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An Abstract of the Thesis of

CHIREEN AHMAD SAGHIR for Doctor of Philosophy

Major: Physics

Title: Modified Theories of Gravity

This dissertation is composed of three parts. The first presents the model

of unification of Chern-Simons gauge theories and Chern-Simons gravity in 3D

space-time. The second is constructing Hamiltonian formulation of ghost free

mimetic massive gravity theory. The third is studying the surface terms of

mimetic Horava gravity theory.

By enlarging the tangent group, we are able to unify Chern-Simons gauge theory

and Chern-Simons gravity in 3D space-time. Either we start working with pon-

tryagin densities in 4D space-time or we start directly considering Chern-Simons

actions in 3D space-time. Such unification leads to the quantization of the coeffi-

cients for both Chern-Simons terms for compact groups but not for non-compact

groups. Moreover, it leads to a topological invariant quantity of the 3D space-

time manifold on which they are defined.

For the second topic, we construct the Hamiltonian of ghost free mimetic mas-

sive gravity. The linearized theory is studied and the Hamitlonian equations of

vii



motion are analyzed. Poisson brackets are computed also and closure is proved.

The second order scalar Hamiltonian is examined proving that the energy density

of mimetic term is indeed positive.

The third topic is related to mimetic Horava gravity. It is shown that the surface

terms resulting from the variation of the mimetic Horava action constructed will

cancel out; therefore, there is no need for the addition of Gibbons-Hawking-York

boundary term.
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Chapter 1

Introduction

General relativity GR, published by Einstein in 1916, has been the best classi-

cal theory describing gravity till the moment. It is the geometric description of

the gravitational field in terms of the curvature of space-time. The space-time

curvature, described by Einstein’s tensor Gµν , is related directly to the energy

momentum tensor Tµν describing matter and energy. This relation is summarized

by the below Einstein field equations EFEs

Gµν = Rµν −
1

2
gµνR = Tµν (1.1)

In the Lagrangian formalism, the above equations result from the variation of the

below Lagrangian which is linear in the scalar curvature R.

SGR =

∫
d4x
√
−g[−1

2
R(gµν)] (1.2)

Solving the non-linear equations 1.1 gives the metric gµν . The first exact solution
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to the EFEs was the Schwarzschild metric which gives a great description of black

holes. The Reissner–Nordstrom solution generalizes the Schwarzschild’s one to

deal with electrically charged black holes. The Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric is another solution that describes the expanding universe.

The success of GR has been demonstrated by the deflection of light [Shapiro et al., 2004],

perihelion shift of Mercury [Clemence, 1947], and the discovery of merging black

hole and neutron stars by the LIGO interference experiment [Abbott et al., 2016].

Despite the clear success, GR receives limitation with the emergence of the “dark

universe scenario”. In other words, GR doesn’t provide a clear explanation for

the different phases of acceleration of the universe. Moreover, GR is not able to

provide a clear explanation for dark matter. Concerning the early universe, it is

well known that the Big Bang Nucleosynthesis (BBN) is important to understand

the evolution of the early universe. Despite of this successful theory, a problem

is still to be resolved concerning the overproduction of the element 7Li during

the BBN as compared with the observations of the halo stars in the galaxy. In a

recent work by [Makki et al., 2019] and references therein, this so called (cosmo-

logical Li problem) seems to demand nonstandard input, such as a dark matter

component. This means that the standard GR relativity cannot be assumed at

this early stage, which motivate a modified theory of relativity and is in support

of our effort in the work. At extremely small scale, the classical theory of gravity

breaks down. A new model is needed to explain the earlier stage of the universe

or the inside of a black hole. This model should be a combination of GR and

quantum mechanics.

All these weaknesses points and others push physicists to modify GR. Adding

higher order terms to the GR Lagrangian, working with extra dimensions... are

ways to construct alternative theories to GR. Chapter 1 reviews Chern-Simons

theories that are topological field theories defined in 3-D space-time. Chern-
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Simons theories are defined for both gauge theories and gravity.

Attempts of unifying gravity with the other forces started with Einstein him-

self who tried to unify gravity with electromagnetism. After the formulation of

GR by few years, Theodore kaluza (1921) reconstructed GR on five dimensional

manifold where it was proven by Oscar Klein (1926), that the gravitational curva-

ture representing the extra spatial direction resembles the electromagnetic force.

Thus, their (4+1) GR theory resembles a unified gravity-electromagnetic classical

theory in (3+1) dimensional space-time. Based on the concept of Kaluza klein

theory, the string theory was built in a way to unify gravity with all the other

forces. Few years ago, Chamseddine and Mukhanov proposed a new classical

model to unify gravity with the other forces based on the Cartan formulation of

GR. Their idea was to enlarge the dimension of tangent space. The SO(1,13)

tangent group splits into S(1,3) for gravity and SO(10) describing gauge theory.

This model is reviewed in chapter 3. Chapter 4 represents our model of unifica-

tion in the context of Chern-Simons theories. We are going to prove that both

Chern-Simons gravity and Chern-Simons gauge theories are unified in 3D space-

time.

Chapters 3 and 4 form the second part of the work. Mimetic gravity is a model

introduced by Chamseddine and Mukhanov as a way to describe dark matter.

