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AN ABSTRACT OF THE THESIS OF 

 

 

Karim Tarek Korbane    for Master of Engineering 
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Title: Quantifying and Mapping Saltwater Intrusion in a Complex Urban Environment: 

A Universal Kriging Approach 

 

Unsustainable groundwater exploitation in coastal aquifers has resulted in significant 

drops in freshwater heads and the promotion of seawater intrusion (SWI) into affected 

coastal aquifers. With nearly two-thirds of the world’s population living in coastal 

cities, SWI is a global problem impacting many coastal aquifers worldwide. Several 

modelling frameworks have been developed over the years and implemented for 

mapping SWI; yet they have performed poorly in complex urban heterogeneous karst 

environments with limited data. In the current study, a Universal Kriging (UK) model is 

proposed and developed for the city of Beirut, Lebanon. The developed model was 

successfully able to capture the main socio-economical, geological/geographical, and 

land-use drivers of SWI in the study area, while at the same time explaining the spatial 

correlation structure in the sampled data. The developed UK outperformed a landuse 

regression (LUR) model across a set of selected model performance metrics (NSE 0.71 

vs 0.54; RMSE 0.44 vs 0.93), while at the same time significantly reducing prediction 

uncertainties across the spatial domain by more than 20 %. Moreover, model validation 

results showed that both the UK and LUR models were significantly more robust and 

showed higher prediction skills as compared to previously developed kriging and GIS-

based groundwater vulnerability models for the same study area. Overall, the predictive 

maps generated from the UK model clearly highlighted the severity of SWI in Beirut, 

whereby more than 55% of the groundwater aquifer in the city was predicted to hold 

brackish to saline waters. The model results also showed clear large-scale and fine-scale 

spatial variabilities in the predicted salinity levels, while also identifying regions 

suffering from upconing and those that appear to be benefiting from potential 

freshwater karst conduits or from local elevated recharge rates. The results of this study 

provide a promising modelling and mapping approach that can be implemented to map 

SWI in other poorly monitored urban coastal aquifers and to better understand their 

vulnerabilities to anthropogenic stressors.   
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CHAPTER I 

 INTRODUCTION 
 

Increased pressure on the world’s freshwater resources has had major negative 

impacts on the socio-economic well-being of many communities as well as on the 

environment. Nearly 1.8 billion people (around 30% of the world’s population) 

currently live in areas facing severe water stresses for at least six months per year, with 

fresh water withdrawals exceeding 75% of natural river flows (Heather et al. 2014). An 

additional 1.6 billion people live in areas facing economic water scarcity, where water is 

available but is limited due to inadequate infrastructure (Heather et al. 2014, Mekonnen 

and Hoekstra 2016, Roson and Damania 2017). Pressures on the available water 

resources will likely exacerbate in the future due to the projected population growth, 

climate change, alternations in the water cycle, expansion of irrigated agriculture, 

economic development, and increased frequency of droughts (Dai et al. 2019, 

Famiglietti 2014, Foulon and Rousseau 2019, Green 2016, Heather et al. 2014, Pittock 

et al. 2016, Zhang et al. 2017). In the face of chronic surface water shortages, many 

communities have resorted to the exploitation of groundwater resources, whose 

extraction costs have significantly decreased with time (Heather et al. 2014). As a 

result, the volume of groundwater withdrawals has tripled over the past 50 years (UN 

2012) .  

 

It is estimated that groundwater sources currently supplies approximately 20% 

of the world’s water needs. It provides for 20% of the irrigation needs, 40% of the total 

industrial water withdrawals, and 50% of the municipal water demands (Zekster and 

Everett 2004). Despite its critical importance, few efforts have been put into place to 
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protect it; as a result, its management and monitoring remain relatively weak and 

fragmented, when compared to surface water resources (Famiglietti 2014, Jakeman et 

al. 2016). This has resulted in unsustainable groundwater exploitation across many parts 

of the world (Naderi 2020, Taniguchi et al. 2010). This overexploitation has caused 

stream-flow depletion, drops in the water table, loss of springs and wetlands, and the 

promotion of seawater intrusion (SWI) (Chang et al. 2011, Flores et al. 2020, Mancuso 

et al. 2020).  

 

SWI is defined as the encroachment of saltwater inland as a result of declining 

freshwater heads and changes in the hydraulic gradient at the coastline (Barlow and 

Reichard 2010, Bruington 1972, Meyer et al. 2019, Watson et al. 2010). SWI is 

currently a major problem affecting many coastal aquifers worldwide (Dentoni et al. 

2015, Huang and Chiu 2018, Lal and Datta 2019, Nishikawa et al. 2009, Romanazzi et 

al. 2015, Safi 2019, Shi and Jiao 2014, Werner 2010). With around two thirds of the 

world’s population living in coastal cities (Singh 2014), improving our understanding of 

the relative contributions of the main drivers of SWI remains a high priority.  

 

Several approaches have been developed over the years to quantify the main 

drivers of SWI and to model its development in space and time. These efforts can be 

divided into four main categories, namely: 1) mathematical SWI models that include the 

variable density flow/solute transport models (Chang et al. 2011, Giambastiani et al. 

2007, Kerrou et al. 2010b, Langevin and Zygnerski 2013, Masterson and Garabedian 

2007, Sanford and Pope 2010) and the sharp-interface models (Akbarpour and 

Niksokhan 2018, Beebe et al. 2016, Deng et al. 2017, Gorgij and Moghaddam 2016, 
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Mantoglou 2003, Mehdizadeh et al. 2015, Morgan et al. 2015, Ranjan et al. 2006, 

Uddameri et al. 2014); 2) geo-statistical models (Momejian et al. 2019b, Murgulet and 

Tick 2008); 3) groundwater vulnerability assessment models (Elewa et al. 2013, Lobo-

Ferreira et al. 2005, Mahesha et al. 2012, Tomaszkiewicz et al. 2014, Trabelsi et al. 

