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AN ABSTRACT OF THE THESIS OF 

 
 
 
Sena Ali Assaf     for  Master of Engineering 

Major: Civil and Environmental Engineering 
 
 
 
Title:  An Application of Neural Networks to Forecast Building Occupant Complaints 
  
 

Occupant complaints are a reflection of poor building performance and an 
unsatisfactory indoor environment. One way to mitigate those complaints and to ensure 
occupants’ satisfaction with regards to building performance is through a well-
performing facility management that is capable of planning for and addressing 
maintenance services.  This thesis proposes a machine learning-based multistep generic 
framework to analyze occupant complaint data and to forecast the number of thermal 
complaints in particular for the upcoming week as part of the facility management’s 
predictive maintenance approach. Moreover, the developed forecasting model is 
benchmarked against a traditional statistical model to ensure proper performance. The 
proposed methodology was tested for a period of three years on a highly unstructured 
and unsolicited occupants’ complaints data recorded by facility management operators 
in a residential complex composed of 16 buildings. Text mining results of more than 
6,000 occupant complaints showed that thermal related complaints are among the most 
common ones thus require further attention of facility managers. The developed Multi-
Layer Perceptron (MLP) models to forecast the number of thermal complaints for the 
upcoming week showed proper performance with improvements over the traditional 
Autoregressive Integrated Moving Average (ARIMA) model with a higher ability to 
generalize to new data. It is also evident that the developed MLP forecasting models 
could assist facility managers in planning for the staffing resources required to handle 
these complaints thus enhancing occupant satisfaction and building performance. 

 

 

  



 

vii 
 

TABLE OF CONTENTS 

 
ACKNOWLEDGMENTS .................................................................................... v 

TABLE OF CONTENTS .................................................................................... vii 

ILLUSTRATIONS .............................................................................................. ix 

TABLES .............................................................................................................. xi 

ABBREVIATIONS ............................................................................................ xii 

1. INTRODUCTION ............................................................................................ 1 

2. LITERATURE REVIEW ................................................................................. 4 

A. Facility Management and Building Occupant Complaints .......................... 4 

B. Building Maintenance and Resource Management .............................. 6 

C. Data Analytics and Machine Learning ................................................. 8 

D. Previous Works: Potential of Building Occupant Complaints to Assist 

FM ........................................................................................................... 10 

3. RESEARCH OBJECTIVE AND METHODS ............................................... 15 

A. Research Objective ............................................................................. 15 

B. Materials and Methods ........................................................................ 16 

1. Model Selection .................................................................................. 17 

2.  ML- Based Generic Framework to Forecast Thermal Occupant    

Complaints .............................................................................................. 18 

3. Benchmark Model: ARIMA ............................................................... 37 



 

viii 
 

4. RESULTS AND DISCUSSION: CASE STUDY .......................................... 44 

A. An application of the Developed ML-Based Generic Framework ..... 44 

1. Data Collection and Preprocessing ..................................................... 44 

2. Text Cleaning and Mining .................................................................. 52 

3. Data Split ............................................................................................ 60 

4. Time Series Smoothing ....................................................................... 61 

5. MLP Input Data Preparation ............................................................... 63 

6. MLP model training, validation, and testing ...................................... 69 

B. Benchmark Models Development ...................................................... 78 

1. Time Series Preparation ...................................................................... 78 

2. ARIMA Input Data Preparation .......................................................... 78 

3. Splitting Design Data into Training and Validation ........................... 79 

4. ARIMA (p, d, q) (P, D, Q) s Modeling ............................................... 80 

C. MLP and ARIMA Models Comparison and Discussion .................... 89 

D. Work Significance: Resource Staffing Plan ....................................... 90 

E. The Need for Proper Data Management ........................................... 100 

5. CONCLUSIONS AND FUTURE WORKS ................................................. 102 

APPENDIX A ................................................................................................... 105 

REFERENCES ................................................................................................. 109 

 

  



 

ix 
 

ILLUSTRATIONS 

Figure           Page 

1. Proposed ML-based generic framework to forecast thermal complaints ................. 19 

2. ANN structure ........................................................................................................... 28 

3. Structure of a neuron ................................................................................................. 28 

4. Walk forward validation method (Hyndman & Athanasopoulos, 2018, p.84) ......... 35 

5. ARIMA methodology ............................................................................................... 43 

6. Maintenance data high-level dictionary .................................................................... 47 

7. Time series plots for potential weather features ....................................................... 51 

8. TDM example ........................................................................................................... 52 

9. Word cloud for year one ........................................................................................... 54 

10. Word cloud for year two ........................................................................................... 54 

11. word cloud for year three .......................................................................................... 55 

12. Most frequent terms for year one .............................................................................. 55 

13. Most frequent terms for year two ............................................................................. 56 

14. Most frequent terms for year three ........................................................................... 56 

15. Developed AC time series ........................................................................................ 58 

16. Developed heater time series .................................................................................... 59 

17. AC time series split between design and holdout sets .............................................. 60 

18. Heater time series split between design and holdout sets ......................................... 61 

19. AC time series smoothing for design set .................................................................. 62 

20. Heater time series smoothing for design set ............................................................. 63 

21. Scatter plot matrix ..................................................................................................... 65 

22. Density plots ............................................................................................................. 67 



 

x 
 

23. AC time series split into training and validation ...................................................... 69 

24. Heater time series split into training and validation ................................................. 69 

25. AC MLP model actual and predicted values in train set .......................................... 73 

26. AC MLP model actual and predicted values in validation set .................................. 74 

27. AC MLP model actual and predicted values in test set ............................................ 75 

28. Heater MLP model actual and predicted values in train set ..................................... 76 

29. Heater MLP model actual and predicted values in validation set ............................. 76 

30. Heater MLP model actual and predicted values in test set ....................................... 78 

31. AC time series ACF and PACF plots ....................................................................... 81 

32. AC ARIMA model actual and predicted values in train set ..................................... 82 

33. AC ARIMA model actual and predicted values in validation set ............................. 83 

34. AC ARIMA model residual diagnostics ................................................................... 83 

35. AC ARIMA model actual and predicted values in test set ....................................... 84 

36. Heater time series ACF and PACF plots .................................................................. 85 

37. Heater ARIMA model actual and predicted values in train set ................................ 86 

38. Heater ARIMA model actual and predicted values in validation set ....................... 87 

39. Heater ARIMA model diagnostics ........................................................................... 88 

40. Heater ARIMA model actual and predicted values in test set .................................. 88 

41. Number of predicted thermal complaints ................................................................. 91 

42. Planned and predicted weekly man hours ................................................................. 93 

43. The variation of the number of understaffed man hours .......................................... 97 

44. The variation of the number of overstaffed man hours ............................................ 98 

45. The variation of the number of technicians per month ........................................... 106 

46. The variation of the percentage of thermal complaints per month ......................... 108 



 

xi 
 

TABLES 

Table           Page 

1. Summary of previous works addressing the potential of building occupant 

complaints to assist FM ............................................................................................ 13 

2. Summary statistics of weather features .................................................................... 50 

3. TDM summary per year ............................................................................................ 53 

4. AC and heater time series summary statistics .......................................................... 59 

5. Time series Spearman correlation ............................................................................. 66 

6. AC and heater MLP models hyperparameters and characteristics ........................... 72 

7. ARIMA AC model iterations for estimation step ..................................................... 81 

8. ARIMA heater model iterations for estimation step ................................................. 86 

9. MLP and ARIMA models comparison ..................................................................... 89 

10. Assumptions for each staffing option ..................................................................... 106 

11. Allocation of technicians per day per shift ............................................................. 107 

  



 

xii 
 

ABBREVIATIONS 

 

FM: Facility Management 

AC: Air Conditioner 

OC: Occupant Complaint 

ML: Machine Learning 

ANN: Artificial Neural Networks 

MLP: Multi-Layer Perceptron 

ARIMA: Autoregressive Integrated Moving Average  

MinT: Minimum Temperature 

AvT: Average Temperature 

MaxT: Maximum Temperature 

MinRH: Minimum Relative Humidity 

AvRH: Average Relative Humidity 

MaxRH: Maximum Relative Humidity 

MinW: Minimum Wind 

AvW: Average Wind 

MaxW: Maximum Wind 

  



 

1 
 

CHAPTER 1  

INTRODUCTION 

A Facility Management (FM) unit in a building is responsible for running the 

operation phase of a built and occupied facility. Its role is to ensure that the users are 

satisfied with the different aspects of the building (Shin, Lee, Park, & Lee, 2018). 

Moreover, it aims at ensuring that the building is running at its optimum performance 

(Nutt, 1999) which can only be guaranteed through a continuous long-term maintenance 

strategy (Ismail, Ali, Othman, & Jaffar, 2017).  

Building maintenance is one important service under the scope of work of the 

FM for two main reasons. The first is that a high number of maintenance requests is a 

reflection of unsatisfied occupants and underperforming building systems and 

equipment, and the second is that maintenance activities represent a large portion of the 

operational costs of a facility (Higgins, Mobley, & Wikoff, 2008). Reactive 

maintenance, although very common among facility managers, often incurs additional 

unnecessary costs on different levels since actions are taken once the equipment or 

system failure had already occurred (Akcamete & Akinci, 2004; Higgins et al., 2008). 

Preventive maintenance could also incur additional costs since it is based on routine and 

prescheduled maintenance which might lead to unnecessary maintenance (Wahab, 

Samad, & Basari, 2013). With the development of data analytics and machine learning 

(ML) tools, it has become feasible for the FM to adopt a predictive maintenance 

strategy. By predicting occupant complaints, the FM is able to prepare the necessary 

resources needed to resolve the issue before failure occurs thus preventing unexpected 

equipment breakdown (Sipos, Fradkin, Moerchen, & Wang, 2014). However, records of 
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occupant complaint logs are large and highly unstructured datasets that often include a 

textual description of the complaint. The use of text mining techniques makes it possible 

to  restructure and analyze such data in order to extract further useful information 

(Bortolini & Forcada, 2019; Gunay, Shen, & Yang, 2019). 

It is crucial for the FM to adopt a predictive maintenance strategy for the 

maintenance services in order to mitigate the overwhelming expenses associated with a 

building’s operation phase and to ensure that the occupants are satisfied with the 

building performance and the indoor environment. This however heavily relies on 

historical records of maintenance requests obtained from unsolicited occupant 

complaints. Moreover, it requires proper staffing planning to avoid extra costs of over 

or under staffing and to ensure the failure is resolved at the right time to minimize 

equipment downtime (Elazouni & Shaikh, 2008). To this end, this research work 

presents a generic framework based on data analytics and advanced ML tools to assist 

FM first to better understand building occupant complaints (type, frequency, and 

correlations), and second to forecast the frequency of thermal complaints. This 

framework acts as a sound decision making tool to properly allocate staffing resources 

among the corresponding maintenance activities to ensure occupants’ satisfaction, 

maintenance cost savings, and an adequate building performance. 

Chapter two of this thesis presents an overview of the FM's scope of work in 

addition to its role in handling building occupant complaints and maintaining the 

building systems. It also discusses previous works in the literature that have used 

occupant complaint data to assist the FM’s decision making. Chapter three discusses the 

objectives and significance of this research work. It also describes the methodology 

followed to develop and evaluate the ML-based generic framework to develop a 



 

3 
 

machine learning model to forecast thermal complaints and the corresponding 

benchmark model. The results of an application of the proposed methodology on a 

selected case study are presented and discussed in chapter four. Chapter five presents 

conclusions for this research work along with future work. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter is divided into four subsections as follows: facility management 

and building occupant complaints, building maintenance and resource management, 

data analytics and machine learning, and previous works: the potential of building 

occupant complaints. 

 

A. Facility Management and Building Occupant Complaints 

The role of the FM in a building is to ensure that the users feel safe and satisfied 

in a friendly environment (Shin et al., 2018). Its scope of work covers several activities 

ranging from handling of physical issues (services, maintenance, adaptation, built space 

etc.) to human and business concerns (use and function, comfort, safety, security etc.) 

and even to financial concerns (occupancy cost and benefits, property investment etc.). 

Most importantly, it aims at integrating the decisions among the three latter areas of 

concern through proper management to enhance the productivity, usage and 

performance of the facility (Nutt, 1999). In this context, the FM’s strategic role requires 

planning, designing, and ensuring continuous improvement of the service quality 

(Alexander, 2003) to ensure that the delivered services meet the expectations of the 

occupants (S. Y. Lee, 2002). Unfortunately, occupants are likely to complain when the 

facility’s performance fails to meet their needs. It is the responsibility of the FM to 

address and resolve those complaints (Goins & Moezzi, 2013) while ensuring optimum 

resource allocation among all its services (Kral & Bartosova, 2016). Occupant 

complaints can be of two types: either volunteered or solicited. Volunteered complaints 
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are raised voluntarily by occupants when they are not feeling comfortable in their 

environment physically or psychologically. On the other hand, collecting solicited 

complaints is done through a specific request such as a survey addressing occupants’ 

satisfaction. In this case, the survey questions guide the arising complaints thus might 

miss on some other complaints that could be more important, disturbing, or easy to deal 

with (Goins & Moezzi, 2013). 

In a first attempt to understand unsolicited building occupant complaints, 

Federspiel (1998) studied a large set of unsolicited occupant complaints data obtained 

from commercial buildings. A statistical analysis showed that the most frequent types of 

unsolicited complaints were those associated with thermal sensation (too hot or too cold 

complaints) accounting for 77 percent of the total unsolicited environmental complaints. 

A more recent study conducted by the International Facility Management Association 

(2009) also showed that thermal complaints are the most common among office 

employees. Moreover, a survey conducted by Goins and Moezzi (2013) among the 

occupants of 575 buildings in a university campus showed that 43 percent of the 

respondents were dissatisfied with the indoor temperature which does not meet the 

threshold of the 80 percent occupant satisfaction stated by ASHRAE 55-2010 standard 

(ASHRAE, 2010). Thermal complaints appear to be the most common among building 

occupants regardless of the building use and thus must be given wide attention of the 

FM. 
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B. Building Maintenance and Resource Management 

According to Weinstein (1997), maintenance can be defined as the set of 

activities that aim at preserving or restoring systems and components to ensure that they 

provide the optimal performance level and function they were designed for. Building 

maintenance is one major aspect of the FM’s scope of work that could tremendously 

affect the building’s performance (Horner, El-Haram, & Munns, 1997). Costs associated 

with maintenance activities represent a large portion of the total costs of the operation 

phase of a building (Madureira, Flores-Colen, de Brito, & Pereira, 2017). A well-

performing FM necessitates continuous maintenance to ensure that the facility will 

remain in good conditions (Nawi, Baharum, Ibrahim, & Riazi, 2017) and suitable for its 

intended use. Maintaining buildings on a regular basis allows owners to maximize both 

their profit and the building performance at the lowest possible cost and ensures a 

comfortable and suitable environment for the occupants (Ismail et al., 2017).  One way 

to assist the FM to evaluate the facility’s performance and to mitigate the high costs of 

maintenance activities would be through analyzing maintenance request data obtained 

from records of unsolicited building occupant complaints (Bortolini & Forcada, 2019) 

and taking relevant managerial and operational actions.   

