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An Abstract of the Thesis of

Noura Nawaf El Hassan for Master of Engineering
Major: Industrial Engineering and Management

Title: Power Approximations for Pricing American Options

American options are one of the most traded instruments in the financial mar-
kets. However, pricing such options is challenging since there is the possibility
of early exercise of the option. We propose a robust pricing method based on
nonlinear regression over a large representative set of “exact” pricing instances
obtained via a binomial lattice. Our nonlinear regression is sought to relate the
price and the critical stock price of an American option to its key parameters via
a power-type regression. Our “power approximation” approach is inspired from
the operations research literature on the well-known (s, S) periodic review inven-
tory system. Our objective is to develop a closed-form approximation for pricing
American options that outperforms other existing approximations, in terms of
accuracy and simplicity.
Our results include developing a large set of near-exact American option prices
over a carefully designed grid of parameter values that are common in practice.
In addition, we compile the literature for existing American option pricing ap-
proximations, identify suitable ones, and apply the resulting approximations to
the set of parameters in the test grid. These approximation serve two purposes,
which we address in our work, (i) providing a starting point for our power approx-
imations, and (ii) developing a benchmark to compare our algorithms against.
In our work, we develop two closed-form approximations for the critical stock
price and premium of an American put option, respectively. Both approxima-
tions are based on the Barone-Adesi & Whaley’s results (1987). Correction factors
fitted by regression are used to modify the results of Barone-Adesi & Whaley’s
(1987) to improve the accuracy. The two closed-approximations for the critical
stock price and the premium of an American put option perform very well with
a median relative absolute error of 0.3764% and 0.0795% respectively. As such,
these approximations outperform their counterparts in the literature on both
accuracy, computational efficiency (speed), and simplicity.
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Chapter 1

Introduction and Motivation

Nowadays, one of the most important challenges in the financial industry is
the valuation of different types of financial instruments. Due to the prevalent
dense trading activities, defining robust pricing methods that valuate financial
instruments in a fast manner becomes a must. This study focuses on financial
derivatives and on American options in particular.

Financial derivatives form a class of financial instruments that derive their values
from an underlying asset. Options are among the most traded financial deriva-
tives.. An option is a financial contract that gives the holder the choice, and not
the obligation, to exercise this contract by buying or selling an underlying asset
at a predefined price and date. The two most-known option types present in the
financial markets are the European and the American. The difference between
the two is that in the case of the American options, the holder of the contract can
exercise it at any point in time prior to maturity, which does not apply for the
case of a European option. This added flexibility makes the problem of valuation
of an American option more complex, since several exercise strategies are avail-
able. In fact, “pricing” an American option requires determining (i) the asset
price beyond which the option should be exercised at any point in time (i.e. the
critical stock price), and (ii) the premium, which is the selling price of the option
that is intimately related to the critical stock price.

The well-known Black-Scholes formula is used to price a European option (Black
& Scholes, 1973). As for the American option, solving the Black-Scholes differ-
ential equation (Black & Scholes, 1973) does not lead to a closed-form solution.
In the literature, numerous methodologies have been suggested including: least
square Monte Carlo, binomial trees, trinomial trees, finite difference methods and
dynamic programming. It is shown that these methods lead to highly accurate
results. However, most methods require considerable computational power and
are not easy to implement. This motivates our research on finding a closed-form
approximation that provides an accurate valuation of an American option that
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is both computationally efficient and easy to use.

Several efforts have been made to find analytical approximation for the value of
an American option (e.g. Barone-Adesi Whaley 1987, Bjerksund & Stensland
(1993), Geske & Johnson (1984)...). These approximations are quicker and more
efficient than other numerical methods in this context. However, these approx-
imations still require some computations, and when compared to exact pricing
methods, there seems to be room to improve accuracy.

In this study, a new approach is offered to price American options and find the
critical stock price based on power approximation. Relying on regression and
asymptotic analysis together with optimization procedures, we propose to de-
velop an efficient, accurate, and closed-form pricing approximation for American
options. The purpose of this research work is to reduce the computational effort
compared to numerical approaches and to minimize the error compared to other
approximations in the literature.

Part of the motivations for our proposed work stems from the popularity of
American options. According to CBOE (Chicago Board Options Exchanges),
the largest U.S. Options Exchange, currently most of the equity options traded
on the U.S. option exchanges are of the American type.
Large volumes are being traded everyday. For example, Figure 1.1 summarizes
the trading activity on April 2, 2020 (CBOE, n.d). The volume of equity op-
tions constitutes 37.61% of the total market, while the open interest (number
of outstanding options that have not been settled yet) consists 54.87% of the
market.

Figure 1.1: Trading activity on April 2, 2020
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Speed in trading is one of the most significant factors in this developed work.
When dipping into the realm of financial markets, it is common knowledge that
speed is key. It is estimated that around 70 percent of all daily trades are high
frequency trades (American Physical Society, 2020). The highly volatile financial
market warrants the need to make the right decision at the exact right instant
(Finsmes, 2019) as major gains can be reaped based on advantageous millisec-
onds, and major losses could be faced if those milliseconds were to slip away.
The importance of speed can be highlighted through an example about currency
exchange markets. Assume that the British pound begins to devalue against the
U.S dollar, traders with the prior currency would want to sell their pounds to
avoid losses. Traders that sell their pounds faster, will be able to sell at a higher
value. However, because of the difference in information travel time between two
different locations, Londoners will hear about the currency value change faster
than New Yorkers. Londoners are closer to the source of the information, giving
them an advantage that would allow them to react faster (American Physical
Society, 2020).

Although the information travel time difference is only a matter of seconds, it
is no secret that those that are able to receive the information faster, and hence
react faster, are placed at an advantage. That fact holds particularly true when
trading financial instruments such as options. The value of a financial option
and the profit it could potentially bear all rely on a set of dramatically changing
parameters pertaining to the fluctuating stock market (Burton, 2012). Because
all it takes is milliseconds for market numbers to vary, the need for the fastest
option price estimation method is needed. A few lost milliseconds could get in
the way of great profit (Burton, 2012). A highly dynamic environment as the
financial market, with countless players, demands you to be there first. That is a
demand that can be attained once the importance of every millisecond is realized.

The remainder of this thesis is organized as follows. Chapter 2 summarizes the
related literature. Chapter 3 presents the proposed power approximation model.
Chapter 4 summarizes the grid design and model developed to get the critical
stock price for an American put option. Chapter 5 lists the characteristics of an
American put option. Chapter 6 summarizes a model developed using nonlinear
regression to price the critical stock price of an American put option (PAAPC1:
power approximation for the American put option critical stock price). Chapter
7 summarizes a model developed using nonlinear regression to price price of an
American put option (PAAP1: power approximation for the American put option
premium). Finally, Chapter 8 concludes the work and presents ideas for future
research.

3



Chapter 2

Literature Review

In this chapter, we review the related literature. In Section 2.1, we review
the key methods and approximations for pricing American options. In Section
2.2, we discuss the power approximation for the (s,S) inventory systems, which
motivates our research.

2.1 American Option Pricing Methods

Several numerical methods are present in the literature proposing approaches
to valuate American options.

A common method to price options is the binomial lattice (Cox, Ross, & Ru-
binstein, 1979). The life span of an option is divided into equally spaced time
periods. The underlying assumption is that the stock price follows a discrete
time process, which approximates the well-known geometric Brownian motion,
after applying a change of measure that excludes the possibility of arbitrage.
At each time step, the stock price can move up or can move down based on a
“risk-neutral” probability. Then, a backward scheme is followed in order to find
the option value at each node of the resulting tree (lattice). One extension of
this method is proposed by Boyle (1986) who introduces the trinomial lattice ap-
proach. This approach is similar to the binomial lattice but with the additional
third possibility of having the stock price unchanged at each node of the lattice.

