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An Abstract of the Thesis of

Fady Georges Baly for Master of Engineering

Major: Electrical and Computer Engineering

Title: mHealth System for Dermatology Diseases in Refugee Settlements Using

Multimodal Classification

While conflicts and wars are continuously erupting throughout the world, the

dispersion of refugees from their war-afflicted countries to neighboring states is

continuously increasing to an extent that these hosting states become incapable

of meeting the refugees’ basic needs, such as shelter, water, education, and most

importantly, healthcare. In particular, the hardships that refugees have been

facing due to the lack of basic medical services have motivated researchers to

develop technological automated solutions to address existing challenges and en-

hance healthcare support.

The focus of this thesis is on developing a mobile health system for diagnosing

certain skin diseases in an automated and accurate manner. The proposed system

leverages recent advances in machine learning, in particular deep learning algo-

rithms that are applied to different data modalities. The system’s architecture

includes a user question-answer component to retrieve user-related background

and health information, followed by an embedding model that is used to learn

representations for uploaded images capturing the affected areas of their skin.
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Finally, a machine learning classifier is trained using the features extracted

from both the questionnaire and image modalities to accurately predict the type

of skin disease, providing preliminary input to remote medical experts for further

evaluation and treatment. Testing and evaluation are performed using various

real data sets, and the obtained results demonstrate the overall effectiveness of

the proposed approach.
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Chapter 1

Introduction

The flow of refugees from their war-afflicted countries to neighboring states is

continuously dispersing. For example, according to the United Nations High

Commissioner for Refugees (UNHCR), the number of Syrian refugees in Lebanon

has surpassed the 1 million mark,1 which is significant compared to Lebanon’s

population of 4 million. Such situations would eventually result in the inability

of the hosting states to provide refugees with basic needs, including shelter, food,

education, and medical care. In particular, the scarcity of healthcare services

would create further hardships for refugees in need of medical care, especially

those who reside in primitive camps that are not equipped with the necessary

medical infrastructure to provide basic medical services such as diagnosis and

treatment. In addition to the lack of medical resources and attention, the lan-

guage barrier between refugees and physicians, if applicable, is another serious

challenge that might hinders proper communication, which in turn would lead to

inaccurate diagnosis and treatment [4].

Dermatological (or skin-related) diseases are commonly widespread in refugees

camps. Studies presented at the 2016 European Congress of Clinical Microbiology

and Infectious Diseases (ECCMID) revealed a list of dermatological diseases that

1http://data.unhcr.org/syrianrefugees/country.php?id=122
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are widespread amongst refugees in the Netherlands and Switzerland.2 Those

observed diseases represented a burden to the European States’ healthcare sys-

tems, as they require extensive monitoring of refugees, especially those coming

from Africa and the Middle East. Furthermore, those studies found that 30%

of African refugees have shown evidence of scabies. Another study3 have docu-

mented the spread of scabies among a large number of Syrian refugees in Lebanon.

Since many dermatological diseases are contagious, early diagnosis and treatment

are crucial to prevent widespread dissemination. Based on this information, pro-

viding refugees access for early diagnosis of dermatological diseases is of utmost

importance from a public health perspective.

Smartphones have recently become the most acquired devices, with the num-

ber of users constantly spiking in both developed and underdeveloped coun-

tries [5]. Therefore, significant efforts have been invested to exploit this techno-

logical advancement for the better of humanity. This includes developing mobile

applications that can provide a wide range of services to improve the people’s

quality of life. Most applications are contingent upon the availability of sophis-

ticated built-in hardware, such as sensory systems that can collect, in real-time,

personalized data such as location, image, video, and vital signs. In particular,

mobile health applications (or mHealth apps) are developed with the purpose

of providing healthcare and medical care services, such as obesity, depression,

and smoking [6]. These apps rely on a variety of portable and wearable network-

capable gadgets, in addition to smartphone built-in features such as microphones,

cameras, GPS, and Bluetooth. A detailed description of smartphone features

used in mHealth apps is available in Appendix A. mHealth apps have a great

impact on public health, and have even a greater impact in underdeveloped coun-

tries as they help remedy problems caused by the lack of decent clinical resources

and healthcare support [7].

2https://www.healio.com/infectious-disease/emerging-diseases/news/online/
3https://en.annahar.com/article/633416
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The aim of this thesis is to develop a mHealth system that provides early

and preliminary diagnosis of dermatological diseases and skin lesions. This sys-

tem would be of great value for refugees who have limited or no access to medical

and healthcare services. Also, because dermatological diseases can easily spread

in refugee camps, this app can help prevent epidemic outbreaks through early in-

fection detection. Most mHealth apps still rely on actual physicians to analyze

images that are uploaded by the users (patients). This is considered a problem

as analysing images does not provide enough concordance compared to checking

up on the patient vis-à-vis [8]. In other words, it might result in loss of informa-

tion leading to wrong diagnosis. Recently, mHealth apps started to exploit and

integrate the capabilities of machine learning into their systems, especially after

the booming of the deep neural networks. These apps rely only on images cap-

tured by the users, without further information that are typically acquired by the

physician during the examination, that might be essential for proper diagnosis.

Accordingly, our proposed system is mainly based on machine learning and

deep learning algorithms that are applied to data in different modalities including

natural language and images. The system is composed of an interactive survey or

questionnaire that the user (patient) has to fill and that helps retrieving relevant

user-related information, such as personal history and previous health records.

The system also allows users to upload images of the infected parts of their skin.

Then, a specifically-trained Convolutional Neural Network (CNN) model [9] is

used to extract semantic embedded representations of these images. Finally, a

Support Vector Machine (SVM) classifier [10] uses the features extracted from

both the questionnaire and the images in order to predict the type of the disease.

A detailed description of the different machine learning algorithms that are used

by the system is included in Appendix B.

The remaining of the thesis is organized as follows. Chapter 2 provides on

overview of existing mHealth apps and their underlying mechanisms. The sys-

tem architecture of the proposed mHealth app is then presented in Chapter 3.
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This is followed by a description of the machine learning algorithms, as well as the

datasets that are used to train these algorithms in Chapter 4. Then, Chapter 5

includes details about the experimental setup, the resulting performances with a

discussion Section. Finally, we provide conclusive remarks in Chapter 6.
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Chapter 2

Literature Review

As we mentioned earlier in the Introduction (Chapter 1), recent advances in the

smartphone technology have led the development of a variety of mobile health

applications, or mHealth apps, that generally aim to help and guide patients

dealing with health-related issues, and to provide medical care services such as

self-diagnosing particular diseases. In this chapter, we provide an overview of

relevant work that has been conducted in the area of mHealth apps.

Overall, mHealth apps can be categorized according to the services that they

provide, and also according to the means by which they provide these services.

One category of these apps help facilitating direct contact with physicians. For

example, Babylon1 has a live chat with a medical expert who provide patients

with immediate answers to medical questions related to their health issues. It

also offers the option to upload images so that physicians can have a look at the

affected area and come up with an accurate diagnosis. Web applications can also

serve as health solutions. For example, iCliniq2 provides the ability to chat with

physicians online, and to book appointments if necessary.

More recent mHealth apps rely on artificial intelligence (AI) and use auto-

mated “chatbot interface” as a means to interact with the patients and collect

1https://www.babylonhealth.com/
2https://www.icliniq.com/
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personalized information that can help diagnosing the problem at hand. The col-

lected information can be in the form of (i) answers to questionnaires or (ii) nat-

ural language, whether it be speech or text. Different types of chatbots have been

used, including smart chatbots [11] and rule-based chatbots [12]. Additional in-

formation can be collected via different types of sensors or devices such as scales,

heart-rate and blood pressure monitors. For example, the Sensely3 application

uses wearable sensors to provide physicians access to their patients’ medical in-

formation and vital signs, in order to assess their situation without the need for

an in-person examination. This app also offers patients the option to chat with

a medically-trained chatbot to provide further information that are relevant to

resolve their issues. Other apps, such as MedWhat4 and Your 5, are purely

chatbot-based, and they do not provide the ability to upload photos, and neither

access to physicians.

