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An Abstract of the Thesis of

Khaled Sarieddine for Master of Science
Major: Computer Science

Title: An Opportunistic Vehicle Based computing for IoT offloading

IoT is one of the most prolific origins of data that is collected from sen-
sory inputs. However, IoTs are characterized by low computational power, thus
motivating the data-offloading scheme, a promising technique that improves en-
ergy performance issues in limited power devices. Instead of offloading to fog
or cloud, a new research track is emerging where devices unload their data to
vehicles roaming around, and this particular type of offloading is called vehicular
cloud offloading. In this thesis, we propose the use of vehicles as Mobile Com-
puting Nodes roaming around the cities to offer computational services to IoT
devices. Choosing the most appropriate MCN by an IoT device that wishes to
offload specific communication tasks to it will be formulated as an optimization
problem. Indeed, we choose the top N MCNs within the range of the fixed IoT
according to the SINR and the time of connection, taking into consideration the
mobility of the MCN. Another challenge would be delivering the results back to
the IoT device or another party, knowing that the vehicles will not be stationary.
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Chapter 1

Introduction

The revolutionary changes in the automotive industry lead companies to invest in
the incorporation of advanced technological features in smart vehicles. Modern
cars like Tesla, are equipped with powerful onboard computers, storage devices,
sensitive radio transceivers, collision radars, and GPS devices. These smart vehi-
cles are considered as computers-on-wheels. Although cloud and fog computing
are advancing, there are some issues to adopting these two paradigms in rural
areas and in hazardous and volatile situations that motivate the transition to
mobile vehicular clouds where the vehicles can service computation requests by
various external devices and replacing the traditional paradigms [13].

Rural areas suffer from inherently limited internet and cellular coverage.
Moreover, these areas, like other urban ones, need monitoring for bridges’ health,
earthquakes, temperature, humidity. These conditions, among others, are moni-
tored using low computation ability and limited power devices, which are called
IoTs. For these devices to handle all the data it collects that need computation,
they adopt the offloading paradigm where they migrate their data computation
to the nearby computation resource provider, which could be cloud, fog, or in this
case to vehicular cloud where IoTs will opportunistically take advantage of pass-
ing by vehicles. In this chapter we discuss the motivation behind our work, along
with defining our problem, listing our objectives and contribution and finally
detailing the thesis organization.

1.1 Motivation

The motivation for an opportunistic vehicle based computing architecture to ser-
vice IoT applications lies in the unique advantages of enabling IoT services in
hazardous and volatile situations, where resources and connectivity are inher-
ently limited and cannot be sufficiently supported by static fog or cloud services.
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Clouds are distant and suffer from unreliable long latencies over WANs, which is
already recognized as an impediment for performing resource and data-intensive
computations with cloud computing systems. Moreover, the energy consump-
tion of data centers is a daunting problem that has gained significant attention
from the research community. Although placing serving resources at the edge of
the internet, which is the core idea behind several solutions like cloudlets or fog
nodes, might address the issues mentioned above, it suffers from limited com-
putation ability and similar to the cloud’s lack of mobility. Installing fog nodes
is quite challenging, and the nodes that are installed might get overwhelmed
by the amount of data it receives. Thus, motivating the vehicular cloud con-
cept! Where VANETs can act as mobile fog nodes offering services as they move
around the city, thus increasing the availability of resources. This solution is a
cost-effective resource and makes use of idle resources roaming around without
additional cost for installation. Briefly, the motivation behind our work also, is
the under-utilization of vehicular resources, and decrease the cost for the service
providers to use existing resources.

1.2 Problem Definition

Various issues are faced by traditional fog and cloud computing paradigms. These
issues can be summarized as following:

• Costs to scale up and to install new fog nodes are high compared to the
vehicular cloud, which uses already existing idle resources.

• Energy consumption by data centers is significant.

• Lack of mobility of the cloud and fog nodes makes it impossible to service
remote areas where the vehicular cloud fits better.

• The limited computation ability of fog nodes might make them susceptible
to being overwhelmed by the amount of data it receives.

These issues faced by traditional paradigms motivates the transition to ve-
hicular clouds. Indeed, vehicles are being equipped with powerful computers,
roaming around the cities carrying idle resources yet to be utilized, it was proved
through previous research as a great alternative to the traditional offloading and
computational paradigms.
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1.3 Objectives and Contribution

Although previous research has been done in this domain, we will discuss the
proposed approaches focusing on their limitations. This thesis aims to intro-
duce a new delay-tolerant communication protocol. It simplifies the offloading
mechanism from IoT devices to vehicles directly without the overhead of having
a resource manager, or any intermediate subsidiary while taking into considera-
tion the mobility of the car and the Signal Interference Noise Ratio (SINR) as
a selection criterion. To this end, we frame the contributions of this thesis as
follows:

• Survey traditional and modern offloading paradigms and identify their lim-
itations.

• Propose an opportunistic vehicle based computing framework for IoT of-
floading. A framework that defines the means of communication between
IoT and a mobile vehicular node in a heterogeneous environment, which
allows the IoT to offload computation to a nearby vehicle and retrieve the
result back.

• Implement the propose approach using ns3 as a network simulator and
SUMO as a traffic simulator.

• Evaluate the performance of our proposed framework.

1.4 Thesis organization

The remainder of this thesis is organized as follows. In chapter 2, we include some
background and basic concepts related to our proposed approach. In chapter 3, we
present a number of related work in the context of VANET offloading schemes. In
chapter 4, we present our proposed approach. In chapter 5, we perform thorough
empirical evaluations of the proposed approach and report the results. Finally,
we conclude in chapter 6 and pinpoint a few research endeavors for future work.
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Chapter 2

Basic Concepts and Background

Devices surrounding us such as sensors, mobile phones, cars, and smart homes
cannot communicate without the existence of proper communication protocols,
infrastructure, and third parties. Sensors, which are computational and energy
limited devices, need some offloading mechanisms to analyze all the data they
acquire from their environment. This chapter provides some basic concepts of the
components which usually interact with each other to form the interconnected
world around us, exploring the traditional offloading mechanisms and architec-
tures and explaining how applications interact with each other. Finally, listing
application areas.

2.1 Internet of Things

The Internet of Things (IoT) is a system of interrelated devices characterized
by low computing power and the ability to send data over a network. An IoT
network consists of web-enabled smart devices that acquire data from their en-
vironment using embedded processors, sensors, and communication hardware to
collect, send, and act on it. The devices send the collected data to the IoT
gateway or other edge devices where data is sent to the cloud to be analyzed;
however, IoT devices are characterized by low computing capabilities and lim-
ited power supply [14]. Hence, these limitations make the notion of offloading
processing tasks to more powerful nodes inevitable. IoT made its way to become
an asset in many industries contributing to revolutionizing these industries, such
as agriculture, food processing, environmental monitoring, security surveillance,
and others. Meanwhile, the number of IoT applications is rapidly growing [15].

2.2 Cloud Computing

Cloud computing relies not only on sharing but also on maximizing resources,
which are critical requirements for the IoT platform. It offers elasticity and scal-
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ability of resources and applications [16].The users can access the cloud services
from any location and with any device through the internet, which character-
izes the cloud as location independent. An essential component for the offloading
mechanism is an efficient task distributor among servers such as AutoScaler which
is proposed by [17] where they investigated the effect of large-scale offloading for
IoT. The constant increase in demand for computation leads to a significant
improvement over the years in the computation-offloading paradigm. The pro-
cessors’ capability is limited due to the limited power supply, which remains a
critical limiting factor in the design of mobile applications [18]. Mainly cloud
offloading frameworks follow three steps: application partitioning, preparation,
and offloading decision. The main motivation of cloud offloading is assigning
intensive components to cloud server and relief edge devices from the burden of
computing themselves such as CloneCloud [19], which is a framework that aims
at improving the battery life and performance on the mobile device. Similarly,
[20] and [21] indicate the main objective of cloud computing, which is to enhance
user performance and save energy on edge devices.

Cloud computing is one of the first paradigms adopted for offloading. This
paradigm depends on internet connection and network bandwidth to perform
offloading from the limited power devices to the cloud. However, this type of
communication creates a bottleneck since, as the number of devices requesting
computation increases, the network becomes more congested, which leads to de-
lays in the transfer of data to and from the cloud. Since some of this computation
sometimes are time-sensitive thus, it cannot tolerate any delays; researchers sug-
gested to bring the computation to the edge of the network and introduced fog
computing.

2.3 Fog Computing

Fog Computing refers to bringing cloud intelligence near the edge. It facilitates
the operation of computation and networking services between end devices (IoT)
and cloud computing data centers. Unreliable latency, lack of mobility support,
and location-awareness are issues induced by cloud computing. The elasticity
of the resources and services provided by fog nodes can address the above chal-
lenges. Fog computing complements the cloud computing paradigm from the
core to the edge of the network [22]. Introducing fog nodes to the IoT networks
would resolve the transmission and offloading issues that IoT networks suffer from
when communicating with the cloud [23]. Due to the delays introduced by cloud
computing, fog computing became a better approach to facilitate the operation
of computation and networking services [22] [23] [24]. IoT needs a platform that
supports rapid mobility patterns, even requiring, in some cases, high throughput
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on demand. Also, it must support systems requiring reliable sensing, analysis,
control, and actuation, in scenarios subject to reduced or unreliable connectivity
or requiring very low latency. It should also be able to manage a large amount
of geographically distributed things that may produce data that require different
levels of real-time analytics and data aggregation [24]. Thus, the cloud faces
a challenge when it comes to the previously mentioned platform requirements.
However, these challenges are addressed with fog computing, which makes it a
natural platform for IoT. However, there will always be an interplay between fog
and cloud computing since they complement each other.

The main consequence of having a cloud server between the end device and
the controller taking into consideration jitters and delays is that they are able
to apply mitigation mechanisms to deal with the delays and jitters caused by
the networks when the controller is offloaded to the cloud or fog. Moving the
controller to a remote server degrades the server performance [25]. However, the
the performance shows improvement when it comes to fog since it is closer to the
end devices than the cloud. In the era of big data sending enormous amounts
of data may be inefficient due to the high cost of communication bandwidth and
high redundancy of data (for example, periodic sensor readings).

Moreover, fog nodes incorporate a delay-minimizing policy whose goal is to
reduce service delay for IoT nodes [23], utilizing IoT-fog, fog-cloud, and fog-fog
interaction to reduce the lag by sharing some of the load. The decision to offload
a task is based on the response time of a fog node, which depends on several fac-
tors, such as the amount of computation needed, queuing status (current load),
and the processing capabilities of a fog node. Fog nodes collaborate to fulfill the
requests sent from IoT nodes to the fog layer. However, if the fog node receiving
requests is busy, it will offload some of the computation to its neighboring fog
nodes. In fog computing, they use distributed mode of interaction, where there
is no central node; instead, fog nodes in a domain run a protocol to distribute
their state information to the neighboring nodes in the same domain. Moreover,
requests are put in a priority queue so that they obtain a fair scheduling mecha-
nism.