Finite difference methods can be used to solve the problem of pricing American
options by solving the Black-Scholes differential equation (with a change of mea-
sure to account for arbitrage) over a finite grid. The three most common finite
difference techniques are: the explicit finite difference (Hull & White, 1990), the
implicit finite difference and Crank-Nicolson finite difference (Wilmott, 2013).
The explicit finite difference method is more or less a generalization of the tri-
nomial tree. The implicit finite difference method is close to the explicit method
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with the only difference of using backward difference instead of forward difference
in order to solve the differential equation. The Crank-Nicolson method can be
considered as a combination of both the explicit and implicit methods.

An approach is proposed to solve a American-style Asian options (Amerasian) by
Ben-Ameur, Breton, & L’Ecuyer, 2002. Similar to an American option, an Am-
erasian option offers the early exercise opportunity, but the payoff depends on the
average stock price. This approach can be applied to price American options as
well. The proposed method is based on dynamic programming (DP), more specif-
ically, the Markov decision processes (a stochastic DP problem). The DP value
function expresses the value of an Amerasian option as a function of the current
time, current price, and current stock average. Solving this equation yields both
the option value and the optimal exercise strategy. Using a piecewise polynomial
interpolation over rectangular finite elements to approximate the value function,
the DP equation is solved (Ben-Ameur, Breton, & L’Ecuyer, 2002).

Longstaff & Schwartz (2001) estimate the price of an American option by fol-
lowing the Least Square Monte Carlo method. Their method consists of valuing
American options via simulation techniques by estimating the conditional ex-
pectation value from continuation of the option using the least square method
approach. This estimation allows a direct comparison between the immediate
exercise at time T and the expected payoff if the option is not exercised at time
T in order to determine the optimal exercise date. Longstaff & Schwartz (2001)
present a general LSM algorithm to price American options that are in the money.

Our proposed power approximation pricing method is different than that of Ben-
Ameur, Breton, & L’Ecuyer (2002) and Longstaff & Schwartz (2001). Neither
simulation nor numerical integration is used in order to determine an optimal ex-
ercise strategy, and accordingly get the price of the option. Our method consists
of fitting power-type approximations for the critical stock price and premium of
an American put option. This is achieved by using regression methods on a rep-
resentative set of “exact” prices of American put options.

As stated before, some approximations of an American option price have been
derived and are sought to be more efficient than numerical methods. Barone-
Adesi & Whaley’s (1987) procedure consists of finding an approximation for the
solution of the key pricing differential equation derived by Black & Scholes (1973)
and Merton (1973). The American option value is expressed as the summation
of its corresponding European option value and a certain early exercise premium.
Applying the differential equation to the American option value, two differential
equations should be solved, one for each term. For the European option value, the
well-known Black-Scholes formula is the solution. Concerning the early exercise
premium, Barone-Adesi & Whaley (1987) end up with a second-order ordinary
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differential equation for which the solution’s general form is derived. An improve-
ment of the Barone-Adesi Whaley (1987) formula is presented in a follow-up paper
by Ju & Zhong (1999). The early exercise premium is modified by introducing a
time-independent function which is a solution of an ordinary differential equation.

Bjerksund & Stensland (1993) derive a formula that prices a call option paying
dividend and then a put-call symmetry is used to determine the put option value.
The optimal exercise boundary is assumed to be a flat boundary. An exercise
strategy, based on a stopping rule, is proposed whereby, the first time the under-
lying asset price hits this flat boundary or goes beyond it, the option is exercised.
Bjerksund & Stensland (2002) suggest an improvement of their previous model.
A similar procedure is followed except that the time to maturity is divided into
two sub periods where each one is assumed to have a flat exercise boundary.

The American put value is approximated using a compound option by Geske
& Johnson (1984). The main underlying assumption is that the option can be
exercised at discrete points in time. It follows that at each predefined point in
time, the decision of exercising the option or not is taken according to specific
conditions. The problem is here expressed as a free boundary problem where
the Black-Scholes differential equation is solved at each point. Nevertheless, us-
ing Richard Extrapolation, the price of an American option is approximated by
a polynomial expression. Bunch & Johnson (1992) propose an improvement of
Geske & Johnson (1984) that relies on choosing the exercise points in an optimal
way such as the put value is maximized.

An approach based on the computation of lower and upper bounds on both call
and put American options values on a dividend-paying asset has been introduced
by Broadie & Detemple (1996). This method yields two option price approxi-
mations: the first one is based on the lower bound (LBA) and the second one
is based on both bounds (LUBA). The procedure followed to price an American
call option is as follows: first, the derivation of a lower bound for the option price
is based on a capped option (an option which limits the maximum possible profit
for its holder) characterized with a selected constant cap. Second, based on the
same class of capped options, we compute a uniform lower bound L∗ for the opti-
mal exercise boundary of the option. Third, an upper bound for the option price
is computed by using a combination of the integral representation of the early
exercise premium with the calculated L∗. Once we get the results of the bounds
of the American call option, both the LBA and LUBA pricing approximations
can be computed using a weighted regression approach. When it comes to pricing
an American put option, the put-call symmetry result for these type of options,
permits to price the put options based on the values of the call options with a
simple substitution of parameters if the Geometric Brownian motion applies.
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None of the above approximations offer a simple one-line formula for pricing
American options. They can be seen as presenting approximating algorithms.
In our proposed research, we aim at developing a simplified closed-form pricing
formula with competitive performance.

2.2 Power Approximation for the (s, S) Inven-

tory Systems

Ehrhardt (1979) uses power approximation to compute “optimal” (s,S) in-
ventory policies. In general, the approach uses regression analysis to fit the
approximations, and the mean and variance of the demand function. Knowing
the distribution of the demand function and its moments, statistical estimates
are used in place of the actual mean and variance of the demand. The setup of
the problem is presented next.

The studied system is a single-item inventory system where unsatisfied demand is
backlogged at the end of each review period. Between the placement of an order
and its delivery, there exists a fixed lead time. During review periods, demands
are considered to be independent and identically distributed and are represented
by a mean and a variance. In addition, a fixed setup cost is considered every
time an order is placed. The optimization procedure aims at minimizing the
undiscounted expected cost per period over the infinite horizon.

An (s,S) policy can be defined as follows: when the sum of the inventory on hand
and on order drops below a predefined level s, an order is placed to bring the
inventory position to S. Roberts (1959) derives approximation for the optimal
values of s and S based on the assumption that the demand is normally dis-
tributed. The method is called the Normal Approximation. However, it is shown
that this method is not adequate for all parameters’ ranges.

Ehrhardt (1979) proposes an alternative to Robert’s method. The Normal de-
mand distribution is no longer required, and a nonlinear power-type regression
analysis is used to fit an approximation. The outcome is a closed-form power ap-
proximation that requires only to input the mean and the variance of the demand
distribution and the key cost parameters, and it is efficient for a wide range of
parameters.

However, the performance of the approximation in Ehrhardt (1979) is affected
when the factors characterizing demand are varied and when the demand vari-
ance is very small. In this context, Ehrhardt & Mosier (1984) proposes a revision
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of this approximation to account for this deficiency.

