
AMERICAN UNIVERSITY OF BEIRUT

Map to Map: From SLAM to CAD Maps and
Back Using Generative Models

by

Rema George Daher

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Mechanical Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
December 2020

AMERICAN UNIVERSITY OF BEIRUT

Map to Map: From SLAM to CAD Maps and
Back Using Generative Models

by

Rema George Daher

Approved by:

Dr. Daniel Asmar, Associate Professor Advisor

Mechanical Engineering

Dr. Imad Elhajj, Professor Member of Committee

Electrical and Computer Engineering

Dr. Elie Shammas, Associate Professor Member of Committee

Mechanical Engineering

Date of thesis defense: December 15, 2020

Imad
Pencil

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

⌥⌃ ⌅⇧ ⌥⌃ ⌅⇧ ⌥⌃ ⌅⇧Master’s Thesis Master’s Project Doctoral Dissertation

x I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.

Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

Daher Rema George

x

18-Dec-2020

Acknowledgements

I would like to acknowledge the support given by the University Research
Board at the American University of Beirut. I would also like to thank Theodor
Chakhachiro for his unwavering assistance in the brainstorming, implementation,
and written part of this thesis.

v

Contents

Acknowledgements v

1 Introduction 1

2 Related Work 3
2.1 Parametric Modeling . 3
2.2 Machine Learning . 5

3 Proposed System 7
3.1 Machine Learning . 7
3.2 Parametric Modelling . 9

3.2.1 Exteroceptive Error Model 11
3.2.2 Proprioceptive Error Model 13

4 Experiments 20
4.1 Data Generation . 20
4.2 Training . 25

5 Results and Discussion 27
5.1 Machine learning . 27
5.2 Parametric Modelling . 49

A 55

vi

List of Figures

2.1 Color oriented image to image applications [1] 6
2.2 Anime to clothing application . 6

3.1 Architecture of anime2clothing [2] includes a U-net structured gen-
erator G, a real/fake discriminator, and a domain discriminator.
The real/fake discriminator takes as input either the real output
from the dataset, the fake output generated from the generator,
or another output from a different instance of the dataset (falsely
associated). The domain discriminator also does this selection but
checks if it is associated with the input to the generator. The
domain discriminator is responsible for checking if the images are
associated or not . 8

3.2 Flowchart of the parametric modelling 10
3.3 An example of a probabilistic road map (Blue) with a specified

trajectory (Orange) . 11

4.1 An example of a 3D world environment in Gazebo 21
4.2 The figure on the right is from the HouseExpo dataset. To the

right an example of a generated SLAM map 22
4.3 Results of the generated SLAM maps when the machine learning

model was trained on partial maps 24
4.4 The training overview . 26

5.1 The generator (G) and discriminator (D) losses for ModelAB . . . 28
5.2 The generator (G) and discriminator (D) losses for ModelBA . . . 28
5.3 Test results of ModelAB . 30
5.4 Test results of ModelBA . 31
5.5 Test results of ModelBA . 32
5.6 Test results of ModelBA . 33
5.7 Test results of ModelBA . 34
5.8 Test results of ModelBA . 35
5.9 The flowchart of the error calculation process adopted from [3] . . 37
5.10 The evaluation of the simulated SLAM map against the target

CAD map . 42

vii

5.11 The evaluation of the generated CAD map from the machine learn-
ing method as compared to the target CAD map 47

5.12 The box plot visualization of the errors in Table 5.3 49
5.13 Comparing odometry to map conversion methods using using par-

tial mapping . 50
5.14 Comparing Machine Learning to Parametric modelling approaches

using mapping of the complete floor 54
5.15 An example of an CAD map with a specific trajectory (left), the

displacement field (middle), and its corresponding deformed image
(right) . 54

List of Tables

5.1 The batch size mapping according to the current resolution 27
5.2 The epoch to current resolution mapping 28
5.3 Evaluation results of the structure and area of the maps generated

by ModeBA using the evaluation method of [3]. Here, Error(sim)
refers to the evaluation result of the simulated SLAM map with
the CAD map. Moreover, Error(gen) refers to the error between
the machine learning generated SLAM map and its corresponding
CAD map.
48

5.4 Time taken in seconds by the parametric modelling with different
conversion of odometry to map error methods
51

ix

Chapter 1

Introduction

SLAM research is embarking on a new path, where focus is directed towards im-
proving SLAM map quality and visual aesthetics. This new interest of improving
maps is due to their various applications in localization and beyond. These ap-
plications can be found in many fields such as data science, navigation, search
and rescue, architecture, intelligent transportation systems, and AR/VR. In this
work, a framework will be introduced that automatically generates SLAM maps
and another that automatically removes deformations and errors in these maps
and generates an improved version.

Direct conversion from CAD maps to robotic maps can act as a faster and
more efficient alternative to real time simulations. In robotics, simulations of
SLAM maps are needed for research and experimentation on real-time naviga-
tion of an explored space, such as in search and rescue [4]. In addition, SLAM
simulations are used in employee field training for controlling a robot remotely
and map merging in multi robot tasks of known relative locations. Furthermore,
these simulations can be used to create datasets for implementing various machine
learning SLAM tasks.

In this thesis, we will be utilizing two generative modelling methods, paramet-
ric modelling and machine learning. The use of parametric modeling for SLAM
map generation allows for a quantitative understanding of the distortions through
the automatic generation of local deformation fields. This can be used to create
ground truth for evaluating the performance of map alignment techniques as was
done in our previous study [5]. However, in the previous work, the ground truth
was generated in a more heuristic manner, leaving the ground truth metric less
accurate than the one generated in this thesis. In addition, through paramet-
ric modelling, multiple possibilities of SLAM maps from one CAD map can be
generated using a user defined trajectory. On the contrary, the learning based
approach does not take the trajectory into consideration and output one possible
hypothesis of the SLAM map without a specific robot trajectory. However, the
learning technique allows for a deeper understanding and modeling of the effect
of the environment shape on the output error.

1

In this work, machine learning is also used for the enhancement of SLAM
maps to resemble CAD maps. This would be needed in any SLAM application to
be able to correct the map after or during its generation. Improving the accuracy
of the map would theoretically in turn improve localization and path planning.

The contributions of this work are:

• Creation of a dataset with SLAM maps and corresponding CAD maps

• Automatically transforming an CAD map into a SLAM map and a defor-
mation field from a user defined trajectory using Parametric Modelling.
This system adopts various literature models and molds them to be applied
for map deformations

• Automatically generating SLAM maps from CAD maps using machine
learning

• Automatically generating maps resembling CAD maps from SLAM maps
using machine learning. This can be thought of as an ”auto-correct” for
SLAM maps.

2

Chapter 2

Related Work

Performing tasks that rely on preexisting robotic maps uses offline robot simu-
lators. There exists a variety of robotic simulators for all sorts of applications.
In the case of mobile robotics, simulators such as Gazebo [6] and Stage [7] are
used. These particular simulators are available as standalone and as an inte-
grated package with the robotic operating system (ROS). Simulators are used for
tasks such as testing algorithms, performing experiments, and designing robots
[8]. They offer an accurate and efficient way for research tasks without the need
for physically operated robots nor an appropriate indoor/outdoor space to move.
This makes it possible to advance in research in a more cost effective way.

The downside of simulators is that they are in need of high memory usage and
processing power to be able to run a simulation smoothly. Another inconvenience
is the need to actually wait for the simulation to happen in real time. What if
we can get the output needed from the simulation without waiting for the robot
to perform its task in real time and using very low processing powers?

This work will be focusing on an alternative for robotic simulators in the
applications that need prior robotic maps. Such applications include navigation
experiments, employee field training, and video-gaming. The point of this alter-
native is to be able to automatically generate a robotic map with no need for
high performance graphics or processor and most importantly without the need
to wait for the task to complete in real time. To do so, there are two ways to
proceed, either formulate a parametric model or use machine learning. In this
work, both options will be developed.

2.1 Parametric Modeling

The first goal of this thesis is to automatically generate a robotic map without
simulators using only CAD maps. To do so parametrically, the modeling of SLAM
error sources becomes of prime interest. In the literature, this is mainly done for
calibration. In this review, an overview will be made on modelling methods

3

for calibration of exteroceptive and proprioceptive (2D LIDAR and odometry)
sensors, which are the sensors that are used in this thesis to generate SLAM
maps. The review will focus on calibration methods for differential drive robot,
since this work’s simulated SLAM maps are created using Turtlebot3, which is a
differential drive robot.

Starting with LIDAR error modelling, some papers focus on 3D LIDAR mod-
elling [9] and on modeling LIDAR in an airborne system [10]. However, in this
work, 2D ground LIDARs are used. Furthermore, some papers use a stochas-
tic experimental approach [11] or a Kalman filter approach [12] for calibration.
These kind of approaches make the LIDAR error modeling less parametric in na-
ture with the usage of general parameters. That is why, in this thesis, the work
of [13] will be adopted, which formulates a model for LIDAR sensors with errors
of different sources and contributions.

As for odometry, this work will focus on wheel encoders as the main source of
odometry data. [14] presents a literature review on calibration methods for odom-
etry sensors. Calibration papers differ in three aspects, calibration technique and
test path, error sources considered, and the simulations and experiments per-
formed along with their performance. In this work, the purpose of researching
calibration methods is to model the sensor errors as opposed to calibrating them,
which makes the calibration technique and test path not of prime interest. This
is why, the review will focus mainly on error sources used and the performance
of the methods.

First, the error sources considered will be assessed. [15, 16, 17, 18, 19, 20]
included in their formulations uncertainties of the wheelbase and the wheel diam-
eters of the robot. Moreover, [15] didn’t include scaling error of actual average to
nominal wheel diameter and assumed independence between wheelbase errors and
wheel radius errors. In [16] the effect of non-systematic errors on the calibration
is decreased by having the test path as a parameter. As for [18], a dependency be-
tween wheel base and wheel radius errors was introduced; however, only straight
motion was included and some trigonometric simplifications were assumed as was
also done in [15]. On the contrary, [19, 20] did not have a need for trigonometric
considerations due to the use of final robot orientation. Furthermore, [17] took
into consideration scaling, wheel diameters, and wheelbase errors.

Other methods rely on a more general modelling of the system making them
of less importance to the case at hand; in this thesis, the parametric modelling
of all possible error sources is of great importance. Such methods include op-
timization and Kalman filter based methods [21, 22, 23, 24, 25], methods that
don’t identify the contribution of the different sources of error [26, 27, 28], and
methods that generalize the errors by using corrective factors [29]. In this thesis,
the methods with most detailed parametric modelling will be chosen. The search
is now narrowed to [18, 19, 20], which consider a dependency between wheel base
and wheel radius errors and do not have generalizations.

Moving on to simulations and experiments performed and the performance

4

in these systems. First, [19] shows that it is more accurate than [18] in terms of
calibration. Moreover, the system in [20] uses same error equations as [19], but
differs only in path used, which makes both error modelling the same. This is
why, in this thesis the odometry error modelling will rely on [20, 19].

It is also worth mentioning that calibration and modeling sensor errors has
also been done using machine learning. For example, [30] estimates odometry
error using neural networks. However, in this work we will be using machine
learning to directly generate a SLAM map from an CAD map.

2.2 Machine Learning

The use of deep learning in mobile robotics has been on the rise in recent literature
[31, 32]. Machine learning has been utilized in SLAM for detecting features
[33], simplifying maps through object detection [34], predicting shape of these
objects (shape completion) [35], and predicting objects that should be used for
localization and those that shouldn’t (dynamic objects) [36]. It has also been
used for understanding scenes through labeling and obtaining graph maps [37],
estimating visual odometry (localization) [38], predicting monocular depth [39],
predicting dense optical flow [40], and predicting loop closure [41]. An example
of a SLAM system that uses deep learning throughout its processes (loop closure,
tracking, 3D reconstruction) is DeepSLAM [42].

Specifically, this thesis will contribute to improving SLAM maps and through
that open the door to the enhancement of localization and navigation after a bet-
ter map estimation is made. This is achieved by automatically fixing SLAM maps
using a machine learning model trained to generate maps resembling CAD maps
from SLAM maps. To do so, a literature review on image to image translation
in machine learning is in order.

Image to image translation methods can be divided into those that train on
paired images and those that don’t. For this application, the dataset generated
is paired, narrowing the literature review to only paired training image to image
translation methods. Specifically, the input and target images are both 2D oc-
cupancy grid maps, which means that in the image translation there is no color
change. Color change is usually present in applications such as summer to winter,
horse to zebra, labels to street scene, black and white to color, labels to facade,
aerial to map, day to night, and edges to photo as shown in Fig. 2.1 used in
pix2pix [1].

In the application carried out in this thesis — generating maps resembling
CAD maps from SLAM maps — the main transformation that is being made
between input and target is piece-wise deformations. One similar application is
handwritten digits to printed digits [43]. However, the difference is that there
are only 10 digits that need to be learnt, making the architecture much simpler,
a classifier outputting a vector of length 10 and not an image. Another appli-

5

Figure 2.1: Color oriented image to image applications [1]

cation is rectifying fingerprints [44]. This technique needs the dataset to have
the displacement field, which is not available in our dataset, since it is generated
through real time experiments in simulators. Moreover, geometrically rectifying
digital imagery is also similar, but digital imagery deformation is very simplistic
and lacks local distortions and noise, which results in a simpler architecture than
needed [45, 46].

On the contrary, the complexity of translating an anime image to real life
clothing is appropriate to the application of this thesis [2]. In the translation of
[2] colors mainly stay the same and local and global deformations are present as
shown in Fig. 2.2. There might be a better application out there that is closer
to the task at hand, but to the best of our knowledge this is the closest. The
state of the art in anime to clothing is [2], which builds its network on the most
widely used architecture in image to image translation pix2pix [1], but with a
novel consistency loss.

Figure 2.2: Anime to clothing application

6

Chapter 3

Proposed System

The proposed system is divided into two sections. One section describes the
Machine learning approach to model SLAM maps and fix them. The second
describes the parametric modelling and generation of SLAM maps.

3.1 Machine Learning

The architecture used in this system is that of anime2clothing [2] shown in Fig.
3.1.

Anime2clothing relies on a GAN architecture. GANs are neural networks
that are made up of two sub-models, the generator and the discriminator. The
generator model learns to generate new data, while the discriminator classifies
them as real or fake. To classify the output as real they have to be close to
the input data (closeness is measured using a loss function). Otherwise, they
are classified as fake or generated. Therefore, it can be said that these two sub
models compete against each other to finally reach an optimal state were the
output is new (generator role) but doesn’t look fake (discriminator role) [47].

The anime2clothing GAN architecture in Fig. 3.1 is made up of a generator
G — with a U-net structure [48] —, a traditional real/fake discriminator, and an
additional domain discriminator Dd. The domain discriminator has a multi-scale
architecture [49], which handles high-quality images. The multi-scale architec-
ture uses multi discriminators, Dd1, Dd2, Dd3, which are similar except for the
difference of image scales.

Spectral normalization [50] is also applied on the discriminators following
the Lipschitz constraint. In addition, instances were augmented by adding false
targets such as in [51]. False targets are simply targets paired with different
inputs. The domain discriminator Dd is responsible for checking if the images are
associated or not. On the contrary, the real/fake discriminator [51] DR handles
the quality of the image. Specifically, it is a multi-scale patch discriminator that
can receive high-quality images and consists of discriminator Dr1, Dr2, andDr3.

