration curves for 

collector roads. It is evident that collectors appear to have lower rutting depths 

compared to the other road functional classes as shown in Figure 32i and Figure 32j. 

This is inline with common engineering judgment since collector roads experience 

significantly lower truck volumes. 

The percentage error for each curve was also obtained. This error describes 

how much the rutting measurements deviate from the prediction for each family. On 

average the error was equivalent to 16% and it ranged between 2% and 36%. This 
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reflects a significant variability in rutting within the same family which is attributed to 

the introduced simplifications. 
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Figure 32: Family rutting prediction curves. 

 

 Ensemble Kalman Filter Framework  

An EnKF framework is proposed to calibrate the family curves. To assess the 

robustness and applicability of the framework, sensitivity analysis is conducted by varying 

several contributing factors such as the effect of the ensemble size and initial guesses. 
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 Numerical Example 

A case study using rutting measurements collected over 14 years from SHRP 

section 112 in the State of Alabama is used to illustrate the proposed updating 

framework as well as perform sensitivity and convergence analysis. Alabama lies in a wet 

non-freeze (WNF) zone and the considered road section is part of an interstate. 

Additionally, the road is considered to have high resistance to rutting. As a result, the 

ODE corresponding to the family curve presented in Figure 32d is used as the dynamic 

model at the forecast step for predicting the progression of rutting. A time step of 0.01 

years is selected for the dynamic propagation based on a sensitivity analysis study. 

Table 15 summarizes all the sources of uncertainty that apply. 

 

 Effect of the Ensemble Size  

The sensitivity of the EnKF framework to the ensemble size is evaluated to 

obtain the optimal size that provides the required accuracy and efficiency. To that 

extent, the simulation is performed 100 times for every ensemble size to calculate the 

mean and standard deviation of the predicted parameters at the last update step.  

 

Table 15: Quantified uncertainty in the EnKF framework. 

Uncertainty Type 
Error 

C.O.V. 
Distribution Quantification Method 

Initial Guess Error 20% Normal Sensitivity Analysis 

Model Error 20% Normal Family curves residuals 

Process Noise  5% Normal Sensitivity Analysis  

Measurement 

Error 

Instrumental 2mm 
Uniform 

[-2,2] 
Literature Review 

Spatial 

Variability 
20% Normal Variability in LTPP data 
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Figure 33 presents the results of the sensitivity analysis showing the deviation of 

the mean and standard deviation of the parameters across the different simulations. The 

variability between the means of the predicted parameters of the different simulation 

runs decreases as a function of the ensemble size. The variability achieved at an 

ensemble size of 10,000 is considered acceptable and it will be used for the subsequent 

simulations in this study. 

 

 

a) Parameter 1 - Mean b) Parameter 1 – Standard Deviation 

  
c) Parameter 2 - Mean d) Parameter 2 – Standard Deviation 
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e) Parameter 3 - Mean f) Parameter 3 – Standard Deviation 

  
Figure 33: Mean and Std. of predicted parameters as a function of the Ensemble size. 

 

 Sensitivity to the Initial Guess 

Sensitivity analysis is also conducted to evaluate the robustness of the 

framework and its ability to converge despite the selected initial states. This evaluation 

is essential since road agencies may not have sufficient information to select the ideal 

family curve. Therefore, the framework is assessed starting with initial state vectors 

corresponding to three different family curves as presented in Table 16. 

 

Table 16: Different scenarios for the initial state vector. 

Case Pavement Family Parameter 1 Parameter 2 Parameter 3 

Base Case 
Interstate – WNF – 

High Resistance 
0.0066 -0.182 1.35 

Incorrect 

Rutting 

Resistance 

Interstate – WNF – 

Medium Resistance 
0.0132 -0.379 2.73 

Incorrect 

Climate Zone 

and Rutting 

Resistance 

Interstate – DNF – 

Medium Resistance 
0.0084 -0.203 1.13 
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Figure 34 shows the three different scenarios and illustrates how far their 

predictions are from the actual measurements. The EnKF framework is performed for 

each of the three cases. Monte Carlo simulations are then carried out to sample 1,000 

realizations of the calibrated parameters. These realizations are propagated forward in 

time to obtain the mean and the standard deviation of the predicted rutting depths. 

Figures 35, 36, and 37 present the results of the mean parameters obtained at the end of 

different updates. An envelope representing one standard deviation away from the mean 

of the predictions corresponding to the final update is also shown. Figures 35a, 36a, and 

37a show that the average prediction does not change significantly beyond the tenth 

update. It is also noted that even though the accuracy of the EnKF estimate varies 

between the three scenarios, the measurements remain almost within one standard 

deviation from the estimated mean. 

 

 

Figure 34: Example of different initial guesses. 
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Moreover, the figures present the average of the errors computed for all 1,000 

simulations after each update and for the different initial guesses. Figures 35b, 36b and 

37b reveal that sharp drops in the average prediction errors equivalent to approximately 

58%, 52%, and 50% respectively occur after the second update. Beyond that, the initial 

prediction errors are further improved by 8%, 6%, and 11% for each initial guess 

respectively. Based on the results of Figures 35b, 36b, and 37b, the improvements in the 

average predictive performance of the three scenarios are consistent and comparable 

where the framework reduces the errors by 60% on average.  

 

 

Figure 35: Base case results: a) Rut depth, and b) Model performance as a function of the 

number of EnKF updates 
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Figure 36: Incorrect rutting resistance case results: a) Rut depth, and b) Model 

performance as a function of the number of EnKF updates 

 

 

 Discussion  

While applying this framework, the data distributions of the updated 

parameters after every measurement are identified. The Chi-Squared test is used to 

identify the ideal distribution for each parameter. Table 17 shows the corresponding 

distribution of parameters after the final update. While the parameters were considered 

independent at the start on the EnKF framework, the calibrated states were correlated. 

Figure 37: Incorrect Climate Zone and Rutting Resistance case results: a) Rut depth, 

and b) Model performance as a function of the number of EnKF updates 
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In fact, a correlation of -0.1 exists between parameters 1 and 2 and of -0.2 between 

parameters 2 and 3. Therefore, the covariance of the calibrated parameters should be 

considered for sampling realizations through Monte Carlo simulations (Table 17). One 

thousand realizations of the three parameters are sampled to study the variability in the 

predicted rutting depth.  

Figure 38 shows the mean and standard deviation of the predictions after the 

final update as well as the measurements and their corresponding variability. The results 

show that the proposed framework achieves its objectives as it reduces the mismatch 

between the measurements and the predictions. Additionally, it allows for modeling and 

representing the uncertainties and overcoming the limitations associated with 

deterministic models. While the prediction interval which delineates where future 

observations may fall is relatively wide, the results are considered acceptable provided 

the high uncertainties associated with measuring and predicting rutting in asphalt 

pavements.  

The power of the proposed methodology lies in its ability to provide accurate 

predictions that practitioners can employ in pavement management. In addition to 

obtaining a prediction curve, the framework can be used to develop maintenance 

schedules by providing engineers with the probability of reaching specific maintenance 

thresholds. In this application, rut depths of 6mm and 13mm are set as triggers for  

  

Table 17: Calibrated model parameters distribution. 

Parameters Distribution Mean Covariance Matrix 

Parameter 1 Lognormal 0.00667 1.82 e-06 -3.94 e-06 -1.03 e-05 

Parameter 2 Beta -0.176 -3.94 e-06 1.10 e-03 -1.56 e-03 

Parameter 3 Lognormal 1.54 -1.03 e-05 -1.56 e-03 4.02 e-02 
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milling and overlaying and removing the distressed area as suggested in AASHTO’s 

Guide Specifications for Highway Construction [58]. This is reflected in Figure 39 

which shows the probability of requiring milling or rehabilitation at each year. This 

concept can be interpreted on the project and network levels. On the project level, the 

outcome provides engineers with the probability that a road may require a certain 

treatment. On the network level, the outcome is interpreted as the percentage of the 

entire network that requires each treatment type. It is evident that at the 8th year of the 

pavement’s life, 80% of the roads of the corresponding family will require milling. 

Beyond 8 years the percentage of pavements that require removing the rutted areas rises 

while that of pavements requiring milling is reduced. 

 

 

Figure 38: Calibrated rutting prediction model. 
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Figure 39: Probability of achieving maintenance triggers. 
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CHAPTER 7  

USER INTERFACE 

 

 Introduction 

Since the NN model does not have a mathematical form, a user-friendly 

interactive graphical user interface (GUI) is developed in order to deploy the final 

model. This tool can be made available to researchers and road agency personnel who 

are interested in predicting rutting performance. The GUI involves three main pages. 

The first is the home page where the user provides general information as shown in 

Figure 40. 

 

 

Figure 40: Home page interface for the developed GUI. 
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 Inputs Interface  

On the second page, the user enters all the inputs that are required to run the 

model (Figure 41a). For each input, the value and the unit used need to be included. For 

most inputs, the users have the liberty of selecting a specific input value or a categorical 

feature. When an accurate numerical value is unavailable for a specific input, it is 

substituted by a category that reflects a low, medium, or high estimate for that input 

(Figure 41b). The low, medium, and high levels are determined based on the data 

distribution where each category spans over approximately 33% of the data. Overall, the 

application requires the following inputs: 

• Traffic inputs which include the average annual ESALs, the growth rate, 

and the growth trend which can be linear or compounded. 

• Climate inputs which include the average annual precipitation, the average 

annual temperature (MAAT), the standard deviation of the monthly mean 

air temperature (MMAT), and the average wind velocity. 

• Asphalt layer inputs which include the number of available layers (e.g., 

one or two) as well as thickness, maximum specific gravity, percentage of 

air voids, binder content, gradation, and binder penetration information, 

• Base layer inputs which include the number of available layers (e.g., one 

or two), their thickness and material type (e.g., DGAB or ATB). 

• Subbase layer inputs which include the number of available layers (e.g., 

zero or one), their thickness, and material type (e.g., DGAB or ATB). 

• Subgrade layer inputs which include the resilient modulus value. 

• Analysis period which reflects the number of years to predict for.  



 

123 

 

Also, for each input, an inquiry button is provided to specify the ranges of the 

data corresponding to each category and each input (Figure 41c). Additionally, the 

application allows the users to select between metric and imperial units to match their 

available data formats. 

 

 

Figure 41: Inputs interface for the developed GUI: a) Overall interface, b) Example of 

inputs requirements and c) Inquiry button output. 

 

a) 

 

 

 

 

 

 

 

b)                                                                    c)                      
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 Outputs Interface  

In the third page, the user inputs are analyzed to provide the corresponding 

rutting prediction (Figure 42). If exact numerical values are used as inputs, a 

deterministic rutting curve is obtained. However, in cases where one or more inputs are 

categorical (i.e., low, medium, or high), a stochastic output that demonstrates the 95% 

confidence interval of the prediction is provided. When a categorical input is used 

instead of a numerical value, an algorithm that applies random sampling with 

replacement is employed to obtain a dataset of 100 random values of that input. For 

example, if the user inputs numerical values for all features expect the average annual 

ESALs where a medium category is selected, 100 random values ranging between the 

33rd and the 66th percentile value are determined. These 100 values are combined with 

the other inputs and rutting is predicted a hundred times each year in order to obtain the 

confidence intervals. In case the user did not have numerical values for several inputs, 

the random sampling is conducted for each categorical input independently then the 

features are arbitrarily combined to obtain 100 predictions. Finally, the user can save 

and export the inputs and outputs into excel to conduct further analysis (Figure 43).  
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Figure 42: Outputs interface for the developed GUI. 

 

 

Figure 43: Output exported to Excel. 
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATION 

 

 Summary of Findings and Contributions 

Predicting the future overall pavement performance, specifically rutting, serves 

as a vital component in asset management systems. Prediction models available in 

research and practice exhibit numerous shortcomings related to generalization abilities, 

accuracy, and applicability. This thesis provided a framework to predict rutting depth 

that addresses the prevalent limitations while taking into account the data and resource 

scarcity existing in developing countries and local road agencies. A NN model that 

correlates the depth of rutting in asphalt concrete pavements to a set of climate, traffic, 

asphalt, base and subgrade properties was developed. This model was estimated on data 

extracted from the LTPP database. Feature selection and the reduction in the number of 

inputs required were achieved by correlation analysis and pilot studies. The model 

results are presented in what follows: 

- The feature selection efforts reduced the number of required inputs from 

51 to 29 variables. This results in the reduction of data collection efforts 

for model users. 

- The data sampling method used to obtain the testing and training datasets 

is very critical and must be diligently addressed.  

- The final model is a fully connected three-layered feedforward neural 

network having 128-32-8 nodes and has an R2 of 0.83 and a root-mean-

squared-error of 1.5 mm.  
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- The results of the NN model outperformed the MLR model estimated from 

the same dataset since NN models can deal with larger and more complex 

data sets. 

- The presented NN model provides a major advance on current methods, 

which include the M-E models in Pavement-ME and the HDM-4 models, 

in terms of accuracy and simplicity of application.  

- The model exhibits acceptable generalization abilities as it provides 

comparable accuracy to the locally calibrated models available in the 

literature. 

Model development was followed by interpreting the relative contribution of 

the variables through permutation importance and sensitivity analyses. The objective of 

this effort was to identify the most critical variables to be considered in future data 

collection efforts. Most findings of these interpretations were consistent with research 

showing that cumulative traffic plays a central role in predicting rut depth. Climatic 

factors, especially temperature-related variables, also had a relatively high contribution 

to rutting prediction. Additionally, regarding pavement properties, the aggregates 

gradation variables were amongst the most contributing factors. Overall, the mix 

volumetric properties of the binder layer exhibited higher elasticities when compared to 

their counterparts in the surface layer. Finally, base and subgrade layers properties 

exhibited low importance which is broadly inline with expectations.  

The model was further simplified to create a set of family curves corresponding 

to several traffic, climate, and performance categories. The family rutting curves would 

benefit agencies that cannot attain the inputs required for the NN model to initiate their 

pavement management systems. An EnKF framework was also proposed to overcome 
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the limitations of the family curves when new data becomes available. The main 

conclusions of the presented analyses and results are summarized as follows: 

- A sensitivity analysis performed on the ensemble size revealed that a relatively 

large ensemble size of 10,000 is needed to attain sufficiently high accuracy in 

estimating the parameters. 

- The presented framework calibrates the governing parameters of the rutting 

prediction models and reduces the mismatch between the measurements and 

predictions by 60% on average. 

- The results were consistent among the three examined initial state scenarios and 

revealed that the accuracy of the predictions remains within tolerable limits 

while varying the initial states.  

- The framework allows engineers to identify the rut depth and the probability of 

requiring maintenance and consequently enhances the efficiency of pavement 

management systems. 

 

 Limitations 

A number of limitations are associated with this study. The first limitation 

corresponds to the used data. Although the extracted data covers a wide range of local 

conditions, it corresponds to the experience and technologies corresponding to one 

country and one main project (i.e., LTPP). This limitation can be addressed by using 

international data obtained from other databases, such as the Swedish and Australian 

long-term pavement performance studies, or a range of other DOT-specific data. 

Additionally, using a larger dataset can improve the model performance and provide 

further validation to the conclusions obtained in this thesis.  
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The results and conclusions of the sensitivity analysis were based on empirical 

studies which indicates that they are entirely dependent on the dataset and do not 

necessarily reflect scientific relationships. This justifies the conclusions that 

contradicted general expectations and engineering judgments in some cases. 

While the reported family curves provide additional simplifications that can 

benefit agencies lacking data, they are subject to certain limitations. The family curves 

compromise the generalizability and accuracy of the NN model due to the introduction 

of significant simplifications. Therefore, these models exhibit relatively high errors that 

can be overcome by local calibration.  

 

 Recommendations for Future Research 

Future work may consist of acquiring a larger and more diversified dataset to 

improve model performance and generalizability. The model features can be further 

evaluated to reduce the required inputs. Creating a larger dataset can assist in obtaining a 

comprehensive set of family curves and improve their accuracy. Future investigations can 

explore using reinforcement learning or other sequential data assimilation techniques to 

update the family curves. Additionally, the developed GUI can be enhanced to allow batch 

mode operations and to incorporate the EnKF framework. Finally, the scope of this research 

can be expanded to include all other distresses in order to achieve a comprehensive 

pavement management system. Such a system will allow agencies to select maintenance 

and rehabilitation treatments while simultaneously considering all distresses.  
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APPENDIX A 

NEURAL NETWORK MODEL OUTPUTS 

 

A.1 Correlation Analysis 

Correlation analysis was conducted for identifying and eliminating highly 

correlated features as part of the feature selection efforts. 

Table A. 1: Correlation matrix Part-1. 

  A
g

e 

C
u

m
u

la
ti

v
e 

T
ra

ff
ic

 

C
o

n
st

ru
ct

io
n

 V
ar

ia
b

il
it

y
 

E
v

ap
o

ra
ti

o
n

 

P
re

ci
p

it
at

io
n

 

M
M

A
T

 

M
A

A
T

 

F
re

ez
e 

In
d

ex
 

A
v

g
. 

W
in

d
 V

el
o

ci
ty

 

C
lo

u
d

 C
o

v
er

 

A
v

er
ag

e 
S

u
rf

ac
e 

S
h

o
rt

w
av

e 

T
 e

ff
ec

ti
v

e 

T
h

ic
k

n
es

s 
- 

A
C

1
 

G
m

b
 -

 A
C

1
 

G
m

m
 -

 A
C

1
 

A
V

 -
 A

C
1

 

P
b

 -
 A

C
1

 

P
en

et
ra

ti
o

n
 -

 A
C

1
 

%
 P

as
si

n
g

 1
1

/2
 i

n
- 

A
C

1
 

%
 P

as
si

n
g

 1
in

- 
A

C
1
 

%
 P

as
si

n
g

 3
/4

 i
n

- 
A

C
1
 

%
 P

as
si

n
g

 1
/2

 i
n

- 
A

C
1
 

%
 P

as
si

n
g

 3
/8

 i
n

- 
A

C
1
 

%
 P

as
si

n
g

 #
4

 -
 A

C
1
 

%
 P

as
si

n
g

 #
1

0
 -

 A
C

1
 

Age 1.0 0.4 0.0 0.2 0.2 0.2 0.1 0.1 0.3 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.2 

Cumulative  

Traffic  
0.4 1.0 0.2 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.1 0.0 0.3 0.3 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 

Const. Variab. 0.0 0.2 1.0 0.2 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 

Evapor. 0.2 0.0 0.2 1.0 0.9 0.4 0.2 0.1 0.3 0.5 0.4 0.3 0.7 0.0 0.0 0.1 0.2 0.1 0.1 0.2 0.4 0.4 0.4 0.3 0.4 

Precip. 0.2 0.0 0.2 0.9 1.0 0.2 0.1 0.1 0.3 0.6 0.5 0.0 0.7 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.3 0.4 0.4 0.3 0.3 

MMAT  0.2 0.1 0.1 0.4 0.2 1.0 0.8 0.8 0.4 0.1 0.5 0.6 0.2 0.0 0.2 0.2 0.1 0.5 0.1 0.1 0.1 0.2 0.2 0.3 0.4 

MAAT  0.1 0.0 0.0 0.2 0.1 0.8 1.0 1.0 0.1 0.5 0.7 0.9 0.1 0.1 0.2 0.1 0.1 0.6 0.1 0.1 0.1 0.1 0.1 0.3 0.3 

Freeze Index 0.1 0.1 0.0 0.1 0.1 0.8 1.0 1.0 0.2 0.5 0.7 0.8 0.0 0.1 0.3 0.0 0.1 0.6 0.1 0.0 0.2 0.0 0.1 0.3 0.3 

Avg.  