The number of connected devices to the cloud increased tremendously in the
last ten years, and large amounts of data are being produced. Offloading data
and computation to the cloud became the mainstream. However, data privacy
becomes an essential issue as IoT devices send all their data to the cloud. Data
synchronization is an important feature fog based computing [26]. By offload-
ing some of the computation to the fog servers, privacy can be guaranteed. In
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addition, a differential synchronization algorithm decreases the communication
cost. Its emergence reduces the volume of uploaded data to the cloud by only
changing what is required and then extended the method by introducing a Reed-
Solomon code for security consideration. For example, if a user changed a couple
of blocks frequently traditional differential would sync every time the user up-
dates something however in this approach the differential will only sync after the
users amount of data exceeds a threshold on the fog node, only then the fog nodes
will sync to the cloud. Thus, the fog nodes act as relaying nodes.

Fog nodes are characterized by being stationary, which is considered as a
limitation in some scenarios such as natural disasters where the communication
infrastructure would fail to serve its purpose. Thus, comes the concept of vehic-
ular fog nodes, IoTs can take advantage of the roaming mobile cars [27] [28].

2.4 Vehicular Ad hoc Networks

With vehicular manufacturing advancement, the capabilities of vehicles are in-
creasing, whereby they can provide computational services, and can also commu-
nicate with external devices. Recently, the research community suggested that
vehicles could form vehicular mobile clouds where cars can be used as a resource
not only for data relaying, infotainment, and sensing but also for data storage and
computing for efficient utilization of available resources in neighboring vehicles
[29] [2]. However, due to sizeable sensory data inputs, strict latency requirements,
and dynamic wireless networking conditions, offloading vehicular applications to
the cloud is very challenging [30]. These smart vehicles are being equipped with
a powerful on-board unit (OBU), trusted platform module (TPM), and sensors.
OBUs, which are computers, designed to handle vehicle-to-vehicle (V2V) and
vehicle to infrastructure (V2I) communication and run programs required by the
vehicle and the user. The on-road infrastructure communication units are called
roadside unit (RSU), which are equipped with powerful computing devices and
installed in different locations around the city.
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Figure 2.1: Vehicular Ad hoc Networks components

The vehicles are equipped with GPS and Wi-Fi devices that enable vehicle
to vehicle (V2V) communication forming a vehicular ad-hoc network (VANET).
Real-time peer to peer vehicle communication is necessary to share up-to-date
information about road and traffic conditions and provide essential services such
as rerouting traffic effectively through dense urban areas, prevent collisions and
avoid car accidents [31] [32] [33]. In addition to V2V, VANETs compromise ve-
hicle to infrastructure (V2I) communications, which offer direct communication
between vehicles to and from RSUs, which are a prerequisite for VANETs commu-
nication. In this mode, for a car to connect and communicate with external net-
works, such as the internet, it needs to establish a connection with the RSU [34].
OBU, TPM, and sensors constitute the Ad hoc part of the environment, whereas
the infrastructure environment includes manufacturer, trusted third party units
(TTP), service providers, and legal authorities. RSU acts as a bridge between
Ad hoc and infrastructure parts. Figure 2.1 shows the infrastructure and Ad hoc
environments, which form a simplified VANET network. V2V and V2I communi-
cation are coupled with dedicated short-range communication (DSRC) protocol
since vehicular safety communication cannot tolerate long establishment delays
before being enabled to communicate with other vehicles encountered on the road
or to the RSUs. IEEE 802.11p standard for the DSRC reduces the connection
setup overhead and suites vehicular communication well [35].
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2.5 Offloading Paradigm

Data, which is now one of the most valuable merchandise in the world, is increas-
ing tremendously. IoT is one of the most prolific origins of data that is collected
from sensory inputs. These IoTs, as mentioned earlier, are characterized by low
computational power, which means there is no way that they can handle all this
data, thus motivating the offloading scheme of data in order to enhance the IoT
environment and lessen the burden of computation upon them.

Figure 2.2: General IoT-fog-cloud framework

Offloading is a promising technique that improves energy and performance
issues in limited power devices. A task is opportunistically outsourced from
a device when in the presence of network connectivity, the device can reach
the server at relatively low latency rates of transfer [17]. However, sometimes
offloading is not beneficial if the computational requirements are small compared
to communication costs (latency, energy). Thus, offloading should only occur
when its benefits are significant compared to the cost of running the task on the
device. The ultimate goal is to extend the battery life by reducing the overall
amount of processing by a device [36] [37]. Many types of offloading have been
suggested and applied. First, cloud computing, where IoT or any computationally
limited device offloads data through the internet to cloud servers that are handled
by third parties, second, offloading to Fog nodes, which are nodes that bring the
computation to the edge of the network by providing services that are usually
offered by the cloud servers to the IoT environment. Finally, vehicular cloud
offloading where IoT offloads its computation to vehicles. Generally, the overall
architecture looks like the one in Figure 2.2 where the IoT layer, which constitutes
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of variety of IoT devices, communicates with the fog nodes layer (clusters of fog
nodes) that, in turn, interacts with the distributed cloud layer [23], showing how
all the above components interact with each other in a complementary manner.

2.6 Application Areas

The diversity of the applications that can use our approach embodies a great
potential; it can be incorporated in all areas of every-day life of individuals, en-
terprises, and societies. IoT application covers smart environments in various
domains such as transportation, building, city, lifestyle, retail, agriculture, fac-
tory, supply chain, emergency, healthcare, user interaction, culture and tourism,
environment, and energy [38] [39] [40].

2.6.1 Smart Cities

Concrete, like any other commodity, has a service life. IoT can be used to report
data about the structure of health by monitoring the vibrations and material
conditions in buildings, bridges, and historical monuments. For example, the
structural health of bridges is a vital and critical issue that requires fast analysis
of the data reported by the sensors and IoTs that are put in order to monitor the
conditions in bridges. Thus, instead of sending these data to the cloud, it will
opportunistically take advantage of the vehicles passing on them to perform the
needed computation in a timely manner.

Moreover, intelligent and adaptive weather streetlights the sensors send weather-
related data to our MCNs, which would analyze the received data and return the
action that should be done by the traffic system to adapt to the weather conditions
sent by the sensors. Not only in intelligent smart lightning, it can be used, but
also, in intelligent transportation, where sensors might send data about weather
conditions and traffic, our MCNs will be able to find the best routes to get past
the traffic and unexpected events like accidents or analyze the weather data in-
put. In addition, it can help in digital video monitoring, fire control management.
Where the sensors take advantage of the passing vehicles nearby to analyze the
data regarding these issues, instead of sending a video feed to the cloud to be
analyzed, it can be processed by casually passing by vehicles. Likewise, detecting
the rubbish levels in garbage containers through sensors placed in the containers
which can send its data to passing by vehicle to analyze the levels and report
back to the responsible entity the result of this computation. Thus, helping in
optimizing the routes for garbage collection.
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2.6.2 Smart environments

In the smart environment, the weather conditions such as humidity, temperature,
pressure, wind speed, and rain are periodically monitored such data needs to be
analyzed, similarly reporting plates vibrations to ensure early earthquake detec-
tion. On top of that, measuring the levels of waters in rivers, dams, and reservoirs
during rainy days or the quality of water, these tasks cannot be performed by
simple sensors. Thus, they need to offload their collected data to another party
to do such computation on their behalf.

2.6.3 Smart industries

The detection of gas levels and leakages in industrial environments is critical
and time dependent. Where some MCNs passing by a factory can analyze the
reported data and reply with what do these data imply. The low latency ensured
by adopting the MCNs will ensure the safety of workers in a chemical plant where
some sensors might be reporting oxygen levels.

2.6.4 Smart health systems

In hospitals, the life of an endangered patient can be saved if the critical moment
was reported as soon as possible. Thus, monitoring the conditions of patients in
a hospital and in old peoples home is necessary, it can help save lives. Therefore,
these monitoring sensors can offload their data to the passing by MCNs that will
analyze the data and based on its response; it can help save lives due to its quick
response and its occasional availability.

2.6.5 Smart Energy

Smart grids are a potential customer for our approach by analyzing the monitored
energy consumption. Along with that, analyzing the flow of energy from wind
turbines, powerhouse, and two-way communication with customers smart meters
to analyze consumption patterns.

2.6.6 Real-life Scenarios

There are different types of sensors found, some measure temperature; others
measure humidity, wind speed, solar radiation, or barometric pressure. All these
sensors can be installed throughout forests in order to monitor and predict the
breakout of wildfires like those that happened a while ago in Australia. All the
data gathered through these sensors need to be analyzed and undergo some ma-
chine learning models where these different types of data are inputted as various
features to the machine learning model and result in a prediction if there would
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be any fire. This result if it indicated the possibility of fire it will return the
result to the IoT, which would initiate an alert to the specific authority. Another
real-life scenario where our system fits perfectly is smart traffic and security. In
the modern world, security cameras (CCTV) are dispersed throughout the cities
to ensure and monitor the safety of all citizens. However, these CCTV are com-
putationally limited rather than both energy and computationally limited as the
sensors in the above example. Since they are computationally limited, they de-
pend on external resources to do the computation on their behalf. The CCTV
can opportunistically take advantage of passing by vehicles to apply some face
recognition algorithms on the frames it captures. Thus, it will be able to recog-
nize the faces of suspected or wanted criminals. A car movie by down some street
the CCTV situated on that street will send video frames to it to get analyzed,
after some time another car recognizes the same face for the third party managing
the CCTV are able to track the trajectory of this person throughout a populated
area.
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Chapter 3

Literature Review

In this chapter we survey the most relevant related work. We classify them to
two main topics: vehicular offloading and edge-cell offloading.

3.1 Vehicular Offloading

Vehicular cloud is a distinctive kind of cloud server that is mobile and has high
resource availability along with internet access where individual mobile devices
can be either cloud users or service providers with a pay as you go model [27].
Vehicular clouds are a means of sharing resources between mobile entities where
in some cases, this paradigm proves itself to be more efficient by keeping tasks
locally instead of sending them to the cloud, which would be more expensive and
require more time [28]. Different approaches have been discussed and proposed
in the literature.

3.1.1 REPRO: Time-Constrained Data Retrieval for Edge
Offloading in Vehicular Clouds [1]

A mobility oriented data retrieval protocol for computational offloading in vehic-
ular edge computing was proposed in [1] to efficiently retrieve results of offloaded
tasks by using vehicles and RSUs as relaying entities. In this paper, a hybrid
of a topological-based protocol and a distance-based forwarding protocol were
investigated. RSUs allocate tasks to suitable vehicles in the vicinity. After the
vehicle does the computation, it checks if it is in the neighborhood of the RSU,
if so it relays the result back to it. If the vehicle is not in the same area as the
destination RSU, it should check if it in the range of any RSU. If that is the
case, then the vehicle sends the result to the closest RSU. In its turn, the closest
RSU will forward it to the destination RSU following the topology forwarding
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protocol. The RSUs are in constant communication with each other and their
network topology is known so it is easy for a message to reach its destination
once it reaches a collaborator in the RSU network (any RSU).

Although this looks like a promising approach, assigning the RSU the role
to allocate tasks to nearby vehicles increases the probability of overwhelming
the RSU with requests and increasing the burden on the fixed infrastructure,
It is known that in urban areas the number of vehicles is huge which would be
directly proportional to the number of requests that would be made. Moreover,
no scheduling mechanism was implemented on the vehicles’ ends which affects
the availability of resources negatively. Additionally, the use of distance-based
forwarding increases the probability of the loss of data since it depends on the
opportunistic availability of vehicles reaching the RSU network. Thus, in this
approach you’d be gambling on the randomness found in vehicles trajectories.