Practitioners in the FM industry often adopt a reactive strategy to maintain the 

building systems and equipment (Akcamete & Akinci, 2004) through which corrective 

actions are taken when the breakdown or damage had already occurred (Higgins et al., 

2008). Despite the convenience of such strategy, it is often considered costly and 

myopic. On the other hand, predictive maintenance is a proactive maintenance strategy 

that makes use of past equipment failure data as a main source to predict when a 

breakdown will occur. This allows to plan and schedule maintenance in advance to the 
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breakdown thus preventing unforeseen equipment downtime and saving on the long-

term cost of equipment maintenance (Akcamete & Akinci, 2004). A practical way to 

obtain this past failure data is often achieved through the use of sensors that monitor the 

equipment’s performance one of which is equipment-failure’s time and frequency of 

occurrence. However, this is not always a feasible solution due to the high cost and 

effort sensors require to be installed and to remain functional (Sipos et al., 2014). When 

there are no records of equipment logs that record failure data, an alternative solution 

would be using maintenance request data obtained from unsolicited occupant 

complaints’ description as a source for equipment failure data. This is because 

occupants are likely to complain when they are not satisfied with the building 

performance and thus would issue a complaint when a certain equipment fails to 

perform its function.  

Maintenance management strategies require proper planning at both strategic 

and operational levels of an organization (Lee & Scott, 2009). At an operational level, a 

maintenance activity entails the presence of sufficient resources depending on the size 

of the facility. These include human resources (technical crews, engineers, supervisors 

etc.), their required skill levels, suitable tools, maintenance time requirement, in 

addition to a maintenance schedule or plan (Márquez, León, Fernández, Márquez, & 

Campos, 2009). Maintenance personnel often argue that most of the times the budget 

and resources allocated for maintenance activities are inadequate. As a result, it 

becomes crucial for the top management at a strategic level to ensure optimal resource 

allocation among the different services it provides one of which is the maintenance 

services (Lee & Scott, 2009). This allows to avoid significant problems such as crew 
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over or under staffing where both cases would eventually lead to additional operation 

and maintenance costs and building users’ dissatisfaction (Elazouni & Shaikh, 2008).  

Given the benefits associated with predictive maintenance strategies and the 

corresponding need for structured historical records of building occupant complaints, 

this research work entails the use of data analytics and ML tool. 

 

C. Data Analytics and Machine Learning  

When used in the context of building occupant complaints, data analytics, text 

mining techniques, machine learning tools, and time series analysis tools could act 

ought to be useful in assisting the FM’s decision-making. 

Data analytics is the process of analyzing a set of collected data to extract 

insights that are of added value to the decision makers (Kelleher, Mac Namee, & Aoife, 

2015). Occupant complaint descriptions are often recorded in a textual form. What is 

special about this type of data is that the information to be inferred is clearly stated in 

the text; however, it is not in a form that makes it suitable for further use by humans or 

computers (Witten & Frank, 2005). Thus, text mining becomes useful to study such 

large amount of written text to transform it into structured data for future analysis 

(Aggarwa & Zhai, 2012). ML can be defined as the process of training a computer 

model on a training dataset to perform a certain task so that it will be able to perform 

that exact task when given new data it had not encountered before (Panos & Christof, 

2016). It is often used to build predictive models. Predictive data analytics is a 

subcategory of data analytics that makes use of historical data to extract patterns in 

order to develop predictive models (Kelleher et al., 2015).  
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Considering that the use and thus the frequency of various types of occupant 

complaints vary depending on the time of the year, it is important to study the variation 

of those complaints as a function of time. The sequence of the observations in 

successive order over a certain period of time is known as a “time series”. Time series 

analysis allows to identify and analyze trends, patterns, and seasonality effects in the 

sequence understudy (Tabachnick, Fidell, & Ullman, 2007). Forecasting time series data 

aims to estimate how the sequence of the data under study will continue in the future 

(Hyndman & Athanasopoulos, 2018). Among the most common time series forecasting 

methods are the Autoregressive Integrated Moving Average (ARIMA) model and the 

Multi-Layer Perceptron (MLP) which is a type of feedforward Artificial Neural 

Network (ANN) whereby both models have been employed in several time series 

forecasting applications (Babu & Reddy, 2014). The autoregressive part of the ARIMA 

model ensures its ability to regress the variable of interest against itself, which means 

that it uses a linear combination of past values of this variable as a predictor to forecast 

future values of the variable of interest  The moving average part of the ARIMA on the 

other hand ensures its ability to linearly model past errors that are assumed to be 

independently distributed with a normal distribution. As for the integration part of the 

ARIMA model, it is employed to ensure that the data is made stationary before fitting 

the model (Hyndman & Athanasopoulos, 2018). In addition to that, it has the ability to 

take as an input additional exogenous data that might influence the prediction other than 

lagged values of the variable of interest. It can also be extended to include seasonal 

effects for example if seasonality is observed on a weekly, monthly, or yearly basis 

(Box & Tiao, 1975). ANNs on the other hand are ML algorithms that have the ability to 

learn from a training data set, store the information, and recall it when needed. They are 
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capable of representing highly complex and non-linear problems. (Yu, Zhu, & Zhang, 

2012). ANN are used in a wide variety of applications including optimization, 

classification, clustering, recognition, and prediction (Mohammed, Hamdan, 

Abdelhafez, & Shaheen, 2013). ANNs are advantageous over ARIMA models for their 

ability to model any form of non-linear mapping without any prior assumptions 

regarding the data being studied (G. P. Zhang, 2003). 

 

D. Previous Works: Potential of Building Occupant Complaints to Assist FM 

Previous works in the literature have studied and analyzed building occupant 

complaints to understand them and to show their potential in supporting the FM’s work 

using different techniques ranging from statistical modelling to advanced machine 

learning.  

 Federspiel (1998) investigated unsolicited occupant complaint data 

obtained from computerized logs in commercial buildings. A statistical analysis showed 

that thermal complaints, being the most common, were triggered by an unsatisfactory 

performance of the HVAC systems, whether fault detection or inadequate control. A 

mathematical model was then developed in a follow-up paper to predict the frequency 

of thermal complaints based on past complaint data as a function of certain properties of 

the indoor temperature. The model’s purpose was to assist the FM in making sound 

economic decision such as determining the optimum indoor temperature and evaluating 

the benefits of upgrading the temperature control system on the cost of both occupant 

complaints and energy consumption (Federspiel, 2000). The prediction model was 

recalibrated to enhance its accuracy. It showed good performance when used to design 
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for the optimum building indoor temperature with the objective of minimizing the 

thermal complaints’ frequency or the combined cost associated with energy, operations, 

and maintenance (Federspiel, Rodney, & Hannah, 2003). 

In order to mitigate the unstructured, variable,  and static nature of the collected 

occupant-generated work orders, Mcarthur et al. (2018) developed an automatic work 

order classification system to better organize and handle work orders. The first level of 

the system classifies the work order based on the trade of the complaint such as 

“plumbing” and the second level identifies the subcategory of the issue such as 

“shower”. A set of follow-up questions were also developed for each subcategory. 

Several classification models for each of the two levels were trained, tested and cross 

validated based on historical data of work orders collected from a university’s set of 

buildings. Integrating this classification system with BIM visualization allows for real-

time follow-up with the occupants regarding the generated work order instead of 

conducting multiple trips to acquire more information to better define the problem and 

thus resolve it. This acts as a tool to prioritize the work orders and identify how urgent 

each is and thus the response.    

Gunay et al. (2018) studied the impact of the indoor and outdoor climate settings 

on the generated unsolicited thermal complaints by analyzing temperature setpoint 

change data. They demonstrated their work on data obtained from a Building’s 

Automation System (BAS) from a set of office buildings. Building operators are 

responsible for changing the temperature setpoint upon receiving a complaint call from 

the occupants since they do not have direct access to do such modification. They 

developed predictive models using Markov logistic regression to forecast the chance of 

observing a temperature setpoint change. Forecasting the frequency of thermal 
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complaints by predicting the number of thermostat setpoint change requests assists the 

FM to benchmark occupants satisfaction and to design for the optimum indoor 

temperature to minimize the complaints’ frequency. 

In another study, Gunay et al. (2019) introduced a systematic method using the 

process of text-mining to extract and analyze useful information from unstructured work 

order logs obtained from a CMMS from a set of university buildings and a heating and 

cooling plant. The work order logs were first pre-processed to obtain the frequency of 

each term per each work order. Top terms included the names of the systems or 

components, adjectives describing their characteristics, and verbs describing actions 

taken to address the request. Clustering the work orders allowed to isolate the terms that 

address HVAC failures. Association rule-mining was then conducted within this cluster 

to discover certain relationships and patterns among the different terms such as linking 

an equipment’s name to the adjective describing it. A probabilistic model was then put 

together to predict the probability of not observing a certain failure or warning during a 

certain period of time. This method of text mining and statistical modeling provides 

valuable insights for the FM to benchmark the facility’s maintenance performance. 

Text mining was also used by Bortolini and Forcada (2019) to analyze 

maintenance request data extracted from a CMMS in a set of laboratories office 

buildings, and academic buildings. The obtained data was classified into categories 

depending on the problem type they address. Each category was characterized by a set 

of keywords defined based on the most frequent terms. Then they were also classified 

into three levels based on how severe the problem is. This allows to better understand 

the number, type, and severity of the maintenance requests and the level of performance 

of the building systems. The FM can then develop preventive maintenance strategies to 
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ensure that occupants are satisfied and that the building systems are functioning at the 

required performance levels.  

Table 1 summarizes the collected studies from the literature that have used 

building occupant complaints to support the FM’s scope of work including: source of 

the occupants’ complaint data, the methods of analysis and the contribution of this work 

to the FM. 

 

Table 1 Summary of previous works addressing the potential of building occupant 

complaints to assist FM 

Reference Data Source Methods Contribution to FM 

(Federspiel, 
1998) 

Computerized logs 
form commercial 
buildings 

Statistical 
analysis 

To investigate the common types of 
unsolicited building occupant 
complaints 

(Federspiel, 
2000) 

Computerized logs 
form commercial 
buildings 

Mathematical 
modelling 

To predict the frequency of thermal 
complaints 
To make sound economic decisions 

(Federspiel 
et al., 2003) 

Computerized logs 
form commercial 
buildings 

Mathematical 
modelling 

To design for the optimum building 
indoor temperature 

(Mcarthur et 
al., 2018) 

Work order logs 
from a university’s 
set of buildings 

Supervised ML 
(classification) 
BIM 

To prioritize the work orders 
To identify how urgent each work 
order is and thus the response 

(Gunay et 
al., 2018) 

BAS from a set of 
office buildings 

Markov 
logistic 
regression 

 
To predict the frequency of thermal 
complaints 
To benchmark occupants satisfaction 
To design for the optimum indoor 
temperature 
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(Gunay et 
al., 2019) 

CMMS from a set 
of university 
buildings and a 
heating and cooling 
plant 

Text mining 
Statistical 
modelling 

 
To predict the probability of not 
observing a certain equipment failure 
or warning 
To benchmark the facility’s 
maintenance performance 
 

(Bortolini 
and 
Forcada, 
2019) 

CMMS from a set 
of laboratories, 
office buildings, and 
academic buildings 

Text mining 

 
To better understand the maintenance 
requests and the performance level of 
the building systems  
To develop preventive maintenance 
strategies 
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CHAPTER 3 

 RESEARCH OBJECTIVE AND METHODS 

 

A. Research Objective  

The FM’s research literature has shown how important it is for the FM to study 

and analyze historical records of unsolicited building occupant complaints. It is also 

evident that using certain data analytics and ML tools could significantly assist the FM 

in several aspects of its scope of work to eventually ensure that the occupants are 

satisfied with the building operations and that the building is running at its optimum 

performance.  

Previous works have assisted the FM to make sound economic decisions when it 

comes to identifying the optimum building indoor temperature for example, to develop 

an automated work order classification system, to benchmark occupants' satisfaction 

and the facility's maintenance performance, in addition to developing preventive 

maintenance strategies. Despite the potential of the previous works to assist facility 

managers, none has addressed forecasting unsolicited building occupant complaints for 

the purpose of developing a specific staffing plan for a building’s maintenance 

activities.  

The significance of this research work relies on presenting a sound decision 

making tool for FM to plan for staffing resources with regards to maintenance activities 

related to AC and heater use. Its aims to guide FM on how it could adopt a predictive 

maintenance strategy based on previous records of occupant complaints and how to plan 

ahead of time for the corresponding maintenance activities. The overall aim is to 
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mitigate the unnecessary maintenance costs by better planning the staffing resources 

and to ensure that occupants are satisfied with the building’s performance. 

This research work presents a multi-step generic framework to collect, clean, 

restructure and analyze highly unstructured historical data of building occupant 

complaints with the help of data analytics and text mining techniques. The framework 

also incorporates the use of machine learning tools for time series forecasting in order to 

develop and evaluate a neural network model to forecast building occupant complaints 

for thermal complaints in particular. Moreover, this research work presents in great 

details how the developed forecasting models can be benchmarked against a traditional 

statistical model to ensure proper performance. The proposed methodology is then 

tested on an occupant complaint dataset obtained from a facility management unit of a 

residential complex comprised of 16 buildings for a period of three years. Moreover, the 

significance of this work is reflected upon implementing the forecast results in a staffing 

model that will be used to dynamically plan for staffing resources needed to address the 

corresponding maintenance activities. 

 

B. Materials and Methods  

The methodology of this research work is divided into three parts. The first part 

justifies the reasoning behind the model selection for the time series forecasting 

problem of thermal complaints. The second part proposes an ML-based generic 

framework that the FM could adopt to analyze building occupant complaints and to 

forecast the frequency of thermal complaints in particular. As for the third part, it 
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provides detailed steps on developing the statistical based time series forecasting model 

that will be used as a benchmark for the results from the ML-based model. 

 

1. Model Selection 

There are several models from traditional statistical analysis and advanced 

machine learning that are used for time series forecasting which is at the core of this 

research work. As mentioned in section C of chapter 2, ARIMA and MLP models are 

among the most common ones.  ARIMA is a linear model which assumes a linear 

relationship between historical data and between past errors. It also requires the time 

series to be made stationary before fitting the model (Babu & Reddy, 2014). Linear 

models have the advantage of being easily understood, implemented, and analyzed. 

However, real-life problems are often complex and thus might not satisfy the linearity 

assumption (G. Zhang, Patuwo, & Hu, 1998). The Multi-Layer Perceptron (MLP) ANN 

is a powerful feedforward network that is able to learn any form of continuous non-

linear mapping (Behrang, Assareh, Ghanbarzadeh, & Noghrehabadi, 2010). ANNs 

could be employed in time series forecasting since they do not assume linearity of the 

data and are capable of non-linear modeling. They also do not require the time series 

data to be stationary nor do they require any specific model form (G. P. Zhang, 2003). 

As such, ANNs are data driven nonparametric models that requires only few 

assumptions regarding the process by which the data was collected from. Another 

property of ANNs is their ability to adapt and ensure accurate generalization capabilities 

when certain characteristics of the time series change over time. Similar to the ARIMA 

model, ANNs can incorporate in addition to time-lagged values of the variable of 

interest other predictors that might influence the output (G. Zhang et al., 1998). 
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Moreover, both MLP and ARIMA models could incorporate exogenous data as 

predictors in addition to the lagged variables of the time series. In fact, including lagged 

variables of the time series as predictors is vital when it comes to predicting occupant 

complaints because the frequency of complaints is not going to be the same for each 

day. As a matter of fact, if on a Monday the FM received an extensive amount of 

complaints, there is a much less chance to get a high number of complaints on the day 

after, for example. The chance of receiving fewer complaints the next day is justified by 

the fact that the complaints from the previous day would have been addressed and 

resolved, thus making it less likely for the occupants who initially filed a complaint, to 

file it again the next day.  

Thus, the MLP model shows great potential to model non-linear dynamic 

systems one of which is time series modeling of thermal complaints with the ability to 

account for additional exogenous data. The developed MLP models to forecast thermal 

complaints will be benchmarked against the corresponding traditional state of the art 

ARIMA model.  