Wind Velocity  
0.3 0.2 0.1 0.3 0.3 0.4 0.1 0.2 1.0 0.0 0.1 0.2 0.1 0.1 0.3 0.0 0.0 0.2 0.0 0.0 0.3 0.2 0.2 0.0 0.2 

Cloud  

Cover 
0.0 0.0 0.1 0.5 0.6 0.1 0.5 0.5 0.0 1.0 0.9 0.5 0.4 0.1 0.0 0.2 0.5 0.3 0.2 0.0 0.4 0.3 0.2 0.0 0.1 

Average  

Surface Shortwave 
0.0 0.0 0.1 0.4 0.5 0.5 0.7 0.7 0.1 0.9 1.0 0.6 0.3 0.1 0.2 0.1 0.3 0.5 0.2 0.0 0.4 0.3 0.2 0.0 0.0 

T effective 0.1 0.1 0.0 0.3 0.0 0.6 0.9 0.8 0.2 0.5 0.6 1.0 0.2 0.1 0.1 0.1 0.2 0.5 0.1 0.1 0.0 0.1 0.1 0.3 0.2 

Thickness - AC1 0.1 0.0 0.1 0.7 0.7 0.2 0.1 0.0 0.1 0.4 0.3 0.2 1.0 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.4 0.3 0.2 0.2 

Gmb - AC1 0.0 0.3 0.2 0.0 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.7 0.8 0.3 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.0 

Gmm - AC1 0.0 0.3 0.1 0.0 0.2 0.2 0.2 0.3 0.3 0.0 0.2 0.1 0.2 0.7 1.0 0.2 0.5 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.2 

AV - AC1  0.0 0.1 0.2 0.1 0.2 0.2 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.8 0.2 1.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.1 
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Table A. 1: Correlation matrix Part-1 (Continued). 
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Pb - AC1  0.0 0.0 0.0 0.2 0.2 0.1 0.1 0.1 0.0 0.5 0.3 0.2 0.2 0.3 0.5 0.0 1.0 0.1 0.0 0.0 0.1 0.3 0.4 0.3 0.4 

Penetration 

 - AC1 
0.1 0.1 0.2 0.1 0.2 0.5 0.6 0.6 0.2 0.3 0.5 0.5 0.1 0.1 0.0 0.0 0.1 1.0 0.2 0.0 0.0 0.0 0.0 0.1 0.1 

% Passing 11/2 in- AC1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.2 1.0 0.6 0.2 0.2 0.2 0.2 0.2 

% Passing 1in- AC1 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.6 1.0 0.3 0.3 0.3 0.3 0.2 

% Passing 3/4 in- AC1 0.1 0.1 0.1 0.4 0.3 0.1 0.1 0.2 0.3 0.4 0.4 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.2 0.3 1.0 0.7 0.5 0.2 0.1 

% Passing 1/2 in- AC1 0.1 0.0 0.1 0.4 0.4 0.2 0.1 0.0 0.2 0.3 0.3 0.1 0.4 0.1 0.2 0.1 0.3 0.0 0.2 0.3 0.7 1.0 0.9 0.6 0.4 

% Passing 3/8 in 

- AC1 
0.1 0.0 0.1 0.4 0.4 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.0 0.4 0.0 0.2 0.3 0.5 0.9 1.0 0.7 0.5 

% Passing #4 - AC1 0.1 0.1 0.0 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.3 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.3 0.2 0.6 0.7 1.0 0.9 

% Passing #10 - AC1 0.2 0.1 0.1 0.4 0.3 0.4 0.3 0.3 0.2 0.1 0.0 0.2 0.2 0.0 0.2 0.1 0.4 0.1 0.2 0.2 0.1 0.4 0.5 0.9 1.0 

% Passing #40 - AC1 0.1 0.1 0.1 0.4 0.3 0.6 0.5 0.5 0.1 0.0 0.1 0.4 0.2 0.2 0.1 0.3 0.1 0.3 0.1 0.2 0.1 0.4 0.5 0.7 0.8 

% Passing #80 

 - AC1 
0.1 0.1 0.2 0.4 0.4 0.6 0.4 0.4 0.2 0.1 0.1 0.3 0.2 0.2 0.0 0.3 0.1 0.2 0.1 0.2 0.1 0.4 0.4 0.5 0.6 

% Passing #200 - AC1 0.0 0.3 0.1 0.0 0.3 0.0 0.2 0.2 0.3 0.1 0.2 0.1 0.0 0.5 0.5 0.3 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 

Thickness  

- AC2 
0.1 0.1 0.0 0.4 0.4 0.1 0.0 0.0 0.1 0.3 0.3 0.2 0.5 0.3 0.2 0.3 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 

Gmb - AC2 0.1 0.2 0.1 0.4 0.5 0.2 0.1 0.0 0.2 0.3 0.2 0.2 0.6 0.6 0.5 0.5 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 

Gmm - AC2 0.1 0.2 0.1 0.5 0.6 0.0 0.1 0.2 0.2 0.3 0.3 0.1 0.7 0.5 0.5 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 

AV - AC2  0.1 0.0 0.2 0.5 0.4 0.0 0.0 0.1 0.0 0.3 0.4 0.1 0.6 0.1 0.0 0.2 0.2 0.0 0.1 0.1 0.3 0.3 0.3 0.1 0.0 

Pb - AC2  0.0 0.2 0.0 0.5 0.5 0.2 0.0 0.0 0.0 0.6 0.4 0.0 0.5 0.1 0.1 0.1 0.5 0.0 0.1 0.1 0.3 0.4 0.4 0.2 0.2 

% Passing 11/2 in  

- AC2 
0.1 0.2 0.0 0.6 0.5 0.2 0.1 0.0 0.1 0.4 0.3 0.3 0.7 0.3 0.1 0.3 0.2 0.0 0.2 0.2 0.3 0.4 0.3 0.2 0.1 

% Passing 1in  

- AC2 
0.1 0.2 0.0 0.6 0.6 0.3 0.1 0.1 0.2 0.5 0.4 0.2 0.6 0.2 0.1 0.3 0.3 0.0 0.1 0.2 0.3 0.4 0.3 0.1 0.2 

% Passing 3/4 in 

- AC2 
0.1 0.1 0.1 0.5 0.5 0.3 0.2 0.1 0.1 0.4 0.3 0.2 0.4 0.2 0.0 0.3 0.2 0.1 0.1 0.1 0.3 0.4 0.3 0.2 0.2 

% Passing 1/2 in 

- AC2 
0.1 0.1 0.1 0.5 0.5 0.4 0.3 0.2 0.1 0.4 0.3 0.3 0.5 0.2 0.0 0.3 0.2 0.1 0.1 0.1 0.3 0.4 0.3 0.2 0.3 

% Passing 3/8 in 

- AC2 
0.1 0.2 0.1 0.5 0.5 0.4 0.2 0.2 0.1 0.4 0.3 0.2 0.5 0.2 0.0 0.3 0.2 0.1 0.1 0.1 0.3 0.4 0.4 0.3 0.3 

% Passing #4 

 - AC2 
0.2 0.1 0.1 0.5 0.5 0.4 0.2 0.2 0.2 0.4 0.3 0.2 0.5 0.1 0.1 0.2 0.3 0.2 0.1 0.1 0.3 0.3 0.3 0.3 0.3 

% Passing #10 

 - AC2 
0.1 0.1 0.1 0.5 0.4 0.5 0.4 0.3 0.1 0.4 0.1 0.4 0.5 0.1 0.1 0.3 0.3 0.2 0.1 0.1 0.2 0.4 0.3 0.4 0.4 

% Passing #40  

- AC2 
0.1 0.1 0.0 0.5 0.4 0.6 0.5 0.4 0.1 0.3 0.0 0.5 0.5 0.2 0.1 0.4 0.2 0.3 0.1 0.1 0.2 0.4 0.3 0.3 0.3 

% Passing #80 

 - AC2 
0.1 0.2 0.0 0.5 0.4 0.5 0.4 0.3 0.1 0.3 0.1 0.4 0.5 0.3 0.0 0.4 0.2 0.3 0.1 0.1 0.3 0.4 0.3 0.2 0.2 
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Table A. 1: Correlation matrix Part-1 (Continued). 
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% Passing #200  

- AC2 
0.0 0.2 0.1 0.4 0.5 0.2 0.1 0.0 0.1 0.3 0.2 0.2 0.5 0.4 0.3 0.3 0.0 0.1 0.1 0.1 0.3 0.3 0.2 0.0 0.0 

Equivalent – 

 Base 
0.0 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.2 0.3 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.1 0.0 

Thickness –  

Base 1 
0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 

MR - Base 1 0.0 0.2 0.1 0.3 0.3 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 

Thickness –  

Base 2 
0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

MR - Base 2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.2 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0 

Thickness - Subbase 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.3 0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.0 0.1 

MR –  

Subbase 
0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.2 0.0 0.2 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.0 0.1 

MR (psi) – subgrade 0.1 0.0 0.1 0.0 0.0 0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 

 

 

 

 
Table A. 2: Correlation matrix Part-2. 
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Age 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 

Cumulative  

Traffic  
0.1 0.1 0.3 0.1 0.2 0.2 0.0 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.0 

Const. Variab. 0.1 0.2 0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 

Evapor. 0.4 0.4 0.0 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.2 0.1 0.3 0.0 0.1 0.1 0.1 0.0 

Precip. 0.3 0.4 0.3 0.4 0.5 0.6 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.1 0.1 0.3 0.1 0.0 0.0 0.0 0.0 

MMAT  0.6 0.6 0.0 0.1 0.2 0.0 0.0 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.6 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 

MAAT  0.5 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.2 0.3 0.2 0.2 0.4 0.5 0.4 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.2 

Freeze Index 0.5 0.4 0.2 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.2 
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Table A. 2: Correlation matrix Part-2 (Continued). 
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Avg.  

Wind Velocity  
0.1 0.2 0.3 0.1 0.2 0.2 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.1 

Cloud  

Cover 
0.0 0.1 0.1 0.3 0.3 0.3 0.3 0.6 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 

Average  

Surface Shortwave 
0.1 0.1 0.2 0.3 0.2 0.3 0.4 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 

T effective 0.4 0.3 0.1 0.2 0.2 0.1 0.1 0.0 0.3 0.2 0.2 0.3 0.2 0.2 0.4 0.5 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Thickness - AC1 0.2 0.2 0.0 0.5 0.6 0.7 0.6 0.5 0.7 0.6 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.1 0.2 0.0 0.2 0.1 0.1 0.0 

Gmb - AC1 0.2 0.2 0.5 0.3 0.6 0.5 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.3 0.4 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.0 

Gmm - AC1 0.1 0.0 0.5 0.2 0.5 0.5 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.3 

AV - AC1  0.3 0.3 0.3 0.3 0.5 0.3 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.4 0.3 0.1 0.1 0.0 0.2 0.2 0.3 0.2 0.1 

Pb - AC1  0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 

Penetration 

 - AC1 
0.3 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 

% Passing 11/2 in- AC1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 

% Passing 1in- AC1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 

% Passing 3/4 in- AC1 0.1 0.1 0.0 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.1 0.0 0.0 0.0 0.1 0.3 0.2 0.0 

% Passing 1/2 in- AC1 0.4 0.4 0.1 0.2 0.2 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.2 0.2 0.2 

% Passing 3/8 in 

- AC1 
0.5 0.4 0.1 0.1 0.1 0.1 0.3 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.2 

% Passing #4 - AC1 0.7 0.5 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.2 

% Passing #10 - AC1 0.8 0.6 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.2 

% Passing #40 - AC1 1.0 0.9 0.2 0.1 0.3 0.2 0.0 0.2 0.2 0.2 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.2 0.2 0.1 0.1 0.1 0.0 0.2 0.1 0.3 

% Passing #80 

 - AC1 
0.9 1.0 0.4 0.1 0.3 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.5 0.4 0.3 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.3 

% Passing #200 - AC1 0.2 0.4 1.0 0.0 0.3 0.3 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.4 0.1 0.0 0.2 0.1 0.1 0.1 0.0 0.1 

Thickness  

- AC2 
0.1 0.1 0.0 1.0 0.7 0.7 0.5 0.5 0.7 0.7 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.6 0.0 0.1 0.0 0.2 0.1 0.1 0.1 0.1 

Gmb - AC2 0.3 0.3 0.3 0.7 1.0 0.9 0.3 0.4 0.8 0.7 0.5 0.5 0.6 0.5 0.5 0.6 0.7 0.8 0.2 0.1 0.1 0.1 0.0 0.2 0.1 0.1 

Gmm - AC2 0.2 0.1 0.3 0.7 0.9 1.0 0.5 0.3 0.8 0.6 0.4 0.4 0.5 0.4 0.4 0.5 0.5 0.7 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 

AV - AC2  0.0 0.1 0.1 0.5 0.3 0.5 1.0 0.6 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 

Pb - AC2  0.2 0.2 0.1 0.5 0.4 0.3 0.6 1.0 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.5 0.1 0.0 0.0 0.1 0.1 0.2 0.1 0.1 

% Passing 11/2 in  

- AC2 
0.2 0.2 0.0 0.7 0.8 0.8 0.7 0.7 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.0 

% Passing 1in  

- AC2 
0.2 0.2 0.1 0.7 0.7 0.6 0.6 0.8 0.9 1.0 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.0 

% Passing 3/4 in 

- AC2 
0.3 0.3 0.1 0.5 0.5 0.4 0.5 0.8 0.8 0.8 1.0 1.0 0.9 0.8 0.8 0.8 0.7 0.6 0.0 0.0 0.0 0.2 0.1 0.3 0.2 0.0 

% Passing 1/2 in 

- AC2 
0.4 0.3 0.1 0.5 0.5 0.4 0.5 0.8 0.8 0.8 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.6 0.1 0.0 0.0 0.2 0.1 0.3 0.2 0.1 
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Table A. 2: Correlation matrix Part-2 (Continued). 
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% Passing 3/8 in 

- AC2 
0.4 0.4 0.1 0.5 0.6 0.5 0.5 0.8 0.8 0.8 0.9 0.9 1.0 0.9 0.8 0.8 0.8 0.7 0.1 0.0 0.1 0.2 0.1 0.4 0.3 0.1 

% Passing #4 

 - AC2 
0.4 0.3 0.1 0.6 0.5 0.4 0.5 0.8 0.8 0.8 0.8 0.9 0.9 1.0 0.9 0.8 0.7 0.6 0.0 0.1 0.0 0.2 0.1 0.2 0.2 0.0 

% Passing #10 

 - AC2 
0.5 0.4 0.1 0.5 0.5 0.4 0.5 0.7 0.8 0.8 0.8 0.8 0.8 0.9 1.0 0.9 0.8 0.6 0.0 0.1 0.0 0.2 0.2 0.2 0.2 0.1 

% Passing #40  

- AC2 
0.6 0.5 0.0 0.5 0.6 0.5 0.4 0.6 0.8 0.7 0.8 0.8 0.8 0.8 0.9 1.0 0.9 0.6 0.1 0.1 0.0 0.2 0.2 0.4 0.3 0.1 

% Passing #80 

 - AC2 
0.4 0.4 0.1 0.6 0.7 0.5 0.4 0.6 0.8 0.7 0.7 0.7 0.8 0.7 0.8 0.9 1.0 0.8 0.2 0.1 0.1 0.2 0.1 0.4 0.3 0.1 

% Passing #200  

- AC2 
0.2 0.3 0.4 0.6 0.8 0.7 0.4 0.5 0.8 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.8 1.0 0.2 0.0 0.2 0.2 0.1 0.3 0.2 0.1 

Equivalent – 

 Base 
0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.2 1.0 0.0 0.5 0.5 0.5 0.4 0.4 0.2 

Thickness –  

Base 1 
0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 1.0 0.1 0.5 0.4 0.1 0.0 0.0 

MR - Base 1 0.1 0.2 0.2 0.0 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.2 0.5 0.1 1.0 0.2 0.1 0.1 0.0 0.1 

Thickness –  

Base 2 
0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.2 1.0 0.9 0.1 0.1 0.0 

MR - Base 2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.4 0.1 0.9 1.0 0.1 0.1 0.0 

Thickness - Subbase 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.2 0.2 0.4 0.4 0.3 0.4 0.1 0.1 0.1 0.1 1.0 0.9 0.2 

MR –  

Subbase 
0.1 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.4 0.0 0.0 0.1 0.1 0.9 1.0 0.1 

MR (psi) – subgrade 0.3 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.0 0.2 0.1 1.0 
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A.1. Weight Matrix of the Final Model 

The results of the NN are a set of matrices defining the connection weights of 

the neuros and their biases. At each neuron (𝑘) in the hidden layer, the  inputs (𝑋𝑖), that 

are normalized, are multiplied by the input connection weights (𝑊𝑖𝑘
𝐿 ) and added to the 

neuron’s bias factor (𝐵𝑘
𝐿). A Dense layer performs the following operation at each layer 

𝐿 : ℎ = 𝑊𝑖𝑘
𝐿𝑋𝑖 + 𝐵𝑘

𝐿. The value is adjusted using the ReLU activation function to 

calculate the value of �̂�𝑘, the output of each hidden neuron. Similar computations are 

applied to the latter value to ultimately calculate the rut depth. The weights and biases 

of the final model are summarized in the following tables. 
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Table A. 2: Weight matrix for the first hidden layer 𝑾𝒊𝒌
𝟏 . 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

0 0.52 -0.14 0.29 -0.18 0.00 0.02 0.11 0.29 0.12 -0.07 0.28 0.01 -0.21 0.06 0.14 0.22 0.06 0.05 -0.24 0.02 0.20 0.20 -0.02 0.11 0.21 -0.31 0.06 0.54 -0.07 

1 0.31 -0.16 0.06 -0.25 0.08 -0.25 -0.39 -0.34 0.01 0.38 0.10 -0.30 -0.01 -0.05 -0.16 0.17 0.27 0.15 -0.26 -0.27 -0.51 0.32 -0.41 0.32 -0.04 -0.11 0.03 0.34 -0.05 

2 0.06 -0.47 -0.09 -0.02 0.36 0.34 0.08 -0.03 -0.03 -0.03 0.11 0.05 0.13 -0.15 0.12 -0.08 -0.16 0.39 -0.44 -0.19 0.03 -0.33 0.28 -0.32 -0.38 -0.30 -0.01 0.49 0.06 

