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An Abstract of the Thesis of

Marwa Youssef Dakik for Master of Sciences
Major: Physics

Title: Method for Deriving the Complex Infrared Dielectric Function of Amorphous
Thin Films from Infrared Reflectivity Spectroscopy

Although advanced nonlinear optical techniques have demonstrated high po-
tential for examining elementary excitations in semiconductors, infrared reflectiv-
ity analysis remains the most quantitative technique because simple theories can
be used to describe the material response to an infrared wavelength excitation.
Line shape analysis, comparatively rare for non-linear optical spectroscopy, can
be carried out to yield quantitative results.

Therefore, our objective in the present thesis is to develop an experimental
approach based on infrared spectroscopy for the characterization of the complex
infrared dielectric function of amorphous thin films grown on a substrate, which
is inaccessible by other means. The proposed approach is based on the analysis of
the infrared reflectivity spectrum of the considered film/substrate using a numer-
ical technique combining the Fresnel theory and the Kramers-Kronig conversion
theorem.

We used the technique developed to deduce the complex infrared dielectric
function of amorphous silicon carbide thin films deposited on silicon at different
temperatures and pressure levels using the pulsed laser deposition (PLD) growth
technique. The results obtained showed that the growth temperature does not
have a significant effect on the dielectric properties of the amorphous films. How-
ever, the variation in pressure allows a substantial modification of the real and
imaginary parts of the infrared complex dielectric function of the amorphous
silicon carbide film.

We believe that the optical technique developed in this work constitutes a
non-destructive method for the characterization of relevant infrared properties of
amorphous materials, which so far are not clear to materials scientists.
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Chapter 1

ELECTROMAGNETIC WAVES
IN SEMICONDUCTORS

By framing previously known experimental results of Coulomb, Gauss, Ampere,
and Faraday and by including the notion of displacement current, James Clerk
Maxwell released the unified theory of electricity and magnetism in 1873. The
argument consists of four fundamental equations, named Maxwell’s Equa-
tions . The argument states that any electromagnetic field is invariant under
time-varying conditions. No matter what the material medium is, Maxwell’s
equations hold. There are two forms of these equations: the integral and the
differential form.

The differential form is beneficial in identifying the electromagnetic field inten-
sities at each point in the given space. On the other hand, the integral structure
is useful in explaining the underlying physical concepts.

Specifically, the electromagnetic radiation-matter interaction can be explained
using the classical effect of an oscillating electric field on a charge or using the
quantum mechanical effect in studying the bandgap and phonons. In this chapter,
we will start by discussing the classical approach of the interaction and then shift
to the quantum approach.

1.1 Classical Approach:

1.1.1 Electromagnetic waves in free space

Basic electromagnetic behavior is defined by Maxwell’s Equations [21]. Their
solutions in free space identify undamped transverse waves composed of perpen-
dicular oscillating magnetic and electric fields, which propagate at a constant
speed of light. Inside the solid, the interaction between the electromagnetic field
and the charges produce damped waves as they transmit energy to the solid. The
wave speed of propagation is not constant and depends on the frequency. The
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complete classical description of light is embedded in Maxwell’s Equations:

∇× E = −∂B

∂t
(1.1)

∇×H = j +
∂D

∂t
(1.2)

∇ ·D = ρ (1.3)

∇ ·B = 0 (1.4)

Where:

• E: Electric Field and D: Displacement Vector

• B: Magnetic Field and H: Magnetic Field Strength

• ρ: Charge Density and j: Current Density

1.1.2 Electromagnetic waves in Semiconductors

Unlike free space, semiconductors contain both free charges and bound charges.
The free charges in a semiconductor are the conduction electrons and the valence
band holes. The bound charges are coated into the lattice structure that includes
the host crystal and the inner electrons that are tightly localized at the atomic
cores. Thus, Maxwell’s Equations are affected by the current and charge density
due to the free charges and the bound charge’s polarizability. Bound charges
in crystal produce polarization P, which is the dipole moment per unit volume.
In a homogeneous linear and isotropic medium, the polarization is aligned and
proportional to the external electric field E:

P = ε0χE (1.5)

Where:

• ε0: Electric Permittivity in Free Space

• χ: Susceptibility, a specific property of the material

The relation between the electric Displacement D of the medium and the
electric field E is called the constitutive relations of the electromagnetic medium:

D = ε0E + P = ε0(1 + χ)E = ε0εlattE (1.6)

Where:

• The lattice frequency-dependent dielectric response is defined as:

εlatt = 1 + χ (1.7)
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Due to the applied electric field, the current will flow in the material. Ohm’s
Law describes the proportionality between the current density j and the electric
field E:

j = σ(w)E (1.8)

Where

• σ(w): Electric conductivity of the material

Substituting the linear relations 1.6 and 1.8 in Maxwell’s Equations 1.1 - 1.4
and eliminating B and H:

∇2E −∇(∇ · E) = εlattε0μ0
∂2E

∂2t
+ σμ0

∂E

∂t
(1.9)

Assuming a plane wave solution:

E = E0e
i(kz−ωt) (1.10)

• E0: Amplitude of the wave

• ω: angular frequency

• K: Wave vector In a non-absorbing medium:

k =
2π

λ
=

w

v
=

nw

c
(1.11)

– λ: Wavelength inside the medium

– n: index of refraction

– v: speed of the wave

– c: speed of light

Substituting 1.10 into 1.9:

k2 − k(k · E) = εlattε0μ0ω
2E + iσμ0ωE = ω2ε(ω)ε0μ0E (1.12)

The total dielectric response function ε(ω) is given by:

ε(ω) = εlatt(ω) + i
σ(ω)

ε0ω
(1.13)

ε(ω) is considered the central quantity that specifies the interaction between
the electromagnetic wave and semiconductors in the linear limit.

Now, the electric field E is expressed in terms of the longitudinal and trans-
verse components:

E = Ett̂+ Ekk̂ (1.14)
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• t̂: Unit vector in the x-y plane perpendicular to the direction of propagation

• k̂: Unit vector along with k

With this decomposition, equation 12 becomes:

[
ω2

c2
ε(ω)− k2]Ett̂+

ω2

c2
ε(ω)Ekk̂ = 0 (1.15)

Since the two terms in equation 1.15 are linearly independent, each term
should be set to zero to satisfy the above condition.

Thus the generalized dispersion relation for the transverse wave is:

k2 =
ω2

c2
ε(ω) (1.16)

And the dispersion relation for the longitudinal waves is:

ε(ω) = 0 (1.17)

Due to these derivations, equation 1.11 can be generalized to the absorbing
medium where we have a complex refractive index

k =
ñω

c
= (n+ ik)

ω

c
(1.18)

• With: ñ = n + i k

Substitute equation 1.18 back in the wave solution equation 110:

E(z, t) = E0e
−kωz

c ei(
ωnz
c
−ωt) (1.19)

This equation explains the physical meaning of the refractive index and the
complex wave-vector. It illustrates that the real part of ñ is related to wave
propagation. Whereas the imaginary part of ñ, k the ’extension coefficient’, is
linked to an exponential decay of the wave as it enters the medium.

Now, by combining 1.18 and 1.16, we extract the relation between the com-
plex refractive index and the total dielectric function this way:

ñ =
√

ε(ω) (1.20)

Expressing ε(ω) as real and imaginary parts, we get:

ε(ω) = ε1 + ε2 = ñ2 (1.21)
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The relations between the real and imaginary parts of ñ and ε(ω) can be
pulled out using equation 1.16. The relations are:

ε1 = n2 − k2

ε2 = 2nk

n =
1√
2

√
ε1 + |ε|

k =
1√
2

√
−ε1 + |ε|

(1.22)

Therefore, the microscopic optical response of semiconducting materials, deter-
mined by the refractive index and the extinction coefficients, can be manipulated
by its frequency-dependent dielectric function. The calculation will be cleared
when the reflectance spectroscopy of the semiconductor is considered.

1.2 Basic Semiconductor Physics

A crystalline semiconductor is composed of repetitive geometric arrays of atoms.
Quantum mechanics explains the energy between the lowest point in the conduc-
tion band of a crystalline semiconductor and the highest point in its valence band.
This energy difference is called the bandgap that determines the conductivity of
materials. The valence electron can absorb heat or light energy, to enable them to
jump up into the conduction band. Each electron that moves to the conduction
band leaves behind a vacant position-hole. This process is called the electron-hole
pair generation.