This model has been extended to explain several ideas like dark energy, singular-

ities. . . . Chapter 3 represents a review of the mimetic dark matter theory with

all it’s extensions. Ghost free mimetic massive gravity is one of these extensions

where the graviton gains mass without the risk of introducing ghosts. Chapter 3

represents a review for this theory. Chapter 4 introduces the canonical formalism

of this massive gravity model as an alternative to the Lagrangian one. It’s main

goal is to count physical degrees of freedom and to offer a possibility to quantize
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the theory.

Chapter 5 and 6 are concerned mainly with Horava gravity which is a modi-

fied theory of gravity that aims to get a quantized theory of gravity. Although

this theory is renormalizable, it leads to the emergence of ghosts. Chamseddine,

Mukhanov and Russ represent the mimetic Horava gravity which is a recent the-

ory that reproduces Horava gravity using the mimetic field at the synchronous

gauge. The theory is ghost free. Chapter 5 represents a review of both the Horava

model and the mimetic Horava one. To be able to do the Hamiltonian analysis

of any theory, special attention should be taken in dealing with surface terms.

Chapter 6 represents our third work which proves that surface terms of mimetic

Horava gravity action cancel each others without the need of adding extra terms

like the Gibbon-Hawking boundary terms as in the case of pure GR theory.

Chapter 7 represents the conclusion and the future work.
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Chapter 2

Topological Field Theories:

Chern Simon’s theories

Topological field theories (TFTs) are quantum field theories that define topolog-

ical invariants. These theories are metric independent. After being influenced by

Michael Attiyah [Atiyah, 1988], Witten constructed the first TFT which is the

Donaldson Witten theory that defines the Donaldson invariant [Witten, 1988].

In general, TFTs can be divided into two groups: Witten or the cohmological

type and the Schwarts type. Witten type TFT, like the Donldson Witten one,

are theories with action of BRST form with functional average equal zero. The

other type of TFTs are the Schwartz type like Chern-Simons theories and the BF

theories. These theories have actions that are explicitly independent of the metric

δS

δgµν
= 0 (2.1)

and any metric independent operatior have a metric independent expectation

value. Chern-Simons theory is a TFT defined on 3-dimensional space-time.
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(2+l)-dimensional models have became an active field of research, especially the

(2+1) gravity models. As we have mentioned before, quantizing gravity in (3+1)

dimension space-time faces several obstacles [Carlip and Jonathan, 2003]. Gen-

eral relativity in (2+1) dimensions is much simpler, physically and mathemati-

cally. Constructing a quantum theory for (2+1) gravity has less obstacles than

that for (3+1) one.

Witten was the first to incorporate Chern-Simons action in the domain of TFTs

theories [Witten, 1989]. He proved that this theory can provide a great descrip-

tion of knot and links invariants, named jones polynomials. In a 3 dimensional

manifold, with a compact lie group G = SU(N), the Chern-Simons action is de-

fined as

S =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A) (2.2)

where k is a coupling constant and A is a G-gauge connection on the trivial bun-

dle on M. We define the metric independent partition function as

Z(M) =

∫
DAeiS (2.3)

Using non perturbative methods, Witten derived the topological invariant jones

polynomial as

Z(M,L) =

∫
DAexp(iS)

r∏
i=1

WRi(Ci) (2.4)
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where WRi is the Wilson loop defined by

WR(C) = TrRPexp

∫
C

A (2.5)

R is a representation of the group G and C is an oriented closed curve on the

three dimensional manifold. C can be a circle.

Chern-Simons theories have additional applications in several fields. In the do-

main of gauge theories, Deser an Jackiw proved that we can generate mass

for gauge fields for both gravity and gauge theory using Chern-Simons terms

[Deser et al., 2000]. In the context of quantum field theory, the infinite range

gravitational field is described by a massless spin 2 particle that should mediates

the gravitational interactions. Introducing mass for graviton, is one of the main

concerns of most modified theories of gravity because it helps in constructing a

quantized theory of gravity. Fierz-Pauli linear massive gravity theory was the

first theory to generate mass for graviton [Fierz and Pauli, 1939a]. Using Chern-

Simons theories in 3D space-time, Deser , Jackiv and Templeton constructed a

new massive theory for gravity by adding the gravitational Chern-Simons term

to the gravitational action.

ICS = −1

4

∫
dxX3 = −1

4

∫
dxεµνα[Rµνabω

ab
α +

2

3
ωcµbω

a
νcω

b
αa] (2.6)

where X3 is related to the four dimensional topological invariant, the Hirzebruch

Pontryagin density

∗RR ≡ 1

2
εµναβRµνρσR

ρσ
αβ = ∂µX

µ (2.7)
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and the curvature Rµνab is defined by

Rµνab = ∂µωνab + ωcµaωνcb–(µ→ ν)

ωµab = ωµba (2.8)

The gravitational action becomes

I =
1

κ2

∫
dx
√
gR +

1

κ2µ
ICS (2.9)