Overall, mHealth applications have been developed to target a wide range

of medical conditions. Most of the AI-based solutions deal with pimples, acne,

scars, dark spots, pigmentation, and dark circles. On the other hand, the apps

that deal with more serious health issues, such as skin cancer detection mainly

rely on real physicians analysing the patients’ inputs.

Dermatology is the branch of medicine that deals with diagnosing and treating

skin disorders [13]. Developing mHealth apps targeting dermatological diseases

is important for several reasons. First, such diseases can become highly contagious

in environment that lack proper hygiene and medical attention, such as refugee

camps. A notable example is the Syrian refugee camps in Lebanon, where med-

ical support is mostly contingent upon non-governmental organizations (NGOs)

involvement, especially with the ongoing economic crisis [14], the widespread of

COVID-19 [15] and the 2020 Beirut’s port explosion [16]. Second, some countries

3http://www.sensely.com/
4https://medwhat.com/
5https://www.your.md/
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suffer from the scarcity of dermatologists per capita. For example, there exist

roughly 11,000 skin care physicians in India,6 which translates to lesser than

one dermatologist per 100,000 of the population, which makes it extremely diffi-

cult to cater for the needs of every citizen in a timely manner. Third, very few

mHealth applications that specialize in dealing with dermatological infections.

Cureskin7 is one of the few mHealth apps that specialize in dealing with

dermatological diseases. It offers the option to upload images and automatically

detects the rash or acne, without the need to consult with a physician. However,

it lacks an interactive chatbot that collects personal information that proved

to be useful to improve the quality of the diagnosis. Skinvision8 is another

application that deals with early cancer detection. This application uses the

“fractal geometry” algorithm [17] to analyze uploaded images of skin grazes and

moles. Furthermore, whenever available, a medical expert reviews the uploaded

images to confirm or correct the preliminary diagnosis made by the app to.

Below, we describe recent research that was done to deploy machine learning

algorithms for diagnosing different dermatological diseases. One approach, for

melanoma recognition, combined deep learning with unsupervised sparse coding

and Support Vector Machines (SVM) [18]. It used Caffe Convolutional Neu-

ral Networks (CNNs) [19] to extract features that are used to train the SVM

classifier [20]. This system was trained on both RGB (red, green, and blue)

and grayscale images, with the former providing better performances. The best

performance was obtained when low-level features from both CNN and Sparse

Coding were averaged prior to training the SVM. Another approach for melanoma

recognition was explored in [21], where melanoma and non-melanoma images were

segmented separately to boost the classification performance. Very deep neural

networks (more than 50 convolutional layers) were used for both the segmentation

6https://www.newzopedia.com/
7http://cureskin.com/
8https://www.skinvision.com/
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and the classification stages to obtain more discriminative features, and residual

learning was used to overcome the degradation problem in very deep networks.

Finally, the model developed in [22] used the VGG-M pre-trained neural net-

work [23] to extract features that are then used to train a SVM classifier. The

performance of the fine-tuned network was benchmarked on both the retina and

melanoma datasets.

Dermoscopic pattern detection was carried out by training a CNN classifier

that outperformed a strong baseline of SVM with a radial basis function (RBF)

kernel [24]. As part of the preprocessing pipeline, input images were normalized

by averaging the pixels’ values and subtracting the mean. Also, data augmenta-

tion was performed by altering pixel intensities and geometric variations.

Unknown skin lesions were diagnosed in [25] using features that were ex-

tracted from the fine-tuned AlexNet: a CNN-based image classifier [26]. The

fully-connected layers of AlexNet were converted into convolution layers, where

the pre-trained weights from these layers act as convolution filters. Then, the

extracted features were used to train a logistic regression classifier to classify skin

lesions at 5 and 10 levels of class granularity. An updated version of the method

altered the CNN feature extractor to become composed of multiple tracts [27].

Each tract considers the same image at a different orientation of itself, and the

multi-resolution responses are then combined into a single layer using a super-

vised loss layer, thus making the final prediction a learned function of multiple

resolutions of the same image.

The key goal of this thesis is to develop a mHealth system that relies on

state-of-the-art machine learning algorithms to perform automatic diagnosis of

selected common dermatological diseases that are widespread in refugees commu-

nities. The system architecture of this app is hybrid in the sense that it combines

features extracted from a questionnaire that collects personal and medical infor-

mation from the users, as well as features extracted from a state-of-the-art image

processing model capturing information about the affected skin.

8



Chapter 3

System Description

In this chapter, we describe the system architecture of our mHealth system that

is specialized in diagnosing dermatological diseases in vulnerable communities,

mainly refugees, that lack clinical resources and healthcare support. This system

can also help overcoming the imposed language barriers that prevents proper

communication, leading to potentially inaccurate diagnoses.

3.1 System Architecture

The system architecture of the proposed mHealth system is depicted in Fig-

ure 3.1. This system was designed with the aim of mimicking an in-person ap-

pointment with a physician. At the high level, the system is comprised of a

medical form (or survey) that targets its questions towards dermatology-related

diseases and issues. The users’ answers to these questions are converted into nu-

merical features. It also allows users to upload images of the cutaneous lesions,

which are embedded into a semantic space using a fine-tuned Convolutional Neu-

ral Networks (CNN). The resulting features are then fed to a machine learning

model that outputs a prediction of the type disease. Finally, this information can

then be sent to a specialist for approval.

9



Figure 3.1: System architecture of our proposed mHealth method.

The proposed system was designed to have the following characteristics. First,

it is based on filling out a medical form (or survey) in order to collect personal,

medical and history information from the patient. Thus, it does not require

direct and instantaneous contact with a physician. Second, the medical form

can be easily translated to different languages, which is critical to overcome the

language barrier between refugees and physicians that might prevent proper com-

munications leading to potentially incorrect diagnoses or treatments. Finally, it

is multi-source and multi-modal, in the sense that it is able to fuse information

extracted from different data modalities and from different sources, particularly,

(ii) the textual (from the medical form) and (i) the visual (the uploaded image)

modalities. As a result, the machine learning classifier is enriched and trained

with information collected from multiple sources, which should help boost its

ability of perform accurate diagnosis.

3.2 System Modules

In this section, we describe in further details the different diagnosis modules,

namely the image-based, form-based, expert and mass diagnoses, that are part of

the proposed mHealth system.

10



3.2.1 Image-based Diagnosis

This module is formulated as an image classification problem, where it takes as

input the uploaded images of the infected area of the skin, and outputs an embed-

ded semantic representation that can be used to discriminate between different

types of infections This module depicted in Figure 3.2. Once an image is uploaded

to the system, it is pre-processed and then passed to the deep CNN model that

is initially trained to predict the type of dermatological disease that is shown in

the image. To train the CNN image classification model, we used DermNet: a

high-quality dataset that consists of 23,000 images for different skin diseases 1.

Figure 3.2: The image-based diagnosis module.

After acquiring the desired training images from DermNet, preprocessing

steps are applied to improve the performance and efficiency of the learning pro-

cess. For instance, preprocessing ensures that the image orientation is random

across all training and new data, to avoid bias towards a particular shape or

orientation. Converting the images from a RGB (red, green and blue) scale to

grayscale makes the learning process faster and less computationally expensive,

as the model has to process only one-third the original data. Having said that, the

performance is expected to do better with the RGB images as they contain more

information. We evaluate this tradeoff later in Chapter 5. Filtering the images

using smoothing filter helps in noise reduction by removing unimportant details

such as hair and background noise. A sharpening filter can also help highlighting

small details or blurred areas.

1www.dermnet.com
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Once preprocessing is done, the images are then used to train the image clas-

sifier, which is, in our case, an instance from the Convolutional Neural Networks

(CNN) that are widely used for image processing.

3.2.2 Form-based Diagnosis

This module asks the users specific questions related to their personal history

and their medical conditions or symptoms. In order to build this module, we

have communicated with the Dermatology department at the American Univer-

sity of Beirut (AUB) to provide proper guidelines to come up with questions

that are typically asked whenever patients visit their primary care physicians or

dermatology specialists.

Figure 3.3: The form-based diagnosis module.

The module extracts the users’ answers and transforms them into a set of

features (as will be discussed later in Section 4.2.2) that can be either location-

dependent, behavioral, or history-related. These features are then fed to a Sup-

port Vector Machine (SVM) model for prediction.