1.3 Semiconducting materials

As shown in figure 1.1, elements in the periodic table are divided into one of 3
categories:

• Metals: the most abundant category

• Non-metals

• Semi-metals

Metals are considered perfect conductors, whereas non-metals are very good
insulators as they do not conduct electricity. However, semi-metals do conduct
electricity if the conditions are right. Silicon is playing a crucial role in the
electronic industry. Si-based sensors are widely used in the automobile sector.
Moreover, thermal radiators that are based on silicon or gallium arsenide semi-
conductors are essential satellites and aircraft as they dissipate energy. [18]
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Figure 1.1: Periodic Table

Silicon carbide was first discovered in 1824 by a Swedish scientist, Jons Jacob
Berzelius, [2] while Henri Moissan discovered naturally occurring SiC in 1905, he
found small hexagonal platelets in a meteorite. In recent years, silicon carbide
(SiC) materials have played an essential role in the development of various semi-
conductor applications due to their unique characteristics, making them suitable
materials for devices operating at high power, high frequency, and high tem-
perature. Silicon carbide’s ability to function under such extreme conditions is
expected to enable some significant improvements in a variety of applications and
systems [10]. Silicon carbide is a compound semiconductor composed of silicon
(Si) and carbon (C). Naturally, SiC exits in several crystalline structures, called
polytypes or polymorphs. The presence of different polytypes indicates that
there exists an enormous number of different atomic symmetries and arrange-
ments. The most significant polytypes are the cubic 3C and the hexagonal 4H
and 6H phases, all of which have different physical properties. For example, the
energy band gap EG is equal to 2.403, 3.285 and 3.101 eV for 3C, 4H and 6H-SiC
respectively [18]. The high value of thermal conductivity kT is another feature
that makes SiC eventually valuable for very high-power electronic devices. The
value of kT varies from 3.2 to 3.7 Wcm−1K−1 based on the polytype. It is worth
mentioning that SiC has a wider energy bandgap and higher thermal conductivity
than Si. Besides, under the impact of a low electric field in semiconductors, the
carrier (electron or hole) will reach an average drift velocity vd = μE where μ is
the mobility of the charge carrier. In the case of large electric fields, the velocity
does not depend on the doping and achieves its saturation value. The values of
the SiC polytypes are greater than those measured in Si. Thus SiC turns out
to be a perfect candidate for building radio-frequency RF and microwave devices
[18].

In contrast, amorphous silicon carbide alloys (a-SiC) play an important role in
applications ranging from microelectronic and optoelectronic devices [24] to pro-
tective coatings for biocompatible implants [11]. Amorphous silicon carbide is
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the most convenient material to either boost the tribological behavior of surfaces
(wear resistance and sliding friction) or to improve device reliability and lifetime.
The primary justification for the advantages of using a-SiC is the combination of
optical and electronic properties and exceptional mechanical characteristics (in-
cluding its high hardness). These amorphous materials have a complex structure
that relies on the atomic scale and/or large scale disorder, as well as hydrogen
content and stoichiometry [24]. However, the synthesis of such materials and in-
terpreting their growth mechanisms are necessary for manufacturing devices that
could be launched in the mass market.

Crystalline silicon carbide (c-SiC) thin films have been deposited using sev-
eral synthesis procedures such as Chemical Vapor Deposition [29], Electron Cy-
clotron Resonance (ECR-CVD) [17], Ion Beam Implantation [25], and Molecular
Beam Epitaxy [12]. Pulsed- Laser Deposition (PLD) which is the deposition of
the material emitted from a SiC target ablated under vacuum by high power
laser pulses, is also another technique to grow epitaxial, polycrystalline SiC and
hydrogen-free amorphous a-SiC. PLD method avoids contamination by spurious
elements. This is the growth method that is used in our work to synthesize both
crystal and amorphous silicon carbide.

1.4 Theoretical Model

The infrared dielectric function determines the intrinsic optical response of any
material to infrared radiation. The dielectric function is related to the character-
istics of the material’s lattice vibrations (phonon modes) and free charge carriers’
plasma oscillations.

1.4.1 Phonon Modes

Phonons are the atoms quantized vibrations inside a crystal lattice. In the in-
frared spectral region, semiconductor crystals are made of a three-dimensional
array of atoms that are vibrating at characteristic resonant frequencies, which
are defined by the crystal phonon modes. Solving classically the atomic equa-
tions of motion, one can extract the dispersion relation (ω as a function of k)
of the characteristic normal vibrational modes. The dispersion relations formu-
late two branches for the atomic displacements, namely, optical and acoustical
branches. The phonon modes as well are partitioned into two general classes:
optical or acoustic. Each category can be either transverse or longitudinal. Op-
tical modes are atomic vibrations where the vibrations of two different atoms in
the same unit cell are out of phase. These vibrations establish a polarization
effect across a dynamical oscillating dipole moment which matches to an external
oscillating electric field. On the other hand, the acoustical modes outline the vi-
brations of cells when the two atoms vibrate along a uniform direction. It is worth
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mentioning that the optical modes are IR active since they absorb infrared light
at their resonant frequencies. Effectively, the infrared active (IR active) modes
occur when the coupling between phonon modes and the electrostatic field of the
lattice splits between longitudinal and transverse [13]. Thereby, the acoustical
branch is divided into longitudinal (LA) and transverse (TA) modes while the
optical one splits into longitudinal (LO) and transverse (TO) modes.

The fig. 1.2 shows the displacement of atoms in a direction perpendicular
(transverse) and parallel (longitudinal) to the wave propagation for both acoustic
and optical modes [14].

Figure 1.2: :Displacements for acoustic and optical phonon modes of vibrations
of two atoms in the unit cell of an ionic crystal

Photons apply only driving forces to the transverse vibrations of the crys-
tal because the electromagnetic waves are transverse. Hence, the longitudinal
phonons do not affect the direction of the induced field is perpendicular to the
electromagnetic wave. Consequently, resonant absorption takes place when the
incoming frequency of light ω is equal to the TO phonon frequency of ωTO. Yet
the infrared properties of crystals are controlled by the LO modes.

1.4.2 The Dipole Oscillator Model

Lorentz model, which models the displacement of the atomic dipoles as damped
harmonic oscillators, is critical for understanding the optical properties of semi-
conductors. This model provides a classical characterization of the light-matter
interaction, where both are treated as classical objects that abide by the law of

8



classical mechanics. The equation of motion of the classical damped oscillation
with resonance frequency ωTO is:

μ
d2x

dt2
+ μΓ

dx

dt
+ μω2

TOx = −eE0e
−iωt (1.23)

where

• Γ: is the damping rate modeled by a frictional force which is proportional
to the velocity

• μ: is the reduced mass of the TO phonon

• E0: is the electric field amplitude of the light wave

This equation displays a relation between the acceleration, the damping rate,
the restoring term, and the driving force exerted by the electric field of light on
the right side.

Searching for a solution of the form x = x(0)e−iωt provides the displacement
amplitude of the positive ions relative to the negative ones:

x(0) =
−eE0

μ(ω2
TO − ω2 − iΓω

(1.24)

For N number of atoms, the resonant polarization due to the displacement of
electrons from their equilibrium position is:

P = −Nex =
−e2NE0

μ(ω2
TO − ω2 − iΓω)

(1.25)

Knowing that D = ε0E+ ε0χE+Presonant, the lattice dielectric function is:

εlatt(ω) = 1 + χ+
e2N

με0(ω2
TO − ω2 − iΓω)

(1.26)

At the two extremities 0 and ∞, the dielectric functions are defined by:

εlatt(0) = 1 + χ+
e2N

με0(ω2
TO

εlatt(∞) = 1 + χ = ε∞

(1.27)

Replacing the above equations in Eq. 1.26:

εlatt(ω) = ε∞ +
Sω2

TO

(ω2
TO − ω2 − iΓω)

(1.28)

Where S is the oscillator strength:

S = ε0 − ε∞ (1.29)

We are dealing with 3C- SiC materials which has the following properties:
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• ωTO = 796.2 cm−1

• ε0 = 9.72

• ε∞ = 6.52

• Γ = 0.02ωTO

The fig. 1.3 and 1.4 show the theoretical dielectric function of crystal SiC:

Figure 1.3: The real part of the dielectric function
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Figure 1.4: The imaginary part of the dielectric function
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Chapter 2

Sample Preparations and
Characterizations

Lasers are a powerful appliance in many applications, especially in material pro-
cessing. They are used in many scientific research works and experiments because
of their narrow frequency bandwidth, coherence, and high power density. Com-
monly the light beam is intense enough to vaporize the hardest and most heat
resistant materials. Furthermore, because of their high precision, reliability, and
spatial resolution, they are widespread in the material processing industry. Laser
ablation is the process of removing material from a solid surface by irradiating it
with a pulsed laser beam. The process is divided into two regimes:

• Low laser flux, where the material is heated by the absorbed laser energy
till it evaporates or sublimates

• High laser flux, the material is typically converted to a plasma

Generally, poly-component materials can be removed and deposited onto sub-
strates to form stoichiometric thin films. This Procedure is called Pulsed Laser
Deposition.

Pulsed- Laser Deposition history is tightly attached to the history and devel-
opment of lasers, which begins at the turn of the 50s and 60s. In the mid-60s,
sufficiently powerful pulsed lasers existed already, but limited experiments with-
out important scientific attention were performed to ablate solids and deposit
layers. A major breakthrough came in the early 80s when Dijkkamp et al [9]
successfully deposited, via an excimer laser a thin film of Y Ba2Cu3O7, a su-
perconducting material, which was of better quality compared to that of films
deposited with alternative deposition methods.

12



2.1 Pulsed-Laser Deposition: Basics and Mech-

anisms

Over the previous 20 years, PLD has been considered as one of the simplest and
most flexible methods for the deposition of thin films. The fig. 2.1 represents a
schematic diagram for a typical PLD experimental setup.

Figure 2.1: Schematic diagram of experimental setup in PLD

Even though PLD is know for its flexibility and conceptual simplicity, the
sample growth using this technique is a complex process that can be divided into
the following three phases: Light-material interaction, Expansion and Plasma
formation, and Film growth.

2.1.1 Synthesis of SiC using PLD

The former record on the PLD of SiC dates back to 1990 [3] [7]. Balooch et al.
[3] informed the growth of polycrystalline β-SiC films on Si via an excimer laser.
The study focused on obtaining the chemical composition and surface morphology
of the films but was restricted to deposition at a substrate temperature of 800
degrees. In the same year, Chen and Murray [7] stated that temperatures of
500 degrees and higher are essential to induce SiC film growth using an Nd:YAG
laser.