Similarly, using Chern-Simons actions we can generate mass terms for non-abelian

gauge theories where the topological mass term is given by

LG =
µ

2g2
trF µνFµν =

µ

2g2
εµναtr(FµνAα −

2

3
AµAνAα) (2.10)

In addition, Chamseddine and Frohlich showed that the lorentz and mixed lorentz-

Weyl anomaly, but not the pure Weyl anomaly, of the two dimensional chiral

bosons and fermions is cancelled by the anomalies of the three dimensional grav-

itational Chern-Simons action [Chamseddine and Fröhlich, 1992]. In the context

of condensed matter physics, 3D Chern-Simons theories have been used in con-

structing lattice field theories. Also, there are numerous applications of CS the-

ories in modern holography like the theory of singletons.
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Chapter 3

Unification of Gauge and Gravity

Chern Simons theories in 3-D

space-time

Attempts for unifying gravity with other gauge theories started directly after the

formulation of GR. Kaluza-Klein theory is such a model of unification of grav-

ity with electromagnetism, in the context of classical field theories. It is based

on the idea of considering higher dimension space-time [Kaluza, 1921b]. Later,

Kaluza-Klein theory was generalized to general non-abelian groups as an attempt

to unify gravity with Yang mills gauge theory [Kerner, 1968]. Such classical uni-

fied field theories have suffered from several weaknesses like the possibility of

promoting it to a well defined complete quantum unified theory. In general, all

the unification models depend on the formulation of GR that one starts with.

The second order formulation of GR is the usual one that deal with the metric

gµν with the action eq 1.2. The other formulation of GR is the first order known

as the Cartan one which replaces the metric by two independent variables: the

tetrad eAα and the connection ωBβA [Utiyama, 1956], [Kibble, 1961]. The main goal
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of the tetrad formalism is to incorporate spinor (Dirac and Weyl) in the context of

general relativity. This allows us to study their dynamics on curved space-time.

GR, through its initial formalism, can only deal with objects behaving as tensors

under Lorentz transformation.

To couple spinors to gravity, it is important to impose the concept of local co-

variance that carries us from the concept of manifold as a whole to tangent space

defined at each point on the manifold. This tangent space resembles Minkowski

space with a certain tangent group defined on it. The indices on this tangent

space are called flat indices (A, B, C . . . .) while that on the curved manifold

as a whole are the Greek ones α, β.... Similar to the affine connection Γ de-

fined on the whole manifold, which is necessary to define the covariant derivative

and parallel transport, we define the spin connection ωABµ that is important to

construct the covariant kinetic term of the spinors. In addition, it is important

to choose a representation of the Clifford algebra which are the gamma matrics

[de Wit and Smith, 2012]. Mixing flat indices with curved ones is achieved by

the Vielbeins (tetrad) eAµ . In other words, we can say that this tetrad formalism

is simply a gauge theory of general relativity where the spin connections are the

gauge fields. It should be noted that this local lorentz symmetry can be general-

ized to a supersymmetric one thus leading to supergravity.

In terms of this formulation, Einstein-Hilbert action becomes

S =
1

8κ2

∫
d4xεµναβεABCDe

A
µ e

B
ν R

CD
αβ (ω) (3.1)

known as the Hilbert-Palatini action. RCD
αβ is the field strength of the gauge

connection ωABµ of the local Lorentz group SO(4).
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3.1 Unification of Gravity and Gauge interac-

tions

The dimension of the tangent space is usually the same as that of the manifold.

However, Chamseddine and Mukhanov proved that dimension of the tangent

space can be larger than that of the manifold. For example, choosing the dimen-

sion of tangent space to be five with the de-Sitter tangent group SO(1,4) or the

anti de Sitter one SO(2,3) recovers general relativity again

[Chamseddine and Mukhanov, 2010a]. This step is beneficial in coupling matter

to gravity. For example, 4d vector field can be coupled to scalar field in five

dimensional tangent space. They also discussed the possibility of having a com-

plex tangent space of same dimension as the manifold with the unitary group as

tangent group. As a result, Einstein gravity is recovered again also.

In a subsequent paper, Chamseddine and Mukhanov proved that enlarging the

tangent space can give interesting physical results like the unification of both

gravity and gauge theories [Chamseddine and Mukhanov, 2016b]. The four di-

mensional space-time manifold is spanned by the coordinate basis eα, where α

goes from 1 to 4. The N-dimensional tangent space, where N is arbitrary and

greater than or equal 4, is spanned by vA, where A ranges from 1 to N. We choose

the tangent group to be SO(1,N-1). As we have mentioned before, the two basis

are connected by the veilbiens eAα through eα = eAαvA. We define nĴ , where Ĵ

goes from 5 to N, as the basis of the N − 4 subspace that is orthogonal to the

subspace spanned by eα. Thus, we get

nĴ .eα = 0

nĴ .nÎ = δÎĴ , Î , Ĵ = 5.....N. (3.2)
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eα and nĴ form a complete basis in the tangent space. Thus, any vector, defined

in the tangent space, can be expressed as a linear combination of them

vA = eαAeα + nĴAnĴ (3.3)

The covariant derivatives in both spaces are defined by

∇eβeα = ∇βeα = Γναβeν

∇βvA = −ωBβAvB (3.4)

where Γµαβ and ωBβA are the respective affine and spin connections for both the

manifold and the tangent space. They are related by the metricity condition

∂βeAα = −ωBβAeBα + ΓναβeAν (3.5)