7

Figure 3.1: Architecture of anime2clothing [2] includes a U-net structured gen-
erator G, a real/fake discriminator, and a domain discriminator. The real/fake
discriminator takes as input either the real output from the dataset, the fake
output generated from the generator, or another output from a different instance
of the dataset (falsely associated). The domain discriminator also does this se-
lection but checks if it is associated with the input to the generator. The domain
discriminator is responsible for checking if the images are associated or not

Using multiple patches allows for the modelling of the small and large scale shapes
in the image. Finally, spectral normalization is also added to Dr.

Consequently, the structure of this network transforms the input image to the
target image by relying on a minimax game [52]

min
X

max
Y

f (3.1)

which is a combination of the input consistency loss, the feature matching loss,
and the GAN objectives:

min
G

(max
Dd,Dr

(
3∑

k=1

LGANdomain(G,Ddk) +
3∑

k=1

LGANreal/fake(G,Drk))

+
3∑

k=1

LFMdomain
(G,Ddk) +

3∑

k=1

Linputreal/fake(G,Drk) + λLL1(G))

(3.2)

8

where λ is the importance weight and L are the objective functions such that:

LGANdomain(G,Dd) = E(x,y)[log(Dd(x, y))] + Ex[log(1−Dd(x,G(x)))] (3.3)

LGANreal/fake(G,Dr) = Ey[log(Dr(y))] + Ex[log(1−Dr(G(x)))] (3.4)

LFMdomain
(G,Dd) = E(x,y)

T∑

i=1

Ni[||D(i)
d (x, y)−D(i)

d (x,G(x))||1] (3.5)

Linputreal/fake(G,Dr) = Ex
T∑

i=1

Ni[||D(i)
r (y)−D(i)

r (G(x))||1] (3.6)

LL1(G) = E(x,y)[||y −G(x)||1] (3.7)

From these objective functions, the LGANreal/fake is the traditional GAN ob-
jective function. LGANdomain is also a minimax game for image associations using
augmented unassociated data. In addition, the feature matching loss, LFMdomain

,
has the aim of generating an image closer to a corresponding real one, it is com-
puted as the L1 loss between outputs of the intermediate layers of the domain
discriminator. Furthermore, the input Consistency loss Linputreal/fake , maintains
shape and color, it is computed as the L1 loss between outputs of the intermediate
layers of the real/fake discriminator. Moreover, the L1 loss, LL1 , maintains shape
and color. Here, x and y are the input and output image respectively and T is
the number of layers in the discriminator. Finally, Ni is the number of elements
in each layer and D(i) is the ith layer of the discriminator.

Using a coarse-to-fine scheme [53], the generator and discriminators progres-
sively grow by increasing systematically the resolution of the input image depend-
ing of the current number of epochs reached. This way, any gradient problems
from high resolution images are alleviated, and the computation period is short-
ened. This model is denoted as Modelprog.

In this thesis, another model is created without progression of image resolution
Model32. This model trains the images at 32 resolution to capture only the global
structure of the input image and not the details. After that, the output images
are post-processed to increase their resolution and reduce blurriness.

3.2 Parametric Modelling

For the parametric modelling, the user defines a trajectory first. Then, the ex-
teroceptive and proprioceptive error models are implemented with the use of the
trajectory, CAD map, and the original pixel locations. The proprioceptive error
model is later converted to a map specific error. The deformation fields, two
matrices of pixel-wise location displacements in the x and y directions (dx, dy),
from both proprioceptive and exteroceptive models are added up to generate the
modelled SLAM map. This process is shown in Fig. 3.2. The contribution in
this system is the use of the various equations from the different literature and

9

apply them to model the deformations of the map instead of the deformations in
the trajectory.

Proprioceptive
error modelling

Exteroceptive
error modelling

Conversion to
map specific

errors

Proprioceptive
deformation

field

Exteroceptive
deformation

field

Generated
SLAM map

Original pixel
locations

Final
deformation

field

User defined
trajectory

 dx dy

Figure 3.2: Flowchart of the parametric modelling

First, a probabilistic road map, which is a graph showing all possible trajec-
tories in an occupancy grid map — the input 2D CAD map — is generated. An
example of such a road map can be seen in Fig. 3.3 in blue. This is done using
the method described in [54] for randomly placed nodes in the unoccupied space
of the map. From this graph a path is chosen between two random points (or
user defined path). An example of such a path is shown in red in Fig. 3.3. The
orientation, velocity, and acceleration are then calculated using waypoints and
time of arrival information.

10

Figure 3.3: An example of a probabilistic road map (Blue) with a specified tra-
jectory (Orange)

3.2.1 Exteroceptive Error Model

The exteroceptive sensor (2D LIDAR) error is modelled by first defining the
landmark coordinates detected by the LIDAR using the following form:

XL =

[
Xl

Yl

]
−D

[
cosα
sinα

]
(3.8)

where, D is the LIDAR measured slant range in meters, which is randomly as-
signed to every pixel in the image. Furthermore, α is the horizontal angle, which
is assigned randomly to each pixel. D and α values are then smoothed using a
median filter, which helps in giving neighboring pixels similar range and angle
readings. However, D and α are both subject to errors. The error term for D is:

∆D = a0 + a1D (3.9)

∆α = b1α + b2sinα + b3cosα + b4sin2α + b4cos2α + b6D
−1 (3.10)

11

here, a0 represents the measured origin’s shift and a1 represents the effect of
counter frequency deviations as a scale error. In addition, b1 is the scale error
from the encoder, b2 and b3 depict the horizontal eccentricity, b4 and b5 represent
the non-orthogonality, and b6 models the collimation axis eccentricity. Given the
values calculated in [13], we can impose a bound on these parameters.

The deformation field (dxhit, dyhit) due to the latter error formulation becomes:

dxhit = pm(Dcos(α)− (D −∆D)cos(α−∆α)) (3.11)

dyhit = pm(Dsin(α)− (D −∆D)sin(α−∆α)) (3.12)

Here, pm is how many pixels there are per 1 meter in the images portraying the
maps. The error formulated above can be considered as small measurement noise.
However, it is shown in [55] that three other errors remain, which are errors due to
random unexplained noise Erand, unexpected dynamic objects Eshort, and failures
to detect objects Emax. The probability distributions of such measurements is:

Pshort =

{
1

1−e−λz
t∗
k
λe−λz

t
k if 0 ≤ ztk ≤ zt∗k

0 otherwise
(3.13)

Pmax =

{
1 if ztk = ztkmax
0 otherwise

(3.14)

Prand =

{
1/ztkmax if 0 ≤ ztk ≤ ztkmax

0 otherwise
(3.15)

λ is an intrinsic parameter by which the exponential curve’s slope is obtained
(λ = 0.5 [56]). Pshort is assigned to have a random value for every landmark. zt∗k
is the true object range, and is assigned the values of D. From Pshort we calculate
ztk and Eshort:

ztk =
−log(Pshort(1−e

−λzt∗k)
λ

)

λ
(3.16)

Eshort = zt∗k − ztk (3.17)

dxshort = pm(Dcos(α)− Eshortcos(α−∆α)) (3.18)

dyshort = pm(Dsin(α)− Eshortsin(α−∆α)) (3.19)

From the calculated ztk, Pmax and Prand are also calculated from equations
3.14 and 3.15. With Ranerr and Maxerr assigned a random error between an
experimentally calculated range, it follows that:

12

ztkmax = max(ztk) (3.20)

Emax =

{
MaxerrPmax if ztk = ztkmax

0 otherwise
(3.21)

dxmax = pm(Dcos(α)− Emaxcos(α−∆α)) (3.22)

dymax = pm(Dsin(α)− Emaxsin(α−∆α)) (3.23)

Erand =

{
RanerrPrand if 0 <= ztk < ztkmax

0 otherwise
(3.24)

dxrand = pm(Dcos(α)− Erandcos(α−∆α)) (3.25)

dyrand = pm(Dsin(α)− Erandsin(α−∆α)) (3.26)

Finally, the final displacement field becomes:

dxL = Zhitdxhit + Zshortdxshort + Zmaxdxmax + Zranddxrand (3.27)

dyL = Zhitdyhit + Zshortdyshort + Zmaxdymax + Zranddyrand (3.28)

Zhit, Zshort, Zmax, Zrand are the relative error weights and are equal to (0.4, 0.3,
0.2, 0.1), respectively [56]. Moreover, the recalculated measure of ztk and α, zmeas
and αmeas becomes:

zmeas = D − dxL/cos(α−∆α) (3.29)

αmeas = α−∆α (3.30)

3.2.2 Proprioceptive Error Model

As for the proprioceptive (odometry) error modelling, from the trajectory the
nominal (without error) positions xnom, ynom are extracted. In addition, angle of
rotation of the wheels γ, incremental displacement of the robot ∆dRnom,∆dLnom,
and distance traveled for every straight line in trajectory L are also calculated
from the trajectory data. From the selected robot (Turtlebot3), the nominal
wheelbase bnom and the diameter of the right and left wheels are givenDRnom, DLnom.
Da is the average wheel diameter and is assumed to be constant. Furthermore,
Eb and Ed are the wheelbase and diameter error parameters, respectively. More-
over, ∆θ and ∆d are the heading angle and displacement, respectively, between
successive poses. R is the radius of the curvature made by the trajectory due to
various error sources. From [20, 19] the values of αEb , αEd , β are assigned their
experimental standard deviation. The parameters described can be modelled as
follows:

13

Eb =
90

90− (αEb + αEd)
(3.31)

bactual = Ebbnominal (3.32)

R =
L/2

sin(β/2)
(3.33)

Ed = DRact/DRact =
R + bactual

2

R− bactual
2

(3.34)

Da = (DRnom +DLnom)/2 (3.35)

From equations of Da and Ed:

DLact =
2

Ed + 1
Da (3.36)

DRact =
2

(1/Ed) + 1
Da (3.37)

∆dRact = γDRact (3.38)

∆dLact = γDLact (3.39)

∆dact =
∆dRact + ∆dLact

2
(3.40)

∆θact =
∆dRact −∆dLact

bactual
(3.41)

∆xact = ∆dactcos(θk−1 + ∆θact/2) (3.42)

∆yact = ∆dactsin(θk−1 + ∆θact/2) (3.43)

The same is derived for the nominal counterparts

∆dnom =
∆dRnom + ∆dLnom

2
(3.44)

∆θnom =
∆dRnom −∆dLnom

bnominal
(3.45)

∆xnom = ∆dnomcos(θk−1 + ∆θnom/2) (3.46)

∆ynom = ∆dnomsin(θk−1 + ∆θnom/2) (3.47)

In order to get the effect of the odometry error on the map, the covariance
matrix has to be generated. The covariance terms are nothing but the error for its
respective parameter. The error associated with x is the only one with a detailed

14

derivation. The other error terms are generated in a similar manner:

σx = ∆xnom −∆xact (3.48)

σy = ∆ynom −∆yact (3.49)

σθ = ∆θnom −∆θact (3.50)

σxy = ∆xynom −∆xyact (3.51)

σxθ = ∆xθnom −∆xθact (3.52)

σyθ = ∆yθnom −∆yθact (3.53)

Conversion to Map Specific Error

For the conversion of the odometry error to its effect on the map, the extended
Kalman filter (EKF) SLAM equations are used [57]. However, it was calculated
that using these equations may render the system time consuming and not advan-
tageous over simulations. This is due to the use of the inverse of the covariance
matrix that nonlinearly increases in size as the robot moves. That is why another
method proposed in [58] was also used and later compared with the EKF method.

• EKF Method

The EKF method makes use of the matrix A, which is defined as the Jaco-
bian of the prediction model, and Jxr and Jz, the SLAM specific Jacobians.
∆t is the change in thrust and R and Q are the range measurement and
process Gaussian noise, respectively. Also, x, y, θ denote the position and
orientation of the robot as measured by odometry. In addition, X is defined
as the state vector made up of x, y, θ and landmark poses λx, λy. With that
in mind, the following holds:

∆θ = σθ (3.54)

∆thrust = σy/sin(θ) (3.55)

∆x = ∆thrust× sin(θ) (3.56)

∆y = ∆thrust× cos(θ) (3.57)

Initially, the covariance matrix P includes only the robot covariance matrix
P rr:

P =

σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ

 (3.58)

P rr = P (3.59)

Later, the covariance matrix P will be augmented to include robot to land-
mark cross covariance matrices for every landmark P ri of size (2x3). these
matrices are concatenated in the first 3 columns. Symmetrically, P ir of size

15

(3x2) are situated in the first 3 rows. As for the diagonal, the landmark
covariance matrices P ii of size (2x2) are concatenated. In the remaining
spots of the matrix P , the cross covariances between different landmarks
are added.

– Step 1: Update robot state r. Each landmark instance is represented
by i. The symbol P rr is the top left 3x3 matrix of state covariance
matrix P .

A =

1 0 −∆x
0 1 ∆y
0 0 1

 (3.60)

Q =

σ2
x σxy σxθ

σxy σ2
y σyθ

σxθ σyθ σ2
θ

 (3.61)

P rr = AP rrA+Q (3.62)

P ri = AP ri (3.63)

– Step 2: For every reobserved landmark, the Kalman Gain K is calcu-
lated and the state vector X is updated. To do so, the following is
also updated:

r = zmeas (3.64)

δ = αmeas (3.65)

z = (r, δ) (3.66)

c = a1 (3.67)

d = b1 (3.68)

R =

[
rc 0
0 δd

]
(3.69)

In addition, the change in range and bearing are reflected in the Ja-
cobian of the measurement model H ∈ R2×(3+2k), where k is the total
number of observed landmarks. The first three columns of H are up-
dated for each robot pose as follows:

H2×3 =

[
(x− λx) (y − λy) 0
(λy − y) (λx − x) −1

]
(3.70)

16

Also for each reobserved landmark, the H matrix is updated in the
following manner, where Hk denotes the kth 2×2 matrix corresponding
to the reobserved landmark:

Hk = −H2×2 (3.71)

It is worth noting that at each iteration over the number of reobserved
landmarks, only the kth term is updated while the other k − 1, 2× 2
sub-matrices in H are set to zero.

K = PHT (HPHT +R)−1 (3.72)

X = X +K(z − h) (3.73)

where z and h are the range and bearing of the LIDAR and odometry
measurement, respectively.

– Step 3: Add new landmarks to the current state and update the covari-
ance to include the new landmark matrices. Here N+1 is used instead
of i to denote that there is a new landmark, which would increase the
matrix size by 1 with the following updated:

Jxr =

[
1 0 −∆x
0 1 ∆y

]
(3.74)

Jz =

[
cos(θ + ∆θ) −∆tsin(θ + ∆θ)
sin(θ + ∆θ) ∆tcos(θ + ∆θ)

]
(3.75)

PN+1N+1 = JxrPJ
T
xr + JzRJ

T
z (3.76)

Robot – landmark covariance

P rN+1 = P rrJTxr (3.77)

PN+1r = (P rN+1)T (3.78)

Landmark – landmark covariance

PN+1i = Jxr(P
ri)T (3.79)

P iN+1 = (PN+1i)T (3.80)

Finally, the difference betwen the original and final state of each observed
pixel is saved in a matrix form as (dxO, dyO), which is the odometry induced
map deformation field.