3.2.3 Expert Diagnosis

After obtaining the preliminary infection diagnosis provided by the above-mentioned

modalities, this information can then be sent off to a professional medical doctor

for approval or confirmation of the diagnosis. This step does not abrupt the au-

tomated diagnosing process, but it will further help optimizing and fine-tuning

the trained models, by augmenting our training datasets with further features

12



obtained from the patients along with the approved diagnoses provided by the

medical experts. This would improve the generalization capabilities of our sys-

tem, in addition to its ability to learn newly-emerging diseases that were not part

of the training dataset.

3.2.4 Mass Diagnosis

Finally, the obtained predictions are stored on a cloud server for further analysis.

Considering the fact that refugees usually reside in settlements, the infections that

one member has can spread to the whole community. The stored information can

be analyzed to check for any trends about the spread of dermatological diseases,

which can be extremely useful for tracing outbreaks and localizing their sources.

It can also serve as an alarm system that detects the spread of infections before

they turn into epidemics.

13



Chapter 4

Dataset and Models

4.1 Datasets

To train the diagnostic models that are described in Chapter 3, we used the fol-

lowing datasets: (i) a synthetic dataset to train the form-based model (dubbed as

SynForm), and (ii) the DermNet dataset to train the image classifier. Below,

we provide a detailed description of these two datasets.

4.1.1 SynForm Data

This dataset is synthetically created by associating known features (symptoms

and relevant information) with common dermatological diseases. These features

reflect the kind of questions that are typically asked by dermatologists while

examining each type of lesion. They were provided by a dermatology expert at

the American University of Beirut Medical Center (AUBMC) after several rounds

of discussions. These features are grouped under three different categories, as

shown in Table 4.1: the (i) behavioral features describe how the lesion is affecting

the patient’s skin, the (ii) location features describe which parts of the body is

affected, and the (iii) history features describe family or personal history with

certain symptoms or diseases.

14



Category Features

Behaviour

Itching, Itching worsens at night

Lesions appear after itching

Itching worsens during winter

Itching better during summer

Sweating makes itch worse

White small scales on the scalp with variable itching

Fibrosis of the papillary dermis

Fever, Malaise, Headache

Lesion becomes bigger over several days

Muscle pain, Central chest

Holes in nails

Can get worse after a health event

Can get worse after emotional stress

Difficulty moving the joints

Thickening in palms skin

Thickening in soles skin

Soles with orange-red coloration

Location

Face or elbows

Genitalia

Knees, torso, feet, neck or hands

Lumbosacral area

Nasolabial folds

Popliteal Fossa

Antecubital fossa

The nipples, Scalp, Ears

Body folds

Medial portions of the eyebrows

Upper eyelids

Lateral aspects of the nose

Retro-auricular areas

The occiput

Single skin lesion on the trunk

Single skin lesion on proximal extremities

History

Family history of asthma

Family history in atopic

Family history of allergies

Personal history of asthma

Personal history of allergies

Age

Table 4.1: Summary of the different features that exist in the synthetic dataset.

15



Each instance in the dataset corresponds to an artificially created medical

record that consists of a unique combination of features associated with a partic-

ular skin disease. We focus on instances that pertain to 6 types of skin diseases:

Atopic Dermatitis, Seborrheic Dermatitis, Psoriasis, Lichen Planus, Pityriasis

Rosea, and Pityriasis Rubra Pilaris. Each feature is represented with a value

that ranges between 0 and 3, where 0 indicates its absence and 3 represents its

maximum existence. It is worth mentioning that not all skin lesions have the

same features, which eventually creates sparsity in the features matrix.

Each feature has a probability by which it is associated with a particular

disease. For example, “oral lesions” are seen in up to 75% of patients with

Lichen Planus. Therefore, we ensure that the “oral lesions” feature is activated

for 75% of the Lichen Planus cases, independently from other features. This

strategy allows to mimic how a real collected dataset could be, but also leads

to limited amount examples with incoherent features combination. This can be

considered as noise in the data, or outliers. The final SynForm dataset consists

of 900 examples, and Figure 4.1 shows the distribution of the 6 classes in the

dataset.

We can also notice that providing values for most of these features only require

visual cues that can be perceived with the naked eye, in addition to a bit of

knowledge about the patient’s and their family history. Therefore, users should

be able to provide sufficiently accurate answers regarding these features, thus

aiding the model’s ability to return the correct diagnosis. We can also notice the

absence of important information that can be obtained via clinical testing and

observations, which emphasizes the importance of the image-based diagnosis as

a complementary source of information.

Next, we provide a detailed description of each of the 6 skin lesion diseases

that will be considered in our experiments.

16



Figure 4.1: The distribution of the different classes in the SynForm dataset.

Atopic Dermatitis:

* Itching is always present

* Itching is worse in the evening/night

* Skin lesions appear after the itch sometimes

* Sweating and wool clothing makes the itch worse

* Family history of atopic dermatitis is usually present

* Family history of asthma and/or allergies increases the likelihood of having

atopic dermatitis

* Personal history of asthma and/or allergies increases the likelihood of hav-

ing atopic dermatitis

* In infants, the distribution of the skin lesions: face, elbows, knees, torso

* In children/adults the distribution of the skin lesions: neck, hands, feet,

popliteal fossa and antecubital fossa as well as the nipples.
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Seborrheic Dermatitis:

* Distribution of the scales and skin lesions mostly over the scalp, ears, face,

central chest, and body folds

* Worsens during the winter and better during the summer

* White small scales on the scalp can be present with variable itching

* On the face, skin lesions are symmetrical. They affect the forehead, medial

portions of the eyebrows, upper eyelids, nasolabial folds, lateral aspects of

the nose, retroauricular areas, and occasionally the occiput and neck

* Chronic and usually comes in the winter and goes in the summer.

Pityriasis Rosea:

* It usually starts with a single skin lesion on the trunk or less commonly

over the neck or proximal extremities and the lesion becomes bigger over

several days.

* 5% of the patients have fever, malaise, muscle pain, and headache.

* Several lesions then begin appearing all over the body especially the trunk

and the back

* The skin lesions have scales especially paralleling the perimeter

* The face, palms, and soles are usually spared.

Psoriasis :

* The risk in the general population is 1-3%; if a single sibling has it, then

the risk increases to 6%, if one parent has it, the risk becomes 16% and if

both parents have it then the risk is 41%.
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* Psoriasis has changes in nail appearance (holes in nails) in 79% of patients.

* Psoriasis skin lesions can appear in locations that have been subjected to

trauma (fall or injury)

* Lesions can get worse after a health event or emotional stress (sickness,

hospitalization, loss of a family member, etc)

* The scalp, elbows, knees and lumbosacral area (lower back/buttock) are

sites of predilection, as are the hands and feet.

* Genitalia is a common affected area in up to 45% of cases.

* Itching and pain can be present but not always.

* Depending on the studies, 5-30% of patients with psoriasis might have hand

joints problems including pain and difficulty moving the joints especially

after waking up.

Pityriasis Rubra Pilaris:

* Shows no gender bias, affecting both men and women equally,

* The incidence has two peaks. The first is during the first and second decades

and the second is during the sixth decade.

* Lesions may start in the head and neck and progress caudally; alternatively,

they may involve the entire body.

* The nails might be involved: thickening of the nails and debris underneath

the nails is a hallmark.

* A form of Pityriasis Rubra Pilaris can be associated with the HIV infection

* Involvement of the palms and soles is sometimes seen thickening of the skin

of the palms and soles with an orange-red coloration.
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* If very early, Pityriasis Rubra Pilaris can mimic seborrheic dermatitis

* Scales, if present, are finer than in psoriasis.

Lichen Planus:

* Some studies found that women were affected nearly twice as often as men.

* Has been reported to affect from 0.2% to 1% of the adult population

* Has its onset during the fifth or sixth decade, with two-thirds of patients

developing the disease between the ages of 30 and 60 years.

* Oral lesions are seen in up to 75% of patients with skin Lichen Planus.

* Occurs in up to 10% of first-degree relatives of affected patients.

* In several case–control studies, the prevalence of HCV (hepatitis C-virus)

(3.5–38%) was 2- to 13.5-fold higher in patients with Lichen Planus than

in controls.