The corresponding curvature tensors for both the manifold and tangent space are

defined respectively as

Rρ
γαβ(Γ) = ∂αΓρβγ − ∂βΓραγ + ΓρακΓ

κ
βγ − ΓρβκΓ

κ
αγ

RAB
αβ (ω) = ∂αω

AB
β − ∂βωABα + ωACα ωBβC − ωACβ ωBαC (3.6)

12



These two curvature tensors are related to each other through

RAB
αβ (w) = RAC

αβ (w)nÎCn
B
Î

+Rρ
γαβ(Γ)eAρ e

Bγ. (3.7)

Chamseddine and Mukhanove proved that the tensor RAC
αβ (w) is related to the

curvature tensor F Î
αβĴ

(A) of the N-4 subspace, with SO(N-4) group, through

choosing a special gauge

eµ
Î

= 0 (3.8)

As a result, we get, according to the metricity condition eq 3.5,

ωa
µÎ

= 0 (3.9)

where a ranges from 1 to 4. In this special gauge the mixed curvature becomes

zero

RaÎ
µν = 0 (3.10)

Thus, the curvature tensor RC
αβA(ω) is completely related to the field strength of

the (N-4) subspace.

RC
αβA(w)nC = nĴAF

Î
αβĴ

(A) (3.11)

13



where the field strength F can be expressed in terms AÎ
βĴ

, the connection of the

N-4 subspace, as follow

F ÎĴ
αβ (A) = ∂αA

ÎĴ
β − ∂βAÎĴα + AÎL̂α A

Ĵ
βL̂
− AÎL̂β AĴαL̂ (3.12)

Eq 3.7 can be re-written as

RAB
αβ (w) = FAC

αβ (w)nÎCn
B
Î

+Rρ
γαβ(Γ)eAρ e

Bγ (3.13)

Varying the dimension of the tangent space leads to different physical results. As

we mentioned before, choosing N to be five recovers Einstein gravity again. For

N=6, gravity is unified with electromagnetism with A56
α acting as the Maxwell

field. To get a total unification of gauge theories and gravity, the tangent group

must be SO(1,13).

3.2 Unification of Gauge and Gravity Chern Si-

mons theories in 3-D space-time

Based on the work of Chamseddine and Mukhanove (section 3.1) and using the

idea of Chern-Simons theories, presented in chapter 2, we present a new model

of unification, in 3D space-time, for both gravity and gauge theories. Our goal

can be achieved in 2 different ways: either we start working in 4D space-time us-

ing pontryagin densities and then we deduce the unification in 3D or we directly
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prove unification in 3 dimensional space-time using Chern-Simons actions. We

are going to present both methods. [Saghir and Shamseddine, 2017].

3.2.1 Pontryagin densities

Pontryagin densities appeared first in the context of anomalous Feynman di-

agrams of gauge theories. On a 2n dimensional manifolds these densities are

defined as

P 2n ∝ εµ1µ2.....µ2nTr(Fµ1µ2 ....Fµ2nµ2n−1) (3.14)

where F is the field strength which is a curvature 2-form of group G

F = dA+ A ∧ A (3.15)

In 4 dimensional space-time, the pontryagin density of gauge theory is

P4 = − 1

16π2
Tr(∗F µνFµν) (3.16)

where

FA
µν = ∂µA

A
ν − ∂νAAµ + fABCAµBAνC (3.17)

The 4D pontryagin density for gravity is the (Hirzebruch-Pontryagin) given by

15



∗RR =
1

2
εµναβRµνρσR

ρσ
αβ (3.18)

Using eq 3.13, we start writing the pontryagin density for the larger group SO(N)

in 4-D space-time

1

2
εµναβRAB

µν RαβAB =

1

2
εµναβ(F ÎĴ

µν n
A
Ĵ
nB
Î

+Rρ
γµνe

A
ρ e

Bγ)(F K̂L̂
αβ nK̂AnL̂B +Rδ

σαβeδAe
σ
B)

(3.19)

Using the relation nA
Ĵ
eαA = 0 [Chamseddine and Mukhanov, 2016b], all the mixed

terms vanish and we are left with the pontryagin densities for both gauge theory

and gravity.

1

2
εµναβRAB

µν RαβAB =
1

2
εµναβFµνK̂L̂F

K̂L̂
αβ +

1

2
εµναβRab

µνRαβab (3.20)

which means

∫
M4

P4 =

∫
M4

P gauge
4 +

∫
M4

P gravity
4 (3.21)

Up to this equation, we have proven the unification of the pontryagin densities

in 4D space-time. The pontryagin densities are the exterior derivatives of the

Chern-Simons entities.
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P4 = Tr(F ∧ F ) = Tr((dA+ A ∧ A) ∧ (dA+ A ∧ A))

= Tr(d(AdA+ A3)) = Tr(dw3) (3.22)

Knowing that ICS =
∫
w3, we get

∫
M4

P4 =

∫
M4

dw3 =

∫
∂M4

w3 (3.23)

Using eq 3.23, eq 3.21 can be translated into unification in 3D space-time

∫
M3

w3 =

∫
M3

wgauge3 +

∫
M3

wgravity3 (3.24)

where

wgauge3 = εijk(Aai ∂jA
a
k +

1

3
fabcAaiA

b
jA

c
k)

wgravity3 = εijk(Rijabω
ab
k +

2

3
ωcibω

a
jcω

b
ka) (3.25)