17

• Method of [58]

As for the method proposed in [58], using experimental data collected in
several samples, the linear and angular odometry errors are calculated using
the following equations:

Elin(∆l) = 0.09∆l + σ (3.81)

Eang(∆θ) = 0.095∆θ + α (3.82)

where ∆l = σp = σx/cos(σθ); and ∆θ = σθ are the odometry estimated
linear and angular displacements respectively. σ = mean(σp) is the average
linear error from rotation, and α = mean(σθ) the average angular error
caused by a linear movement.

Then, at every robot pose a mask is created of the location of the pixels in
the field of view of the robot.

σmz = zmeas(mask)× η + Elin(∆l) +N (0, εlin) (3.83)

σmθ = β/2 + Eang(∆θ) +N (0, εang) (3.84)

where σmz and σmθ are the map errors affected by LIDAR and odometry
measurements. In addition, zmeas is the LIDAR measurements θ, respec-
tively. η is an error factor of exteroceptive sensors typically about 1% and
β is the laser beam’s aperture angle. As for the normally distributed noise
with variances εang and εang, it will be assumed to be zero. That is because
they have already been included in the LIDAR modelling part.

For every reobserved landmark in iterative poses, the map error is added to
generate the deformation fields of the observed pixels in the map dxO and
dyO, such that:

σmx = σmzcos(σmθ) (3.85)

σmy = σmzsin(σmθ) (3.86)

dmx = σmx (3.87)

dmy = σmy (3.88)

dxO(mask) = dxO(mask) + dmx (3.89)

dyO(mask) = dyO(mask) + dmy (3.90)

The addition in equations 3.89 and 3.90 is considered an approximation.
This is opposed to the detailed modeling of the effect of reobserved land-
marks on the error in the EKF method. The EKF method includes the

18

effect of reobserving landmarks in its covariance matrix with its landmark
to landmark and landmark to robot cross relations.

This method has a more general and less accurate parametric solution for
the conversion than the EKF method. However, the EKF method uses
SLAM equations and might take a long time since similar equations are used
in simulations and that is what this work is trying to give an alternative
to.

The deformation fields (dxL, dyL) and (dxO, dyO) are then added to form (dx, dy)
which is used to deform the map accordingly.

19

Chapter 4

Experiments

For all simulations Gazebo and Turtlebot3 Waffle Pi robot were used with LDS-
01 LIDAR, which is a 2D laser scanner capable of sensing 360 degrees of data
to use for SLAM. However, for the purpose of showing more deformations in the
maps we limited the sensing range to 180 degrees. To elaborate, with a limited
field of view the observed features are limited and reobserving them is delayed
until a large loop is closed and with a higher feature count the state estimation
has a reduced error bound.

For the parametric modelling, Matlab [59] was used on a Toshiba Satellite
Laptop with an Intel core i7-5500U CPU with 2.40GHz and 8GB RAM. As for
the machine learning method, the training was done on Nvidia V100 PCI-E GPU
with 128GB RAM for ModelAB and 15GB RAM with ModelBA, which used half
the batch rate.

For the machine learning method, the data was first generated and cleaned.
Later the models were trained using two different techniques.

4.1 Data Generation

The data generation for machine learning relies on the HouseExpo dataset CAD
maps (35,000 maps) provided by [60]. These maps were converted into 3D envi-
ronments as shown in Fig. 4.1. This was done using stl tools [61]. After the STL
files are generated, model and world files (files read by Gazebo) are automati-
cally created with predetermined 3D environment variables. The whole process
of 3D environment generation needed high memory to handle the 3D files. The
platform used for the data generation was the American University of Beirut’s
(AUB) HPC cluster was used with AMD EPYC™ 7551P vCPU that has a maxi-
mum boost clock of up to 3.0GHz and 64GB RAM, 30GB of which were used to
run the task at hand.

After generating the world files that are compatible with Gazebo, the same
vCPU specifications are used to run parallel batch scripts for robotic exploration.

20

Figure 4.1: An example of a 3D world environment in Gazebo

These batch scripts contain code that performs an automatic robotic exploration
of the generated world files in Gazebo and saves the resulting map. The script
included launching Turtlebot3 with the world file in Gazebo, Gmapping SLAM
for Turtlebot3, exploration from Explore Lite package [62], and saving the map
with Map Server [63].

For every 3D environment, 7 minutes were allocated for the exploration. There
are 35,000 maps, 7 minutes allocated time for each map, 1 day limit for each node,
and an average of 10 job scripts running at the same time depending on other users
and the queue position. Knowing that, 166 parallel scripts were run on different
nodes making the total run time of generating SLAM maps approximately 17
days. An example of the generated maps is shown in Fig. 4.2.

Due to the constraint random movements applied in the map exploration
stage, the SLAM maps generated do not have the same robot trajectory. That is
why, when training the network to generate a SLAM map, it would be generating

21

Figure 4.2: The figure on the right is from the HouseExpo dataset. To the right
an example of a generated SLAM map

only ”one possible hypothesis” of a SLAM map. Keeping this in mind, the model
would be learning the effect of the shape of the CAD map on the output of the
SLAM system.

At this point, the generated SLAM maps with their CAD map counterparts
are in the form of images, which constitute the dataset for the training. However,
before training the images were processed by:

• squaring and resizing to 256x256 resolution to achieve uniformity in the
dataset size.

• changing the pixel values of the CAD maps to those used in the SLAM
maps to avoid color differences between the input and output of the model;
only deformation changes are of importance in this work.

• thickening the occupied edges of the CAD maps, since thick walls make
it harder to lose data with a progressive architecture in terms of image
resolution.

• removal of maps where the robot got stuck and no explorations were made,
since getting stuck is not part of what is being modeled in this work. This

22

was done in 2 steps. The first step included an automatic deletion of gen-
erated maps that had a high black to white pixel count (occupied to unoc-
cupied), which indicates that the robot got stuck at the beginning of the
exploration near a wall. Whereas, if the exploration went smoothly, the
black pixels (occupied), being mostly walls, are much less in count than the
white (unoccupied) pixels. The second step included manual cleaning by
visually assessing the maps and removing those where the robot got stuck
and the map was very small compared to the CAD map and had a high
black to white pixel count. After the cleaning, the dataset size became
24,991 instances.

Further cleaning was made to remove partially explored maps after results
showed that the generated maps are not corresponding to the input maps as
shown in Fig. 4.3. To expedite the cleaning process that could have taken up
to 10 days, a small set of 1,468 instances were cleaned manually and 15 specific
features of these images were tabulated including:

• black, grey, and white pixel count of SLAM maps

• black, grey, and white pixel count of CAD maps

• difference in black, grey, and white pixel count between SLAM and CAD
maps

• difference in black to white, grey to white, black to grey pixels ratio between
SLAM and CAD map maps

• difference in number of holes between SLAM and CAD maps calculated
using Moore-Neighbor tracing algorithm [64], which was modified by Jacob
Eliosoff’s stopping criteria [64]

• grey to white neighbor count in SLAM map

• grey to white neighbor count in CAD maps

• difference in grey to white neighbor count between SLAM and CAD maps

• complete or partial

After generating the 1,468 instance dataframe, an Extra Trees classifier [65]
was trained with 11 as the max features and 100 as the number of estimators. All
other parameters were left as default. Then the output with probability of being
a complete image < 0.4 was discarded as partial (18,292 instances), > 0.8 were
complete and there was no need to clean them (1,794 instances), and ≥ 0.4 and
≤ 0.8 were cleaned manually (3,905 instances). This process reduced the dataset
to 4,225 image pairs.

23

Figure 4.3: Results of the generated SLAM maps when the machine learning
model was trained on partial maps

The idea behind cleaning was that this reduction would make the training
more accurate and shorter. One might argue that since the dataset is smaller,
the training results might overfit. However, in many image to image applications,
such a number is sufficient for learning. For example, when pix2pix was trained

24

on Google maps scraped image labelling in their Github repository, only 1,096
images were used [1].

As a final cleaning step, the 2D CAD map images were cropped to have less
grey areas, which make the images easier to visually asses.

As a result, a dataset is obtained and consists of 2D CAD map images denoted
as (A) and 2D SLAM occupancy grid map images denoted as (B). For the training
step, the data was shuffled and split into 4,224 training pairs and 21 testing pairs.

4.2 Training

All training is performed using the Adam optimizer [66] with the initial learning
rate of 0.0002 and with (0.55, 0.99) momentum parameter values. After 70%
of the training epochs are completed, the learning rate starts decaying over the
remaining 30% of the epochs.

The network is first trained on the generating B from A (input A, output B).
In addition, the network is trained in a different direction, where the input is B
and the target is A, making it possible to generate CAD maps from erroneous
SLAM maps. The B to A direction is a way of fixing SLAM map errors; whereas
the A to B direction is a way of modelling SLAM maps.

For the A to B direction ModelAB, Modelprog was used. As for the B to
A direction ModelBA, Model32 was used, since the output that should resemble
CAD maps should inherit only the global shape of the SLAM map B without the
noise and the deformations. In addition, the preprocessing step, which includes
cropping, color jitter, and flipping the dataset to augment it, is removed. This
was done to avoid the deletion of global features from the maps. Finally, to
further emphasize the global features, the occupied edges of the target images
were thickened. The training is shown in Fig. 4.4.

25

Figure 4.4: The training overview

26

Chapter 5

Results and Discussion

5.1 Machine learning

The batch rate used for ModelAB was 1 and for ModelBA was 0.5. The batch size
followed the mapping batch rate ∗ batch mapping, where the mapping is shown
in Table 5.1.

Table 5.1: The batch size mapping according to the current resolution

current resolution batch mapping
4 128
8 64
16 128
32 64
64 32
128 16
256 4

To asses the output, the model losses are first analyzed. As shown in Fig. 5.1
and 5.2, the generator and discriminator losses for both models reach a plateau
at the end, which is the norm for GANs when they have reached an optimal
equilibrium. This is the case since the generator and discriminator work against
each other so as one increases the other decreases.

These losses follow different trends for ModelAB as compared to ModelBA,
since ModelAB follows a progressive resolution change, while ModelBA has a
constant image resolution. In ModelAB, the epoch to current resolution mapping
is tabulated in Table 5.2. This mapping explains the jumps at the epochs where
resolution changes in Fig. 5.1.

From Fig. 5.1 and Table 5.2, we can see that with every shift in resolution (for
example at epoch 22, 37 and 67), the losses of ModelAB make a sharp increase

27

Table 5.2: The epoch to current resolution mapping

current resolution epochs total epochs
32 15 37
64 30 67
128 60 127
256 100 227

Figure 5.1: The generator (G) and discriminator (D) losses for ModelAB

Figure 5.2: The generator (G) and discriminator (D) losses for ModelBA

followed by a slow decrease. Therefore, the losses didn’t converge to low values as
compared to the losses for ModelBA. However, this was beneficial since ModelBA
is generating maps resembling CAD maps that do not have any random defor-
mations but one fixed target output. Therefore, the lower the loss the higher the
accuracy of the output. Whereas, for ModelAB, there are many possible outputs

28

for the SLAM map due to the randomness in the errors. Thus, the generator
losses should not be as low as that of ModelBA.

The test results of ModelAB are shown in Fig. 5.3. Results of Epoch 155 were
chosen because they gave the best results (visually assessed) and because this is
where the plateau of the trend graph starts as shown in Fig. 5.1. The assessment
of the output can only be made visually, since the output and the target will
never be completely the same, but will follow the same error structure. It can be
seen that the output errors are very similar to those of the target.

The similar features include the addition, removal, and deformation of occu-
pied and unoccupied pixels. Specifically, the results mimic the common SLAM
errors of failing to observe walls/obstacles as seen in the generated SLAM Map
4 Fig. 5.3. Another common error is misplacing observed landmarks and saving
them multiple times in the map, which is also modelled in ModelAB as seen in
generated SLAM Map 3 of Fig. 5.3. This is due to the odometry error which
makes the position of the robot with respect to these objects unstable.

Another aspect that contributes to the common SLAM errors is the curving
of straight lines mainly due to angular error and curvature in linear motion.
Such a case is seen very clearly in the results (ex. Map 5 of Fig. 5.3). Finally,
random gaussian errors are also observed in both simulated and generated SLAM
maps. This is due to LIDAR noise and the effect of the motion of the robot
whether static, which can add additional wall thickness, or linear/angular, which
affects the feature matching accuracy. In addition, the results are generated
instantaneously as opposed to the simulated maps that are very time consuming
and use high processing power.

However, there are some features that can still be learnt further. For one,
the shape of the unbounded additional unoccupied (white) pixels occasionally
forms a cloudy shape instead of the simulated scattered geometric shapes. For
instance this can be seen in Map 6 of Fig. 5.3. In addition, the common SLAM
errors mentioned above can be more exaggerated than in the simulated maps.
These few limitations can be improved by increasing the dataset or modifying
the architecture to include manually selected features as an addition to the input
images. Later, a more detailed analysis will be done as a comparison with the
parametric modelling results.

The results for ModelBA are shown in Fig. 5.4, 5.5, 5.6, 5.7, and 5.8. These
results are tested on the model trained till epoch 534, which was chosen by visually
assessing the maps and checking the range where the loss plots start plateauing
as shown in Fig. 5.1.

The area and structure of the map was first evaluated by utilizing the method
proposed in my previous work [3] available in Appendix A. This method relied
on finding the mean square error between corresponding edge points of the two
maps being compared. For the purpose of illustration we will be denoting these
maps with source and destination maps.

To get the correct error, the source map needs to be aligned through rotation,

29

Figure 5.3: Test results of ModelAB

translation, and scale with the target at first. In [3], this similarity transform
was generated by combining an automatic graph based method and a manual an-
choring of the map. However, for the case at hand, we will use manual anchoring
since the automatic similarity alignment method can sometimes give erroneous
results.

30

Figure 5.4: Test results of ModelBA

31

Figure 5.5: Test results of ModelBA

32

Figure 5.6: Test results of ModelBA

33

Figure 5.7: Test results of ModelBA

34

Figure 5.8: Test results of ModelBA

35

The error will be calculated between the edge points of the preliminary aligned
source map and those of the target map. To do so, data association of the edge
points is done. For this step, the maps were first aligned through a graph based
nonlinear optimization method that generates a piecewise affine transformation.
After alignment, correspondences of edge points are extracted through the closest
point method. Now that the correspondences are extracted it is possible to get
the error between the sets of edge points of the target and preliminary source
map. The flowchart of calculating the error is shown in Fig 5.9.

In this thesis, this method was used to evaluate the simulated SLAM map
against the target CAD map shown in Fig. 5.11. In addition, the generated
CAD map from the machine learning method is evaluated with the target CAD
map shown in Fig. 5.10. The two evaluation results were then compared by
calculating the difference between the errors which are tabulated in Table 5.3.
Map 6 was not evaluated with this method since the nonlinear alignment failed
with it. We will consider Map 6 as an outlier.