3 0.18 0.38 -0.08 -0.27 -0.35 -0.24 -0.07 -0.15 -0.12 -0.17 0.39 0.19 -0.21 -0.16 0.13 -0.02 -0.14 0.01 0.16 0.14 -0.51 0.18 -0.06 -0.08 0.31 0.02 0.00 -0.42 0.17 

4 0.04 -0.02 -0.03 -0.06 0.53 0.06 -0.26 0.02 0.33 0.00 -0.04 -0.18 0.15 0.24 -0.22 -0.08 0.19 0.16 -0.47 0.05 0.06 -0.11 -0.21 0.00 0.06 -0.10 0.23 -0.12 -0.11 

5 0.16 -0.34 -0.16 -0.13 -0.20 0.21 -0.20 -0.43 -0.24 -0.57 0.32 0.27 0.29 -0.06 0.17 -0.45 -0.23 0.20 -0.07 0.09 -0.08 -0.07 0.23 -0.39 0.29 -0.14 -0.03 0.17 0.04 

6 0.10 0.43 0.18 -0.09 -0.14 0.32 0.33 -0.31 0.15 -0.05 0.17 0.03 -0.34 0.31 -0.45 0.38 -0.42 -0.48 0.00 0.02 0.03 0.16 0.45 -0.19 0.03 -0.24 -0.12 0.37 -0.48 

7 0.24 -0.09 0.04 -0.26 -0.07 -0.17 0.04 -0.34 -0.11 -0.39 0.23 0.18 0.41 -0.16 -0.33 -0.16 0.51 -0.28 0.39 0.23 -0.09 0.08 0.03 -0.09 0.11 -0.01 0.44 -0.39 -0.03 

8 0.50 0.07 -0.01 -0.15 0.39 0.16 -0.05 0.27 0.13 -0.07 0.23 0.32 0.22 0.29 -0.35 0.00 0.18 0.19 0.24 0.20 -0.34 0.20 -0.25 -0.40 0.30 0.16 0.00 0.25 -0.01 

9 0.11 -0.57 0.05 -0.35 -0.28 -0.02 0.10 0.22 0.17 0.10 -0.05 -0.01 -0.06 0.28 0.20 -0.09 -0.06 0.03 -0.11 0.00 0.23 -0.03 0.14 -0.02 0.41 0.34 0.18 0.14 -0.13 

10 0.02 -0.14 0.21 -0.20 0.12 0.15 -0.11 0.05 0.28 0.08 -0.05 -0.25 -0.16 0.08 0.22 -0.14 -0.37 -0.19 -0.53 -0.29 -0.06 0.01 0.03 -0.25 0.09 -0.17 -0.26 0.32 0.05 

11 -0.04 -0.27 0.08 0.28 0.28 0.15 -0.08 -0.22 0.06 0.14 0.25 0.05 0.41 0.13 -0.30 -0.14 -0.16 -0.02 -0.12 0.23 -0.32 -0.20 -0.46 0.10 -0.24 -0.01 -0.43 0.36 -0.06 

12 -0.92 -0.06 0.33 -0.18 0.36 0.08 -0.33 -0.05 -0.24 -0.04 0.27 0.14 0.24 -0.23 0.00 0.17 0.25 -0.39 0.00 -0.29 0.04 0.15 -0.25 0.27 0.14 -0.11 -0.30 -0.11 -0.69 

13 -0.02 0.05 -0.14 0.48 -0.05 -0.18 -0.12 0.20 0.19 -0.16 -0.18 0.48 -0.05 0.13 -0.43 -0.29 -0.25 0.28 -0.01 0.07 0.02 0.05 -0.31 -0.22 0.20 0.13 -0.43 0.09 0.02 

14 0.01 -0.18 -0.34 -0.08 -0.20 0.26 -0.08 -0.22 -0.15 0.20 0.10 0.02 0.44 0.05 0.30 -0.10 0.27 0.10 -0.18 0.25 0.03 -0.05 0.17 0.14 -0.22 -0.20 0.08 -0.21 -0.23 

15 0.11 -0.33 0.04 -0.26 -0.11 0.10 -0.08 -0.03 0.03 -0.13 -0.12 -0.12 0.10 0.11 0.31 -0.33 -0.36 0.06 -0.39 -0.44 -0.06 -0.03 0.50 -0.12 -0.07 -0.28 -0.18 0.41 0.01 

16 0.04 -0.18 0.21 0.09 0.11 0.13 0.04 -0.03 -0.07 0.08 0.30 -0.10 0.26 -0.03 -0.16 -0.15 0.19 0.22 0.13 -0.01 -0.22 0.18 -0.35 -0.40 0.16 0.33 0.18 0.02 0.00 

17 -1.23 -0.11 -0.03 -0.36 0.11 -0.12 0.03 0.20 -0.41 0.28 0.31 -0.18 -0.15 -0.25 -0.45 0.28 0.26 0.13 0.06 -0.21 0.06 -0.49 0.16 -0.10 -0.15 -0.26 0.55 -0.11 0.19 

18 0.11 -0.51 -0.03 -0.39 0.11 0.07 0.03 0.13 -0.28 0.23 0.10 -0.27 0.09 -0.20 -0.07 0.11 0.32 0.06 0.00 -0.16 0.37 -0.27 0.15 -0.13 -0.31 -0.15 0.02 0.58 0.04 

19 0.23 0.00 0.21 0.10 0.41 0.17 0.06 -0.03 -0.12 -0.34 0.36 0.24 0.27 0.00 -0.03 -0.29 0.06 0.39 0.03 0.14 -0.32 0.16 -0.05 -0.01 -0.03 0.07 0.08 0.16 0.01 

20 0.27 0.01 0.10 -0.13 -0.02 -0.03 0.06 0.03 -0.04 -0.27 -0.01 0.17 -0.14 -0.11 0.01 -0.09 -0.04 0.09 -0.36 0.39 -0.27 -0.02 0.37 0.13 0.04 -0.01 -0.14 -0.15 0.01 

21 0.15 -0.21 0.51 -0.02 0.26 -0.16 -0.17 -0.34 -0.16 0.35 -0.09 -0.52 -0.07 -0.11 -0.15 0.10 -0.02 0.44 -0.57 0.27 -0.39 0.24 0.14 -0.07 0.07 0.05 0.18 0.23 -0.12 
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Table A. 1: Weight matrix for the first hidden layer  𝑾𝒊𝒌
𝟏  (Continued). 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

22 0.01 -0.27 -0.08 0.10 -0.20 0.25 0.08 -0.08 0.11 0.18 -0.03 -0.22 0.01 -0.36 0.08 -0.36 0.25 0.00 0.05 0.27 -0.33 0.47 0.23 0.31 -0.06 0.01 0.13 -0.19 -0.23 

23 0.04 -0.27 -0.39 -0.31 0.15 -0.12 0.09 0.10 0.03 -0.26 0.00 -0.22 0.10 -0.41 0.27 -0.33 -0.27 0.11 -0.55 -0.26 0.00 0.03 0.32 0.00 -0.26 -0.40 -0.06 0.16 0.16 

24 0.14 -0.01 0.01 0.07 0.16 0.17 0.06 -0.28 0.02 -0.14 0.42 0.06 0.18 0.14 0.06 0.17 0.49 0.13 0.21 0.01 -0.06 0.33 -0.14 0.42 -0.21 0.05 0.04 0.06 -0.01 

25 0.10 -0.37 -0.16 -0.16 0.09 -0.41 0.09 -0.02 0.31 -0.14 -0.15 -0.16 0.02 0.02 0.04 0.07 0.21 0.04 -0.57 0.03 -0.22 0.13 0.17 -0.05 -0.03 -0.12 -0.08 -0.08 0.37 

26 0.19 -0.01 -0.05 -0.03 0.13 0.05 -0.25 0.06 -0.36 -0.03 0.18 -0.11 -0.05 0.04 0.09 0.02 -0.21 0.25 -0.17 -0.40 -0.26 0.00 0.21 -0.49 -0.02 -0.43 -0.27 0.15 -0.02 

27 0.00 -0.31 -0.53 -0.55 0.02 -0.13 -0.02 0.08 0.12 -0.01 0.02 -0.11 0.58 0.08 -0.19 0.18 -0.23 -0.05 -0.49 -0.16 -0.17 0.16 -0.08 -0.18 0.40 0.02 -0.06 0.15 -0.03 

28 0.15 -0.30 0.05 -0.06 -0.33 -0.17 -0.13 -0.54 0.21 -0.30 -0.09 -0.21 -0.01 -0.29 0.08 -0.01 -0.14 0.06 -0.45 -0.03 -0.10 -0.38 0.09 -0.09 -0.14 -0.34 -0.06 0.08 0.09 

29 0.12 0.27 0.04 0.46 0.19 0.23 -0.09 -0.33 -0.25 0.14 -0.05 0.01 -0.16 -0.39 -0.15 -0.33 0.20 -0.14 -0.04 0.45 -0.09 -0.06 0.25 -0.07 -0.11 0.00 0.29 -0.17 -0.04 

30 0.33 0.51 -0.17 -0.19 -0.12 -0.18 0.16 -0.27 0.19 -0.57 0.02 -0.23 -0.50 -0.23 0.22 0.34 -0.47 0.33 0.30 0.30 0.16 -0.19 -0.07 0.07 0.00 0.02 -0.08 -0.10 -0.23 

31 0.04 -0.13 -0.46 -0.04 -0.12 -0.41 -0.06 0.12 0.09 0.10 -0.15 -0.33 0.23 -0.16 0.21 -0.22 0.27 -0.24 -0.30 -0.11 0.25 -0.09 0.07 0.17 -0.06 -0.29 -0.02 -0.19 0.04 

32 0.20 0.39 -0.17 -0.28 0.10 -0.13 0.05 -0.46 0.15 -0.12 -0.21 -0.44 -0.20 -0.25 0.33 -0.01 -0.26 -0.10 0.16 0.33 -0.03 -0.35 -0.06 -0.11 -0.14 0.04 -0.09 -0.45 0.07 

33 0.57 -0.26 0.07 -0.03 -0.10 -0.28 0.17 -0.40 0.04 0.22 -0.41 -0.03 0.33 0.51 -0.20 -0.01 0.43 0.34 0.47 -0.11 0.11 -0.22 0.09 0.08 0.15 -0.33 -0.06 0.22 -0.26 

34 -0.26 -0.24 0.20 0.10 0.35 0.24 -0.29 0.38 -0.19 0.07 -0.12 0.03 0.14 -0.15 -0.30 0.23 0.22 -0.17 0.22 0.00 0.19 0.35 -0.15 0.04 0.19 0.13 0.08 -0.13 0.32 

35 -0.02 0.31 0.07 -0.04 -0.23 -0.23 0.49 0.09 0.28 -0.35 -0.07 -0.29 -0.72 0.24 -0.14 0.02 -0.27 0.59 0.19 0.29 -0.05 0.28 0.53 0.05 -0.16 -0.14 -0.21 0.43 -0.27 

36 0.11 -0.49 -0.10 0.23 -0.06 -0.07 0.07 -0.09 -0.06 0.26 -0.04 0.02 -0.01 -0.26 0.04 0.01 -0.14 -0.05 0.34 0.55 0.24 0.01 0.38 -0.16 0.27 0.20 -0.06 0.32 -0.07 

37 0.06 0.31 0.10 -0.10 -0.16 -0.33 0.31 -0.16 -0.38 0.05 -0.21 0.05 -0.33 -0.18 0.06 0.11 -0.30 0.17 -0.08 -0.11 -0.01 -0.15 -0.32 0.24 0.05 -0.05 0.42 -0.06 0.34 

38 0.10 -0.10 0.07 -0.34 0.31 0.05 0.19 -0.06 0.18 -0.33 -0.13 -0.27 0.32 -0.01 0.23 0.05 0.23 0.03 0.07 -0.11 -0.27 0.15 0.03 -0.10 0.16 0.00 0.19 -0.09 -0.05 

39 -0.15 0.16 -0.25 0.07 0.02 -0.26 -0.05 0.23 -0.35 0.15 -0.26 0.04 -0.05 0.00 -0.26 0.04 -0.09 0.27 -0.11 0.41 0.29 0.21 -0.36 0.00 0.32 -0.15 0.14 0.00 0.38 

40 0.59 0.00 0.25 -0.01 -0.11 0.04 -0.01 -0.35 0.29 -0.17 -0.07 0.27 -0.08 0.04 -0.41 0.12 -0.21 0.06 0.20 0.09 0.15 0.05 -0.31 0.08 0.33 0.28 0.30 0.11 -0.02 

41 0.16 0.25 -0.09 0.09 0.10 0.25 -0.01 -0.12 0.11 -0.12 0.18 0.43 -0.15 -0.27 0.14 -0.17 0.23 -0.11 0.30 0.17 0.26 0.18 0.24 0.08 0.04 -0.08 0.19 -0.12 0.16 

42 0.94 0.10 -0.24 0.36 0.31 0.20 0.00 -0.01 -0.01 0.16 -0.29 0.35 -0.25 0.02 -0.14 -0.39 0.18 0.13 -0.07 0.03 -0.02 -0.11 0.00 -0.05 -0.13 -0.07 -0.07 0.19 -0.09 

43 0.22 -0.23 -0.27 -0.03 0.24 0.06 0.23 -0.15 -0.03 0.11 -0.02 0.49 0.18 0.21 0.27 0.01 -0.26 -0.21 0.14 0.18 0.11 -0.10 0.46 -0.31 0.06 -0.08 -0.14 0.15 0.12 

44 0.25 -0.33 -0.45 0.01 -0.02 -0.09 0.19 0.50 0.10 0.10 -0.03 -0.12 0.28 -0.18 0.27 -0.08 0.00 -0.06 0.18 0.02 0.38 -0.30 0.03 0.06 -0.01 -0.10 -0.33 0.08 -0.10 
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Table A. 1: Weight matrix for the first hidden layer  𝑾𝒊𝒌
𝟏  (Continued). 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

45 0.12 -0.28 -0.07 0.05 0.09 0.11 -0.31 -0.06 -0.20 0.10 -0.02 -0.45 0.45 -0.20 -0.13 0.21 0.02 0.67 0.08 -0.08 -0.05 -0.12 -0.24 0.06 -0.36 -0.09 -0.17 -0.03 -0.01 

46 0.51 -0.25 -0.22 -0.20 0.49 0.01 -0.13 0.06 0.09 -0.21 -0.41 -0.48 0.15 0.04 -0.05 0.09 -0.07 0.17 -0.27 -0.16 0.16 0.23 -0.07 -0.02 0.28 0.14 -0.08 -0.01 0.00 

47 0.12 -0.34 -0.33 -0.35 0.36 -0.17 -0.27 0.41 0.35 0.06 -0.15 0.28 0.10 0.17 -0.51 -0.34 -0.14 -0.09 -0.15 0.12 0.42 -0.24 -0.15 -0.22 -0.26 0.14 0.41 0.00 0.20 

48 0.42 0.57 0.26 0.04 -0.01 -0.18 -0.15 0.26 -0.20 0.01 -0.25 0.15 -0.02 -0.13 -0.40 0.35 0.00 -0.16 0.04 -0.18 -0.01 0.08 0.17 -0.13 -0.20 -0.20 0.26 -0.26 -0.42 

49 -1.04 0.26 -0.03 -0.09 0.62 -0.50 0.05 -0.06 0.17 -0.12 -0.09 0.00 -0.08 -0.20 0.07 0.03 -0.01 0.60 -0.05 0.27 0.24 -0.11 0.18 0.07 -0.17 -0.15 -0.05 -0.31 -0.05 

50 0.05 -0.28 0.08 -0.34 0.14 0.27 0.09 0.34 0.41 -0.18 -0.21 0.50 -0.25 0.15 -0.18 0.09 -0.14 0.16 -0.07 0.25 0.35 -0.29 0.30 -0.18 -0.17 0.16 0.11 0.08 0.09 

51 0.18 0.27 -0.12 -0.06 0.24 0.13 0.13 0.05 0.42 -0.35 -0.01 0.49 0.15 0.00 0.10 -0.06 -0.19 0.00 0.22 0.23 0.41 -0.21 0.31 0.04 -0.05 -0.01 0.04 -0.15 0.04 

52 0.04 -0.09 0.20 -0.04 -0.15 -0.32 -0.09 0.24 0.02 0.18 -0.25 -0.34 -0.12 -0.19 -0.20 0.26 -0.29 0.46 -0.41 0.11 -0.21 0.03 -0.29 -0.22 0.34 0.08 -0.18 0.03 -0.09 

53 -0.01 0.07 0.39 0.44 0.06 -0.27 0.02 -0.13 -0.16 -0.27 0.18 -0.14 0.18 -0.08 -0.11 -0.41 -0.21 0.13 0.08 -0.27 0.01 0.13 -0.02 -0.28 0.32 -0.05 -0.10 -0.36 0.02 

54 0.32 0.01 0.05 -0.14 0.46 -0.30 -0.24 -0.12 -0.28 0.09 0.53 -0.56 -0.03 -0.07 -0.12 0.04 -0.21 -0.11 0.24 -0.17 -0.33 0.41 0.15 0.02 0.09 0.03 0.28 0.05 -0.27 

55 0.55 0.47 0.35 -0.15 0.09 -0.22 -0.32 0.37 -0.19 -0.22 -0.06 0.42 -0.10 0.17 -0.39 0.40 0.18 0.03 0.09 0.02 0.23 0.00 -0.36 0.00 0.32 0.30 0.18 0.07 -0.49 

56 -0.02 -0.15 -0.08 0.22 0.21 0.33 0.17 -0.21 0.02 -0.13 0.33 0.16 0.46 0.19 0.30 0.00 0.11 0.13 -0.01 -0.04 -0.02 0.00 0.19 0.13 -0.29 -0.22 0.29 -0.31 0.02 

57 -0.90 0.13 0.51 -0.36 0.24 0.02 -0.56 -0.15 0.03 0.04 0.37 0.29 0.19 -0.47 -0.02 0.24 0.17 0.09 -0.21 -0.01 0.19 0.36 0.14 0.04 0.14 -0.15 0.17 -0.33 -0.10 

58 0.41 0.22 0.17 0.19 0.18 -0.06 -0.02 -0.11 -0.09 0.01 -0.04 0.29 0.07 0.39 0.00 -0.11 0.18 -0.17 0.44 -0.21 0.00 0.09 -0.13 -0.16 0.27 0.15 0.03 -0.23 -0.24 

59 -1.67 0.00 -0.05 -0.03 0.00 0.14 -0.17 -0.32 0.30 -0.01 -0.31 -0.12 0.19 0.04 -0.12 0.34 -0.21 0.12 -0.06 0.04 -0.03 0.23 0.09 0.16 -0.15 -0.04 -0.13 -0.01 -0.10 

60 0.05 0.09 0.36 0.33 -0.30 -0.27 -0.05 -0.30 0.05 0.08 0.33 -0.29 0.02 0.06 -0.10 -0.20 -0.31 -0.07 0.23 0.12 0.03 0.12 0.09 0.07 0.10 -0.07 -0.24 -0.41 -0.14 