2016); and 4) geo-physical models (Cimino et al. 2008, Kura et al. 2014). All four 

methods have limitations, when it comes to capturing small-scale salinity variability in 

complex urban environments with limited hydrogeological data and a highly 

heterogeneous coastal karst aquifers. The hydraulic properties in karstic aquifers are 

known to vary considerably over small distances (Dubois et al. 2019). Fractures in the 

karst can affect the flow of seawater inland in several ways, including promoting the 

mixing zone width in the presence of vertical fractures in the vicinity of the seawater or 

pushing the saltwater-freshwater wedge seaward when horizontal fractures are present 

in the deep parts of the aquifer (Sebben et al. 2015). The sharp-interface models, for 

instance, have proven to be useful when regional estimates of the saltwater-freshwater 

interface are required (Reilly and Goodman 1985); yet they are unable to accurately 

predict groundwater salinity at the well level. On the other hand, the variable-density 

models have proven to be very sensitive to the uncertainties in the hydraulic 

conductivity fields (Safi 2019) and thus tend to be unsuitable for modelling highly 

heterogeneous coastal aquifers with limited hydrogeological data. Meanwhile, the 

complexity of the variable density models along with their high computational power 

requirements and numerical convergence problems hinder their effective use to model 

SWI at fine spatial scales (Kerrou et al. 2013, Kerrou et al. 2010a, Langevin and 

Zygnerski 2013, Sanford and Pope 2010). Moreover, groundwater vulnerability 

assessment models are only able to capture the overall aquifer vulnerability, with some 
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models (e.g. DRASTIC and EPIK) not inadequately accounting for the lateral 

movement of pollution (Metni et al. 2004, Momejian et al. 2019b). Additionally, both 

the geo-statistical and groundwater vulnerability assessment models have been shown to 

have limited capabilities to account for the small-scale salinity variations in highly 

heterogeneous karst urban coastal aquifers (Metni et al. 2004, Momejian et al. 2019b).  

 

In light of the above, we propose a new SWI modelling approach that aims to 

capture the small-scale variability of salinity levels in a highly heterogeneous aquifer 

located beneath a complex urban coastal environment with limited hydrogeological 

data. This study adopts a technique that combines the strengths of land-use regression 

(LUR) models and geo-statistics in a modelling procedure that is termed Universal 

Kriging (UK). The method consists of incorporating a LUR model that accounts for the 

socio-economical, geological/geographical, and land-use drivers of SWI, while 

concurrently accounting for spatial autocorrelations in the sampled data. While both the 

LUR and UK have been successfully used to model environmental systems, such as 

ambient air quality (de Hoogh et al. 2013, Eeftens et al. 2012, Hoek et al. 2011, Ma et 

al. 2019, Wang et al. 2012, Xu et al. 2019, Young et al. 2016, Zalzal et al. 2020) and 

groundwater level fluctuations (Ahmadi and Sedghamiz 2006, Gundogdu and Guney 

2007, Kumar 2007, Xiao et al. 2016), they have not been widely used to predict and 

map the spatial variations of groundwater quality in general and SWI specifically. This 

study is the first of its kind to apply UK in SWI predictions in a karst environment using 

groundwater salinity data collected from the coastal city of Beirut, Lebanon. It is hoped 

that this study will provide an opportunity to enhance our knowledge of the relative 

impact of different SWI drivers on salinity levels in data-scarce coastal cities with 
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heterogeneous aquifers. Moreover, the proposed methodology provides a mechanism 

towards the generation of salinity maps at a fine spatial resolution that can be used to 

identify SWI affected regions and isolate areas with high model uncertainties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

CHAPTER II 

MATERIALS AND METHODS 
 

A- Study area 

The study area comprises the administrative boundaries of Beirut, the capital 

city of Lebanon. Beirut is located along the Eastern Mediterranean coastline (Figure 1). 

The city is bounded by the Mediterranean Sea from the North and West and the Beirut 

River to the East. The city extends over an area of about 20 km2 and has a population 

density of about 18,000 inhabitants/km2 (CAS 2009). It is administratively divided into 

10 areas, namely: Ain-Mreisseh, Moussaytbeh, Mazraa, Bachoura, Zkak-el-Blatt, Ras-

Beirut, Achrafiyeh, Remeil, Saifi, and Medawar. Topographically, the study area is 

relatively flat, with elevations ranging between 0 m adjacent to the sea up to 60 m in the 

Achrafiyeh area and along the south-western corner of Mazraa. The area is 

characterized by a dense urban fabric, covering around 70% of the city, with scattered 

shrublands, parks, vacant lands, and industrial zones occupying the remaining 30% 

(CNRS 2010).  

 

The exposed geological formations in Beirut belong to the Cretaceous, 

Quaternary, and Tertiary ages (Peltekian 1980). The cretaceous and tertiary formations 

are mostly exposed in the North-Western and North-Eastern sections of the study area, 

respectively. The cretaceous formations, whose aquifers are characterized by high 

transmissivity but low storage capacity, are divided into three layers based on their 

ages: C4a, C4b, and C4c. The C4a layer is the oldest and has a thickness of about 200 m 

and is classified as an aquifer. The C4b layer, which has a thickness of about 125 m, is 

classified as an aquiclude. The topmost layer is the C4c layer; it has a thickness of about 
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Figure 1: Geographic location of study area 

 

180 m and is classified as an aquifer (Walley 1997). The exposed geological formations 

for the rest of the study area are Quaternary. Quaternary deposits are characterized by 

alluvial, beach, and eolian deposits. They rest unconformably on the cretaceous 

fractured limestone. Quaternary deposits have a thickness of about 50 m and are 

classified as homogenous porous aquifers locally. Based on collected information on 

pumping depths, expert elicitation with local well drilling companies, as well as the 

analysis of geological cross sections in the study area, it is apparent that all sampled 

domestic wells in the city were tapping into the C4c cretaceous limestone layer. Few old 

shallow wells (~ 10m depth) in the city are known to tap into the quaternary aquifer; but 

none were sampled in this work. 
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Public water delivery in the study area faces several challenges related to 

chronic deficits, lack of metering, unsustainable water resource management, and weak 

governance. Moreover, the uneven temporal distribution of precipitation and the 

presence of a long dry season, typical of Mediterranean climates, have exacerbated 

water stress and complicated its management (Bou-Zeid and El-Fadel 2002, Roson and 

Damania 2017). As a result, water delivery through the public network covers only half 

the required demand (MoE and UNDP 2011). Water distribution in the city shows clear 

geographical differences, with some regions of Beirut receiving less than seven hours 

per day of fresh water supply, while others receive almost a continuous supply 

(Alameddine et al. 2018, EBML 2019, El-Fadel et al. 2003). In an effort to compensate 

for the resulting deficit, many households in the city have resorted to the illegal drilling 

of groundwater wells that operate without oversight and beyond safe yields (Imad 

2003). The combination of the aquifer’s intrinsic geological vulnerability, the city’s 

chronic water deficits, and weak governance has resulted in the Beirut aquifer being the 

most severely affected coastal aquifer by SWI across Lebanon (MoEW and UNDP 

2014). It has also been identified amongst the two most affected aquifers by SWI across 

the entire Eastern Mediterranean coastline (Rachid 2020).  