On the one hand, the negative values (highlighted in green) indicate that the
structure and area of the generated SLAM map is closer to the CAD map than
the simulated SLAM map is. On the other hand, the positive values (highlighted
in red) indicate the opposite. From these values we can infer that 75% of the
simulated SLAM maps were improved by ModelBA. The negative values of the
remaining 25% could be due to the contraction and expansion of rooms that is
usually caused by SLAM errors. It can be inferred that the model did not learn
this shrinkage and expansion perfectly. This can be due to the small size of the
data or the use of GANs instead of a different deep learning architecture, which
would be addressed in future work.

Further analysis was made by plotting a box plot shown in Fig. 5.12. In
a boxplot, the first to third quartile (interquartile range) are represented by
the blue box and the median is drawn as a horizontal line passing through the
box. The interquartile range along with the median falls almost completely in the
positive region with positive values ranging from 0 to 7 while the negative quartile
only reaches -4. This shows that the ModelBA is far more likely to improve the
simulated SLAM maps.

If this model were to be used in real time with SLAM, it would improve
the localization. The errors in area can be corrected with loop closure, and the
improvement in the noise and the deformation shown in this thesis can enhance
the orientation and location of the robot, since in SLAM the accuracy of the
localization depends on that of the map.

However, not all aspects of the generated CAD maps can be assessed quan-
titatively. That is why a qualitative evaluation is also in order. It can be seen
that the errors of nonlinear deformations in the SLAM map decrease; most of
the walls have become straight lines and most of the noise including additional
occupied or unoccupied parts have been removed (ex: Map 19 in Fig. 5.8). In
addition, the results show that the model learnt to remove additional walls as

36

As-built floor planSlam Map

 Correspondences between
maps

Xcorr

X

Optimisat ion
Process

X

Xoptimised

Anchor ing

Error
between maps

Figure 5.9: The flowchart of the error calculation process adopted from [3]

37

38

39

40

41

Figure 5.10: The evaluation of the simulated SLAM map against the target CAD
map

42

43

44

45

46

Figure 5.11: The evaluation of the generated CAD map from the machine learning
method as compared to the target CAD map

47

Table 5.3: Evaluation results of the structure and area of the maps generated
by ModeBA using the evaluation method of [3]. Here, Error(sim) refers to the
evaluation result of the simulated SLAM map with the CAD map. Moreover,
Error(gen) refers to the error between the machine learning generated SLAM
map and its corresponding CAD map.

48

Figure 5.12: The box plot visualization of the errors in Table 5.3

seen in Map 11 of Fig. 5.5. Finally, in general wall positions were improved as
seen in Map 10 of Fig. 5.6.

5.2 Parametric Modelling

To assess the parametric model approach, the model is implemented with the two
odometry-to-map error conversion methods (EKF and Method of [58]). When
running on high resolution images, the EKF method ran for 7 hours and then
gave a memory problem. This means that EKF with high resolution can’t be used
since typical SLAM simulations would be a better alternative in that case. After
noticing that the time and processing of the EKF method increased nonlinearly,
experiments were conducted on lower resolution images (64x64). The resulting
map was then resized to reach a higher (unblurry) resolution (256x256). The
resizing was done using bilinear interpolation. With this technique the time was
decreased to reach a magnitude of seconds.

As for method of [58] implemented on (256x256) resolution images, time was
not an issue, the run time was in seconds even for very high resolutions (ex:
1600x1600). The output of the system with the various conversion methods is
shown in Fig. 5.13 with the corresponding time of each run shown in Table 5.4.

49

Trajectory Simulated
SLAM map

EKF method
(64x64)

EKF method
(64x64)
(256x256)

Method
of [58]
(256x256)

Figure 5.13: Comparing odometry to map conversion methods using using partial
mapping

50

Table 5.4: Time taken in seconds by the parametric modelling with different
conversion of odometry to map error methods

Map
ID

Low Resolution
EKF method

High Resolution
EKF method

Method of [58]

1.2 74.8616 44.6421 3.1995
2.2 15.1272 15.5864 2.62
3.2 20.2189 19.3533 2.7361
4.2 34.1854 34.1854 3.6313
5.2 94.4141 94.4141 3.225

The EKF method has a more detailed parametric model, where most impor-
tantly the error of reobserved landmarks is not a mere addition as is done in [58];
it relies on a complex covariance matrix that includes all landmarks and robot
relations. However, due to this complexity, this method uses almost all equations
of SLAM, which makes it time consuming and in need of higher memory.

The method proposed by [58] is (1) faster and (2) can handle high resolu-
tions. Thus, it (3) avoided the bilinear interpolation, which can cause loss of
data. Finally, the results in Fig. 5.13 show that the deformations are similar in
both methods. Therefore, for the comparison of Parametric modelling with the
Machine learning method, the conversion of [58] will be used.

The results of the parametric modelling are shown in Fig. 5.14, which also
includes the corresponding simulated SLAM maps with the specific trajectory
(Trajectory A) used for both. Even though ModelAB gives one possible hypoth-
esis of a SLAM map with no specific trajectory, it is also included in Fig 5.14
to be able to compare both methods. Having the advantage of a user defined
trajectory, the parametric modelling approach shows a closer resemblance to the
simulated SLAM map of the same trajectory than the random result of ModelAB.

From the results of Fig. 5.14, we can deduce that while both methods give
very realistic results, ModelAB incorporates features not taken into consideration
in the parametric model. For instance, removal of walls and the shrinkage and
expansion of rooms is portrayed better with the learning approach as shown in
Instance i of Fig. 5.14. Whereas the parametric approach doesn’t remove any
structural elements; for example, doors in the parametric approach are better
preserved. Wall removal is present in SLAM errors; however doors are mostly
preserved in SLAM.

In addition, From the results we can deduce that the parametric approach
does not model the simulated SLAM map’s sudden brokenness and large room
shifts ModelAB as shown Instance (a) and (e) in Fig. 5.14. These large errors
usually occur mainly due to vast spaces in the environment where there are no
special features and the data association fails. This makes sense because feature

51

association is mainly an environment specific aspect which is the domain in which
the machine learning model ModelAB was specifically trained.

To conclude, the advantages of modelling using machine learning are:

• The ability to generate CAD maps from SLAM maps, which could help
improve generated SLAM maps in any application

• Allows for further research of the effect of environment shape on the errors
by studying the important features used in these models

• Incorporate aspects not present in parametric modelling such as removal of
walls, room specific scaling, sudden brokenness, and large room shifts

As for the advantages of parametric modeling:

• Quantitative understanding of the deformations through displacement fields
shown in Fig. 5.15. These fields can act as a ground truth local tranfor-
mation field for assessing alignment methods as was done in my previous
work [5].

• Multiple possibilities of SLAM maps can be generated from one CAD map
as opposed to the one hypothesis of ModelAB.

• Random or user selected trajectory as opposed to the random trajectory
generated by ModelAB.

• Preservation of doors in the map

52

Trajectory A Simulated
SLAM map
(Trajectory A)

Parametrically
modelled SLAM
map (Trajectory
A)

Machine Learn-
ing generated
SLAM map

a

b

c

d

e

f

53

g

h

i

Figure 5.14: Comparing Machine Learning to Parametric modelling approaches
using mapping of the complete floor

Figure 5.15: An example of an CAD map with a specific trajectory (left), the
displacement field (middle), and its corresponding deformed image (right)

54

Appendix A

55

Noname manuscript No.
(will be inserted by the editor)

Automated Robotic Assessment of 2D As-built Floor
Plans

Daniel Asmar 1 · Rema Daher 1 · Yasmine Hawari 1 ·
Hiam Khoury 2 · Imad H. Elhajj 1

Received: date / Accepted: date

Abstract Site inspection is a notably tedious,

time-consuming, and error-prone process when
carried out manually by construction inspec-
tors. It therefore is a prime candidate for au-
tomation and would reduce the effort and time

incurred while improving and organising the
obtained data. Incorporating recent contribu-
tions to the field of laser-based measurement

systems, this paper presents a system aimed at
an infrastructure-less automation of one por-
tion of the construction-site inspection task:
the comparison of as-built drawings to their

as-designed counterparts. The proposed sys-
tem relies on Simultaneous Localisation and
Mapping (SLAM) to build a dense map of the

environment, which is then used to automati-
cally validate the original 2D as-planned draw-
ings. The components of the proposed system

have been tested through proof of concept ex-

1 Vision and Robotics Lab,
Maroun Semaan Faculty of Engineering and Ar-
chitecture, American University of Beirut, Riad El
Solh, 1107-2020, Beirut, Lebanon
E-mail: da20@aub.edu.lb, rgd05@mail.aub.edu,
yde01@mail.aub.edu, ie05@aub.edu.lb

2 Civil and Environmental Engineering,
Maroun Semaan Faculty of Engineering and Ar-
chitecture, American University of Beirut, Riad El
Solh, 1107-2020, Beirut, Lebanon
E-mail: hk50@aub.edu.lb

periments and results highlight the potential

of using laser measurement data as proposed
for automating and improving the inspection
processes in the field of construction engineer-
ing.

Keywords Site surveying · Automated in-
spection · Robotics · Simultaneous localization
and mapping

1 Introduction

If a construction project were comprised of an
absolutely flawless set of processes, then its

input would be the set of as-designed docu-
mentation approved beforehand, and its out-
put would be the final structure, which matches

the original design intent perfectly. In reality,
however, this is not the case. During and af-
ter a construction operation, the current struc-

ture cannot be truthfully represented by the
as-planned documentation. Therefore, a doc-
umentation of the current structure must be
generated and updated throughout the con-

struction process so that it may provide a more
accurate representation, not only while it is
being built, but long after it is completed as

well. This documentation is referred to as the
”as-built map”. In the United States, for in-
stance, existing buildings are expected to re-

2 Daniel Asmar 1 et al.

main operational for roughly 30 to 50 years,
so about 87% of the current building stock
will maintain operation in the year 2050 [23].

In other words, a large percentage of build-
ings in existence will remain so until the mid-
dle of this century, and their physical state is
represented by none other than as-built docu-

mentation. Despite being so essential, as-built
data remains poorly collected, communicated,
processed, and/or revised [23,22]. Again, using

the United States as an example, the result is a
whopping estimate of approximately $1.5 bil-
lion incurred annually, due to missing, incom-

plete, or otherwise flawed as-built documenta-
tion, and a further $4.8 billion incurred annu-
ally, in order to validate any available as-built
documentation, according to a 2004 report by

the National Institute of Standards and Tech-
nology (NIST) [12].

The generation and verification of as-built
documentation has warranted particular inter-

est within the multi-disciplinary fields of au-
tomation and robotics in construction. Con-
cepts of automation and robotics should not

be confounded; however, the two fields bene-
fit to different extents from the present preva-
lence of laser measurement systems. On the
one hand, these sensors, coupled with advances

in the field of robotics, contribute to the pro-
duction of robots that are increasingly effective
at mapping and scanning unstructured and dy-

namic environments [26], which are the type
associated with construction projects. However,
the restrictions placed on robots at the con-

struction site arise from their current ineffi-
ciency at autonomously traversing the clut-
tered, dynamic, and uncontrolled terrain in-
herent to that category of environment [29].

On the other hand, advances in the field of
automation in construction may truly bene-
fit from laser measurement systems’ accuracy

and resolution. After all, small and light in-
carnations of these sensors can be carried by a
remote controlled robot instead of the myriad
personnel who perform as-of-yet manual data

collection tasks in a construction site environ-
ment [23]. Furthermore, the hardware trends

are supplemented by similar trends in soft-

ware; the accuracy of laser navigation algo-
rithms continues to be refined as the size of the
hardware continues to be miniaturised. It is at

this point where the development of more ef-
fective, less expensive laser measurement sen-
sors meets advances in localisation and map-

ping, with application to construction environ-
ments that the content of this paper finds its
calling.

In brief, the system herein proposed aims
to automate a specific construction site inspec-
tion task, which is the localisation, measure-
ment, and assessment of as-built floor plans

with the use of data obtained by LIDARs mounted
on a mobile robot. The proposed solution is a
cost-effective, rapid, accurate, and infrastructure-

less one that (1) does not require a station-
ary on site device to perform the as-built floor
plan inspection task, (2) uses a 2D laser scan-
ner in lieu of bulky 3D ones, (3) introduces an

accurate anchoring technique to enhance map
alignment and (4) proposes a new error met-
ric for quantitatively evaluating the difference

between two corresponding maps.

2 Background and Related Work

The duty of a construction inspector is to guard
the standards of quality on-site, monitor con-
struction work for conformity with specifica-

tions and drawings, and maintain the agreed-
upon workmanship standards. The inspector
must perform all these tasks impartially and

independently, without being influenced by the
overarching costs and deadlines. In doing so,
construction inspectors can consequently re-
duce the defects, improve the quality, and en-

sure the acceptability of the finished product,
and thus avoid the potential direct and in-
direct costs that could otherwise be incurred

[40]. It is by this rationale that construction in-
spectors are found to be cost-effective, a qual-
ity that can be significantly augmented by the

introduction of automation to the construction
inspection task.

Automated Robotic Assessment of 2D As-built Floor Plans 3

Incorporating some degree of automation
to construction tasks not only increases cost-
effectiveness, but also generally increases pro-

ductivity and enhances safety as well. In this
context, the automation of construction work
is defined as the increase of the workload on
machines, systems, and robots while decreas-

ing that on human beings and manual labour.
However, not all tasks are well-suited for au-
tomation. Given the current state of the art,

robots [31,16] and automated systems [4,23]
are relatively more reliable and cost-effective
at tackling the levels of elemental motions and

basic tasks. These two levels of the construc-
tion industry are still quite broad and, although
a breakdown of the basic tasks comprising all
construction work is detailed by [8], only one in

particular is relevant to the discussion at hand:
the inspection task, which can be defined as
the process of critical examination with the

intent to detect flaws and verify the correct-
ness of as-built structures [4]. However, this
simple and concise definition belies a multi-
faceted set of activities that sprawls both spa-

tially across the construction site and tempo-
rally across the construction process. Systems
such as [17] deal with the temporal aspect of

the inspection task, whereas the system pro-
posed herein focuses on the spacial inspection
and specifically on that of as-built floor plans.

In the current state of affairs, when verifi-

cation of as-built floor plans is required, the in-
spector must first collect and become acquainted
with any as-built documentation available. Nu-

merous case studies attest to the fact that ac-
quiring as-built documentation is no prompt
or efficient activity, mainly due to insufficient
on-site quality inspectors, pressure to cut costs

or meet target dates, and ineffectual or disor-
ganised communications among the project’s
departments [22]. Once all the data has been

acquired, it is dubbed the current as-built state
(a.k.a. the ground truth, in this instance), and
it is used to validate and update any exist-
ing as-built documentation [23]. If the as-built

state differs from as-planned documentation,
or from previous as-built documentation if avail-

able, by a margin exceeding the project-specific

tolerance, then corrections are in order. If the
construction of the inspected area is still in its
early stages, then efforts may be made and re-

sources may be channelled towards reducing
the error to within tolerable limits. If these
errors are found too late in the construction

process, then a whole range of potential revi-
sions to the as-built documentation could be
made. Some of these revisions involve multiple
departments that are separated both horizon-

tally and vertically in the construction man-
agement hierarchy. As a result, the expected
revisions may not be communicated accurately

or effectively, may not be assigned enough con-
sideration or resources, and may not be im-
plemented correctly or efficiently. This is due
to the multiple data dissemination issues that

plague communication in the field of construc-
tion [22].