61 -1.78 -0.07 -0.04 0.07 0.00 -0.06 0.07 0.08 0.12 0.14 -0.18 -0.13 -0.12 0.04 -0.17 0.06 -0.19 0.13 -0.01 0.20 -0.03 -0.08 0.02 0.00 -0.11 -0.05 0.17 -0.01 0.10 

62 0.06 -0.15 0.05 0.16 0.16 0.59 0.07 -0.16 0.28 -0.27 0.14 0.31 0.16 0.00 0.00 -0.13 0.33 0.26 0.23 0.23 0.27 -0.15 -0.15 -0.22 0.29 -0.25 -0.24 0.34 -0.06 

63 0.09 0.18 -0.02 0.15 0.02 -0.24 0.16 0.01 -0.20 0.26 -0.08 -0.24 -0.48 -0.33 0.18 0.21 -0.02 -0.06 -0.24 0.38 -0.14 -0.16 0.40 0.36 -0.44 -0.24 -0.24 0.02 0.00 

64 0.06 -0.35 -0.08 -0.32 0.40 0.04 0.04 0.05 0.19 -0.13 -0.04 -0.25 0.31 -0.01 -0.25 0.21 -0.17 0.37 -0.38 -0.32 -0.40 0.11 -0.29 -0.18 0.13 0.13 0.08 0.19 0.17 

65 0.07 0.00 -0.30 0.07 0.01 -0.25 -0.22 0.09 0.17 0.22 -0.20 -0.44 0.07 -0.22 -0.06 0.14 -0.26 -0.15 -0.33 -0.12 0.22 -0.44 -0.18 0.11 0.07 -0.22 -0.31 0.21 -0.03 

66 0.15 -0.25 -0.27 -0.15 0.02 0.24 0.11 0.05 -0.22 -0.20 0.29 0.33 0.22 -0.44 -0.09 -0.19 0.43 0.29 -0.13 0.26 -0.22 0.00 -0.07 -0.13 0.12 0.08 -0.18 0.13 0.06 

67 0.05 -0.29 0.05 -0.35 -0.21 -0.05 0.17 -0.11 -0.12 0.14 -0.02 -0.05 -0.12 0.07 0.38 -0.17 0.17 -0.17 -0.47 0.14 -0.07 0.30 0.03 0.45 0.07 0.20 -0.13 0.05 -0.07 
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Table A. 1: Weight matrix for the first hidden layer  𝑾𝒊𝒌
𝟏  (Continued). 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

68 -1.77 0.03 -0.04 0.02 0.01 -0.14 0.03 -0.11 0.00 -0.10 0.03 -0.02 0.09 -0.07 0.00 0.07 0.05 0.13 -0.06 -0.06 0.01 -0.02 0.01 0.00 -0.02 0.01 0.08 -0.04 0.00 

69 0.76 0.19 -0.07 -0.32 0.11 -0.07 0.02 0.02 -0.13 -0.22 -0.14 0.23 0.16 -0.03 -0.39 -0.06 0.25 0.08 0.24 -0.31 -0.32 -0.10 0.01 -0.39 0.02 0.08 0.00 0.12 -0.15 

70 -1.75 0.05 -0.08 -0.31 -0.19 -0.17 -0.14 -0.03 -0.29 0.04 -0.18 0.16 0.25 0.19 -0.01 -0.05 -0.01 0.31 -0.24 -0.09 0.09 0.04 0.16 -0.09 -0.05 -0.04 0.24 -0.25 0.07 

71 0.22 0.05 0.09 -0.03 0.06 0.28 -0.25 0.13 0.07 -0.03 0.23 0.22 -0.29 -0.09 -0.32 -0.27 0.25 0.03 0.31 0.41 -0.21 0.11 -0.06 -0.22 0.01 -0.06 -0.10 0.29 -0.02 

72 0.08 -0.07 -0.41 -0.47 0.00 0.12 -0.16 0.08 0.12 0.06 -0.21 0.18 0.34 0.23 -0.07 0.48 0.16 0.34 -0.61 0.00 -0.03 0.14 -0.03 0.16 0.03 0.07 -0.06 0.21 -0.13 

73 0.11 0.35 -0.01 -0.14 0.23 0.48 -0.14 -0.36 0.22 -0.06 0.17 0.32 0.42 -0.16 -0.04 0.06 -0.12 -0.07 -0.21 -0.01 -0.47 -0.01 -0.12 -0.02 -0.44 -0.23 0.15 0.02 0.16 

74 -1.84 0.02 -0.23 -0.20 -0.16 -0.09 0.12 0.28 -0.12 0.07 0.07 -0.02 -0.45 -0.05 -0.13 -0.06 -0.16 0.00 -0.02 0.21 0.13 0.07 0.12 -0.08 -0.04 -0.09 0.11 0.05 -0.17 

75 -1.62 -0.06 0.18 -0.10 0.43 -0.10 0.03 -0.28 0.32 0.41 -0.06 -0.09 -0.19 -0.34 0.10 0.27 -0.14 0.29 0.12 0.09 -0.02 -0.03 -0.20 0.03 0.09 0.05 0.14 0.17 0.12 

76 0.49 0.19 0.01 0.10 0.04 0.27 0.15 0.12 0.40 -0.08 -0.44 -0.35 -0.41 -0.23 -0.28 0.12 -0.43 0.09 -0.03 -0.48 -0.15 0.48 0.17 -0.02 0.05 0.09 -0.08 -0.20 -0.37 

77 -0.23 0.10 0.07 -0.03 -0.20 -0.11 -0.10 -0.29 0.20 0.08 0.21 -0.11 0.14 -0.14 -0.11 -0.06 -0.17 0.06 0.13 0.07 0.14 0.22 0.21 0.13 -0.15 0.00 -0.19 0.57 0.48 

78 0.32 0.05 0.15 -0.13 0.16 -0.33 0.08 0.14 -0.08 0.10 -0.02 0.16 0.30 0.30 -0.02 0.09 0.38 0.08 -0.06 0.13 0.28 0.01 -0.17 0.00 -0.33 0.08 -0.19 -0.07 0.12 

79 0.04 -0.34 -0.28 0.13 -0.21 -0.11 0.03 -0.14 0.15 0.23 -0.27 0.18 0.23 0.09 0.41 0.14 -0.17 -0.21 0.07 0.01 0.06 0.34 0.41 0.23 0.11 -0.09 0.17 0.14 -0.07 

80 0.28 -0.12 -0.07 -0.15 -0.22 -0.21 -0.01 0.12 0.39 -0.04 0.26 0.04 0.19 0.16 -0.05 -0.26 -0.15 0.05 0.35 0.01 0.27 -0.17 0.04 0.05 -0.03 -0.04 0.10 -0.36 -0.02 

81 -0.48 -0.21 0.15 -0.24 -0.02 0.12 -0.22 -0.03 -0.08 0.09 -0.17 0.18 0.09 0.08 0.36 -0.01 0.41 -0.32 -0.35 -0.40 -0.24 -0.07 0.28 -0.18 -0.08 0.16 -0.32 -0.31 -0.30 

82 0.30 -0.03 0.01 -0.33 0.29 0.06 -0.36 -0.06 0.28 -0.15 -0.33 0.08 -0.14 0.09 -0.12 0.03 -0.05 -0.15 -0.19 -0.05 -0.21 0.03 0.04 -0.34 0.01 -0.34 0.04 0.48 0.25 

83 0.14 0.02 -0.15 -0.01 0.14 -0.16 -0.26 0.11 0.25 -0.08 0.00 -0.04 0.26 0.08 -0.64 0.24 0.06 -0.05 0.19 -0.24 0.53 -0.33 -0.56 -0.29 0.20 0.30 0.35 -0.10 -0.06 

84 0.07 -0.45 -0.11 0.24 0.42 0.44 0.14 0.13 -0.08 0.01 -0.17 0.21 0.12 -0.03 0.12 -0.14 0.18 -0.09 0.05 0.16 0.30 -0.29 0.48 -0.07 -0.50 -0.36 -0.03 0.21 0.29 

85 0.05 0.51 0.03 -0.09 0.16 -0.56 -0.26 0.00 -0.01 0.04 -0.17 0.42 0.27 0.05 0.33 -0.33 0.54 0.25 -0.08 -0.20 -0.22 -0.33 0.21 -0.49 0.08 0.16 0.52 0.01 -0.01 

86 0.12 -0.32 -0.09 -0.33 0.09 -0.24 -0.18 0.04 -0.42 0.16 0.28 0.00 -0.11 -0.12 -0.08 -0.22 -0.05 0.08 -0.39 0.20 -0.42 0.47 -0.07 -0.02 0.25 0.09 -0.23 0.20 -0.22 

87 0.59 -0.13 -0.05 -0.04 0.48 -0.10 0.11 -0.23 -0.01 0.21 0.28 -0.34 0.33 0.15 -0.06 -0.06 0.22 0.06 0.32 0.31 -0.41 0.38 0.15 0.18 -0.15 -0.03 0.25 -0.18 0.07 

88 -1.31 0.04 -0.13 -0.18 0.31 -0.20 0.17 -0.12 -0.01 0.33 0.24 -0.36 -0.06 -0.16 -0.10 0.34 -0.02 -0.01 0.36 -0.16 -0.07 -0.05 -0.01 0.11 -0.11 -0.06 -0.06 0.24 -0.14 

89 0.42 0.04 -0.22 -0.50 -0.07 -0.32 -0.06 0.24 0.25 -0.12 0.30 0.27 0.34 -0.08 -0.16 -0.39 -0.06 0.02 0.25 0.33 -0.10 -0.18 0.13 -0.12 0.01 0.03 -0.03 0.25 -0.22 

90 0.13 -0.24 0.21 0.17 0.18 0.41 0.15 -0.22 0.12 -0.16 0.00 0.20 0.31 -0.08 0.01 0.06 0.05 -0.02 0.32 0.09 0.33 -0.16 0.32 0.02 -0.16 -0.22 -0.02 0.24 0.00 
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Table A. 1: Weight matrix for the first hidden layer  𝑾𝒊𝒌
𝟏  (Continued). 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

91 0.03 -0.12 0.16 -0.33 -0.08 0.21 0.17 -0.36 -0.07 -0.02 -0.09 0.13 -0.08 0.09 0.26 0.20 -0.19 -0.24 0.03 0.09 0.25 -0.28 0.50 -0.46 -0.15 0.07 0.18 0.13 0.03 

92 -0.03 0.25 -0.02 0.04 0.24 0.22 -0.03 -0.08 0.29 -0.10 0.13 0.29 0.07 0.14 -0.08 -0.14 0.00 -0.15 0.04 0.27 0.24 -0.29 0.05 -0.01 -0.12 -0.34 -0.20 -0.04 0.07 

93 0.24 -0.12 0.11 -0.26 -0.10 -0.02 0.22 -0.18 0.08 -0.01 0.06 0.01 -0.01 -0.06 0.29 0.01 0.19 0.20 -0.44 -0.22 0.42 -0.31 -0.12 0.04 -0.35 -0.16 0.13 0.29 0.25 

94 0.09 0.08 -0.13 0.35 0.31 -0.04 -0.07 0.14 -0.24 0.00 0.15 -0.35 0.08 -0.48 -0.13 -0.03 0.31 0.43 -0.05 -0.07 -0.36 0.02 -0.38 -0.07 0.10 0.09 -0.01 -0.25 -0.15 

95 0.03 -0.63 -0.34 -0.22 0.10 0.01 0.06 -0.25 0.22 -0.12 -0.10 0.07 0.37 -0.24 -0.16 0.38 -0.03 0.40 -0.22 -0.12 0.34 -0.22 -0.11 0.06 0.01 -0.04 0.23 0.15 0.09 

96 0.10 0.16 -0.30 0.07 0.02 0.48 0.15 -0.04 0.12 -0.10 -0.30 0.37 -0.17 -0.41 -0.32 0.29 0.12 -0.09 0.44 -0.09 0.17 -0.11 0.20 -0.46 -0.13 0.17 0.06 0.06 0.04 

97 -1.77 -0.01 0.05 -0.15 -0.20 0.04 0.03 0.06 0.05 0.05 -0.06 -0.13 0.00 -0.05 -0.06 -0.02 -0.04 -0.02 0.12 0.04 0.07 0.03 0.01 -0.03 0.03 0.03 -0.05 0.06 -0.04 

98 0.04 0.42 0.34 0.45 0.07 -0.17 0.07 -0.08 -0.02 -0.11 -0.22 0.39 0.01 0.08 -0.34 -0.09 0.09 0.00 0.20 -0.02 0.22 0.13 -0.37 0.18 -0.12 0.04 -0.15 -0.03 0.02 

99 0.12 -0.31 0.34 -0.34 0.35 0.01 -0.06 0.02 -0.19 0.54 0.12 -0.26 -0.02 0.11 -0.02 0.00 -0.33 -0.15 -0.18 0.00 0.16 -0.11 0.19 -0.47 0.16 0.03 0.29 0.33 0.01 

100 0.17 -0.03 0.44 -0.43 -0.30 -0.20 -0.02 0.17 -0.01 0.45 0.24 0.20 0.07 0.45 -0.02 0.04 0.18 -0.06 0.17 -0.09 -0.12 0.37 -0.37 0.20 0.45 0.42 -0.04 0.39 -0.21 

101 0.67 -0.09 -0.26 -0.26 0.24 0.09 0.28 -0.13 -0.03 -0.02 -0.09 0.39 0.18 -0.23 0.20 0.36 0.30 -0.34 0.43 0.00 0.04 0.02 0.39 -0.12 -0.02 -0.08 0.01 0.07 -0.02 

102 0.02 -0.14 0.14 0.27 -0.03 0.07 0.16 -0.14 0.00 0.49 0.02 -0.03 0.02 -0.02 0.00 0.18 0.05 -0.17 -0.13 -0.03 -0.06 -0.18 -0.01 -0.04 -0.11 0.02 -0.21 -0.31 -0.05 

103 -0.45 -0.18 -0.10 -0.23 -0.06 -0.18 0.18 -0.15 -0.10 -0.13 -0.06 0.05 -0.48 0.57 -0.31 -0.11 -0.06 0.07 0.10 0.09 -0.33 -0.34 -0.18 0.15 -0.25 -0.01 0.35 0.10 0.14 

104 0.21 -0.09 0.00 0.13 0.02 -0.40 -0.42 -0.04 0.00 -0.17 -0.10 0.00 0.20 0.31 -0.20 0.07 0.26 0.34 -0.12 -0.03 -0.13 0.24 -0.56 0.16 -0.19 0.16 0.18 -0.27 0.14 

105 0.48 0.10 -0.33 0.16 0.09 -0.17 -0.11 -0.03 0.22 -0.08 -0.22 -0.15 -0.39 -0.01 -0.17 -0.07 -0.05 0.29 -0.03 -0.01 -0.24 -0.02 0.22 -0.23 -0.41 0.26 -0.02 -0.11 0.16 

106 0.05 -0.02 -0.12 0.21 0.01 0.32 0.04 -0.11 0.16 -0.10 -0.29 0.32 -0.10 -0.47 -0.31 -0.21 0.05 -0.16 0.02 0.36 0.18 -0.19 -0.07 -0.03 -0.19 0.04 -0.14 0.10 0.19 

107 0.31 0.10 0.30 -0.22 0.15 -0.11 0.06 0.00 -0.29 0.04 0.32 -0.09 0.01 -0.16 0.03 0.16 0.02 0.26 0.52 0.09 0.07 0.33 0.38 -0.05 -0.09 -0.18 0.17 0.19 -0.16 

108 -0.02 -0.30 0.35 0.40 0.46 0.36 0.22 -0.14 0.08 -0.04 -0.26 0.44 0.16 0.27 0.06 -0.24 -0.12 -0.08 -0.20 -0.08 0.19 -0.29 0.48 -0.04 -0.49 -0.15 0.26 0.22 0.19 

109 -1.50 0.04 0.08 -0.39 0.08 -0.15 0.09 -0.01 -0.05 0.22 -0.01 -0.22 0.28 -0.26 -0.05 0.00 0.20 -0.17 0.05 -0.01 0.12 0.23 0.01 0.10 0.22 -0.13 -0.20 -0.04 -0.38 

110 0.22 -0.39 0.21 -0.05 0.28 -0.04 -0.39 -0.36 0.49 0.07 -0.22 -0.37 0.02 0.27 -0.06 -0.02 -0.22 0.17 -0.58 -0.23 -0.01 -0.23 -0.20 0.07 0.01 0.02 0.00 0.48 0.13 

111 0.11 -0.14 0.02 -0.25 0.00 -0.23 0.04 0.32 0.13 0.04 0.12 0.11 -0.07 0.05 -0.22 0.10 0.14 0.24 -0.38 -0.01 0.45 -0.67 -0.15 -0.02 -0.12 -0.10 0.28 -0.09 -0.02 

112 -0.06 0.14 0.17 0.03 -0.31 -0.20 0.09 -0.24 0.08 0.03 -0.09 0.10 0.21 -0.28 -0.31 -0.39 -0.19 -0.05 0.09 0.24 -0.01 -0.03 0.13 0.04 -0.41 0.05 -0.21 0.17 -0.20 

113 0.07 -0.19 0.28 -0.09 0.38 0.31 0.11 0.09 0.02 0.15 -0.31 0.03 0.08 0.10 0.08 0.05 -0.02 -0.05 -0.13 -0.17 0.33 -0.29 0.46 -0.20 -0.60 -0.13 0.11 0.42 0.14 
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Table A. 1: Weight matrix for the first hidden layer  𝑾𝒊𝒌
𝟏  (Continued). 