 

2. ML- Based Generic Framework to Forecast Thermal Occupant Complaints 

This section describes the developed ML- based multi step generic framework 

which includes data collection and preprocessing, text cleaning and mining, time series 

smoothing, data splitting, in addition to MLP data preparation, training, validating, and 

testing. The flowchart in figure 1 summarizes the proposed multi-step generic 

framework. 
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Figure 1 Proposed ML-based generic framework to forecast thermal complaints 
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a. Data Collection and Preprocessing 

Historical records of occupant complaint (OC) data could be obtained from the 

facility management unit with a description of the complaints issued by occupants and 

recorded by building operators. An OC is a representative of a maintenance request 

since the complaint was issued due to a certain disruption in the building that requires 

actions to be taken by building operators. Since this research work addresses forecasting 

thermal complaints, weather data could act as an important predictor for the reason that 

the use of the heater and AC heavily depends on the outdoor weather conditions. 

Weather-related data could be obtained from the meteorological department. Both 

obtained data sets are exported to Microsoft Excel where they are thoroughly 

investigated to better understand each set and then to go through a process of 

preliminary screening in order to remove irrelevant features, to remove duplicate 

observations, to handle missing data, and to deal with any discrepancies. 

At this stage, a time step for prediction (ex: day, week, month etc.) is selected 

based on data availability and on the ultimate application of the forecasting tool in the 

FM’s scope of work. It is important to include the time factor since the use of the AC 

and the heater and thus their complaints’ frequencies depend on the time of the year. 

After that, the screened data will need some preprocessing as described by the 

following steps: 

 Import the text description of the complaints of the OC data on Microsoft Excel 

to Notepad files based on the selected time step (ex: week1, week2, etc.). 

 Identify the most relevant features of the weather data that could potentially be 

used as inputs for the prediction model to be developed. 
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 Develop time series for the selected features from the weather data based on the 

selected time step. Summary statistics of each of these weather features could be 

used as an input (ex: minimum, average, maximum). 

 

b. Text Cleaning and Mining 

The OC descriptions text data is cleaned as described below after inputting the 

Notepad files per the selected time step into the software R: 

 Transform all letters to lower case to ensure that the model for example does not 

treat the terms “Apartment” and “apartment” as distinct words. 

 Stem the words to ensure that the model for example does not treat the terms 

“plumber” and “plumbing” as distinct words. 

 Remove punctations by replacing them with white spaces since they are of no 

interest in this study. 

 Remove digits by replacing them with white spaces since they are of no interest 

in this study. 

 Remove English stop words by replacing them with white spaces since they are 

of no interest in this study (ex: “and”, “or”, “the” etc.). 

 Remove all the added white spaces. 

Now that the OC data is cleaned, it is used in the text mining process in R using 

the “tm” package. Text mining allows to develop a Term Document Matrix (TDM) 

which is a mathematical matrix that permits quantitative analysis of the data. Rows in a 

TDM represent all the terms found in all the Notepad files, columns represent each 
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Notepad file (each represents a single time step), and numbers in cells represent how 

many times each term was repeated in each Notepad file. Given the obtained 

frequencies of the terms per time step, the time series representing the frequencies of the 

terms of interest (“ac” and “heater”) are thus developed. 

 

c. Data Split 

At this stage, there will be a set of weather time series that could potentially be 

used as features to the MLP model. Also, the target time series of what the model is 

trying to predict (AC or heater occupant complaints) are developed as well. This data is 

structured in a table format where each column represents one input feature and the last 

column represents the target, and each row represents an instance meaning one-time 

step. 

As such, the total data instances as per the selected time step should be divided 

into two parts. The first part will be referred to as the “design set” which will be used 

develop the MLP model and to ensure that it is performing well on data it had been 

trained on. The second part is known as the “holdout test set” that will be used to test 

the final model’s ability to generalize, meaning to test its performance on data it had not 

encountered before  (James, Witten, Hastie, & Tibshirani, 2013). 

 

d. Time Series Smoothing 

The AC and heater time series of the design set that are obtained from the 

process of cleaning and mining will have some embedded noise that is treated using 

smoothing techniques to ensure that their characteristics stand out and to reduce random 
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fluctuations (Guiñón, Ortega, García-Antón, & Pérez-Herranz, 2007). The generated 

smoothed time series for both AC and heater complaints are then used as an input in the 

prediction model of each. 

The most common time series smoothing techniques are the Moving Average 

(MA) filters that replace an observation by the average of a number of neighboring 

points depending on the selected window size (Guiñón et al., 2007). An arithmetic MA 

considers equal weights of the points unlike a weighted MA (Hyndman & 

Athanasopoulos, 2018). A Gaussian weighted MA for example assigns a normal 

distribution for the weights (Shumway & Stoffer, 2017) and an exponentially weighted 

MA puts more weight on recent data points with an exponential decay of the weights 

(Achelis, 2001). 

 

e. MLP Data Preparation 

The MLP model for each the AC or heater will have two types of inputs. The 

first is the AC or heater time series obtained after smoothing the corresponding time 

series obtained from the text mining process. The OC time series will be used as an 

input to account for the occupant complaints in the previous time steps (lagged 

variable). The second corresponds to additional exogeneous data that, as stated earlier, 

includes time series of the potentially relevant features of the weather data.  

 

i. Feature Selection 

In order to identify which of these weather features will be used as an input, a 

good practice is first to plot all the potential input features and target from the design set 
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against one another as a scatter plot matrix. One could visually assess which input 

features seem to be correlated with the target, and could act as good predictors, and 

which features seem highly correlated with each other and thus explain one another and 

perhaps one could be eliminated. Then, it is recommended to use statistical methods to 

quantify this correlation between different variables and the target and between the 

variables themselves such as Spearman method. Spearman method is a non-parametric 

test that is used to measure the correlation between two variables without enforcing any 

assumption on the distribution of the variables. Once this correlation is quantified by the 

rho parameter and is tested for significance, the MLP model input features will be 

selected to include the relevant weather time series along with a lagged time series for 

AC or heater OC. 

 

ii. Data Transformation and Scaling 

In order to better understand each variable and the target, several visuals could 

be analyzed such as line plots, histograms, and density plots. Line plots allow to 

visualize how each variable is changing over time and to check if there is any obvious 

trend or seasonality. Histograms and density plots allow to visualise the distribution 

each variable is most likely to be following. For example, if the histogram of a certain 

variable shows a heavy tail, it might be difficult for the ML model to detect trends. 

Thus, it is recommended to transform the data into a distribution to is closer to a bell-

shaped one (Géron, 2019). Examples of data transformations include logarithmic, 

square root and cube root transformations (Hyndman & Athanasopoulos, 2018). In 

addition to that, often the variables will have different ranges that could be very far from 

one another. ML algorithms also often do not perform well when the scales of the input 
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variables vary widely. As such, it is recommended to transform the input variables (and 

sometimes even the target) into the same scale. This can be done by normalizing the 

variables into the range of [0,1] whereby the minimum value of the instances of a 

certain variable is subtracted from the value of interest and then divided by the 

difference of the maximum and minimum. Another method for feature scaling is 

through standardization, whereby the mean of the instances of the variable is subtracted 

from the value of interest and is then divided by the variance of the instances of the 

variable. So, the instances of the variable will be standardized to have a mean of zero 

and a unit variance but will not necessarily be bound to a certain range which might still 

be problematic for certain ML algorithms (Géron, 2019). 

 

iii. Splitting Design Data into Training and Validation 

Now that the target times series (AC or heater) is smooth, and both input and 

target times are transformed and scaled as needed, developing the MLP model could 

start. But prior to that, it is important to divide the design dataset into two parts. The 

first is the training set that is used to fit the model to identify its different coefficients. 

The second part is validation set that will be used assess to the model and to evaluate 

the performance of different scenarios by tuning the different hyperparameters that will 

be identified in the upcoming section. But this evaluation becomes biased since the 

validation dataset is now part of the model's configuration. For that reason, a testing set 

was held out earlier to evaluate the final model and provide a test error (James et al., 

2013). The need to split the data is crucial since it allows to evaluate the model prior to 

testing it on the holdout set thus overcoming both underfitting and overfitting potential 

problems. Overfitting happens when the model has a high complexity where it performs 
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well on the training data set but does not have the capacity to perform well on data 

points outside the this set. Underfitting on the other hand occurs when the model has a 

low complexity where it does not learn the training data well in the first place 

(Goodfellow, Bengio, & Courville, 2016). 

 

f. MLP Model Training, Validation, and Testing 

Two machine learning-based prediction models will be built: one for predicting 

the number of AC complaints (AC model) and one for predicting the number heater 

complaints (heater model). Building both MLP models will follow a similar procedure 

using the Keras library in Python which is an open source for developing neural 

networks.  

 

i. Number of Lags 

The number of lags can be defined as the number of previous time steps that will 

be used in the prediction. This will then define the number of input features that will be 

used as predictors in the model including previous values of the input features and 

previous values of the target since the problem at hand is an autoregressive one with 

exogenous predictors. For example, suppose the MLP model has 5 input features and 1 

target to be predicted. As per the tabular structure of the data, suppose a number of 2 

lags was selected, this means that the features of instances 1 and 2 will be used to 

predict the target at instance 3. The model will now require 12 input features; the 1st 5 

represent the input features of instance 1, feature number 6 will represent the target of 

instance 1, the next 5 represent the input features of instance 2, feature number 12 
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represents the target of instance 2. It should be noted that since a lag of 2 was selected, 

the first 2 instances will be used for initialization, and the first prediction will start at 

instance 3. Thus, restructuring the dataset as such allows to transform this time series 

forecasting problem into a typical supervised ML problem. Selecting the number of lags 

is crucial to the problem, because the higher the number of lags the higher is the total 

number of predictors used to fit the model, and the  more is the historical data required 

to make each prediction. So, the number of lags can be increased starting with a lag of 

one until the model starts overfitting.  

 

ii. Network Architecture and Activation Function 

Now that the dataset is structured properly, the MLP network architecture can be 

defined. This includes the number of hidden layers and the number of neurons in each 

layer. Those are referred to as hyperparameters since they are variables that the training 

algorithm does not learn by itself, rather they are selected by the user prior to the 

learning process (Bergstra, Yamins, & Cox, 2013). 

A typical MLP structure consists of a minimum of three layers: an input layer, at 

least one hidden layer, and an output layer as shown in figure 2. 𝑋  represents the 

MLP’s input vector including both the target time series (AC or heater) and the time 

series of the exogenous features (weather features) of the previous time steps with 𝑗 

being the index of the input, 𝑎  represents the vector of neurons used with 𝑖 being the 

index of the neuron in the corresponding layer, 𝑓 represents the activation function, and 

𝑦 (𝑡) represents the predicted times series (AC or heater). Figure 3 shows a more 

detailed structure of a single neuron In each layer, every neuron sums the elements of 
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the input vector 𝑋  after weighting each by its respective weight given by the weight 

vector 𝑤  which represents the weights vector needed to carry out the mapping. It then 

performs an activation function to the obtained sum as stated by to obtain an output 𝑎  

(Behrang et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ANN structure 

Figure 3 Structure of a neuron 
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According to Géron (2019) often using one hidden layer in MLPs is enough to 

provide reasonable results given that it has a sufficient number of neurons. However, 

using a deeper network (one with number of hidden layers greater than two), could 

exponentially decrease the number of neurons in each hidden layer as compared to a 

shallower network. Decreasing the number of neurons in the network makes the training 

less computationally expensive. So, using one or two hidden layers could be a good 

starting point when fitting the MLP model. The number of hidden layers should be 

selected prior to the training process. It can be increased until the model starts 

overfitting the training dataset (Géron, 2019). 

As for the neurons, their number in the input layer is defined by the number of 

input variables, one for each. In the output layer, their number depends on the type of 

output the model is trying to predict for example, one neuron is used if the model is 

trying to predict one target for a regression problem. Whereas in the hidden layers, a 

common practice is to select their number in a funnel form; to use a smaller number of 

neurons in each layer. However, this increases the number of hyperparameters one 

needs to be selecting and tuning, so a more common practice is to use the same number 

of neurons in each hidden layer thus having one hyperparameter to select instead of one 

for each layer. As with the number of hidden layers, the number of neurons should be 

selected prior to the training process and could be increased until the model starts 

overfitting the training dataset (Géron, 2019). 

Several types of activation functions 𝑓 (𝑋) presented below can be used in the 

mapping process where 𝑋 represents the output from the previous layer. The most 

common types are the linear (equation 1), sigmoid (equation 2), hyperbolic tangent 
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(equation 3) and the rectified linear unit (ReLU) activation functions (equation 4) 

(Nwankpa, Ijomah, Gachagan, & Marshall, 2018). 

𝑓 (𝑋) = 𝑋      (1) 

𝑓(𝑋) =        (2) 

𝑓(𝑋) =         (3) 

𝑓(𝑋) = 𝑚𝑎𝑥 (0, 𝑋) =
𝑋, 𝑖𝑓 𝑋 ≥  0
0, 𝑖𝑓 𝑋 < 0  

  (4) 

The ReLU activation function, or one of its variants, are often used in the hidden 

layers of a neural network since they require less computational effort and offer a better 

generalization performance as compared to the sigmoid and hyperbolic tangent 

functions (Géron, 2019; Nwankpa et al., 2018). As for the output layer, the linear 

activation function can be used since the problem at hand is a regression problem 

(Géron, 2019). 

 

iii. Optimization Algorithm 

The learning process of the MLP model is carried out by a training algorithm as 

an optimization problem to determine the weights and bias of the model with the 

objective of minimizing the model error, also known as a cost function, defined by a 

performance function. The weights and bias are tuned in a way that permits the model to 

produce an output that is as close as possible to the actual value (James et al., 2013). 

Common training algorithms that solve non-linear optimization problems include: 

gradient descent and its variants, Gauss-Newton (Battiti, 1992), Levenberg-Marquardt 
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(Gavin, 2011),  Momentum optimization, RMSprop , and Adaptive Moment Estimation 

(Adam) (Géron, 2019).  

For a long time, gradient descent algorithm was the most commonly used 

optimization algorithm in neural networks. This optimization is done by updating the 

model weights and bias after every iteration throughout the training process. The 

direction of this update should be opposite to that of the gradient of the cost function 

with respect to the weights. As for the size of the step of this update, it is determined by 

the learning rate that is a hyperparameter of the gradient descent that should be 

configured (Ruder, 2016). If a very high learning rate is used, the training might diverge 

or might never converge where it keeps going around the minimum. Whereas if a very 

low rate is used, the training will eventually converge but will take a lot of time. So, 

selecting the learning rate is a very critical process to ensure convergence and a 

reasonable computational time (Géron, 2019). Current practices recommend using 

Adam optimizer to train an MLP model. Adam emerged from two other optimizers: 

Momentum optimization and RMSprop. Adam has the property of accelerating the 

optimization problem towards the minimum leading to faster convergence as compared 

to the traditional gradient descent. This requires keeping track of the average gradients 

of past iterations in an exponentially decaying manner. As such, a new hyperparameter 

known as “momentum decay hyperparameter Ꞵ1” should be configured. Ꞵ1 ranges from 

0 to 1 with a value of 0 reflecting a high friction, and a value of 1 reflecting no friction. 

Often, a value of 0.9 is used. Also, another new hyperparameter known as “scaling 

decay hyperparameter Ꞵ2” ranging from 0 to 1 should be configured as well. Ꞵ2 is 

usually initialized to 0.999. Other hyperparameters of Adam include a smoothing term 𝜖 

that mitigates division by zero with a typical value of 10 , in addition to the learning 
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rate η that is usually set to 0.001. Often those default parameters provide a good 

performance (Géron, 2019).  The main advantage of Adam over Gradient Descent 

algorithm, is that it is an adaptive learning rate algorithm, meaning that the learning rate 

is updated throughout the learning process in a way that allows it first to learn quickly 

and then to converge slowly towards a good solution, and this requires less tuning of the 

learning rate (Géron, 2019). 