* Of the various types of Lichen Planus, it is the oral form that is most

commonly viewed as a manifestation of HCV infection. By PCR, HCV RNA

(RNA is the genetic material of HCV or hepatitis C virus) was detected in

93% of oral Lichen Planus lesions

* Lesions can also occur at the site of trauma

* The most common sites of involvement are the flexor wrists and forearms,

the dorsal hands, the shins, and the presacral area. Mucous membranes,

especially the oral mucosa (see below), are affected in more than half of

patients, and this is often the only site of disease.

* Lesions are always itchy with minimal to no scaling.
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4.1.2 DermNet Data

DermNet is one of the largest publicly available databases in dermatology im-

agery, with more than 23,000 images covering a wide variety of skin diseases.

This dataset is organized biologically in a two-level taxonomy. The low-level has

more than 600 skin diseases, whereas the high-level contains only 23 skin dis-

ease classes, where each of these high-level classes contains a sub-collection of the

low-level classes.

We are not planning to use all these images, since they are not all relevant

to our problem, which is developing a mHealth system that helps diagnosing

skin diseases among refugees. In fact, not all of the available skin lesions are

commonly spread among refugees. Recent studies1 have shown that the most

spread skin diseases are Giardiasis, Leishmaniasis, and Echinococcosis. Other

studies reached the conclusion that common skin diseases in refugees camps are

infections caused by poor hygiene and overcrowded living spaces, such as Scabies

and Pediculosis2.

Nevertheless, given the size of DermNet dataset, we decided to pick the skin

lesion classes that were well-represented in the target audience of the system.

Also, since the form-based classifier is used to complement the image-based clas-

sifier, they must both be trained with datasets that are consistent in terms of

the output classes they contain. Therefore, we will only consider the six classes

that already exist in the SynForm dataset. This reduces the dataset to 4,098

images. Figure 4.2 illustrates the distribution of the 6 classes in the dataset.

1https://www.cdc.gov/immigrantrefugeehealth/profiles/syrian/

health-information/parasitic-infections/index.html
2http://www.derm.city/single-post/2016/06/01
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Figure 4.2: The distribution of the different classes in the DermNet dataset.

4.2 Data Transformation

In order to obtain the optimum performance out of our models, certain pre-

processing or transformation techniques need be applied to each of our training

datasets.

4.2.1 Images: DermNet

Several preprocessing techniques can be applied to images to help boost the

performance of the fine-tuned model. At first we applied a smoothing filter to

remove small details that are irrelevant to the task at hand, then we implemented

a sharpening filter to increase the details on the remaining information in the

image that might be useful.

It is important to discuss the effects of transforming the images from col-

ored (RGB) to grayscale. This transformation represents a well-known tradeoff

between accuracy and efficiency. While it might lead to a decrease in accuracy

because of the loss of potential information that exist in the dropped colors, this
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transformation improves the model’s efficiency as it significantly reduces the in-

put data that needs to be processed. Intuitively, choosing to keep the images in

their colored form seems obvious as they contain more information represented

in the different color gradients of the skin and the lesions. But, considering that

we do not exactly know if these extra information are going to be useful or not in

our case, we decided to fine-tune the models using both colored and gray-scaled

images, and compare the difference in the resulting performances.

The images’ distribution over the selected classes, as shown in Figure 4.2,

reveals a clear data imbalance. Therefore, data augmentation techniques become

useful to balance the dataset, and consequently to improve the model’s perfor-

mance. We applied image rotation over 90, 180, and 270 degrees. We also applied

change in brightness, mirroring, random occlusions, and shearing.

The final step involves cleaning the dataset from anomalies, which is critical

for the learning process. The DermNet dataset has a lot of examples that either

are either microscopic images, which are useless for our system, or images that

capture the whole body while the lesion is on a small part of it. Such images

were excluded from our dataset.

4.2.2 Form: SynForm

When it comes to categorical data representation, we often suffer from the issue of

sparsity, which typically hurts the learning process and decreases the effectiveness

of the resulting model. We need to handle this issue, given that our data that

is coming from the answers to the system’s form has the potential to be highly

sparse, especially if represented using one-hot encoding. One common way to

avoid this problem is through feature reduction algorithms, such as Principle

Component Analysis [28]. Despite the fact that PCA helps getting rid with the

sparsity problem, we did not apply it in our system because it might possibly

lead to unnecessary loss of information during the data reduction process.
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Another way to handle sparsity is to perform Entity Embedding [2]. This

technique maps a given feature set to a new one that has a smaller number of

dimensions. For instance, a feature that can take one of four distinct values can be

represented using two features, instead of four features when one-hot encoding is

used. Furthermore, entity embedding converts categorical values to soft and dense

values which are more favourable to classifiers, and can also reveal the potential

properties of a variable. It also improves the model’s generalization capabilities

by having a much higher set of categories for a single feature. Additionally, it

reduces memory usage and speeds up training compared to one-hot encoding

representation.

This is done by training a neural network with an embedding layer by assem-

bling the categorical values that belong to the designated lesion. This represen-

tation allows us to obtain inherent properties from each categorical value. The

output is then used to replace one-hot encoded values. Further details about the

Entity Embedding model is available in Appendix B.

4.3 Image Classification Models

Recent advances in Computer Vision lead to the development of a huge number of

Convolutional Neural Networks (CNNs). Many CNN networks architectures were

developed in order to reach the highest performance possible on the ImageNet [29]

dataset which is considered the benchmark for the image classification task.

CNNs can be used to perform image classification in our mHealth system

under different settings. One option is to train a CNN model from scratch with

only dermatology-specific images, which is only a good idea if we have an abun-

dance of skin lesion data. Another option that is most commonly used to get

a more accurate learning is to initialize our model with one of the most recent

state-of-the-art pre-trained models, and then fine-tune it with our dermatology-

specific dataset. It is worth mentioning that using pre-trained models, despite
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them being trained on different data, is highly recommended as the model al-

ready knows how to detect various borders and features even for unseen data.

An additional preprocessing step would be to either crop or resize the image to

the size of the network’s input. The authors in [30] fine-tuned the the VGG16

and VGG19 networks [23], proving the benefits of training on pre-trained models.

While there exists a large number of pre-trained CNN models, our model

selection was based on several criterion, including the model size (number of

parameters) and the reported performance. The number of parameters in the

selected models is always a limitation due to the fact that more parameters mean

more memory and time requirements for training and storage. For instance, the

top performing model, FixEfficientNet-L2, has over 480 million parameters.

Finding a server big enough to fine-tune this model is both expensive and time

consuming. It is also worthy to compare different CNN architectures that had

high and close reported scores on ImageNet, and how they performance on our

data. Examples of different CNN architectures that will be used in our experi-

ments include: the Inception models, the Residual Network models, and the

EfficientNet models. Next, we list instances of the selected CNN models with

a brief description on their architecture and score on ImageNet.

Inception3 This model was proposed by [31] and has 24M parameters. Its

architecture, and generally all inception architectures are aimed to factorize con-

volutions to reduce the number of connections and parameters without losing

efficiency. This has been done by factorization convolutions into smaller ones,

for instance, a 5x5 (total of 25) convolution is replaced with two 3x3 (total of

18) convolutions. They also used asymmetric convolutions, as in replacing 3x3

(total of 9) convolutions with a 1x3 and a 3x1 (total of 6) convolutions. As we

observe, by doing these factorization steps, the complexity of the model has been

maintained while reducing the number of parameters and by definition, reducing

the risk of overfitting.
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Xception This model was proposed by [32] and has 22.8M parameters. It

stands for Extreme version of Inception. This model introduces a modified depth-

wise separable convolution which is basically pointwise convolution followed by a

depth-wise convolution. A pointwise convolution is a 1×1 convolution to change

the dimension applied across the channels (the depth across the image channels).

Whereas depth-wise convolution is a channel-wise n× n spatial convolution. For

example, assuming we have 5 channels input, then we will have 5 n × n spatial

convolution. Comparing this with the conventional convolution, there will be no

need to perform a convolution operation across all channels, which means less

connections, hence a lighter model.

Inception4 This model was proposed by [33] and has 43M parameters). This

inception model is intended to make a more uniform inception3 factorization

modules. This can enable us to boost performance by adding more of these

uniform modules.