Hidden  

Layer 1 

Input Layer 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

114 -1.28 -0.14 0.17 -0.10 -0.19 0.38 -0.18 -0.14 0.05 -0.09 0.28 -0.09 0.26 0.06 -0.12 0.12 0.13 -0.23 -0.05 -0.14 -0.20 -0.13 0.20 -0.12 -0.21 0.10 -0.18 0.26 -0.20 

115 0.13 0.04 0.04 -0.01 0.21 0.24 -0.10 -0.06 0.17 -0.27 0.07 0.21 0.17 0.23 0.13 0.07 0.06 0.03 0.02 -0.21 0.22 -0.54 0.25 -0.24 -0.23 -0.30 -0.22 0.31 0.21 

116 0.02 -0.33 -0.47 0.21 -0.43 -0.20 -0.13 -0.26 0.02 0.30 -0.32 0.25 -0.34 -0.13 -0.13 0.24 0.11 0.04 0.00 0.31 0.19 -0.33 -0.13 0.20 0.24 0.30 -0.08 -0.12 0.00 

117 -0.91 0.25 -0.12 -0.45 -0.28 0.08 -0.32 -0.17 0.00 0.07 0.37 -0.11 0.51 0.00 -0.05 0.27 0.09 0.20 0.11 0.20 0.19 -0.17 0.15 -0.03 -0.05 0.16 0.16 0.29 0.34 

118 0.32 -0.02 -0.04 0.34 0.07 -0.46 0.05 -0.03 -0.23 0.03 -0.01 -0.17 0.16 0.15 0.00 -0.32 0.29 0.15 0.09 0.29 0.10 -0.23 0.03 0.22 -0.20 0.12 -0.42 -0.34 -0.10 

119 0.04 -0.25 -0.15 -0.35 0.17 0.03 0.13 0.07 0.02 0.05 0.01 -0.04 0.07 0.00 -0.30 0.02 0.29 -0.46 -0.21 0.25 0.03 0.18 0.36 0.07 0.12 -0.03 -0.09 -0.17 -0.06 

120 0.12 0.15 -0.11 0.27 0.12 0.20 0.17 -0.01 0.11 0.07 -0.15 0.46 -0.15 -0.25 0.17 -0.20 -0.02 -0.27 -0.22 0.39 -0.43 0.20 0.19 0.06 -0.11 -0.04 -0.10 0.26 0.03 

121 0.89 -0.35 -0.32 -0.26 -0.34 -0.03 -0.34 0.04 0.10 0.17 -0.04 0.10 -0.31 0.31 -0.02 -0.33 0.03 -0.14 0.40 0.35 -0.34 0.27 0.26 0.22 -0.22 -0.07 0.28 0.20 0.25 

122 -0.01 -0.02 0.11 0.06 -0.07 0.38 0.06 -0.15 -0.31 0.08 -0.04 0.36 0.10 0.15 0.32 -0.28 -0.29 -0.33 0.26 -0.07 -0.07 0.17 0.29 -0.33 0.36 -0.01 -0.19 0.21 0.01 

123 0.13 -0.33 -0.39 0.14 -0.01 0.17 0.10 -0.10 0.43 -0.24 -0.16 0.45 0.27 -0.21 -0.11 -0.03 -0.25 0.20 -0.10 -0.18 0.29 -0.13 -0.05 -0.26 0.22 -0.08 -0.24 0.17 0.11 

124 0.02 0.16 -0.08 0.26 0.08 0.26 0.10 0.02 0.23 -0.15 -0.13 0.38 -0.06 -0.32 -0.15 -0.31 -0.24 -0.08 -0.24 0.05 -0.32 0.11 -0.06 -0.21 0.09 0.13 -0.12 0.26 0.13 

125 -1.67 -0.01 -0.01 -0.51 -0.72 -0.13 0.14 0.14 -0.07 -0.10 -0.12 -0.06 -0.16 -0.06 -0.08 -0.20 0.11 0.00 0.22 0.04 0.17 -0.04 0.02 0.00 -0.01 -0.02 -0.10 0.07 0.02 

126 0.01 -0.22 -0.24 0.33 -0.21 -0.06 -0.09 -0.13 0.03 0.16 0.04 0.24 0.05 0.29 0.16 0.08 -0.07 0.01 0.06 0.16 0.31 -0.20 0.00 0.20 0.05 -0.10 -0.16 0.04 -0.05 

127 0.21 0.25 -0.16 0.11 0.35 0.28 0.03 -0.10 -0.35 -0.14 0.03 -0.06 -0.19 -0.45 0.09 0.00 0.22 0.04 0.31 -0.21 -0.28 0.00 -0.04 -0.07 -0.24 -0.06 0.15 -0.33 0.20 
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Table A. 2: Biases matrix for the first hidden layer 𝑩𝒌
𝟏. 

Hidden Layer 1 Biases 

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Bk -0.46 -0.22 -0.32 -0.46 -0.52 -0.32 -0.31 -0.38 -0.29 -0.65 -0.34 -0.47 -0.34 -0.38 -0.40 -0.39 -0.32 -0.11 -0.26 -0.50 -0.26 -0.46 -0.38 -0.51 -0.18 -0.43 

k 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Bk -0.42 -0.51 -0.48 -0.52 -0.71 -0.47 -0.37 -0.10 -0.25 -0.40 -0.53 -0.48 -0.51 -0.24 0.02 -0.42 0.04 -0.13 -0.13 -0.21 -0.13 -0.60 -0.29 -0.41 -0.18 -0.10 

k 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

Bk -0.50 -0.44 -0.69 -0.31 -0.32 -0.40 -0.14 -0.76 -0.46 -0.79 -0.53 -0.31 -0.54 -0.44 -0.64 -0.41 -1.09 -0.02 -0.53 -0.62 -0.34 -0.12 -0.47 -0.42 -0.26 -0.30 

k 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 

Bk -0.42 -0.36 -0.26 -0.34 -0.48 -0.50 -0.49 -0.38 -0.61 -0.16 -0.37 -0.20 -0.15 -0.50 -0.23 -0.25 -0.37 -0.29 -0.37 -1.04 -0.14 -0.34 -0.46 -0.06 -0.29 -0.11 

k 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 
  

Bk -0.34 -0.35 -0.53 -0.29 -0.37 -0.51 -0.39 -0.42 -0.44 -0.70 -0.39 -0.36 -0.57 -0.18 -0.37 -0.36 -0.47 0.01 -0.48 -0.37 -0.29 -0.85 -0.46 -0.18 
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Table A. 3: Weight matrix for the second hidden layer𝑾𝒊𝒌
𝟐 . 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 0.02 
-

0.02 
0.02 

-

0.09 

-

0.11 

-

0.05 

-

0.10 
0.08 

-

0.02 
0.00 

-

0.07 

-

0.01 
0.04 0.11 

-

0.04 
0.07 

-

0.02 

-

0.25 
0.02 

-

0.05 
0.05 

-

0.19 
0.23 0.02 0.07 

-

0.09 

-

0.05 

-

0.03 
0.08 

-

0.03 

-

0.09 

-

0.15 

1 0.06 0.19 0.06 0.01 
-

0.04 
0.04 

-

0.04 

-

0.01 
0.01 0.09 0.13 

-

0.11 
0.01 0.09 0.05 0.16 0.20 

-

0.25 
0.06 

-

0.11 

-

0.05 

-

0.28 

-

0.02 
0.05 

-

0.08 
0.05 

-

0.03 
0.02 0.00 0.10 0.19 

-

0.15 

2 0.07 0.02 
-

0.06 

-

0.15 
0.18 

-

0.01 
0.06 

-

0.10 
0.00 

-

0.05 

-

0.31 
0.07 

-

0.11 
0.12 

-

0.02 

-

0.05 
0.15 

-

0.35 
0.15 0.07 0.15 0.10 

-

0.04 

-

0.01 
0.07 0.13 0.00 0.03 0.09 0.23 0.00 

-

0.08 

3 0.02 0.09 
-

0.03 
0.02 

-

0.14 
0.07 0.03 

-

0.13 

-

0.07 
0.01 

-

0.03 
0.09 

-

0.06 
0.00 0.09 0.08 

-

0.10 
0.05 0.03 0.05 

-

0.08 

-

0.01 
0.04 0.16 

-

0.52 

-

0.01 
0.15 0.01 0.10 0.01 0.01 

-

0.01 

4 
-

0.02 

-

0.10 

-

0.08 
0.09 0.00 0.09 0.01 

-

0.08 
0.00 

-

0.01 

-

0.15 
0.25 

-

0.05 
0.09 0.32 0.08 0.16 

-

0.08 
0.12 0.19 0.02 0.04 0.16 0.23 

-

0.08 
0.06 

-

0.09 
0.08 0.12 0.17 0.19 0.00 

5 0.11 
-

0.15 

-

0.05 

-

0.05 
0.15 0.05 

-

0.01 

-

0.08 
0.14 0.04 

-

0.21 
0.13 0.01 0.12 0.00 

-

0.09 
0.02 0.05 0.07 0.01 0.18 0.12 0.01 

-

0.04 
0.02 

-

0.04 
0.05 0.00 

-

0.07 
0.00 0.04 0.07 

6 0.09 
-

0.16 

-

0.17 

-

0.03 

-

0.05 

-

0.04 

-

0.30 

-

0.07 

-

0.01 

-

0.16 
0.27 

-

0.08 
0.02 

-

0.11 

-

0.22 

-

0.01 
0.02 0.04 0.06 

-

0.01 

-

0.15 
0.03 

-

0.12 

-

0.08 
0.06 

-

0.09 

-

0.39 

-

0.02 

-

0.11 

-

0.14 

-

0.11 

-

0.05 

7 
-

0.04 
0.05 

-

0.05 

-

0.06 
0.07 0.07 

-

0.03 

-

0.05 

-

0.04 

-

0.10 

-

0.19 
0.13 0.00 0.06 

-

0.04 
0.04 

-

0.04 
0.03 0.06 0.10 

-

0.01 
0.04 0.11 

-

0.06 
0.08 0.08 0.06 0.02 0.03 0.14 0.06 

-

0.02 

8 0.05 0.09 
-

0.26 

-

0.10 
0.02 

-

0.06 

-

0.11 

-

0.14 
0.04 

-

0.35 
0.20 0.09 

-

0.04 
0.03 0.01 0.09 0.03 

-

0.18 
0.11 0.07 

-

0.03 

-

0.30 
0.07 0.21 

-

0.07 
0.09 0.07 0.16 0.02 

-

0.09 

-

0.02 

-

0.19 

9 0.11 
-

0.01 
0.06 0.03 0.06 0.07 0.12 

-

0.08 
0.12 0.00 

-

0.20 
0.18 0.07 0.06 

-

0.04 
0.01 0.09 

-

0.06 
0.03 0.07 0.02 

-

0.15 
0.05 0.06 0.14 0.05 0.06 0.03 0.02 0.08 0.25 

-

0.22 

10 0.02 0.00 0.00 0.00 0.12 0.03 0.11 0.12 
-

0.02 
0.05 

-

0.28 
0.11 0.08 0.00 0.00 

-

0.01 
0.13 

-

0.01 

-

0.02 
0.13 

-

0.08 

-

0.04 
0.09 0.00 0.12 0.02 0.12 

-

0.07 

-

0.02 
0.04 0.18 

-

0.08 

11 0.05 0.22 
-

0.16 
0.13 0.22 

-

0.01 
0.13 

-

0.09 
0.03 

-

0.12 

-

0.15 

-

0.09 
0.01 

-

0.02 
0.13 

-

0.10 
0.12 0.21 0.09 0.13 

-

0.01 
0.11 0.06 0.15 0.01 0.01 0.03 

-

0.15 
0.19 

-

0.04 
0.08 0.06 

12 
-

0.10 

-

0.37 
0.07 0.20 0.00 

-

0.11 

-

0.37 
0.07 0.05 

-

0.08 

-

0.02 

-

0.03 
0.02 

-

0.10 

-

0.14 

-

0.06 

-

0.48 

-

0.13 

-

0.08 

-

0.06 
0.08 0.13 

-

0.31 

-

0.07 

-

0.55 

-

0.06 

-

0.11 

-

0.10 

-

0.07 

-

0.28 

-

0.15 
0.06 

13 0.00 0.21 
-

0.14 
0.02 0.01 

-

0.05 
0.19 

-

0.02 
0.05 

-

0.14 
0.17 0.04 

-

0.10 
0.03 

-

0.05 
0.11 0.21 0.12 0.04 0.16 0.14 

-

0.01 
0.08 

-

0.08 

-

0.22 
0.19 0.24 0.06 

-

0.01 
0.08 0.11 0.06 

14 0.01 0.14 
-

0.14 

-

0.02 
0.10 

-

0.03 

-

0.14 

-

0.08 

-

0.01 

-

0.29 
0.17 0.16 0.14 0.09 

-

0.04 
0.00 

-

0.06 
0.08 0.18 0.02 

-

0.06 
0.04 

-

0.06 

-

0.03 

-

0.06 
0.08 0.15 0.09 0.05 0.04 0.12 0.06 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

15 0.16 0.03 0.10 0.03 0.14 
-

0.02 
0.03 

-

0.35 
0.09 0.01 

-

0.07 

-

0.01 

-

0.09 
0.00 

-

0.01 
0.22 0.04 0.00 0.08 0.07 0.03 0.02 

-

0.07 
0.10 

-

0.08 
0.13 0.16 0.15 0.23 

-

0.05 

-

0.02 

-

0.05 

16 0.00 
-

0.03 

-

0.13 

-

0.01 
0.03 0.14 0.01 

-

0.19 
0.00 

-

0.11 

-

0.02 
0.03 0.18 

-

0.02 
0.02 0.06 

-

0.01 
0.08 

-

0.08 
0.08 

-

0.01 
0.10 0.11 0.07 

-

0.10 

-

0.01 

-

0.06 
0.18 0.04 0.04 0.00 

-

0.07 

17 
-

0.02 

-

0.05 
0.07 0.14 

-

0.07 

-

0.03 

-

0.43 

-

0.19 

-

0.08 

-

0.06 

-

0.16 

-

0.45 
0.08 

-

0.13 

-

0.49 
0.05 

-

0.24 
0.02 

-

0.13 

-

0.08 

-

0.30 
0.12 

-

0.15 
0.05 

-

0.05 

-

0.18 

-

0.99 

-

0.03 

-

0.04 

-

0.27 

-

0.08 
0.17 

18 0.08 0.09 
-

0.03 

-

0.24 

-

0.11 
0.17 0.09 

-

0.05 
0.11 0.16 

-

0.50 
0.12 

-

0.02 

-

0.02 
0.13 0.08 

-

0.01 

-

0.15 
0.01 0.00 

-

0.06 
0.03 

-

0.07 
0.09 

-

0.04 
0.12 0.10 0.04 0.13 0.15 0.04 

-

0.10 

19 
-

0.09 
0.17 

-

0.15 

-

0.02 
0.14 0.11 

-

0.03 
0.01 0.03 

-

0.21 

-

0.02 
0.02 0.00 0.07 

-

0.02 
0.02 0.13 0.06 

-

0.05 
0.04 0.10 

-

0.01 
0.15 0.04 0.13 0.12 0.01 

-

0.07 

-

0.02 
0.00 0.21 0.00 

20 
-

0.07 

-

0.04 

-

0.08 

-

0.02 
0.03 0.00 0.08 0.13 0.02 

-

0.09 
0.03 

-

0.07 
0.02 0.08 0.02 0.07 

-

0.04 

-

0.19 

-

0.14 

-

0.03 
0.05 0.04 0.01 

-

0.05 
0.01 0.00 

-

0.03 

-

0.05 

-

0.06 
0.06 

-

0.12 

-

0.02 

21 0.05 
-

0.04 
0.10 

-

0.07 
0.02 0.07 0.15 

-

0.14 
0.02 0.12 

-

0.33 
0.13 

-

0.13 
0.01 0.18 0.08 0.09 

-

0.43 

-

0.02 
0.08 0.09 

-

0.19 
0.14 0.00 0.00 

-

0.01 
0.15 0.03 0.04 

-

0.06 

-

0.03 

-

0.25 

22 0.08 0.03 0.08 0.04 0.12 
-

0.01 
0.00 0.03 0.04 0.00 

-

0.39 
0.06 0.07 

-

0.03 
0.07 0.13 0.00 

-

0.03 
0.00 0.01 0.10 

-

0.05 

-

0.05 

-

0.04 

-

0.04 
0.00 0.01 0.02 

-

0.10 
0.14 0.11 0.01 

23 0.10 0.02 0.04 0.04 0.18 0.06 0.00 
-

0.10 
0.10 0.07 

-

0.21 

-

0.15 
0.17 0.23 

-

0.10 
0.05 

-

0.07 

-

0.24 
0.21 0.00 0.19 

-

0.07 
0.21 0.01 

-

0.12 
0.18 

-

0.05 
0.01 

-

0.09 

-

0.03 
0.13 0.06 

24 0.04 
-

0.09 

-

0.13 
0.00 0.15 0.02 

-

0.04 

-

0.02 
0.18 

-

0.11 

-

0.15 
0.01 0.00 0.10 

-

0.02 
0.00 

-

0.17 
0.06 0.06 

-

0.04 
0.14 0.03 0.03 

-

0.02 

-

0.05 
0.12 

-

0.01 

-

0.02 

-

0.01 

-

0.06 
0.16 0.05 

25 
-

0.10 
0.02 0.07 0.14 0.06 

-

0.13 
0.04 0.01 0.03 

-

0.04 

-

0.12 
0.04 0.15 

-

0.01 
0.02 

-

0.12 

-

0.05 

-

0.05 
0.06 

-

0.08 

-

0.01 
0.00 0.24 

-

0.05 

-

0.13 
0.11 

-

0.04 
0.08 0.04 

-

0.12 

-

0.08 
0.02 

26 0.04 0.09 
-

0.06 

-

0.24 
0.11 0.15 0.03 

-

0.02 
0.01 

-

0.09 
0.26 

-

0.04 
0.01 

-

0.11 

-

0.07 

-

0.08 
0.00 0.13 0.02 0.05 0.16 0.14 0.19 0.12 0.21 

-

0.01 

-

0.04 
0.10 0.00 0.14 0.13 0.01 

27 
-

0.03 

-

0.03 

-

0.17 

-

0.03 
0.04 0.08 0.06 0.02 0.12 

-

0.15 

-

0.33 
0.02 0.18 

-

0.12 
0.19 0.07 

-

0.18 
0.12 0.17 0.12 0.14 0.08 

-

0.12 
0.06 

-

0.29 
0.22 

-

0.01 

-

0.09 
0.14 0.07 0.17 0.10 

28 0.00 0.12 0.19 0.09 
-

0.04 

-

0.02 
0.05 0.06 0.00 0.12 

-

0.04 
0.00 0.08 0.01 0.18 0.26 0.10 

-

0.10 

-

0.06 
0.00 0.12 

-

0.16 
0.08 0.02 

-

0.11 
0.13 0.18 0.13 0.00 0.07 

-

0.15 

-

0.01 

29 0.02 0.19 
-

0.02 
0.03 0.11 0.11 

-

0.01 

-

0.06 
0.02 0.17 0.06 0.08 0.25 0.08 0.10 0.00 0.07 0.04 0.01 0.02 0.10 

-

0.02 
0.20 

-

0.03 
0.03 0.06 0.02 0.05 0.17 0.05 0.00 0.05 

30 
-

0.15 

-

0.24 
0.11 

-

0.22 

-

0.09 

-

0.21 

-

0.15 

-

0.12 

-

0.05 
0.22 

-

0.05 

-

0.06 

-

0.22 

-

0.17 

-

0.22 

-

0.32 

-

0.33 

-

0.15 

-

0.22 

-

0.22 

-

0.08 

-

0.35 

-

0.26 

-

0.18 

-

0.01 

-

0.26 

-

0.03 

-

0.28 

-

0.13 

-

0.11 

-

0.19 

-

0.38 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 0.23 0.09 0.10 0.12 0.06 
-