3.1.2 Mobile Edge Computing for the Internet of Vehicles
[2]

A V2V offloading approach was proposed in [2], however, unlike the majority of
the related works, this approach takes into account mobility as a criterion in order
to select the processor vehicle. It motivates the use of a fixed infrastructure (RSU)
to service computation requests. This is considered a setback as the number of
vehicles might increase tremendously in a certain area, thus overwhelming the
infrastructure.

3.1.3 Finding a STAR in a Vehicular Cloud [3]

A system where vehicles offer services to other cars (consumers) such as internet
access was proposed in [3]. Ordinarily, RSUs handle such services. However, high
demand in urban areas might lead to congestion of the network and lousy quality
of service. Thus, in the proposed system, RSUs store, for each offering vehicle,
the type of resources, their attributes, and the required price per resource unit.
Beyond that, RSUs share the information they have with each other forming a
dynamic registry together. Consequently, consumer cars request from the closest
RSU the required resources, which, in turn, would find the best vehicle that can
offer its services and satisfy the consumer’s requests. Moreover, they also provide
the option for consumer cars to select the offering vehicle they prefer according
to their criteria. This dynamic registry can play the role of a proxy between the
client (asking for services) and the provider (offering the services) in order for the
client to find a resource it should contact the RSU network.
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3.1.4 Computation Offloading Management for Vehicular
Ad Hoc Cloud [4]

Similar to [3], an approach in which a car can offload some of its tasks to other
selected vehicles, which offer their resources, was proposed in [4]. Four different
selection strategies are put into the study to choose the best car for such com-
putation. Multi-attributed selection strategy depends on various parameters to
select a node such as computation capacity, longest communication time, com-
munication overheads for transmissions per task, and the computing overheads
for execution per job. This strategy outperformed all others that were analyzed
with it, such as random selection, computation capacity-based selection, and
distance-based selection strategy. To discover resources, a query packet is sent
to all vehicles utilizing flooding. While the offloaded tasks are running on the
designated vehicle, the approach continuously monitors the runtime status of the
duties and reports to the client vehicle.

In order to increase the possibility of finding a resource, the proposed approach
assumed that a query packet is flooded over the network where every vehicle that
receives a packet will broadcast it. This assumption leads to the deterioration
of the network service, where flooding the network would lead to congestion and
drops especially in dense areas. Moreover, in the selection strategy, this approach
doesn’t take into consideration the quality of the connection between two entities.

3.1.5 VANET-Cloud: A Generic Cloud Computing Model
For Vehicular Ad-Hoc Networks [5]

A new vehicular cloud model in which the vehicular clouds provide not only
vehicular drivers but also other users with computing resources was proposed in
[5]. It consists of three layers; client, communication, and cloud layer. The client
of such a service can be a general customer, not necessarily a VANET entity or
node. Using communication and computing devices such as smartphones, laptops,
onboard computers, and GPS, the end-user can establish a service request to the
adjacent layers. The communication layer consists of communication devices
and networks such as internet gateways, wireless networks (VANETs), RSUs,
and satellite GPS. At this stage, the client in the lower client layer and the
communication devices used define the connection technology. This approach
encompasses traditional cloud computing. An opportunistic model was proposed,
however, the use of traditional cloud computing paradigm was not completely
substituted since the opportunistic model’s best fit is in rural areas where the
connectivity is inherently limited.
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3.1.6 Fog Following Me: Latency and Quality Balanced
Task Allocation in Vehicular Fog Computing [6]

A task allocation mechanism across stationary and mobile fog nodes was formu-
lated in [6] as an optimization problem with constraints such as service latency,
quality loss, and fog capacity. Real-world taxi traces, was simulated to evaluate
the effectiveness of the approach. The tasks implemented were video streaming
and real-time object recognition. When compared with traditional fog selection
strategies, the approach showed improved performance with respect to latency
and quality balanced task allocation. In this approach, the client vehicle sends
out a probe over DSRC to collect responses from available fog nodes in the vicin-
ity. After discovering the fog candidates, the client vehicle sends a request to the
zone head over LTE, which is a stationary RSU. When the zone head receives
a request, it executes the task allocation algorithm to decide where to run the
tasks. However, due to the mobility of the client and fog node, the connection
between them may not last until the task is complete. Thus, the zone head of
the current service zone must find another fog node to hand over the tasks to.

Briefly this approach depends on a zone head to coordinate between clients
and providers which is considered a limitation in the proposed approach. More-
over, the incorporation of a zone head over LTE incurs an extra burden on the
LTE network since, as 5G network are deployed, the number of devices is going
to increase tremendously and more devices depending on the LTE network will
increase, thus leading to overwhelming the network.

3.2 Edge-cells Offloading

Edge-cell offloading is a variant of opportunistic fog based computing where ve-
hicles might offload their data to store them. In addition, other computationally
limited devices might collaborate to service each other, or offload their data to
fog nodes whether they are mobile or stationary.

3.2.1 Storage on Wheels: Offloading Popular Contents
Through a Vehicular Cloud [7]

An approach that considers vehicles as cache edge data cells and controlled di-
rectly by the ISP was proposed in [7]. In this approach, devices might query
directly (WiFi or 802.11p) other devices for faster retrieval of information in-
stead of querying the infrastructure since the main aim in their approach is to
minimize the load on the cellular infrastructure. Moreover, mobility was exploited
in a sense where when a user requests content, if it is not immediately available
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in a nearby vehicle, the user agrees to wait for few minutes until any car with the
content moves within range. The centralization of the decision in an ISP (such
as RSU or stationary fog managed by the ISP) leads to negative effects on the
network since too many requests might overwhelm it.

3.2.2 An opportunistic resource management model to
overcome resource-constraint in the Internet of Things
[8]

A decision-making model based on the object’s characteristics such as compu-
tational power, storage, memory, energy, bandwidth, packet delivery, hop count
was proposed in [8]. Depending on the characteristic, an IoT can choose the
best nodes stationary cars that can be used as fog nodes and the best one is
selected according to the characteristics. In this approach, stationary vehicles
were utilized to act as fog nodes, however, this is not possible since stationary
cars energy might get depleted while serving other devices. Moreover, the selec-
tion characteristics doesn’t incorporate the signal strength as a criteria, because
without it, drops might occur frequently since all the characteristics mentioned
are not related to the quality of the connection but rather conditions that are
related to the resources the vehicle is able to provide.

3.2.3 Opportunistic Fog for IoT: Challenges and Oppor-
tunities [9]

In order to support IoT application in hazardous environments, an opportunistic
fog model that takes advantage of stationary and mobile fog nodes was proposed
in [9]. In this approach, the concept of context-aware fog cluster was introduced.
It is managed by a fog manager which is a fog node that has access to the cloud.
Thus, the manager is responsible for collecting context data from the cluster
members and performing analytics to infer cluster health, predict mobility pat-
terns, detect rogue nodes, and broker quality of service agreement and pricing.
Context data will include network information, environment data, rates of new
nodes joining and existing nodes disconnecting, and node meta-data such as data
about the node owners, node resources, task completion rates, and task accuracy.
The cluster manager node’s inferences and predictions are used to formulate poli-
cies related to task scheduling, node mobility, scaling, fault tolerance, security,
and pricing with the cluster. The cluster manager will choose the appropriate
cluster member to be used and if a better candidate exists, the role is migrated
to it. The cluster manager learns from historical data and creates artificial intel-
ligence (AI) models to study fog and edge behavior, emphasizing on calculating
the probability of nodes to get disconnected and estimating node mobility.
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The use of cluster management or a coordinator for resources as mentioned
before incurs a trade-Off between the amount of network traffic and the possibility
of overwhelming a single point of failure. Moreover, in this approach the role of
a cluster manager can be assigned to another entity if it has better conditions,
however, any disruption to the migration process might lead to the loss of all the
data.

3.2.4 Data and Task Offloading in Collaborative Mobile
Fog-Based Networks [10]

The problem of offloading and computation from a mobile device to the cloud to
fog nodes or other mobile nodes in the vicinity was tackled in [10]. A layer com-
posed exclusively of mobile devices that collaborate opportunistically, as a first
resort for offloading, was added. Four different scenarios were studied: Device-
to-Device (D2D), where mobile devices communicate with each other and spread
their load to neighboring devices; cloud-only mobile devices that can only com-
municate with the cloud; D2D and cloud where mobile devices communicate to
both neighboring mobile devices and cloud; fourth scenario, adds to the previ-
ous scenario fog nodes, which are located at the edge of the network. The four
different scenarios were implemented and it was evident that the existence of a
crowd computing layer below the fog nodes layer (drop computing) is beneficial
and suitable for restricted mobile networks.

In this approach the devices depend on drop computing where the devices
collaborate with each other before trying to offload. This is considered beneficial,
however, the dependence on other computationally limited devices restricts the
type of tasks that can be handled on the lower level before offloading to station-
ary infrastructure (cloud and fog) which are considered costly.

As the amount of data generated escalated and proliferated, the concept of
offloading became an essential paradigm and a lot of research was put into it. It
started with cloud computing, where data is offloaded to remote servers found
in the cloud. However, it was coupled with latency, which affects time-centric
tasks, which depends on receiving data in a timely manner. Due to the problem
faced by cloud computing, the fog computing concept emerged to tackle this
issue and decrease the congestion and latency at the cloud. The fog nodes bring
cloud services to the edge of the network. They are machines with medium
computer capabilities that can perform most of the tasks provided by the cloud.
Although fog nodes are smaller than the cloud, they are not cheap. Here comes
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the concept of opportunistic vehicular computing, which is a cheaper alternative
for fog computing and makes use of idle resources that already exist, which is cost-
free and does not need additional infrastructure investment. The opportunistic
vehicular fog computing is an infrastructure-less approach which is an excellent
alternative for the fog computing paradigm since it also brings the services to the
edge of the network and at the same time decreases the cost for service providers
to provide services to consumers.
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Chapter 4

Proposed Framework

In this chapter we give a detailed description of our framework, in addition,
describe our architecture, and discuss the previously mentioned related literature
and contrast them to our approach.

4.1 Basic Idea

The main limitation of related work is the centralization of decision and manage-
ment of resources to one entity which is usually a fixed infrastructure. Moreover,
some of the related work propose the use of WiFi which incurs an increased bur-
den on the cellular network. In our work, we mitigate this issue by adopting
DSRC as a means of communication. Also some related work flooded a network
with requests such that every vehicle receiving a broadcast will broadcast the
same message again until the whole network receives this message. This is un-
efficient in terms of network traffic and storage since every car will have to store
information in its cache until a certain time. In our approach, we are propos-
ing an edge cell opportunistic offloading framework. Indeed, the IoT devices are
able to directly communicate with vehicles and utilize their idle resources. Hence
the proposed framework covers the auto-arrangement of IoT devices as clusters,
which was not tackled in the surveyed related work and the selection strategy
depends on the SINR and the time needed for offloading data and retrieving the
results. Also, we decentralize the decision making instead of assigning a device
the role of a coordinator.