The SiC deposition was efficiently accomplished using PLD at room tempera-
ture in 1994 [4]. In that work, the usage of a KrF excimer, as opposed to Nd:YAG,

13



was shown to boost the establishment of SiC bonds in the films through the gen-
eration of highly energetic species in the plume [5]. After performing transmission
electron microscopy (TEM) on the obtained samples, they figured out that the
samples were amorphous but contained some crystallites of β-SiC.

Most of the following published studies on the PLD of SiC concentrated on
the characterization of crystalline films obtained at temperatures surpassing 700
degrees using several kinds of excimer laser. Mostly, a polycrystalline cubic phase,
3C-SiC, is acquired at 800 degrees and above [30] [20]. Yet Wang et al [26] have
indicated a single crystal 4H-SiC formed at 850 degrees.

El Khakani and fellow workers [11] were the former to carry out a methodical
research of the growth of SiC films at temperatures below 600 degrees. As de-
position temperature is increased, amorphous SiC films with high hardness and
elastic modulus were obtained.

In this work, we are interested in growing amorphous and crystal SiC thin
film.

2.1.2 Experimental Setup of PLD Deposition

The Pulsed Laser Deposition (PLD) system in this work is represented in the fig.
2.2:

Figure 2.2: PLD system
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The main parts of this system are: a high-vacuum chamber supported by a
pumping system, an excimer laser, a substrate holder and a target manipula-
tor. The laser is a pulsed LAMBDA PHYSIK KrF excimer having a 248 nm
wavelength, a 20 ns pulse duration, and repetition frequency 25Hz. The pulsed
excimer laser beam is guided to the target through a line containing two UV
mirrors and a 45 cm focal length focusing lens. The focused beam penetrates the
high vacuum chamber through a UV transparent window to impinge at an angle
of 45o on the target. By a simple modification in the mirrors orientation and the
lens-target distance, one can improve the alignment and fix the focusing of the
laser beam.

The pumping unit relies on a Pfeiffer turbomolecular pump and a backing
diaphragm pump. The background pressure in the chamber is less than 5 ×
10−7mbar, as measured by a Pirani gauge.

The substrate manipulator is equipped with a a heater and a water-cooled
system thus providing the heating of the substrate to a maximum temperature
of 1000 degrees, as measured by a thermocouple located behind the back side
of the wafer. The substrate holder whose height can be adjusted can rotate at
a desired speed. In our work the target-substrate distance was fixed at about 5
cm, and the substrate was not rotating. Below the substrate holder positions the
target manipulator that can hold up to four different targets. To ensure homo-
geneous target consumption, the target rotates and concurrently moves forward
or backward in a toggling motion. The non-rotating substrate consisted of single
crystal Si(100) situated 5 cm away parallel to the target. All silicon wafers were
chemically cleaned by dipping them consecutively in:

• Acetone at 55 degrees for 10 minutes

• Methanol at 55 degrees for 10 minutes

• 10 % HF acid for 20 seconds

• Deionized water for 2 minutes

• Methanol at room temperature for 5 seconds

The substrate is then dried by nitrogen gas for two minutes, and then it is placed
on the substrate holder which should be cleaned by sand paper and then by
isopropanol. To prevent contamination, the stainless steel chamber should be
cleaned using kimwipes in addition to ethanol. Then, let it dry for 30 minutes
with the chamber door open at 30 degrees. The cleaned substrates were then
placed inside the chamber which is then pumped down before proceeding with
the deposition. The rotating SiC ceramic target should be cleaned by running
the laser for few minutes. The chamber pressure was maintained at vacuum level
of 7 × 10−7. During the process, 99.99 % pure argon gas was introduced to the
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chamber by lowering chamber pressure to about 5 mTor. The depositions were
carried out at Energy = 400 mJ and at different temperatures.

The thickness of each film has been determined using the ”DektakXT Stylus
Profiler”.

The table below shows the conditions used to obtain a SiC thin film.

Sample
SiC/Si Temperature Thickness Pressure Deposition time

A25 25 400 nm 5 mTor 3 hours
A600 600 500 nm 5 mTor 3 hours
A900 900 450 nm 5 mTor 3 hours
V900 900 80 nm 10−6vacuum 1 hour
V700 700 50 nm 10−6vacuum 1 hour

Table 2.1: Samples synthesized using Pulsed Laser Deposition
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2.2 Raman Spectroscopy

Spectroscopy is the study of light-matter interaction as a function of wavelength
(λ). Nonetheless, one can define spectroscopy as the use of the absorption, emis-
sion, or scattering of electromagnetic radiation by matter to investigate physical
processes or to qualitatively or quantitatively analyze the matter, which can be
atoms, molecules, atomic or molecular ions, or solids. Redirection of the radia-
tion and/or transitions between the energy levels of the atoms or molecules are
results of light-matter interactions. Over many years, Raman Spectroscopy (RS)
is considered a spectroscopic technique for quantitative analysis of molecular ma-
terials of all types since it is a non-contact characterization procedure that does
not necessitate any sample preparation.

In 1928, Sir Chandrasekhra Venkata Raman figured out the phenomenon that
bears his name [22]. He used sunlight as the source and a telescope as the
collector; the detector was his eyes. That such a feeble phenomenon as the
Raman scattering was detected and was indeed remarkable.

Gradually, improvements in the several constituents of Raman instrumenta-
tion took place. Primary studies were concentrated on the development of better
excitation sources. Progress occurred in the detection systems for Raman mea-
surements as well as developments in the optical train of Raman instrumentation.
These developments in Raman instrumentation brought commercial Raman in-
struments to the present state of the art of Raman measurements. Raman spec-
troscopy experienced a renaissance in the 1960’s when the lasers were invented
and started to be used as light sources in spectroscopy.

2.3 The Raman phenomenon

2.3.1 Vibrational Spectroscopy

The vibrations of a poly-atomic molecule can be treated as a system of oscilla-
tors. 3N degrees of freedom is the total number of motion for all the nuclear
masses in N atomic nuclei molecule [23]. It is a common knowledge that both
infrared and Raman spectroscopy fit into vibrational spectroscopy. Any change
in the electric dipole moment of the molecule produces a normal mode called
infrared-active. Alternatively, a vibrational mode is said to be Raman-active, if
the polarizability of the molecule is modified. Thus, strong IR bands are ref-
erenced to polar functional groups while non-polar functional groups generates
strong Raman bands.

2.3.2 Theoretical Aspects

When light impinges upon a molecule and interacts with the electron cloud and
the bonds of that molecule, the Raman effect takes place. During the sponta-

17



neous Raman effect, a photon excites the molecule from the ground state to a
virtual energy state. The molecule returns to a different rotational or vibrational
state after emitting a photon and returning to the ground state. The energy
difference between the original state and new the state leads to a shift in the
emitted photon’s frequency away from the excitation frequency. For a molecule
to indicate a Raman effect, deformations in the electron cloud with respect to
the vibrational coordinate or any modifications in the molecular polarization po-
tential are required. Raman scattering intensity is established by the amount of
the polarizability change. A standard Raman spectrum covers the spectral range
of ”0 - 3500 cm−1”.

2.3.3 Raman scattering phenomenon

The fig.2.3 schematically illustrates the Raman scattering.

Figure 2.3: Scattering of light by molecules and the Different forms of scattering

Raman spectroscopy special-purpose is to measure the frequency shift of in-
elastic scattered light from the sample when the photon from incident light hits a
molecule and creates a scattered photon [15]. There are two types of scattering:
Elastic scattering and Inelastic scattering.

To start with the elastic scattering or Rayleigh scattering where a photon
interacts with a molecule, polarizing the electron cloud and raising it to a “vir-
tual” energy state. The molecule will soon (order 10−14 sec) fall back down to
its ground state, releasing a photon. This release can be in any arbitrary direc-
tion, resulting in scattering. However, since the molecule is returning back to
its starting state, an equality between the released energy in the photon and the
initial photon must occur. Hence the scattered light has the same wavelength
as the initial photon. Thus, that Rayleigh scattering carries no information con-
cerning the vibrational energy levels of the sample. On the other hand, during
the elastic scattering process photons can lose or gain energy. Accordingly, the
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wavelength is respectively increased or decreased. The resulting scattered light
can be a photon with a lower frequency than the original photon, this is known
as stokes Raman scattering. With higher frequency the scattered light is known
as anti-Stokes Raman scattering figure 1 [1].

The majority of the incident photons are scattered off by the electron cloud
without any loss of energy during the light-matter interaction and therefore there
is no change in frequency, since the electrons are comparatively light. The scat-
tering is elastic in this case and this is known as Rayleigh Scattering 2.3.The
total distribution of the molecules in any energy level is given by the Maxwell-
Boltzmann equation:

Nn

Nm

=
gn
gm

e−
(En−Em)

KT (2.1)

where:

• K = 1.3897× 10−23JK − 1) is the Boltzmann’s constant

• T is the given temperature

• Nn is the number of molecules in the excited vibrational energy level n

• Nm is the number of molecules in the ground vibrational energy level m

• gm/n is the degeneracy of the levels in n and m

• En − Em is the energy difference between the vibrational energy levels

As for Raman Scattering, this phenomenon can be understood using the clas-
sical theory as follows: The time variation of the electric field (E) of the electro-
magnetic wave (laser beam) is described as:

E(t) = E0(t) cos 2πν0t) (2.2)

where

• E0: Vibrational amplitude

• ν0: Frequency of the laser

When this laser light is incident on a molecule, then an electric dipole moment
P is induced:

P = αE = αE0 cos 2πν0t (2.3)

where α is the polarizability of the material which depends on the molecular
structure and the nature of the bonds.