0.02 

-

0.15 
0.01 0.16 0.20 

-

0.10 
0.14 0.03 

-

0.14 
0.03 0.03 0.04 0.05 0.04 0.19 

-

0.13 

-

0.10 
0.18 0.10 0.10 0.19 

-

0.03 

-

0.03 
0.04 0.00 0.02 

-

0.05 

32 
-

0.01 

-

0.06 

-

0.01 

-

0.05 

-

0.04 

-

0.10 

-

0.09 

-

0.05 

-

0.03 

-

0.01 

-

0.07 
0.01 

-

0.25 

-

0.23 

-

0.05 

-

0.29 

-

0.15 

-

0.05 

-

0.12 

-

0.04 

-

0.16 

-

0.08 

-

0.12 
0.01 

-

0.12 

-

0.08 

-

0.05 

-

0.09 

-

0.03 
0.05 

-

0.16 

-

0.18 

33 
-

0.01 
0.00 0.08 

-

0.03 

-

0.03 
0.07 0.01 

-

0.12 
0.02 0.06 0.05 0.03 0.03 

-

0.01 

-

0.03 

-

0.16 
0.04 

-

0.15 
0.00 0.08 0.03 

-

0.45 

-

0.24 
0.00 

-

0.09 
0.00 

-

0.26 

-

0.08 
0.00 

-

0.04 

-

0.01 

-

0.42 

34 0.04 
-

0.08 

-

0.01 

-

0.03 

-

0.13 

-

0.10 

-

0.10 
0.01 

-

0.01 
0.01 

-

0.31 

-

0.04 

-

0.02 

-

0.02 

-

0.05 

-

0.21 

-

0.18 
0.05 

-

0.03 

-

0.20 
0.02 0.10 0.08 

-

0.13 

-

0.08 

-

0.05 

-

0.04 

-

0.01 
0.02 

-

0.02 

-

0.02 

-

0.05 

35 
-

0.12 

-

0.20 
0.12 0.12 

-

0.10 

-

0.25 

-

0.44 

-

0.08 

-

0.10 
0.18 

-

0.20 

-

0.14 

-

0.23 

-

0.21 

-

0.18 

-

0.75 

-

0.39 
0.07 

-

0.15 

-

0.33 

-

0.25 

-

0.33 

-

0.62 

-

0.23 
0.13 

-

0.08 

-

0.71 

-

0.27 

-

0.20 

-

0.64 

-

0.08 

-

0.27 

36 0.13 0.08 
-

0.23 
0.03 0.07 0.02 

-

0.16 

-

0.11 
0.04 

-

0.42 

-

0.02 
0.06 0.03 

-

0.02 
0.15 0.07 0.05 0.11 0.09 

-

0.05 
0.03 

-

0.05 
0.10 0.11 0.13 0.22 0.01 0.14 

-

0.05 
0.02 

-

0.04 

-

0.09 

37 
-

0.15 

-

0.10 
0.03 

-

0.03 

-

0.06 

-

0.09 

-

0.11 

-

0.09 

-

0.08 
0.14 0.03 0.09 0.06 

-

0.07 

-

0.17 

-

0.07 
0.11 

-

0.05 

-

0.08 

-

0.09 

-

0.10 

-

0.20 

-

0.05 

-

0.04 

-

0.05 
0.01 

-

0.30 

-

0.15 

-

0.17 

-

0.18 

-

0.02 

-

0.28 

38 0.24 
-

0.08 

-

0.08 

-

0.18 
0.02 0.02 0.15 

-

0.03 
0.01 

-

0.07 

-

0.22 
0.23 0.03 0.02 0.01 0.16 

-

0.02 
0.09 

-

0.04 
0.01 

-

0.01 
0.04 

-

0.11 
0.08 0.14 0.05 0.02 

-

0.07 

-

0.02 
0.08 0.09 0.09 

39 
-

0.07 

-

0.07 
0.17 

-

0.12 

-

0.06 
0.02 

-

0.10 

-

0.17 
0.07 0.17 0.04 0.03 

-

0.04 

-

0.10 

-

0.02 

-

0.12 

-

0.03 
0.04 

-

0.05 

-

0.10 
0.03 

-

0.02 

-

0.20 

-

0.03 

-

0.10 
0.01 

-

0.27 

-

0.03 
0.01 

-

0.17 
0.02 

-

0.11 

40 
-

0.06 

-

0.01 
0.03 

-

0.19 
0.06 0.01 

-

0.01 

-

0.04 

-

0.01 

-

0.04 
0.00 0.03 0.15 

-

0.06 

-

0.01 
0.00 

-

0.01 

-

0.44 
0.00 0.08 

-

0.10 

-

0.53 

-

0.09 
0.03 

-

0.10 
0.03 

-

0.03 
0.01 

-

0.08 

-

0.03 
0.06 

-

0.33 

41 0.05 
-

0.06 
0.05 0.04 0.03 0.10 0.06 0.06 0.03 0.10 

-

0.06 

-

0.06 

-

0.03 
0.01 

-

0.02 
0.00 0.11 

-

0.08 
0.02 0.17 0.07 

-

0.03 
0.02 0.00 

-

0.08 
0.03 0.04 0.02 0.08 0.13 

-

0.06 

-

0.05 

42 0.13 
-

0.01 
0.02 

-

0.24 
0.07 0.00 0.01 

-

0.07 
0.02 0.03 0.06 0.02 

-

0.01 

-

0.01 
0.01 0.06 

-

0.08 

-

0.59 

-

0.08 

-

0.05 

-

0.11 

-

0.52 
0.03 

-

0.01 
0.10 

-

0.02 
0.00 0.00 0.00 

-

0.05 

-

0.06 

-

0.54 

43 0.00 
-

0.16 

-

0.23 

-

0.09 
0.10 0.11 

-

0.10 

-

0.19 
0.05 

-

0.23 
0.18 0.00 

-

0.05 
0.03 

-

0.01 
0.02 0.00 

-

0.14 
0.11 0.13 0.01 0.03 0.11 0.14 0.11 0.01 0.00 0.07 

-

0.11 
0.00 0.04 

-

0.01 

44 
-

0.10 

-

0.07 

-

0.03 

-

0.08 

-

0.02 
0.02 

-

0.03 

-

0.09 

-

0.01 

-

0.05 
0.11 0.00 0.09 0.07 

-

0.07 

-

0.08 
0.01 

-

0.02 
0.13 0.06 0.05 

-

0.13 

-

0.06 

-

0.02 
0.07 

-

0.01 

-

0.05 
0.01 0.15 

-

0.06 
0.07 

-

0.32 

45 
-

0.06 

-

0.08 

-

0.24 

-

0.22 

-

0.06 
0.06 

-

0.04 

-

0.05 
0.01 

-

0.23 
0.04 0.03 

-

0.13 
0.05 0.09 0.13 0.02 0.01 0.01 

-

0.07 
0.06 0.03 

-

0.02 
0.08 

-

0.09 
0.11 

-

0.01 
0.04 0.07 0.01 0.00 

-

0.11 

46 0.06 0.05 
-

0.14 

-

0.20 

-

0.09 
0.01 0.05 0.07 0.03 

-

0.04 
0.01 0.04 

-

0.14 

-

0.07 
0.02 

-

0.03 
0.06 

-

0.30 

-

0.06 
0.01 0.18 

-

0.25 

-

0.06 
0.12 

-

0.04 
0.09 0.07 

-

0.01 
0.02 

-

0.11 

-

0.01 

-

0.31 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

47 0.13 0.08 
-

0.21 

-

0.08 
0.02 0.15 0.04 

-

0.03 
0.01 

-

0.18 
0.00 0.08 

-

0.27 

-

0.11 
0.02 

-

0.08 

-

0.03 

-

0.08 
0.24 0.06 

-

0.03 
0.05 

-

0.15 
0.00 0.09 

-

0.01 
0.03 0.23 

-

0.04 
0.15 

-

0.04 

-

0.03 

48 0.06 0.00 
-

0.06 

-

0.18 
0.04 

-

0.02 
0.06 0.04 0.00 

-

0.07 
0.05 

-

0.33 
0.06 

-

0.06 

-

0.21 

-

0.07 

-

0.12 
0.04 

-

0.08 
0.00 0.04 

-

0.08 

-

0.27 

-

0.02 

-

0.09 

-

0.03 

-

0.13 

-

0.08 

-

0.07 

-

0.03 
0.11 

-

0.31 

49 
-

0.15 

-

0.55 
0.16 

-

0.08 

-

0.17 

-

0.16 

-

0.32 
0.08 

-

0.17 
0.21 

-

0.07 

-

0.07 

-

0.20 

-

0.29 

-

0.24 

-

0.36 

-

0.42 

-

0.05 

-

0.29 

-

0.02 

-

0.16 

-

0.02 

-

0.34 

-

0.13 

-

0.06 

-

0.30 

-

0.41 

-

0.19 

-

0.16 

-

0.23 

-

0.20 
0.04 

50 0.06 0.12 
-

0.12 

-

0.14 

-

0.07 
0.02 0.00 0.21 0.11 

-

0.22 
0.01 0.14 0.04 0.17 

-

0.06 
0.02 

-

0.01 

-

0.01 
0.07 0.00 

-

0.03 
0.18 0.07 0.07 0.11 

-

0.15 

-

0.09 
0.00 0.12 

-

0.05 

-

0.01 

-

0.07 

51 0.04 
-

0.09 

-

0.20 

-

0.06 

-

0.02 
0.16 0.07 0.14 0.06 

-

0.23 
0.07 

-

0.13 
0.13 0.00 

-

0.01 
0.11 0.12 

-

0.08 
0.05 0.01 

-

0.02 
0.00 0.04 0.01 

-

0.05 
0.01 0.00 

-

0.01 

-

0.01 
0.01 0.02 

-

0.08 

52 
-

0.06 
0.14 

-

0.02 

-

0.16 

-

0.02 
0.09 0.00 0.02 0.02 

-

0.04 
0.06 

-

0.17 
0.18 0.18 0.06 0.03 0.02 

-

0.17 
0.01 

-

0.01 
0.15 

-

0.44 

-

0.09 

-

0.03 

-

0.30 
0.05 0.04 0.03 0.06 0.04 

-

0.08 

-

0.43 

53 
-

0.09 
0.08 0.07 

-

0.05 
0.07 

-

0.03 

-

0.02 

-

0.14 

-

0.05 
0.01 

-

0.13 
0.03 0.04 0.01 0.20 0.21 0.18 0.05 0.12 0.00 

-

0.03 
0.16 

-

0.09 
0.01 

-

0.10 
0.14 

-

0.05 
0.00 0.05 0.14 0.03 0.27 

54 0.18 0.01 
-

0.25 

-

0.08 
0.12 0.16 0.02 0.09 0.10 

-

0.19 
0.01 0.01 

-

0.08 
0.14 0.07 

-

0.13 
0.12 

-

0.04 
0.03 

-

0.07 
0.13 

-

0.09 

-

0.04 
0.03 0.14 0.20 0.10 0.16 0.27 0.03 0.21 

-

0.09 

55 
-

0.07 

-

0.09 

-

0.07 

-

0.07 

-

0.08 
0.07 0.04 0.01 0.01 

-

0.06 

-

0.08 

-

0.20 

-

0.03 

-

0.08 
0.07 

-

0.42 

-

0.50 

-

0.09 
0.04 0.00 0.16 

-

0.14 

-

0.25 
0.07 

-

0.56 

-

0.07 

-

0.10 

-

0.03 
0.11 

-

0.10 

-

0.01 

-

0.07 

56 0.12 0.06 
-

0.07 
0.09 

-

0.02 
0.11 0.07 0.00 0.08 

-

0.16 

-

0.22 
0.04 

-

0.07 
0.11 0.07 

-

0.04 

-

0.05 
0.12 

-

0.07 
0.08 0.10 0.16 0.13 0.00 0.13 0.17 0.12 0.08 0.00 

-

0.13 
0.02 0.10 

57 
-

0.05 

-

0.36 
0.11 

-

0.04 

-

0.13 

-

0.02 

-

0.28 
0.12 

-

0.03 
0.12 

-

0.01 

-

0.03 

-

0.03 

-

0.29 

-

0.33 

-

0.15 

-

0.30 
0.21 

-

0.13 

-

0.02 
0.01 

-

0.09 

-

0.35 

-

0.03 

-

0.30 

-

0.08 

-

0.22 

-

0.09 

-

0.03 

-

0.26 

-

0.06 

-

0.02 

58 0.04 0.01 0.04 0.02 
-

0.08 
0.04 0.14 0.03 0.02 

-

0.11 
0.09 0.00 0.17 0.01 

-

0.01 
0.02 

-

0.02 

-

0.21 

-

0.08 

-

0.09 
0.10 

-

0.16 
0.07 0.04 

-

0.21 
0.00 0.05 

-

0.05 
0.07 0.00 0.16 0.02 

59 
-

0.35 

-

0.33 
0.46 0.02 

-

0.19 

-

0.37 

-

0.48 

-

0.08 

-

0.20 
0.36 

-

0.06 

-

0.34 

-

0.30 

-

0.53 

-

0.24 

-

0.46 

-

0.38 
0.25 

-

0.34 

-

0.14 

-

0.33 
0.33 

-

0.13 

-

0.49 

-

0.33 

-

0.40 

-

0.19 

-

0.39 

-

0.15 

-

0.42 

-

0.46 
0.34 

60 0.02 0.07 0.01 
-

0.07 

-

0.02 

-

0.03 
0.05 

-

0.11 

-

0.02 
0.00 

-

0.17 
0.05 0.12 0.13 0.03 

-

0.01 
0.10 0.07 

-

0.02 

-

0.03 
0.01 0.17 0.05 0.13 0.01 

-

0.06 
0.02 0.02 0.07 

-

0.01 

-

0.07 
0.11 

61 
-

0.49 

-

0.40 
0.16 0.44 

-

0.48 

-

0.38 

-

0.48 

-

0.11 

-

0.37 
0.11 0.13 

-

0.62 

-

0.49 

-

0.53 

-

0.64 

-

0.48 

-

0.73 
0.36 

-

0.41 

-

0.40 

-

0.44 
0.46 

-

0.50 

-

0.30 

-

0.07 

-

0.46 

-

0.48 

-

0.52 

-

0.31 

-

0.38 

-

0.45 
0.28 

62 0.13 0.02 
-

0.02 
0.02 0.02 0.19 0.09 0.02 0.07 

-

0.07 

-

0.47 
0.00 0.04 0.02 

-

0.05 

-

0.03 
0.10 0.03 0.05 0.00 

-

0.02 
0.08 0.00 0.06 

-

0.05 
0.11 

-

0.01 

-

0.01 
0.17 0.27 0.07 0.04 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

63 0.04 0.15 0.00 
-

0.16 

-

0.05 

-

0.02 

-

0.25 

-

0.02 

-

0.03 
0.03 

-

0.19 
0.04 0.11 0.11 

-

0.14 
0.13 0.09 

-

0.25 

-

0.01 
0.06 

-

0.08 

-

0.34 

-

0.02 
0.08 0.05 

-

0.25 

-

0.24 
0.15 

-

0.01 
0.01 0.05 

-

0.17 

64 0.22 0.07 
-

0.10 

-

0.10 
0.06 0.12 0.14 0.04 

-

0.01 
0.00 

-

0.36 
0.10 0.10 0.06 0.07 0.06 0.22 

-

0.21 
0.14 0.19 0.11 0.00 0.19 0.18 

-

0.03 
0.07 0.22 0.11 0.21 0.10 0.01 

-

0.03 

65 0.01 0.04 0.03 
-

0.02 
0.12 0.13 0.05 0.00 0.09 0.20 

-

0.26 

-

0.07 

-

0.03 
0.07 0.05 0.17 0.01 

-

0.07 
0.08 0.00 0.04 

-

0.31 

-

0.05 
0.02 0.00 

-

0.01 
0.12 0.03 0.05 0.02 0.01 

-

0.08 

66 0.05 0.01 
-

0.13 
0.04 0.07 

-

0.04 
0.05 

-

0.09 

-

0.02 

-

0.23 

-

0.39 
0.08 0.12 

-

0.03 
0.19 

-

0.02 
0.18 0.08 0.24 0.10 

-

0.04 
0.11 0.10 

-

0.02 
0.02 

-

0.07 
0.06 0.01 0.18 0.02 0.01 0.06 

67 0.12 0.10 
-

0.09 
0.00 0.07 0.09 

-

0.14 
0.16 0.04 

-

0.15 

-

0.07 
0.07 0.06 

-

0.06 
0.21 

-

0.01 
0.09 

-

0.07 
0.11 0.06 

-

0.03 
0.03 0.17 0.04 

-

0.01 
0.12 0.13 0.02 0.08 

-

0.08 
0.10 0.10 

68 
-

0.88 

-

0.50 
0.89 1.10 

-

0.85 

-

0.72 

-

0.70 
1.03 

-

0.74 
1.00 

-

0.06 

-

0.48 

-

0.71 

-

0.64 

-

0.71 

-

0.64 

-

0.55 
0.67 

-

0.70 

-

0.69 

-

0.35 
0.75 

-

0.82 

-

0.94 

-

0.37 

-

1.04 

-

0.94 

-

0.73 

-

0.75 

-

0.72 

-

0.69 
1.17 

69 0.08 
-

0.07 
0.06 

-

0.09 

-

0.04 
0.03 0.00 0.07 

-

0.04 

-

0.08 
0.13 0.00 

-

0.06 

-

0.10 
0.07 

-

0.11 
0.16 

-

0.33 
0.01 0.06 

-

0.02 

-

0.51 
0.14 0.03 0.00 0.07 0.02 

-

0.03 
0.09 0.01 0.05 

-

0.29 

70 
-

0.11 

-

0.72 
0.18 0.24 

-

0.29 

-

0.11 

-

0.87 
0.26 

-

0.09 
0.15 0.02 

-

0.26 

-

0.43 

-

0.58 

-

0.88 

-

0.87 

-

0.71 
0.19 

-

0.20 

-

0.18 

-

0.15 
0.16 

-

0.96 

-

0.10 

-

0.27 

-

0.36 

-

1.07 

-

0.12 

-

0.10 

-

0.65 
0.02 0.25 

71 0.07 0.05 0.01 
-

0.01 
0.12 

-

0.04 
0.14 

-

0.08 
0.00 

-

0.18 
0.02 0.20 0.02 0.07 0.10 0.07 0.18 0.08 0.22 0.04 0.05 

-

0.04 
0.18 0.01 0.09 0.13 0.14 0.19 0.01 0.04 0.00 0.10 

72 0.00 0.03 
-

0.36 

-

0.06 
0.06 0.04 0.01 0.02 0.09 

-

0.23 
0.11 0.13 0.15 

-

0.12 
0.14 

-

0.08 

-

0.08 
0.03 0.09 0.09 0.06 

-

0.03 

-

0.16 
0.27 0.03 0.10 

-

0.02 
0.08 0.12 0.26 

-

0.02 
0.00 

73 0.09 
-

0.03 

-

0.02 

-

0.03 

-

0.10 
0.07 

-

0.05 
0.05 

-

0.03 

-

0.17 
0.07 0.10 

-

0.05 

-

0.04 
0.03 0.11 0.19 

-

0.02 

-

0.03 
0.00 

-

0.03 
0.02 0.05 0.01 0.01 0.05 0.09 0.09 

-

0.07 
0.06 0.01 

-

0.01 

74 
-

0.17 
0.01 0.28 0.12 

-

0.07 

-

0.09 

-

0.50 

-

0.09 
0.10 

-

0.13 
0.11 

-

0.57 
0.00 

-

0.11 

-

0.60 

-

0.24 

-

0.07 
0.20 

-

0.24 

-

0.03 

-

0.33 
0.08 

-