Briefly, instead of sending data from IoT devices to the fog for computation,
in this thesis, we propose using vehicles as Mobile Computing Nodes (MCN) of-
fering computational services as they roam around the cities. This approach can
mainly be used in public vehicles such as taxis, buses, and delivery cars, which
can offer these services to computationally limited bandwidth IoT devices and
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represents a profitable model.

IoT device owners would find it as a cost and delay efficient technique to
offload computation instead of sending their data to the cloud or fog, which
adopts the pay as you go model of payment and usually suffers from unreliable
latency as stated earlier. Our proposed approach is adaptive andcan be applied
in different domains. For example, in a planned or unplanned evacuation, there
is possible damage to the mobile communication infrastructure. Thus, vehicular
clouds might offer a temporary replacement for the infrastructure [27], which
motivates the transition from regular clouds to vehicular clouds. Our proposed
approach is adaptive and can be applied in different domains. 5G networks
needs data offloading to offer higher bandwidths. Our proposed system would
contribute to enhancing the user experience [41] [42].

4.2 Proposed Framework Architecture

In our approach the cars usually communicate with each other on the control
channel over the DSRC to exchange safety messages and advertisements, the ve-
hicle switches between control and service channels, whenever the car is in the
control channel and willing to share resources it will broadcast a beacon message
which is received by IoT devices stationed around it. Thus, advertising its avail-
ability, the IoT device in need for some computation to be done would send a
reservation request after it calculates the SINR and the time of connection.

After that, the car sends an acknowledgment that it is successfully paired with
this IoT device. Note that an IoT environment consists of many nodes thus we
will cluster the IoT environments into small groups and each group is assigned
a coordinator. This coordinator role is rotated among the participants in this
cluster in a round robin fashion so that the burden of establishing a connection
and sending data is shared among all the participants. Moreover, one of the
problems that we would be facing is the choice of the best MCN by an IoT device
that wishes to offload specific communication tasks to it. We plan to choose the
top N MCNs within the range of the fixed IoT device, according to the SINR
and the time of connection, taking into consideration the mobility of the MCN.
Another challenge we should mention would be delivering the results back to the
device or another party, knowing that the vehicles will not be stationary, which
is explained below in the architecture.
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4.2.1 Communication Protocol

In our approach, the network is composed of a numerous number of stationary
IoT nodes that are dispersed throughout the city. They can be found in build-
ings (fire sensors) or standalone (cement health sensors). Moreover, in order to
establish a network where we can send and receive data, these IoT devices will
communicate with vehicles playing the role of MCNs roaming around the area. If
these vehicles happen to be within the IoT device-Vehicle communication range,
discovery, MCNs selection, and offloading (to a selected MCN) may occur.

Figure 4.1: Communication protocol flow diagram
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Figure 4.2: Hello Message packet

The communication protocol used in our approach is shown in Figure 4.1.
In this protocol the cars usually communicate with each other on the control
channel over the DSRC to exchange safety messages and advertisements. The
vehicle switches between control and service channels. Whenever an MCN is in
the control channel and willing to share resources it will broadcast a beacon/Hello
message to IoT devices stationed around it. This hello message is illustrated in
Figure 4.2 which consists of 4-byte field that represents the MCN ID (We assume
MCN ID is an IP address); 1-byte field representing the bearing which is the
direction of the car which can be calculated by using the longitude and latitude
of the car; 1-byte field representing the longitude, another byte to represent
the latitude; 1-byte field to represent the average speed of the vehicle. Thus,
advertising the availability of vehicles to nearby devices.

Figure 4.3: Association Request packet

The IoT device in need of some computation will reply to the Hello message
by sending an association request after calculating the SINR and the time of
connection and then selecting an MCN that has the best SINR and time of
connection to be able to offload all the data. The association request contains
a 4-byte field representing the IoT device ID (we assume it has an IP address);
another 4-byte field to represent the MCN ID; 1-byte field for each of the latitude
and the longitude as depicted in Figure 4.3.

Figure 4.4: Offer Request packet

After that, the MCNs send an offer request that it is successfully paired with
this specific IoT device this packet consists of the MCN ID and the IoT device ID
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shown in Figure 4.4. Note that an IoT environment consists of millions of nodes;
thus, we will cluster the IoT environments into small groups, and each group is
assigned a coordinator. This coordinator role is rotated among the participants
in this cluster in a round-robin fashion so that the burden of establishing a con-
nection and sending data is shared among all the participants. Creating clusters
within IoT environments is essential for urban environments since it decreases
the amount of data sent which leads to a decrease in the network congestion;
moreover, it saves energy on the long run as proved by many previous researchers
[43][44][45][46][47]. Furthermore, to select an MCN by an IoT device, we will
choose the top N MCNs within the range of the fixed IoT device, according to
the SINR and the time of connection, taking into consideration the mobility of
the MCN if there exists more than one MCN offering their resources.

Figure 4.5: Data Computation Request packet

Upon choosing an MCN, the IoT device cluster head sends the data to it.
This data computation packet, illustrated in Figure 4.5, contains a 4-byte field
representing the IoT device ID and another 4-byte field representing the MCN
ID; 1-bit field C is used to show the criticality of the data computation; and
finally, the data that needs processing. If this 1-bit field is set, then the IoT
device requires the data in a timely manner and cannot tolerate data loss. To
deliver the results back to the device directly or through another party, four dif-
ferent scenarios might occur as illustrated in Figure 4.6. When the MCN finishes
computation, it checks if it is still in the communication zone of the IoT device
cluster head, if so it will send back the result to the IoT device. However, if the
MCN has left the communication zone and the MCN can establish a connection
to the RSU network, then the RSU network will relay the result back to the IoT
device either directly if one of the RSUs is within range or through sending it
to another MCN moving towards the IoT device, once this MCN is within range
of the device it will offload the result back to the IoT device. Bear in mind the
RSU network is multiple RSUs connected through wires, they are preconfigured
by the service provider and each one knows its location

If the criticality field is set in the data computation request packet. Then
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the broker RSU will send the data to more than one MCN going in the direction
of the IoT device for a specific duration, which we call dwell time. After the
dwell time expires, the RSU network continues sending the data to MCNs going
in the direction of the IoT device in a lesser rate until the IoT device sends back
an acknowledgment to any MCN passing by which will deliver it back to the
RSU network, and thus the broker RSU will stop on sending the data to near
by vehicles. Also, if the IoT device doesnt receive the result within a certain
duration, which is referred to as an expiration timer the IoT device will try using
traditional techniques like cloud and fog computing or send the data to another
vehicle.

Figure 4.6: Overall Architecture displaying four different scenarios

After the MCN receives the data from the IoT device cluster head, four differ-
ent scenarios might occur. Figure 4.6 shows an overview of network architecture.
Shortly after receiving the data computation request from the IoT device clus-
ter head and processing it, MCNk starts performing the task. When it finishes
performing the task, MCNk checks if it is within the communication range of the
IoT device. If is is, MCNk will directly send the result back to the cluster head
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which is depicted in Figure 4.6 as scenario 1. Scenario 1 shows vehicle A that
is able to send the result immediately to the IoT device cluster head. Vehicle A
will then continue with processing other task requests if there are any requests
waiting in the buffer.

However, if MCNk has left the communication zone, vehicle A will cache the
results until it hears a ”hello” message from the RSUi. It will then relay the result
to RSUi. As soon as the RSUi receives the result, it will check with the RSU
network manager for the closest RSU in terms of driving distance. If the IoT
device cluster head is not within communication range of any RSU, it will relay
the result to the closest RSU, which will cache the result until an MCN passing
by is moving toward the IoT device cluster head. Each RSU registers its location
with the RSU network management system and maps the simulation area upon
initialization. Through this process, the RSU manager obtains information about
the road and RSU network structure. Scenario 2 shows vehicle B that receives
a task from the IoT device cluster head of environment E2 and then leaves the
communication zone. It then finishes the computation after a certain time and
hears a ”hello” message from R1. It thus offloads the result to the RSU network
through R1 which is its portal to the RSU network. After consulting with the
RSU manager, RSU1 finds that R2 is closer to E2 in terms of driving distance,
so it forwards the result to R2. R2 now has two choices. If E2 is not within
communication range of R2, R2 will relay the result to a vehicle with predefined
trajectory (vehicle C).

In scenario 3, if the IoT environment E1 is within the communication range
of an RSU (R1), the RSU will directly forward the data to the IoT device cluster
head. Finally, in scenario 4, if a vehicle offloads the result to an RSU (R2) and
this RSU finds itself as the closest, it will just cache the result until a vehicle
passes by moving towards environment E2. Scenario 4 works under the impres-
sion that the IoT environment E2 is outside the communication range of the RSU
R2.

Scenario 4 consists of 6 steps depicted in Figure 4.6:

1. The MCN and the IoT device cluster head establish a connection. It broad-
casts every 1 second (during the control channel) when the MCN is avail-
able, thus decreasing the amount of network traffic, which later affects the
SINR. If the IoT device gets more than one broadcast, it will calculate
the time of connection and the SINR for each one and replies to the most
suitable MCN. Thus, the MCN replies with an offer request confirming the
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pairing between the two entities. After that, the IoT device sends a data
computation request which contains the data.

2. After the MCN receives the data, it starts performing the computation
while it is roaming around the city.

3. The MCN offloads the result to the R1, R1 checks if it is within communi-
cation range with the IoT environment E4

4. If R1 is not in the communication range, it checks within the RSU network
if there are any closer RSUs to the IoT device location. Where R1 found
that R4 is closer to the IoT environment E4. Thus, it will relay the data to
R4 which will be assigned as the broker responsible for delivering the data
back to E4

5. Consequently, E4 checks if it is within the communication range of E4. If
not, it will cache the data in local storage until it finds a car moving in the
direction of E4 and relays the data to it.

6. Once the MCN is within the communication range of E4, it will offload the
result back to the IoT device coordinator, see step 6, which will handle the
result and take the proper action according to it.
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4.2.2 Time of IoT device-MCN Connection

Figure 4.7: MCN paths of roads showing its farthest locations before it discon-
nects from the IoT device

We consider a macro-cell deployment where certain vehicles will play the role
of mobile computing nodes. For the most part, these will be public vehicles,
like taxis and buses, whose owners may be compensated based on the amount
of computation they perform. A computing vehicle is equipped with a naviga-
tion system that associates the global positioning system (GPS) positions to road
maps to enable them to know their locations (i.e., geometric coordinates). Simi-
lar to [48] [49], we calculate the time of connection (TOC), where the UE in [48]
[49] resembles the lightweight IoT device we describe in our work. In our work
the vehicle (not IoT device) calculates the time of connection unlike in [48] [49],
to lessen the computation burden on the IoT device taking into consideration
that the IoT device does not know its surroundings or environment. After the
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MCN receives the association request, which includes the IoT device position and
other information, it will send an offer request. The offer request is sent only if
the time of connection calculated by the MCN on behalf of the IoT device is
sufficient for the IoT device and the vehicle to associate with each other (TOC
> time threshold).