As the cost of computational power decreases,

the feasibility of automating as-built map as-
sessment tasks increases. Far from being iden-
tical to manual assessment, automated assess-
ment using sensors and robots is more effective

in multiple ways. The manual techniques em-
ployed by current construction inspectors are
subjective and prone to qualitative human er-

rors, due in no small part to the human ten-
dency to become fatigued, inattentive, and less
focused as time wears on [31]. Automated sys-

tems are objective and, although they are prone
to their own types of errors, those errors may
be remedied by future developments in the field.
The bottom line is that the time, the effort,

and by association, the costs of assessment are
inherently reduced by introducing automation.

In recent years, various methods have been
used for geometric data acquisition in the con-

struction field. A comparison of these meth-
ods is shown in Table 1. However, they all rely
on manual procedures. Consequently, even if

some methods are fast relative to other manual
methods, they are all rendered time-consuming
as compared to automated systems. Another

disadvantage of some of the most popular man-
ual methods is operation complexity.

4 Daniel Asmar 1 et al.

Table 1: Geometric data acquisition methods used for as-built map generation [33]

Map Data Acquisition Methods

Method Data treatment Equipment
Cost

Data Retrieval Speed

Traditional Methods Simple/ time con-
suming

Low Slow

Photogrammetry Simple/ time con-
suming

Low Non-real time retrieval

Videogrammetry Complex Low Real time retrieval

3d camera ranging Complex Medium Real time retrieval

3d laser scanning Complex High Non-real time retrieval

Topographic methods Complex/ time con-
suming

High Non-real time retrieval

In practice, the most popular methods to
manually reconstruct environments are the cam-

eras 3D laser scanners [33]. Indeed, the rel-
evant literature is teeming with examples of
Computer Vision technologies or laser scan-
ning with as-built floor plan documentation,

observation, and assessment applications [32].
Some applications involving extraordinarily large
structures or complex environments have even

successfully employed both technologies simul-
taneously [23].

Computer vision technologies, such as pho-
togrammetry and videogrammetry, deal with
reconstructing 3D space by use of images and
video frames respectively, [33] and proved promis-

ing in the application of comparison of as-built
drawings to their as-designed counterparts. These
techniques [45,24,2] rely on feature matching

between key frames or sequences of images,
and are therefore prone to failure when the re-
constructed space is void of features; this is the

case with construction sites that mostly con-
sist of empty walls and repetitive columns. Ad-
ditionally, the data obtained from these tech-
niques is comprised of dense or semi-dense 3D

point clouds that require lengthy processing
times and a considerable amount of cleaning
[28]. It is also important to note the differ-

ence in depth information that either sensor
can provide. While vision sensors provide rich
3D data containing information about textures

and colours, it is more difficult to retrieve ac-
curate distance measures given its risk of mis-
matching large amounts of information [13,20].

As such, for the reasons mentioned above,

several systems have been introduced for the
purpose of mapping and assessing as-built floor
plans using laser scanners, which can directly

provide more accurate distance measures. How-
ever, most of these systems use 3D laser scan-
ners which are often bulky, relatively expen-
sive, and require a large amount of hard disk

space to store the 3D data points that they
collect [32,37,48]. In addition, these 3D laser
scanners are positioned inside the construction

site to form 3D maps.

For instance, Boshce et al . [3] proposed an
approach for comparing 3D CAD objects with
the data obtained by a 3D laser scanner po-
sitioned within a construction site. The com-

parison is performed using object recognition,
in which parts of the construction site, such as
columns, are recognised and matched to the

as-designed 3D CAD drawings. However, this
approach reveals only part of the construction
site since the laser scanner holds a stationary

position within a dynamic environment. Xiong
et al . [46] presented a system for automating
the reconstruction of virtual 3D maps from
point clouds, extracted via 3D lasers. In [1] an

automatic 3d reconstruction is also presented,
but with the use of a combination of sensors

Automated Robotic Assessment of 2D As-built Floor Plans 5

including 2D Laser, 3D laser, and RGB cam-
era. Although these systems successfully pro-
vide rich 3D maps, the focus of their work does

not include any validation of as-planned draw-
ings. Finally, their system is of a more holistic
nature, requiring large processing times, and
not applicable to a task of quick inspection.

On the other hand, when it comes to es-
timating the error between as-built and as-
planned drawings, the majority of existing sys-
tems such as Macher et al . [27] have relied on

manual alignment and validation of as-built
plans with ground truth. Others, such as Jung
et al . [21] have matched critical points manu-

ally to calculate the root mean square error.
In [24], RGBD data is used for reconstruc-
tion then as-built and as-planned drawings are

aligned by detecting the floor and walls, after
which objects are categorized as built or not
using raycasting. In the latter method, only
a binary categorization is made to compare

as-built drawings to their as-planned counter-
parts. In addition, this system relies on object
detection from RGBD reconstruction which re-

lies on features matching. As discussed previ-
ously, due to the lack of features on construc-
tion sites, this method would not be able to
be used for an accurate quantitative assess-

ment. In this case, Intersection Over Union
(IOU) [25] metric is a possible option. How-
ever, IOU acts as a global metric, and fails

to accurately estimate local disparity, which
is needed to differentiate between maps that
have similar global errors. Alternatively, corre-

spondences can be estimated using Hough/Radon
transform, but it turns out this method is lim-
ited to rigid transformations. Another method
is a graph-based approach, where maps are

represented as vertices and edges, and their so-
lutions produce affine transformations by cap-
turing similarities related to topology and ge-

ometry, which are prominent features in build-
ing layouts. However, as in the case of IOU,
rigid and affine transformations, that target
global parameters, cannot achieve perfect align-

ment nor flawless data association due to their
disregard of local defects. To account for these

defects, data association can be performed us-

ing optimisation, such as point set registra-
tion and Iterative Closest Point (ICP) [47].
However, the success of such methods is lim-

ited to small image displacements, which is not
the case of the proposed study. Finally, im-
age registration is usually used for pixel corre-

spondences by relying on pixel intensity infor-
mation; however, occupancy grid maps have
a limited range of intensity values, and have
many repetitive patterns. Hence, image regis-

tration solutions [34] for occupancy maps are
susceptible to local minima and have not yielded
good results.

The main contributions of the presented

work thereby lies in the development and eval-
uation of an infrastructureless robotic system
which (1) does not require the time-consuming

procedures, complex operation, and large amount
of data storage of a 3D laser or any other form
of infrastructure, (2) opts for a 2D laser scan-
ner or LiDAR and compensates for its read-

ings’ errors by using an occupancy grid-based
map and incorporating a stochastic model into
the algorithm’s framework, and (3) has the

2D laser scanner mounted on a mobile robotic
platform that can be also deployed as a form
of wearable computing and used by an inspect-

ing agent, thereby allowing the task at hand
to be performed in a cost-effective, rapid, and
accurate manner. Another major contribution
of this paper lies in adopting a combined ap-

proach to resolve the correspondence problem,
where the maps are first aligned before the
data is corresponded. In this case, the pro-

posed robotic system incorporates an anchor-
ing technique which renders alignment more
accurate. As anchoring acts as an initial guess,
accuracy increases which, in turn, increases the

possibility of finding a global optimal solution
instead of a local one in the optimization pro-
cess and reduces the number of iterations needed.

The proposed solution is inspired by [35], which
uses a graph-based method to produce an affine
alignment coupled with nonlinear optimisation

of a fitness function that obtains a piece-wise
affine alignment (i.e., local alignment). Once

6 Daniel Asmar 1 et al.

the maps are aligned, edge points in the SLAM
map are corresponded with those in the as-
planned map, and then the original edge points

before alignment are used to calculate the cor-
responding error.

The overarching goal of the research de-
scribed in this paper is thereby to study the

effectiveness of the proposed robotic inspec-
tion system in mapping and assessing as-built
information in construction applications. The
following section in this paper presents the un-

derlying developed algorithms of the proposed
system.

3 Proposed System

We propose an automated robotic assessment

of 2D as-built floor plans, which consists of
both map generation and map matching and
validation as shown in Figure 1. The flowchart

depicts a synthetic SLAM map (a) and its cor-
responding ground truth as-built map (b). From
(a),XGFT are extracted, which represents ”Good
Features to Track” [36]. XGFT are then fed

into the preliminary map alignment process
(c) with anchoring, which outputs a nonrigid
alignment (d) and a rigid alignment (e). The

optimisation process (f) is performed on (d) to
transform the edge points X into Xoptimised.
Similarly, (f) is performed on (e), to trans-

form edge points, Xrigid, after rigid alignment
into Xoptimised,rigid. Correspondences are then
made (g) to acquire the closest occupied points
in the ground truth map, Xcorr andXcorr,rigid,

to Xoptimised and Xoptimised,rigid, respectively.
If the SLAM map is globally sheared or scaled
(h), the error is calculated between Xcorr,rigid

and Xrigid (j); otherwise the error is calculated
between Xcorr and Xrigid (i). All the flowchart
sections except those in red are part of our con-

tribution.

3.1 Map generation using SLAM

SLAM is the problem of localising an agent in
a setting, while concurrently building a map

of that environment [7]. LIDAR-based SLAM
can be implemented using 3D or 2D laser sen-
sors, respectively producing 3D or 2D maps.
3D LIDARs are typically much more expensive

than 2D LIDARs, but for applications such as
the one proposed in this paper, the 2D data
extracted by the 2D LIDAR is sufficient. More

specifically, since in the proposed task, the val-
idation of the 2D as-built maps is the primary
goal, a 2D LIDAR profile recorded at a dis-

tance close to the ground can accurately report
the extents of the floor dimensions.

To map an environment in 2D, one can re-
sort to different SLAM flavors: while the com-

parison in [11] puts Cartographer [18] as the
most accurate and robust 2D LIDAR-based
SLAM system, the comparison made by [10]

puts GMapping [5] as the best performer. In
this paper, we opted for GMapping given how
easy it was to set up on our mobile platform.

GMapping is a LIDAR-based SLAM im-

plementation of a Rao-Blackwellized Particle
Filter (RBPF) [15]. Here, a brief summary of
the derivations used by [15] is made for com-

pleteness. GMappimg estimates the trajectory,
x1:t = x1, ..., xt, and the joint posterior,
p(x1:t,m|z1:t, u1:t−1), which makes use of the

observations z1:t = z1, ..., zt, the odometry in-
put u1:t−1 = u1, ..., ut−1, and the map m. In
order to make these estimations, the RBPF
formulates the posterior as

p(x1:t,m|z1:t, u1:t−1) =

p(m|x1:t, z1:t).p(x1:t|z1:t, u1:t−1),

where p(m|x1:t, z1:t) is computed analytically
as described in [30]. On the other hand,

p(x1:t|z1:t, u1:t−1) is estimated using a particle
filter, where prospective trajectories are rep-
resented as particles. The steps for Gmapping

are as follows:

1. Each particle is sampled from the previous

particle and an initial pose using a proposal
distribution π.

2. Each particle is given an importance weight
wt according to the following:

wit =
ηp(zt|mi

t−1, x
i
t).p(x

i
t|xit−1, ut−1)

π(xt|xi1:t−1, z1:t, u1:t−1)
wit−1,

Automated Robotic Assessment of 2D As-built Floor Plans 7

(b) Synthetic GT 1(a) Slam Map 1.1

 (g) Correspondences between
maps

Xcorr Xcorr , r igid

(e) Rigid matching
with anchor ing

(h) SLAM
map is sheared

or scaled?
Yes

No

Xr igid

(j) Error
between maps

(c) Preliminary
Map

Alignment

(f) Optimisat ion
Process

XGFT

X

X

Xoptimised, r igidXoptimised

(d) Nonr igid matching
with anchor ing

Xr igid

XGFT

(i) Error
between maps

Fig. 1: Flowchart of our proposed system with a synthetic SLAM map

where the normalisation factor
η = 1/p(zt|z1:t−1, u1:t−1) is the same for all

particles.
3. If samples are far from the target distribu-

tion (i.e. sample weight lower than a cer-
tain threshold), other particles with higher

weights are re-sampled to replace them. At
this point, the particles have equal weights.

This is necessary due to the finite particle
count used and the difference between the

target distribution and the proposal.
4. Finally, p(mi|xi1:t, z1:t) is based on the sam-

ple’s trajectory xi1:t and all previous obser-

vations z1:t.

8 Daniel Asmar 1 et al.

In addition, GMapping uses occupancy grid
mapping, which lies among the most popular
probabilistic techniques used for map genera-

tion given a particular trajectory [41]. Gener-
ally, each cell in the occupancy grid represents
a sector in the two-dimensional x − y plane
and the probability p(mx,y) of that cell be-

ing occupied is represented by the intensity
of its colour on the map. For the occupancy
grid algorithm [42], the posteriori probability

of the occupancy grid is calculated given the
set of observations, and a Bayesian filter is
applied to update this occupancy probability

at each observation. In the proposed system,
each generated two-dimensional map of the in-
spected site is represented by an occupancy
grid, in which each cell exists in one of the

following three distinct states: occupied, unoc-
cupied, or indeterminate. The accuracy of the
generated map can be gauged by its error with

the ground truth, the Computer-Aided Design
(CAD) map of the inspected site.

3.2 Map matching and validation

The proposed map matching and validation al-
gorithm is illustrated in the upper part of Fig-

ure 1. In order to align both the SLAM and
as-planned maps, they have to be represented
in the same format. Therefore, the as-planned

CAD drawing is first exported as an image at
the same resolution as that of the SLAM map.
Then, the pixels of the image are quantified,
where cells are set to either occupied = 0, open

= 255, or unexplored=127. This step is neces-
sary to translate the as-planned CAD drawing
into the standard format of the occupancy grid

before comparing the two.

3.2.1 Preliminary alignment

Once the two maps are reduced to the same
resolution and format, they are aligned using
the method of Shahbandi and Magnusson [14].

In the first step, the maps are transformed into
line representations using radiography (a vari-
ation of the Radon Transform [14]). The de-

tected lines, which represent wall structures in
a map, are segmented such that each group of
lines enclosing a face F represents an enclosure
or room (Figure 2 (a) and (b)). To improve the

segmentation of rooms, redundant lines are re-
moved, the shape of each face is undistorted
and represented as Oriented Minimum Bound-

ing Box (OMBB) as depicted in Figure 2 (c)
and (d).

Once the faces in each map are segmented,
the maps are aligned by first matching faces
from the SLAM maps to those in the as-planned
maps, and then finding the most probable affine

transformation between these two maps. Im-
probable transformations are rejected using a
constraint of uniform scale in both coordinates

(i.e., similarity). The net result is the elimina-
tion of ∼ 90% of possible alignment hypothe-
ses. Finally, to select the optimal alignment, we
rely on a fitness score, which is calculated using

SLAM map occupied cells XGFT representing
”Good Features to Track” [36]; as a result, the
optimal affine transformation tformalign that

maps XGFT to its closest edge points in the
as-planned map is selected.

Since this is an affine alignment, differences
still exist between the two maps; an example
of such differences can be seen in Figure 2 (e).

3.2.2 Anchoring

To align the two maps, one needs to choose two
reference points on each map and align them
further to those identified in another map us-
ing what we call anchoring. In each map, the

two points are manually identified as corners
that are distant from each other. Points should
not be chosen in proximity to each other to

avoid the effect that any local deformation could
have on the entire map.