Later on, Schneider & Ringuest (1990) suggests a power approximation for (s,S)
policies using a service level (in terms of avoiding shortages). This is motivated
by the difficulty in estimating the unit shortage cost in practice. A procedure
similar to that of Ehrhardt (1979) is followed with a service level requirement in
lieu of a shortage cost. In this case, a γ-service level is defined based the percent
of demand met from on-hand inventory.
Maddah, Jaber, & Abboud (2004) analyze the (s,S) inventory model with permis-
sible delays in payments and propose power approximations for different flavors
inspired by the works of Ehrhardt & Mosier (1984) and Schneider & Ringuest
(1990). Motivated by the promising results of power approximations in approx-
imating the typically hard-to-find optimal (s, S) policies, we propose to utilize
these approximations for pricing financial derivatives. We focus on American
options in our proposed research. In a recent work, Maddah, Aprahamian, &
Sawaya (2015) apply a similar methodology for pricing European-style Asian
options and develop closed-form approximations that perform well against ap-
proximations in their league in the literature. Our work is in the same spirit
of Maddah, Aprhamian & Sawaya (2015). However, it involves developing an
additional power-type approximation for the critical stock price that governs the
early exercise policy of the American put option that we consider.

8



Chapter 3

Power Approximation
Framework

This chapter presents our results including, in Section 3.1 the general approach of
power approximation followed to price financial derivatives presented by Maddah,
Aprahamian, & Sawaya (2015) in their working paper, in Section 3.2 a description
of American put options, in Section 3.3 the grid design given the set of parameters
we plan on using in developing our power approximations, and in Section 3.4
details of the binomial lattice method we use to get “exact” results. Finally, in
Section 3.5, we present in detail American options pricing approaches in some
analytical approximations found in the literature, which will allow us to develop
a benchmark on the accuracy of our approximations.

3.1 Power approximation for pricing derivatives

This section contains the general approach of power approximation followed to
price financial derivatives presented by Maddah, Aprahamian, & Sawaya (2015)
in their working paper. We denote by P the price of the security such as
P (α) = g(α1, α2, ..., αn) where α = α1, α2, ..., αn is the set of input parameters
and g(.) is the exact pricing formula which is typically unknown and then consider
the following approximation of the price

P (α) ∼= ĝ(α, β) = CFBase(α) + CF (α; β)

where β = β1, β2, ..., βn is the set of decision variables, determined by regression,
and serve to fit P (α) to exact values determined by numerical analysis, ĝ(.) is the
approximate pricing formula, CFBase(α), which is a function of the set of input
parameters, is the price of the security that is typically chosen in a way that makes
it highly correlated to ĝ(.) and has a closed-form solution. Usually, CFBase(α)
will represent a crude approximation of the security which is in closed form.
CF (α; β) is the added correction factor which is a function of both the set input
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parameter and the set of decision variables. The functional form of CF (α; β)
is constructed by using theoretical results and asymptotic analysis specific to a
particular product. The mathematical model is defined as follows,

min
β
d[P (α), ĝ(α; β)]

where d [.] represents a distance measure between the exact value, P(α), and the
approximated value, ĝ(α; β). Examples of measures often used in the literature
include the root-mean square error RMSE and the absolute average relative error
AARE. For a data set of N exact values,

AARE = min
β

1

N

N∑
i=1

| Pi(α)− gi(α; β) |
Pi(α)

RMSE = min
β

√∑N
i=1(Pi(α)− gi(α; β))2

N

3.2 American Put Options

In this Section, a description of the American put options is presented (Lu-
enberger, Chapter 12, 1998). The asset price (e.g. stock price) model is based on
the geometric Brownian motion model. The main concept behind this model is
that the probability that the asset price will change by a specific percentage dur-
ing a certain time period is always the same. Two important parameters of this
model are: the expected annual rate of return of the asset µ and σ the volatility
of the asset price and it measures its variability1.

An American put option gives its holder the choice, but not the obligation, to
sell the underlying asset for a price K. The holder of an American put option
must pay a price or a premium P . In exchange, the holder of the option can
exercise the option any time prior to maturity, T . The parameters of a put op-
tion are: the strike price K, the initial stock price S, the time to expiration T ,
the volatility of the stock price σ and the risk free interest rate r. Assuming
that the stock price at time t < T is St, the buyer of a put option will gain a
profit of max(0, K−St)−P . Accordingly, a put option is in the money if St < K.

It can be shown that in order to avoid arbitrage, American, and other options,
can be priced in a risk-neutral manner by replacing µ with the risk free rate,
r. In the context of the binomial lattice model, the risk-neutral pricing implies

1σ is the standard deviation of the asset price log return, σ2 = var[ln(St + 1/St)], where
time t is measured in years
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the probability that the stock price goes-up over a small time interval, ∆t, p is
replaced by a risk neutral probability q = (R − d)/(u − d), where R is the one-
period risk-free compounding factor, and u and d are the factors by which the
asset price can increase or decrease in a period (see Section 4.3 for details on the
Binomial lattice model).

3.3 Grid Design

In order to develop the data set of “exact” critical stock price and premium
values for calibrating our power approximating method for pricing American put
options, we identify common range of parameters by inspecting American options
traded over major exchanges. As discussed in Section 3.2, five input parameters
are selected: the strike price K, the stock price S, the interest rate r, the volatility
σ and the maturity T.

Data addressing the top 20 most active stocks options on major US financial
securities market such as NYSE and NASDAQ from the website barchart.com is
obtained in order to form the data set. As sated previously, according to CBOE,
currently most of the equity options traded on the U.S. option exchanges are
American options. The reference date is set to be 31/01/2020. For each one
of those stock options, information about available options in the market is col-
lected. For each existing contract, the strike price, the current stock price, the
volatility and the maturity are checked along with the density of such contract in
the market. The collected data contains contracts with the following maturities
(in days): 7, 14, 21, 28, 35, 42, 49, 77, 105, 140, 168, 203, 231, 259, 294, 322, 350,
413, 504, 595, 721, 777, 868. To measure the density of options traded, the open
interest measure is taken into consideration (number of unsettled contracts). The
open interest varies over a wide range going from 0 to 1,255,090.

This data is used in order to construct three different heat maps. The heat
map in Figure 3.1 shows the volatility versus the strike price over stock price (i.e.
the moneyness), the second heat map in Figure 3.2 shows maturity versus mon-
eyness. Finally, the third heat map in Figure 3.3 shows maturity versus volatility.
Those heat maps are helpful to identify dense areas of the parameter space that
will be used in our regression.

Based on the heat maps in Figures 3.1-3.3, one can identify that most dense
data falls in the following ranges:
a) Moneyness K/ S : concentrated between 0.7 and 1.2. So, a stock price of 100
is picked and then the strike price is obtained accordingly. A step of 0.05 is con-
sidered.
b) Volatility σ: concentrated between 0.1 and 0.7. A step of 0.05 is considered.
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c) Maturity T : concentrated between 6 months to 1 year with a denser concen-
tration in the area that is less than 6 months. So, a step of one week is considered
between 0 and 6 months, and a bigger step of 2 weeks is taken between 6 months
and 1 year.
d) Regarding the interest rate r parameter, the US treasury rates are used. They
are found in Figure 3.4. Depending on the maturity of each option, the interest
rate is chosen.
Table 3.1 represents the ranges of the parameters reflecting the heat maps as
stated earlier.
This grid is built by adding all possible combinations between parameters that
lie in the above cited ranges, so it will reflect the three constructed heat maps.
This grid results in a total number of 5,720 trials.