 

SWI in the city was first recorded back in 1969 through geo-electrical 

measurements (FAO 1997). Since then, the groundwater chloride concentrations have 

continuously increased, reaching up to 4,200 mg/L in the year 2005 (Saadeh 2008). 

More recent field investigations carried out between 2013 and 2014 have shown that the 

Total Dissolved Solids (TDS) and chloride concentrations exceeded 20,000 mg/L and 

10,000 mg/L respectively, in some zones of the study area (El-Fadel et al. 2014). 
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Several attempts have been carried out to characterize and model the vulnerability of the 

Beirut aquifer to SWI, including the development of geostatistical (Momejian et al. 

2019b), vulnerability-based (Metni et al. 2004, Momejian et al. 2019b), and variable 

density flow/solute transport (Safi 2019) models. Yet, all of the developed models 

showed poor performance when validated with field data. Moreover, their salinity 

predictions were associated with high levels of uncertainties caused by the complexity 

of the aquifer and data scarcity. 

 

B- Sample collection and laboratory testing 

Water quality data were collected over two rounds (Figure 2). The first 

campaign took place between September 2018 and January 2019. In that round, a total 

of 132 water samples were collected from randomly selected buildings across Beirut. 

However, the sampled wells lacked accurate information on their depths. Thus, a second 

campaign of sampling targeted 65 wells with well-documented depths. That campaign 

spanned between August 2019 and October 2019.  

 

All water samples were extracted using plastic sterile containers and placed in 

a cooler filled with ice bags before being transported to the Environmental Engineering 

Research Laboratory at the American University of Beirut, where testing for salinity 

took place. TDS levels were determined using a Eutech CyberScan CON 11 

conductivity/TDS meter that has a measurement range of 0 to 99.9 ppt, a resolution of 

0.05% over the entire measurement scale, and an accuracy of ±1%. Prior to any 

measurement, the meter was calibrated with three standard conductivity calibration 

solutions, namely: 1143 μS/cm, 12.88 mS/cm, and 111.8 mS/cm. Chloride ion 
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concentrations were measured using the Mohr titration procedure according to ISO 

9297:1989 by titrating the diluted sample with a 0.1 M AgNO3 solution in the presence 

of 1 mL of a 5% K2CrO4 solution as an indicator. Both TDS and Chloride ions 

concentration are good indicators of groundwater salinity (Langevin and Zygnerski 

2013, Sanford and Pope 2010). 

 

Figure 2: Sampled wells in a) first and b) second rounds across the city of Beirut. The greyed 

areas represent the port and the Beirut central district that have few residential buildings and largely sit on 

reclaimed land. 

 

C- Model development 

1- Landuse regression model 

A LUR model was first developed to establish an empirical relationship 

between the measured salinity levels (TDS or chlorides) on one hand and a set of 

predefined predictors on the other. The predictor variables were selected based on 

previous studies and our understanding of the main physical drivers of SWI (Table 1). 

These drivers were divided into three main categories, namely 1) 

geological/geographical, 2) socio-economic, and 3) land-use based predictors.  
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The selected geological/geographical factors that affect groundwater salinity 

included pumping depth, distance to sea, elevation, the locations of faults, as well as the 

physical characteristics of the aquifer materials (Gorelick and Zheng 2015, Kourgialas 

et al. 2016, Lobo-Ferreira et al. 2005, Meyer et al. 2019, Yu and Michael 2019). We 

expect that as pumping depths increase or when the distance to the coastline decreases, 

the probability of tapping into saline water would increase (Herzberg 1901). 

Meanwhile, we expect that areas with higher elevations will experience less SWI. The 

proximity of a well to a fault may either exacerbate SWI through establishing 

preferential flow-paths for seawater or hinder SWI by providing preferential fresh-water 

flow-paths at certain locations or obstructing existing seawater pathways (Allen et al. 

2002). In an effort to account for the potential impacts of fault lines, the Euclidean 

distance separating each sampled well from the nearest fault in the study area was 

calculated using the Spatial Analyst toolbox in ArcMap 10.6.2 (ESRI 2018). Similarly, 

the Euclidean distances between the wells and the coastline were determined. An in-

depth analysis of the physical characteristics and spatial distribution of the aquifer 

material was conducted by studying different geological cross sections in the study area. 

Different geological cross-sections of the city were developed by relying on the 

geological outcrop and fault maps of Beirut (Dubertret 1955) along with a 10 m 

resolution Digital Elevation Model (DEM) map of the study area. The geological cross-

sections showed the existence of a 70 m to 100 m thick C6 geological layer 

characterized by impermeable marls beneath the shoreline along the eastern parts of the 

city (from the Saifi region to Medawar; Figure 1 and Figure 3). This thick geological 

barrier is expected to hinder the advancement of SWI further inland. This layer appears 

to have been eroded over time in the other western sections of the city. The potential 
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impact of this protective layer in the model was accounted for by creating a binary 

categorical variable (“Geologically protected zone” versus “Geologically unprotected 

Zone”; Figure 3).  