If the molecule is vibrating with a frequency νm, the physical displacement of
the atom about their equilibrium position is expressed as:

q = q0 cos 2πνmt (2.4)
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where q0 is the vibrational amplitude.
For a small amplitude of vibration, the polarizability α is a linear function of

q and can be approximated using a Taylor series expansion:

α = α0 + (
∂α

∂q
)qq + · · · (2.5)

where

• α0: is the polarizability at the equilibrium position

• (∂α
∂q
)q: is the rate of change of α with respect to the change in q evaluated

at equilibrium position

Combining equations 2.3, 2.4, and 2.5, we obtain:

P = αE0 cos 2πν0t

P = α0E0 cos 2πν0t+ (
∂α

∂q
)0qE0 cos 2πν0t

P = α0E0 cos 2πν0t+ (
∂α

∂q
)0q0E0 cos 2πν0t cos 2πνmt

P = α0E0 cos 2πν0t+
1

2
(
∂α

∂q
)0q0E0[cos 2π(ν0 − νm)t+ cos 2π(ν0 + νm)t] (2.6)

From eqn 2.6, The first term corresponds to an oscillating dipole that radiates
light of frequency ν0 (Rayleigh Scattering). However, the second and third
terms represent respectively the Raman Scattering of frequency ν0 − νm (Anti-
Stokes) and of frequency ν0 + νm (Stokes).

Note that if (∂α
∂q
)0 ≈ 0, then the vibration is not Raman-active.

Ordinarily, Raman Spectroscopy is built on the shift in the energy of the
outgoing photon measurements. The chemical composition of the molecules ac-
countable for scattering plays an important role in the wavelength shift of the
scattered light. The intensity of Raman scattering is proportional to the magni-
tude of the change in the molecular polarization.

2.3.4 Instrumentation

A Raman spectrometer is composed of a spectrograph with the following main
constituent: an excitation source, a light detector and a light collection and de-
livery system. The excitation source consists of a laser, while a Charged Coupled
Device (CCD) camera is used for detection, and an optical microscope for light
collection. A laser of a suitable power, wavelength and stability illuminates the
sample. These lasers are generally compendious, fairly vigorous and reliable. The
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exciting laser is guided to the sample via a traditional optical system of mirrors
and lenses which focus the exciting light onto or into the sample and collects the
resulting Raman scattered light. A delicate, low noise detector is mandatory to
identify the Raman scattered light. Spectral analysis must be performed on the
collected data.

Figure 2.4: Diagram of Raman Microscope System used for Raman spectroscopy
and delivery

• Light source: A standard Raman laser consists of several properties, such
as a narrow line-width in comparison to the width of the Raman lines in
Raman spectrum which is around 1 to 10 cm−1, a low power consumption,
a stable power output and a stable wavelength output. Generally speaking,
power from the excitation source needed for Raman spectroscopy can range
from about 3-10 mWs. Raman spectroscopy requires a monochromatic light
source to attain a good spectral resolution. The Raman scattering intensity
and the laser power output are independent.

• Light Detector: The system includes a slit, a diffraction grating, a mirror
and a detector.

• A CCD camera equipped with a cooling system.
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• Rayleigh Filters: They are used to prevent the undesired light that has
the the same wavelength as the incident light (Rayleigh or elastic) from
reaching the spectrometer and drowning out the relatively weak Raman
signal.

• Objective Lenses: The objective lenses not only help in focusing the laser
beam but also locating a specific region in a sample, and they are charac-
terized by a certain magnification and a numerical aperture.

2.4 Crystallinity of Samples Using Raman Spec-

troscopy

Raman Spectroscopy grants the extraction of detailed and specific information
on a molecular level that other laser or electronic spectroscopic methods would
provide to a limited extent. Of all the various systems that can be investigated by
Raman Spectroscopy, we differentiate the following: chemical identity, reactivity,
diffusion, charge states, phenomenology at interfaces, crystallinity of samples, in
addition to the mechanical and electrical stress and the influence of electric fields
on molecular properties

Silicon carbide (SiC) is an auspicious wide band gap semiconductor for high-
power, high frequency and high temperature devices, due to its breakdown field,
high electron saturated drift velocity and good thermal conductivity. SiC has a
massive number of polytypes. The widespread ones are 4H, 6H known as the
hexagonal (α-SiC) types, and cubic (3C-SiC) type. Distinct stacking in the SiC
double layer produces the building units of all polytypes [19]. Raman scattering is
a robust tool which is used in determining the polytype structure of SiC likewise
for stress and defect analysis.

The Raman scattering measurements were executed at room temperature in
the back-scattering configuration. A laser of wavelength λ = 532nm with a
400mW maximum power was used.

The fig. 2.5 and 2.6 show Raman spectra in the 400- 1600 cm−1 region for
the SiC samples which were deposited using PLD at different temperature.
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Figure 2.5: Raman spectra of SiC layer grown at different temperature on Si
substrate
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Figure 2.6: Raman spectra of SiC layer grown at different temperature on Si
substrate at vacuum pressure

Basically, there are two actual broad bands in the regions of [300-600] and
[1300-1600] cm−1. The Raman band of amorphous silicon is represented in [300-
600] cm−1 band which is attributable to a Raman band related to Si-Si bonds.
The other band [1300-1600] cm−1 corresponds to that of another amorphous
bonds. The [600-1000] cm−1 region is connected to Si–C bond because the loca-
tion of the infrared absorption band due to Si-C bond is at 720 cm−1 [27] or 760
cm−1 [6]. A very sharp peak corresponds to crystal SiC in the [600-1000] cm−1

region. However, in our case the peak is very broad, so our materials are amor-
phous materials and do not possess a crystalline nature. In addition, as presented
in fig. 2.4, as temperature increases the bands occurring in the [1300-1600] cm−1

region vanish. However, increasing the temperature did not improve the crys-
tallinity of our material since the band in [600-1000] cm−1 region is still broad.
On the other hand, in fig 2.5, the [1300-1600] cm−1 band does not exist and we
still have amorphous SiC. Thus, crystallinity of our samples is not affected by
either changing the temperature or by changing the pressure.
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Chapter 3

Characterization Method Using
FT-IR Spectroscopy

3.1 Basics and Mechanism

3.1.1 Infrared Spectroscopy

IR spectroscopy (which is short for infrared spectroscopy) deals with the infrared
region of the electromagnetic spectrum i.e. light having a longer wavelength and
a lower frequency than visible light. IR spectroscopy monitors the interaction of
infrared radiation and matter. The analysis of this interaction can be examined
by measuring absorption, emission, transmission, and reflection. In our work, we
will deal with reflection measurements.

The baseline in infrared absorption is the transition of a molecule from a
ground state (M) to a vibrationally excited state (M*) by absorption of an in-
frared photon with energy equal to the difference between the energies of the
ground and the excited states. On the other hand, infrared emission occurs when
a molecule in the excited state (M*) emits a photon during the transition to a
ground state (M). Thus, one extracts information by first measuring the frequen-
cies of absorbed infrared photons molecule and then by comprehending these
frequencies in terms of the characteristic vibrational motions of the molecule. In
complex molecules, some of the frequencies are partnered with functional groups
that have characteristic localized modes of vibration.

In infrared spectroscopy analysis, infrared radiation is transmitted through
a sample. Part of the infrared light is absorbed by the sample, and the other
is reflected by the sample. The final signal at the detector is a spectrum sym-
bolizing a molecular ”fingerprint” of the given sample. No two molecular struc-
tures can have the same infrared spectrum because each composition is a unique
combination of atoms. Therefore, infrared spectroscopy can result in a positive
identification (qualitative analysis) of different kinds of materials.
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3.1.2 Fourier Transform Infrared Spectroscopy

A typical laboratory instrument that uses the IR spectroscopy is the Fourier
Transform Infrared Spectroscopy (FT-IR). The term Fourier Transform orig-
inates from the fact that a Fourier Transform (a mathematical technique) is
required to process the raw data into a spectrum to be analyzed. It uses an
infrared beam that, after interacting with the sample, provides extremely infor-
mative molecular information. The fundamental concept of this method is to
measure infrared absorption at characteristic resonance frequencies of the mate-
rial. In fact, infrared absorption occurs only for molecules with a dipole moment
that interacts with the infrared radiation electric field, and when the frequency
of the radiation matches the proper frequency of the molecular vibration. Thus,
each material possesses its own absorbance spectrum.

Hooke’s law explains the vibrations of the molecular bonds. In this approx-
imation, two atoms including the connecting bond are considered as a simple
harmonic oscillator where the spring’s vibration frequency is connected to the re-
duced mass μ = m1m2

m1+m2
of the two atoms producing the molecule and the spring

constant k by the following equation:

ν̃ =
1

2π

√
k

μ

The infrared energy region of the electromagnetic spectrum includes the typ-
ical values of νvib which are of order 10

14s−1. In accordance with quantum me-
chanics, vibrational motion is quantized, and the quantum mechanical solution
of a harmonic oscillator is given by:

Ei = hν(ni +
1

2
)

where ni = 0, 1, 2, .. is the vibrational quantum number.The light-atom inter-
action is described by quantum theory. Consequently, the absorbed radiation’s
energy is a multiple number of the difference in energy between the molecular
vibrational ground and excited states, nhν.Accordingly, when the infrared radi-
ation’s frequency matches the molecule vibrational frequency, absorption of light
appears and leads to an infrared spectrum that is characteristic of the molecular
structure.