Figure 3.1: Heat map of popular parameter values in terms of σ versus K/S
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Figure 3.2: Heat map of popular parameter values in terms of T versus K/S

Figure 3.3: Heat map of popular parameter values in terms of T versus σ
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Figure 3.4: US treasury rates on 02/07/20 (Source: barchart.com)
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K K/S S
Time (in
weeks)

Time (in
months)

Interest
Rate(in
percent)

Volatility

100 0.7 142 1 0.23 1.57 0.1
0.75 133 2 0.46 1.57 0.15
0.8 125 3 0.69 1.57 0.2
0.85 118 4 0.92 1.57 0.25
0.9 111 5 1.15 1.56 0.3
0.95 105 6 1.38 1.56 0.35
1 100 7 1.61 1.56 0.4
1.05 95 8 1.84 1.56 0.45
1.1 91 9 2.07 1.56 0.5
1.15 87 10 2.3 1.56 0.55
1.2 83 11 2.53 1.56 0.6

12 2.76 1.56 0.65
13 2.99 1.56 0.7
14 3.22 1.57
15 3.45 1.57
16 3.68 1.57
17 3.91 1.57
18 4.14 1.57
19 4.37 1.57
20 4.6 1.57
21 4.83 1.57
22 5.06 1.57
23 5.29 1.57
24 5.52 1.57
25 5.75 1.57
26 5.98 1.57
27 6.21 1.49
29 6.67 1.49
31 7.13 1.49
33 7.59 1.49
35 8.05 1.49
37 8.51 1.49
39 8.97 1.49
41 9.43 1.49
43 9.89 1.49
45 10.35 1.49
47 10.81 1.49
49 11.27 1.49
51 11.73 1.49
53 12.19 1.49

Table 3.1: Ranges of parameters reflecting the three heat maps
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In developing their model, Broadie & Detemple (1996) use linear regression.
Details will be provided insection 4.4.3. They use ranges of parameters very
similar to the ones used in this research work. Li (2010) performs a comparison
performance of approximations used to compute the critical stock prices of an
American put option. The parameters used in the analysis fall in the ranges of
our data except for the interest rate. In addition to that, after checking numerical
experiments performed by the models cited in the literature review Section, we
conclude that our data set shows a very good performance except for the interest
rate. In our data set, the interest rate considered falls in the lower ranges common
in practice. Consequently, we decide to double our data by taking an interest
rate of 0.08. So, our final data set contains 11,440 instances used to calculate
the premium and 1,040 instances used to calculate the critical stock price. Con-
structing a model requires the presence of “in-sample” and “out-sample” testing.
In order to be able to do an “out-sample” testing, a subset of the original data
set is taken out for later use. It will consist 10 percent of our original data set.
To make sure that this chosen sample does not contain any bias, it should be
selected randomly. Please see Appendix B for details.

3.4 Binomial Lattice

The Binomial Lattice method is widely used in pricing American options.
Sections 4.4.1, 4.4.2 and 4.4.3 describe the procedure to calculate the price of
an American put option using a binomial lattice, the procedure to calculate the
critical stock price in addition to the number of steps needed to get accurate
results.

3.4.1 The Price of an American Put Option

The following steps are followed in order to get the price of an American
option using the binomial lattice method:
1) Choose the time step ∆t.

2) Calculate the number of steps n: n =
T

∆t

3) Get the two factors u = eσ
√
dt and d =

1

u
by which the stock price will increase

or decrease respectively. Get the compounding factor R = er∆t.

4) Get the risk-neutral probability q =
R− d
u− d

that the stock price will increase

by a factor u.
5) Starting by the initial stock price S at time 0, follow a forward process to get
the possible stock prices at each node of the lattice: at each node, the stock price
can increase by a factor u with a probability q or decrease by a factor u with a
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probability 1− q.
6) Let j the number of upward movements in the asset price. The follow-
ing equation is used to get the stock price at node i (at time equals to i∆t):
S(i, j) = Sujdi−j

7) Now, starting from the final node, follow a backward process in order to get
the option values at each node of the lattice.
8) At the final node, the option value is given by: P (i, j) = max(0, K − S(i, j)).
9) Then, going backward, at each node, two values should be computed: the
value of early exercise which is max(0, K − S(i, j)) and the expected value of

continuation which is: E[Vc] =
1

R
[qP (i+ 1, j + 1) + (1− q)P (i+ 1, j)]

10) At every node, the maximum between the continuation and the early exercise
value is selected. This gives the value of the option at Time i and price level j,
and the exercise policy. Specifically, the option should be exercised if and only if
K − S(i, j) > E[Vc].
11) The process continues until reaching the initial node. At the initial node, the
value obtained is the price of the American put option.

The higher the number of steps, the more accurate the results are. We develop a
Matlab code to compute the price and the critical stock price using the binomial
lattice. After some numerical experimentation, we conclude that a convenient
convergence is reached with a number of steps equal to 4,200.

3.4.2 The Critical Stock Price of an American Put Option

Another topic covered in the binomial lattice approach is the early exercise
boundary. Since the holder of an American option has the possibility of exercising
it prior to maturity, it can be shown that at every time i before maturity, there
exists a critical price S∗i under which the early exercise of the option is optimal
(Basso, Nardon, & Pianca, 2002). At time i, for a stock price less or equal to
the critical stock price, the value of the option is equal to K − S(i, j). In this
case, K − S(i, j) > E[Vc] where E[Vc] is the expected value of continuation and
not exercising the option. For a stock price greater than the critical stock price,
the value of the option is equal to the continuation value, E[Vc]. In this case,
E[Vc] > K−S(i, j). Thus, a bisection method is implemented in order to calculate
the critical stock price, which is the price at which the continuation value and
the early exercise value are approximately equal. Please refer to Appendix D for
illustration of how the critical stock price is calculated over a “small” lattice.
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A series of experiments are conducted to determine the binomial lattice number
of steps and the bisection method precision that are going to be used to get the
price and the critical stock price of American put options. Those experiments are
used to find a trade-off between the accuracy of the critical stock price and the
speed of our algorithm measured in terms of CPU time. Two options are taken
into consideration; their parameters are presented in Table 3.2. The experiments
shown in Table 4.3 consist of trying different combinations of time steps and
bisection method precision. The CPU time and and the accuracy of the results
are then evaluated. For both options, a convergence of the results is achieved with
a binomial lattice with 15,000 steps and a bisection method precision (defined as
|E[Vc]− (K − S0)|) of 10−9. However, for this case, a high computational effort
is needed. According to Table 3.3, a binomial lattice with 4,200 steps and a
bisection method precision of 10−9 yields accurate results (for the case of option
1 and option 2, the percentage difference in the critical stock price between a
binomial lattice with 15,000 steps and a binomial lattice with 4,200 steps is equal
to 0.0364% and 0.0238% respectively ) while requiring lower computational effort
(a lower CPU time). Accordingly, a binomial lattice of 4,200 steps and a precision
of 10−9 is selected in order to get the critical stock prices of our data. As noted
previously, since the initial stock price does not affect the critical stock price, the
data used here is reduced from 11,440 instances to 1,040 instances.

Option Number K Time (in weeks) Interest Rate(in percent) Volatility
1 100 1 1.57 0.5
2 100 3 1.57 03

Table 3.2: Options’ parameters used in experiments
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Option
Number

Number of
steps

Precision
CPU time
(seconds)

S∗ AARE10−8

15,000

1 1000 10−10 9.3594 82.51
10−9 7.8906 82.51
10−8 6.5781 82.51
10−5 5.8125 82.51
10−6 4.1094 82.52
10−5 50.00

3000 10−10 86.6563 82.47
10−9 70.5156 82.47
10−8 58.6250 82.47
10−7 42.8750 82.47
10−6 31.0625 82.42

4200 10−10 158.5000 82.47
10−9 132.9063 82.47 0.0364%
10−8 108.2813 82.46
10−7 42.8750 82.47
10−6 50

6000 10−10 340.2188 82.46
10−9 304.6250 82.46
10−8 206.8438 82.46
10−7 188.7813 82.45

10000 10−9 888.3750 82.45
15000 10−9 2182.2000 82.44
20000 10−9 8420.6875 82.44
25000 10−9 26101.8125 82.44

2 4200 10−10 191.1719 84.12
10−9 118.4219 84.12 0.0238%
10−8 116.2656 84.12
10−7 101.8125 84.12
10−6 84.0781 84.13

15000 10−9 3535.5938 84.10
25000 10−9 8491.2031 84.10

Table 3.3: Experiments reflecting required number of steps and precision of bi-
section method
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3.5 Analytical Approximations

This Section describes in details some analytical approximations found in the
academic literature to price an American option and find its critical stock price.
The Barone-Adesi & Whaley (1987) formula is simple and seems to serve our
purpose in the sense of providing a good starting point for our power approxi-
mation. Bjerksund & Stensland (1993) formula and Broadie & Detemple (1996)
approximation based on the lower bound (LBA) will be used later on for com-
parison purposes. In each Section, we will specify whether the specified method
is used to price an American put option or to find its critical stock price.