Two more hyperparameters should also be configured when training the MLP 

model, the number of epoch and the batch size. The batch size represents the number of 

samples from the training dataset that are passed to the model at once during the 

training process. The model then is evaluated at the end of each epoch. As such, one 

epoch represents one complete pass over all the samples in the training dataset. The 

number of epochs is usually high for example 500, 1000 or even higher (Géron, 2019). 

 

iv. Performance Function 

Several statistical error measurements can often be used when evaluating the 

model’s performance. The Mean Absolute Error (MAE) for example measures the 

average absolute error 𝑒 which is defined as the difference between the predicted and 

the actual outputs. The Mean Squared Error (MSE) is similar but the values are squared 

to obtain positive values (Cadenas, Rivera, Campos-amezcua, & Heard, 2016) 

Equations 5 and 6 represent the MAE and the MSE respectively.  

𝑀𝐴𝐸 =  ∑ |𝑦 − 𝑦  |  (5) 

𝑀𝑆𝐸 =  ∑  (𝑦 − 𝑦  )   (6) 
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Where, 𝑛 is the number of instances in the data set, 𝑦  is the actual value, and 𝑦  

is the predicted value. 

 

v. Regularization 

As mentioned earlier, one very common problem of neural networks is 

overfitting. Regularization is a method that can be used to mitigate this problem by 

constraining the model thus decreasing its complexity (Géron, 2019). Large model 

weights are not recommended since they are a reflection that the model has a high 

complexity and had learned the train set so well and will most likely not perform as 

good on data it had not seen before (overfit). Moreover, with larger weights, any small 

change in the input features will have a much larger impact on the output (Smithing, 

1999). As such, regularization can be applied during the learning process of the model 

and is controlled by a hyperparameter of the training algorithm that should be set prior 

to the training process. Two common regularization methods include: Ridge and Lasso. 

They both add a regularization term (ranging from 0 to 1) to the cost function that the 

training algorithm is trying to minimize. Ridge regularization forces the learning 

algorithm to produce a good model fit while keeping the weights as small as possible. 

On the other hand, Lasso regularization completely eliminates weights of features 

throughout the training that are not of much importance thus automatically performing 

some kind of feature selection. Thus, the method and the corresponding 

hyperparameters should be carefully chosen and a combination of both could be used 

(Géron, 2019) . Although the weights are calculated per layer of a MLP, it is common 

practice to select the same regularization hyperparameter (s) for all layers in order to 

avoid having more hyperparameters to tune (Goodfellow et al., 2016).  
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vi. MLP Model Fitting and Evaluation 

Now that the model inputs are prepared and structured, the number of lags is 

selected,  the hyperparameters are selected (including: number of hidden layers, number 

of neurons, batch size, number of epoch,), activation functions, optimization algorithm 

and its corresponding hyperparameters, performance function, in addition to 

regularization method (s) and corresponding hyperparameter (s) that are selected as 

well, the model weights are initialized and the model can now be trained.  

A model is said to perform well on train set if it has a low error as per the 

defined performance function and as per the context of the problem, along with a good 

model fit (R2). If this is not the case, steps in section "MLP Model Training, Validation, 

and Testing” be repeated while changing certain hyperparameters and properties, and 

the model is fit again. After experimenting with different possible options to train the 

model, and reaching an option that has a good performance on the training set (low train 

error, and high R2), the model should be tested on the validation set to ensure proper 

selection of the hyperparameters and that the model is unlikely to overfit new data. As 

such, walk forward validation can be adopted.  

Walk forward validation is a suggested method to cross- validate the MLP 

model that is specific for time series data. A certain number of data samples should first 

be selected to train the model (train set). Then, the fit model will make a one-step 

prediction on the validation set. This prediction is evaluated against its actual value, and 

the train set used to fit the model is then expanded to include this true observation. This 

process repeats throughout the number of samples in the validation set. This allows the 

model to make predictions using the most recent data (Hyndman & Athanasopoulos, 

2018). Simple models are often refit every time a true observation of the validation set 
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is added to the train set; however, this becomes computationally expensive for neural 

networks.  

The figure below adapted from Hyndman & Athanasopoulos (2018) illustrates 

the walk forward validation for one step ahead prediction. The blue dots represent the 

samples used to fit the model in the train set, and the red ones show samples in the 

validation set. The model’s forecasting accuracy is then computed by averaging the 

errors in the validation set for each one step prediction. Each row represents one 

iteration throughout the validation set (Hyndman & Athanasopoulos, 2018).  

 

 

If the fit model does not show good performance on the validation set, steps in 

section " MLP Model Training, Validation, and Testing”. should be repeated while 

changing certain hyperparameters and properties where the mode is fit again. Whereas 

if the model shows good performance on the validation set, it will be evaluated by 

conducting 30 model fit runs while keeping everything the same and the only things 

Figure 4 Walk forward validation method (Hyndman & Athanasopoulos, 2018, p.84) 
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changing are the initial model weights due to the stochastic nature of the optimization 

algorithm. This is to ensure that the model is stable which can be evaluated by obtaining 

the average error and the corresponding standard deviation for both training and 

validation sets for those 30 model fit runs. If the average train error and the average 

validation error are low, are close to each other (model is unlikely to overfit), and the 

standard deviation of each is low as compared to the corresponding average of the error, 

this means that the model is stable and the model can now be evaluated on the holdout 

test set. If this is not the case, steps in section "MLP Model Training, Validation, and 

Testing” . should be repeated while changing certain hyperparameters and properties 

where the mode is fit again. In order to evaluate the model on the holdout test set, the 

features in the test set should first be prepared following the exact process used to 

prepare features in the design set. As such, the OC data in the test set should be 

smoothened, and features should be scaled and transformed in equivalence to how the 

corresponding feature was treated on the design set. If the model does not show good 

performance on the test set, section "MLP Model Training, Validation, and Testing”. 

should be repeated while changing certain hyperparameters and properties where the 

mode is fit again. Whereas if the model shows good performance on the test set, it will 

be selected and saved as a suggested model. A good performance on the test set means 

that the error on the test set is low as per the context of the problem at hand, and the test 

error is very close or slightly higher than the train error to ensure that the model is not 

overfitting. It should also be noted that every time the error and the R2 are calculated at 

any evaluation level, It is important to inverse any kind of scaling and then to inverse 

any kind of transformation of each predicted value so that it is comparable to the actual 
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value allowing to obtain the errors and R2 that are in the same range as the actual 

context of the problem 

3. Benchmark Model: ARIMA  

The state of the art ARIMA model for time series forecasting will be developed 

for each of the AC and the heater related number of complaints to act as benchmark for 

the developed corresponding MLP models. This includes time series preparation, 

ARIMA input data preparation, splitting the data into training and validation, and 

modelling the ARIMA process as described in the sections below. 

 

a. Time Series Preparation 

The ARIMA benchmark model will follow the same steps as the ML-generic 

framework for data collection and preprocessing, text cleaning and mining, data split, 

and time series smoothing.  

 

b. ARIMA Input Data Preparation 

As with the MLP model, the ARIMA model for each the AC or heater models 

will have two types of inputs. The first is the AC or heater time series obtained after 

smoothing the corresponding time series obtained from the text mining process and 

known as the endogenous series. The second corresponds to additional exogeneous data 

that, as stated earlier, and includes time series of the relevant potential features of the 

weather data 
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i. Feature Selection 

As with the MLP model, the weather features that will be selected as potential 

exogenous variables will be based on visualizing the scatter plot matrix of all these 

variables and the target (endogenous series) and based on Spearman correlations. This 

allows to determine which exogenous input features seem correlated with the target, and 

could act as good predictors, and which exogeneous features seem highly correlated 

with each other and thus explain one another and perhaps one could be eliminated  

 

ii. Data Transformation and Scaling 

As with the MLP, several visualizations could be used to better understand each 

exogeneous variable and the endogenous time series.  

As mentioned earlier, ARIMA model requires the endogenous series to be 

stationary whereby the characteristics do not change over time. This can first be tested 

by the statistical Augmented Dicky-Fuller (ADF) test where the null hypothesis states 

that the series has a unit root and thus is not stationary, and the alternative hypothesis 

states the series does not have a unit root and thus is stationary. The null hypothesis can 

be rejected or not based on the selected significance level (Goh & Law, 2002). If the 

data is not stationary, several transformations could be used to transform the series into 

a stationary one. This is done by removing the trend and/or seasonality of the time series 

which in turn requires transformation such as differencing or log transformation 

(Hyndman & Athanasopoulos, 2018). Certain power transformations can assist in 

stabilizing the variance of the endogenous time series, while differencing can assist in 

stabilizing the mean of the time series (Hyndman & Athanasopoulos, 2018). 
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Differencing can be used to remove trend by replacing each value of the endogenous 

series with this value subtracted from it the value of the previous time step, while 

differencing to remove seasonality can be done by subtracting from the previous season. 

If needed, differencing can be done more than once. 

Data scaling methods mentioned in section B.e.2 could also be adopted here if 

the range of the endogenous and exogenous series differ drastically. 

 

c. Splitting Design Data into Training and Validation 

Splitting the design data into training and validation will follow the same 

procedure as with the MLP model to avoid both underfitting and overfitting.  

 

d. ARIMA (p, d, q) (P, D, Q) s modelling 

The methodology followed to develop and diagnose an ARIMA model is based 

on that suggested by Box and Jenkins (Box, Jenkins, & Reinsel, 2011).  

The first step to develop an ARIMA model is known as “identification” and 

aims to select the model parameters by analyzing the design data set. The 

Autocorrelation Function (ACF) represents correlations between residuals and thus can 

be used to determine an estimate of the “q” parameter representing the order of the 

moving average. The Partial Autocorrelation Function (PACF) represents the 

correlations between the lagged values of the endogenous time series without including 

intermediate lags, and thus can be used to determine an estimate of the “p” parameter 

representing the order of autoregression. The “p” and “q” parameters are selected in a 

way that no significant correlation is found after the selected number of lags for each of 
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the PACF and ACF plots respectively based on the selected confidence level. As for the 

“d” parameter, it refers to the degree of integration required to make the time series 

stationary before fitting the ARIMA model (Box et al., 2011). The equation of the 

ARIMA model then becomes: 

y =  β y + β y +. . . + β y + ϵt +  Ɵ ϵ + Ɵ ϵ +. . . + Ɵ ϵ   

(equation 7) 

where, y  represents the value of the endogenous series at time 𝑡, β y +

β y +. . . + β y  represents the autoregressive part which includes the previous 𝑝 

lagged values of the endogenous time series, and ϵt +  Ɵ ϵ + Ɵ ϵ +. . . + Ɵ ϵ  

represents the moving average part which includes the error terms at time 𝑡 and past 

times till 𝑡 − 𝑞 . 𝑝 and 𝑞 as mentioned earlier represent the autoregression and the 

moving average orders respectively. As for β  to β , they represent the autoregression 

(AR) coefficients, and Ɵ  to Ɵ  represent the moving average (MA) coefficients.   

There is also a tendency for the time series to vary periodically if it is long 

enough, this is known as seasonal variation, and should be considered in the modeling 

process (Tabachnick et al., 2007). As such, the ARIMA model is now referred to as 

seasonal ARIMA, and three additional parameters should be identified “P”, “D”, and 

“Q” following a similar process to “p”, “d”, and “q” identification but now to model the 

seasonal variation instead of the trend of the time series. As for the parameter “s”, it 

represents the period of the time series For example, “s” is 12 for a monthly recorded 

time series that varies yearly, and “s” is four for a quarterly recorded time series that 

varies yearly (Box et al., 2011). The seasonal ARIMA model then ensures that the 

variations between consecutive observations and between consecutive observations of 
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consecutive seasons are both modeled (Hamzaçebi, 2008). When there are additional 

exogenous features that are to be added in the forecasting process, the ARIMA model is 

referred to as seasonal ARIMAX.  

Once tentative parameters are selected, the second step of “estimation” can 

proceed. The model coefficients are estimated using the train set provided that they 

minimize the model errors (Box et al., 2011). A model is said to perform well on train 

set if it has a low error as per the defined performance function and as per the context of 

the problem, along with a good model fit (R2). The AIC (Akaike Information Criterion) 

is another measure that can be used for model selection upon fitting different ARIMA 

models. It accounts for both the model fit and the simplicity for the model. The lower 

the AIC values the better the model is (Babu & Reddy, 2014). It should be noted that 

the AIC measure should only be used to compare hierarchical ARIMA models 

(Tabachnick et al., 2007). At this stage, the model coefficients including those – as 

applicable- for autoregression, moving average, and exogeneous features should be 

statistically significant from zero as per the selected significance level. If not significant, 

the corresponding variable (s) are to be removed one at a time (if more than one is 

insignificant), another tentative model is selected, and the coefficients are estimated 

again (Tabachnick et al., 2007). The model is then tested on the validation set, using the 

walk forward validation method discussed in section B. 2. f. vi, to ensure it is not 

overfitting.  

By now, the coefficients of the selected model parameters are significant, and 

the model does not seem prone to overfitting. The third step of “diagnosis” can proceed. 

This step verifies that the assumptions of the residuals have been met ensuring that the 

model has captured all the information that could be modeled (Box et al., 2011). The 
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residuals of a good model should not be correlated otherwise there is some information 

that was not modeled, and this can be identified by plotting the corresponding ACF plot. 

If this is not the case, the model parameters should be identified again as in step one. 

They also should have a mean of zero otherwise they are considered biased, but this 

problem can be solved by adding the mean of the residuals to every forecast. Moreover, 

the residuals should have a constant variance and should be normally distributed 

(Hyndman & Athanasopoulos, 2018). Once a good model is selected with proper 

residual diagnostics, it will be tested on the holdout set in a walk forward manner. If the 

test results are not satisfactory, the selected model parameters could be updated, and the 

steps repeat again. The obtained generalization error is used to compare this model to 

the MLP model. The ARIMA model procedure could be summarized by figure 5. 
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Figure 5 ARIMA methodology 
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CHAPTER 4  

RESULTS AND DISCUSSION: CASE STUDY 

 
This chapter provides a detailed analysis of the results obtained upon 

implementing the proposed methodology on a selected case study. Section A tests and 

evaluates the application of the developed ML-based generic framework to forecast 

thermal complaints, section B provides a detailed analysis of the developed ARIMA 

benchmark models, section C  compares and evaluates both the ML-based models and 

the benchmark models, and section D presents a staffing application of the developed 

ML-based models. The need for proper data management is addressed in section E. 

 

A. An application of the Developed ML-Based Generic Framework  

The developed generic framework to forecast thermal complaints was tested on 

an occupant complaint dataset obtained from a facility management unit of a residential 

complex in Beirut, Lebanon for a period of three years to forecast the number of AC 

and heater related complaints in the upcoming week. 

 

1. Data Collection and Preprocessing 

The residential complex comprises of 16 new buildings with a total of 145 

apartments. It is mainly served by two separate centralized systems for heating and air 

conditioning. The air conditioning system comprises of air cool chillers. The water side 

of the system utilizes primary and secondary chilled water pumps that supply chilled 

water to terminal fan coil units at each apartment. Similarly, the heating system includes 
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two boilers. The same pumping strategy is used to serve radiators for space heating as 

well as hot water bottles for domestic water heating (during the winter season).  