 

The anthropogenic predictors that can potentially promote SWI were divided 

into socio-economic and land-use-based drivers. The socioeconomic drivers tend to 

dictate groundwater abstraction rates (Klassen and Allen 2017), while changes in the 

land use and land cover have an effect on the direct recharge of the aquifer (Bhattachan 

et al. 2018, Deng et al. 2017, Uddameri et al. 2014). Given the lack of metering on the 

volume of water being pumped from the wells, groundwater abstraction rates were 

estimated through a set of surrogate variables. These included the number of buildings, 

the proliferation of small-scale water desalination units, and the presence of large 

commercial water pumping activities (i.e., gas and car wash stations, laundry services, 

hotels, and hospitals) within a set of spatial buffers defined around the wells. The GIS 

data was supplied by the Beirut Urban Lab (2020). The radii of the buffers were pre-

defined to range between 10 m and 1 Km. Other indirect socio-economic variables 

affecting groundwater abstraction rates were also investigated. These included 

apartment prices ($/m2 for first floor unit) (RAMCO 2014) to account for increased 

water consumption with affluence (Hussien et al. 2016) as well as the frequency of fresh 

water supply from the public network. The frequency of water delivery through the 

public water supply network in Beirut for 2019 was obtained from the Beirut and Mount 

Lebanon Water Establishment (EBML 2019). As can be seen in Figure 3, the water 

delivery schedule for the city showed a clear spatial pattern that divided the city into 

two regions. The first zone is comprised of the western sections of the city and includes  
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Table 1: Proposed predictors for the SWI LUR model 

Category Possible Predictors Description 
Source of 

Information 

Category #1: 

Geological/ 

Geographical 

Predictors 

Geological protection against 

SWI 

Categorical variable: 

“protected” and “unprotected” 

Geological outcrop 

map (Dubertret, 

1955) and DEM 

Well depth Continuous variable (in m) 
Data from well 

drilling companies 

Nearest Distance to sea Continuous variable (in m) 

Geological outcrop 

map (Dubertret, 

1955) 

Distance to nearest fault Continuous variable (in m) GIS analysis 

Elevation Continuous variable (in m) 
DEM of Beirut, and 

GIS analysis 

Category #2: 

Anthropogenic: 

Socio-Economic 

Predictors 

Price of 1 square meter of a 

first floor apartment 
Continuous variable (in $/m2) (RAMCO, 2014) 

Frequency of freshwater 

supply from EBML 

Categorical variable: zones with 

limited supply (<8hrs/day) and 

zones with continuous supply 

(>21 hrs/day) 

(EBML, 2019) 

Category #3: 

Anthropogenic: 

Land-use based 

predictors 

# of buildings within a set of 

pre-defined buffers1 at each 

sampled location 

Continuous variable 
Field survey and 

GIS analysis 

Potential recharge zones 

(vacant or green areas) within a 

set of pre-defined buffers1 

Continuous variable, expressed 

as % of total buffer area 

LULC map, 

Google imagery, 

and GIS analysis 

Number of commercial water 

users within a set of pre-

defined buffers1 

Continuous variable 
Google maps and 

GIS analysis 

Number of buildings with a 

desalination unit within a pre-

defined set of buffers1 

Continuous variable 
Field survey and 

GIS analysis 

Land-use change over time 

Categorical variable: “recently 

urbanized areas” and “old 

urbanized areas” 

Comparison 

between aerial and 

satellite images 
1 buffer distances included 10 m, 25 m, 50 m, 75 m, 100 m, 200 m, 300 m, 400 m, 500 m, 750 m, 1000 m 

 

the areas of Ras Beirut, Ain Mreisseh, Mina Al Hosn, Bachoura, Zkak el Blatt, Mazraa, 

and Moussaytbeh. Those areas received on average less than 8 hours/day of freshwater 

supply. The eastern parts of the city that included the areas of Achrafieh, Remeil, Saifi, 

and Medawar received more than 21 hours/day of freshwater supply. This large 

disparity in water distribution frequency between these two regions is largely related to 

inadequate storage and transmission infrastructure in the western sections of the city. 

The frequency of public water supply was accounted for in the LUR model 



19 

 

bydeveloping a spatial categorical variable. Note that there is a large overlap between 

the geologically protected zone and the region with ample freshwater supply (Figure 3).  

 

Finally, changes in the land-use and building density in the study area were 

assessed over the past 70 years through a comparison of aerial images taken in the 

1950s (Lebanese Army 1950) with 2020 Landsat-8 images (USGS 2020). The 

comparison showed that large sections of the city were already urbanized in the 1950s. 

Only the south-western section of the city appears to have been undeveloped in the 

1950s. That section experienced fast urbanization starting in the late 1990s and since 

then has become densely built. Since saltwater encroachment is a slow process that 

requires time to build up (Langevin and Zygnerski 2013, Sanford and Pope 2010), 

newly urbanized sections of the city (Figure 3) may experience a less pronounced 

saltwater wedge in comparison to older neighbourhoods that potentially had a longer 

pumping period. In an effort to account for the potential impact of local recharge on 

SWI, the percentage of pervious areas within pre-defined buffer zones (radii ranging 

from 10 m and 1 Km) were determined from recent 2020 Landsat-8 images (USGS 

2020).  

 

Figure 3: Categorization of study area into a) geologically protected vs. unprotected zones b) 

based on frequency of freshwater supply and c) recent vs. old urbanization areas 
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It should be noted that several other factors such as sea-level rise and climate 

change are well-known drivers of SWI (Akbarpour and Niksokhan 2018, Deng et al. 

2017, Langevin and Zygnerski 2013, Masterson and Garabedian 2007). Yet, their 

impacts tend to be minor, when compared to the geological and anthropogenic drivers 

in the case of Beirut (Safi 2019), and largely uniform across the city. As such, they were 

not accounted for in this study. 

 

The LUR model selection process was conducted using the R software (R Core 

Team 2018). Models were developed using the bi-directional elimination stepwise 

regression analysis using the entire set of the pre-defined predictors (Table 1). The final 

model was chosen based on having the lowest Akaike’s Information Criterion (AIC) 

(Akaike 1974), while ensuring that only statistically significant predictors (90% 

confidence interval) were kept in the model. Statistically significant predictors were 

also analysed so as to ensure that they were in agreement with our understanding of the 

SWI phenomenon and that the model did not suffer from multi-collinearity. The 

model’s performance was evaluated based on its R2, the Nash-Sutcliffe Efficiency 

(NSE) coefficient (Nash and Sutcliffe 1970), percent bias (PBIAS) and Residual 

Standard Deviation (RSD), while its robustness was tested using cross validation. The 

LUR model structure is shown in Equation 1: 

log(𝑇𝐷𝑆) [𝒓] = ∑ 𝑎𝑛𝑓𝑛(𝒓)𝑛
𝑖=1 + ε (Equation 1) 

where fn(r) corresponds to the value of the nth predictor at the spatial coordinates 

defined by the spatial vector r, an is the coefficient corresponding to each of the 

predictors, and ε is the unexplained model residual at r. Note that variable “xn” may be 

a continuous variable, a categorical variable, or could permit for potential interactions 
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between two independent variables. It should be noted that the unexplained model 

residuals (ε) were analysed for spatial continuity and clustering using Moran’s I index. 