Moreover, alongside with the significantly increase of modern software algo-
rithms, FT-IR is an irreplaceable tool for quantitative analysis. The two ele-
mentary interest of FT-IR spectroscopy over the dispersive methods of infrared
spectral analysis contain the use of the interferometer that leads in extremely
fast measurements. Most FT-IR measurements are made in a matter of seconds
rather than several minutes because all the frequencies are measured simultane-
ously. Also, the signal-to-noise ratio (SNR) is proportional to the measurement
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time and the number of scans. The other advantage is the high resolution gained
in FT-IR spectroscopy without using narrow slits though the resolution is en-
hanced by increasing mirror travel distance. These advantages, and more other,
has made FT-IR analysis almost limitless, highly precise and worthwhile.

FT-IR can use different kinds of interferometers such as the Michelson inter-
ferometer, lamellar grating interferometer, and Fabry-Perot interferometer. The
principle of the FT-IR spectrometer is as follows: First, a signal known as in-
terferogram is generated by the interferometer. The interferogram extracted
is a record of intensity by the detector as a function of optical path difference
of the two beams of the interferometer. By performing Fourier transform of the
interferogram, the final spectrum is obtained.

From this, the intensity, which is a function of path difference x transforms as
a whole to give the spectrum S, which depends only on the frequency ν. where:

S(ν) =

∫ +∞

−∞
I(x)ei2πνxdx = F−1[I(x)] (3.1)

which is the inverse Fourier Transform

I(x) =

∫ +∞

−∞
S(ν)e−i2πνxdν = F [S(ν)] (3.2)

which is the Fourier Transform
Thus, the inverse Fourier transform integral converts the interferogram I(x ),

which is function of path difference x, to a spectrum S(ν), which is a function of
frequency ν. This calculation is carried out using a computer.

3.1.3 Extracting the spectrum from raw data

It is quite challenging to read the raw data collected on a Fourier transform
spectrometer. A Fourier transform is then carried out to decode interferogram
and extract actual spectrum I(ν) from it. The following shows how to conduct
a Fourier transform to decrypt: The detector collects the intensity which is a
function of the path length differences in the interferometer x and wave-number
ν:

I(x, ν) = I(ν)[1 + cos (2πνx)] (3.3)

Hence, the total intensity measured at a specific optical path length difference
(for every data point at a particular optical path-length difference x) is:

I(x) =

∫ ∞

0

I(x, ν)dν (3.4)

By determining the inverse Fourier transform, we can solve the wanted spec-
trum in terms of the measured raw data I(x):

S(ν) = 4

∫ ∞

0

[I(x)− 1

2
I(x = 0)] cos (2πνxdx (3.5)
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To wrap up, the normal instrumental process, shown in the above figure, is
as follows:

• The Source: Infrared energy is emitted from the laser source.

• The Interferometer: The beam enters the interferometer where “spec-
tral encoding” takes place. The resulting interferogram signal exits the
interferometer.

• The Sample: The beam enters the sample compartment where it is re-
flected off the surface of the sample. This is where specific frequencies of
energy, which are uniquely characteristic of the sample, are absorbed.

• The Detector: The beam finally passes to the detector for final measure-
ment

• The Computer: The measured signal is digitized and sent to the computer
where the Fourier transformation takes place.

Figure 3.1: Sample analysis process

3.1.4 Experimental Setup:

Most of the available Fourier transform spectrometers make use of Michelson
interferometer, which is easy to construct and operate. The advantages of using
the Michelson interferometer are its high throughput, multiplexing, and high
precision in frequency measurements.

A typical Michelson interferometer consists of two perpendicular mirrors and
beamsplitter.

One of the mirrors is stationary, and the other is a movable mirror. The
beamsplitter is designed to transmit half of the light and reflect the other half.
Eventually, the two reflected and transmitted rays hit the movable and fixed
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Figure 3.2: Sample analysis process

mirror, respectively. When reflected by the mirrors, the two beams of light re-
combine at the beamsplitter. Due to the difference in path difference, the two
beams interfere with each other resulting in an interference pattern called in-
terferogram. The interferogram has a unique property that every data point,
which is a function of the moving mirror position, has information about all of
the infrared frequencies generated from the source. This means that as the inter-
ferogram is obtained, all frequencies are simultaneously measured.Thus, the use
of interferometer facilitates the measurements.

In our work, the used FT-IR system is a Nicolet 4700 spectrometer from
Thermo Electron Corporation in the mid-infrared range of 400-4000 cm−1. 100
scans were carried on the samples hile fixing the resolution to cm−1 in order to
enhance the signal-to-noise ratio. A relative scale for the absorption intensity
is needed because the sample compartment is not evacuated. We use a gold
coated mirror to collect a background spectrum before each measurement with
no sample. The background signal is subtracted from the spectrum of the sam-
ple to eliminate the contribution of all of the instrumental and environmental
characteristics to the infrared spectrum. As a consequence, all spectral features
which exist in the obtained spectrum are rigorously due to the sample. Parame-
ter adjustment and data acquisition carried out by OMNIC software whereas the
collected data are plotted and analyzed by the means of Microcal Origin software.
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3.1.5 FT-IR Reflectivity Measurements

Unpolarized reflectivity measurements were carried out at room temperature at
incident angle θ0 = 45◦ in the mid-infrared frequency range from 400 to 400
cm−1 with 1cm−1 spectral resolution to improve the signal-to-noise ratio of our
measurements. The light used is unpolarized. In our experiments, a Nicolet
4700 spectrometer from Thermo Electron Corporation, a KBr beamsplitter, and
a DTGS detector were used. To check the validity of our experiment, we measure
the reflectivity of our crystal 4H-SiC. We found that the reflectivity measurements
are with agreement with the literature [8].

Figure 3.3: Reflectivity measurements of 4H-SiC as function of wavelength

We proceeded to determine the dielectric property of 4H-SiC and compare it
to the crystal model presented in chapter 1. The calculations are explained in
details in the next chapter.
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Figure 3.4: Real part of the dielectric function of 4H-SiC and the theoretical
model as function of ω

Figure 3.5: Imaginary part of the dielectric function of 4H-SiC and the theoretical
model as function of ω
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Chapter 4

Multi-layer System

The aim of this work is to determine the dielectric property of any material using
reflectivity measurement of unpolarized light. Because the material is not pure
crystal, the calculations can not rely on the theoretical model presented in chapter
1. Hence, there is no available model to manipulate the dielectric properties for
amorphous materials. To do so, we used the Transfer Matrix Method which has
been used to calculate the optical reflectance of multilayer structures by creating a
chain of multiplied single layer-transfer matrices, accompanied by the boundary
conditions of the electromagnetic fields at the interfaces of the structure. By
obtaining the reflectance in a very abstract way, we can estimate the main optical
properties of a given combination of films.

4.1 Fresnel Theory

Augustin-Jean Fresnel derived the most fundamental equations in classical optics,
Fresnel Equations . Fresnel equations link the relation between the amplitudes,
phases and polarization of the reflected and transmitted wave between two mate-
rials with different refractive indices, to the incident wave’s parameters. Fresnel
equations are coherent with the treatment of light in Maxwell’s equations. Con-
sequently, the behavior of the electromagnetic waves at the air-semiconductor
interface is determined by setting the boundary conditions of Maxwell’s equa-
tions at each interface. Thus, it is possible to determine the reflectance which is
the fraction of light reflected at the interface between two materials. The ratio
depends on the angle of incidence of the radiation, so the behavior at the interface
depends on the polarization of light.

It is worth mentioning that we have two kind of polarization:

• P-polarized (parallel polarization) :

– The electric field is parallel to the plane of incidence
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– The magnetic field is perpendicular to the plane of incidence

Figure 4.1: Field vectors of the incident, transmitted, and reflected waves in case
the electric field vectors lie within the plane of incidence (P polarization)

• s-polarized (perpendicular polarization)

– The electric field is perpendicular to the plane of incidence

– The magnetic field is parallel to the plane of incidence

Figure 4.2: Field vectors of the incident, transmitted, and reflected waves in case
the electric field vectors lie within the plane of incidence (s polarization)
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4.2 Fresnel Equations

To obtain Fresnel coefficients, two optical media with different refractive indices
separated by an interface are considered, as shown in figure 1. A plane inc incident
optical wave is propagating toward the interface with wave vector �ki oriented at
an angle θi with respect to the interface normal. Ei is the electric field amplitude
in the plane of incidence. Upon approaching the interface, the wave will be
partially transmitted to medium 2 and partially reflected. The transmitted wave
will propagate at angle θt which is determined by Snell’s Law:

n1 sin θi = n2 sin θt (4.1)

where n1 and n2 are the refractive indices of medium 1 and 2 respectively.
According to the law of reflection, the incident angle θi is equal to the reflected
angle θr. Et and Er represent respectively the amplitude of the transmitted and
reflected electric field. Therefore, to determine the total reflectance, these two
amplitudes should be obtained.

To achieve this, the boundary conditions for the electric and magnetic fields at
an interface between two media with different electromagnetic properties should
be applied. The boundary conditions for the tangential components of E and
H are extracted by applying Faraday’s and Ampere’s laws to a rectangular loop
straddling the surface, whereas the boundary conditions for the normal compo-
nents for D and B are derived from operating Gauss’s and Coulomb’s laws to a
circular cylinder extending from one material to the other. In our case we are
interested in the tangential boundary condition which is: the tangential compo-
nent (tangent to the surface) of the electric field �Ei and the magnetic field �Hi

should be continuous across the boundary.