The maintenance related data was obtained in Microsoft Excel documents 

comprised of three different files: one for each of the three years. Each of these Excel 

files had 12 sheets: one for each month. The data for each year included daily routine 

maintenance records, Building Management System (BMS) notes, and recorded 

occupant complaint calls. The data was recorded on a daily basis in each sheet, where a 

row might represent an occupant complaint, a maintenance record, or a BMS note. As 

for the columns, they included for each observation: the date, the building’s name, 

apartment’s number, name of the operator who received the complaint call if applicable,  

time of the call if applicable, time of the response to the call if applicable, name of the 

technician put in charge to handle the complaint if applicable,  action taken by the 

technician if applicable, and a thorough description in text format of the complaint 

issued by the occupant if applicable. After a thorough preliminary screening and 

investigation of the maintenance related data for the three years the following 

conclusions can be drawn: 

 The date of each observation is important, because as stated earlier this is a time 

series forecasting problem, so time is an important factor. 

 Considering that the observations were recorded on a daily basis, this gives 

flexibility to study the data with a time step of days, weeks, month or years.  

 Although the name of the building and the apartment number could assist to 

better understand where the complaints are coming from, they are out of the 

scope of this study and thus will be excluded. 
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 The name of the operator who received the call is of no relevance to this study 

and thus will be excluded. 

 The time of the call and the time of the response to the call were only recorded 

for few observations, mostly for those where the time of the call and the time of 

the response are very close in time. Such calls are likely to be urgent matters, or 

during which a technician was readily available at the time. This shows a lack of 

follow-up on updating this log when the complaint or maintenance requests were 

addressed. So, these two columns had missing data for almost all observations 

and thus will be excluded.  

 The name of the technician in charge and the action taken by the technician were 

not filled for most of the observation so, they were not included in any further 

analysis. 

 The description of the complaint issued by the occupant was of great use to this 

study. It was the major source of information on the type and number of 

complaints issued, and sometimes even to a more detailed description on what 

the problem exactly is. Yet, this was written in a text format which made it 

challenging to extract further information: perhaps there is some information 

stated explicitly in the text but cannot be easily spotted or searched for. As such, 

this text data could be transformed into a more structured format using the 

process of text mining which will be employed in the next section. 

Considering that this study focuses on the occupants’ complaint calls and that 

several columns encountered missing data points for several observations, the columns 

that will be used in this study include the date and the description of the occupant 

complaint. The latter was first filtered to ensure it only includes description of occupant 
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complaints and no BMS notes or routine maintenance follow ups. The complaint 

descriptions were further investigated, and it was deduced that a good number of those - 

especially in year three- was recorded in the Arabic language while the primary 

language of the documents was English. As such, those were scanned and translated 

manually to English. While translating, it was critical to ensure as much as possible that 

the same terms in English are used consistently, for example being consistent in using 

the term “AC” instead of “air conditioning”, and for that purpose, this task was 

conducted by one person only. However, a term could always be replaced by another if 

they refer to the same meaning such as “ac” and “air conditioner”. After cleaning the 

data, a total of 6, 577 complaints were analyzed with 2, 692 in the first year, 1, 924 in 

the second year, and 1, 961 in the third year.  

The chart below in figure 6 provides a high-level data dictionary of the obtained 

data set including which columns of the Excel files were used in this study and which 

were not. 

 

 
Figure 6 Maintenance data high-level dictionary 
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A time step of weeks was selected since staffing decisions are typically made on 

a weekly basis which is the ultimate application of the proposed methodology. So, a 

total of 156 weeks, 52 in each year, with an average of 42 complaints was obtained per 

week. As such, the occupant complaint descriptions were exported from Excel into 

Notepad files to be used in the next section in the text mining process. So, a total of 156 

Notepad files was obtained.  

As for the weather-related data, they were also obtained for the corresponding 

three years, and was clean without any missing data. The data was recorded on a minute 

by minute basis which provides some flexibility for the time step to be selected. It 

included several features: temperature, relative humidity, mean sea level pressure, total 

precipitation, snowfall amount, cloud dover, in addition to wind speed and direction. 

The temperature and the relative humidity seem to be good predictors of thermal 

complaints because they direct the use of air conditioning and heating systems which in 

turn drives the corresponding number of complaints. Moreover, the wind speed was 

added to ensure the real-feel temperature was included in the prediction.  

Since a time-step of weeks was selected, the weather observations recorded on a 

minute basis were aggregated to obtain the daily average which can be used to obtain 

three features for each of the selected variables based on the summary statistics varying 

on a weekly basis: minimum, average, and maximum to ensure that those variables are 

fully represented. For example, the observations for week one for the temperature 

features are obtained as follows: the minimum temperature feature is obtained by taking 

the minimum temperature of the first seven days, the average temperature variable is 

obtained by averaging the temperature of the first seven days, and the maximum 

temperature is obtained by taking the maximum temperature of the first seven days. The 
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same process was applied for the following weeks till week 156, and for the relative 

humidity and wind speed variables. As such, a total of nine features is obtained and the 

following abbreviations will be used throughout this thesis: MinT, AvT, MaxT, MinRH, 

AvRH, MaxRH, MinW, AvW, and MaxW. The temperature features were measured in 

degrees Celsius, the relative humidity features were measured in percentage, and the 

wind features were measured in kilometres per hour. Each of these features represents a 

time series. The corresponding line plots are shown in figure 7, and table 2 shows the 

summary statistics of each. These time series line plots show obvious repetitive 

variations from one year to another, in addition to seasonal variations within the same 

year. In particular, temperature features show low values at the beginning and end of 

each year since this period represents the winter season, and mid year they show higher 

values whereby this period represents the summer season. There is no clear seasonal 

variation for the relative humidity features, but they appear to have a wide range. As for 

the wind features, the minimum wind feature does not show obvious seasonal variation, 

but this is clear for the average and maximum wind features that show seasonal 

variation opposite to that of the temperature features but not as strong. 
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Table 2 Summary statistics of weather features 

  
Min 
T 

Av 
T 

Max 
T 

Min 
RH 

Av 
RH 

Max 
RH 

Min 
W 

Av 
W 

Max 
W 

C
ou

nt
 

156 156 156 156 156 156 156 156 156 

M
ea

n 17.55 20.2 23.37 42.99 59.95 76.01 7.39 11.06 16.06 

S
ta

nd
ar

d 
de

vi
at

io
n 

6.12 5.58 5.44 13.49 9.83 8.74 1.59 2.86 6.25 

M
in

im
um

 

3.51 7.24 11.74 11.42 26.65 53.79 3.48 6.06 8.04 

M
ax

im
um

 

28.08 30.60 33.57 73.46 81.55 92.63 12.68 22.55 42.65 
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Figure 7 Time series plots for potential weather features 
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2. Text Cleaning and Mining 

The Notepad files containing the OC descriptions for each of the 156 weeks are 

now imported into the software R. These files are cleaned by transforming all the letters 

to lower case, stemming the words, replacing punctuations with white spaces, replacing 

digits with white spaces, replacing the English stop words with white spaces, since non 

of these are of relevance to the study, and finally deleting all the additional white 

spaces.  

Once cleaned, these Notepad files were used in the text mining process to obtain 

the TDM. Figure 8 shows an example of an obtained TDM of two Notepad files each 

for one week with one occupant complaint only 

 

 

 

 

 

 

The number of occupant complaints, their average number per week, along with 

the total number of distinct terms, the sum of the total number of terms, and the average 

number of terms per occupant complaint derived form the TDM are summarized in 

table 3 for each year. It is noted that on average only four terms were used to describe 

an occupant complaint, so these terms ought to be useful. However, it might be a sign 

that the recorded description is not much detailed and might be missing on some 

Figure 8 TDM example 
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important information, but this can be explained by the fact that an occupant is issuing 

the complaint and not an experienced technician for example. The results also show 

how sparse a TDM can be: out of more than 1,000 distinct terms in each year, only 4 on 

average were used to describe an occupant complaint 

 

Table 3 TDM summary per year 

 Year 1 Year 2 Year 3 

Number of OC 2,692 1,924 1,961 

Average number 
of OC per week 

52 37 38 

Number of distinct 
terms 

1,389 1,043 1,288 

Total number of 
terms 

11,894 7,485 8,066 

Average number 
of terms per OC 

4.42 3.89 4.11 

 

Figures 9, 10, and 11 show the word clouds for each year for the top 200 most 

frequent terms as per the obtained TDM. A word cloud is a visualization of the terms 

that are most frequently repeated. The size of a word is proportional to its frequency—

the larger the font size, the more frequent it appears and vice versa. Figures 12, 13, and 

14 show bar charts for the top 20 most frequent terms for each year. It can be inferred 

that for year one the word with the highest frequency was “water” followed by “ac”. 

Other words that appeared frequently include: “leak”, “heater”, “alarm”, “edl” (EDL 

refers to electricity of Lebanon company), and “lamps”. As for year two, the most 
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common term was “edl” followed by “water” and “ac”. For year three, the most 

common term was “water” followed by “ac” and “problem”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Word cloud for year two 

Figure 9 Word cloud for year one 
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Figure 12 Most frequent terms for year one 

Figure 11 word cloud for year three 
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Figure 13 Most frequent terms for year two 

 

 

Examining the variation of thermal complaints in particular, it can be noted that 

the number AC related complaints in each year is higher than that of heater related 

complaints. This is expected since the number of summer months is higher than that of 

winter months. Another reason is that the maximum weekly temperature for example 
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Figure 14 Most frequent terms for year three 
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could go as high as 35 degrees Celsius, and the corresponding feel temperature is 

expected to be even higher due to the effect for the humidity and wind, whereas the 

minimum weekly temperature does not go any lower than about 3 degrees Celsius. So, 

the cooling system seems to be used more than the heating system and even more 

intensively reflecting the gap between the number of the corresponding complaints 

obtained. Moreover, it can be noted that the total number of thermal complaints in year 

one was 340, which showed a great drop in year two to 225 complaints and then very 

slight increase in year three to 232. This can be explained by upgrading the heating and 

cooling systems of the complex before the start of year 2. When examining the number 

of thermal complaints per each month, obtained from the TDM for each year, a certain 

discrepancy was noted. For some of the winter months for example January, February, 

and December, the term “ac” appeared several times and this did not make sense since 

those are winter months, thus the heater would be used not the air conditioning system, 

and thus it is not expected to receive complaints related the AC. These specific 

complaints were further examined to come to the root cause of this issue by reviewing 

the OC description in the Notepad files for the weeks related to those months in every 

year. This investigation came to the conclusion that the operators seem to use the term 

“ac” to describe a heater related complaint, because for them the air conditioning system 

of the building was used in the heating mode, and as call center operators they are not 

expected to have the technical knowledge about the heating and cooling systems for the 

buildings. As such, the count of the “ac” terms for the winter months was manually 

shifted to the term “heater” to describe a heater complaint. Another important point is 

that for some of the thermal related complaints they were described using the term 

“hvac”, thus those complaints were examined to check if each is AC or heater related 
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complaint, and those were shifted manually. This was doable since the term “hvac” 

appeared only about 3 times in each year. The bar graphs and word clouds represented 

above were developed after the numbers were shifted.  

Given the obtained number of the “ac” and “heater” terms per week, the time 

series representing the numbers of these terms versus time in weeks are thus developed 

and represented respectively by figures 15 and 16 below. The vertical lines show the 

boundaries between the years. For the AC complaints, they are null at the beginning and 

end of each year, and peak mid year during summer months. Whereas the heater 

complaints are null mid year and peak at the beginning or end of each year. Such 

variation is repetitive from one year to another. It is clear as well that the months 

without heater complaints (summer season) are less than the months without AC 

complaints (winter season). Moreover, the average number of AC complaints per week 

is much more than that of heater complaints. The reasoning behind the latter two points 

was discussed earlier in this section.  

 

Figure 15 Developed AC time series 



 

59 
 

The summary statistics for the AC and heater time series are shown in the table 

4. It can be noted that each has a very wide range, and a low mean compared to the 

range. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 AC and heater time series summary statistics4 

 AC complaints Heater complaints 

Count 156 156 

Mean 3.981 1.128 

Standard deviation 5.576 2.181 

Minimum 0.000 0.000 

Maximum 27.000 17.000 

 

 

Figure 16 Developed heater time series 
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3. Data Split 

At this stage, there is a total of 156 instances, a total of nine potential weather 

features, and the target of what the corresponding model is trying to predict (AC or 

heater complaints). This data set will be divided into two parts sequentially. For each of 

the AC and heater models, the first 90% of the data (140 instances) –“design set”- will 

used to design each MLP model, and the following 10% (16 instances) will be used to 

test the model to obtain the generalization error- “holdout set”. The 10% holdout set 

might seem small; however, the data split was conducted in an iterative way for this 

data split step and upcoming steps of data smoothing and further division of the design 

set. This was to ensure that each sub-part of the data is representative -as much as 

possible- of the whole data set while respecting the sequential variation of the data. 

Figures 17 and 18 below is a visualization of the data split into “design set” and 

“holdout set” for each the AC and heater time series, respectively. All other variables 

will be split the same way. 

 

 

 

 

 

 

Figure 17 AC time series split between design and holdout sets 
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4. Time Series Smoothing 

Upon inspecting the AC and heater times series, it can be noted they have 

several spikes and some fluctuations that seem to be random. As such, time series 

smoothing was carried on. Several smoothing techniques were examined, for both AC 

and heater, a Gaussian weighted moving average filter was selected because it was able 

to reduce those spikes and random fluctuations yet preserve the overall morphology of 

each time series. As for the window size, a size of six was selected for the AC time 

series, and a size of four was selected for the heater time series. The larger the window 

size, the smoother is the time series, thus the easier it is for the model to predict later on; 

however, extreme smoothing changes the characteristics of the time series and should 

be avoided. For the AC model the first five values of the time series will be omitted 

since they are used for smoothing the sixth value, and same for the heater time series 

where the first three values will be omitted since they are used to smooth the fourth 

value. As such, the length of the observations in the design set becomes 135 for the AC 

Figure 18 Heater time series split between design and holdout sets 
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model, and 137 for the heater model. After examining both tailored and central 

smoothing for the same window size, central smoothing provided better results, 

however tailored smoothing was selected because the aim of the MLP model - that will 

use these smooth time series as an input- is for forecasting purposes. So, whenever the 

model is used for prediction, applying central smoothing for a certain observation will 

require future values of the time series, which is not applicable, while tailored 

smoothing will only require past values of the time series. Figures 19 and 20 below 

represent the AC and heater time series before and after smoothing respectively. 

 

 

 

     

 

Figure 19 AC time series smoothing for design set 
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5. MLP Input Data Preparation 

Each of the AC and heater models will have two types of inputs. The first is the 

developed corresponding occupant complaints smooth series. As for the second type, it 

represents the exogeneous weather features. Nine time series of the weather features 

were extracted: MinT, AvT, MaxT, MinRH, AvRH, MaxRH, MinW, AvW, MaxW. 

These weather features were further investigated to select relevant ones. As such, all 

these features along with the AC and heater time series were plot against one another 

(from the design set), and the Spearman correlation coefficients were calculated. Figure 

21 shows the scatter plot, and table 5 shows the rho value for the Spearman correlations. 

The number of AC complaints is highly correlated with the MinT, AvT, Max T, AvW, 

and MaxW, so these seem to be good predictors for the number of AC complaints. 

These same weather variables are highly correlated with the number of heater 

complaints but in the opposite direction. It should also be noted that the MinT, AvT, and 

Figure 20  Heater time series smoothing for design set 
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MaxT are highly correlated with one another, and the AvW and MaxW are highly 

correlated with one another as well. The MinRH, AvRH, MaxRH, and MinW do not 

show high correlations with the number of AC complaints nor with the number of heater 

complaints, so they do not seem to have any major effect on the complaint predictions. 