3.5.1 Barone-Adesi & Whaley Formula

Barone-Adesi & Whaley (1987) procedure consists of finding an approximate
solution to the Black-Scholes-Merton differential equation,

1

2
σ2S2 ∂P

∂S2
+ bS

∂P

∂S
− rP +

∂P

∂t
= 0 (1)

The American option value is expressed as the summation of the price of a Eu-
ropean put option with the same parameters, p(S, T), and an early exercise
premium, εP (S, T ),

P (S, T ) = εP (S, T ) + p(S, T ) (2)

Applying (1) to the price in (2), two differential equations should be solved, one
for each term. For the European option value, the well-known Black-Scholes for-
mula is the solution, p(S, T ) = Ke(−rT )N(−d2)−SN(−d1) where d1 = (log(S/K)+
(r+0.5σ2)T )/(σ

√
T ), d2 = d1−σ

√
T and N(.) is the cumulative univariate nor-

mal distribution.

Concerning the early exercise premium, Barone-Adesi & Whaley (1987) end up
with a second-order ordinary differential equation for which the solution general
form is derived. Based on this solution, an approximation for the put option
premium in (2) is given by

P (S, T ) =

p(S, T ) + A1(
S

S∗T
)q1 if S > S∗T

K − S if S ≤ S∗T

(3)

where S∗ is the critical stock price and A1 = (−S∗/q1)(1−N(−d1(S∗T ))),
q1 = (−(N − 1) −

√
(N − 1)2 + 4k)/(2), N = (2r)/(σ2), k = (2r)/(σ2(1 −

e−rT )), and d1(S∗T ) = (ln(S∗T/K) + (r + σ2/2)T )(σ
√
T ).
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The critical price S* is determined by solving the following equation:

K − S∗T = p(S∗T , T )− S∗T
q1

(1−N(−d1(S∗T ))) (4)

Barone-Adesi & Whaley (1987) show that (4) has a unique solution. They also
propose a Newton-Raphson algorithm to solve (4). We present this algorithm in
Appendix C for completeness. A Matlab code is developed to calculate the price
and the critical stock price of an American put option using the Barone-Whaley
equation.

3.5.2 Bjerksund & Stensland Formula

In their paper, Bjerksund & Stensland (1993) derive a formula that prices
an American call option paying dividend and then a put-call parityy is used to
determine the put option value. Bjerksund & Stensland (1993) consider that the
call option is equivalent to a European up-and-out call option with a barrier price
equal to the trigger price X in addition to a payoff equal to X−K upon exercising
the option prior to maturity. They derive the following approximation for the
price of an American call option with dividends at the rate δ, where b = r − δ,

c =α(X)Sβ − α(X)φ(S, T |β,X,X) + φ(S, T |1, X,X)

− φ(S, T |1, K,X)−Kφ(S, T |0, X,X) +Kφ(S, T |0, K,X) (7)

where,
α(X) ≡ (X −K)X−β

β = (
1

2
− b

σ2
) +

√
(
b

σ2
− 1

2
) + 2

r

σ2

φ(S, T |γ,K,X) = eλSγ(N [d]− (
X

S
)κN [d− 2ln(X/S)

σ
√
T

])

λ ≡ (−r + γb+
1

2
γ(γ − 1)σ2)T

d ≡ −
ln(S/K) + (b+ (γ − 1

2
)σ2)T

σ
√
T

κ ≡ 2b

σ2
+ (2γ − 1)

Two methods are presented to determine the trigger price X. The first method
consists of calculating the flat boundary as the weighted average of two options
with infinite and zero time to maturity,
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XT = B0 + (B∞ −B0)(1− eh(T )) (8)
where,

h(T ) ≡ −(bT + 2σ
√
T )(

B0

B∞ −B0

)

B∞ =
β

β − 1
K

B0 = max {K, ( r

r − b
)K}

The last two expressions of B0 and B∞ are developed by Kim (1990).

In the second method, the trigger price is considered the price at which the call
value is maximized. In our work, we will use the first method to get the trigger
price XT from (8).
Note that if S ≥ X, then value of the option is equal to S −K. To obtain the
American put value, a put-call symmetry is achieved by changing parameters as
follows:
p(S,K, T, r, b, σ2) = c(K,S, T, r − b,−b, σ2;X) (10)

A Matlab code is developed to calculate the price Bjerksund & Stensland equa-
tion.

3.5.3 Broadie & Detemple Formula

An approach based on the computation of lower and upper bounds on both
call and put American options values on a dividend paying asset has been in-
troduced by Broadie & Detemple (1996). This method yields two option price
approximations: the first one is based on the lower bound (LBA) and the sec-
ond one is based on both bounds (LUBA). In this Section, we will focus on
the approximation based on the lower bound, since the approximation based on
both bounds needs some computational effort. In addition to that, Broadie &
Detemple (1996) derive a lower bound for the optimal exercise boundary of an
American call option. Using a put-call parity, those bounds and approximations
for call options can be adjusted for American put options.
The derivation of a lower bound for the American call option price is based on
capped call option (an option which limits the maximum possible profit for its
holder) characterized by a constant cap L. The value of this capped call option
is given by equation (11),

C(S, L) =(L−K)[λ2φ/σ2

N(d0) + λ2α/σ2

N(d0 + 2f
√
T/σ)] + Se−δT [N(d−1 (L)− σ

√
T )

−N(d−1 (K)− σ
√
T )]− λ−2(r−δ)/σ2

Le−δT [N(d+
1 (L)− σ

√
T )−N(d+

1 (K)

− σ
√
T )]−Ke−rT [N(d−1 (L))−N(d−1 (K))− λ1−2(r−δ)/σ2

[N(d+
1 (L))

−N(d+
1 (K))]] (11)
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where,
N(.) is the cumulative standard normal distribution function

d0 =
1

σ
√
T

[log(λ)− f(T )]

d+/−(x) =
1

σ
√
T

[+/− log(λ)− log(L) + log(x) + bT ]

b = δ − r + 0.5σ2

f =
√
b2 + 2rσ2

φ = 0.5(b− f)
α = 0.5(b+ f)
λ = S/L
Equation (12) is true for L ≥ max(S,K). To determine L, the optimization
problem L = max

L≥S
C(S, L) should be solved. And accordingly, the lower bound

on the price of an American call option is C l = max
L

C(S, L) ≤ C(S).