InceptionResNetV2 This model was proposed by [33] and has 55.8M param-

eters. It is a hybrid model between Inception modules and Residual Networks

(ResNets), that help solve the degradation issue (more layers leading to slower

convergence or none at all) by adding the input of hidden layer (or several layers)

to their output, thus learning the residuals. The InceptionResNetv2 model corre-

sponds to the Inceptionv4 modules with residual connection across each module.

EfficientNet-B7 Noisy Student This model was proposed by [34] and has

66M parameters. It is based on understanding the effect of scaling the network

in different dimensions. The conclusion reached is that balancing all networks

dimensions depth, width, and image resolution, performed the best increase in

overall performance. This EfficientNet has been trained using the Noisy student

algorithm. First you train a ”teacher model”, which is later used to label unla-
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beled images. To ensure accurate enough predictions, a threshold has been set

to filter out less confident predictions. This data is now merged with the labeled

data and ”student model” is trained on this combined data. Now, the student

model becomes the ”Noisy Student” as it is trained on data labeled from the

teacher model, and is used to label more of unlabeled data. The loops goes on

until convergence.

Table 4.2 displays a summary of the discussed CNN models presenting number

of parameters and score on the ImageNet dataset for each architecture.

In the next chapter, we discuss how the above-mentioned models are used

in different configurations and preprocessing schemes in order to obtain the best

possible performance.

a

Model Number of Parameters Score on ImageNet

Inception3 24M 78.8%

Xception 22.8M 79%

Inception4 43M 81.2%

InceptionResNetV2 55.8M 83.1%

EfficientNet-B7 (Noisy-Student) 66M 86.9%

Table 4.2: CNN models specifications.
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Chapter 5

Experiments and Results

In this chapter we describe details of the experimental setup used in this thesis.

This includes the different configurations under which the selected CNN models

were trained, namely standalone and majority voting, with or without the fea-

tures extracted from the form. We also describe the metrics that we used to

evaluate the performance of the different models. Then, we present the results of

each configuration and perform a qualitative analysis to draw conclusions. The

SynForm synthetic dataset was used in our experiments to train and evaluate a

classification model that would serve as baseline to compare the novelty detection

process with.

As we move forward, we notice that the count of the DermNet dataset

surpasses the count of SynForm data significantly. This discrepancy in the

data, and considering that both datasets come from different sources, compelled

us to randomly pair instances from the two datasets that belong to the same

class. Although some instances from the SynForm may match their DermNet

counterpart, but the likelihood that the pair will not match across all the features

is way higher especially visual features such as age, and location. This issue is

expected to hurt the confidence in the models’ performances and can only be

fixed by properly collecting data from hospitals and sources that have and are
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willing to share data with similar characteristics to the ones we are using in this

thesis.

5.1 Experimental Setup

5.1.1 Baseline

First, we identify a strong baseline to compare and justify the final system ar-

chitecture and the proposed features, and in order to quantitatively assess the

suggested solution. Given that we are using two datasets to train our models:

SynForm to train the form-based model and DermNet to train the image clas-

sifier, our experimental setup is driven by the following goals. First, we need to

showcase that the features extracted from the form are well-defined, standalone,

and can be used to learn to predict their corresponding labels, which in our case

are the 6 pre-defined skin diseases. In other words, we need to see that training a

model using only these features should yield sufficiently good performances that

reflect their predictive capabilities. The resulting performance of this configura-

tion is considered the baseline, to which further configurations will be compared

with to evaluate their effectiveness. Second, we need to prove that the importance

and the added value of the image-based model in terms of its ability to provide

complementary information to the form-based model (baseline), thus boosting

the results to new levels.

The form-based model corresponds to a Support Vector Machines (SVM)

classifier that is trained with the features existing in the SynForm dataset. At

inference time, those features will be collected from the users once they answer the

questions in the form. To get the best performance from the SVM model, we used

the grid search algorithm to fine-tune the model’s hyper-parameters: the kernel’s

type, the kernel’s width σ (for RBF), and the misclassfication parameter C. The

gamma parameter is a parameter for the Radial Basis Function (RBF) kernel
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that defines the influence of each instance in the training data. Small values

of gamma indicate a large similarity radius, resulting in more instances being

grouped jointly, whereas larger values means that the instances need to be closer

to one another to be considered in the same class. The parameter C penalizes each

misclassified data instance, and thus helps find the balance between increasing

the distance of the decision boundary to the classes (the support vectors) and

maximizing the number of instance that are correctly classified in the dataset.

Since our dataset contains 6 classes (or labels), we trained a multi-class SVM

classifier using two different approaches. The first approach is the “One-vs-All”

(OvA), which is a heuristic procedure that uses binary classification for multi-

class classification. This is done by splitting the multi-class dataset into multiple

binary classification problems, and a binary classifier is then trained on each bi-

nary classification split. For example, to train a model that detects the Psoriasis

cases, we re-label the dataset examples as Psoriasis or non-Psoriasis, and the

same applies for each of the remaining classes. The other approach is the “One-

vs-One” or (OvO), which is another heuristic approach that splits the data into

one binary dataset for each class in the dataset. In this case, in comparison to

the OvA example, the Psoriasis instances are going to be trained against each

of the other classes separately, and so on.

5.1.2 CNN Standalone

To perform image classification, we trained the EfficientNet-B7 (Noisy-student) as

a standalone model without any added features. This model is trained using both

RGB and grayscale images, to ensure fair comparison to the other approaches.

This model was selected to be trained alone based on its best performing score

in a set of preliminary experiments.
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5.1.3 Majority Voting

The main incentive for using the “majority voting” strategy is to discover a

hypothesis that is not necessarily contained inside the hypothesis space of each

of the various models from which the ensemble is built. Experimentally, ensemble

methods tend to yield better results when there is a significant diversity among

the trained models. This approach is represented in Figure 5.1. Hence, we decided

to apply the majority voting on a collection of pre-trained and fine-tuned CNN

models that have different architecture. We applied the ensemble mechanism

under two scenarios. (i) Only CNN models : in this case we trained the Xception,

Inception4, and the InceptionResNetV2 models using both RGB and grayscale

images, and (ii) CNN with form features : in this case, the SVM model that was

trained using the features from the SynForm data (the baseline model) is added

to the mix of CNN models, then majority voting is applied to the outcome.

Figure 5.1: Majority Voting approach structure.
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5.1.4 Fusion: CNN with Form Features

Instead of adding the SVM next to the CNN in an ensemble setting, we con-

catenated the Form Features to the image features extracted from the first fully-

connected layer following the series of convolutions in the CNN. In other words,

we concatenate the Form features to the image representation that is produced by

the CNN model. This experiment is also conducted on both RGB and grayscale

images, in order to ensure fair comparisons to the other configurations. This

architecture is displayed in Figure 5.2

Figure 5.2: Feature Fusion approach structure.

5.2 Evaluation Metrics

In order to substantiate the fidelity of our results, we use a set of metrics, based

on which we can fairly and accurately compare and validate the performance of

each of the previously discussed scenarios.

Student’s t-test Dealing with neural networks means dealing with random

weights initialization. This means that every time we train a CNN model we

might get different results. These results might be close to or distant from each

other, and this behaviour depends on the distributions of the training and testing
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data, as well as the weights initialization procedure. If the difference in the results

of the same model across multiple runs is high, then it is not accurate to claim

that any of these results are valid without performing a t-test first. The t-test

provides an indication of the significance of the difference between two (or more)

sets of results. This allows us to compare the performance of our models more

accurately without risking being affected by an outlier model. Each model is

trained using 10-fold crossvalidation with random data to insure that the data

across the different iterations are independent. The t-test is calculated as shown

in Equation (5.1).

t =
X̄1 − X̄2√
(S1)2

n1
+ (S2)2

n2

(5.1)

where X̄i is the mean of the ith model, Si is the standard deviation of the ith

model, and ni is the number of runs of the ith model.

Recall This metric is a good measure to determine, when the costs of False

Positives is high. It answers a very simple question: how many of the predicted

instances were predicted positive out of everything that is originally positive?