A statistically significant Moran’s I was considered to be a justification towards further 

developing the LUR model into a UK model. Moran’s I index varies between -1 and 1. 

A Moran’s I index of 0 signifies no spatial autocorrelation, whereas values close to -1 

and 1 signify spatial dispersion and spatial clustering of model residuals, respectively 

(Moran 1948). The equation to determine Moran’s I index is shown in Equation 2: 

𝐼 =
𝑛

𝑆0
 
∑ ∑ 𝑤𝑖,𝑗 (𝑧𝑖−�̅�) (𝑧𝑗−�̅�)𝑛

𝑗=1
𝑛
𝑖=1

∑ (𝑧𝑖−�̅�)2𝑛
𝑖=1

          (Equation 2) 

where n is the number of observations, zi and zj correspond to the model residual values 

at spatial locations i and j, wi,j corresponds to the spatial weight between features i and j, 

and S0 corresponds to the sum of all weights. Moran’s I index was determined using the 

“Spatial Autocorrelation” tool under the “Spatial Statistics” toolbox in ArcMap 10.6.2 

(ESRI 2018).  

 

2- Universal kriging model 

UK models assume that a non-stationary variable, such as groundwater salinity, 

can be expressed as the sum of a linear empirical model (a trend) along with a stochastic 

geospatial component that is able to account for spatial correlations. The linear 

component estimates the expected value of the variable at the sampled spatial locations, 

rendering the stochastic component ideally intrinsic, with zero expectation, and with a 

finite variance (Journel and Huijbregts 1978, Kumar 2007). For this study, the 

statistically significant predictors from the established LUR were used in the UK model 

to form its linear component (Xu et al. 2019). The geospatial component on the UK 

model on the other hand is capable of accounting for the spatial correlations in the LUR 
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model residuals that may be attributed to clustering near major saltwater or freshwater 

conduits. The overall UK model structure is shown in Equation 3: 

log(𝑇𝐷𝑆) [𝒓] = ∑ 𝑎𝑛𝑓𝑛(𝒓)𝑛
𝑖=1 + μ(𝐫) + ε   (Equation 3) 

where μ(𝐫) corresponds to the spatially interpolated residual at a spatial location 

defined by the vector r, fn(r) corresponds to the value of the nth predictor at the spatial 

coordinates defined by r, an is the coefficient corresponding to each of the predictors, 

and ε is the unexplained white noise. A suitable UK semi-variogram model needs to be 

selected to model μ(𝐫). This was based on finding the semi-variogram model that 

showed the closest fit with the experimental semi-variogram generated from the LUR 

model residuals. The experimental semi-variogram was constructed using Equation 4 

(Matheron 1963): 

𝛾(ℎ) =
1

2|𝑁(ℎ)|
 ∑ (𝑧𝑖 − 𝑧𝑗)

2
𝑁(ℎ)                    (Equation 4) 

where γ(h) is the experimental semi-variogram value at a lag distance h, N(h) is the set 

of all pairwise observations separated by h, |N(h)| is the number of distinct pairs in N(h), 

and zi and zj correspond to the observation values in each of the distinct pairs of N(h). 

Note that since depth was accounted for in the deterministic part of the LUR model, the 

adopted geo-statistical model was only defined in 2D (longitude and latitude). 

 

The minimization of the UK estimation variance results in a set of linear 

equations that are simultaneously solved to estimate the coefficients of the linear model 

(an) and the coefficients of the geo-spatial model (μr) concurrently (Ver Hoef and 

Cressie 1993). The geospatial model coefficients include the nugget, sill, and range of 

the semi-variogram model. The nugget, ideally zero, represents the variance of the 

response variable as separation distances approach zero. The sill represents the semi-
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variogram limiting value, after which, no spatial correlations exist. Meanwhile, the 

range represents the distance in meters at which the sill is reached (Armstrong 1998). 

UK model fitting was done using the “gstat” package (Pebesma 2004) in the R software 

(R Core Team 2018). Three different semi-variogram models were considered to 

estimate the correlation structure, namely the “Gaussian”, “Exponential”, and 

“Spherical”. The best model was selected based on several leave-one-out cross-

validation (LOOCV) prediction statistics that included the NSE, the Root Mean Square 

Error (RMSE), and the residual standard deviation (RSD).  

 

3- Model comparison and SWI mapping 

For each of the two models, predictive salinity surfaces were generated for the 

study area at well depths of 50 m, 100 m, and 150 m. These three depths were selected 

to cover the range of depths in the sampled wells. Mean salinity predictions were 

generated on a 10 m × 10 m raster grid that covered the geographical extent of the study 

area. This was achieved using both the “sf” package (Pebesma 2018) in R (R Core 

Team 2018) as well as the “Spatial Analysis Toolbox” in ArcMap 10.6.2 (ESRI 2018). 

Note that since both the LUR and UK models can potentially predict concentrations 

with salinities exceeding the levels of the Mediterranean Sea (TDS = 35,000 ppm), any 

prediction above 35,000 ppm was truncated and replaced with a value of 35,000 ppm 

(Goovaerts 1997). The performance of the UK model versus that of the LUR was 

evaluated by calculating the differences in the predicted salinity levels (Equation 5), 

comparing prediction uncertainties (variances) over space, as well as by assessing a set 

of LOOCV statistics (Table 2). The LOOCV statistics that were used for model 

comparison included: the NSE, PBIAS, RMSE, the root mean square standardized error 
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(RMS-S), and the ratio of RMSE to the standard deviation of observations (RSR; Table 

2). 

𝐷𝑖𝑓𝑓𝑖,𝑗 =  𝜇𝑖,𝑗
𝐿𝑈𝑅 − 𝜇𝑖,𝑗

𝑈𝐾 (Equation 5) 

where 𝜇𝑖,𝑗
𝐿𝑈𝑅 is the mean predicted salinity value from the LUR model at 

location i, j for a specific depth and 𝜇𝑖,𝑗
𝑈𝐾 is the mean predicted salinity value from the 

UK model at location i, j for a specific depth. 