This lower bound is used in order to derive an approximation of the American
call option price, called LBA. LBA is defined by C(S) = λ1C

l(S) and the price
of an American put option is defined by P (K,S, δ, r, T ) = C(S,K, r, δ, T ).
Regression techniques are used to obtain λ1.
x1 = T
x2 =

√
T

x3 = S/K
x4 = r
x5 = δ
x6 = min(r/max(δ, 0.00001), 5)
x7 = x2

6

x8 = (C l(S)− c(S))/K
x9 = x2

8

x10 = C l(S)/c(S)
y1 = 1.002× 100 − 1.485× 10−3 × x1 + 6.693× 10−3 × x2 − 1.451× 10−3 × x3 −
3.43 × 10−2 × x4 + 6.301 × 10−2 × x5 − 1.954 × 10−3 × x6 + 2.74 × 10−4 × x7 −
1.043× 10−1 × x8 + 5.077× 10−1 × x9 − 2.509× 10−3 × x10

λ1 =

{
1 if C l(S) = c(S) or C l(S) ≤ S −K
max(min(y1, 1.0133), 1) otherwise

Based on the same class of capped options, we can compute the critical stock
price on an American call option. To obtain S∗call, equation (12) should be solved
in terms of L using Newton’s method.

[1−(
L−K
L

)(2φ/σ2)]λ2φ/σ2

N(d0)+[1−(
L−K
L

)(2α/σ2)]λ2α/σ2

N(d0+2f
√
T/σ)+

e−δT
2(b− σ2)

σ2
λ−2(r−δ)/σ2

[N(d+
1 (L)−σ

√
T )−N(d+

1 (K)−σ]sqrtT )]−e−rT 2bK

σ2L
λ2b/σ2
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[N(d+
1 (L))−N(d+

1 (K))] = 0 (12)
To convert the critical stock price of an American call option to the critical

stock price of an American put option, Carr & Chesney (1996) derive the put

call parity S∗put(K, δ, r) =
K2

S∗call(K, r, δ)
A combination of a Wolfram and Matlab code is developed to calculate the price
and the critical stock price of an American put option using the Broadie & De-
temple approach.
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Chapter 4

Numerical results on the
Binomial Lattice and the
Analytical Approximations

In this chapter, we present some of our numerical results on the premium (in
Section 4.1) and of the critical stock price values (in Section 4.2) estimated based
on the methods presented in Chapter 3. The characteristics of the American
put premium are checked for the case of the binomial lattice with 4,200 steps
(BL), the Barone-Adesi & Whaley (1987) formula (BW), Bjerksund & Stensland
(1993) formula (BS) and Broadie & Detemple (1996) (LBA). On the other hand,
the characteristics of the American put critical stock price are checked for the
case of BL, BW, and LBA. Those characteristics are used later on to validate the
developed models.

4.1 Characteristics of American Put Premium

The premium of an American put option increases when the time to expiration
increases, as in Figure 4.1 or when the strike price over the stock price increases,
as shown in Figure 4.2, or when the volatility increases as shown in Figure 4.3,
or when the interest rate decreases as shown in Figure 4.4.
Trying to draw similar plots on the same graphs in Figures 4.1 - 4.4 using BW,
BS and LBA, we obtain overlapping plots. This is due to accurate results that
BW, BS and LBA yield with respect to the binomial lattice method, as we will
see further in Chapter 5.
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Figure 4.1: Premium of American put option with K =100, S =142, r =0.0157
and σ =0.65 in function of T in weeks for the BL model

Figure 4.2: Premium of American put option withK =100, T =1 week, r =0.0157
and σ =0.6 in function of K/S for the BL model

26



Figure 4.3: Premium of American put option with K =100, T =24 weeks,
r =0.0157 and S =87 in function of σ for the BL model

Figure 4.4: Premium of American put option with K =100, S =83, T=53 weeks
and σ =0.7 in function of r in weeks for the BL model
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4.2 Characteristics of American Put Critical Stock

Price

The critical stock price of an American put option decreases when time to expi-
ration increases as shown in Figure 4.5, or when the volatility increases as shown
in Figure 4.6, or when the interest rate decreases as in Figure 4.7. In each of
Figures 4.5-4.7, four graphs are drawn using the four methods: BL, PAAPC1
(this is our developed model, details about it are found in Chapter 5),BW and
LBA, with parameter values shown in the caption of each figure. Unlike the case
of the option premium, for the critical stock price, the error of BW and LBA with
respect to BL can go up to 6%. This indicates that while BW and LBA exhibit
valid behavior in terms of monotinicity in the input parameters, their accuracy
can be improved. This is an area where our power approximation PAAPC1 of-
fer the needed improvement, as indicated in Chapter 5 and as shown in Figures
4.5-4.7.

Figure 4.5: Critical Stock Price of American put option with K =100, r =0.0156
and σ =0.25 in function of T in weeks for BL, BW, LBA and PAAPc1 models
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Figure 4.6: Critical Stock Price of American put option with K =100, r =0.0156
and T =5 weeks in function of σ for BL, BW, LBA and PAAPc1 models

Figure 4.7: Critical Stock Price of American put option with K =100, σ=0.65
and T =33 weeks in function of r for BL, BW, LBA and PAAPc1 models
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Chapter 5

The Power Approximations

5.1 PAAPC1: Power Approximation for the Amer-

ican Put Option Critical Stock Price

A non-linear regression model is developed, using 1,040 instances, in order
to derive a closed-form approximation for the critical stock price of an American
put option. As stated in Chapter 4, Barone-Adesi & Whaley (1987) suggests
a Newton-method algorithm that solves an equation in order to get the critical
stock price of an American put option. Barone-Adesi & Whaley (1987) provide
an approximate expression for the critical stock price that provides the seed value
for the iterative procedure of the Newton method algorithm. This initial approx-
imation is shown in (15). This analytical approximation is taken as the starting
point of our closed-form approximation, plus a certain regression factor fitted by
non-linear regression. The following form of the correction factor is suggested. It
includes three terms: one term including a combination between T , r and σ, one
term including T and one term including σ. This form is reached after trying to
find a compromise between the number of terms added and the accuracy of the
approximation.

SPAAPC1
T = SBAWT + CF , (13)

where,
CF = a1T

a2ra3σa4 + a5T
a6 + a7σ

a8 (14)
SBAWT = S∗(∞) + (K − S∗(∞))eh1 (15)
S∗(∞) = K/(1− 1/q1(∞)),
N = 2r/σ2,
q1(∞) = (−(N − 1)−

√
(N − 1)2 + 4N)/2,

h1 = (rT − 2σ
√
T )(K/(K − S∗(∞))).

Excel solver is used to find the parameters ai, i = 1, . . . , 8, in a way that
minimizes the sum of square error (SSE) between the critical stock price in (13)
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and that computed ”exactly” using the binomial lattice as explained in Chapter
3. The results are shown in Table 5.1. A coefficient of determination R2 of
0.999220994 is obtained which implies a very good fit of the model.
It is to be noted the formulas of SSE) sum of squares regression (SSR), sum of
squares total (SST) and R2 are
SSE =

∑936
i=1(S∗Ti − S

PAAPC1
Ti

)2

SSR =
∑936

i=1(SPAAPC1
Ti

− S̄∗T )2

SST = SSE + SSR

R2 =
SSR

SST
where S∗T is the exact critical stock price obtained from the binomial lattice

Parameters Values
a1 -135.608304
a2 -0.012523
a3 -0.039998
a4 1.125138
a5 0.971170
a6 1.515302
a7 152.642029
a8 1.116479