0.46 

-

0.15 
0.18 

-

0.29 

-

0.82 

-

0.12 

-

0.13 

-

0.35 

-

0.26 
0.33 

75 
-

0.03 

-

0.18 

-

0.04 
0.14 

-

0.33 

-

0.11 

-

0.52 
0.02 

-

0.29 

-

0.14 

-

0.01 

-

0.35 

-

0.16 

-

0.11 

-

0.50 

-

0.15 

-

0.09 
0.08 

-

0.13 

-

0.02 

-

0.28 
0.14 

-

0.60 

-

0.03 
0.09 

-

0.34 

-

0.48 

-

0.05 
0.00 

-

0.34 

-

0.15 
0.16 

76 
-

0.12 

-

0.02 

-

0.02 

-

0.01 
0.00 

-

0.02 
0.06 0.03 0.00 

-

0.14 

-

0.06 

-

0.01 

-

0.18 

-

0.11 
0.06 

-

0.36 

-

0.40 
0.05 

-

0.04 

-

0.09 

-

0.14 
0.07 

-

0.35 

-

0.05 

-

0.16 

-

0.01 
0.07 0.00 

-

0.05 
0.03 0.01 

-

0.19 

77 0.01 0.00 0.21 0.04 0.03 
-

0.08 

-

0.16 
0.05 0.01 0.14 

-

0.34 

-

0.12 

-

0.10 

-

0.14 

-

0.13 

-

0.23 

-

0.22 

-

0.02 

-

0.19 

-

0.29 

-

0.13 
0.00 

-

0.07 

-

0.08 

-

0.33 

-

0.05 
0.02 

-

0.02 

-

0.15 

-

0.03 
0.04 0.01 

78 0.05 0.07 
-

0.28 
0.02 0.05 

-

0.06 
0.03 

-

0.26 
0.09 

-

0.43 

-

0.02 

-

0.10 

-

0.06 
0.03 

-

0.20 

-

0.17 

-

0.04 

-

0.01 
0.03 0.02 

-

0.12 
0.01 0.02 

-

0.03 

-

0.01 
0.10 

-

0.11 

-

0.04 

-

0.09 
0.00 0.02 

-

0.07 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

79 0.04 0.21 0.01 
-

0.06 
0.11 

-

0.03 

-

0.02 

-

0.02 
0.06 

-

0.01 

-

0.37 
0.17 0.00 0.09 0.07 0.07 0.04 

-

0.06 

-

0.05 
0.02 

-

0.01 

-

0.03 

-

0.07 

-

0.01 

-

0.08 
0.10 

-

0.19 
0.00 0.06 

-

0.04 
0.01 0.02 

80 
-

0.03 
0.08 0.02 

-

0.07 
0.05 0.02 

-

0.02 

-

0.09 
0.15 0.01 

-

0.03 

-

0.05 
0.07 

-

0.03 

-

0.06 
0.11 0.06 0.09 0.10 0.13 0.01 

-

0.04 
0.13 

-

0.12 

-

0.01 
0.07 

-

0.09 

-

0.03 
0.03 0.02 0.02 

-

0.05 

81 
-

0.07 

-

0.09 
0.20 0.28 0.09 

-

0.09 

-

0.02 

-

0.06 
0.02 0.10 

-

0.03 
0.06 

-

0.02 

-

0.22 
0.01 

-

0.28 

-

0.33 
0.25 

-

0.04 
0.00 

-

0.33 
0.10 

-

0.28 

-

0.09 

-

0.34 

-

0.13 

-

0.25 

-

0.08 

-

0.11 

-

0.09 

-

0.07 
0.01 

82 0.00 
-

0.07 

-

0.13 

-

0.10 
0.19 

-

0.01 

-

0.01 
0.03 0.05 

-

0.05 

-

0.06 
0.12 

-

0.10 
0.01 

-

0.01 
0.16 0.11 

-

0.03 
0.02 

-

0.01 
0.00 

-

0.03 
0.03 0.02 0.14 0.01 

-

0.06 

-

0.07 
0.10 0.18 0.05 

-

0.03 

83 0.06 
-

0.03 

-

0.03 

-

0.07 
0.28 0.13 0.00 

-

0.09 
0.18 0.09 

-

0.04 

-

0.04 
0.23 0.11 

-

0.14 
0.00 

-

0.28 

-

0.01 
0.06 0.10 0.27 

-

0.03 

-

0.08 
0.07 

-

0.45 
0.06 

-

0.01 
0.02 0.22 

-

0.06 
0.19 0.09 

84 0.05 0.01 0.04 0.06 0.04 0.22 0.13 0.08 0.15 0.04 0.01 
-

0.07 
0.14 0.01 0.24 

-

0.03 
0.14 

-

0.16 
0.21 0.08 

-

0.01 
0.11 0.06 0.03 0.05 0.12 0.06 0.17 0.06 

-

0.03 

-

0.09 
0.06 

85 0.00 
-

0.24 

-

0.02 
0.03 

-

0.28 

-

0.10 

-

0.05 
0.08 

-

0.18 

-

0.05 

-

0.17 

-

0.03 

-

0.12 

-

0.41 
0.00 

-

0.45 

-

0.23 
0.06 

-

0.07 
0.00 

-

0.44 

-

0.15 

-

0.36 

-

0.06 

-

0.10 

-

0.16 

-

0.52 

-

0.16 
0.05 

-

0.48 
0.12 

-

0.18 

86 0.07 
-

0.02 

-

0.10 

-

0.09 
0.07 0.12 0.06 

-

0.08 
0.15 

-

0.19 

-

0.66 

-

0.07 
0.08 0.11 0.06 

-

0.02 

-

0.04 
0.10 0.08 0.11 0.14 0.16 

-

0.03 
0.10 

-

0.04 
0.06 0.04 0.01 0.20 0.13 0.04 0.06 

87 0.09 0.06 
-

0.17 

-

0.15 

-

0.06 
0.01 0.04 

-

0.38 
0.06 

-

0.31 
0.02 

-

0.14 
0.00 0.15 

-

0.01 
0.05 0.05 

-

0.06 
0.08 0.01 

-

0.11 

-

0.14 
0.05 

-

0.09 
0.05 

-

0.10 
0.01 0.05 0.14 

-

0.01 
0.07 

-

0.13 

88 
-

0.01 

-

0.15 
0.11 0.09 

-

0.08 

-

0.27 

-

0.06 
0.32 

-

0.10 
0.22 

-

0.05 

-

0.32 

-

0.21 

-

0.05 

-

0.31 

-

0.34 

-

0.28 
0.19 

-

0.14 

-

0.16 

-

0.23 
0.25 

-

0.32 

-

0.02 
0.11 

-

0.15 

-

0.39 

-

0.12 

-

0.13 

-

0.32 

-

0.14 
0.14 

89 0.03 0.04 0.09 
-

0.12 
0.10 

-

0.03 
0.10 0.06 0.00 0.08 0.08 

-

0.01 
0.05 0.10 0.15 0.09 

-

0.10 

-

0.04 

-

0.03 
0.00 0.09 

-

0.17 

-

0.01 

-

0.04 
0.05 0.06 0.11 

-

0.14 
0.00 

-

0.06 
0.06 

-

0.13 

90 0.03 0.16 
-

0.08 

-

0.10 

-

0.02 
0.02 0.11 0.15 0.01 

-

0.17 

-

0.14 

-

0.01 

-

0.02 
0.05 

-

0.01 
0.13 0.06 0.02 0.09 

-

0.06 

-

0.01 

-

0.04 

-

0.13 
0.04 

-

0.02 

-

0.02 
0.05 0.08 0.13 

-

0.04 

-

0.01 

-

0.01 

91 0.13 0.15 
-

0.11 

-

0.18 
0.16 0.02 0.13 

-

0.03 
0.07 0.09 

-

0.39 
0.02 

-

0.05 

-

0.09 

-

0.06 
0.15 0.05 

-

0.09 
0.09 0.21 

-

0.04 

-

0.03 
0.06 0.11 0.00 

-

0.17 

-

0.04 
0.21 0.02 0.11 0.00 

-

0.12 

92 
-

0.03 
0.02 

-

0.13 
0.02 0.13 0.06 0.09 0.07 0.07 

-

0.12 
0.06 0.11 0.06 0.03 0.10 0.05 0.01 

-

0.02 
0.12 0.21 0.01 0.08 0.08 0.03 0.00 0.08 

-

0.04 
0.02 0.06 

-

0.08 

-

0.02 
0.04 

93 0.02 
-

0.04 
0.10 

-

0.04 
0.02 0.12 0.01 

-

0.15 
0.00 0.05 

-

0.05 

-

0.07 

-

0.04 

-

0.06 

-

0.05 
0.04 0.10 

-

0.15 

-

0.07 
0.04 

-

0.03 

-

0.24 
0.10 0.09 0.17 0.01 

-

0.08 
0.06 

-

0.12 
0.01 

-

0.04 

-

0.19 

94 0.08 0.00 
-

0.20 

-

0.01 
0.02 

-

0.17 
0.09 

-

0.20 
0.11 0.05 0.00 0.24 0.04 

-

0.01 

-

0.10 
0.16 0.01 

-

0.01 
0.14 0.11 

-

0.06 
0.01 

-

0.13 

-

0.01 

-

0.28 
0.15 

-

0.01 
0.16 

-

0.09 
0.14 0.01 

-

0.05 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

95 
-

0.04 
0.01 

-

0.10 

-

0.17 
0.04 0.05 0.15 

-

0.03 
0.08 

-

0.31 

-

0.40 
0.20 0.00 0.06 0.04 0.09 

-

0.12 

-

0.07 
0.04 0.09 

-

0.02 
0.17 0.26 0.25 

-

0.09 
0.01 

-

0.01 
0.16 0.05 

-

0.09 
0.18 

-

0.02 

96 0.03 0.15 
-

0.02 
0.03 0.07 

-

0.01 

-

0.09 
0.09 

-

0.02 

-

0.05 
0.11 0.03 0.04 0.01 0.02 0.13 0.12 

-

0.04 
0.11 0.08 

-

0.05 

-

0.04 
0.00 0.10 0.01 0.08 

-

0.04 
0.03 

-

0.02 
0.03 

-

0.06 

-

0.03 

97 
-

0.83 

-

0.71 
0.32 0.75 

-

0.98 

-

0.69 

-

0.83 
0.48 

-

0.83 
0.72 0.11 

-

0.67 

-

0.94 

-

0.68 

-

0.78 

-

0.86 

-

0.62 
1.01 

-

0.73 

-

0.68 

-

0.57 
1.13 

-

0.81 

-

0.68 
0.02 

-

1.12 

-

0.97 

-

0.86 

-

0.70 

-

0.72 

-

0.74 
0.93 

98 
-

0.09 

-

0.12 
0.00 0.00 0.19 

-

0.01 

-

0.07 

-

0.02 
0.17 

-

0.07 
0.08 

-

0.13 
0.00 0.13 0.06 0.01 0.08 

-

0.03 
0.02 

-

0.08 

-

0.06 
0.05 0.05 0.04 

-

0.50 
0.00 0.18 0.11 0.06 0.06 

-

0.02 
0.05 

99 0.00 
-

0.02 
0.01 

-

0.18 

-

0.01 

-

0.04 

-

0.09 

-

0.23 

-

0.02 
0.01 

-

0.27 
0.15 0.05 0.11 0.07 0.13 0.05 0.09 0.03 0.06 0.05 0.04 

-

0.08 
0.03 

-

0.03 
0.11 0.21 

-

0.12 

-

0.02 
0.06 0.09 

-

0.05 

100 0.13 
-

0.07 

-

0.02 
0.03 0.00 0.03 0.26 0.02 0.00 

-

0.04 
0.00 

-

0.01 
0.10 0.05 

-

0.02 

-

0.09 

-

0.15 

-

0.15 
0.06 0.00 0.04 

-

0.22 
0.05 0.01 0.01 0.01 

-

0.25 
0.12 0.06 0.21 0.10 

-

0.18 

101 0.02 0.06 
-

0.15 

-

0.16 

-

0.01 

-

0.06 

-

0.07 

-

0.01 

-

0.05 

-

0.13 
0.04 0.08 

-

0.11 
0.07 0.03 0.02 

-

0.01 

-

0.19 

-

0.09 
0.03 0.04 

-

0.20 

-

0.05 
0.08 0.14 

-

0.03 
0.00 

-

0.04 

-

0.03 
0.09 0.05 

-

0.16 

102 
-

0.12 

-

0.10 

-

0.06 

-

0.10 

-

0.10 

-

0.10 
0.00 0.32 

-

0.06 

-

0.14 
0.01 0.10 0.07 

-

0.02 
0.06 0.08 0.14 0.25 0.01 

-

0.09 
0.10 0.07 

-

0.08 

-

0.01 
0.01 

-

0.04 
0.11 

-

0.05 

-

0.12 
0.05 0.04 

-

0.25 

103 0.02 0.02 0.04 
-

0.06 

-

0.13 

-

0.11 
0.00 0.01 

-

0.10 
0.02 0.15 

-

0.06 

-

0.16 
0.02 

-

0.08 

-

0.28 

-

0.11 
0.03 0.00 

-

0.10 

-

0.10 

-

0.15 

-

0.24 
0.01 

-

0.02 

-

0.03 

-

0.26 

-

0.01 

-

0.09 

-

0.17 
0.01 

-

0.11 

104 0.14 0.08 
-

0.14 

-

0.02 
0.11 0.12 

-

0.02 

-

0.11 

-

0.04 

-

0.12 
0.03 

-

0.17 
0.01 0.07 

-

0.09 

-

0.07 

-

0.02 
0.01 0.01 0.04 

-

0.13 

-

0.08 

-

0.10 
0.02 

-

0.16 

-

0.05 

-

0.04 
0.11 

-

0.01 
0.14 0.12 

-

0.03 

105 
-

0.10 

-

0.06 
0.02 

-

0.12 

-

0.02 

-

0.01 

-

0.02 

-

0.02 
0.03 

-

0.06 

-

0.07 

-

0.01 

-

0.12 

-

0.09 
0.00 

-

0.36 

-

0.35 

-

0.13 

-

0.06 

-

0.19 

-

0.07 

-

0.26 

-

0.19 

-

0.06 

-

0.16 

-

0.07 
0.11 0.01 

-

0.04 

-

0.03 

-

0.02 

-

0.23 

106 0.06 0.20 
-

0.14 
0.07 0.02 0.11 0.23 0.06 0.08 

-

0.18 
0.06 

-

0.03 
0.15 0.32 0.01 0.19 0.10 0.09 0.04 0.18 0.04 0.09 0.05 0.07 0.15 0.09 

-

0.03 

-

0.02 
0.16 0.00 0.14 0.15 

107 0.09 
-

0.01 

-

0.05 

-

0.11 
0.02 

-

0.12 
0.04 

-

0.11 

-

0.01 

-

0.05 
0.12 0.14 0.18 

-

0.08 
0.08 0.04 

-

0.15 

-

0.07 
0.15 0.08 0.08 

-

0.05 
0.18 0.09 

-

0.06 

-

0.02 
0.03 

-

0.09 

-

0.07 
0.04 

-

0.04 

-

0.14 

108 0.08 0.25 
-

0.20 

-

0.15 
0.18 0.08 

-

0.12 

-

0.14 
0.07 

-

0.14 

-

0.22 

-

0.04 
0.13 0.01 

-

0.01 
0.21 0.10 0.00 0.01 0.04 

-

0.09 
0.24 0.11 0.20 0.07 

-

0.11 
0.21 0.00 0.19 0.04 0.20 0.09 

109 
-

0.19 

-

0.44 
0.16 0.18 

-

0.12 

-

0.28 

-

0.49 

-

0.26 
0.02 0.33 0.15 

-

0.31 

-

0.15 

-

0.32 

-

0.50 

-

0.46 

-

0.68 
0.32 

-

0.28 

-

0.09 

-

0.01 
0.26 

-

0.77 

-

0.25 

-

0.05 

-

0.10 

-

0.44 

-

0.28 

-

0.29 

-

0.65 

-

0.28 
0.15 

110 0.00 0.05 0.04 0.11 
-

0.10 
0.00 0.12 

-

0.04 
0.02 0.01 

-

0.04 
0.05 

-

0.08 

-

0.01 
0.16 0.03 0.12 

-

0.27 
0.07 0.02 0.15 

-

0.38 
0.05 0.02 0.10 

-

0.02 
0.03 0.15 0.02 0.17 0.08 

-

0.22 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

111 0.05 0.09 0.12 
-

0.08 
0.07 

-

0.01 

-

0.14 

-

0.06 
0.09 0.16 

-

0.30 
0.01 

-

0.02 
0.22 

-

0.07 
0.10 0.16 

-

0.24 
0.04 0.06 0.03 

-

0.34 
0.01 0.01 0.04 0.06 

-

0.09 

-

0.10 
0.19 0.11 

-

0.03 

-

0.18 

112 0.00 
-

0.02 
0.09 0.14 0.00 

-

0.04 
0.21 0.12 

-

0.03 
0.15 0.10 0.14 0.04 0.05 0.08 0.02 0.23 

-

0.02 

-

0.04 

-

0.16 
0.10 0.05 

-

0.03 

-

0.03 
0.01 0.06 0.27 0.05 

-

0.07 
0.19 

-

0.13 
0.04 

113 0.19 0.30 
-

0.30 

-

0.38 
0.29 0.18 0.05 

-

0.14 
0.18 

-

0.01 

-

0.30 
0.01 0.23 0.24 0.20 0.02 0.20 

-

0.02 
0.28 0.12 0.13 0.01 0.00 0.26 0.00 0.04 0.13 0.24 0.18 0.09 0.11 

-

0.04 

114 
-

0.11 

-

0.02 
0.29 

-

0.01 

-

0.03 
0.00 

-

0.08 

-

0.20 
0.08 0.39 0.01 

-

0.10 
0.06 

-

0.02 
0.02 

-

0.02 

-

0.06 
0.10 0.00 

-

0.04 

-

0.32 
0.10 0.11 

-

0.16 

-

0.34 
0.05 

-

0.27 
0.03 

-

0.21 

-

0.11 

-

0.07 
0.13 

115 0.07 0.13 0.16 
-

0.01 

-

0.04 
0.07 0.21 0.03 0.06 0.19 0.12 

-

0.09 
0.18 0.04 

-

0.07 

-

0.03 
0.03 0.03 0.10 0.13 0.00 

-

0.04 
0.01 0.09 0.09 0.01 0.12 0.18 0.15 0.08 0.05 

-

0.07 

116 0.03 0.12 
-

0.06 

-

0.04 
0.17 0.13 

-

0.05 

-

0.04 

-

0.01 

-

0.02 

-

0.24 
0.01 0.01 0.15 0.02 0.07 0.03 0.04 

-

0.05 
0.09 0.11 

-

0.13 

-

0.12 
0.03 0.26 

-

0.10 

-

0.12 
0.00 0.03 

-

0.03 
0.04 

-

0.08 

117 
-

0.16 

-

0.06 
0.09 0.13 

-

0.02 
0.00 

-

0.47 

-

0.10 

-

0.01 
0.03 0.13 

-

0.22 

-

0.07 

-

0.15 

-

0.33 

-

0.03 

-

0.52 
0.04 

-

0.10 

-

0.06 

-

0.15 
0.10 

-

0.04 

-

0.07 

-

0.35 

-

0.23 

-

0.48 

-

0.06 

-

0.14 

-

0.25 

-

0.10 
0.02 

118 
-

0.01 
0.01 

-

0.12 

-

0.16 

-

0.06 

-

0.08 
0.07 

-

0.19 

-

0.03 

-

0.13 
0.06 0.10 

-

0.01 