A simple general scenario is illustrated in Figure 4.7, where each MCN vehi-
cle periodically broadcasts the beacon ”hello” message which includes the MCN
vehicle’s position. This information allows the IoT device to know if the MCN is
within the communication range. If it is not, the IoT device will not reply because
the IoT device packet will never reach the vehicle since the transmission range of
an IoT device is much smaller compared to that of an MCN. Figure 4.7 shows the
current location of an MCN (MCNk) in the bottom-left region of the map, along
with its possible farthest positions (Points 2, 3, 4, and 5) before the IoT device
disconnects from it due to exiting its transmission coverage. The transmission
coverage of MCNk in the different positions is illustrated using dotted circles,
while its range is depicted through the two-headed arrows that connect the IoT
device.

In our work, we consider two metrics for the IoT device to pair with the most
suitable MCN: Signal-to Interference and Noise Ratio (SINR) and the expected
Time of Connection (TOC).

The MCN can change its path or direction after reaching an intersection. De-
pending on which road segment the vehicle is on, the time of connection (TOC)
between an IoT device and an MCN might vary widely. The example in Figure
4.7 shows MCNk, in range with an IoT device, is approaching the intersection at
the center of the map. After reaching the junction, the MCN can take one of the
three possible routes, each of which results in a different TOC. After crossing 2,
3, 4, and 5 on paths 4, 1, 5, 6, and 11, respectively, the MCNk loses IoT device
coverage and becomes out of the communication zone of the IoT device.

Given the MCN location along with the IoT device location, the MCN can
compute the coordinates of the exit points 2, 3, 4, 5 after receiving IoT device
position. It can then compute, using its knowledge of the road map (by the aid
of the GPS), the driving distances to each of these points. Each MCN can cal-
culate its average speed; thus, it can translate these distances into times. Out of
these estimated times, the expected time of connection could be calculated and
consequently the MCN will send to the IoT device an offer request if the TOC is
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sufficient. Thus, the IoT device is aware that the MCN it received an offer from,
is suitable in terms of the time of connection.

Figure 4.8: Zoom-in of Figure 4.7

Moreover, Figure 4.8, which is a zoom-in of Figure 4.7, describes the concept
of time of connection. In this figure, MCNk is currently within the IoT device’s
communication range and approaching intersection I1, after which it will take
one of the three possible paths. An MCN is equally likely to take any path upon
reaching a junction. However, different probabilities can be assigned as a function
of some measurements or statistics like average traffic density on each of the out-
going paths. Such data may be obtained from the traffic authority database, or
learned by RSUs which periodically receive beacon messages from MCNs passing
by.

Consider:
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M: Number of exit points
P: Number of distinct paths from the IoT device to exit points

We assume the MCNs have the same transmission range RMCN , and so when
an MCN needs to calculate its estimated TOC, it draws a circle having a radius
RIoT and the IoT device coordinates as a center. It identifies the intersection
points of this circle with the roads in range. As shown in Figure 4.8, the points
are A, B, C, D, E, and F. They represent exit points beyond which the MCN will
lose connection with this IoT device, and can be referred to as the set {p1, p2, . . . ,
pM}. Next, we identify the set of possible distinct paths from the MCNs location
to the exit points and their corresponding lengths in meters {l1, l2, . . . , lP}, where
P ≥M .

ti =
li

AverageCarSpeed
(4.1)

Given the cars average speed (including stopping at red lights and stop signs
and slowing down on turns), there will be corresponding P times, i.e., {t1, t2, . . . , tP},
which are obtained by dividing the lengths of the paths calculated by the average
speed of the MCNs as depicted in equation 4.1. Next, given that the MCN will
likely take any road upon reaching an intersection with equal probability, the
average (expected) time that it will take until it disconnects from the IoT device
is:

TOC =
t1 + t2 + . . . + tP

P
(4.2)

We refer to this value that is specific to each MCN as the expected time of
connection (TOC). The possible paths that the MCN can take starting at its
current position can be modeled as a directed acyclic graph (DAG) traversal
problem. In this DAG, the vertices are the MCN’s current position (its position
when the MCN has to send an offer request for the IoT device to make an as-
sociation decision), the set of road intersections, and the set of exit points. For
example, in Figure 4.8, the vertices are the current position of the MCN, the
intersections are I1, I2, I3, and the exit points are A, B, C, D, E. In the figure,
it can be shown that the number of possible paths that the MCN can take to all
exit points is 9 (i.e., P = 9).

The MCN, in proximity with the IoT device, computes the expected total time
of connection and sends an offer message to the respective IoT device only if the
TOC exceeds a certain threshold. It is important to note that if the IoT device
receives an offer message, this indicates that the time of connection is sufficient.
Therefore, the decision of the IoT device in choosing an MCN is defined by a
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minimum SINR threshold and the connection time to minimize the probability
of disconnections and to increase throughput.

4.2.3 IoT device-MCN association

We begin this section by describing the communication protocol between the
MCN and the IoT device. This protocol is summarized in Figure 4.9 and with
the following steps:

1. It begins by the MCNs periodically transmitting connection or service (CS)
advertisements in which they include information about their position and
availability (e.g., percent of the queue that is occupied).

2. After receiving the MCNs advertisement, an IoT device that wishes to
compute some data checks the SINR level, if the SINR level is higher than
the threshold.

3. It sends to the MCN an association request that includes information about
the data to compute along with its location

4. the MCN accepts the request if it has enough resources to handle the asso-
ciation request (e.g., if it deems that the size of the data is acceptable).

5. Consequently, if the SINR upon receiving the association message by MCNk

is above a certain threshold, then MCNk, using its knowledge of the envi-
ronment through the GPS, along with its position and its average speed
can calculate the TOC and checks if it exceeds a predefined threshold.

6. In its offer packet, the MCN includes an estimate of the time that the
request waiting time before it gets serviced.

7. Then the IoT device, upon receiving the offer packet it will check the SINR
level and implicitly knows that the TOC is sufficient to offload the data to
MCNk.

8. Finally, the IoT device sends the MCN the data to do some computation,
thus implicitly accepting the MCNs processing delay.

Unlike [48, 49], in which the TOC is calculated by the IoT/user device, in
our framework this task is performed by the MCN since it posses all the needed
environment and mobility knowledge, along with IoT device position which piggy
backed to the association message sent to the MCN as shown in Figure 4.9.
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Figure 4.9: Communication protocol between MCN and IoT device

The task of computing the time of connection has been assigned to the MCN
for another important reason which is our initial concern in this thesis. The
IoT device, as we consider it, is a computationally limited and energy limited
resource. Thus, to alleviate the burden of computing the time of connection from
the IoT device, the MCN has been tasked with this. We must re-emphasize that
the IoT device, to begin with, does not have all the information, in relation to
the requirements of computing the TOC, needed to be able to proceed with such
computations.
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4.2.4 RSU Forwarding Mechanism

Figure 4.10: RSU forwarding

The RSUs have information about the running road traffic. Hence RSUs can
map the region as a graph and find the shortest path using Dijkstra’s algorithm.
As illustrated in Figure 4.10, after MCNk has left the communication zone of the
IoT devices and reached a distant RSU (R3). R3 will consult the RSU network to
check if the IoT device lies in any of the RSUs’ communication zones (RSU-IoT
device communication zone). In scenario 1 in Figure 4.10, where IoT2 is within
communication range of R2, R3 will forward the result to R2 which in its turn
relays the information to IoT2. Otherwise, R3 will consult the RSU network to
find the closest RSU in terms of driving distance. The RSU finds the shortest
driving distance to the IoT device cluster head using Dijkstra’s algorithm.

In scenario 2 in Figure 4.10, where you can see that for IoT1, R1 is closer in
terms of driving distance where the dashed path from R1 is much shorter than
the route from R2 (black route). Thus, R3 will forward the result to R1. Once R1

receives the results, it will cache the results and check if it can directly relay the
result to the IoT device. However, if it cannot directly contact the IoT device
cluster head, and to assure that the information will not get lost, the RSU upon
receiving a result will wait until a vehicle with a predefined trajectory/route
(public cars) heading towards the IoT cluster head passes by. The suggested
mechanism will ensure that the information will not get lost. This decreases
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unnecessary network traffic and congestion which positively affects the network’s
performance.

4.3 Discussion

Although in our approach, we adopted the vehicular cloud concept, where we
offload tasks from stationary IoT devices to mobile vehicles. We considered cars
as edge-computing cells, unlike [7], nearby IoT devices might contact an MCN
directly using 802.11p for a more reliable connection. Also unlike [4, 3, 50], we
took into consideration the SINR when selecting an appropriate car to perform
a task or computation, and the time of connection, bearing in mind the mobility
of the MCN. Furthermore, IoT devices, our consumers here, can directly discover
MCNs and choose the best one instead of crowding the RSU’s registry, which
would lead to a delay in the network. In addition, we did not consider the com-
putation power because we assume that all vehicles have the same computation
power and computation resources to offer. Beyond that, we tackled some of the
challenges that VANET clouds suffer from, which are not dealt with in [5], which
are resource allocation and sharing, communication, and coordination between
VANETs and clients.

Furthermore, the high mobility, SINR, unstable communication links, and
efficient selection mechanism of participants, which in our case depend on two
main factors, the time of connection and SINR, are still considered as challenges
[27] [29] . Unlike [2, 7] Mobility in our approach depends on more than the mere
speed of a vehicle but also on the direction and the time of connection.

Table 4.1 shows the features of our approach compared t other related works.
[1] tackled offloading to vehicles to decrease network and RSU congestion. How-
ever, it considered vehicles RSUs, plus mobile phone users who want to do the
offloading. We, on the other hand, have an environment of IoT devices (clusters
of large numbers of devices that are characterized by small packets and periodic
or event-driven transmissions) and look for MCNs that are public vehicles. Along
with that, we exploited the fact that nearby IoT devices may have similar traffic
and transmission patterns for group communication. Also, the mobility model in
[1] does not allow to calculate the expected time of connection in which finding
the best vehicle that will stay in the range of the IoT device for the maximum
time. Plus, it did not considering the quality of the received signal (SINR) at
each IoT device, but we will.
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Moreover, [6] suggested offloading from vehicle to other vehicles and using the
RSU as a coordinator and cluster manager without taking into consideration the
SINR and time of connection. Also, if a vehicle did not finish its computation,
it hands over the computation to the infrastructure, which increases the network
traffic at the infrastructure. In [9] and [10], consider mobile devices and IoT de-
vices offloading to MANETs that are energy limited. However, only [9] takes into
consideration a coordinator who orchestrates the offloading mechanism, which is
a fog or a mobile node, and perform some form of context-aware clustering. Al-
though they consider the quality of service when choosing a node to offload to,
however, they disregard the time of connection. On top of all of that, none of the
discussed related work has clustered IoT devices and chose a cluster manager.
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Mode Clustering TOC SINR NTH ITH TRH RA

Our
Approach

I\F2V 3 3 3 7 7 3 3

[1] V2V 7 7 7 3 7 3 3

[2] V2V 7 3 7 7 7 7 7

[3] V2V 7 7 7 7 7 3 3

[4] V2V 7 7 7 7 7 3 7

[5] V2V 7 7 7 7 7 7 3

[6] V2V 3 7 7 3 3 7 7

[7] I2V 7 7 7 7 7 7 7

[8] I2V 3 7 7 7 7 7 7

[9] I2M 3 7 3 7 7 7 7

[10] M2M 7 7 7 3 3 7 7

Table 4.1: Literature summary

The table shows the concepts we have implemented in this work. The occur-
rence or lack thereof of these concepts shows the difference between the related
work and our work. The second column contains the mode of communication
in relation to the entities communicating, the third column contains the use or
lack of use of the clustering mechanism in the general architecture, the fourth
and fifth columns contain the use or lack of use of the time of connection (TOC)
and signal interference noise ratio (SINR), the sixth and seventh columns contain
the use or lack of use of the node task handover (NTH) and infrastructure task
handover (ITH), the eighth column contains the use or lack of use of the task
result handover (TRH), finally the ninth column contains the use or lack of use
of the the RSU assistance (RA).
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Chapter 5

Performance Evaluation and
Results

In this chapter, we describe the setup of our environment, and the tools used to
implement our communication protocol. Furthermore, we evaluate our proposed
approach in terms of various metrics such as retrieval success rate and retrieval
delay.