3.2.2 3-D Chern-Simons terms

Instead of start working in 4D space-time, we can directly start considering

Chern-Simons terms in 3D space-time. The Chern-Simons term of the larger
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group SO(N) is

ICS =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A) (3.26)

Using gamma matrices ΓAB, where A,B.. ranges from 1 to N, the 1-form connec-

tion A can be written as [de Wit and Smith, 2012]

A = dxµ
1

4
AABµ ΓAB (3.27)

Γ-matrices are related to the γ-matrices of the clifford algebra

γaγb + γbγa = 2δabI (3.28)

where a,b,c... ranges from 1 to 4. According to the properties of the Γ matrices,

eq 3.26 can be transferred into component form

ICS =
k

4π

∫
(AACdACA +

2

3
AABABCACA) (3.29)

Knowing that the indices A, B, C ranges from 1 to N, the above action splits into

2 actions

ICS =
k

4π

∫
(AACdACA +

2

3
AABABCACA)

=
k

4π

∫
(AacdAca +

2

3
AabAbcAca) +

k

4π

∫
(AÎĴdAĴ Î +

2

3
AÎĴAĴK̂AK̂Î) (3.30)
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where the first term corresponds to gravity Chern-Simons term and the second

to the gauge theory one. Hence, both gravity and gauge theory are unified in 3D

space-time.

3.2.3 Consequences of this Unification

Quantization of the coefficient

The quantization of the coupling constant k depends on the signature of space-

time. It is quantized for Euclidean space-time where the compact SO(6) tangent

group splits into SO(3) for gauge theory term and SO(3) for gravity term. On

the other hand, choosing the lorentzian signature manifold with the non-compact

group SO(1,5) leads to a non-quantized coupling constant k. The SO(1,5) group

splits into SO(1,2) for gravity and SO(3) for gauge theory. The homotopy group

of SO(1,5) is equal to that of SO(5).

π5(SO(1, 5)) = π5(SO(5)) = Z2 (3.31)

In this case, the coupling constant is not quantized since the winding number is

not sensitive to torsion and vanishes.

Topological Invariants

The main goal of topological field theories is to compute topological invariants.

Witten proved that, in the week coupling limit, the below partition function can

not be a topological invariant quantity unless an extra term, related to the grav-

itational Chern-Simons partition function, is added [Witten, 1989].
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Z =

∫
DAexp(

ik

4π

∫
M

(AdA+
2

3
A ∧ A ∧ A) (3.32)

In our case, the group G is the SO(6) group. The topological invariant partition

function can be written as

Z =

∫
DAexp(iICS) =

∫
DAexp(iIgauge + iIgravity)

=

∫
Dwexp(iIgravity

∫
DBexp(iIgauge) = Z1.Z2 (3.33)

where Z1 corresponds to the SO(1,2) partition function of gravity Chern-Simons

action with w as a gauge connection and Z2 is that of SO(3) gauge theory with

B as a gauge connection.

Following Witten, the weak coupling limit of Z2 can be written as

Z2 =
∑
α

µ(Bα) (3.34)

where µ(Bα) is a function of flat connections for which the curvature vanishes.

Expanding the gauge field Bi around the flat connection, Bi = Bα
i +Ci, the gauge

Chern-Simons action becomes

IgaugeCS = kI(Bα) +
k

4π

∫
M

Tr(C ∧DC) (3.35)
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D is the covariant derivative with respect to Bα. To carry out the gaussian in-

tegral in eq 3.35, a gauge fixing mechanism should be applied. Such a step can’t

be done without choosing a specific metric. Witten chose the metric to satisfy

DiC
i = 0. The gauge fixing mechanism generates ghosts which are represented

by the below action.

SGF =

∫
M

Tr(φDiC
i + c̄DiD

iC) (3.36)

φ is a lagrange multiplier that enforces the gauge fixing condition DiC
i = 0. c

and c̄ are anticommuting ghosts.

After integrating out C, φ, c and c̄, eq 3.36 becomes

exp(
iπη(Bα)

2
Tα (3.37)

η(Bα) is the ”eta-invariant” defined by

η(Bα) =
1

2
lim
s→

∑
i

signλi|λi|−s (3.38)

where λis are eigenvalues of operator Li, the restriction of ∗DB + DB∗ on odd

forms, Tα is the torsion invariant of flat connections B(α). According to Atiyah-

Patodi-Singer theorem, eq 3.34 becomes

Z2 = exp(i
π

2
η(0))

∑
α

ei(k+c2(G)/2)I(B(α)).Tα (3.39)
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η(0) is the eta invariant of the trivial gauge field and c2(G) is the Casimir oper-

ator of G.

Witten noticed that the above partition function is not a topological invariant

quantity since η(0) is metric dependent. To restore the invariance, Witten sug-

gested to add a counter term to the above partition function. This counter term

is found to be proportional to the gravity Chern-Simons action.

By examining eq 3.33, we noticed that in our case the gravitational Chern-Simons

action is already found. So, our partition function Z of the larger group SO(6) is

indeed a topological invariant quantity without the need to add any extra term.