-

0.02 
0.01 

-

0.05 
0.11 

-

0.09 

-

0.03 
0.03 0.07 

-

0.04 
0.04 0.07 

-

0.10 

-

0.08 

-

0.03 
0.03 0.02 0.05 

-

0.10 

-

0.04 

119 0.01 0.08 
-

0.12 

-

0.06 
0.04 

-

0.01 
0.07 0.15 0.09 

-

0.38 

-

0.23 
0.02 

-

0.14 

-

0.10 
0.11 

-

0.19 

-

0.04 
0.13 0.03 0.08 0.08 0.02 0.10 0.04 

-

0.11 
0.04 

-

0.08 
0.12 0.02 0.05 

-

0.02 
0.04 

120 0.06 
-

0.03 

-

0.18 
0.06 0.12 0.05 0.15 0.08 0.09 

-

0.07 

-

0.04 
0.02 0.05 0.03 0.04 0.03 0.23 0.06 0.14 

-

0.04 
0.09 0.07 

-

0.02 
0.01 0.11 0.10 0.17 0.16 0.00 

-

0.11 
0.09 0.09 

121 
-

0.04 
0.00 

-

0.04 

-

0.15 

-

0.02 

-

0.05 

-

0.03 

-

0.33 
0.02 

-

0.16 
0.00 

-

0.07 
0.06 0.03 0.02 0.07 

-

0.12 

-

0.29 
0.06 0.00 0.04 

-

0.48 

-

0.02 
0.11 0.06 

-

0.04 

-

0.07 
0.02 0.03 0.07 

-

0.08 

-

0.45 

122 0.04 0.10 
-

0.06 
0.07 0.09 0.01 0.19 

-

0.21 
0.08 0.22 

-

0.17 
0.11 0.10 0.02 0.08 

-

0.07 

-

0.14 
0.10 0.14 0.02 0.08 0.06 0.11 0.14 

-

0.15 
0.16 

-

0.12 
0.17 

-

0.05 
0.10 0.03 0.15 

123 0.10 0.04 
-

0.26 

-

0.06 

-

0.07 

-

0.06 

-

0.04 
0.01 0.02 

-

0.37 
0.08 0.16 

-

0.01 
0.18 

-

0.01 
0.11 0.11 

-

0.13 
0.00 

-

0.03 

-

0.10 

-

0.05 
0.03 0.02 0.11 0.04 

-

0.11 
0.01 

-

0.03 

-

0.08 
0.03 

-

0.10 

124 
-

0.05 
0.07 

-

0.23 
0.05 0.13 

-

0.01 
0.13 0.16 0.08 

-

0.18 

-

0.03 
0.02 

-

0.06 
0.22 0.23 

-

0.01 
0.02 0.08 0.09 

-

0.01 
0.09 0.03 0.02 0.00 0.05 0.02 0.05 0.04 0.20 0.10 0.16 0.07 

125 
-

0.55 

-

0.62 
0.60 0.31 

-

0.65 

-

0.73 

-

0.51 
0.65 

-

0.27 
0.41 0.34 

-

0.49 

-

0.64 

-

0.53 

-

0.40 

-

0.83 

-

0.58 
0.39 

-

0.57 

-

0.73 

-

0.26 
0.36 

-

0.71 

-

0.43 

-

0.03 

-

0.83 

-

0.86 

-

0.63 

-

0.72 

-

0.79 

-

0.67 
0.47 

126 0.05 
-

0.02 
0.00 0.04 0.11 0.08 0.12 

-

0.08 
0.09 

-

0.07 

-

0.14 
0.22 

-

0.18 
0.00 0.11 0.09 

-

0.09 
0.15 0.02 0.08 0.13 0.15 

-

0.04 
0.01 0.11 

-

0.10 

-

0.04 

-

0.01 
0.12 0.01 

-

0.01 

-

0.03 
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Table A. 3: Weight matrix for the second hidden layer 𝑾𝒊𝒌
𝟐  (Continued). 

Hidden 

Layer 

1 

Hidden Layer 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

127 
-

0.01 
0.00 

-

0.04 
0.00 

-

0.01 
0.01 0.07 0.12 0.04 

-

0.19 
0.09 0.01 0.06 0.01 0.05 0.06 

-

0.08 

-

0.10 

-

0.02 

-

0.05 
0.19 

-

0.02 

-

0.02 
0.00 0.00 0.00 0.04 

-

0.01 
0.10 0.09 0.05 

-

0.09 

 

 

Table A. 4: Table A. 5: Biases matrix for the second hidden layer 𝑩𝒌
𝟐. 

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Bk 0.04 -0.02 0.07 -0.16 -0.01 -0.03 -0.02 0.14 -0.08 0.03 -0.11 -0.05 -0.08 0.02 0.01 0.02 -0.07 0.00 -0.06 -0.01 -0.09 -0.13 -0.05 -0.01 0.04 -0.01 

k 26 27 28 29 30 31  

Bk 0.03 -0.04 0.02 0.00 -0.01 -0.30 
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Table A. 6: Weight matrix for the third hidden layer𝑾𝒊𝒌
𝟑 . 

Hidden  

Layer 2 

Hidden Layer 3 

0 1 2 3 4 5 6 7 

0 0.14 -0.07 -0.08 -0.12 0.09 -0.27 -0.07 -0.36 

1 0.19 -0.05 -0.18 0.00 0.45 0.16 -0.09 -0.19 

2 -0.70 0.17 -0.37 0.20 -0.63 -0.06 0.43 0.27 

3 -0.67 0.36 0.22 0.21 -0.43 0.10 -0.11 0.31 

4 0.13 -0.24 -0.07 -0.03 0.28 -0.21 0.08 -0.20 

5 0.16 -0.04 -0.14 -0.04 0.33 -0.25 -0.32 -0.08 

6 0.33 -0.28 0.07 -0.11 0.59 -0.07 -0.12 -0.01 

7 -0.48 0.19 0.19 0.08 -0.70 0.17 0.16 0.12 

8 0.28 -0.18 -0.15 -0.16 0.05 -0.28 -0.20 -0.19 

9 -0.71 0.19 0.35 0.00 -0.77 0.21 -0.18 0.18 

10 -0.63 0.07 0.00 0.05 -0.59 0.02 0.16 0.10 

11 0.31 -0.10 -0.06 -0.10 0.33 -0.10 -0.06 -0.06 

12 0.34 -0.21 -0.10 -0.23 0.26 -0.15 -0.13 -0.28 

13 0.32 0.02 -0.10 -0.01 0.41 -0.24 0.13 -0.11 

14 0.26 -0.12 -0.12 -0.32 0.36 -0.13 0.01 -0.15 

15 0.72 -0.10 -0.03 -0.17 0.48 -0.13 -0.26 -0.21 

16 0.71 0.08 0.20 0.10 0.49 0.11 -0.07 0.04 

17 -0.48 -0.01 0.05 0.03 -0.72 0.04 0.10 0.32 

18 0.08 -0.19 -0.04 0.02 0.26 0.00 -0.09 -0.09 

19 0.35 -0.12 -0.09 -0.18 0.09 -0.47 -0.12 -0.38 
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Table A. 6: Weight matrix for the third hidden layer 𝑾𝒊𝒌
𝟑 (Continued). 

Hidden  

Layer 2 

Hidden Layer 3 

0 1 2 3 4 5 6 7 

20 0.37 -0.11 -0.05 -0.29 0.21 -0.13 -0.13 -0.05 

21 -0.57 0.44 -0.23 0.19 -0.98 0.26 -0.10 0.11 

22 0.77 0.07 -0.31 -0.16 0.63 -0.07 -0.10 -0.12 

23 0.12 -0.06 -0.12 -0.04 0.15 -0.26 -0.20 -0.11 

24 0.68 -0.15 -0.12 -0.15 0.48 -0.06 -0.08 -0.10 

25 0.43 -0.06 -0.18 -0.26 0.26 -0.17 -0.01 -0.22 

26 0.79 0.01 -0.14 0.00 0.88 -0.01 0.10 0.05 

27 0.44 -0.18 -0.12 -0.21 0.17 -0.34 0.08 -0.06 

28 0.15 -0.11 -0.06 -0.12 0.18 -0.28 -0.12 -0.12 

29 0.57 -0.11 -0.02 -0.17 0.30 -0.08 -0.24 -0.02 

30 0.20 -0.13 -0.19 -0.17 0.14 -0.16 -0.21 -0.44 

31 -0.69 0.04 0.43 0.16 -1.10 -0.11 0.40 0.03 

 

 

Table A. 7: Biases matrix for the third hidden layer 𝑩𝒌
𝟑 

k 0 1 2 3 4 5 6 7 

Bk 0.72 0.46 0.36 0.35 0.57 0.38 0.00 0.40 
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Table A. 8: Weight matrix for the output layer 𝑾𝒊𝒌
𝟒 . 

Hidden Layer 3 
Output 

0 

0 0.39 

1 -0.39 

2 -0.69 

3 -0.51 

4 0.42 

5 -0.70 

6 -0.61 

7 -0.35 

 

Table A. 9: Biases matrix for the output layer 𝑩𝒌
𝟒 

k 0 

Bk 4.86 
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APPENDIX B 

PROFILE SENSITIVITY ANALYSIS 

 

B.1. Sensitivity Inputs 

The inputs required to perform Profile sensitivity analysis require the data for 

five quantiles including: minimum, the 25% percentile, the 50% percentile, the 75% 

percentile, and the maximum. These values are listed in Table B. 1.  

  

Table B. 1: Input considerations for Profile sensitivity analysis. 

Input Mean Stdv Min. 25% 50% 75% Max. 

Cumulative Traffic  

(Thousand ESALs) 
1896.6 2177 0 493 1192 2471 21173 

Construction Variability  37% 12% 14% 28% 35% 44% 73% 

Precipitation (in.) 37.2 14.8 7.4 26.7 43.0 49.5 65.0 

MMAT (oF) 14.7 3.7 6.8 12.4 15.3 17.2 24.6 

MAAT (oF) 60.0 10.4 35.9 51.9 62.1 67.3 75.3 

Avg. Wind Velocity (mi./s) 5.5 2.3 0.0 4.5 6.6 6.8 11.5 

Thickness - AC1 (in.) 2.3 1.1 0.8 1.6 1.9 2.4 7.0 

Gmm - AC1 2.5 0.1 2.3 2.4 2.5 2.5 2.7 

AV - AC1 (%) 6.2 3.0 1.3 3.9 5.8 7.8 19.7 

Pb - AC1 (%) 4.9 0.9 2.0 4.5 4.8 5.4 7.4 

Penetration - AC 1 (.1mm) 77.2 22.9 41.0 62.0 71.0 87.0 185.0 

% Passing #4 - AC1 57.0 10.2 16.0 52.5 57.6 63.0 80.0 

% Passing #200 - AC1 5.5 1.3 1.1 4.4 5.8 6.5 10.0 

NMAS - AC1 (mm) - - 9.5 12.5 12.5 19.0 25.0 

Thickness - AC2 (in.) 4.2 2.2 0.9 2.5 3.6 5.2 17.1 

Gmm - AC2 2.5 0.1 2.3 2.4 2.5 2.5 2.7 

AV - AC2 (%) 5.9 2.9 0.4 3.5 5.7 7.7 23.8 

Pb - AC2 (%) 4.7 0.8 2.0 4.1 4.8 5.2 6.9 

% Passing #4 - AC2 52.3 11.0 5.0 45.8 52.0 60.0 79.0 
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Table B. 1: Input considerations for Profile sensitivity analysis. 

Input Mean Stdv Min. 25% 50% 75% Max. 

% Passing #200 - AC2 5.6 1.5 1.3 4.8 5.5 6.8 11.5 

NMAS - AC2 (mm) 17.8 4.7 9.5 12.5 19.0 19.0 25.0 

Thickness - Base 1 (in.) 7.9 4.0 0.0 4.1 8.0 10.9 28.0 

Material Type - Base 1  

(0-DGAB, 1-ATB) 
- - 0 - - - 1 

Thickness - Base 2 (in.) 2.4 3.3 0.0 0.0 0.0 4.0 13.4 

Material Type - Base 2  

(0-None, 1-DGAB) 
- - 0 - - - 1 

Material Type - Base 2  

(0-DGAB, 1-ATB) 
- - 0 - - - 1 

Thickness - Subbase (in.) 5.1 6.9 0.0 0.0 4.0 8.0 54.0 

Material Type - Subbase  

(0-None, 1-DGAB) 
- - 0 - - - 1 

MR - Subgrade (psi)  10560 3204 3606 8454 10421 12564 30791 

 

B.2. Sensitivity Inputs 

Results of the sensitivity analysis include two indices: the sensitivity value and 

the elasticity value. For input sensitivity and elasticity are calculated over several 

values. The summary statistics of all these computations are provided in Table B. 2 and 

Table B. 3. 

 

Table B. 2: Sensitivity values outputs statistics. 

Input 
Sensitivity 

Min 25% 50% 75% Avg. Max 

Cumulative Traffic 

(Thousand ESALs) 
0.000 0.000 0.000 0.000 0.001 0.008 

Construction Variability  -20.608 -14.032 -11.905 -7.968 -11.351 -2.876 

Precipitation (in.) -0.056 -0.021 -0.012 -0.007 -0.016 0.002 

MMAT (oF) 0.021 0.154 0.241 0.304 0.235 0.535 

MAAT (oF) 0.033 0.065 0.079 0.174 0.133 0.432 

Avg. Wind Velocity (mi./s) 0.087 0.356 0.604 0.653 0.554 1.295 
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Table B. 2: Sensitivity values outputs statistics (Continued). 

Input 
Sensitivity 

Min 25% 50% 75% Avg. Max 

Thickness - AC1 (in.) -0.148 0.031 0.141 0.278 0.188 1.148 

Gmm - AC1 -4.801 -0.835 -0.014 0.729 -0.233 2.735 

AV - AC1 (%) -0.205 -0.057 -0.032 0.006 -0.016 0.272 

Pb - AC1 (%) -1.341 -0.651 -0.275 -0.127 -0.357 0.092 

Penetration - AC 1 (.1mm) -0.076 -0.008 -0.003 0.002 -0.011 0.008 

% Passing #4 - AC1 0.018 0.052 0.077 0.101 0.076 0.168 

% Passing #200 - AC1 -0.898 0.117 0.272 0.378 0.189 0.673 

NMAS - AC1 (mm) 0.032 0.032 0.033 0.084 0.050 0.084 

Thickness - AC2 (in.) 0.026 0.163 0.207 0.277 0.215 0.354 

Gmm - AC2 -29.276 -14.295 -12.537 -9.149 -11.570 -1.053 

AV - AC2 (%) -0.238 0.033 0.056 0.081 0.039 0.148 

Pb - AC2 (%) -2.868 -0.528 0.097 0.243 -0.208 0.605 

% Passing #4 - AC2 -0.248 -0.196 -0.056 -0.015 -0.093 0.024 

% Passing #200 - AC2 -0.223 -0.114 -0.002 0.070 -0.015 0.173 

NMAS - AC2 (mm) -0.070 -0.070 -0.059 0.019 -0.037 0.019 

Thickness - Base 1 (in.) -0.467 -0.105 -0.010 0.067 -0.075 0.121 

Thickness - Base 2 (in.) -0.455 -0.291 -0.157 -0.009 -0.168 0.061 

Thickness - Subbase (in.) -0.101 -0.041 0.012 0.018 -0.008 0.055 

MR - Subgrade (psi)  0.000 0.000 0.000 0.000 0.000 0.001 

 

  

Table B. 3: Elasticity values outputs statistics. 

Input 
Elasticity 

Rank 
Min 25% 50% 75% Avg. Max 

Cumulative Traffic  

(Thousand ESALs) 
4.0% 15.2% 25.6% 42.8% 36.9% 297.5% 9 

Construction Variability  -173% -112% -57% -43% -78% -23% 5 

Precipitation (in.) -32% -9% -7% -2% -8% 1% 18 

MMAT (oF) 4% 36% 57% 73% 57% 116% 6 

MAAT (oF) 30% 67% 95% 262% 159% 485% 2 

Avg. Wind Velocity (mi./s) 0% 28% 63% 73% 53% 108% 4 

Thickness - AC1 (in.) -14% 2% 7% 11% 6% 20% 17 

Gmm - AC1 -170% -29% -1% 28% -7% 96% 24 
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Table B. 3: Elasticity values outputs statistics (Continued. 

Input 
Elasticity 

Rank 
Min 25% 50% 75% Avg. Max 

AV - AC1 (%) -34% -14% -4% 2% -6% 17% 21 

Pb - AC1 (%) -108% -62% -14% -5% -33% 7% 11 

Penetration - AC 1 (.1mm) -97% -14% -3% 6% -15% 26% 22 

% Passing #4 - AC1 9% 39% 72% 91% 67% 145% 3 

% Passing #200 - AC1 -88% 8% 20% 26% 11% 48% 10 

NMAS - AC1 (mm) 5% 5% 9% 17% 11% 17% 15 

Thickness - AC2 (in.) 1% 12% 27% 40% 26% 46% 8 

Gmm - AC2 -1094% -572% -412% -359% -442% -60% 1 

AV - AC2 (%) -30% 2% 10% 17% 8% 23% 13 

Pb - AC2 (%) -209% -56% 4% 12% -23% 39% 20 

% Passing #4 - AC2 -61% -40% -29% -12% -26% 21% 7 

% Passing #200 - AC2 -21% -5% 0% 9% 2% 24% 25 

NMAS - AC2 (mm) -9% -10% -9% 0% -6% 0% 14 

Thickness - Base 1 (in.) -106% -18% -1% 28% -5% 57% 23 

Thickness - Base 2 (in.) -35% -23% -11% -1% -11% 14% 12 

Thickness - Subbase (in.) -28% -7% 8% 13% 4% 30% 16 

MR - Subgrade (psi)  -10% 0% 5% 19% 12% 76% 19 
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