Once the points are identified, the source
points Ps1 and Ps2 in the SLAM map are trans-
formed using the final transformation from Sec-
tion 3.2.1, tformalign, to obtain Ps1a and Ps2a
as described in Equation (1). tformanch is de-
fined in Equation (2), where ET represents a

Automated Robotic Assessment of 2D As-built Floor Plans 9

Best Hypothesis

 (e) Map Matching without
Optimisat ion

(a) Slam Map 1.1 with
Arrangements

(c) Slam Map 1.1 with
Filtered Arrangements

(d) Synthetic GT 1 with
Filtered Arrangements

(b) Synthetic GT 1 with
Arrangements

Fig. 2: Flowchart adapted from [14] for the preliminary map alignment, and performed on a
synthetic SLAM map and its corresponding ground truth as-built map

Euclidean Transformation, using ”least square
estimation” [44], between Ps1a, Ps2a and the

as-planned map anchor points Pd1, Pd2. The
two transformations, tformalign and tformanch,
are combined in (3) to form tformalign,anch.

An example of the alignment of maps using
tformalign,anch can be seen in Figure 1 (d).

In addition to the above transformation,
a combined rigid transformation is also used
to calculate the error between the SLAM map

and its corresponding as-planned map. This
transformation is computed by repeating the
same anchoring process but with a rigid varia-

tion of tformalign and tformanch, denoted by
tformalign,rigid and tformanch,rigid as shown

in (4) and (5). Equation 6 combines these rigid
transformations resulting in tformalign,anch,rigid.
As an example, a rigid alignment after anchor-

ing is depicted in Figure 1 (e). Following are
the equations governing the anchoring process:

In order to correct the global inconsisten-
cies and the local deformities of the SLAM

map, edge points are deformed by minimising
local errors between the maps as portrayed in
Figure 1 (f). At this stage, X represents all

10 Daniel Asmar 1 et al.

(Ps1a, Ps2a) = tformalign(Ps1, Ps2) (1)

tformanch = ET (Euclidean, (Ps1a, Ps2a), (Pd1, Pd2)) (2)

tformalign,anch = tformanch.tformalign (3)

(Ps1a,rigid, Ps2a,rigid) = tformalign,rigid(Ps1, Ps2) (4)

tformanch,rigid = ET (Euclidean, (Ps1a,rigid, Ps2a,rigid), (Pd1, Pd2)) (5)

tformalign,anch,rigid = tformalign,rigid.tformanch,rigid (6)

occupied cells using Canny edge detection [6].
Using edge points instead of ”Good Features
to Track” as in [35] to increase the accuracy of

the calculated map errors.

3.2.3 Optimisation

In this section, the nonrigid case is adopted to
explain the optimisation. However, before any
optimisation is performed, the as-planned map
Mo is transformed into a distance map through

a distance transform, Md = DT (Mo), using
the method described in [9]. The distance map
is then normalised through a Gaussian func-

tion Mf = [exp
−d2i
2σ2

f
| ∀di ∈ Md], where Mf

is lower for unoccupied cells that are farther
from edges and higher for those that are closer.

Here, σf represents the neighbourhood of the
fitness map. As an example, for homes and of-
fices σf = 1±0.4 meters. Finally, the Gaussian

map is obtained as Mg =
∂Mf

∂x + i
∂Mf

∂y .
Once the as-planned map is transformed,

the optimal motion matrix, dX of the SLAM

map edge points X, is selected which max-
imises the Gaussian function:

dX =

argmax
dX

K∑

i=1

Mf (xi + dxi) | x ∈ X, dx ∈ dX
(7)

where the number of X cells is denoted by K.

In order to align the SLAM map with the as-
planned map, the convex hull of the points, X,
is first tessellated into smaller triangles. After-

wards, for every triangle, an affine transfor-
mation is assigned based on the motion model
matrix dX. This process is called a piece-wise

transformation. Moreover, to ensure coherency

of the motion models within every neighbour-

hood dX is modified: dx′i = 1
K

K∑
j=1

dxj .wij , where

each dxj is obtained from the gradient map.

wij is a weight that represents the correlation
of pairs of points, xi and xj :

wij = exp
−‖xi,xj‖2

2σ2
n

| xi, xj ∈ X, where ‖‖
is used to represent the Euclidean distance,
and σn is between 0 and ∞ (i.e., between ab-

sent and strict coherency). According to [35],
σn = 8 ± 4 meters. Figure 3 (a) shows the
representation of the motion dxi of the edge
points.

The SLAM map edge points are now op-
timised to align with the as-planned map and
are denoted as Xoptimised. The resulting opti-

mised alignment is shown in Figure 3 (b), and
since the alignment is very accurate, the maps
appear to be as one map. Similarly, for the
rigid case, the motion of Xrigid is optimised,

resulting in Xoptimised,rigid.

Now that the type of maps have been de-
fined, the fitness score mentioned in Section

3.2.1 can be formulated as follows:

fitness =

mean([Mf (x, y) | ∀(x, y) ∈ X]N×1)
(8)

whereMf ← as-planned map, X ← sensor map,
and σf = 0.1.

3.2.4 Error metric

Algorithm 1 lists the necessary steps to esti-
mate the errors between the SLAM and as-

Automated Robotic Assessment of 2D As-built Floor Plans 11

(a) Nonr igid Optimisat ion

(b) Nonr igid Alignment
Output

Fig. 3: Optimisation process adapted from [35]

planned maps. With each distance map is as-
sociated an array called label, where each pixel

and its closest occupied pixel are labelled with
the same number. Then, the locations of pixels
with a unique label are extracted and denoted
as Coordsall, which are transformed to image

coordinates and represented as Coords. Pix-
els in the as-planned map having coordinates
= Coords are labelled as either (Zero) for edge

pixels having a value of zero or (NonZero) for
all other nonzero pixels.

Each NonZero pixel (x, y) corresponds to
its closest Zero pixel (x0, y0), and these corre-

spondences are saved in an array calledMatches,
where every row represents (x, y, x0, y0) in the
as-planned map. Lines 1 to 7 in Algorithm 1

show the transformation from label toMatches.

In order to calculate the error between the
SLAM map and the as-planned map, edge pix-
els in the optimised SLAM map, Xoptimised,

need to be matched with their closest edge
pixels in the as-planned map, Xcorr. Although
Matches is generated for the as-planned im-

age, it can also be utilised to find matches for
Xoptimised since the optimised SLAM map and
the as-planned map have the same size and res-
olution. To elaborate, the correspondence data

in Matches, which references the as-planned
map edge points, can be cross-referenced with
Xoptimised to correspond them to the edge points

in the as-planned map.

It is important to note that Xoptimised and
Xrigid (i.e., X after tformalign,anch,rigid is ap-
plied) are ordered such that Xoptimised,i corre-

sponds to Xrigid,i. Thus, Xrigid,i corresponds
to Xcorr,i.

Then, the Euclidean distance betweenXrigid

and Xcorr is calculated. The resulting distance

represents the localised error vector (in pixels)
between maps.

In fact, to modify this error to unit length,
the error is multiplied by the resolution of the

map and is represented as Error. Afterwards,
to analyse these errors in the 5 section, the
mean of the local error vector Error is cal-
culated along with the maximum local error;

which describe the average error and the max-
imum deformation.

In addition to the above, a similar proce-
dure is performed where instead of using X to

getXoptimised,Xrigid is used andXoptimised,rigid

is generated along with Xcorr,rigid, which is
portrayed in Figure 1 (g), along with its out-

put in Figure 1 (j). This allows for an alterna-
tive algorithm for the case in which nonrigid
alignment fails. Such nonrigid alignment may
fail when there is a lack of sufficient rooms

(faces) in the map which the alignment de-
pends on. Namely, a limited amount of faces
causes the number of alignment hypotheses to

reduce; therefore, increasing the probability of
getting an incorrect match. To correct for that,
Xoptimised,rigid relies on the initial anchor points

introduced earlier to optimise the alignment
without nonrigid global transformations. At this
stage, visual assessment of the image align-

12 Daniel Asmar 1 et al.

Algorithm 1: Error Evaluation

1 (Md, label) = D T(Mo)

2 for iteration ∈ unique(label) do
3 Coords all = where(label=iteration);
4 Coords = TransformtoImageCoordinates(Coords all);

5 Zero=where(image(Coords)=0);
6 NonZero=where(image(Coords)!=0);
7 Matches =append(Matches, (NonZero, Zero));

/* match is of the form (x, y, x0, y0) where unoccupied cell x, y corresponds

to occupied cell x0, y0 */

8 for iteration ∈ Xoptimised do
9 row = where(Matches(NonZero) = Xoptimised);

10 if size(row)=0 then
11 Dist[i] = EuclideanDistance(Xrigid, Xoptimised);

12 else

13 Dist[i] = EuclideanDistance(Xrigid,Matches(row, 2 : 4));

14 MeanError=mean(Dist)
15 MaxError=max(Dist)

ment results is made in order to choose be-
tween results usingXoptimised orXoptimised,rigid.

In cases where there is no global shear or
scale distortion in the sensor SLAM map, and

the induced nonrigid alignment forces an in-
valid transformation, the nonrigid alignment
does not fail, but the rigid alignment is pre-

ferred. To elaborate, when it is known that the
map does not have global shear and scale, the
rigid method would be a better fit.

4 Experiments

In this section, we first propose the hardware

used, the data that was experimented on, along
with the procedures taken to obtain our re-
sults.

4.1 Proposed hardware

In the experiments, the Clearpath Husky (see
Figure 4) equipped with a 2D Sick LIDAR
and wheel encoders was used to estimate ego

motion. A robotic platform is needed to au-
tomate the system and its on-board sensors
providing odometry information that improve
the SLAM output. It is worth noting that any

other robotic platform with a 2D LIDAR can
be used. The system is driven by a Dell Lati-
tude E6420 with an Intel Core i5-2520M CPU

running at 2.50 GHz with a 16 GB RAM and
Intel HD Graphics 3000. GMapping is avail-
able as a free library on Robot Operating Sys-

tem (ROS) [39].

4.2 Experimental Settings

To test and validate our proposed automated
robotic assessment of 2D as-built floor plans,

we prepared two sets of experiments, including
the corridors in (1) the fourth floor of the Sci-
entific Research Building (SRB) at the Ameri-

can University of Beirut (AUB), and (2) the
fourth floor of the IOEC Building at AUB.
These locations resemble construction sites, since

they are void of furniture except for some man-
ually added obstacles, such as boxes. In these
sets of experiments, the trial runs traced the

Automated Robotic Assessment of 2D As-built Floor Plans 13

Fig. 4: The Huskey robot

inner walls of the hallway which runs around

the area. Afterwards, these maps were pro-
cessed as seen in Figure 5 (a) and (d).

The ground truth of the as-built maps was
collected through manual measurements using
a laser meter [19] and an adjustable set square.
However, after drawing the measurements, the

loop didn’t close due to imperfections in the
walls and the angles (up to 1degree shifts).
Errors could also have resulted from the inac-

curacy of the set square in measuring angles.
In addition to the ground truth as-built maps
shown in Figure 5 (b) and (e), the as-planned

drawings were also collected to assess our sys-
tem shown in Figure 5 (c) and (f). In order to
verify if the map generated from the SLAM
system can be used in place of the as-built

map (generated with traditional methods), the
proposed system is not only performed on the
SLAM map and as-planned map as described

in Section 3, but also on the as-built map re-
sulting in the following comparisons:

1. Compare the SLAM map to the as-built

map that was obtained by manually taking
measurements.

2. Compare the as-built map to the as-planned

drawing to obtain the actual difference be-
tween the reality and the as-planned draw-
ing.

3. Compare the SLAM map to the as-planned
drawing to check if this comparison is sim-
ilar to (2).

In addition to the generated SLAM maps,
synthetic data is also used for further valida-
tion and analysis of the system. First, Map

1 in Figure 6 (a) and Map 2 in Figure 6 (e)
from the HouseExpo dataset [43] are used as
ground truth as-built floor plans. In addition,

synthetic SLAM maps are generated by per-
forming affine transformations and piece-wise
local shearing, as described in Section 5.

5 Results and Discussion

In this section, the results and the validation
of our system are analysed for the synthetic

and SLAM data.

5.1 Synthetic data results

For each ground truth map, three synthetic

maps were generated to represent SLAM maps;
each map was generated using the following
transformations:

1. Rotation, translation and low local shear
resulting in Map 1.1 and 2.1 in Figure 6

(b) and (f).
2. Rotation, translation and high local shear

resulting in Map 1.2 and 2.2 in Figure 6 (c)
and (g).

3. Scale, shear, rotation, translation and low
local shear resulting in Map 1.3 and 2.3 in
Figure 6 (d) and (h).

These different variations are used to test
the effect of local shear, and global shear and

scale on the resulting errors between these maps
and their ground truths.

The rigid and nonrigid alignments of the

synthetic maps, which are followed by an opti-
mization are shown in Figure 7, 8, 10, and 11.
Subsequently, the errors between the synthetic
maps are calculated and tabulated in Table 2.

The results show that the error increases as lo-
cal shear increases; this is evident from Maps

14 Daniel Asmar 1 et al.

 (a) IOEC - SLAM (b) IOEC - As-built (c) IOEC - As-planned

 (d) SRB - SLAM (e) SRB - As-built (f) SRB - As-planned

Fig. 5: Processed maps

(a) Map 1 (b) Map 1.1 (c) Map 1.2

(e) Map 2 (f) Map 2.1 (g) Map 2.2 (h) Map 2.3

(d) Map 1.3

Fig. 6: Processed synthetic maps

1.1 and 2.1 in Figure 6 (b) and (f), where the

errors are lower than those of Maps 1.2 and 2.2.
Some of the maps have better optimisation re-

sults using rigid alignment due to the lack of

faces in the maps as described in Section 3.2.

Automated Robotic Assessment of 2D As-built Floor Plans 15

Table 2: Synthetic map errors according to their respective ground truths

Synthetic Map Error Values

Synthetic
SLAM Map

Mean Error
Enonrigid,opt
(pixels)

Max. Error
Enonrigid,opt
(pixels)

Mean Error
Erigid,opt
(pixels)

Max. Error
Erigid,opt
(pixels)

Validation
Error (pix-
els)

Map 1.1 13.35 25.374 13.37 25.83 25.81
Map 1.2 18.24 74.03 18.76 73.65 79.84
Map 1.3 193.3 371.99 192.79 361.65 371.77

Map 2.1 3.34 19.14 3.28 19.14 21.97
Map 2.2 53.95 96.66 54.03 95.25 97.70
Map 2.3 120.56 252.12 80.77 179.20 256.90

Whereas, Map 2.3 and 1.3 fail visually with
rigid alignment due to their global shear and
scale, as shown in Figure 7 (c) and Figure 8

(c); these results are also further elaborated
on in Section 3.2. In this case, the error values
of the nonrigid alignment are used.

Afterwards, in order to ensure that the align-
ment process is producing acceptable error re-
sults, the maximum error is validated manu-
ally. Specifically, the maximum error from the

rigid alignment was used for Map 1.1, 2.1, 1.2,
and 2.2, Figure 6, since it is slightly more accu-
rate than the nonrigid error given that there is

no global shear and scale. For Map 1.3 and 2.3,
nonrigid scores were used due to the presence
of global shear and scale.