In other words, the boundary condition for the electric field is:

Ei cos θi + Er cos θr = Et cos θt (4.2)

Whereas, the boundary condition for the magnetic field, which is collinear in
all three waves, becomes:

Hi −Hr = Ht (4.3)

Since the electromagnetic wave is transverse, the incident field crossing the
interface can be decomposed into two polarization component, P-polarization and
S-polarization. In the following section, Fresnel equations will be derived for both
cases, p- and s- polarization.
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4.2.1 Fresnel Equations for P-polarization

First, the P-polarization case in figure 1 is considered. Due to symmetry, the
reflected and transmitted waves are of the same polarization.

To determine the solution of these two equations, we should recall the relation
between the electric and magnetic field amplitudes for each wave. Maxwell’s
equation states that these amplitudes in any plane electromagnetic wave must
satisfy:

H =

√
ε

μ
E (4.4)

where ε and μ are the electric permittivity and the magnetic permeability, re-
spectively, of the material in which the wave propagates.At optical frequency μ
= 1.

Because the refractive index is given by n =
√
ε, we have:

Hi,r = n1Ei

Ht = n2Et

(4.5)

Thus from equation 3, we have:

n1(Ei − Er) = n2Et (4.6)

Linking equation 2 and 6, we obtain Fresnel Equations for P-polarization:

rp =
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

tp =
2n1 cos θi

n1 cos θt + n2 cos θi

(4.7)

Here, we can define the reflection and transmission coefficients:

r =
Er

Ei

t =
Et

Ei

(4.8)

4.2.2 Fresnel Equations for S-polarization

Similarly, for the case of s-polarization (figure 2), the boundary conditions are:

Ei + Er = Et (4.9)

−Hi cos θi +Hr cos θi = Ht cos θt (4.10)
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In which, Fresnel equations for s-polarization are:

rs =
n1 cos θi − n2 cos θ2
n1 cos θi + n2 cos θ2

ts =
2n1 cos θi

n1 cos θi − n2 cos θ2

(4.11)

4.3 Transfer Matrix Method

The reflection of light from a single interface between two optical media is de-
scribed by Fresnel Equations , explained in section 1. However, when there are
several interfaces, the reflections themselves might also be partially reflected or
transmitted, as shown in the below figure. According to the exact optical path
length, constructive and destructive interference can occur from these reflections.
The total reflection of the system is the sum of infinite number of reflections.

Figure 4.3: Reflection and Transmission at interfaces

In this manner, Transfer matrix-method TMM is a powerful mathemati-
cal tool in the analysis of light propagation through layered dielectric media and
in solving Maxwell’s equations in complex media [28]. The central idea lies that
electric and magnetic fields at two different positions are linked together through
a transfer matrix. As a result, the coherent optical reflectance of a multi-layered
structure are represented as a product of matrices.

TMM relies on the boundary continuity conditions of the electric field implied
by Maxwell’s equations, which offer all the physical background of the electric
and magnetic fields of the waves to be connected across the boundaries of two
different materials and manipulated at the material’s interface. This method
make use of simple matrix operations that connects the top and bottom fields of
a single layer. The final expression for the reflectance of multi-layer structure is
calculated through two steps:
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Figure 4.4: Single-layer film on substrate

• First: Calculating the characteristic matrix, which includes Fresnel reflec-
tion coefficient, for each layer.

• Second: The reflectance is derived from the matrices product of individual
layers.

4.3.1 Transfer Matrix for a single layer-film on a substrate

By setting up Maxwell’s equations and applying the correct boundary conditions,
Transfer Matrix method can model the reflectance and transmittance of light
propagating a medium.

In order to determine the reflectance for a single layer-film on a substrate
using TMM, we first consider, according to the below figure:.

Figure 4.5: Field vectors of incident, reflected and transmitted waves in p-
polarization
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Figure 4.6: Field vectors of incident, reflected and transmitted waves in s-
polarization

We examine a plane wave incident at z = 0, the plane of incidence being
the plane xOz, the angle of reflection θ0 and the refraction angle θ1. Besides,we
consider an interface between two dielectric media of refractive indices n0 and n1.
We also donate the amplitudes of the electric vectors approaching the surface by
E+

0p, E
+
0s. Whereas, the reflected wave presented as E−0p, E

−
0s and the transmitted

wave by E+
1p, E

+
1s.

Generally speaking, the electric and magnetic plane wave solutions of Maxwell’s
equation at a fixed angular frequency take the form:

E(r, t) = E0e
i(wt±k.r)

H(r, t) = H0e
i(wt±k.r)

where the sign of the dot product of k and r, k.r, depends on the wave
propagation direction.

A phase factor must be included for the electric vector of incident, reflected,
and transmitted waves at the interfaces between medium n0 and medium n1.

The phases will take the following forms:

ei(wt− 2πn0 sin θ0x
λ

− 2πn0 cos θ0z
λ

) (incident)

ei(wt− 2πn0 sin θ0x
λ

+
2πn0 cos θ0z

λ
) (reflected)

ei(wt− 2πn1 sin θ1x
λ

− 2πn1 cos θ1z
λ

) (transmitted)

It is noteworthy that in a sinusoidal steady state, Maxwell’s equations can be
expressed in terms ofa phasor which is a complex number representing a sinusoidal
function whose amplitude A, angular frequency ω, and initial phase φ are time-
invariant. Thus, for the above notation of electric and magnetic fields as function

38



of space and time in a frequency domain, the phasor form of Maxwell’s equations
is written as follows:

∇× E = −iωμH
∇×H = iωεE+ σE

∇ · E = 0

∇ ·H = 0

(4.12)

Where the electric and magnetic field phasors depend on space coordinates only,
ε is the dielectric permittivity, and μ is the magnetic permeability which is set to
be 1.

Applying the curl operator to the electric plane wave solution and comparing
to the first equation in the above set of equations, the relation between H and E
is:

H =

√
ε

μ
K× E

H =
√
εK× E

H = nK× E

(4.13)

where
√
ε = n and the tangential components of the electric field E and the

magnetic field H represents the x and y components of the fields. They are given
in the first medium as:

E0x = (E+
0pe

−ix0z + E−0pe
+ix0z) cos θ0

E0y = (E+
0pe

−ix0z + E−0pe
+ix0z)

H0x = (−E+
0se

−ix0z + E−0se
+ix0z)n0 cos θ0

H0y = (E+
0pe

−ix0z − E−0pe
+ix0z)n0

(4.14)

And in the second medium:

E1x = E+
1pe

−ix1z cos θ1

E1y = E+
1se

−ix1z

H1x = −n1E
+
1se

−ix1z cos θ1

H1y = n1E
+
1pe

−ix1z

(4.15)

where xi =
2πni cos θi

λ

Hence, to determine the reflection and transmission of the electromagnetic
waves through a medium, the continuity relation, provided below, of the tan-
gential field boundary condition, derived from Maxwell’s equations, should be
applied. The boundary conditions are:

E0t = E1t

H1t −H0t = J
(4.16)

Where
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• J is the surface current density which is equals to zero in case of dielectric
materials

• subscript t is for the tangential component either x or y

Applying the boundary condition by equating the tangential components of
the electric and magnetic fields at z = 0, we get:

E0x = E1x =⇒
(E+

0p + E−0p) cos θ0 = E+
1p cos θ1

E0y = E1y =⇒
E+

0p + E−0p = E+
1s

H0x = H1x =⇒
(−E+

0s + E−0s)n0 cos θ0 = −n1E
+
1s cos θ1

H0y = H1y =⇒
(E+

0p − E−0p)n0 = n1E
+
1p

(4.17)

and on the plane z = d, we have:

(E+
1pe

−ix1d + E−1pe
+ix1d) cos θ1 = E+

2pe
−ix2d cos θ2

E+
1pe

−ix1d + E−1pe
+ix1d = E+

2se
−ix2d

(−E+
1se

−ix1d + E−1se
+ix1d)n1 cos θ1 = −n2E

+
2se

−ix2d cos θ2

(E+
1pe

−ix1d − E−1pe
+ix1d)n1 = n2E

+
2pe

−ix2d

(4.18)

Generalizing the problem by considering the interface between ith and (i+1)th

layers, so the electric and magnetic fields should satisfy the following conditions:

E+
i + E−i = E+

i+1 + E−i+1

H+
i −Hi− = H+

i+1 −H−
i+1

(4.19)

Where each electric and magnetic field is composed of a p-polarized component
and s-polarized one.