This measure is of interest to our mHealth system as it puts more emphasis on

the ratio of correctly-identified lesions to patients who belong to the same lesion

classes. Equation (5.2) illustrates how recall is calculated,

recall =
tp

tp + fn
(5.2)

where tp is the number of true positive predictions, and fn is the number of false

negatives predictions.

F1 Score This metric is commonly used in the case where the training and eval-

uation datasets exhibit class imbalance. This metric provides a balance between
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Recall and Precision (which tells you what portion of the actual positives was

predicted correctly). Equation (5.3) illustrates how the F1 score is calculated,

F1score =
2 ∗ tp

2 ∗ tp + fn + fp
(5.3)

where fp is the number of false positive predictions.

5.3 Experimental Results

In this section, we demonstrate the results of our proposed methods. Section 7.1

displays the results of the hyperparameters fine-tuning for the four supervised

classification models. Section 7.2 discusses the achieved results of the classifica-

tion and the value of the novelty prediction process.

We start with setting up the baseline model, which will be used to identify

the advantages or disadvantages that other configurations and approaches bring

to the table. We used the SynForm data to train a SVM classifier. We used

two types of kernels for the SVM model: the Polynomial kernel and the Radial

Basis Function (RBF) kernel. The grid search algorithm was used to fine-tune

the hyperparameters C and the RBF kernel’s width gamma, where preliminary

results indicated that tuning the C parameter has no significant impact when

using the polynomial kernel.

Results are illustrated in Table 5.1. It can be observed that a C of value 0.001

and a gamma value of 0.2 on a RBF kernel achieved the highest results of 82.41

F1 score and 83.12 recall.

Regarding the Majority voting approaches, we begin with training the differ-

ent CNN models, individually. Considering memory limitations, we used a batch

size of 16. We also set the dropout rate of 0.75. This is a common approach

to improve the model’s ability to generalize to new unseen images. Table 5.3

illustrates the results of the different CNN classifiers on both color modes.
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Kernel Hyper-parameters F1 score Recall

Polynomial

degree = 3 79.1 79.23

degree = 4 80.36 79.88

degree = 5 78.18 76.93

RBF

C = 0.001 γ = 0.2 82.41 83.12

C = 0.1 γ = 0.2 79.36 77.57

C = 1 γ = 0.2 76.18 75.62

Table 5.1: Results of the baseline model that only uses the “Form” features.

CNN model Color mode F1 score Recall

Xception
Grayscale 72.84 72.03

RGB 77.57 77.24

Inception4
Grayscale 71.28 70.72

RGB 78.97 78.86

InceptionResNetV2
Grayscale 74.48 74.91

RGB 79.29 80.57

Table 5.2: The individual performance for the different CNN classifiers.

Results confirm that converting to grayscale significantly hurts the perfor-

mance, and that the InceptionResNetV2 achieves the highest results.

After acquiring the individual results for each model, we can proceed with

the majority voting process. First, we evaluate the ensemble using only CNNs

as displayed in table 5.3. Then, we add the Form SVM model (the baseline)

to the ensemble mix, and compare performance. Results in table 5.5 indicate

that incorporating the Form-based model consistently improves the results, which

confirms that the Form features are complementary to the images.

Finally, we evaluated the impact of adding the Form features to a strong

standalone CNN, namely EfficientB-7 (Noisy student). To incorporate the form

features, we concatenated them to the image embedding generated by the CNN
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Form features Color mode F1 score Recall

No
Grayscale 74.89 72.29

RGB 80.71 79.64

Yes
Grayscale 82.14 82.76

RGB 83.23 83.78

Table 5.3: The performance of the ensemble CNN model with and without in-

corporating the Form-based model.

model. Then, fully connected layers and a softmax classification layer were added

on top of the fused vector to perform classification. Results in Table 5.4 confirm

that incorporating the Form features to the image features boost the model’s

ability to perform accurate diagnosis. However, the increase in performance (1.7

points growth in F1score) was not as significant as one would expect it to be,

given the richer context being provided. This can be mainly attributed to the way

the SynForm dataset was created, which involved randomly assigning instances

from the dataset to DermNet instances of the same class (refer to Chapter 5).

While this procedure would obviously lead to confusing the system during train-

ing, yet the increase in performance indicates that it was able to make the model

focus on more important features, while ignoring those hurting the learning pro-

cess.

In the next section, we will discuss in details what meaning these result hold

and how we can benefit from this feedback to further improve the performance.

5.4 Results Analysis

After obtaining the experimental results, it is important to understand what

they actually mean and how we can further reduce the error rate. One expected
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Form features Color mode F1 score Recall

No
Grayscale 79.52 79.03

RGB 84.67 86.24

Yes
Grayscale 80.18 77.36

RGB 86.35 86.95

Table 5.4: The performance of the EfficientNet-B7 (Noisy Student) model with

and without the Form features.

observation was that all experiments that were conducted using the grayscale

images yielded inferior results compared to their RGB counterpart. This is mainly

due to the loss of information, as color depth and shade contain more information

especially in skin lesions detection where different shades of the lesions can hold

different explanations. Therefore, we exclude experiments on grayscale images

from further analysis.

As for the majority voting approach, we noticed a 2.5% increase in perfor-

mance (improving from 80.7% to 83.2%) on F1 score. To better understand

how this happened, we need to check the performance of the models per class

separately.

First we start inspecting the models performance per class as we show in

table 5.5. We can notice from the results that the SVM performance is more

balanced than the ensemble. A great factor of why the ensemble is lacking behind

on some classes, is the unbalanced distribution of the symptoms of the instances

per class. Meaning, some of the images that we collected cover a lesion with mild

symptoms that are not clearly visible compared to the other images in the class

as is seen in Figure 5.3.

Another major factor is the color of the skin. Images where lesions appear

on a dark skin have different characteristics than when they appear on a lighter

skin. Difference in color between damaged areas and unaffected areas are more
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Figure 5.3: Comparison between cases with a) mild and b) visible symptoms [1].

Skin Lesion SVM CNN ensemble

Atopic Dermatitis 85.67 85.35

Lichen Planus 86.74 84.20

Pityriasis Rosea 80.37 76.83

Pityriasis Rubra Pilaris 80.92 74.13

Psoriasis 83.80 86.45

Seborrheic Dermatitis 80.56 79.53

Table 5.5: F1score per class comparison between SVM and CNN ensemble

visible on white skin than black skin as depcited in Figure 5.4. Added to this, the

examples with black skin are fewer in numbers than examples with white skin.

This is why data augmentation did not add much value to solving this problem

in particular.

Moreover, the images are taken in different angles. In some cases the lesion

covers a large area of the body, this also leads to taking a picture that covers all

of damaged areas as we can see in Fig 5.5. Inputs like that are not as common as
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Figure 5.4: Comparison between a symptoms on white skin (a), and symptoms

on dark skin (b) [1].

the closeups images in the dataset which makes it harder for the model to learn

and predict these cases.

These discrepancies add to the complexity of the data. These complexities

mostly come from unbalanced distribution of cases within each class whether in

color skin, severity of the symptoms, the size of the covered area of the body.

As for the last approach, we display in Table 5.6 results of training EfficientNet-

B7 (Noisy Student) as a standalone model in comparison to adding the form

features to the decision making layers.

We noticed how classes that were behaving badly on CNNs such as Pityriasis

Rosea and Pityriasis Rubra Pilaris have improved on the EfficientNet-B7 model.

They have also improved more than other classes in the data after including the

Form features to the model. These results show the added value of the added

features in increasing the performance over the classes that the CNN alone had

trouble predicting. In other words, the decision layers were able to realise that

giving more weight to the added features improves the capability of correctly
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Figure 5.5: Example of an image with large covered area of the body [1].

Skin Lesion EfficientNet-B7 EfficientNet-B7 + Form

Atopic Dermatitis 86.14 87.36

Lichen Planus 84.20 85.06

Pityriasis Rosea 82.47 84.88

Pityriasis Rubra Pilaris 81.32 84.30

Psoriasis 86.21 87.35

Seborrheic Dermatitis 83.61 85.71

Table 5.6: F1score per class EfficientNet and EfficientNet with form features

predict weak classes.
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Chapter 6

Conclusion and Future Work

In this thesis, we have designed and implemented a novel classification system to

perform early diagnosis of dermatological diseases. Such a system can be useful in

societies that lack robust access to medical care services, such as refugees camps.