 

Table 2: Model performance statistics 

Performance statistics Formula 

Nash-Sutcliffe Efficiency (NSE) 
𝑁𝑆𝐸 = 1 −

∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚)
2

∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)2

 

Percent bias (PBIAS) 
𝑃𝐵𝐼𝐴𝑆 =

∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚) ∗ 100

∑ 𝑌𝑖
𝑜𝑏𝑠  

Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 = √∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑝𝑟𝑒𝑑
)

2

𝑛
 

Root Mean Square Standardized Error 

(RMS-S) 𝑅𝑀𝑆 − 𝑆 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑝𝑟𝑒𝑑

= √∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑠𝑖𝑚)
2

𝑛 ∗ �̂�2
 

Ratio of RMSE to standard deviation of 

observations (RSR) 𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠

=
√∑(𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2
   

√∑(𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)2   
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CHAPTER III 

RESULTS AND DISCUSSION 
 

A- Saltwater intrusion in the Beirut Aquifer 

 Salinity levels recorded during the 2018-2019 sampling campaign 

showed a large spatial variability across the study area. Groundwater TDS levels ranged 

from as low as 250 ppm up to 35,000 pm, while chloride levels ranged from as low as 

15 ppm up to 28,000 ppm (Figure 4). As expected, chlorides were highly correlated to 

measured TDS levels (Pearson’s correlation coefficient of 0.99). Salinity levels were 

found to vary significantly between the different administrative regions of the city 

(Figure 5). Wells located in the geologically unprotected zone that experiences chronic 

water shortages (Figure 3) showed significantly higher levels of salinity as compared to 

wells located in the geologically protected zone of the city that has ample water supply 

(Figure 6). The quality of the groundwater in the latter was exclusively fresh, while the 

quality of the former ranged largely from brackish to saline. Another clear spatial 

pattern of the variability in salinity levels was the drop in the salinity moving away from 

the coastline (Figure 7), with levels beyond 2 km of the coastline stabilizing at 500 ppm. 

Note that some sections of the Mazraa administrative region, which experiences chronic 

water shortages and is unprotected geologically from SWI, had salinity levels similar in 

magnitude to those observed in the geologically protected zones of the city that received 

an ample supply of freshwater, largely because it is the farthest inland region of Beirut.  

 

In addition to the observed large-scale spatial patterns of salinity, small-scale 

heterogeneities were recorded within several regions, particularly in the areas of 

Moussaytbeh, Ras Beirut, Ain-Mreisseh, Mina el-Hosn, and Zkak el Blatt. This small-  
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Figure 4: Measure TDS (a) and chloride (b) levels during the sampling campaign of 2018-2019 

 

 

Figure 5: TDS levels across the different administrative zones of Beirut (no wells were 

sampled in Saifi and Medawar) 

 

scale variability was partly due to the observed differences in well depths. The range of 

well depths was found to vary the most in these areas, particularly in the regions in 

close proximity to the sea. As expected, deeper wells in a given area tended to be at a 

higher risk of salinization (Herzberg 1901). In Beirut, we found that the salinity levels 

in the sampled wells tended to increase linearly with well depth (Pearsons’s correlation 

coefficient of 0.62) up to 700 m away from the coastline. The correlations weakened at 
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larger distances, potentially because the saltwater freshwater interphase became too 

deep to affect the tapped wells (Herzberg 1901). 

 

 

Figure 6: Variation of observed TDS as a function of a) frequency of fresh water supply and b) 

the presence of geological protection 

 

 
Figure 7: Variation of measured TDS levels as a function of distance to coastline 
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In an effort to quantify the temporal changes in salinity levels in the study area, 

the measured salinity levels from the 2018-2019 dry season were compared to those 

measured previously during the same season back in 2013 (Alameddine et al. 2018, 

Momejian et al. 2019b). Paired t-tests were conducted on data collected from 44 wells 

that were sampled during both campaigns. Both the median TDS and chloride levels 

were found to have significantly increased over the past 5 years, from around 3,600 

ppm to more than of 5,100 ppm for TDS and from 1,900 ppm to 3,550 ppm for 

chlorides (p-values of 4×10-3 and 9×10-5 respectively), indicating that SWI in these 44 

wells has accelerated at an alarming rate.  

 

B- SWI model predictions and performance 

The LUR model developed for predicting TDS levels in the study area was 

able to explain 60% of the observed variability. The final model had five significant 

predictors (Table 3) that included the distance separating the well from the coastline, 

well depth, elevation, the presence of geological protection, and the number of buildings 

with water desalination units within a buffer zone of 200 m. The model predicted that 

for every 10% increase in the separation distance between a well and the coastline, the 

salinity was expected to drop by around 10% on average; meanwhile increasing the 

depth of a well by 10 % resulted in a 9% increase in its salinity level. Wells in the zone 

that were geologically protected against SWI had salinities that were on average 75% 

lower than similar wells in the unprotected zone of the city. Additionally, the model 

predicted that for every one meter increase in elevation, the average TDS levels were 

predicted to drop by around 3%. Lastly, for every additional building within a 200 m 

buffer zone from a well that is fitted with a desalination unit, the model predicted a 14% 
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increase in the geometric mean of its TDS level. The influence of the desalination units 

and elevation was found to be localized to a few areas; yet their relative influence 

increased with depth. It should be noted that several of the considered predictors were 

not selected in the final model due to high multi-collinearity between the predictors. For 

example, the large overlap between the geologically protected zone and the regions of 

the city that received more than 21 hours/day of freshwater supply did not allow for 

including the two categorical variables in the same model. Interestingly, the categorical 

variable describing the period during which intensive urbanisation happened in the city 

turned out to be statistically not significant with regards to predicting the salinity levels 

in the city. We believe that this might be attributed to two main reasons. The first reason 

is the high penetration of groundwater wells in the newly developed part of the city as 

compared to the older sections of the city. As such, it appears that while new section of 

the city had a shorter period of groundwater over-pumping, the rate appears to be much 

higher than in other parts of the city. The second reason could be attributed to the 

presence of the dense suburb of Beirut just south of the newly developed part of the 

city. That suburb faces chronic water shortages even more severe than the western 

section of Beirut City and as such it relies heavily on groundwater resources.  