5.1 Environment Setup

Offloading has been recognized as an effective technique for enhancing the bat-
tery life of IoT devices. It is also considered as an effective technique for lessening
the burden of computation on them. Indeed, without offloading assistance, com-
putationally limited devices and energy limited devices may suffer from extreme
energy loss. This will happen if these devices try to perform some light or heavy
computations on their own depending on the capacity of the device.

Compared to traditional offloading paradigms, mobile computing nodes, on
the other hand, represent a more efficient solution, given the lack of need for
installation and figuring out the logistics for deployment scenarios. Moreover,
mobile computing nodes add flexibility since they can serve mobile users who
may be located anywhere from urban areas to rural neighborhoods. On top of
that, mobile computing nodes will decrease the load on the LTE network. For
serving IoT devices, in terms of computational services, careful analysis needs
to be performed to choose computing nodes that offer the best IoT and MCN
association.
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5.1.1 Simulation Tools

To conduct our simulations, we set up our environment, as indicated in table
5.1 below. The programming language used to implement our communication
protocol is C/C++ using the ns-3 simulator.

Operating system Ubuntu 18.04.4 LTS
System type 64-bit operating system

Installed RAM 32 GB
GNU Compiler Collection (gcc) version 7.5.0

Network simulator ns-3: 3.30
Traffic simulator SUMO 1.4.0

Network and traffic simulator coupler Vodafone Chair ns-3 - sumo coupler

Table 5.1: Environment specifications

5.1.1.1 Network Simulator 3 (ns-3)

We used the ns-3 simulator [51] to simulate the scenarios we mentioned above
in chapter 4 (section 4.1). ns-3 is a discrete-event network simulator for Internet
systems, targeted primarily for research and educational use. It is a free software,
licensed under the GNU GPLv2 license, and is publicly available for research,
development, and use.

5.1.1.2 Simulation of Urban MObility (SUMO)

Along with ns-3, we used ”Simulation of Urban MObility” (Eclipse SUMO) [52].
SUMO is an open-source, highly portable, microscopic, and continuous road traf-
fic simulation package designed to handle large road networks. SUMO is licensed
under the Eclipse Public License V2. ”Eclipse SUMO” is a trademark of the
Eclipse Foundation. However, for ns-3 and SUMO coupling, we used the TraCI
module implemented by Vodafone Chair Mobile Communcations Systems [53],
which is an ns-3 module that implements a bidirectional coupling to the road
traffic simulator in SUMO. It dynamically synchronizes the positions of SUMO
vehicles with corresponding ns-3 nodes.

Additionally, the state of SUMO vehicles can be controlled via ns-3, e.g., for
changing the speed. The module is built on top of the TraCI API of the SUMO
simulator. The module prerequisites a SUMO installation of version 1.1.0 or
more.

39



5.1.2 System Description

The simulation area used for our evaluation of the retrieval rate, and rate of
serviced IoTs in this thesis is adopted from [1], which is a map of the downtown
area of Ottawa, Canada (6421 m2). Twenty-one RSUs were distributed with a
separation distance of approximately 300m, as exemplified in Figure 5.1. All our
service cars that are inserted into this simulation are public vehicles that have
predefined trajectories and schedules from buses following a bus schedule to taxis
with predefined routes.

Figure 5.1: Ottawa Urban Center [1]
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We list in Table 5.2 the used simulation parameters in our DSRC system and
their default values, as inferred from [54] and [55] for most of them.

Parameter Name Default Value

RSU power (dBm) 46.0206
MCN power (dBm) 46.0206
IoT power (dBm) 5

RSU urban transmission range (m) 145
MCN urban transmission range (m) 145
IoT urban transmission range (m) 40

RSU number 21
MCN number 20-100
IoT number 17-337

SINR threshold (dB) 7
Time of Connection threshold (s) 4

Simulation Time (s) 3600

Table 5.2: Simulation parameters with their default values

As suggested in [54], we aim to comply with the standardization of VANET
simulation on ns-3. We ought to use the Log Distance propagation loss model
since it was identified to be more appropriate for the urban environment. We
ought to also use Two Ray Ground model in simulating rural environments with
fewer obstructions. We also added fading, which is an essential means to make
a simulation of propagation more realistic, so we used Nakagami-m fading. The
parameters used for the propagation loss and fading are listed in the Table 5.3
and Table 5.4.

U/R Propagation Loss Model Parameter Value Units

Urban Log Distance ReferenceLoss 37.35 dB

Table 5.3: Summary of propagation loss model parameters
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U/R Fading Model Parameter Value Units

Urban Nakagami-m m0 1.5 unitless 1

Urban Nakagami-m Distance1 60 meters
Urban Nakagami-m m1 0.75 unitless 1

Urban Nakagami-m Distance2 145 meters
Urban Nakagami-m m2 0 unitless

Table 5.4: Summary of fading model parameters

Furthermore, in our simulation, we study the communication between IoT
cluster heads and the MCNs. It is assumed that the clustering mechanism in the
background is fully functional, where IoTs use the Zigbee protocol to communi-
cate with each other and share data.

The IEEE 802.15.4 specification is the basis of the Zigbee protocol [56]. It is
a technical standard that defines the operation of low-rate wireless personal area
networks (LR-WPANs).

The technology defined by the Zigbee specification is more straightforward
and less expensive than other wireless personal area networks (WPANs), such
as Bluetooth or more general wireless networking such as Wi-Fi. Due to its low
power consumption, transmission distances are limited to 10-100 meters line-of-
sight, depending on power output and environmental characteristics. Moreover,
using a mesh network of intermediate devices, Zigbee devices can transmit data
over long distances. Zigbee is used in low data rate applications that require
long battery life and secure networking (128-bit symmetric encryption keys se-
cure Zigbee networks).

The maximum MAC frame size defined by the IEEE 802.15.4 standard is
127 bytes, 25 used for frame overhead, and 102 for payload. The header for
security purposes at the Link layer consumes up to 21 additional bytes, limiting
the available space to 81 bytes for an IPv6 packet. Since the IPv6 header is
40 bytes long, it will result in 41 bytes for upper layers. Additionally, UDP is
used which would leave only 33 bytes available for application data. The number
of bytes remaining is not enough. Header compression based on HCI encoding
allows 6LoWPAN to compress the 40 bytes of the IPv6 header using just 2 to 7
bytes. Thus header compression based on HCI encoding is adopted. Moreover,
UDP provides a connection-less service with no guarantee at all. The respective

1Indicates a default value
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header size is only 8 bytes. The impact on the packet size left free for upper
layers protocols is shown in Figure 5.2 [11].

Figure 5.2: Zigbee packet format [11]

As indicated in [12], packets sent between DSRC devices have the format
shown below in Figure 5.3. The MAC header consumes 14 bytes, along with 40
bytes occupied by IPv6 header plus 8 bytes added as a result of the UDP header.
However, the Maximum Transmission Unit (MTU) in DSRC protocol is 1500
bytes, as suggested by [57], which results in 1438 bytes as payload available for
upper layers.
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Figure 5.3: Data message packet format over DSRC [12]

The maximum payload size of a Zigbee packet is 66 bytes. We assume that
we have temperature sensors that collect 16 readings per hour (every 3 minutes).
Each reading is a floating-point of 4 bytes; thus, the resulting payload consumed
is 64 bytes after sending the data to the IoT cluster head. It concatenates the
unique 8 byte source address found in the Zigbee MAC header along with the 64
bytes of data collected, which adds up to 72 bytes. Each IoT cluster head can ser-
vice 19 IoTs at a time in each data request, thus consuming 1368 bytes out of the
maximum payload size, which is indicated in Figure 5.3. If the IoT coordinator
collects data from more than 19 IoTs, it will split the data into multiple requests,
however, in our clusters we assume they are groups of 19 IoTs maximum. The
sensory readings are offloaded in the aim of applying predictive machine learning
algorithms, which is considered as a substantial task to be handled locally by the
IoT. The IoT is considered a computationally and energy limited device, which is
why it is considered a substantial task. However, to simulate different processing
times of the predictive machine learning tasks allocated to the vehicles, we range
task computation times from 0 - 5 seconds, which is more than sufficient given
the instantaneous output that is typically produced by a trained deep learning
model seen in [58, 59]. We assume the OBU of a vehicle posses the minimum
specifications mention in Table 5.5 below. It is important to take into consid-
eration that a modern vehicle’s OBU is more powerful than the specifications
mentioned in Table 5.5.
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Microprocessor 2.5 GHz Intel Core i5-3210M
Memory 4 GB 1600 MHz DDR3

Video Graphics AMD Radeon HD 7670M (2 GB DDR3 dedicated)
Hard Drive 750 GB SATA (5400 rpm)

Table 5.5: OBU minimum specification

In our approach, we take care of the communication between the IoT coor-
dinator and other utility devices such as public vehicles and RSUs. We assume
that the clustering mechanism and leader election for IoT devices are background
processes and out of the scope of this thesis. We adopted clustering to decrease
the amount of traffic sent accompanied by a decrease in interference. The in-
terference decreases since the amount of interference is directly proportional to
the number of simultaneous transmissions. Interference causes packets to get
dropped due to the attenuations in the received signal at the receiver’s end. This
could happen to both the IoT and the MCN. On the IoT’s end, if an offer message
is sent from an MCN, this offer message can get dropped due to the interference
and noise. Similarly, on the MCN’s end, if an association message is sent from an
IoT device, this association message can get dropped due to the interference and
noise. Thus, the clustering is crucial for enhancing the communication between
IoT coordinators and other utilities. Clustering is also crucial for decreasing the
rate of dropped packets.

Our system is composed of many components that interact using DSRC to
offload data directly from an IoT to an MCN and retrieve the data later on. Our
IoT devices are considered as resource limited.

IoT cluster heads, which possess a task that needs to be offloaded, will wait
until they receive advertisements, which are in the form of ”hello” messages, from
vehicles passing by. Consequently, the IoT head directly after receiving the ad-
vertisement message, assesses the SINR and checks if it is above the threshold
(7 dB) which is adopted from [55]. If it is above the threshold, the IoT head
will immediately send out an association request to the specified vehicle which
includes the position of the IoT head. After receiving the association message
at the vehicle’s end, the MCN will also calculate the SINR and checks if it’s
above the specified threshold. We assume all cars in our simulation are equipped
with a geographical positioning system that allows the vehicle to calculate the
expected time of connection with the IoT head on behalf of the IoT head, thus
decreasing the computation upon the IoTs. Additionally, the vehicle will check if
the approximate time of connection is above the specified threshold indicated in
Table 5.2. If the two conditions are met, the automobile will reply with an offer
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request. This offer request will be received by the IoT head, which holds infor-
mation about the SINR upon receiving the association message on the vehicle’s
behalf. After that, it will reply with the data computation request that holds the
task information.