Therefore, at non-normal incidence the Fresnel coefficients associated with
the interface between two media (i and i+1) are given by the below equations

(Knowing that the definitions of r =
E−i−1

E+
i−1

and t =
E+

i

E+
i−1

):

ri⊥ =
˜ni−1 cos θi−1 − ñi cos θi
˜ni−1 cos θi−1 + ñi cos θi

ri‖ =
ñi cos θi−1 − ˜ni−1 cos θi
ñi cos θi−1 + ˜ni−1 cos θi

ti⊥ =
2 ˜ni−1 cos θi−1

˜ni−1 cos θi−1 + ñi cos θi

ti‖ =
2 ˜ni−1 cos θi−1

ñi cos θi−1 + ˜ni−1 cos θi

(4.20)
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Also, the total reflectance for the p-polarized and s-polarized are:

Ri⊥ = ri⊥ri⊥∗
Ri‖ = ri‖ri‖∗

(4.21)

To reach the matrix form, equations 17 and 18 should be changed to:

E+
i−1 =

(eiδi−1E+
i + rie

iδi−1E−i )
ti

E−i−1 =
(rie

−iδi−1E+
i + e−iδi−1E−i )
ti

(4.22)

Where i represent the two interfaces, i = 1 for the first interface (air-thin
film) and n = 2 for the second interface (thin film-substrate), and δi =

2πnidi cos θi
λ

stands for the phase change of the beam while propagating inside the film.
Any system of equations can be outlined using a matrix form:[

E+
i−1

E−i−1

]
=
1

ti

[
eiδi−1 rie

iδi−1

rie
−iδi−1 e−iδi−1

] [
E+

i

E−i

]
(4.23)

where the characteristic matrix of a single layer:

Ci =

[
eiδi−1 rie

iδi−1

rie
−iδi−1 e−iδi−1

]
(4.24)

For a single film, the reflectance (R) and the transmittance (T) are given by:

R =
(E−0 )(E

−
0 )
∗

(E+
0 )(E

+
0 )
∗

T =
(E+

2 )(E
+
2 )
∗

(E+
0 )(E

+
0 )
∗

(4.25)

Hence, to determine these coefficients, we should consider the matrices for
i=1 and i=2: For i=1, eqn 4.23 will be:[

E+
0

E−0

]
=

1

t1

[
eiδ0 r1e

iδ0

r1e
−iδ0 e−iδ0

] [
E+

1

E−1

]
(4.26)

For i=2: [
E+

1

E−1

]
=

1

t2

[
eiδ1 r2e

iδ1

r2e
−iδ1 e−iδ1

] [
E+

2

E−2

]
(4.27)

Combining the two above, we get the relation between the incident and trans-
mitted beams: [

E+
0

E−0

]
=

1

t1t2

[
1 r1
r1 1

] [
eiδ1 r2e

iδ1

r2e
−iδ1 e−iδ1

] [
E+

2

E−2

]
(4.28)
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Expressing the matrix product

(C1)(C2) =

[
a b
c d

]
(4.29)

where a, b , c , and d can be calculated using the matrix multiplication rules.
Therefore, the reflectance and the transmittance can be formulated as:

R =
cc∗

aa∗

T =
(t1t2)(t

∗
1t
∗
2)

aa∗

(4.30)

4.3.2 Transfer Matrix for a multi-layer thin film

Now, let us elaborate the transfer matrix method for a single layer to a multi-layer
system.

Figure 4.7: The reflectance and transmission though a multi-layer semiconductor

As shown in the figure above, we consider a stack of parallel-plane layers of
indices: 1,2,..,j,..,n-1 which are placed between the ambient layer (0) and the
substrate (n).

nj and dj are,respectively , the refractive index and the geometrical thickness
for the layer j. Snell’s law relates the angle θj to θj+1:

nj sin θj = nj+1 sin θj+1 (4.31)

.
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Thus, to extract the total response of the given structure we should determine
the total reflectance for the structure i.e the ratio of E+

0 andE
−
0 .

The transfer matrix method will provide the linear relation between E+
0 , E

−
0 , E

+
n+1, E

−
n+1

by performing a characteristic matrix multiplication over the layers. The expres-
sion for the whole multi-layer structure is elaborated as:[

E+
0

E−0

]
=
(C1)(C2) · · · (Cn+1)

t1t2 · · · tn+1

[
E+

n+1

E−n+1

]
(4.32)

with

(CM) =

[
eiδm−1 rme

iδm−1

rme
−iδm−1 e−iδm−1

]
(4.33)

and

(C1)(C2) · · · (Cn+1) =

[
a b
c d

]
(4.34)

Concluding that the reflectance and transmittance are:

R =
(E−0 )(E

−
0 )∗

(E+
0 )(E

+
0 )∗

=
cc∗
aa∗

T =
(t1t2 · · · tn+1)(t1 ∗ t2 ∗ · · ·tn+1∗)

aa∗

(4.35)

We have applied the transfer matrix method for a 3 layers system (air - thin
film of SiC - silicon). A notation for the matrix elements is introduced which
will enable expressions relating to finite number of layers. First, we will consider
an unpolarized light where there is no difference between the perpendicular and
parallel polarizations. We donate by ˜nj−1 = nj−1 + ikj−1 the complex refractive
index of layer j-1 and ñj = nj + ikj for layer j. The complex Fresnel’s coefficients
between layers j-1 and j are given as: rj = gj + ihj and tj = 1+ rj = 1+ gj + ihj

Thus

gj = real(rj)

hj = imag(rj)
(4.36)

Moreover, the phase shift of the (j − 1)th layer is written as:

eiδj−1 = ei2πωdj−1 cos θj−1(nj−1+i∗kj−1)

expiδj−1 = eαj−1 ∗ eiγj−1
(4.37)

where: αj−1 = −2πωkj−1dj−1 cos θj−1 and γj−1 = i2πωnj−1dj−1 cos θj−1
Point out that all the components of single matrices are complex, so the jth

matrix is given as:

(Cj) =

[
eiδj−1 rje

iδj−1

rje
−iδj−1 e−iδj−1

]
=

[
pj + iqj rj + isj
tj + iuj vj + iwj

]
(4.38)
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By applying simple mathematics, we extract the new defined coefficients as
follows:

pj = eαj−1 cos γj−1
qj = eαj−1 sin γj−1
rj = eαj−1(gj cos γj−1 − hj sin γj−1)

sj = eαj−1(hj cos γj−1 + gj sin γj−1)

tj = e−αj−1(gj cos γj−1 + hj sin γj−1)

uj = e−αj−1(hj cos γj−1 − gj sin γj−1)

vj = e−αj−1 cos γj−1
wj = −e−αj−1 sin γj−1

(4.39)

For calculating the reflectance for multilayer structure of n layers, one should
simplify the characteristic matrix product of the individual layer matrices. The
recurrence relations allow the elements of product matrices to be expressed in a
double suffix way as:

(C1)(C2) · · · (Cn+1) =

[
p1,n+1 + iq1,n+1 r1,n+1 + is1,n+1

t1,n+1 + iu1, n+ 1 v1,n+1 + iw1,n+1

]
(4.40)

Where the recurrence relations are determined as:

p1,n+1 = p1npn+1 − q1nqn+1 + r1ntn+1 − s1nun+1

q1,n+1 = q1npn+1 + p1nqn+1 + s1ntn+1 + r1nun+1

r1,n+1 = p1nrn+1 − q1nsn+1 + r1nvn+1 − s1nwn+1

s1,n+1 = q1nrn+1 + p1nsn+1 + s1nvn+1 + r1nwn+1

t1,n+1 = t1npn+1 − u1nqn+1 + v1ntn+1 − w1nun+1

u1,n+1 = u1npn+1 + t1nqn+1 + w1ntn+1 + v1nun+1

v1,n+1 = t1nrn+1 − u1nsn+1 + v1nvn+1 − w1nwn+1

w1,n+1 = u1nrn+1 + t1nsn+1 + w1nvn+1 + v1nwn+1

(4.41)

Eventually, the reflectance will have the following term:

R =
cc∗
aa∗ =

t21,n+1 + u2
1,n+1

p21,n+1 + q21,n+1

(4.42)

In our model, we followed the same strategy derived above but for unpolarized
light. Consequently, the recurrence relations should be calculated for both the
perpendicular (s) and parallel (p) polarizations.

Rs =
t212s + u2

12s

p212s + q212s

Rp =
t212p + u2

12p

p212p + q212p

(4.43)
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The total reflectivity of the system is:

R =
1

2
(Rp +Rs) (4.44)

At the same time, the effective Fresnel coefficients are provided as:

rp =
r1p + r2pe

−2iδ

1 + r1pr2pe−2iδ

rs =
r1s + r2se

−2iδ

1 + r1sr2se−2iδ

r =
1

2
(rp + rs)

(4.45)

To obtain the total phase, one should write r as:

r =
√
Reiφ

ln r = ln
√
R + iφ

(4.46)

In this manner, φ = imag(ln r)

4.4 Kramers-Kronig Analysis

The primary goal is to link the only extracted experimental data, the reflectance
R(ω), to the real and imaginary parts of the optical dielectric function.

Kramers-Kronig relations are named in honor of Hans Kramers and Ralph
Kronig. They are bidirectional mathematical relations, linking the real and imag-
inary parts of complex numbers i.e the real and imaginary parts are dependent,
so the real part can be determined from the imaginary part (or vice versa)..

A function, χ(s) = χ1(s) + iχ2(s), should have the following properties in
order to satisfy Kramers Kronig Relations:

• The locations of the poles of χ(ω) are below the real axis and that the
function is analytic in the upper half of the complex plane

• The function χ1(ω) is even and the function χ2(ω) is odd with respect to
real w

• ∫ χ(ω)
ω

tends to zero when taken around an infinite semicircle in the upper
part of the complex plane

Suppose that χ(s) = χ1(s) + iχ2(s) is a complex function, where χ1(s) and
χ2(s) are real numbers. The Kramers-Kronig relations are:

χ1(ω) =
P

π

∫ ∞

−∞

χ2(s)ds

s− ω

χ2(ω) = −P

π

∫ ∞

−∞

χ1(s)ds

s− ω

(4.47)
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where P is the Cauchy principle value.
Manipulating the real part of χ(s) = χ1(s)+ iχ2(s) and splitting the integral into
two parts, we achieve:

χ1(ω) =
P

π

∫ ∞

−∞

χ2(s)ds

s− ω

χ1(ω) =
P

π
[

∫ 0

−∞

χ2(p)dp

p− ω
+

∫ ∞

0

χ2(s)ds

s− ω
]

(4.48)

From the second property, substitute p for -s and χ2(−s) = −χ2(s) to get

χ1(ω) =
2P

π

∫ ∞

0

sχ2(s)ds

s2 − ω2

χ21(ω) = −2ωP
π

∫ ∞

0

χ1(s)ds

s2 − ω2

(4.49)

This analysis (K-K ) is one of the principle tools of the investigation of light
matter interaction phenomena in all media [16]. It gives constraints for testing
the self-consistency of experimental or model-generated data. Also K-K relations
allow optical data inversion, i.e. information on dispersive phenomena can be
determined by converting measurements of absorptive phenomena over the whole
spectrum and vice versa.