 

Overall, the model predicted that freshwater was expected to occur in 43 % of 

the study area at a well depth of 50 m (Figure 8). This percentage decreased with depth 

and reached around 19% at a depth of 150 m. Meanwhile, the areas that were expected 

to tap into saline water increased from less than 11% at a depth of 50 m to more than 23 

% at a depth of 150 m. Overall and across all depths, the most common salinity level to 

expect was brackish water (Figure 8). Moreover, the LUR prediction maps captured the 
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two most important SWI dynamics that include having the salinity levels decrease 

moving away from the coastline, while at the same time increasing with depth (Figure 

9). The model predictions also clearly delineated the separation between the 

geologically protected region of the study area from that which lacked it.  

 

Table 3: Developed LUR model for predicting log(TDS) 

Predictor Model coefficient (± 1 sd) p-value 

Intercept 12.53 (± 1.57) 5.38×10-11 

Geologically Protected Zones 

(categorical) 
-1.33 (± 0.41) 

1.87×10-3 

Log of distance to sea (m) -1.15 (± 0.32) 7.63×10-4 

Log of well depth (m) 0.88 (± 0.30) 4.95×10-3 

Number of buildings with 

desalination units within a 200 m 

radius 

0.13 (± 0.06) 

0.04 

Elevation (m) -0.03 (± 0.016) 0.09 

R2 = 0.6; Adjusted R2= 0.58; NSE=0.54; RMSE = 0.928; RSD= 0.936, PBIAS=0.13% 

 

In terms of model performance, the obtained LUR model was highly 

significant (F-statistic = 17.48; p-value = 1.40×10-10) and had a relatively high adjusted 

R2 (58 %). The model was also found to be robust given that its LOOCV NSE was 54%. 

In addition, the model had a RMSE and RSD of 0.928 and 0.936 respectively and a 

negligible PBIAS of 0.13%. Exploring the LUR model residuals for spatial patterns, we 

found that they had a highly significant positive Moran’s I index (value=0.34, p-

value=3.5×10-4). This indicates the occurrence of geospatial clustering that was not 

resolved by the LUR model. 
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Figure 8: Predicted salinity level status of groundwater as a function of well depth for the Land 

Use Regression (LUR) model and the Universal Kriging (UK) model 

 

The fitted UK model was able to account for the statistically significant 

geospatial correlations that persisted after de-trending. The model’s assumption of 

spatial isotropy was confirmed by the lack of directional variations in the constructed 

2D experimental variogram map of the LUR model residuals. Note that this finding is 

typical, as the regression part of the UK model is often able to account to a large extent 

for the spatial anisotropies in the collected data (Caballero et al. 2013, Deviren et al. 

2013, Somayasa et al. 2019, Xu et al. 2019). Three different isotropic correlation 

structures were explored to account for the geospatial correlations in the data, namely 

the exponential, Gaussian, and spherical semi-variogram models. The adoption of an 

exponential semi-variogram proved to be the most optimal, as it had the highest 

LOOCV NSE, the lowest LOOCV RMSE, and the smallest LOOCV residual standard 

deviation (Table 4). The exponential semi-variogram model had a range of 248 m, 

indicating that the spatial autocorrelation of salinity in the study area was restricted to 

relatively short distances. 
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Table 4: Leave-one-out cross-validation (LOOCV) based statistics for three semi-variogram 

UK models 

Model LOOCV NSE LOOCV RMSE LOOCV RSD 

LUR 0.54 0.928 0.94 

Spherical 0.69 0.77 0.77 

Gaussian 0.69 0.76 0.77 

Exponential 0.71 0.74 0.74 

 

Similar to the LUR, the UK model was able to capture the dynamics of the 

salinity level changes as a function of distance to sea and well depth (Figure 9). All 

LUR predictors remained statistically significant in the UK model and their coefficients 

remained largely unchanged. As such, the predictions of the UK and LUR models were 

highly correlated (Pearson’s correlation = 0.93) and showed relatively good agreement 

with regards to their predictions in the study area. Nevertheless, the two models 

diverged in their predictions in a few areas, especially in the geologically unprotected 

zones. In those regions, differences in model predictions reached as high as 20,000 ppm 

(Figure 9). These large discrepancies were primarily due to the ability of the UK model 

to extract and account for the spatial information found in the correlated LUR model 

residuals. This allowed the UK model to more faithfully account for potential fine-scale 

(≤ 248 m) geological irregularities in the Beirut karst aquifer, such as the presence of 

freshwater/saltwater conduits that tend to have high hydraulic conductivities. For 

example, in some areas along the north-western sections of the study area (Zone A in 

Figure 9), the UK model predicted significantly lower salinity levels as compared to the  
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Figure 9: Predicted salinity levels as a function of depth. The first column shows the LUR-

based predictions; the second column plots the UK-based estimates; the third column shows the 

difference in predictions between the two models (LUR - UK) 

 

LUR model, pointing to the possibility of a freshwater conduit in that region or to 

elevated recharge. Meanwhile, the UK model predicted that the south-western corner of 
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the study area as well as sections in the north-western parts of the city (Zone B in Figure 

9) had higher salinity levels as compared to the LUR and as such the location of the 

saltwater wedge was extended deeper inland. 

 

In an effort to assess the predicted variability in the salinity levels over depth 

across the study area, two salinity-level cross-sections were produced by stacking 

predicted salinity maps generated at a 1 m depth interval. The first cross section (AA’) 

was selected so as to cut through the geologically unprotected region of the city, while 

the second (BB’) extended along the geologically protected zone. Examining the AA’ 

cross-section, we see that the both models predicted that the saltwater wedge extended 

to around 1.13 Km inland at a depth of 150 m (Figure 10). Yet, the UK-based cross-

section clearly showed evidence of up-coning occurring at a distance of around 2 Km 

from the coastline. Interestingly, that area was also identified by Safi (2019) to be 

experiencing upconing. No evidence of upconing was apparent in the LUR based cross-

section. Along section BB’, the wedge in both models was found to be limited to the 

area in the immediate vicinity to the coastline, highlighting the importance of both the 

geological protection and the ample water supply provided to that region in impeding 

SWI. 