Table 5.1: Parameters of PAAPC1

In Tables 5.2 and 5.3, a comparison between the developed model and other
analytical approximations is performed for in-sample (936 instances) and out-of-
sample testing (104 instances). Starting by the in-sample data, the RMSE for
PAAPC1 is equal to 0.499 which is less than the RMSE for BW (1.3722) and
Detemple (0.7212). The same thing applies to the average and median absolute
relative error. PAAPC1 presents an average relative error equal to 0.6014% which
is less than the average absolute relative error of the two other models (2.2277%
for BW and 1.1459% for Detemple). And finally, also in terms of the median
average relative error, PAAPC1 is ranked first with an error equal to 0.4480%
(BW and Detemple have an median absolute relative error equal to 1.9693% and
0.9853% respectively). Going to the out-of-sample data, PPAPC1 is ranked first
among the other methods according to the RMSE, average and median absolute
relative error. It has an RMSE equal to 0.4804 (BW and Detemple have an RMSE
equal to 1.4031 and 0.7351 respectively), an average absolute relative error equal
to 0.6141% (BW and Detemple have an average absolute relative error equal to
2.3468% and 1.2170% respectively) and a median absolute relative error equal
to 0.3764% (BW and Detemple have a median absolute relative error equal to
2.1653% and 1.0594% respectively). We can conclude that PAAPC1 is better
than all other approximations in terms of accuracy and simplicity as it is in
closed-form.
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BW Detemple PAAPC1
Measure 1: RMSE 1.3772 0.7212 0.4900

Measure 2: Average Absolute Relative Error 2.2277% 1.1459% 0.6014%
Measure 3:Median Absolute Relative Error 1.9693% 0.9853% 0.4480%

Rank according to Measure 1 3 2 1
Rank according to Measure 2 3 2 1
Rank according to Measure 3 3 2 1

Table 5.2: In-Sample PAAPC1 Accuracy

BW Detemple PAAPC1
Measure 1: RMSE 1.4031 0.7354 0.4804

Measure 2: Average Absolute Relative Error 2.3468% 1.2170% 0.6141%
Measure 3:Median Absolute Relative Error 2.1653% 1.0594% 0.3764%

Rank according to Measure 1 3 2 1
Rank according to Measure 2 3 2 1
Rank according to Measure 3 3 2 1

Table 5.3: Out-Sample PAAPC1 Accuracy

Figures 4.5 to 4.7 (in chapter 4) show that the characteristics of an American put
option critical stock price listed in chapter 4 are verified by PAAPC1.

5.2 PAAP1: Power Approximation for the Amer-

ican Put Option Price

A non linear regression model is developed, using 10,296 instances, in order to
derive a closed-form approximation for the price of an American put option. The
Barone-Adesi Whaley equation is used as a starting point of our approximation.
The first step is to replace, in the Barone-Adesi Whaley formula, the critical
stock price obtained by the Newton-Method algorithm by the critical stock price
obtained by PAAPC1. The second step is to add a correction factor to q1 fitted
by regression. The correction factor is suggested to be the sum of combinations
between the input parameters r, K/S, T and σ. There are 15 possible combi-
nations considering these parameters (1 combination including the 4 for them,
4 combinations including 3 of them each, 6 combinations including two of them
each and 4 combinations including each parameter alone). Several experiments
are done including a certain number of combinations each time. The purpose
of these experiments is to find a compromise between the model accuracy and
the number of terms added in the correction factor. The final result is a correc-
tion factor including 5 combinations (1 combination including the 4 terms and 4
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combinations including 3 parameters each).

P (S, T ) =

p(S, T ) + A1(
S

SPAAPC1
T

)q1+CF1 if S > SPAAPC1
T

K − S if S ≤ SPAAPC1
T

(16)

where,

CF1 = b1(K/S)b2T a3rb4σb5 + b6(K/S)b7T b8rb9 + b10T
b11rb12σb13

+ b14(K/S)b15rb16σb17 + b18(K/S)b19T b20σb21 (17)

Excel solver is used to find the unknown parameters in the following equation
that gives the least sum of square error. The formulas for SSE, SSR, SST and
R2 are presented in the previous section. The results are shown in Table 5.4. A
R2 of 0.999993838 is obtained which implies a very good fit of the model.

Parameters Values
b1 0.901197
b2 19.669270
b3 -0.079462
b4 1.994407
b5 -4.560642
b6 -0.688482
b7 0.577829
b8 1.615944
b9 0.535818
b10 -0.359980
b11 -0.745330
b12 0.083726
b13 -2.180157
b14 -1.225353
b15 19.433199
b16 2.091176
b17 -4.557230
b18 0.403516
b19 0.950459
b20 -0.782347
b21 -1.988778

Table 5.4: Parameters of PAAP1

In table 5.5 and 5.6, a comparison between the developed model and other ana-
lytical approximations is performed for in-sample (10,296 instances) and out-of-
sample (1,144 instances) testing. For the in-sample data, PAAP1 is ranked first

33



according to the median absolute relative error with a value equal to 0.0795%
(BW, Detemple and BS have a median absolute relative error equal to 0.1944%,
0.1224% and 0.3927% respectively). According to RMSE, PAAP1 is ranked sec-
ond with a value equal to 0.0184 behind Detemple which has an RMSE equal to
0.0164. (BW and BS have an RMSE equal to 0.0317 and 0.0546 respectively). For
the in-sample data, PAAP1 is ranked first according to the median absolute rel-
ative error with a value equal to 0.0815% (BW, Detemple and BS have a median
absolute relative error equal to 0.2067%, 0.1222% and 0.4049% respectively). Ac-
cording to RMSE, PAAP1 is ranked second with a value equal to 0.0159 slightly
behind Detemple which has an RMSE equal to 0.0158. (BW and BS have an
RMSE equal to 0.0322 and 0.0548 respectively). We can conclude that for both
in-sample and out-of-sample data sets, PAAP1 is ranked first according to the
median absolute relative error and second behind Detemple according to RMSE.
However, as mentioned in a previous function, Detemple needs a higher compu-
tational effort, since an optimization problem should be solved to get the price
of the option. Thus, we can conclude that our method performs better, since
the error difference between both methods is about 0.002 for the in-sample data
and 0.0001 for the out-of-sample data (negligible error). Thus, We can conclude
that our model outperforms the other analytical approximations present in the
literature.

BW Detemple BS PAAP1
Measure 1: RMSE 0.0317 0.0164 0.0546 0.0184

Measure 2:Median Absolute Relative Error 0.1947% 0.1224% 0.3927% 0.0795%
Rank according to Measure 1 3 1 4 2
Rank according to Measure 2 3 2 4 1

Table 5.5: In-Sample PAAP1 Accuracy

BW Detemple BS PAAP1
Measure 1: RMSE 0.0322 0.0158 0.0548 0.0159

Measure 3:Median Absolute Relative Error 0.2067% 0.1222% 0.4049% 0.0815%
Rank according to Measure 1 3 1 4 2
Rank according to Measure 2 3 2 4 1

Table 5.6: Out-Sample PAAP1 Accuracy

Figures 5.1 to 5.4 show that the characteristics of an American put option price
listed in section 5.1 are verified by PAAP1.
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Figure 5.1: Premium of American put option with K =100, S =142, r =0.0157
and σ =0.65 in function of T in weeks for PAAP1 model

Figure 5.2: Premium of American put option withK =100, T =1 week, r =0.0157
and σ =0.6 in function of K/S for PAAP1 model
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Figure 5.3: Premium of American put option with K =100, T =24 weeks,
r =0.0157 and S =87 in function of σ for PAAP1 model

Figure 5.4: Premium of American put option with K =100, S =83, T=53 weeks
and σ =0.7 in function of r in weeks for PAAP1 model
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Chapter 6

Conclusion and Ideas for Future
Work

We propose a method for pricing American put options is based on a power
approximation approach. Our aim is to obtain a closed-form approximation of
the price of an American put option and its critical stock price, that is easy
to compute, and at the same time highly accurate.Our first approximation for
determining the critical stock price is developed as follows. PAAPC1 is devel-
oped. The approximate analytical expression for the critical stock price derived
by Barone-Adesi & Whaley (1987) is taken as the starting point of our approxi-
mation, then a regression factor fitted by non-linear regression is added. PAAPC1
beats other approximations (Barone-Adesi & Whaley (1987) and Broadie & De-
temple (1996)) in terms of accuracy and computational effort. Our second power
approximation for the option premium is developed as follows. Barone-Adesi &
Whaley (1987) apprxoimation is improved by initially, replacing the critical stock
price obtained by the Newton-Method algorithm by the critical stock price ob-
tained by PAAPC1, and then by adding a correction factor fitted by non-linear
regression. It is shown that this formula performs better than the other ana-
lytical approximations present in the literature (Barone-Adesi & Whaley (1987),
Bjerksund & Stensland (1993) and Broadie & Detemple (1996)).