Substituting the weak coupling limit of the gauge partition function in eq 3.33,

we get

Z =

∫
Dwexp(iIgrav).Z2

=

∫
Dwexp(iIgrav)exp(i

π

2
η(0))

∑
α

ei(k+c2(G)/2)I(B(α)).Tα (3.40)

Hence, gravity and gauge Chern-Simons theories are unified in 3-D space-time.
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Chapter 4

Mimetic Gravity

According to the standard model of cosmology, the universe contains 5% bary-

onic matter and energy, 27% dark matter and 68% an unknown form of energy

called dark energy. Both dark matter and dark energy have not been observed

directly. Their presence have been implied from a variety of astrophysical and

cosmological observations respectively.

Several cosmological and astrophysical observations push us to admit the pres-

ence of dark matter. First, to keep the astrophysical objects( galaxies, planets. . . )

bound together, the gravitational pull on a certain object must balance it’s av-

erage kinetic energy (virial theorem). In 1933, Fritz Zwicky discovered that the

mass inferred from the luminous and visible matter in the galaxy is not sufficient

to keep the cluster bound. He then deduced that there should be an extra hidden

mass, named dark matter, responsible; with the visible matter, of keeping the

cluster bound together. Second, within the galaxy itself; it was expected that the

speed of the star should decrease as it becomes far from the center of the galaxy.

However, Vera Rubin and Kent Ford discovered, after observing the Andromeda

galaxy, that the velocity of the star remains constant regardless of it’s relative

position with respect to the center. Third, observing the patterns of cosmic mi-
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crowave background (CMB) is a good evidence for the presence of dark matter.

Forth, the merging of the content of 2 galaxy clusters gives the so-called bullet

cluster. The determination of the mass of this resultant cluster, based on visible

matter, gives contradiction with the experimental data. The last evidence for the

presence of dark matter comes from the patterns of the large scale structure which

couldn’t have happened without the presence of dark matter [Arun et al., 2017].

Referring to primordial nucleosynthesis, the possibility for dark matter to be

baryonic is ruled out. This means that either it is not discovered yet or it is

a non-standard particle. There are several candidates for dark matter that are

ruled out by astrophysical observations. One of the possible candidates for dark

matter is the weakly interacting massive particles. Both superymmetry and extra

dimension theories can predict such particles. Moreover, some suggests that dark

matter is due to primordial black holes with specific astrophysical parameters.

Some exotic candidates have been suggested also like: gravitinos, gluinos, Q-

balls.... The failure of detecting such particles experimentally pushes physicists

to modify previous gravity theories, Newtonian gravity and general relativity, to

explain the above cosmological and astrophysical observations without the need

of dark matter. MOND, modification of Newtonian mechanics, was initially built

to explain the flat rotation curves of spiral galaxies. Modifying General relativ-

ity have been a great step not only in predicting dark energy and dark matter

but also in explaining some unsolved cosmological phenomena by GR. The La-

grangian for GR is proportional to the Ricci scalar R. One way to modify it

is by replacing R by a function of it like f(R) or f(R, T ); where T is the trace

of the energy momentum tensor Tµν . Although such theories have succeeded in

explaining the dark side of the universe, they are highly non linear leading to

some problems like the emergence of negative energy particles named ghosts.

In general modifying GR theory can occur in three different ways:
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• Adding new degrees of freedom other than that of the metric tensor. These

degrees of freedom can correspond to a scalar field like the quintessence

[Zlatev et al., 1999], vector field like the case of Einstein-aether theory

[Eling et al., 2006] or a tensor field as the case of Eddington-Born-Infeld

gravity [Born and Infeld, 1934].

• Working with extra dimensions like the Kaluza Klein theory which is a

modified GR theory in 5 dimensional space time [Kaluza, 1921a].

• Using higher order terms in Einstein-Hilbert action. Einstein’s theory

is a second order non-linear theory. One way of modification is to con-

sider higher order derivative terms for the metric. A well known example

is the f(R) gravity. Other theories that belongs to the same group are:

f(2R), f(R, T )... [Houndjo et al., 2017].

• Breaking the local invariance. This can be obtained by adding terms

containing the inverse of differential operators of curvature invariants like

f(R/2)... as in the case of non local gravity [Vernov, 2012].

In general, a modified theory of gravity is considered successful if it’s results are

consistent with some cosmological observations [Clifton et al., 2012]. Predicting

the correct value for the growth rate of the large-scale structure with cosmic

time can be a good test for most alternatives for GR [Guzzo et al., 2008]. In

addition, a class of modified f(R) gravity theories give a great description of

inflation [Cognola et al., 2008]. In the context of mimetic gravity theory, the

late time integrated Sachs Wolfe effect; that predicts the inhomogenity in the

cosmic microwave background radiations CMB; results from the addition of extra

constrained inhomogenous scalar fields [Chamseddine and Mukhanov, 2016a].
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4.1 Mimetic Gravity

Mimetic gravity, a modified theory of gravity by Chamseddine and Mukhanov

[Chamseddine and Mukhanov, 2013], is somehow a recent theory that was orig-

inally found to deal with dark matter. Unlike other modified theories that add

extra degrees of freedom or propagate ghosts, mimetic gravity is a ghost free

theory that generates dark matter by adding a constrained scalar field. The idea

is to isolate the conformal degree of freedom of the metric by writing the physical

metric gµν in terms of an auxiliary metric g̃µν and a scalar field φ.

gµν = g̃µν g̃
αβ∂αφ∂βφ (4.1)

Eq 4.1 can be considered a kind of conformal transformation of the physical met-

ric.