 

Regarding the performance of the two models, the UK model outperformed the 

LUR model across most model performance metrics. The UK’s NSE was 32% higher, 

its RMSE was 20% lower, and its residual standard deviation was 20% smaller (Table 

4).  It also had a better cross validation robustness as seen in the generated LOOCV 
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Figure 10: Predicted TDS levels along two cross-sections at a depth of 150 m. The x-axis represents the 

distance (Km) and the y-axis represents the depth (m) 

 

predicted versus observed plots, whereby the UK predictions were more correlated with 

the observed valued (R2 for UK 0.70 versus 0.53 for LUR) and showed a lower bias 

(slope for UK is 0.73 versus 0.59 for LUR) (Figure 11). Moreover, the UK model able 

to significantly reduce the prediction uncertainties across the prediction spatial domain 

(Figure 12). On average, the reduction in the prediction variance in log(TDS)-scale 

across the entire study domain was close to 20%, with some locations experiencing a 

reduction in prediction variance in excess of 95%. As expected, zones that had a high 

density of sampled wells, such as in the Moussaytbeh and Ras-Beirut areas, witnessed 

the largest reduction in prediction variance (Figure 12), whereas the area of Medawar 

that did not include any sampling well had the highest levels of prediction variance in 
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both models. Note that the reductions in prediction variance were consistent across the 

three assessed depths (50 m, 100 m, and 150 m).  

 

 

Figure 11: Predicted versus observed log(TDS) levels for a) the LUR model and b) the UK 

model. The plot shows the regression line between predicted and observed along with the 1:1 line 

 

 

 

Figure 12: Log(TDS) prediction variances at a depth of 100 m for a) LUR predictions and b) UK 

predictions 
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Overall, both of the developed LUR and the UK model showed significantly 

better performances as compared to other SWI model developed for the area. For 

example, the kriging model that was generated for the same study area by Momejian et 

al. (2019b) was reported to have a percent bias in excess of 75%, a RMS-S of 1.69, and 

a RSR of 0.9. The percent bias of both the LUR and UK models was less than 0.5% and 

their RSRs were significantly lower (0.7 and 0.5 respectively). Additionally, the RMS-S 

of the LUR model was half that of the kriging model, while the UK’s was less than one 

third of the latter. Moreover, the predictive skills of both our LUR and UK models were 

substantially higher than those reported by (Momejian et al. 2019a) for the DRASTIC 

and EPIK model they developed for the same study area, where their prediction 

correlations with 5 predefined TDS-based water quality groups was found to be less 

than 30 %. 
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CHAPTER IV 

CONCLUSIONS 
 

The model results showed the extent of the SWI problem in Beirut, whereby 

around a third of the groundwater in the city at a depth of 100 m was predicted to be 

highly brackish to saline. The model also showed substantial spatial differences in the 

water quality between the eastern sections of the city as compared to the western 

neighbourhoods. These large spatial patterns were largely attributed to marked 

differences in geology (aquifer and stratigraphy) and water delivery. The saltwater 

wedge in the SWI affected western neighbourhoods was found to extend 1.13 km 

inland. These findings highlight the significant degradation of groundwater quality in 

Beirut, as a result of chronic water shortages and poor groundwater management. It is 

estimated that there were around 10,000 licensed private wells in Lebanon and more 

than 40,000 illegal wells back in 2003. That number is expected to have grown 

considerably since then and will most probably continue to increase as the city 

continues to grow and water deficits intensify (World Bank 2003). Moreover, the 

increased market penetration of the poorly designed and low-efficiency small-scale RO 

desalination units in the city is expected to further exacerbate the problem. Without an 

urgent and sustainable city-wide plan that aims to bridge the gap between supply and 

demand, while also introducing demand management interventions, such as 

restructuring the water tariff system and introducing smart metering, larger sections of 

the aquifer will start feeling the impacts of SWI as the wedge continues to move inlands 

fuelled by over pumping and dwindling permeable areas needed for recharge.  
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This study is the first of its kind to apply a UK approach to quantify and map 

SWI along a coastal aquifer. The UK model outperformed the LUR model and previous 

kriging and groundwater vulnerability models developed for the area. The superior 

performance of the developed model is attributed to its ability to account for important 

socio-economic, land-use/land-cover, and geological/geographical drivers of SWI, 

while at the same time harnessing the significant spatial autocorrelations in the sampled 

data. Distance to sea, well depth, the presence of a protective geological layer against 

SWI, elevation, and the number of buildings with water desalination units all proved to 

be important determinants of salinity levels in the study area. Alone they were able to 

explain around 60% of the variability observed in the data. Moreover, accounting for 

the spatial correlation data further improved the model. The NSE of the UK model 

reached 71% as compared to 54% for the LUC model. The UK model showed that 

significant spatial-autocorrelations in salinity levels existed up to a range of 248 m. 

Capturing these spatial dependencies is particularly important in an urban karst 

environment that is known to have high hydro-geological heterogeneity, numerous 

faults and conduits, and varying levels of pumping over space. As a result, the UK 

model was able to identify inland areas in the city that are experiencing upconing and 

the coastal sections of the city that had more pronounced saltwater wedges. At the same 

time, the model highlighted the sections of the city that appear to be benefiting from the 

presence of freshwater conduits or from elevated recharge. Moreover, the model was 

able to identify locations in the city with high uncertainties regarding their salinity 

levels. As such, future monitoring programs should make an effort to sample more wells 

from these poorly characterized regions. 
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Finally, the results of this study provide a promising modelling and mapping 

approach that can be implemented to map SWI in poorly monitored urban coastal 

aquifers and to better understand their vulnerabilities to anthropogenic stressors. Areas 

were the UK model has predicted significantly higher or lower salinity levels as 

compared to the LUR are expected to have significant hydro-geological irregularities, 

including elevated local recharge, prevalence of major saltwater/freshwater conduits, a 

and a high density of fractures. These regions are in need of a detailed hydro-geological 

investigation in order to further characterize their subsurface.  

 

The proposed method is expected to outperform most mathematical models in 

mapping SWI in study areas similar to Beirut that are karstic, highly urbanized, and 

suffer from the scarcity of hydro-geological data. Thus, the potential of this work to 

help generate a comprehensive SWI map for the poorly monitored groundwater aquifers 

all along the Eastern Mediterranean coastline is tremendous. 
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