However, all the weather variables will be used in the MLP prediction models for the 

AC and the heater because they all could contribute to the prediction even if some had 

much less contribution than others. It is feasible to input nine variables every time the 

model (AC or heater) is to be used. Later, when validating the model, there might be a 

need to drop some variables if the model seems to be overfitting and no other feasible 

solution were able to resolve the issue. Also, another binary variable “season” was 

added to distinguish between the weeks where the AC was used and those where the 

heater was used. A value of 0 refers to the use of the AC, whereas a value of 1 refers to 

the use of the heater. Figure 22 shows the density plots for each of the weather variables 

and the AC and heater time series to check if any transformation is required. It can be 

noted the AC and heater time series are skewed to the right, and this is due to the fact 

that the use of each depends on the change of the winter and summer seasons, and so a 

lot of zero observations are expected in the season the heating or cooling system is not 

being used. Thus, a log(x+1) transformation was used for the number of AC and heater 

complaints to make their distribution closer to a Gaussian one. Also, the AvW and 

MaxW distributions are right skewed, so a logarithmic transformation was used for both 

to them closer to a Gaussian distribution. The other variables show density plots close to 

bell shaped one.  
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Figure 21 Scatter plot matrix 
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Table 5 Time series Spearman correlation 

 

 

 Min 
T 

Av 
T 

Max 
T 

Min 
RH 

Av 
RH 

Max 
RH 

Min 
W 

Av 
W 

Max
W 

AC 
OC 

Heat
er 

OC 

M
in

T
 

1.00 0.97 0.86 0.04 -0.15 -0.38 -0.21 -0.64 -0.75 0.89 -0.84 

A
vT

 

0.97 1.00 0.94 -0.06 -0.24 -0.39 -0.17 -0.61 -0.71 0.87 -0.83 

M
ax

T
 

0.86 0.94 1.00 -0.26 -0.35 -0.38 -0.10 -0.49 -0.56 0.77 -0.75 

M
in

R
H

 

0.04 -0.06 -0.26 1.00 0.82 0.34 -0.31 -0.26 -0.22 0.12 -0.02 

A
vR

H
 

-0.15 -0.24 -0.35 0.82 1.00 0.70 -0.22 -0.03 0.02 -0.05 0.09 

M
ax

R
H

 

-0.38 -0.39 -0.38 0.34 0.70 1.00 -0.01 0.26 0.32 -0.32 0.32 

M
in

W
 

-0.21 -0.17 -0.10 -0.31 -0.22 -0.01 1.00 0.65 0.43 -0.23 0.26 

A
vW

 

-0.64 -0.61 -0.49 -0.26 -0.03 0.26 0.65 1.00 0.91 -0.60 0.56 

M
ax W

 

-0.75 -0.71 -0.56 -0.22 0.02 0.32 0.43 0.91 1.00 -0.68 0.62 

A
C

 O
C

 

0.89 0.87 0.77 0.12 -0.05 -0.32 -0.23 -0.60 -0.68 1.00 -0.86 

H
ea

te
r 

O
C

 

-0.84 -0.83 -0.75 -0.02 0.09 0.32 0.26 0.56 0.62 -0.86 1.00 
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Figure 22 Density plots 
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Observing tables 2 and 4, it can be noted that the weather variables and the 

number of AC or heater complaints have ranges that are very different from one 

another. As such all the variables and AC or heater target were normalized into the 

range of [0 ,1].  

At this stage, the design set is prepared to be used in the MLP models, where the 

target time series (AC or heater) is smooth, and both input weather features, and the 

target times are transformed and normalized as applicable. The design set for each of 

the AC and heater models is then divided into training and validation. The first 70% of 

the entire data set (109 instances) will constitute the training set, and the following 20% 

of the entire dataset (31 instances) will constitute the validation set. These two for each 

model add up to 90% of the observations of the entire data forming the first 140 

instances which is the length of the design dataset. It should be noted the data the 

training set actually has 104 observations not 109 for the AC model because five points 

were used for initialization in the smoothing process of the AC time series of the design 

set carried out in the previous sections. Same applies for the heater model where the 

training data set is formed of 106 instances not 109 where three were used for 

initialization in the smoothing process of the heater time series of the design set carried 

out in the previous sections. Figures 23 and 24 present a visualization of the design set 

of the AC and heater time series respectively split into training and validation sets. 
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6. MLP model training, validation, and testing 

Developing both the AC and heater MLP ANN was conducted in Python using 

the Keras library. During the development of each, several potential models were 

evaluated and failed certain evaluations levels (training, validation, stability or testing), 

Figure 24 Heater time series split into training and validation 

Figure 23 AC time series split into training and validation 
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so another model had to be tested by changing the different hyperparameters and 

characteristics as systematically as possible. A suggested model for each is discussed in 

this section. 

For the AC model, a lag of three weeks was selected meaning that every time the 

model is to make a prediction, it will use the input (the nine weather features, season 

feature, and the corresponding number of occupant complaints) of each of the previous 

three weeks. As such, the total number of input features becomes 33; 11 features for 

each of the previous 3 weeks. And the target is the number of AC occupant complaints 

for the upcoming (fourth) week. So, the first three instances will be used for -

initialization, and the total number of instances in the train set becomes 101 instead of 

104. The same applies for the heater model, where a lag of two weeks was selected. So, 

the model will use the features of the past two weeks to predict the target in the third 

week. As such, the total number of input features becomes 22; 11 for each of the 

previous two weeks. Also, the first two instances will be used for initialization, so the 

number of instances in the train set becomes 104 instead of 106. 

The network architecture of the AC MLP model consists of one input layer, two 

hidden layers and an output layer. The number of neurons in the input layer is 

equivalent of the number of input features which is 33, whereas in each hidden layer 

150 neurons were used, and one neuron was used in the output layer since this is a 

regression problem and only one target (number of AC complaints) is being predicted. 

As for the heater MLP model, the network architecture consists also of one input layer, 

two hidden layers, and an output layer as well. The number of neurons in the input layer 

is equivalent to the number of input features which is 22, whereas 100 neurons were 

used in each hidden layer, and one neurons was used in the output layer since this is a 
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regression problem as well and only on target is being predicted which is the number of 

heater complaints.  

For both the AC and heater MLP models, the activation function ReLu was used 

in the hidden layers in all model updates because it showed good performance and 

several studies from the literature proved that it outperforms other activation functions. 

Also, a linear activation function was always selected in the output layer since this is a 

regression problem and one target being predicted (the number of complaints). 

The Adam optimizer was selected as the training algorithm for both AC and 

heater MLP models because it showed good performance and several studies from the 

literature proved that it outperforms other traditional optimization algorithm. The 

default values were used for the parameters Ꞵ1 (0.9), for Ꞵ2 (0.999), and for 𝜖 (10 ). A 

learning rate η of 0.0025 was selected for both models.  Moreover, A training batch size 

of 34 was selected for the AC MLP model and 26 for the heater MLP model. A number 

of training epoch of 1000 was selected for both models.  

The performance function MSE was selected for both and will be used to 

evaluate the model performance. 

Both Ridge (ℓ2)  and Lasso (ℓ1) regularization methods were used in both AC 

and heater MLP models to ensure that the model is not prone to overfitting. This 

eliminated the need to remove any input features of the weather data, thus all nine were 

used in each model. The selected Ridge and Lasso hyperparameters were respectively 

0.0003 and 0.0001 for the AC MLP model, and both had a value of 0.00035 for the 

heater MLP model. 
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What was being updated between one model iteration and another included: the 

number of lags and the corresponding number of input features, the number of hidden 

layers, number of neurons in the input layer and each hidden layer, the learning rate of 

Adam optimizer, training batch size, number of training epoch, and regularization 

method and the corresponding hyperparameter, while the rest remained the same. 

Table 6 below summarizes the selected hyperparameters and characteristics for 

both the AC and heater MLP models. 

 

Table 6 AC and heater MLP models hyperparameters and characteristics 

 AC MLP model Heater MLP model 

Number of lags 3 2 

Network architecture:   

Number of hidden layers 2 2 

Number of neurons in input layer 33 22 

Number of neurons in each hidden layer 150 100 

Number of neurons in output layer 1 1 

Network activation function:   

Activation function in hidden layer (s) ReLu ReLu 

Activation function in output layer Linear Linear 

Optimization algorithm: Adam Adam 

Momentum decay hyperparameter: Ꞵ1 0.9 0.9 

Scaling decay hyperparameter: Ꞵ2 0.999 0.999 

Smoothing term: 𝜖 10^-9 10^-9 

Learning rate: η 0.0025 0.0025 

Training batch size 34 26 

Number of training epoch 1000 1000 

Performance function MSE MSE 

Regularization:   

Ridge regularization ℓ1 0.0003 0.00035 

Lasso regularization ℓ2 0.0001 0.00035 
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Using the selected hyperparameters and characteristics, each of the AC and 

heater MLP models was fit and evaluated.  

The AC MLP model had a RMSE on the training data set of 0.801 and a model 

for (R2) of 0.971. The error seems to be low as compared to the range of AC complaints 

and seems to be an acceptable error, and the model is able to explain about 97.1% of the 

training dataset. Figure 25 shows the actual and predicted values for the number of AC 

complaints for the training set. It can be noted that the maximum error was obtained at 

the peak of year one 

 

 

 

 

 

 

 

The AC MLP model was further tested on the validation set using walk forward 

validation to obtain an RMSE of 0.836. The validation RMSE of 0.836 is very close to 

the training RMSE of 0.801, so it seems that the model is not overfitting. It is also 

reasonable that the validation error is slightly higher than the training error because the 

model is expected to perform worse on data that was not used to fit it. Figure 26 shows 

the actual and predicted number of the AC complaints for the validation set. 

Figure 25 AC MLP model actual and predicted values in train set 
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In order to ensure that the AC MLP model was stable, it was fit 30 times using 

the same hyperparameters and characteristics, but the only thing changing is the initial 

model weights due to the stochastic nature of the optimization algorithm. An average 

train RMSE of 0.826 with standard deviation of 0.069 was obtained along with an 

average validation RMSE of 0.88 and a standard deviation of 0.08. The model is stable 

in the sense that average train and validation errors are close to each other with the 

validation one being a bit higher, and each had a low standard deviation. As a result, the 

selected model hyperparameters and characteristics seem adequate.  

Since the AC MLP model is performing well on the training and validation sets, 

and it seems stable, it was further tested on the holdout test set. The features of the 

holdout test set should first be prepared in a similar way to the design set. As such, the 

AC time series was first smoothened using a Gaussian weighted MA and a window size 

of six. The first five points for initialization were used from the end of the validation set. 

The AvW and MaxW were transformed using a log transformation, and the target AC 

time series was transformed using a log(x+1) transformation. All the input features and 

Figure 26 AC MLP model actual and predicted values in validation set 
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target were normalized into the range [0,1]. Upon testing the developed model on the 

holdout set, a test RMSE of 0.878 was obtained which is considered low, close to the 

train and validation RMSEs, and slightly higher than the train RMSE ensuring that the 

model is not overfitting. Figure 27 shows the actual and predicted values for the 

occupant complaints in the test set. 

 

 

 

 

 

 

 

 

The heater MLP model had a RMSE on the training data set of 0.246 and a 

model for (R2) of 0.965. The error seems to be low as compared to the range of heater 

complaints and seems to be an acceptable error, and the model is able to explain about 

96.5% of the training dataset. Figure 28 shows the actual and predicted values for the 

number of heater complaints for the training set. The highest error was observed at the 

peak at the end of year one. 

Figure 27 AC MLP model actual and predicted values in test set 



 

76 
 

 

 

 

 

 

 

 

The heater MLP model was further tested on the validation set using walk 

forward validation to obtain an RMSE of 0.352. The validation RMSE of 0.352 is very 

close to the training RMSE of 0.246, so it seems that the model is not overfitting. Figure 

29 shows the actual and predicted values for the number of heater complaints for the 

validation set. The maximum error was for the first instance and is considered a bit 

high. 

 

 

 

 

 

 

 

Figure 28 Heater MLP model actual and predicted values in train set 

Figure 29 Heater MLP model actual and predicted values in validation set 
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In order to ensure that the heater MLP model was stable, it was fit 30 times 

using the same hyperparameters and characteristics, but the only thing changing is the 

initial model weights due to the stochastic nature of the optimization algorithm. An 

average train RMSE of 0.326 with standard deviation of 0.032 was obtained along with 

an average validation RMSE of 0.395 and a standard deviation of 0.037. The model is 

stable in the sense that average train and validation errors are close to each other with 

the validation one being a bit higher, and each had a low standard deviation. As a result, 

the selected model hyperparameters and characteristics seem adequate.  

Since the heater MLP model is performing well on the training and validation 

sets, and it seems stable, it was further tested on the holdout test set. The features of the 

holdout test set should first be prepared in a similar way to the design set. As such, the 

heater time series was first smoothened using a Gaussian weighted MA and a window 

size of 4. The first 3 points for initialization were used from the end of the validation 

set. The AvW and MaxW were transformed using a log transformation, and the target 

heater time series was transformed using a log(x+1) transformation. All the input 

features and target were normalized into the range [0,1]. Upon testing the developed 

model on the holdout set, a test RMSE of 0.372 was obtained which is considered low, 

close to the train and validation RMSEs, and slightly higher than the train RMSE 

ensuring that the model is not overfitting. Figure 30 shows the actual and predicted 

values for the occupant complaints in the test set. 
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B. Benchmark Models Development  

The developed AC and heater MLP models were benchmarked against the state of 

the art ARIMA model. This section shows how these ARIMA models were developed. 

 

1. Time Series Preparation 

For both the AC and the heater ARIMA models, the same steps and results 

provided in the previous section of developing the MLP models apply for: data 

collection and preprocessing, text cleaning and mining, data split, and time series 

smoothing.  

 

2. ARIMA Input Data Preparation 

Each of the AC and heater ARIMA models will have two types of input as with 

the MLP models including the corresponding smooth AC or heater times series, the 

season, and the additional potential weather features. 

Figure 30 Heater MLP model actual and predicted values in test set
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The weather features that will be used to develop the ARIMA models are selected 

based on the scatter matrix plot and Spearman correlation provided earlier in figure 21 

and table 5 for the design set. MinT, AvT, and MaxT are highly correlated thus the 

MinT and MaxT will be removed. Also, the MinRH and AvRH are highly correlated 

and thus the MinRH will be removed. The MaxW and AvW are also highly correlated, 

so the AvW will be removed. These are removed for both the AC and heater ARIMA 

models. So, the remaining input weather features are: AvT, AvRH, MaxRH, MinW, and 

MaxW. Also, similar to the MLP model a binary variable “season” was added to the 

dataset. The target AC and heater time series will be transformed using the log(x+1) so 

that the distribution of each is closer to a bell-shaped one. The ADF test was conducted 

for both time series where the AC time series turned out to be stationary at the 

significance level of 1% where an ADF statistic of -4.95 was obtained which is smaller 

than the critical value of -3.49. As for the heater time series, it turned out to be non-

stationary at the 1% significance level where the corresponding ADF statistic turned out 

to be -2.50 which is larger than the critical ADF value of -3.48 at the 1% significance 

level. As such, transforming the heater time series into a stationery one will be taken 

care of in the upcoming section when selecting the parameters of the ARIMA model. 

Moreover, all the input features and the target for each of the AC and heater models 

were normalized into the range of the [0,1] because these had a widely varying range 

compared to one another.  

 

3. Splitting Design Data into Training and Validation 

Splitting the design data into training and validation will follow the same 

procedure as with the MLP model. So, the training set of the AC ARIMA model will 
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include 106 instances and that of the heater ARIMA model will include 104 instances. 

The data split for the target time series was visualized in figures 23 and 24. 