It is worth noting that we implement a task buffer on public vehicles, which
would increase the availability of resources. Thus, even if a car accepts a task, it
will continue broadcasting its services until the buffer is full. Furthermore, the
task buffer is sized so that the vehicles OBU is able to serve the IoT devices with-
out being overloaded. Moreover, the clustering of IoT devices and implementing
a task buffer improves the scalability and availability of the resources. What
is meant by availability here is the ability for one car to service more than one
IoT head, which in turn improves the feasibility of our approach in low-density
areas. But availability is directly coupled with scalability, where the adopted
methods above provide the network with the capacity for unpredictable growth.
Moreover, to ensure that we simulate a real-life scenario, we randomized vehicle
trips using a random trips generator, a tool provided by SUMO. It generates a
set of random trips for a given network. It does so by choosing the source and
destination edge. The trips are distributed evenly in an interval defined by the
beginning and end time in seconds and the repetition rate represents the number
of trips in seconds. Moreover, we added the fringe factor option to increase the
probability that trips will start and end at the fringe of the network. If the value
were 10, for example, edges with no successor or predecessor would be ten times
more likely to be chosen as the starting point or end point of a trip. This feature
is useful for modeling through traffic, which starts and ends at the outside of the
simulated area.

5.2 Results and Evaluation

To simulate our approach, we spread on average 1 IoT per 1 m2, which results in
6421 IoTs spread throughout our simulation area. However, as mentioned earlier,
we adopted the clustering mechanism to decrease the number of transmitting de-
vices, which reflects positively on the SINR levels [60]. Furthermore, we cluster
the 6421 into groups each of 19 devices which we discussed in the previous sec-
tion. Thus, there are 337 IoT cluster heads on average dispersed randomly across
the area.

To calculate the number of runs required for achieving at least a 90 percent
confidence level, we ran a scenario with default parameter values ten times. For
each simulation run, the pseudo-random generator seed (based on the script pro-
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cess ID), the movement file, and the dispersion of IoT cluster heads were changed.
The average successfully retrieved computation ratio and the average serviced
IoT cluster heads were calculated. Consequently, the number of runs required
to achieve 90 percent confidence was computed using the central limit theorem,
as discussed in [61, 62]. The +/- precision value for the ratios mentioned above
is 0.03. However, the number of runs was recomputed as we varied the vehicle
density from twenty to a hundred cars per hour of simulation. This variation
resulted in a different number simulation runs depending on the vehicle density.
The ten samples consistently output the mean and standard deviation in close
range to each other for a certain vehicle density. The maximum simulation run
was 10. On average, we performed 15 simulation runs for each vehicle density.

It is worth mentioning that in our simulation, we assume, during one hour of
the simulation, the IoT will offload 16 temperature recordings collected over one
hour. Each is a 4-byte floating-point. Thus, every IoT will offload 64 bytes of
data within the 66 bytes limited payload size of a Zigbee packet we discussed in
the previous section. After the IoT cluster head receives the data from the cluster
members, it will concatenate the 8 byte source address of each cluster member
shown in Figure 5.2 to their respective Zigbee payload. This concatenation will
lead to accumulating 72 bytes from each cluster member per hour. We assume
each cluster is made of 19 participants, including the cluster head. Therefore,
1368 bytes of data will be accumulated from the whole group. The total size of
the data is less than the DSRC maximum payload size as indicated in Figure 5.3.

5.2.1 Varying queue size (1 - 50)

To study the effect of implementing a task buffer on MCNs we varied the queue
size from 50 tasks to 1 task at a time where the tasks were done sequentially in
FIFO order. We fixed the number of cars and IoT devices (37 vehicles and 337
IoT cluster heads). It worth mentioning each MCN had a random path. This
randomness helps to simulate a real-life scenario. Our framework recorded a
retrieval rate (number of IoT cluster heads offloaded data and retrieved out of all
the IoT cluster heads offloaded) of more than 90%. This shows the efficiency of
our selection mechanism, which depends on the SINR levels and TOC. We were
able to decrease the number of packet drops caused by inadequate environmental
circumstances such as interference and the mobility of the vehicles.
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Figure 5.4: Percentage of serviced IoT cluster heads while varying vehicle’s queue
size

Moreover, the effect of varying the queue size on the availability of resources
was studied. The recorded results are shown in Figure 5.4, which shows a mono-
tonic increase in the percentage of serviced IoT cluster heads (number of IoT
cluster heads that offloaded and retrieved their data out of the total number of
deployed IoT cluster heads). This increase shows how the implementation of a car
task buffer affects the availability of resources to service IoT devices positively,
which increases the availability of resources when they are inherently limited.
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5.2.2 Varying vehicle density (20-100) while varying queue
size (50 - 1)

Figure 5.5: Successful retrieval rate while varying vehicle density

To study the feasibility of our proposed model, we study the successful retrieval
rate of tasks. As discussed earlier, we varied the vehicle density from 20 cars per
hour to 100 car per hour while changing the route of every vehicle and altering
the spread of IoT cluster heads over the respective area randomly. The successful
retrieval rate ranges between 90% to 95%. The high retrieval rate reflects on
the feasibility of our proposed model. These results align with our prior findings
where we varied the queue size which show the efficiency of the selection mech-
anism described previously in section 4.2.3. Minor fluctuations in the retrieval
rate depicted in Figure 5.5 which caused a decrease in the successful retrieval
rate are due to the dropping of packets caused by interference from neighboring
devices. However, some loss is due to the absence of an available vehicle to return
results to the IoT cluster head from the RSU network. This behavior depends
on the opportunistic behavior of VANETs. Furthermore, the successful retrieval
rate shows that 5% to 10% of the results are lost.

The high retrieval rate over different car densities shows that the successful
retrieval rate is not dependent on vehicle density. It does however depend on the
opportunistic availability of vehicles and the strategic MCN selection adopted.
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Figure 5.6: Percentage of serviced IoT cluster heads while varying vehicle density

The percentage of serviced IoTs is depicted in Figure 5.6 above. A critical
factor to study is the percentage of IoTs serviced as we vary the vehicle density
while altering the spread of the 337 IoT cluster heads randomly. The percentage
of serviced IoTs range from 58% up to 80%, which conveys the direct relationship
between the rate of serviced IoTs and vehicle density. Figure 5.6 shows an increase
in the percentage of serviced IoTs as we increase the vehicle density. Due to the
randomized vehicle routes, fluctuations occur, causing these variations in the
serviced rate seen in Figure 5.6. Furthermore, the trend is conserved where
increasing vehicle density increases the percentage of serviced IoTs. We indicate
that serviced IoTs is the percentage of vehicles that successfully offloaded and
retrieved their tasks out of the total number of IoTs. As vehicle density increases,
we expect an increase in serviced IoTs. This relationship between the vehicle
density and the serviced IoTs is validated through the results obtained where the
logarithmic trend line shows the expected behavior while increasing the density.
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Figure 5.7: Retrieval delay vs vehicle density

Furthermore, we study the data retrieval delay which is the wait time of IoT
devices without considering task time to retrieve its results. The overall average
wait time is 1.12 seconds. These results are considered as a positive indication
of the applicability of this approach in real life, although compared to the cloud,
it is notable somehow. A trade-off exists between the use of idle resources with
a little bit of insignificant delay and the congestion incurred by overwhelming
the LTE infrastructure. Moreover, as depicted in Figure 5.7, the variations are
attributed to the various possible combinations of roads a vehicle can take as
soon as it enters the simulation, which we indicate by randomness of the trips.

However, as the vehicle density increases, the trend of the service delay is
decreasing due to the availability of suitable MCNs passing by. In addition,
the controlled fluctuation, which is not considered as severe, contributes to the
usability and applicability of such a system. We can note that the trend shown in
Figure 5.7 showing a decreasing inclination as we increase the number of vehicles
is reasonable. The curve above shows the time delay for IoTs, which includes
the computation time. These trends show the gradual decreasing trend over
increasing the vehicle’s density.
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Figure 5.8: CDF retrieval delay of IoT

The mean 1.12 seconds, almost 70% of the distribution lies one standard
deviation away (0.38). This is depicted above in Figure 5.8. It can be noticed
that most of the data points are concentrated around the mean +\− 0.38 (0.74 -
1.5), where on average, an IoT must wait 0.4 seconds before retrieving the result
after offloading the task to an MCN taking into consideration task time and 1.12
seconds. However, this value is expected to be lower as the number of vehicles is
increased. This relationship exists since vehicles with better conditions might be
available and service the IoT cluster head needs.

5.2.3 Varying IoT density (337 - 17)

Another critical factor in our study is scalability. To investigate this factor at first,
we study the system performance with decreased resources (less vehicle density)
of only 35 vehicles each with a queue size of 10. Our system’s performance with
limited resources reveals our system’s necessity and usability in real-life scenarios
where resources are scarce, and the importance and necessity of the proposed
system prevails. To address this crucial factor, we vary the IoT density from 17
to 337 and study the percentage of tasks retrieved successfully along with the
rate of serviced IoTs cluster heads, as depicted in the figures 5.9 and 5.11 and
the retrieval delay as depicted in Figure 5.10.
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Figure 5.9: Successful retrieval rate while varying IoT density

We obtain results with at least 90% confidence interval as suggested by
[61, 62]. Furthermore, the results that showed a consistent mean and standard
deviation over several runs are at least 90% close to the true mean of the distri-
bution. We adopted this model due to the time it takes for ns-3 and SUMO to
simulate a scenario.

Figure 5.9 shows a successful retrieval rate above 90% for all vehicle densities,
which shows that for lower frequencies, the retrieval rate maintains a minimum
level of almost 90%. This clearly shows the selection strategy adopted based on
the TOC and SINR levels is an efficient mechanism. Practically 90% of the IoT
cluster heads who offloaded got their results, and only 10% lost their computation
due to propagation loss or the unavailability of vehicles that can retrieve data
from the RSU network.
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Figure 5.10: Retrieval delay while varying IoT density

Furthermore, in Figure 5.10, we display the retrieval delay to a decreased
vehicle density, which shows decrease in the delay as we decrease the IoT density.
And that is due to the decrease in the number of simultaneous requests of IoT
devices, since the request number is directly proportional to the IoT density.
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Figure 5.11: Serviced rate as we vary IoT density

While having a vehicle density of 35 per hour is relatively low compared to
the area size, we plot the percentage of serviced IoTs with respect to different
densities shown in Figure 5.11. The conveyed results show the preservation of
a level of at least 60%. Having a percentage higher than 60% with low vehicle
density (35 vehicle\hr) also contributes to the proof of scalability of our system.
It is worth noting that the percentage of serviced IoTs is relatively low due to
the randomness of the vehicle’s path. This shows the ability of 35 vehicles to
serve increasing IoT densities. These results show the increased availability of
resources where the number of vehicles can serve approximately three times their
density.