The inputs to this system are presented in the form of images capturing the

harmed segment, in addition to information obtained from the patients answer-

ing a specifically-designed questionnaire. The inputs are processed according to

their type. In particular, the main contribution of this thesis lies in the novelty

of fusing the multi-modal features together to perform classification. We trained

and evaluated several supervised machine learning classifiers, including Support

Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) with dif-

ferent input features, and we compared them in terms of accuracy. To this end,

we evaluated post-inference model-level fusion through ensemble mechanism, vs.

feature-level fusion by concatenating extracted features prior to performing clas-

sification. The best performing system was achieved through feature-level fusion,

by concatenating features extracted from the questionnaire with the embedded

representation of the input image obtained via the EfficientNet-B7 CNN model,

and then performing classification with a logistic regression layer.
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In order to build this framework, we collected training data from two sources

that were not considered or were not publicly available. The images were crawled

and gathered from a website used by dermatology students. Whereas the ques-

tionnaire data was synthetically created with the help of a dermatology resident

at the American University Hospital. Finally, the generated dataset depict the

main part of the first deliverable.

In this work, we faced limitations presented by the lack of datasets in the

research community concerning non-cancerous dermatology data. Additionally,

the distribution of the collected data was out of balance concerning skin color and

the lesion progression level. We consider the latter limitation out of this work’s

scope because it is extremely difficult to collect enough data manually and the

procedure of excluding the unwanted images will take a lot of time considering

the data is already filtered. Additionally, it will decrease the data size of some

classes that already are under-represented compared to other classes.

A considerable setback in this work was the lack of data for the SynForm.

The synthetically generated the data lead to mismatching the SynForm in-

stances with the images dataset. Although this situation created more room

for the model to generate error during prediction, it allowed us to see that in

the worst case scenario the performance increases compared with the standalone

models. A major direction for future work is to collect data from medical sources

where they are able to provide images alongside their SynForm counterpart.

From our findings during this thesis indicates this coherent dataset will definitely

add further significant improvement.

This collection should also be balanced throughout skin colors. As we real-

ized through our experiments, diagnosing diseases over black skin was lacking in

accuracy and a big reason why that happened was due to little provided data

for non-white skinned images. It is also worth mentioning that even physicians

find it more difficult to diagnose people with darker skin, so it is definitely an

important part of the research to be included.
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Lastly, the system that was built in this thesis needs to be implemented in an

interactive platform, where users can insert images and fill in forms in order to get

diagnosed. The collected data should also be sent, after consent, to a physician

to confirm the system’s diagnosis or correct it. This new data is critical to further

train and improve the overall system.
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Appendix A

Smartphone Sensors for mHealth

In this appendix, we list the different sensory systems that have been implemented

in smartphones for mHealth applications.

Sensors Domain Applications

Camera Photo and

Video capture

It was used to track different dis-

eases, to view surgical effects, for re-

mote diagnostics, incision monitor-

ing, skin disease analysis [35], and to

supervise children’s health [36].

GPS Location track-

ing

It provides access to track vulnerable

patients such as elderly, people with

Alzheimer disease [37] and victims of

Ebola [38] by using contact-tracing

applications.
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Electro-

cardiograph

Cardiovascular

disease moni-

toring

Electrocardiograph-enabled mobile

phones were used in underdeveloped

areas in china for surveillance of

heart diseases [39].

Wi-Fi Data sharing

and communi-

cation

The Wi-Fi module empowers the

smartphone to communicate the

health data to physicians for diagnos-

tic and treatments.

Bluetooth Data sharing

and Communi-

cation

Enables the short-range data com-

munication between mobile phone

and various health monitoring de-

vices and wearable sensors.

Microphone Voice recording Provides the communication with

physicians regarding diagnostic and

clinical support. It also provides

capital for the audio analysis to ac-

cess the patients’ feelings with dif-

ferent diseases such as myotonic syn-

drome [40].

Accelerometer Acceleration

measurement

Helps to measure the device’s orien-

tation relative to earth and to esti-

mate the motion. It can be used to

monitor gait and step counting which

can help in early diagnosis of Parkin-

son [41].
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GPS, ac-

celerometer

compass, gyro-

scope, barome-

ter

Physical activi-

ties

The combined module is exploited

for measuring the sedentary versus

non-sedentary activities.

Microphone,

accelerometer,

GPS

Social engage-

ment

This package enables the surveillance

of mental health by monitoring the

social encounters, conversationalist

talks, anxiety, stress depressive be-

haviors and crustal motion of pa-

tients [42].

Microphone,

GPS, touch,

accelerometer,

interface, light

sensor

Sleep Pattern

tracking

This module provides the effective in-

formation of disrupted versus contin-

uous sleep patterns of a patient [43].

Table A.1: Overview of the capabilities of the different smartphone sensors for

mHealth applications [3]
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Appendix B

Machine Learning Models

In this appendix, we provide a brief description of the main machine learning

models that will be used in this thesis.

B.1 Support Vector Machines (SVM)

A discriminative machine learning classifier that operates by separating instances

from different classes using a hyperplane [20]. In other words, given a training

dataset, the model produces an optimal hyperplane that that can best separate

the given classes. The hyperplane is defined by its margins, where the best

classification is reached when the distance to these margins from the nearest data

points (also referred to as support vectors) is maximized, as shown in Figure B.1

This is equivalent to minimizing the weights as shown in Equation (B.1).

min
w∈Rd

||w||2 + C

N∑
i

max(0, 1− yi · f(xi)) (B.1)

Classifying data with multiple dimensions using a hyper plane is also made

possible by using kernels that transforms the data to a higher dimension repre-

sentation to the point that they can be separated, and a hyperplane is able to

separate the classes.
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Figure B.1: The maximal marginal hyperplane in SVM. source:

https://www.fabienplisson.com/svm-model/

B.2 Convolutional Neural Networks (CNN)

One type of Artificial Neural Networks (ANN) that try to mimic the human

vision; scanning an image and extracting features from different levels of ab-

straction to identify the objects in the image [9]. Although CNNs are originally

developed and used in computer vision, they have also been successful in other

domains, including NLP [44].

The architecture of a CNN model is composed of a sequence of layers from

different types; convolutional, rectified linear unit (ReLU), pooling and fully-

connected (FC) layers, as illustrated in figure B.2.

The convolution layer extracts features from the input image as it preserves

the spatial relations between pixels by learning image features using custom filters

that are convolved over the image. An example of a filter is shown in figure B.3.

One or more filters Ki are convolved with the whole input image I to create one

or more feature maps I ∗Ki that identify simple objects (curves or edges) at the

lower levels of the CNN, and more abstract objects (faces, animals) at higher
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Figure B.2: The architecture of a CNN including the different types of layers.

source: https://www.clarifai.com/technology

levels of the network.

Figure B.3: The convolution operation. source:

https://appsilondatascience.com/blog/rstats/2018/01/16/keras.html

The ReLU is a nonlinear function that applied to the feature map; it mainly

replaces negative pixels with a zero, and applies a linear transformation for pos-

itive pixels. The purpose of ReLU is to introduce non-linearity in the network.

The pooling layer works as a down-sampling step; it diminishes the dimensional-

ity of its input by passing an (n×n) object in order to extract the most important

information within this object. This object can apply many functions, such as

max, sum and min, depending on the target. An example of max pooling is shown

in figure B.4.

Applying sequences of convolution, ReLU and pooling layers proved to pro-

duce high-level features for the input image. Finally, the purpose of the fully-

connected (FC) layer is to use these extracted features to classify the input image,
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Figure B.4: The pooling operation. source:

https://appsilondatascience.com/blog/rstats/2018/01/16/keras.html

as shown in Figure B.2.

B.3 Entity Embedding

It’s a way to represent categorical variables in a new variable space. It is mostly

used in natural language processing applications. Recently, it is being used to

represent any sort of categorical variables.

This approach is used as a replacement for the one hot encoding technique.