In most cases, the manual validation of the

maximum error is very close to the algorithm
output, with an average variation of ±1.15%;
with the exception of Synthetic Map 1.2 and

2.1, whose validation errors ensue an 8.40%
and 14.80%, respectively. These results of Map
1.2 and 2.1, shown in Figure 7 (b) and 8 (a),
respectively, are further investigated in Fig-

ure 9, which shows the correspondences used
in calculating the error. The slightly shifted
correspondences, shown in blue in Figure 9

(b) and (d), are due to the local shear in the
map and its resulting imperfect optimisation.
Specifically, high local shear renders a neigh-

bourhood incoherent, and since optimisation
works by trying to maintain the coherency be-
tween points, shifted correspondences can oc-

cur. Therefore, it can be concluded that these
results are due to the few outliers of incorrect
correspondences whose effect on the mean er-

ror is insignificant.

Another comparison was performed between
the vanilla ICP method [47] and our proposed
system. This additional step was made to fur-

ther elaborate on the effectiveness of the algo-
rithm versus typical error metrics. Map 2.3 was
selected since it has several prominent types of

deformations. The result of the ICP method
shows a 57% variation from the actual maxi-
mum error; whereas, our algorithm gave a 1.9%.

Thus, this system succeeds where ICP fails to
give good correspondences.

5.2 SLAM results

Table 3 and Table 4 show the GMapping re-
sults obtained from the SRB fourth floor and

the IOEC fourth floor, respectively. Since these
maps, Figure 5, were generated using a LI-
DAR, we can disregard global scale. Global

shear can also be disregarded, since the loop
closure performed by GMapping did not result
in any misalignment, or rather ”brokenness”,

in the map. Therefore, it is sufficient to rely on
Xoptimised,rigid to compare results, shown in
Figure 12 and Figure 13. The nonrigid align-
ment and optimisation results are slightly less

accurate and misaligned. This is visually clear
in Figure 14 and Figure 15.

16 Daniel Asmar 1 et al.

(a)

(b)

(c)

Fig. 7: Synthetic Map 1 rigid alignment and optimisation with (a) Map 1.1; (b) Map 1.2; (c)
Map 1.3

Comparing SLAM and as-built maps, the
mean errors for SRB and IOEC are 3.925 and

3.854 cm, respectively. These errors are due to
the 2D LIDAR errors along with the SLAM
system inaccuracies. The ANSI standards [38]

for house measurements state that measure-

ments are to be rounded to the nearest one
tenth of a foot, which equates to 3.048 cm.

Thus, the errors from the SLAM maps that
should be taken into consideration are the dif-
ference between the mean error and the tol-

erable error, equating to 0.877 and 0.806 cm

Automated Robotic Assessment of 2D As-built Floor Plans 17

(a)

(b)

(c)

Fig. 8: Synthetic Map 2 rigid alignment with (a) Map 2.1; (b) Map 2.2; (c) Map 2.3

for SRB and IOEC, respectively. These are
negligible errors and could be accounted for
when using our system for obtaining the as-

built map.

For further validation of the effectiveness of
the system, the difference between the results
of the as-built and as-planned maps versus the

results of the SLAM and as-planned maps pro-
vides practical insight. The SRB results show
a difference of 0.329 cm, and IOEC shows 1.77

cm. These results are therefore small enough
(less than 3.048 cm) to confirm that the SLAM
map can be used in practice instead of the

manually measured as-built map.

18 Daniel Asmar 1 et al.

(a) Location of maximum error in
Map 1.2

(b) Map 1.2 wrong correspondence in
blue, ground truth in red

(c) Location of maximum error in
Map 2.1

(d) Map 2.1 wrong correspondence in
blue, ground truth in red

Fig. 9: Maximum error in synthetic maps

Overall, the proposed system is meant to
generate an as-built map using SLAM to sub-
stitute traditional methods. This SLAM map

is then compared to the as-planned map to
check for errors that may have occurred through-
out the construction process. In our results, we

use a two-step verification process to verify the
validity of using a robot as a surveyor: first,
by comparing the SLAM maps to the as-built

maps; and second, by comparing the error of
the as-built maps versus as-planned maps to
the error of the SLAM maps versus the as-
planned maps. The first step resulted in an av-

erage of 3.890 cm, an error which is tolerable
under ANSI standards mentioned previously.

The second step resulted in an average of 1.05
cm, an error that is negligible under the same
standards.

5.3 Performance

It took approximately 30 minutes to perform
an average run along the test bed hallways,
where the localisation and mapping was im-

plemented in C++ in real time. The data was
then cleaned and fed to the map matching
and error algorithm which was implemented

in Python. Run-time increased as the size of
the input images and the map deformations in-
creased. For example, in spite of the fact that

Automated Robotic Assessment of 2D As-built Floor Plans 19

(a)

(b)

(c)

Fig. 10: Synthetic Map 1 nonrigid alignment and optimisation with (a) Map 1.1; (b) Map 1.2;
(c) Map 1.3

three of the maps (Figure 5 (d), (e) and (f))
all had the same sizes (3228 × 3228 pixels),

their run time ranged from 8.67 hrs to 16.94
hrs. All the processing was implemented on a
Toshiba Satellite Intel Core i7-5500U running

at 2.3/3.0 Turbo GHz with an 8GB RAM and
Intel HD Graphics 5500.

These findings indicate that the system has

the potential to greatly reduce the effort, time,
and cost incurred by the as-built mapping and
verification task.

20 Daniel Asmar 1 et al.

(a)

(b)

(c)

Fig. 11: Synthetic Map 2 nonrigid alignment and optimisation results with (a) Map 2.1; (b) Map
2.2; (c) Map 2.3

6 Conclusions, Limitations, and Future
Work

This paper demonstrated how an infrastructure-
less system can be effectively employed to au-
tomate the correctness verification of as-built

floor plans in a construction environment. Through-
out the paper we showed how to automatically

generate a 2D as-built floor plan of the site
and quantify the errors in the generated map,
how anchoring renders alignment more accu-

rate, and how the proposed error metric accu-

Automated Robotic Assessment of 2D As-built Floor Plans 21

Table 3: SRB fourth floor map error values. As-planned map (Apm); as-built map (Abm); mean

error (m.error); max error (x.error)

SRB Fourth Floor Map Error Values

Map 1 Map 2 m.error
Enonrigid,opt
(cm)

x.error
Enonrigid,opt
(cm)

m.error
Erigid,opt
(cm)

x.error
Erigid,opt
(cm)

SLAM Map Abm 5.294 16.901 3.925 12.574
SLAM Map Apm 5.240 120.302 5.204 119.984

Abm Apm 8.689 139.878 4.875 123.923

Table 4: IOEC fourth floor map error values. As-planned map (Apm); as-built map (Abm); mean
error (m.error); max error (x.error)

IOEC Fourth Floor Map Error Values

Map 1 Map 2 m.error

Enonrigid,opt
(cm)

x.error

Enonrigid,opt
(cm)

m.error

Erigid,opt
(cm)

x.error

Erigid,opt
(cm)

SLAM Map Abm 3.736 8.347 3.854 8.963
SLAM Map Apm 12.39 29.319 12.538 29.319
Abm Apm 10.721 27.101 10.767 24.407

rately evaluates the generated as-built maps.
In addition, the applicability of this system
to real construction sites is also demonstrated,

where the system errors were within the ac-
ceptable limits. The proposed system is ver-
satile, in that the laser measurement system

can be mounted on a mobile robot or on a
human construction site inspector. Since it is
based on a 2D instead of a 3D laser, it is simple
to apply, relatively cheap, and verification can

be achieved automatically with low processing
overhead.

Despite the widespread availability of laser
measurement systems, the intended applica-

tion of this research in construction inspection
tasks is still in its infancy. It is therefore cru-
cial to develop systems, such as that proposed

in this paper. In the future we will work on ad-
dressing the limitations of this system through
(1) conducting further tests to tackle the lack

of experiments in construction sites at their
different stages. This will add extra mapping
challenges such as occlusions, uncontrolled ter-

rain, edge detection, and movements in the en-
vironment. (2) Another direction of the future
work will be towards addressing the manual

aspect of the anchoring method through de-
vising an automated alternative.

7 Acknowledgements

Funding the research for this publication was
provided by a grant from the University Re-
search Board (URB) at the American Univer-

sity of Beirut.

22 Daniel Asmar 1 et al.

(a)

(b)

(c)

Fig. 12: SRB fourth floor rigid alignment between: (a) as-built and as-planned; (b) SLAM and

as-planned; (c) SLAM and as-built

Automated Robotic Assessment of 2D As-built Floor Plans 23

(a)

(b)

(c)

Fig. 13: IOEC fourth floor rigid alignment between: (a) as-built and as-planned; (b) SLAM and
as-planned; (c) SLAM and as-built

24 Daniel Asmar 1 et al.

(a)

(b)

(c)

Fig. 14: SRB fourth floor nonrigid alignment between: (a) as-built and as-planned; (b) SLAM

and as-planned; (c) SLAM and as-built

Automated Robotic Assessment of 2D As-built Floor Plans 25

(a)

(b)

(c)

Fig. 15: IOEC fourth floor nonrigid alignment between: (a) as-built and as-planned; (b) SLAM
and as-planned; (c) SLAM and as-built

26 Daniel Asmar 1 et al.

References

1. Adán, A., Quintana, B., Prieto, S., Bosché, F.:
An autonomous robotic platform for automatic
extraction of detailed semantic models of build-
ings. Automation in Construction 109, 102963
(2020)

2. Asadi, K., Ramshankar, H., Noghabaei, M.,
Han, K.: Real-time image localization and reg-
istration with bim using perspective alignment
for indoor monitoring of construction. Jour-
nal of Computing in Civil Engineering 33(5),
04019031 (2019)

3. Bosché, F.: Automated recognition of 3d cad
model objects in laser scans and calculation of
as-built dimensions for dimensional compliance
control in construction. Advanced Engineering
Informatics 24(1), 107–118 (January, 2010)

4. Boukamp, F., Akinci, B.: Automated process-
ing of construction specifications to support in-
spection and quality control. Automation in
Construction 17, 90–106 (2007)

5. Brian Gerkey ROS Wiki: gmapping.
https://wiki.ros.org/gmapping (2007). [Online;
accessed 4-October-2019]

6. Canny, J.: A computational approach to edge
detection. In: Readings in computer vision, pp.
184–203. Elsevier (1987)

7. Durrant-Whyte, H., Bailey, T.: Simultaneous
localisation and mapping: part 1. Robotics and
Automation Magazine 13(2), 99–110 (2006)

8. Everett, J.: Back to basics in construction au-
tomation. In: International Association for Au-
tomation and Robotics in Construction, pp.
583–590 (1990)

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Dis-
tance transforms of sampled functions. Theory
of computing 8(1), 415–428 (2012)

10. Filatov, A., Filatov, A., Krinkin, K., Chen, B.,
Molodan, D.: 2d slam quality evaluation meth-
ods. In: 2017 21st Conference of Open In-
novations Association (FRUCT), pp. 120–126.
IEEE (2017)

11. Filipenko, M., Afanasyev, I.: Comparison of
various slam systems for mobile robot in an in-
door environment. In: International Conference
on Intelligent Systems (2018)

12. Gallaher, M.P., O’Connor, A.C., Dettbarn,
J.L.J., Gilday, L.T.: Cost analysis of inadequate
interoperability in the u.s. capital facilities in-
dustry. Tech. rep., National Institute of Stan-
dards and Technology (2004)

13. Garrido, G.G.: Development of a tightly-
coupled composite vision/laser sensor for in-

door slam. Ph.D. thesis, École Nationale
Supérieure des Mines de Paris (2011)

14. Gholami Shahbandi, S., Magnusson, M.: 2d
map alignment with region decomposition.
Autonomous Robots (2017). DOI 10.1007/
s10514-018-9785-7

15. Grisetti, G., Stachniss, C., Burgard, W., et al.:
Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE transactions
on Robotics 23(1), 34 (2007)

16. Hähnel, D., Burgard, W., Thrun, S.: Learning
compact 3d models of indoor and outdoor en-
vironments with a mobile robot. Robotics and
Autonomous Systmes 44, 15–27 (2003)

17. Han, K., Degol, J., Golparvar-Fard, M.:
Geometry-and appearance-based reasoning of
construction progress monitoring. Journal
of Construction Engineering and Management
144(2), 04017110 (2018)

18. Hess, W., Kohler, D., Rapp, H., Andor, D.:
Real-time loop closure in 2d lidar slam. In: 2016
IEEE International Conference on Robotics
and Automation (ICRA), pp. 1271–1278. IEEE
(2016)

19. Hilti: Laser meters. URL https:

//www.hilti.com/c/CLS_MEA_TOOL_INSERT_

7127/CLS_LASER_METERS_7127. [Online;
accessed 4-October-2019]

20. Jiang, G., Yin, L., Jin, S., Tian, C., Ma, X., Ou,
Y.: A simultaneous localization and mapping
(slam) framework for 2.5d map building based
on low-cost lidar and vision fusion. Applied Sci-
ences 9(10) (2019). DOI 10.3390/app9102105

21. Jung, J., Hong, S., Yoon, S., Kim, J., Heo, J.:
Automated 3d wireframe modeling of indoor
structures from point clouds using constrained
least-squares adjustment for as-built bim. Jour-
nal of Computing in Civil Engineering 30(4),
04015074 (2015)

22. Kim, Y.S., Oh, S.W., Cho, Y.K., Seo, J.W.:
A pda and wireless web-integrated system for
quality inspection and defect management of
apartment housing projects. Automation in
Construction 17, 163–179 (2008)

23. Klein, L., Li, N., Becerik-Gerber, B.: Imaged-
based verification of as-built documentation of
operational buildings. Automation in Con-
struction 21, 161–171 (2012)

24. Kopsida, M., Brilakis, I.: Real-time volume-
to-plane comparison for mixed reality–based
progress monitoring. Journal of Computing in
Civil Engineering 34(4), 04020016 (2020)

25. Kosub, S.: A note on the triangle inequality
for the jaccard distance. Pattern Recognition
Letters 120, 36–38 (2019)

26. Lakaemper, R., Madhavan, R.: Towards eval-
uating world modeling for autonomous navi-
gation in unstructured and dynamic environ-
ments. In: Proceedings of the 10th Performance
Metrics for Intelligent Systems Workshop, pp.
355–360 (2010)

27. Macher, H., Landes, T., Grussenmeyer, P.:
From point clouds to building information
models: 3d semi-automatic reconstruction of in-
doors of existing buildings. Applied Sciences
7(10), 1030 (2017)

Automated Robotic Assessment of 2D As-built Floor Plans 27

28. Michael Schwind: Comparing Lidar and Pho-
togrammetric Point Clouds. https://www.gim-
international.com/content/article/comparing-
lidar-and-photogrammetric-point-clouds.
[Online; accessed 10-October-2019]

29. Moltke, I., Frambøll, C.K.: Quick guide
to construction automation and robotics.
http://adaptablehouse.vtt.fi/ (2006)