The results are classified to 3 categories.

1. The data retrieved from the vehicle directly.

2. Vehicle relayed the result to the RSU network and the RSU network sent
the result to the IoT.

3. The results were relayed back using a third vehicle where the RSU relayed
the result to it so it gives it back to the IoT.

The average percentage of the retrieved tasks classified according to type is
depicted in Table 5.6 below:
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Variation type Type 1 Type 2 Type 3

Queue Size 95% 1.5% 3.5%
Vehicle Density 98% 0.5% 1.5%

IoT Density 99% 0.5% 0.5%

Table 5.6: Average percentage of retrieval type

The results in Table 5.6 show that most of the tasks are of the first type
and that is due to the conditions set for the selection mechanism. The selection
mechanism as mentioned earlier will aid in finding the best candidate to be able
to fully satisfy the computation request by the vehicle itself with the assistance of
the physical infrastructure. Thus, keeping the load on the physical infrastructure
as low as possible.

5.2.4 Stress Testing

In line with our previous experiments, we also worked on testing the limits of our
framework. The experiments are documented the below subsections.

5.2.4.1 Vary Request Rate

We increased the request rate where each IoT device would request a task from
the IoT cluster head. In one task the IoT device will record 16 temperature
data points combined, which will be relayed to the IoT cluster head, in turn, will
offload the collected tasks from all the IoT devices to passing by MCNs. The
setup of the experiment is summarized in the Table 5.7 below.

Queue Size 20
MCN density 50

MCN Processing Time (s) 0.1
IoT Cluster Head Density 337

IoT Density 6403

Table 5.7: Varying request rate experimental setup

To test the limits of our framework, we varied the request rate from 1 request
per second per IoT device to 1 request per hour per IoT device. According to the
request rate, the IoT device chooses randomly to send a request. If it already sent
a request and did not retrieve the result back the IoT will be sending the same
request again if it randomly decides to send a request again and these requests
are what we call delayed requests. However, if it did not send a request earlier
it will be generating new request which we call original request. The results are
depicted in Figure 5.12
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Figure 5.12: Percentage of delayed requests as we vary the request rate

Figure 5.13: Percentage of retrieved requests as we vary the request rate

Figure 5.12 shows the variation of the percentage of delayed requests while
varying the request rate. As depicted, the percentage of delayed requests is high
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when setting the request rate to 1 and 15 seconds these results are reasonable
since we have a limited number of vehicles and a vast area. It is worth mentioning
that request rates 1 and 15 are extreme cases that are used for the sole purpose
of stress testing the framework. However, the percentage of delayed requests de-
creases to 0 as we decrease the rate to 1 task request per hour per IoT device.

Moreover, Figure 5.13 shows the variation of the retrieved requests out of the
offloaded, original, and the total number of requests. Offloaded requests are the
requests that are offloaded from the IoT cluster head to the MCN.

Request Rate (s) Average Number of Original Requests

1 17634.9
15 17618.1
60 17283.2
300 15468.5
900 12067.7
1800 9262.5
3600 6403

Table 5.8: Average number of original requests while varying request rate

The percentage of retrieved results out of the offloaded tasks shows a high
percentage (above 90%) as we vary the request rate. This aligns with our previous
findings in the sections above. It shows a high retrieval rate which is attributed to
the selection mechanism of our framework. Furthermore, the average percentage
of retrieved results out of the original number of requests are depicted in Table
5.8, which shows the direct coupling of the decrease in the request rate and the
decrease of original requests. The percentage of retrieved requests out of the
original requests ranges between (55% - 60%), which shows positive results for
high request rates where the system was stressed by increasing the request rate
tremendously while keeping in mind the limited number of MCN with a relatively
small queue size.

Request Rate (s) Average Number of Total Requests

1 23044397
15 1536720
60 384180
300 76836
900 25612
1800 12806
3600 6403

Table 5.9: Average number of total requests while varying request rate

58



The variation of the request rate increases the number of total requests as
we increase the request rate as shown in Table 5.9. The percentage of retrieved
requests out of the total number of requests increases monotonically as we de-
crease the requests rate as depicted in Figure 5.13. This increase is attributed
to the decrease in the total number of requests. The results also show that our
framework is able to serve IoT environments in extreme conditions (50 vehicles
per hour with limited queue size of 20 and a request rate every 1 and 15 second).

5.2.4.2 Vary Queue Size

To test the effect of the queue size on our framework. We varied the queue size
from 20 to 250 while increasing the request rate to 1 task per 60 s per IoT device.
While stabilizing the vehicle density and IoT cluster head. The setup of the
experiment is summarized in the Table 5.10 below.

Request rate (s) 60
MCN density 50

MCN Processing Time (s) 0.1
IoT Cluster Head Density 337

IoT Density 6403

Table 5.10: Varying queue size experimental setup

Figure 5.14: Percentage of retrieved requests as we vary queue size
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The results that are depicted above in Figure 5.14 show an enhancement in
the percentage of retrieved results. Where the percentage of the retrieved out
of the categories mention in the figure show an increase in the percentage which
depicts the positive effect of the queue on the our framework. This shows the
performance of the proposed system under extreme conditions and with a limited
number of vehicles.

Figure 5.15: Average number of offloaded requests as we vary queue size

In Figure 5.15 the number of offloaded requests by the IoTs is increasing and
this is attributed to the increase in the queue size which increases the availability
of resources when the number of resources is limited to 50 vehicles in the vast
area of downtown Ottawa. This supports our claims that the existence of a queue
enhance the availability of our framework.

5.2.4.3 Time Delay

In order to check the delay incurred by the communications in our framework
we varied vehicle processing time randomly between 10 ms to 30,000 ms (30 s)
while keeping the vehicle and IoT density constant, with an increased request
rate. The experiment’s setup is summarized below in Table 5.11.
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Request rate (s) 60
MCN density 50

MCN Processing Time (ms) 10 - 30,000
IoT Cluster Head Density 337

IoT Density 6403

Table 5.11: Time delay experimental setup

The results are depicted in the Table 5.12 shows the time delay in seconds
according to each type of retrieval which was described in section 5.2.3.

Briefly the three categories are:

1. The data retrieved from the vehicle directly.

2. Vehicle relayed the result to the RSU network and the RSU network sent
the result to the IoT.

3. The results were relayed back using a third vehicle where the RSU relayed
the result to it so it gives it back to the IoT.

Average time delay per Category (s) Percentage per category (%)

Category 1 12.45 80.10
Category 2 141.94 16.26
Category 3 951.78 2.64

Table 5.12: Time delay results

The results show that the time delay for category 2 and 3 are larger from that
of type 1 which is reasonable since the 2nd category incurs some delay from finding
the RSU network in the vicinity of the MCN. Whereas 3rd category incurred delay
similar to 2nd category and delay at the RSU network to find a suitable MCN to
relay the results back to the IoT which depends on the randomness of vehicles
trajectory. It is worth mentioning that the average overall delay is 58.3452 seconds
with an average of 11 queued tasks per MCN. It is worth noting that the delay
shown over here include the processing time at the vehicle.

5.2.5 Comparative Study

Briefly, to efficiently retrieve offloaded tasks from vehicle and RSUs as relaying
entities, [1] proposed a time constrained retrieval protocol. Vehicle will offload
their data to a broker RSU which will handle offloading the tasks to other ve-
hicles in the vicinity. However, in our approach we are using IoT devices with
limited power supply which would decrease the transmission power. This affects
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the throughput and increase the loss where the signal undergo some attenuation
due to environmental and other interfering signals. Their dependence on a broke
affects the performance of the system along with their lack for a selection strategy.

To compare our work to theirs we simulated a similar environment, however,
with reduced vehicle density of 20 vehicle per hour over the whole area. The
results are depicted below in the Table.

Average retrieval percentage (%)

[1] 42
Our approach 90

Table 5.13: Comparative table

In [1], the average retrieval percentage for tasks of 0 to 10 seconds is 42% where
the results were one hop away, whereas our retrieval rate for 1 hop away tasks
is much higher and that is attributed to our effective selection mechanism and
the direct communication between the entities without a broker in the middle.
In [1] when the broker RSU assigns a task to a vehicle it might select a very far
vehicle which will rapidly leave the area thus it affects returning the results back
to the RSU. However, in our case the IoT devices transmission range is small
with respect to that of RSU, this allows the MCN even if it left the area shortly
after the handover from the IoT device to be able to deliver back the result since
the MCN-IoT communication range is much greater than that of the IoT-MCN
communication range.
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Chapter 6

Conclusion and Future Work

The Fourth Industrial Revolution (Industry 4.0) is the main driver behind the
digitization of enterprises and governmental institutions. Machines, sensors, and
actuators can communicate and process data to enable a more efficient produc-
tion cycle. The Industrial Revolution and the increased proliferation of data by
IoTs provoked the incorporation of offloading schemes to help ease the burden
upon the IoT devices which suffer from limited computation ability and power
supply.

In this thesis we have proposed an opportunistic vehicle based computing frame-
work for IoT offloading. A framework that defines the means of communication
between IoT and a mobile vehicular node in a heterogeneous environment, which
allows the IoT to offload computation to a nearby vehicle and retrieve the result
back. In our approach IoT devices are able to directly communicate with vehicles
and utilize their idle resources, this allows the auto-arrangement of IoT devices
as clusters and proposed a selection strategy that depends on the SINR and the
time needed for offloading data and retrieving the results. Also, we incorporate
the decentralization of decision making instead of assigning a device the role of
a coordinator and overwhelming it

.

The existence of traditional offloading paradigms (cloud - fog) which suffer from
latency and high installation cost motivated the transition to a new paradigm
which is mobile computing clouds which can be opportunistically utilizes MCNs
to service some tasks from close by IoTs. MCNs which in most cases are public
vehicles roaming around the city.

Our proposed framework presents a reliable and a sustainable replacement to
traditional paradigm and the surveyed related work. The selection mechanism
studied in this work along with the framework that is put in place shows promis-
ing results in terms of usability. This framework is adaptable and can be used for
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different systems not necessarily RSUs but also can be used by other stationary
fog nodes to share the load.

In the meantime, our future work will focus on enhancing the RSU forwarding
mechanism which will be based on machine learning models that will be gathered
by the RSUs from their environment. Moreover, we will work on applying new
scheduling mechanisms at the MCN as suggested in [63, 64]. Finally, implement-
ing the framework on real life test beds to assess the how it will perform in real
life.
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Appendix A

Abbreviations

5G Fifth Generation
D2D Device-to-Device
DAG Directed Acyclic Graph
DSRC Dedicated Short Range Communication
GCC GNU Compiler Collection
GPS Global Positioning System
IoT Internet of Things
LCB Local Community Broker
LR-WPAN Low-Rate Wireless Personal Area Networks
LTE Long Term Evolution
MCN Mobile Computing Node
MTU Maximum Transmission Unit
NS-3 Network Simulator 3
OBU On-Board Unit
RSU Road Side Unit
SINR Signal Interference Noise Ratio
SUMO Simulation of Urban MObility
TOC Time Of Connection
TPM Trusted Platform Module
TTP Trusted Third Party Units
VANET Vehicular Ad Hoc Network
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
WPAN Wireless Personal Area Network
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