Using the corresponding equations of motion, it can be easily shown that the

scalar field φ satisfies the below constraint

gµν∂µφ∂νφ = 1 (4.2)

Mimetic gravity can be formulated in a different way [Golovnev, 2014]. Eq 4.2

can be imposed as an extra constraint, on the scalar field φ, using a lagrange

multiplier λ.

S =

∫
d4x
√
−g[−1

2
R(gµν) + λ(gµν∂µφ∂νφ− 1)] (4.3)
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The resulting equation of motion, with respect to the metric, has the following

form

Gµν = Tµν + T̃µν (4.4)

where Tµν is the matter energy momentum tensor and

T̃µν = (G− T )gµαgνβ∂
αφ∂βφ (4.5)

The other equation of motion with respect to the field φ is

1√
−g

∂k(
√
−g(G− T )gkλ∂λφ−∇k((G− T )∂kφ) = 0 (4.6)

The energy momentum tensor of a perfect fluid with energy density ρ, pressure

p and four-velocity vector uµ is

Tµν = (ρ+ p)uµuν + pgµν (4.7)

with the four velocity vector satisfying the below condition

uµu
µ = 1 (4.8)
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Comparing eq 4.5 with the above energy momentum tensor, we deduce that it

corresponds to a perfect fluid with zero pressure and energy density ρ = −(G−T ).

The 4-velocity vector uµ of this fluid is the gradient of the scalar field ∂µφ. Eq

4.8 is satisfied due to the mimetic constraint eq 4.2. To assure that eq 4.5 corre-

sponds to dark matter, it is better to work in the synchronous gauge

ds2 = dt2 − γij(xi)dxidxj (4.9)

and choose φ(xµ) = τ .

Such a choice means that it is possible to choose the hypersurfaces with constant

time to be the same as the hypersurfaces with constant φ. We choose to work

with a specific metric like the Friedmann-Lemaitre-Robertson-Walker (FLRW)

one given by

ds2 = −dt2 + a(t)2dx2 (4.10)

where a(t) is the scale factor. Under this choice, eq 4.6 gives

ρ = G− T =
C(xi)
√
γ

=
C

a3
(4.11)

Thus, we get dark matter without the initial presence of dark matter.
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4.2 Extensions of Mimetic Gravity Theories

In a subsequent work [Chamseddine et al., 2014], Chamseddine and Mukhanove

extended the mimetic gravity theory to a new theory that can predict further

cosmological solutions. This can be done by making the mimetic field dynamical

through the addition of an extra term V (φ), called the potential of φ, to the

action eq 4.3. Hence, the extended action becomes

S =

∫
d4x
√
−g[−1

2
R(gµν) + λ(gµν∂µφ∂νφ− 1)− V (φ)] (4.12)

A specific choice of V (φ) leads to a specific cosmological solution. For example

• V (φ) = αφn = αtn.

α is a constant, where it’s sign determine the cosmological state of the

universe. For example; for negative α, the mimetic matter leads to an

oscillating universe with singularity. For positive α, we get an accelerated

and inflationary universe.

• V (φ) = αφ2

exp(φ)+1
.

Using this potential, the scale factor becomes a ∝ exp(−
√

α
12
t2), which

gives inflaton.

• V (φ) = 4
3

1
(1+φ2)2

= 4
3

1
(1+t2)2

.

Such a choice may lead, under a certain condition, to a bouncing universe.

Mimetic gravity may lead to dark energy using a similar formulation

[Chamseddine and Mukhanov, 2016a]. This is achieved by adding extra non-

dynamical constrained scalar fields φa

29



S =

∫
d4x
√
−g[−1

2
R(gµν) + λ(gµν∂µφ∂νφ− 1) + λag

µν∂µφ
a∂νφ− V (φa)]

(4.13)

In the synchronous gauge, the constraints on φ and φa gives respectively

φ = t

φa = φa(xi) (4.14)

Two cases can be considered here.

• V (φa) = 0: Under this choice, no additional degrees of freedom appear.

The extra fields φa allows us to distinguish mimetic dark matter from usual

dust in the linearized approximation. These extra fields give us information

about the vector perturbation of the mimetic dust.

• if V (φa) 6= 0: This choice gives inhomogeneous dark energy if V and φa

are inhomogeneous. In addition, This inhomogeneous dark energy can con-

tribute to the late time integrated Sachs-Wolfe effect and can influence the

structure formation of the universe,

The success of the mimetic gravity theory doesn’t end here. Explaining singu-

larities was one of the weaknesses that Einstein’s theory has faced. It is well

known that the energy density becomes infinite at the center of the black hole

and during the Big Bang. GR predicted the presence of space like singularities

but it was unable to explain it. General relativity alone can’t deal with singular-

ities. The best way to explain them is through a quantum gravity theory that
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combines both general relativity with quantum mechanics. Such theories usually

suffer from problems related to ghost as we are going to see in chapter 6 . In the

context of mimetic gravity, Chamseddine and Mukhanov resolved singularities

classically. The idea is to add to the Einstein’s action a function f(χ) = f(2φ)

instead of the potential term V (φ) [Chamseddine and Mukhanov, 2017b].