Future work includes enhancing the developed models to improve their ac-
curacy by trying different form on the correction factors (e.g. trying different
polynomial combinations or trying forms that are not even polynomial). Adding
to that, this methodology can further developed and tweaked to be implemented
on other types of financial instruments such as interest rate derivatives. The
pricing problem of an interest rate option is a complicated one. Interest rate
behavior over time must be modeled over time in order to price such a contract.
Consequently, the price will depend on the model used to describe the volatility
and behavior of the interest rate (Antl, 1988).
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We acknowledge the limitation of our work of pricing a plane vanilla American
options where the underlying asset price follows a stationary Brownian motion.
However, this thesis provides a useful illustration on the usefulness of regression-
based power approximations in pricing financial derivatives within a tractable and
familiar framework. We hope that this will motivate future research on apply-
ing such power approximations for calibrating pricing schemes for more complex
securities, where the underlying asset follows realistic processes such as those hav-
ing stochastic volatility, mean reversion, and time dependent parameters, among
other ramifications. We believe that power approximations will prove more useful
in the context of these sophisticated derivatives, as the existing pricing models
are heavily computational.
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Appendix A

Abbreviations

AARE Average absolute relative error
BL Binomial Lattice
BS Bjerksund & Stensland
BW Barone Whaley
LBA Lower Bound Approximation (Detemple)
SSE Sum of squares error
SSR Sum of squares regression
SST Sum of sqaures error
R2 Coefficient of determination
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Appendix B

Excel Formula

The following Excel function is used to randomly pick an out-of-sample data con-
sisting of 10 % of the of the total exact values,
IF(ROW()>10%*COUNTA($A$2:$A$5721),””,INDEX($A$2:$A$5721,
RANK.AVG(H2,$H$2:$H$5721,0),1))
The goal of the above expression is to select 10 percent of the 5,720 data points
existing in the range A2:A5721. The following steps explain the concept behind
this expression:
1- Use the random number generator to assign a unique random number between
0 and 1 to each row with the volatile function RAND()
2- Use the RANK.AVG() function in order to rank those numbers in a descending
order implicitly. (A random rank will be given for each row)
3- Use INDEX() to select the state corresponding to the rank assigned by RANK.AVG().
4- Use the IF() function to check that the number of required steps is reached
i.e. 10 percent of 5720 is reached.
5- Use the ROW() function to get the row number of the cell reference.
6- If the ROW() function returns a number higher than 10 percent of 5720, the
value is set to empty.
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Appendix C

Newton-Method Algorithm

This algorithm applies the Newton-Raphson technique is developed for solving
equation (4):

1) q1(∞) =
−(N − 1)−

√
(N − 1)2 + 4M

2

2) h1 = (rT − 2σ
√
T )(

K

K − S∗(∞)
)

3) S∗(∞) =
K

1− 1

q1(∞)

4) Seed Value: S∗ = S∗(∞) + (K − S∗(∞))(eh1) = Si

5) LHS=K − Si

6) RHS=p(Si, T )− (1−N [−d1(Si)])
S∗

q1

7) Slope of RHS: bi = −N [−d1(Si)](1−
1

q1

)−
(1 +

n[−d1(Si)]

σ
√
T

q1

8) Si+1 =
K −RHS + biSi

1 + bi

9) Step 8 will give the second guess of S∗. Then, we will have an iterative

process until having the following relative absolute error:
| LHS −RHS |

K
< 0.0000001
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Appendix D

Binomial Lattice To Get the
Critical Stock Price

As mentioned in Chapter 3, a bisection method is implemented in order to calcu-
late the critical stock price using a binomial lattice, price at which the continu-
ation value and the early exercise value are approximately equal. An example is
given next to illustrate the idea. Suppose we need to calculate the critical stock
price at time t = 0 of an an American put option at time to maturity T = 5/12
years with r = 0.1, σ = 0.2 and K = 60 utilizing a lattice with step ∆t = 1/12
years = 1 month.
Iteration 1: Since the critical stock price is always less than the strike price K,
we set a starting value for the stock price at time 0, S0, equal to strike price value
of K = 60. Figure D.1 and the first row of Table D.1 report results verifying that
it is not optimal to exercise the put option when S0 = K, and that the critical
stock price is indeed below 60.
Iteration 2: For this iteration, he stock price at time 0, S0, is equal to 45. Figure
D.1 and the second row of Table D.1 report results verifying that it is optimal
to exercise the put option when S0 = 45. However, the difference between E[Vc]
and K − S0 is far from zero. Indeed, the critical stock price is above 45.
Iteration 3: For this iteration, he stock price at time 0, S0, is equal to 52.5. Figure
D.2 and the second row of Table D.1 report results verifying that it optimal to
exercise the put option when S0 = 52.5. However, the difference between E[Vc]
and K − S0 is far from zero. Indeed, the critical stock price is above 52.5.

For the next iterations, the bisection method will search for the critical stock
price, this is equivalent to searching for the initial stock price, at which the dif-
ference between the exercise value and the continuation value is very small (less
than than the precision, equal to 10−9). Thus, for each iteration, a new binomial
lattice is built with a new initial stock price and the difference between K − S0

and E[Vc] is checked. As shown in Table D.1, 30 iterations are needed to reach
the critical stock price, which is reported in the last row of the table at a value
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S∗0 = 54.2411. This value is accurate at a precision 10−9. Iteration 1 to 10 and of
the final iteration are described in details in Table D.1 with the outcome of each
iteration. We can see in Figures D.1 and D.2 four binomial lattices built for the
first four iterations. A similar procedure is followed for all other iterations.

Iteration S0 Value K − S0 E[Vc] | E[Vc]− (K − S0) | Exercise Option?
1 60.0000 2.3011 0 2.3011 2.3011 NO
2 45.0000 15.0000 15.0000 14.5021 0.4979 YES
3 52.5000 7.5000 7.5000 7.1281 0.3719 YES
4 56.2500 4.2422 3.7500 4.2422 0.4922 NO
5 56.2500 5.6539 5.6250 5.6539 0.0289 NO
6 53.4375 6.5625 6.5625 6.3890 0.1735 YES
7 53.9063 6.0937 6.0937 6.0214 0.0723 YES
8 54.1406 5.8594 5.8594 5.8377 0.0217 YES
9 54.2578 5.8377 5.7422 5.8377 0.0036 NO
10 54.1992 5.8008 5.8008 5.7917 0.0091 YES
... ... ... ... ... ... ...
27 54.2411 5.7589 5.7589 5.7589 3.0631 10−8 NO
28 54.2411 5.7589 5.7589 5.7589 6.5050 10−9 NO
29 54.2411 5.7589 5.7589 5.7589 5.5582 10−9 YES
30 54.2411 5.7589 5.7589 5.7589 4.7344 10−10 YES

Table D.1: Bisection Method Iterations
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Figure D.1: Binomial Lattices corresponding to Iteration 1 and 2

Figure D.2: Binomial Lattices corresponding to Iteration 3 and 4
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