Categories with various unique features, we can get sparse data on a large scale

depending on the number of categories we have. Additionally, each vector ob-

tained from the one hot approach is equidistant from other vectors. This causes

us to lose information of relationships between variables. Representing categories

in embeddings are a solution to dealing with categorical variables while simulta-

neously avoiding a lot of the downsides of one hot encoding.

An Embedding layer is a Neural Network layer that assembles categorical

values holding the same label into an N-dimensional space. This representation
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allows us to obtain inherent properties from each categorical value. This output

can be later on used as a replacement to the one hot encoding method.

In Figure B.5 we display the model structure as interpreted from the original

paper. for every category feature there’s a specified input layer which then are

then converted to embeddings throughout the network structure in a manner

similar to word2vec.

Figure B.5: Entity Embedding operation [2]

51



Bibliography

[1] “DermNet skin disease atlas.” dermnet.com. Accessed: 2020-09-10.

[2] C. Guo and F. Berkhahn, “Entity embeddings of categorical variables,”

arXiv preprint arXiv:1604.06737, 2016.

[3] S. Latif, R. Rana, J. Qadir, M. Imran, S. Younis, et al., “Mobile health in

the developing world: Review of literature and lessons from a case study,”

IEEE Access, 2017.

[4] A. Ohtani, T. Suzuki, H. Takeuchi, and H. Uchida, “Language barriers and

access to psychiatric care: a systematic review,” Psychiatric Services, vol. 66,

no. 8, pp. 798–805, 2015.

[5] J. G. Kahn, J. S. Yang, and J. S. Kahn, “‘mobile’health needs and oppor-

tunities in developing countries,” Health Affairs, vol. 29, no. 2, pp. 252–258,

2010.

[6] S. Kumar, W. J. Nilsen, A. Abernethy, A. Atienza, K. Patrick, M. Pavel,

W. T. Riley, A. Shar, B. Spring, D. Spruijt-Metz, et al., “Mobile health

technology evaluation: the mhealth evidence workshop,” American journal

of preventive medicine, vol. 45, no. 2, pp. 228–236, 2013.

[7] D. H. Peters, A. Garg, G. Bloom, D. G. Walker, W. R. Brieger, and

M. Hafizur Rahman, “Poverty and access to health care in developing coun-

52



tries,” Annals of the New York Academy of Sciences, vol. 1136, no. 1,

pp. 161–171, 2008.

[8] D. M. O’Connor, O. S. Jew, M. J. Perman, L. A. Castelo-Soccio, F. K.

Winston, and P. J. McMahon, “Diagnostic accuracy of pediatric teleder-

matology using parent-submitted photographs: a randomized clinical trial,”

JAMA dermatology, vol. 153, no. 12, pp. 1243–1248, 2017.

[9] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and

time series,” The handbook of brain theory and neural networks, vol. 3361,

no. 10, p. 1995, 1995.

[10] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the fifth annual workshop on

Computational learning theory, pp. 144–152, 1992.

[11] M. Portela and C. Granell-Canut, “A new friend in our smartphone? ob-

serving interactions with chatbots in the search of emotional engagement,”

2017.

[12] E. Riloff and M. Thelen, “A rule-based question answering system for reading

comprehension tests,” in Proceedings of the 2000 ANLP/NAACL Workshop

on Reading comprehension tests as evaluation for computer-based language

understanding sytems-Volume 6, pp. 13–19, Association for Computational

Linguistics, 2000.

[13] C. Griffiths, J. Barker, T. Bleiker, R. Chalmers, and D. Creamer, Rook’s

Textbook of Dermatology, 4 Volume Set. John Wiley & Sons, 2016.

[14] L. Noueihed and D. Khraiche, “Lebanon’s economic crisis is spinning out of

control, fast,” Jul 2020.

[15] “Coronavirus disease (covid-19).” https://www.who.int/emergencies/

diseases/novel-coronavirus-2019. Accessed: 2020-09-10.

53



[16] “Beirut port explosion.” https://www.bbc.com/news/topics/

c88p951myv0t/beirut-port-explosion. Accessed: 2020-09-10.

[17] K. Falconer, Fractal geometry: mathematical foundations and applications.

John Wiley & Sons, 2004.

[18] N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith,

“Deep learning, sparse coding, and svm for melanoma recognition in der-

moscopy images,” in International Workshop on Machine Learning in Med-

ical Imaging, pp. 118–126, Springer, 2015.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” in Proceedings of the 22nd ACM international confer-

ence on Multimedia, pp. 675–678, ACM, 2014.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[21] L. Yu, H. Chen, Q. Dou, J. Qin, and P.-A. Heng, “Automated melanoma

recognition in dermoscopy images via very deep residual networks,” IEEE

transactions on medical imaging, vol. 36, no. 4, pp. 994–1004, 2017.

[22] A. Menegola, M. Fornaciali, R. Pires, S. Avila, and E. Valle, “Towards au-

tomated melanoma screening: Exploring transfer learning schemes,” arXiv

preprint arXiv:1609.01228, 2016.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] S. Demyanov, R. Chakravorty, M. Abedini, A. Halpern, and R. Garnavi,

“Classification of dermoscopy patterns using deep convolutional neural net-

works,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International Sym-

posium on, pp. 364–368, IEEE, 2016.

54



[25] J. Kawahara, A. BenTaieb, and G. Hamarneh, “Deep features to classify

skin lesions,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International

Symposium on, pp. 1397–1400, IEEE, 2016.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 1097–1105, 2012.

[27] J. Kawahara and G. Hamarneh, “Multi-resolution-tract cnn with hybrid

pretrained and skin-lesion trained layers,” in International Workshop on

Machine Learning in Medical Imaging, pp. 164–171, Springer, 2016.

[28] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”

Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52,

1987.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on com-

puter vision and pattern recognition, pp. 248–255, Ieee, 2009.

[30] H. Liao, “A deep learning approach to universal skin disease classification,”

University of Rochester Department of Computer Science, CSC, 2016.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

[32] F. Chollet, “Xception: Deep learning with depthwise separable convolu-

tions,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1251–1258, 2017.

[33] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning,” arXiv preprint

arXiv:1602.07261, 2016.

55



[34] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy

student improves imagenet classification,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 10687–10698,

2020.

[35] A. Bourouis, A. Zerdazi, M. Feham, and A. Bouchachia, “M-health: skin dis-

ease analysis system using smartphone’s camera,” Procedia Computer Sci-

ence, vol. 19, pp. 1116–1120, 2013.

[36] L. De Greef, M. Goel, M. J. Seo, E. C. Larson, J. W. Stout, J. A. Taylor, and

S. N. Patel, “Bilicam: using mobile phones to monitor newborn jaundice,” in

Proceedings of the 2014 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, pp. 331–342, ACM, 2014.

[37] D. M. West, “Improving health care through mobile medical devices and

sensors,” Brookings Institution Policy Report, vol. 10, pp. 1–13, 2013.

[38] M. G. Dixon, I. J. Schafer, et al., “Ebola viral disease outbreak—west africa,

2014,” MMWR Morb Mortal Wkly Rep, vol. 63, no. 25, pp. 548–51, 2014.

[39] “Wireless Heart Health mobile-enabled rapid cardiovascular

screening improves health care for rural patients in china.”

https://www.qualcomm.com/media/documents/files/china-heart-

health.pdf.

[40] D. Coalition, “Rare diseases clinical research network (rdcrn) publications,”

[41] J. Barth, J. Klucken, P. Kugler, T. Kammerer, R. Steidl, J. Winkler,

J. Hornegger, and B. Eskofier, “Biometric and mobile gait analysis for early

diagnosis and therapy monitoring in parkinson’s disease,” in Engineering in

Medicine and Biology Society, EMBC, 2011 Annual International Confer-

ence of the IEEE, pp. 868–871, IEEE, 2011.

56



[42] M. Matthews, S. Abdullah, G. Gay, and T. Choudhury, “Tracking mental

well-being: Balancing rich sensing and patient needs,” Computer, vol. 47,

no. 4, pp. 36–43, 2014.

[43] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-

bell, “A survey of mobile phone sensing,” IEEE Communications Magazine,

vol. 48, no. 9, 2010.

[44] C. N. Dos Santos and M. Gatti, “Deep convolutional neural networks for

sentiment analysis of short texts.,” in COLING, pp. 69–78, 2014.

57