 

4. ARIMA (p, d, q) (P, D, Q) s Modeling  

The ACF and PACF plots for the AC time series shown in figure 31 were used to 

identify the initial parameters for the AC ARIMA model. An AR order “p” of 2 was 

selected, and a MA order “q” of 4 was selected. As stated earlier, the AC time series is 

stationary, so an integration order “d” of 0 was selected. From the ACF plot, there is an 

obvious seasonality, and it seems seasonal integration order “D” of 1 is required with a 

seasonal period “s” of 52 since the weekly data varies yearly. The ACF and PACF plots 

do not show any correlation at any season for example at weeks 52 and 104. So, a 

seasonal AR order “P” of 0 and a seasonal MA order “Q” of 0 were selected. Based on 

that, an ARIMA (2, 0, 4) (0, 1, 0) 52 was selected as the initial model, including the 

previously selected exogenous variables : AvT, AvRH, MaxRH, MinW, MaxW and the 

season, to start the next step of coefficient estimation. During this step, the model fit R2, 

the RMSE, and the AIC value were recorded in every iteration during which 

insignificant variables are dropped and the model is fit again. The results are 

summarized in table 7. Model 11 was selected because it has the lowest AIC value and 

the model fit R2 and the model RMSE both represent good values, and all the AR and 

MA coefficients ended up being significant except for one AR coefficient, and none of 

the exogenous variables was significant. 
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Table 7 ARIMA AC model iterations for estimation step 

Model 
number 

(p, d, q) (P, D, Q, s) 
R2 
train 

RMSE 
train 

AIC Exogeneous variables 

1 (2, 0, 4) (0, 1, 0, 52) 0.952 0.942 -116.254 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

2 (2, 0, 3) (0, 1, 0, 52) 0.922 0.957 -113.273 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

3 (2, 0, 2) (0, 1, 0, 52) 0.918 0.984 -114.293 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

4 (2, 0, 1) (0, 1, 0, 52) 0.906 1.058 -111.712 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

5 (2, 0, 0) (0, 1, 0, 52) 0.906 1.054 -112.795 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

6 (2, 0, 0) (0, 1, 0, 52) 0.906 1.056 -114.77 
AvT, AvRH, MaxRH, 
MaxW, season 

7 (2, 0, 0) (0, 1, 0, 52) 0.907 1.048 -116.694 
AvT, MaxRH, MaxW, 
season 

8 (2, 0, 0) (0, 1, 0, 52) 0.908 1.048 -118.646 AvT, MaxW, season 

9 (2, 0, 0) (0, 1, 0, 52) 0.908 1.043 -120.376 AvT, season 

10 (2, 0, 0) (0, 1, 0, 52) 0.913 1.015 -120.44 AvT 

11 (2, 0, 0) (0, 1, 0, 52) 0.913 1.015 -122.442 None 

Figure 31 AC time series ACF and PACF plots 
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12 (1, 0, 0) (0, 1, 0, 52) 0.893 1.126 -119.605 None 

 

Figure 32 shows the actual and predicted values for the number of AC complaints 

in the train set using the AC ARIMA model. The maximum error is shown at the peak. 

It should be noted that the model used out of the train set 52 points to account for the 

seasonal differencing “D” of 1.  

 

 

 

 

 

 

 

 

The selected model was then tested on the validation set using the walk forward 

validation method. An RMSE of 0.998 was obtained which is slightly lower than the 

RMSE on the train set, so the model seems to be slightly overfitting. Further attempts to 

improve the selected to eliminate the overfitting issue have failed. Figure 33 shows the 

actual and predicted values for the number of AC complaints in the validation set using 

the selected AC ARIMA model. 

 

Figure 32 AC ARIMA model actual and predicted values in train set 
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Moving to step 3 of diagnosis, the residual assumptions upon fitting the model 

were tested. Figure 34 represents the residual plot, histogram, normal Q-Q plot, and the 

ACF correlogram of the residuals.  

 

 

 

 

 

 

 

 

 

Figure 33 AC ARIMA model actual and predicted values in validation set 

Figure 34 AC ARIMA model residual diagnostics 
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It can be inferred that the residuals are not correlated, seem to have a mean very close to 

zero, a constant variance and seem to be normally distributed but slightly skewed.  

 Since the residual assumptions are verified, the selected AC model was tested on 

the holdout test set. A RMSE of 1.117 was obtained which is very close to the RMSE 

on the train set ensuring that the model is unlikely to overfit. Figure 35 shows the actual 

and predicted values for the number of AC complaints in the holdout test set using the 

selected AC ARIMA model. 

 

 

 

 

 

 

 

 

Developing the heater ARIMA model followed a similar process to that of the 

AC ARIMA model. The ACF and PACF plots of the heater time series are shown in 

figure 36. These were used to identify the initial ARIMA model. An AR order “p” of 2 

was selected, and a MA order “q” of 4 as selected. As stated earlier, the heater time 

series is not stationary, so an integration order “d” of 1 was selected. From the ACF 

plot, there is an obvious seasonality, and it seems that a seasonal integration order “D” 

Figure 35 AC ARIMA model actual and predicted values in test set 
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of 1 is required with a seasonal period “s” of 52 since the weekly data varies yearly. The 

ACF and PACF plots do not show any correlation at any season for example week 52 

and 104. So, a seasonal AR order “P” of 0 and a seasonal MA order “Q” of 0 were 

selected. Based on that, an ARIMA (2, 1, 4) (0, 1, 0) 52 was selected as the initial 

model, including the previously selected exogenous variables : AvT, AvRH, MaxRH, 

MinW, MaxW and the season, to start the next step of coefficient estimation. During 

this step, the model fit R2, the RMSE, the AIC value were recorded in every iteration 

during which insignificant variables are dropped and the model is fit again. The results 

are summarized in table 8. Model 7 is selected because it has the lowest AIC value and 

the model fit R2 and the model RMSE both represent good values. 

 

 

Figure 36 Heater time series ACF and PACF plots 
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Table 8 ARIMA heater model iterations for estimation step 

Model 
number 

(p, d, q) (P, D, Q, s) 
R2 
train 

RMSE 
train 

AIC Exogeneous variables 

1 (2, 1, 4) (0, 1, 0, 52) 0.643 0.606 -116.094 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

2 (2, 1, 3) (0, 1, 0, 52) 0.663 0.59 -115.852 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

3 (2, 1, 2) (0, 1, 0, 52) 0.671 0.582 -116.123 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

4 (2, 1, 1) (0, 1, 0, 52) 0.661 0.591 -116.599 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

5 (2, 0, 1) (0, 1, 0, 52) 0.854 0.388 -117.582 
AvT, AvRH, MaxRH, 
MinW, MaxW, season 

6 (2, 0, 1) (0, 1, 0, 52) 0.853 0.388 -119.558 
AvT, AvRH, MinW, 
MaxW, season 

7 (2, 0, 1) (0, 1, 0, 52) 0.852 0.391 -121.264 
AvT, AvRH, MaxW, 
season 

8 (2, 0, 0) (0, 1, 0, 52) 0.847 0.398 -119.13 
AvT, AvRH, MaxW, 
season 

 

Figure 37 shows the actual and predicted values for the number of heater 

complaints in the train set using the heater ARIMA model. The maximum error is 

shown at the peak at the beginning of the year.  

 

 

 

 

 

 

Figure 37 Heater ARIMA model actual and predicted values in train set 
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It should be noted that the model used out of the train set 52 points to account for the 

seasonal differencing “D” of 1. 

 The selected model was then tested on the validation set using the walk forward 

validation method. An RMSE of 0.384 was obtained which is very close to the RMSE 

on the train set, so the model does not seem to overfit. Figure 38 shows the actual and 

predicted values for the number of heater complaints in the validation set using the 

selected heater ARIMA model. 

 

 

 

 

 

 

Moving to step 3 of diagnosis, the residual assumptions upon fitting the model 

were tested. Figure 39 presents the residual plot, histogram, normal Q-Q plot, and the 

ACF correlogram. It can be inferred that the residuals are not correlated, seem to have a 

mean very close to zero, a constant variance and seem to be normally distributed. 

 

 

Figure 38 Heater ARIMA model actual and predicted values in validation set 
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Since the residual assumptions are verified, the selected heater model was tested 

on the test set. A RMSE of 0.265 was obtained which is smaller than the RMSE on the 

train set (0.391) meaning that the model is likely to overfit. Further attempts to improve 

the model have failed. Figure 40 shows the actual and predicted values of the number of 

heater complaints in the holdout test set using the selected heater ARIMA model. 

 

 

 

 

 

Figure 39 Heater ARIMA model diagnostics 

Figure 40 Heater ARIMA model actual and predicted values in test set 
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C. MLP and ARIMA Models Comparison and Discussion 

Table 9 summarizes the obtained model fit R2, RMSEs on the train, validation, 

and test sets of both MLP and ARIMA AC and heater models.  

 

Table 9 MLP and ARIMA models comparison 

 

Train R2 Train 
RMSE 

Validation 
RMSE 

Test 
RMSE 

Exogenous variables 

AC  
MLP 

0.971 0.801 0.836 0.878 

MinT, AvT, MaxT, 
MinRH, AvRH, 
MaxRH, MinW, AvW, 
MaxW, season 

AC  
ARIMA 

0.913 1.015 0.998 1.117 None 

Heater 
MLP 

0.965 0.246 0.352 0.372 

MinT, AvT, MaxT, 
MinRH, AvRH, 
MaxRH, MinW, AvW, 
MaxW, season 

Heater 
ARIMA 

0.852 0.391 0.384 0.265 
AvT, AvRH, MaxW, 
season 

 

The R2 of the AC MLP (0.971) model is slightly higher than that of the AC 

ARIMA model (0.913). However, such slight increase at such an already high value (> 

0.9) is not easy to obtain. The RMSEs of the AC MLP model on the test set (0.878) is 

lower than that of the AC ARIMA model (1.117) meaning that the MLP model has a 

higher ability to generalize to new data it had not encountered before.  

As for the heater models, the R2 of the heater MLP (0.965) model is higher than 

that of the heater ARIMA model (0.852) which shows that the MLP model was able to 
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explain the training data set better. The RMSEs of the heater MLP model on the test set 

(0.372) is higher than that of the heater ARIMA model (0.265) , but this does not mean 

that that the ARIMA model has a higher ability to generalize to new data because if 

compared to the train RMSE (0.391), the ARIMA model is highly overfitting, whereas 

the MLP model is not.  

It should be noted that the heater models RMSE is always smaller than that of 

the AC models, this is because the range of the heater complaints is much lower than 

that of the AC complaints, and thus a lower error is expected lowering the threshold of 

an acceptable error. Moreover, it is notable that the MLP models require all 10 

exogenous variables where the ARIMA models require 4 or none. Having a lower 

number of variables does not give any superiority for the ARIMA models because the 

weather data is a very clean dataset and creating the weather time series is a very 

smooth task that is not time-consuming.  

Based on the above, the MLP models for both the AC and heater showed good 

performance and provided some improvements over the traditional corresponding 

ARIMA model and are valid to forecast the number of thermal complaints for the 

upcoming week. 

D. Work Significance: Resource Staffing Plan 

The developed AC and heater MLP models were employed in a staffing problem 

for thermal complaints to show the significance of this research work. Two scenarios 

were developed and compared. The first represents the base case that the FM unit would 

have been adopting corresponding to the discussed case study. Appendix A provides 

details on how this hypothetical base case was developed. The second one represents the 
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updated case upon virtually employing the developed MLP models of this research 

work. 

The scenarios were based on a span of four months, equivalent to 16 weeks that 

represent the test set that was used earlier to obtain the generalization error of each of 

the MLP models. These represent the last four months of year three: September, 

October, November, and December.  The problem addresses staffing for thermal 

complaints, which is a combination of both AC and heater related complaints. So, each 

MLP model was used to predict the number of the corresponding complaints per week, 

and these were summed up for each week to obtain the predicted number of weekly 

thermal complaints. The variation of the predicted thermal complaints along the 16-

week span is shown in figure 41. It should be noted that, as per the MLP models 

development for one-step ahead forecasting, the number of complaints was predicted 

one week at a time. Common thermal problems at the apartment level based on the 

occupant complaints included but were not limited to: dirty AC filters, refrigerant 

leakage or shortage, AC water drainage, the need for radiator bleeding, radiator leakage, 

electric circuit issues, thermostat related issues, and others. 
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As for the allocation of maintenance technicians to handle the predicted thermal 

complaints, the maintenance department of the FM unit had a constant number of 21 

hired technicians that are present throughout each month.  Considering a 24- hour and 

seven days a week service, each technician is required to work five shifts per week, with 

each shift being eight hours long. This sums up to a total of three shifts per day for 

seven days a week, with each shift having five technicians. As mentioned earlier, this 

department is responsible for handling three main tasks: Monitoring and handling BMS 

related issues, conducting routine check-ups for regular maintenance activities, and 

handling occupant complaints. It is assumed that the number of man hours of each 

technician is split equally between these three domains, 33.33% for each. Moreover, 

thermal complaints often constitute 13% of the overall complaints received and handled 

by the maintenance department as inferred from historical data. So, it is assumed that 

out of the total number of man hours of each technician allocated to handle occupant 

complaints, 13% will be allocated for thermal complaints in particular. As such, the 

number of man hours each technician is responsible to allocate for handling thermal 

complaints becomes: 40-man hours / week * 33.33% * 13% = 1.733-man hours per 

week. So, the total man hours available per week becomes 1.733* 21 = 36.396-man 

hours per week. This is shown by the constant straight line in figure 42. It represents the 

number of man hours that would have been allocated by the maintenance department to 

handle the weekly thermal complaints had they not been using the developed tool of this 

research work.  

As for the MLP- based case, the predicted number of thermal complaints was 

translated to equivalent man hours after obtaining the estimated time taken to address 

each thermal complaint. According an interviewed expert in staffing for HVAC 
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maintenance activities, most frequently, it takes about four hours to handle a common 

thermal complaint and the best-case scenario, if it is a very basic problem, it would take 

about an hour. The worst case scenario is when  a complaint takes a longer time, around 

12 hours, to be handled for example if the technician has to assess the issue, purchase a 

certain part of the equipment that needs to be replaced, and come back and actually 

replace it. As such, the time to handle a thermal complaint can be modeled by a 

triangular distribution with a minimum of one hour, a mode of four hours and a 

maximum of 12 hours. As such, the estimated time to handle each complaint was 

sampled from the corresponding triangular distribution. The resource histogram in 

figure 42 shows the number of man hours required to handle the predicted weekly 

thermal complaints.  
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Overall, the developed man hour resource histogram shows a total of 582 

available man hours throughout the 16-week period and a required 472-man hours upon 

predicting the number of weekly thermal complaints. This shows that about 19% of the 

total available man hours are overstaffed. 

Considering the first four weeks, it can be inferred that the maintenance 

department would have been understaffing with a total of 86.57-man hour-shortage if 

they were to allocate 36.396-man hours per week. These understaffing man hours 

represent 37.29% out of the total required hours over the span of these four weeks. As 

such, the thermal complaints will not be handled properly. The occupants will not be 

satisfied to have their complaints being resolved few weeks later maybe for the required 

technicians to be available, or maybe not resolved in the first place and they are likely to 

be issuing even more complaints. Moreover, such delay to address thermal complaints 

might cause the problem to be amplified and thus will require more recourses to handle. 

In addition to that, some thermal issues at the level of the apartments might be a sign of 

an even more major problem related to the central heating or cooling systems which 

would require a long time to be handled and a large amount of resources. This 

understaffing situation could have been handled by two scenarios: either by working 

overtime or by postponing handling the complaints until technicians are available. For 

the first scenario, it is assumed that, on average, a maintenance technician’s wage in 

Lebanon is 10$/hour and increases to 15$/hour during overtime hours. So, if the 

additional staffing hours required (86.57-man hours) were to be covered by working 

overtime, this would lead to an incurred additional cost of 433$ over the span of the first 

four weeks. This cost is equivalent to 15.7% of the total cost of the required man hours 

during these four weeks due to working overtime. Although the complaints are resolved 
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and the occupants are relatively satisfied, this has incurred an additional cost for the 

maintenance department and must have hindered the technicians’ productivity. While in 

the second scenario, it would have taken until mid of week 11 to handle all the thermal 

complaints issued during the first four weeks considering the available man hours. This 

reflects a delay of 1 to 10.5 weeks to handle these complaints depending on when each 

was received and when exactly it was handled which in turns depends on the available 

man hours and the newly received complaints in each week. 