In this manner, the reflectivity coefficient r(ω) is a complex function defined
at the surface of a crystal as the light intensity ratio of the reflected and incident
beams:

r(ω) =
Eref

Einc
= ρ(ω)eiθ(ω) (4.50)

where

• r(ω) is expressed in the polar notation with modulus ρ and argument θ

• ρ(ω) =
√

R(ω) with R(ω) being the only measured experimental data

• and θ(ω) is the phase change between the reflected and transmitted rays
which cannot be measured using the experiment

In this manner, Kramers-Kronig analysis of infrared spectra is used to extract
the phase change θ(ω) from the measured experimental data R(ω).

In order to achieve our goal in determining the complex dielectric function of
the system ˜ε(ω) = ε1(ω) + iε2(ω), the relation between r(ω) and ˜n(ω) = n(ω) +
ik(ω) should be provided:

r(ω) =
ñ2 cos θ1 − ñ1 cos θ1
ñ2 cos θ1 + ñ1 cos θ1

=
√
Reiφ (4.51)

ln r(ω) = ln
√
R(ω) + iφ(ω) (4.52)
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Using eqn 4.47, we obtain the phase change between the incident and reflected
rays as:

φ(ω) = −ωP

π

∫ ∞

0

lnR(s)ds′

s′2 − ω2

φ(ω) = −ω

π

∫ ∞

0

(lnR(ω′)− lnR(ω))dω′

ω′2 − ω2

(4.53)

Performing integration by parts to the above equation, we obtain more suit-
able expression of φ(ω):

φ(ω) = − 1

2π

∫ ∞

0

ln
|s+ ω|
|s− ω|

d lnR(s)

ds
ds (4.54)

Eqn 4.54, is the phase shift theoretical form that illustrates whole reflection
spectrum from zero to infinite frequencies. Yet, testing the above integral indi-
cates that only a limited part of the whole spectrum contributes remarkably to
φ(ω). The two ranges that do not contribute in the integral are: the regions where

the reflectance is constant, and the regions where ln |s+ω|
|s−ω| is very weak when ei-

ther s >> ω or s << ω. Accordingly, the significant contributions come from the
range in the vicinity of ω0, in which ln

|s+ω|
|s−ω| is sharply peaked, and from regions

where the reflectivity alters expeditiously. In conclusion, for IR study, lattice
vibrations are the main reason behind light absorption, so the key involvements
to φ(ω) are from The Reststrahlen Region and its neighborhoods.
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Figure 4.8: MATLAB code Algorithm to calculate the complex refractive index
of a thin film
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Chapter 5

Results and Discussions

In this chapter, we use the model developed to derive from infrared reflectiv-
ity measurements the complex infrared dielectric function of amorphous silicon
carbide films grown on silicon.

The amplitudes of the rays reflected from the measured samples were mea-
sured using the experimental setup described in chapter 3. The phases of the
plane infrared electromagnetic waves were obtained using the Kramers-Kronig
conversion theorem. Then, using the numerical technique described in chapter
3, we deduced the complex infrared dielectric function of the amorphous sili-
con carbide films grown at different temperatures and pressures using the PLD
technique.

5.1 Measurements

FT-IR measurements were performed on the samples investigated to measure
their reflectivity spectra. Then, Kramers-Kronig theorem was applied on the
measured spectra to retrieve the phase shift as a function of the excitation wave-
length. From the knowledge of the reflectivity and phase vs the excitation wave-
length, we were able to derive the complex refractive index (n +ik) spectrum for
each sample. The real and imaginary parts of the dielectric function are then
readily derived from the relationships:

ε1(ω) = n2(ω)− k2(ω) and ε2(ω) = 2n(ω)k(ω).
The fig. 5.1-5.4 show the real ”ε1” and imaginary ”ε2” of the dielectric function

ε as function of ω:
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Figure 5.1: Real part of the dielectric function as function of ω for SiC thin film
synthesized at 5 mTorr

Fig.5.1 shows that the growth temperature has no effect on the real part of the
infrared dielectric function. Furthermore, the real part of all the grown films do
not present features related to resonance frequencies. From these results we can
conclude that the grown films can be described with the model of Einstein, i.e.,
with independent oscillator that do not present specific resonance frequencies.

Figure 5.2: 1D Crystal and Amorphous Chain
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Hence, all the grown films were amorphous and temperature does not seem
to enhance the film crystallinity.

Figure 5.3: Imaginary part of the dielectric function as function of ω for SiC thin
film synthesized at 5 mTorr

Fig.5.2 shows that the growth temperature also has no effect on the imaginary
part of the infrared dielectric function. Moreover, the imaginary parts are larger
than the real parts of the grown films and extend from 500 cm−1to 1500 cm−1.
The broadness of the imaginary part is related to the features that appear in the
corresponding Raman Spectra.
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Figure 5.4: Real part of the dielectric function as function of ω for SiC thin film
synthesized under vacuum
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Figure 5.5: Imaginary part of the dielectric function as function of ω for SiC thin
film synthesized at vacuum

Fig.5.3 and Fig.4 present the real and imaginary parts of the complex infrared
dielectric functions of silicon carbide films grown at a very low pressure (10−6

mbar). The film growth with a very low pressure allowed to reduce the imaginary
part below the real part of the dielectric function at high frequency. As can be
seen from the corresponding Raman spectra, this is due to the fact that the
growth at a very low pressure help eliminate bonds whose vibration frequencies
lie in the frequency range between 1000 cm−1 and 1600 cm−1.
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To make sure that the collected data are reasonable, we recalculate the re-
flectance ”R” and the phase shift ”φ” as function of ω and compare them to the
experimental ones.

The fig. 5.6-5.15 show the calculated reflectance Rcal and the experimental
reflectance data Rexp as function of ω. In addition, the calculated phase shift φcal

and phase shift determined by Kramers-Kronig equations φKK as function of ω
are shown.

Figure 5.6: Reflectivity of SiC deposited at 25 degree as function of ω
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Figure 5.7: Phase shift of SiC deposited at 25 degree as function of ω

Figure 5.8: Reflectivity of SiC deposited at 600 degree as function of ω
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Figure 5.9: Phase shift of SiC deposited at 600 degree as function of ω

Figure 5.10: Reflectivity of SiC deposited at 900 degree as function of ω
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Figure 5.11: Phase shift of SiC deposited at 900 degree as function of ω

Figure 5.12: Reflectivity of SiC deposited at 700 degree as function of ω
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Figure 5.13: Phase shift of SiC deposited at 700 degree as function of ω

Figure 5.14: Reflectivity of SiC deposited at 900 degree as function of ω
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Figure 5.15: Phase shift of SiC deposited at 900 degree as function of ω

From the above figures, we see that the recalculated reflectivity R and phase
shift φ agree with less than 1% with the experimental ones. Thus, by calculating
back the reflectivity and phase shift, we are regenerating the experimental results.
Thus, our results for the dielectric properties for our samples are true.
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Conclusion

This work has been dedicated to develop an experimental technique for the mea-
surement of the complex infrared dielectric function of a broad range of thin films
deposited on a substrate.

In the first chapter, we present Maxwell’s theory in its entirety, as well as the
laws governing the propagation of electromagnetic waves in a polar dielectric.
Special attention is given to the description of the behavior of electric and mag-
netic fields in dielectrics. This chapter should provide the necessary information
on the interaction between light and matter.

In the second chapter, we present the experimental techniques used in this
work. We provide a narrative description of the Pulsed Laser Deposition (PLD)
growth technique that has been used to deposit amorphous silicon carbide films
on silicon and the Raman spectroscopy technique that has been used to examine
the crystallinity of the grown samples.

In the third chapter, we present the Fourier Transform Infrared Spectrometer
(FTIR) used in this work. We also present the characteristics of this technique
which make it the tool of choice for probing the complex dielectric functions of
materials. We also present some results obtained from a reference sample showing
the accuracy of this technique.

In the fourth chapter, we present a detailed theory on the reflection of light
from a multilayer system. Then, we provide a description of the transfer matrix
method for the calculation of Fresnel coefficients and its application for the evalu-
ation of reflectance. In addition, we describe an approach, based on the combina-
tion of Fresnel theory and Kramers-Kronig conversion theorem, for the analysis
of the infrared reflectance spectrum of a multilayer system and the derivation of
the complex infrared dielectric function of a specific layer of the system.

In the fifth chapter, We use the technique developed to deduce the complex
infrared dielectric function of amorphous silicon carbide thin films deposited on
silicon at different temperatures and pressure levels using the pulsed laser de-
position (PLD) growth technique. We show that the growth temperature does
not have a significant effect on the dielectric properties of the amorphous films.
However, the variation in pressure allows a substantial modification of the real
and imaginary parts of the infrared complex dielectric function of the amorphous
silicon carbide film.
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