30. Moravec, H.P.: Sensor fusion in certainty grids
for mobile robots. In: Sensor devices and sys-
tems for robotics, pp. 253–276. Springer (1989)

31. Paterson, A.M., Dowling, G.R., Chamberlain,
D.A.: Building inspection: Can computer vision
help? Automation in Construction 7, 13–20
(1997)

32. Pătrăucean, V., Armeni, I., Nahangi, M., Ye-
ung, J., Brilakis, I., Haas, C.: State of research
in automatic as-built modelling. Advanced En-
gineering Informatics 29(2), 162–171 (2015)

33. Sanhudo, L., Ramos, N.M., Martins, J.P.,
Almeida, R.M., Barreira, E., Simões, M.L.,
Cardoso, V.: Building information modeling
for energy retrofitting–a review. Renewable
and Sustainable Energy Reviews 89, 249–260
(2018)

34. Santos, J.M., Portugal, D., Rocha, R.P.: An
evaluation of 2d slam techniques available in
robot operating system. In: 2013 IEEE Inter-
national Symposium on Safety, Security, and
Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)

35. Shahbandi, S.G., Magnusson, M., Iagnemma,
K.: Nonlinear optimization of multimodal two-
dimensional map alignment with application to
prior knowledge transfer. IEEE Robotics and
Automation Letters 3(3), 2040–2047 (2018)

36. Shi, J., Tomasi, C.: Good features to track.
Tech. rep., Cornell University (1993)

37. Son, H., Na, J., Kim, C.: Semantic as-built 3d
modeling of buildings under construction from
laser-scan data based on local convexity with-
out an as-planned model. In: ISARC. Proceed-
ings of the International Symposium on Au-
tomation and Robotics in Construction, vol. 32,
p. 1. IAARC Publications (2015)

38. SRA, B.M.: The ansi z765 standard for calcu-
lating square footage. The Appraisal Journal
81(4), 300 (2013)

39. Stanford Artificial Intelligence Labora-
tory et al.: Robotic operating system.
https://www.ros.org (2018)

40. Thomas, B.: Icwgb. http://www.icwgb.org/
(2012)

41. Thrun, S.: Learning occupancy grid maps with
forward sensor models. Autonomous Robots
15, 111–127 (2003)

42. Thrun, S., Bucken, A.: Integrating grid-based
and topological maps for mobile robot navi-
gation. In: Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, pp.
944–951 (1996)

43. Tingguang, L., Danny, H., Chenming, L., De-
long, Z., Chaoqun, W., Meng, M.Q.H.: House-
expo: A large-scale 2d indoor layout dataset
for learning-based algorithms on mobile robots.
arXiv preprint arXiv:1903.09845 (2019)

44. Umeyama, S.: Least-squares estimation of
transformation parameters between two point
patterns. IEEE Transactions on Pattern Anal-
ysis & Machine Intelligence 4, 376–380 (1991)

45. Wei, Y., Akinci, B.: A vision and learning-
based indoor localization and semantic map-
ping framework for facility operations and man-
agement. Automation in Construction 107,
102915 (2019)

46. Xiong, X., Adan, A., Akinci, B., Huber, D.: Au-
tomatic creation of semantically rich 3d build-
ing models form laser scanner data. Automa-
tion in Construction 31, 325–337 (2013)

47. Yagfarov, R., Ivanou, M., Afanasyev, I.: Map
comparison of lidar-based 2d slam algorithms
using precise ground truth. In: 2018 15th Inter-
national Conference on Control, Automation,
Robotics and Vision (ICARCV), pp. 1979–
1983. IEEE (2018)

48. Yoon, S., Jung, J., Heo, J.: Practical imple-
mentation of semi-automated as-built bim cre-
ation for complex indoor environments. The
International Archives of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences
40(4), 143 (2015)

Bibliography

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, 2017.

[2] K. Tango, M. Katsurai, H. Maki, and R. Goto, “Anime-to-real clothing:
Cosplay costume generation via image-to-image translation,” arXiv preprint
arXiv:2008.11479, 2020.

[3] R. Daher, Y. Hawari, and D. Asmar, Automated Robotic Assessment of 2D
As-built Floor Plans.

[4] E. Daniel, Path Planning and Optimization on SLAM-Based Maps. PhD
thesis, University of Stuttgart, 2016.

[5] R. Daher, T. Chakhachiro, and D. Asmar, A Comparative Assessment
Method for Map Alignment Techniques.

[6] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside the vir-
tual robotics challenge: Simulating real-time robotic disaster response,” Au-
tomation Science and Engineering, IEEE Transactions on, vol. 12, pp. 494–
506, April 2015.

[7] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm intelli-
gence, vol. 2, no. 2-4, pp. 189–208, 2008.

[8] I. G. Alonso, M. Fernández, J. M. Maestre, and M. d. P. A. G. Fuente,
Service robotics within the digital home: applications and future prospects,
vol. 53. Springer Science & Business Media, 2011.

[9] L. Chang, X. Niu, T. Liu, J. Tang, and C. Qian, “Gnss/ins/lidar-slam in-
tegrated navigation system based on graph optimization,” Remote Sensing,
vol. 11, no. 9, p. 1009, 2019.

[10] H. Ren, Q. Yan, Z. Liu, Z. Zuo, Q. Xu, F. Li, and C. Song, “Study on
analysis from sources of error for airborne lidar,” in IOP Conference Series:
Earth and Environmental Science, vol. 46, p. 012030, IOP Publishing, 2016.

83

[11] M. Segata, R. L. Cigno, R. K. Bhadani, M. Bunting, and J. Sprinkle, “A lidar
error model for cooperative driving simulations,” in 2018 IEEE Vehicular
Networking Conference (VNC), pp. 1–8, IEEE, 2018.

[12] W. Liu, “Lidar-imu time delay calibration based on iterative closest point
and iterated sigma point kalman filter,” Sensors, vol. 17, no. 3, p. 539, 2017.

[13] D. Mader, P. Westfeld, and H.-G. Maas, “An integrated flexible self-
calibration approach for 2d laser scanning range finders applied to the hokuyo
utm-30lx-ew.,” International Archives of the Photogrammetry, Remote Sens-
ing & Spatial Information Sciences, vol. 45, 2014.

[14] R. B. Sousa, M. R. Petry, and A. P. Moreira, “Evolution of odometry cal-
ibration methods for ground mobile robots,” in 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC),
pp. 294–299, IEEE, 2020.

[15] J. Borenstein and L. Feng, “Measurement and correction of systematic odom-
etry errors in mobile robots,” IEEE Transactions on robotics and automa-
tion, vol. 12, no. 6, pp. 869–880, 1996.

[16] T. Abbas, M. Arif, and W. Ahmed, “Measurement and correction of system-
atic odometry errors caused by kinematics imperfections in mobile robots,”
in 2006 SICE-ICASE International Joint Conference, pp. 2073–2078, IEEE,
2006.

[17] A. Bostani, A. Vakili, and T. A. Denidni, “A novel method to measure and
correct the odometry errors in mobile robots,” in 2008 Canadian Conference
on Electrical and Computer Engineering, pp. 000897–000900, IEEE, 2008.

[18] K. Lee, C. Jung, and W. Chung, “Accurate calibration of kinematic parame-
ters for two wheel differential mobile robots,” Journal of mechanical science
and technology, vol. 25, no. 6, p. 1603, 2011.

[19] C. Jung and W. Chung, “Accurate calibration of two wheel differential mo-
bile robots by using experimental heading errors,” in 2012 IEEE Interna-
tional Conference on Robotics and Automation, pp. 4533–4538, IEEE, 2012.

[20] D. L. Tomasi and E. Todt, “Rotational odometry calibration for differential
robot platforms,” in 2017 Latin American Robotics Symposium (LARS) and
2017 Brazilian Symposium on Robotics (SBR), pp. 1–6, IEEE, 2017.

[21] E. Ivanjko, I. Komsic, and I. Petrovic, “Simple off-line odometry calibration
of differential drive mobile robots,” in Proceedings of 16th Int. Workshop on
Robotics in Alpe-Adria-Danube Region-RAAD, 2007.

84

[22] G. Antonelli, S. Chiaverini, and G. Fusco, “A calibration method for odome-
try of mobile robots based on the least-squares technique: theory and exper-
imental validation,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 994–
1004, 2005.

[23] S. Mondal, Y. Yun, and W. K. Chung, “Terminal iterative learning con-
trol for calibrating systematic odometry errors in mobile robots,” in 2010
IEEE/ASME International Conference on Advanced Intelligent Mechatron-
ics, pp. 311–316, IEEE, 2010.

[24] A. Censi, A. Franchi, L. Marchionni, and G. Oriolo, “Simultaneous calibra-
tion of odometry and sensor parameters for mobile robots,” IEEE Transac-
tions on Robotics, vol. 29, no. 2, pp. 475–492, 2013.

[25] G. Goronzy and H. Hellbrueck, “Weighted online calibration for odometry of
mobile robots,” in 2017 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 1036–1042, IEEE, 2017.

[26] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, “Simultaneous
localization and odometry calibration for mobile robot,” in Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003)(Cat. No. 03CH37453), vol. 2, pp. 1499–1504, IEEE, 2003.

[27] D. Caltabiano, G. Muscato, and F. Russo, “Localization and self-calibration
of a robot for volcano exploration,” in IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 1,
pp. 586–591, IEEE, 2004.

[28] L. Cantelli, S. Ligama, G. Muscato, and D. Spina, “Auto-calibration meth-
ods of kinematic parameters and magnetometer offset for the localization of
a tracked mobile robot,” Robotics, vol. 5, no. 4, p. 23, 2016.

[29] Y. Maddahi, N. Sepehri, A. Maddahi, and M. Abdolmohammadi, “Cali-
bration of wheeled mobile robots with differential drive mechanisms: An
experimental approach,” Robotica, vol. 30, no. 6, pp. 1029–1039, 2012.

[30] H. Xu and J. J. Collins, “Estimating the odometry error of a mobile robot
by neural networks,” in 2009 International Conference on Machine Learning
and Applications, pp. 378–385, 2009.

[31] A. Pablo, “Slam + machine learning ushers in the ”age of perception” -
robotics business review,” 2020.

[32] A. Davison, “Augmenting slam with deep learning,” May 2019.

85

[33] D. Li, X. Shi, Q. Long, S. Liu, W. Yang, F. Wang, Q. Wei, and F. Qiao,
“Dxslam: A robust and efficient visual slam system with deep features,”
arXiv preprint arXiv:2008.05416, 2020.

[34] M. Antoun, D. Asmar, and R. Daher, “Towards richer 3d reference maps
in urban scenes,” in 2020 17th Conference on Computer and Robot Vision
(CRV), pp. 39–45, IEEE Computer Society, 2020.

[35] L. Hu, W. Xu, K. Huang, and L. Kneip, “Deep-slam++: Object-level
rgbd slam based on class-specific deep shape priors,” arXiv preprint
arXiv:1907.09691, 2019.

[36] M. S. Bahraini, A. B. Rad, and M. Bozorg, “Slam in dynamic environments:
A deep learning approach for moving object tracking using ml-ransac algo-
rithm,” Sensors, vol. 19, no. 17, p. 3699, 2019.

[37] X. Qi, S. Yang, and Y. Yan, “Deep learning based semantic labelling of 3d
point cloud in visual slam,” in IOP Conference Series: Materials Science
and Engineering, vol. 428, p. 012023, 2018.

[38] K. R. Konda and R. Memisevic, “Learning visual odometry with a convolu-
tional network.,” in VISAPP (1), pp. 486–490, 2015.

[39] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense
monocular slam with learned depth prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6243–6252,
2017.

[40] Z. Qin, M. Yin, G. Li, and F. Yang, “Sp-flow: Self-supervised optical flow
correspondence point prediction for real-time slam,” Computer Aided Geo-
metric Design, vol. 82, p. 101928, 2020.

[41] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley,
C. Stachniss, and F. Fraunhofer, “Overlapnet: Loop closing for lidar-based
slam,” Proceedings of the Robotics: Science and Systems (RSS), Freiburg,
Germany, pp. 12–16, 2020.

[42] R. Li, S. Wang, and D. Gu, “Deepslam: A robust monocular slam system
with unsupervised deep learning,” IEEE Transactions on Industrial Elec-
tronics, 2020.

[43] M. A. Hossain and M. M. Ali, “Recognition of handwritten digit using con-
volutional neural network (cnn),” Global Journal of Computer Science and
Technology, 2019.

86

[44] A. Dabouei, H. Kazemi, S. M. Iranmanesh, J. Dawson, and N. M. Nasrabadi,
“Fingerprint distortion rectification using deep convolutional neural net-
works,” in 2018 International Conference on Biometrics (ICB), pp. 1–8,
IEEE, 2018.

[45] X. Li, B. Zhang, P. V. Sander, and J. Liao, “Blind geometric distortion
correction on images through deep learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4855–4864,
2019.

[46] V. Rengarajan, Y. Balaji, and A. Rajagopalan, “Unrolling the shutter: Cnn
to correct motion distortions,” in Proceedings of the IEEE Conference on
computer Vision and Pattern Recognition, pp. 2291–2299, 2017.

[47] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, pp. 2672–2680, 2014.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medical
image computing and computer-assisted intervention, pp. 234–241, Springer,
2015.

[49] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional gans,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8798–8807, 2018.

[50] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” arXiv preprint arXiv:1802.05957,
2018.

[51] D. Yoo, N. Kim, S. Park, A. S. Paek, and I. S. Kweon, “Pixel-level do-
main transfer,” in European Conference on Computer Vision, pp. 517–532,
Springer, 2016.

[52] D.-Z. Du and P. M. Pardalos, Minimax and applications, vol. 4. Springer
Science & Business Media, 2013.

[53] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[54] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

87

[55] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[56] L. Zhang, Self-Adaptive Markov Localization for Single-Robot and Multi-
Robot Systems. PhD thesis, 2010.

[57] S. Riisgaard and M. R. Blas, “Slam for dummies,” A Tutorial Approach to
Simultaneous Localization and Mapping, vol. 22, no. 1-127, p. 126, 2003.

[58] A. Souza, A. Medeiros, L. Gonçalves, and A. Santana, “Probabilistic map-
ping by fusion of range-finders sensors and odometry,” Sensor Fusion and
Its Applications, pp. 423–442, 2010.

[59] MATLAB, 9.9.0.1467703 (R2020b). Natick, Massachusetts: The Math-
Works Inc., 2020.

[60] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng, “Houseexpo: A
large-scale 2d indoor layout dataset for learning-based algorithms on mobile
robots,” arXiv preprint arXiv:1903.09845, 2019.

[61] T. Hearn, “Stl tools.” https://github.com/thearn/stl tools, 2013.

[62] J. Horner, “Explore lite.” http://wiki.ros.org/explore lite, 2010.

[63] B. Gerkey and T. Pratkanis, “Map server.” http://wiki.ros.org/map server,
2009.

[64] P. R. Reddy, V. Amarnadh, and M. Bhaskar, “Evaluation of stopping cri-
terion in contour tracing algorithms,” International Journal of Computer
Science and Information Technologies, vol. 3, no. 3, pp. 3888–3894, 2012.

[65] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Ma-
chine learning, vol. 63, no. 1, pp. 3–42, 2006.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

88