As for the remaining 12 weeks, the maintenance department would have been 

overstaffing with a total of 197-man hours. As such, this also represents a loss of 

resources that could have been allocated to other tasks in the maintenance department. 

These total lost hours due to overstaffing represent 45.14% of the available man hours 

over the 12-week span. This percentage is expected to be slightly lower in reality 

because the maintenance department would most likely be allocating, on the spot, some 

of these man hours to other tasks in the department that are understaffed, or to other 

thermal complaints that were deferred from previous weeks that were not resolved 

earlier due to understaffing. Moreover, idle 197-man hours could be translated to an 

incurred cost of 1,971$ without getting any thermal complaint handled in return. This is 

equivalent to 45% of the cost of the available man hours during these 12 weeks.  

This example shows that staffing based on a static number of technicians per 

month would incur additional unnecessary costs, promote occupants’ dissatisfaction 

along with a deteriorated building performance. As such, a good practice would be to 

allocate the number of technicians and the corresponding man hours based on the 

predicted number of thermal complaints for the upcoming week to be able to handle 

such complaints. This ensures mitigating the issues of overstaffing and understaffing 
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along with their accompanied drawbacks and ensures occupant satisfaction and proper 

performance of the heating and cooling related systems at the level of the apartment and 

even at the level of the building.  

Given that the developed example encountered several assumptions and 

uncertainties, other possible scenarios were assessed ana analyzed to ensure that the 

significance of this research work still holds. This analysis is conducted considering that 

some factors remain constant in each scenario because their corresponding uncertainties 

were mitigated otherwise. These factors include: the number of predicted weekly 

thermal complaints because they were obtained upon employing the developed MLP 

models, the estimated time required to handle each complaint because it was sampled 

from a triangular distribution based on input provided by the interviewed expert, and 

thus the corresponding number of predicted man hours required to handle the weekly 

thermal complaints. However, the uncertainty in the developed problem comes from 

lack of staffing related data corresponding to the developed case study including: the 

constant number of technicians hired per month in the maintenance department and the 

actual percentage of the number of man hours of each technician allocated to thermal 

complaints in particular. These two factors reflect on the number of planned man hours 

available every week to handle thermal complaint. As such, nine scenarios were 

developed, compared and analyzed to assess how the number of overstaffed man hours 

and the number of understaffed man hours vary over the span of 16 weeks to study the 

impact of the two mentioned factors. For the number of technicians per month, three 

options were considered: 16, 21, and 25, and for the percentage of thermal complaints 

three options were considered as well: 6.95%, 13%, and 23.9%. The reasons for 
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selecting these options in particular is justified in Appendix A considering the humble 

availability of staffing related data. 

Figure 43 shows for each percentage of thermal complaints, the variation of the 

total number of understaffed man hours as a function of variation of the number of 

technicians hired per month over the span of 16 weeks, and figure 44 shows a similar 

graph but for the variation of the number of total overstaffed man hours. 
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Based on the analysis of the two developed graphs the following can be inferred:  

 For a certain number of available technicians per month (16, 21, or 25), the more 

thermal complaints received (6.23% to 13% to 23.9%), the more man hours of 

each technician will be allocated to handle thermal complaints, and thus this will 

decrease the total number of the understaffed man hours span, but will increase 

the total number of the overstaffed man hours beyond the available limit over 

the 16-week span. 

 For a certain percentage of thermal complaints (6.23%, or 13%, or 23.9%), if 

more technicians are hired per month (16 to 21 to 25), then a larger number of 

thermal complaints can be handled, and thus there would be a decrease in the 

total number of understaffed man hours, but an increase in the total number of 

overstaffed man hours. 
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 For an increase in the number of technicians hired coupled with an increase in 

the percentage of received thermal complaints and thus the number of man hours  

allocated to thermal complaints (16 and 6.95% to 21 and 13% to 25 and 23.9%) , 

there is a decrease in the total number of understaffed man hours form one case 

to the following one, and an increase in the number of overstaffed man hours as 

expected. 

 It should also be noted that, the analyzed scenarios are clear evidence on the 

need to allocate the number of man hours to handle thermal complaints 

dynamically. Using a static number of workers will not balance between the 

need of additional man hours during weeks where the number of thermal 

complaints peaks, and between the extra available man hours during weeks 

where there is a minimal number of thermal complaints. The gap between the 

two cases, in terms of thermal complaints, is high, and thus this show the 

importance of planning for a better estimate of the number of man hours to 

handle thermal complaints based on the precited number of thermal complaints 

for the upcoming week. 

The above analysis shows similar expected results from one case to another 

while varying the number of technicians hired per month and the percentage of thermal 

complaints received out of all the received complaints. This also shows that the concept 

of the problem holds in each analyzed scenario that tackles certain assumptions and 

uncertainties. Thus, the developed base case is feasible to show the significance of this 

research work to staff in accordance with the predicted number of thermal complaints 

for the upcoming week. 
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E. The Need for Proper Data Management 

The suggested data driven methodology and the significance of this research 

work in terms of understanding building occupant complaints, forecasting thermal 

complaints, and staffing accordingly are but a solid proof on the importance of the data 

itself, thus stressing on the need to properly collect, store, and sustain the occupant 

complaint data. More specifically, the main driver of the proposed methodology was the 

textual description of the complaints issued by occupants and recorded by operators in 

the call center along with the corresponding date. However, the unstructured format of 

the dataset and several encountered data-related issues, highlighted throughout the 

sections of chapter 4, are at the root of limiting proper, accurate, and further use of the 

occupant complaint data. Such issues narrow down to: 

 Unavailable records for several required data entries (for example not recording 

the name of the technicians that were responsible to handle the complaint) 

 Inaccurate records of some data entries (for example using the term AC to 

describe a heater related complaint) 

 Inconsistent records of some data entries (for example writing the name of the 

same technician differently between different complains, and using for example 

more than one terms to describe an AC- related complaint: AC, air conditioner, 

and HVAC) 

Looking at the bigger picture while considering the obtained maintenance logs, 

no further use was possible for both the BMS notes and the routine maintenance 

checkups due to several unavailable entries and having the same recording being copied 

from one Excel cell to another. Had such data been available, it could have further 
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assisted facility managers in making strategic decisions that eventually bring back 

benefits in term of ensuring occupants satisfaction, enhancing the building’s 

performance, and mitigating unnecessary costs. The facility management literature is 

rich with such examples.  

Facility managers are recommended to sustain proper data management 

strategies given the importance of data driven decision making, and thus the need for 

reliable data. Such strategies ought to define a road map on how to collect, store, 

maintain, and share the obtained data. The selected data management strategy is case-

specific depending on the user and on the corresponding business objectives and 

strategic goals. Insights about such modern systems, and those that specifically tackle 

maintenance management coupled with modern IT solutions, could be further assessed 

to select the optimum system for better management of the maintenance related data 

used in this research work. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

Occupant complaints in buildings reflect an underperforming building and 

unsatisfied occupants. The facility management’s role in buildings is to ensure those 

complaints are addressed and resolved to ensure that the occupants are satisfied and that 

the building is performing properly. More specifically, they aim to plan the for required 

staffing resources for this task of handling occupant complaints. As such, this work has 

presented a sound decision making tool that facility managers can adopt when planning 

these staffing resources to handle thermal complaints in particular. By forecasting the 

number of these complaints for the upcoming week, facility managers can plan their 

staffing resources accordingly.  

The proposed methodology of this thesis was divided into three main parts. The 

first part included a theoretical selection of the time series forecasting model to predict 

the number of thermal complaints. The second part presented a ML- multistep generic 

framework to analyze building occupant complaints and forecast the number of thermal 

complaints. It adopted text mining techniques to transform highly unstructured occupant 

complaints into a structured format that could be used in further analysis. It also adopted 

the development of neural networks, MLPs in particular, for the forecasting purposes 

that undergo a systematic evaluation process before being selected. The third part of the 

methodology then suggested a traditional statistical model for time series forecasting 

that was used as a benchmark for the developed ML- based forecasting. 

The proposed methodology was tested on a selected case study of highly 

unstructured real-world building occupant complaints data. Text mining results showed 
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that thermal complaints are in fact among the most common types and thus require 

attention form facility managers. Two ML-models were developed: an AC MLP model 

to forecast the number of AC-related complaints in the upcoming week and a heater 

MLP model to forecast the number of heater-related complaints in the upcoming week. 

These two models were benchmarked against the state-of-the-art traditional statistical 

model ARIMA, where one was also built to forecast AC complaints and another to 

forecast heater complaints. Comparing the model errors showed that the MLP models 

outperform the ARIMA models. These models were tested on a test set composed of 16 

weeks. The AC MLP model had a lower RMSE (0.878) than the AC ARIMA model 

(1.117) and was not overfitting. As for the heater MLP model it had a RMSE (0.265) 

slightly lower than that of the heater MLP model (0.372), however the heater MLP 

model was highly overfitting. Thus, the MLP models were selected for the forecasting 

purpose. Also, it is evident how the selected forecasting models could assist facility 

managers to plan accordingly for the staffing resources required to handle these 

complaints. 

The success of obtaining a well performing ML-based forecasting model for the 

selected case study provides evidence on the applicability of the developed ML- based 

generic framework. The AC and heater MLP models are specific to the selected case 

study of forecasting thermal complaints for the upcoming week for the 16-building 

residential complex with its corresponding weather conditions and properties. Had there 

been another residential complex with similar weather conditions and similar trend and 

seasonal variation of thermal complaints, these developed MLP models could have been 

used in this case as well. However, the developed ML- based generic framework 

provides facility mangers with a road map on how they can developed their own AC 
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and heater MLP models to forecast the number of thermal complaints based on the 

recorded occupant complaint calls in a text format.  This gives facility managers the 

flexibility to custom tailor the models to reflect the actual case as per the data 

availability and the ultimate use of the forecast. 

It is worth noting that upon working with the data obtained from the selected 

case study, constant occupancy levels were assumed constant because no further 

information was available from the data owners. If such data was available, it could 

have been incorporated in the forecasting models. Moreover, one main limitation for 

this specific case study is that the complaints were issued by the occupants and recoded 

by operators where both do not have the technical expertise to further describe the 

complaint using technical terms and including more details on the problem that could 

have been used in the analysis. 

Future works aim at further investigating the occupant complaints to assist 

facility managers in making strategic decisions other than these related to maintenance 

resource staffing. Moreover, other predictors could be incorporated in the prediction 

model to better represent the actual situation such as the occupancy levels along with 

the performance of the building. 
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APPENDIX A 

 

In order to select reasonable numbers for the options of the available technicians 

per month, the maintenance log sheets for occupant complaints were visited again. As 

mentioned previously, the name of the technician responsible to handle each complaint 

was not filled consistently throughout the log sheets. So, in order to get a better idea 

onto the number of technicians hired per month, the distinct names of technicians were 

counted in each month for years one and three. The numbers of distinct names obtained 

do not necessarily reflect the numbers actually available because there might be 

technicians who are hired and handling thermal complaints, but their names were never 

mentioned in the log sheets due to poor data entry strategies. Figure 45 shows the 

number of technicians available in each month for the years one and three. This, 

although not complete due to lack of available data, provides an idea about the range of 

the number of available technicians, their variability from one month to another, and 

from one year to another. 

Investigating the number of technicians, it varies from 20 to 25 in year three, and 

from 19 to 23 in year one during the last four months. Looking over the span of the two 

years, the number can get as low as 13 and as high as 26. This explains the selection of 

the options for the available number of technicians per month: 16, 21, and 23.  
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Moreover, for each selected option, it was ensured that the number of available 

technicians could be allocated to ensure a 24-hour service, 7 days a week, while each 

technician works about 40 hours per week. Table 10 shows the assumptions taken for 

each option.  

 

Table 10 Assumptions for each staffing option 

  option 1 option 2 option 3 

Number of technicians per month 16 21 25 

Number of shifts per day 4 3 3 

Number of hours per shift 6 8 8 

Number of technicians per shift 4 5 6 

Number of shifts per technician 7 5 5 

Number of hours per technician per week 42 40 40 
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Table 11 shows how the technicians were assumed to be allocated in each day of 

the week (D), and in each shift (s). Each number in the cells represents a technician’s 

ID. 

 

Table 11 Allocation of technicians per day per shift 

O
p

ti
on

 1
 

  D1 D2 D3 D4 D5 D6 D7 

s1
 

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

s2
 

5,6,7,8 5,6,7,8 5,6,7,8 
5,6,7, 

8 
5,6,7,8 

5,6,7, 
8 

5,6,7,8 

s3
 9,10,11, 

12 
9,10,11, 

12 
9,10,11, 

12 
9,10,11, 

12 
9,10,11, 

12 
9,10,11, 

12 
9,10,11, 

12 

s4
 13,14,15, 

16 
13,14,15, 

16 
13,14,15, 

16 
13,14,15, 

16 
13,14,15, 

16 
13,14,15, 

16 
13,14,15, 

16 

O
p
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on

 2
 

 D1 D2 D3 D4 D5 D6 D7 

s1
 1,2,3, 

4,5 
16,17,18, 

19,20 
10,11,12, 

13,14 
4,5,6, 
7,8 

19,20,21, 
1,2, 

13,14,15, 
16,17 

7,8,9, 
10,11 

s2
 6,7,8, 

9,10 
21,1,2, 

3,4 
15,16,17, 

18,19 
9,10,11, 

12,13 
3,4,5, 
6,7 

18,19,20, 
21,1 

12,13,14, 
15,16 

s3
 11,12,13, 

14,15 
5,6,7,8,9 

20,21,1, 
2,3 

14,15,16, 
17,18 

8,9,10, 
11,12 

2,3,4,5, 
6 

17,18,19, 
20,21 

O
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 3
 

 D1 D2 D3 D4 D5 D6 D7 

s1
 1,2,3, 

4,5,6 
19,20,21, 
22,23,24 

12,13,14, 
15,16,17 

5,6,7, 
8,9,10 

23,24,25, 
1,2,3 

16,17,18, 
19,20,21 

8,9,10, 
11,12,13 

s2
 7,8,9,10, 

11,12 
25,1,2, 
3,4,5 

18,19,20, 
21,22,23 

11,12,13, 
14,15,16 

4,5,6, 
7,8,9 

22,23,24, 
25,1,2 

14,15,16, 
17,18,19 

s3
 13,14,15, 

16,17,18 
6,7,8, 

9,10,11 
24,25,1, 

2,3,4 
17,18,19, 
20,21,22 

10,11,12, 
13,14,15 

3,4,5, 
5,6,7 

20,21,22, 
23,24,25 

 

As for the percentage of thermal complaints out of all the received complaints, 

three options were investigated: 6.95%, 13%, and 23.9%. The number of the total 

complaints was obtained from the maintenance logs for each month of the three years. 
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As for the number of thermal complaints per month, this was obtained after conducting 

the text mining process earlier. As such, figure 46 shows the percentage of thermal 

complaints out of all complaints per month for the three years.  

 

 

It can be noted that there is a repetitive pattern in each year, with the percentage 

of thermal complaints peaking mid-year during summer months and decreasing at the 

beginning and end of each year. For the last four months of 2017 in particular, the 

percentage of thermal complaints varies between 6.95% to 23.9%. This explains the 

selection of these two options in the developed scenarios. As for the 13% option, it was 

selected by calculating the percentage of thermal complaints out of all complaints for 

each of the three years, and then averaging these three 
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