The new variable χ is given by

χ = 2φ =
1√
−g

∂

∂xµ
(
√
−ggµν ∂φ

∂xν
) (4.15)

which becomes in the synchronous gauge

χ =
γ̇

2γ
(4.16)

A good choice for f(χ), to avoid singularities, is the Born-Infeld type functions

which are bounded by a limiting value χm

f(χ) = χ2
m

(
1 +

1

3

χ2

χ2
m

−
√

2

3

χ

χm
arcsin

(√
2

3

χ

χm

)
−

√
1− 2

3

χ2

χ2
m

)
(4.17)

In the isotropic Friedmann universe

ds2 = dt2 − a2(t)δikdxidxj (4.18)
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the resulting equation of motion for this theory becomes

3

(
ȧ

a

)2

=
εm
a3

(
1− 1

a3

)
(4.19)

which gives, after integration, the following solution

a =

(
1 +

3

4
εmt

2

)1/3

(4.20)

It is clear from eq 4.20 that it describes a bouncing Friedmann universe. For

t < −1/
√
εm, it passes by a contracting phase dominated by cold dark matter

(a ∝ t2/3). Then, it enters a regular bounce stage, for −1/
√
εm < t < 1/

√
εm.

For t > 1/
√
εm, the universe starts to expand, dominated by normal dusts.

The metric describing a Schwarzchild black hole is given by

ds2 =
(

1− rg
r

)
dt2S −

dr2

(1− rg
r

)
− r2dΩ2 (4.21)

rg is the gravitational radius of the black hole and dΩ = dθ2 + sin2θdϕ2. The

only physical singularity is that at the center of the black hole r = 0. r = rg

seems, for the first look, to be a singularity but it is just a coordinate singu-

larity that can disappear by a specific choice of a synchronous coordinate sys-

tem. Using the idea of limiting curvature, the spacetime of the black hole of

radius rg is geodesically complete. In case of falling in a black hole, an ob-

server will enter a region of limiting curvature and will remain there for a short

time. After that, he will find himself inside a Schwarzchild black hole of smaller
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gravitational radius r
1/3
g . Again, he will stay in a region of limiting curva-

ture for a short time and then he will find himself near the horizon of a new

Schwarzchild black hole of smaller radius r
1/9
g . The cycle will continue until he

remains in a region of limiting curvature forever. This is called the ”nesting dull”

[Chamseddine and Mukhanov, 2017a]. Mimetic F (R) gravity theory was formu-

lated by Nojiri and Odintsov [Nojiri and Odintsov, 2014]. It’s action is given by

I =

∫
d4x
√
−g[F (R(gµν))− V (φ) + λ(gµν∂µφ∂νφ+ 1)] (4.22)

Specific choices of F (R) can give specific cosmological solutions like inflation.

4.3 Massive Gravity

Gravitational interaction is one of the four fundamental forces in nature in ad-

dition to electromagnetic, weak and strong interactions. According to quantum

mechanics and gauge theory, the photon is the particle that is exchanged during

any electromagnetic interaction between any two charged particles. This virtual

particle is massless because the electromagnetic force has a long range. Similarly,

the graviton particle is a spin two virtual particle that is expected to propagate

during any gravitational interaction [Hinterbichler, 2012]. Like the photon, it is

expected to be massless. GR is a classical theory that can be applied in regions

where quantum effects can be ignored like the solar system. As we approach

quantum regions, GR can no more be applied and we need a quantum gravity

theory that mixes both general relativity and quantum mechanics. Quantizing

gravity suffers from several problems as we are going to see in chapter 6 because

GR is not UV complete. Massive gravity is a modified GR theory that can help in
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constructing a well defined quantum theory of gravity. In addition, introducing a

mass term to the action of classical GR can solve the mystery of the accelerated

expansion of the universe without the need of dark energy as in the DGP model,

massive gravity in extra dimensions [Deffayet, 2001]. In addition, massive gravity

leads to dark matter and gravitational waves [Aoki and Mukohyama, 2016].

A successful massive gravity theory is the one that recovers the classical GR the-

ory as m (mass of graviton) tends to zero. It is well known that introducing a mass

term to the theory will increase the number of degrees of freedom. The first at-

tempt to massive gravity was by Fierz and Pauli (1939) [Fierz and Pauli, 1939b].

They constructed the first linear massive theory of gravity where the mass term

is given by

LFP = −1

2
m2
(
hµνhµν − h2

)
(4.23)

where hµν is a second rank symmetric tensor that appears in the perturbation of

the metric around the flat metric gµν = ηµν + hµν .

In 1970, Van Dam, Veltman and Zakharov discovered that this linear massive

theory suffers from vDVZ discontinuity. This means that massless limit (m→ 0)

of this theory makes prediction different from the linear GR theory. The reason

behind this discontinuity is that in the massless limit a massive graviton, with five

degrees of freedom, is a massless graviton coupled to a scalar which is responsible

for the vDVZ discontinuity [Veltman and Dam, 1970], [Zakharov, 1970].

The failure of the linear theory pushes Vainstein to formulate a massive non lin-

ear theory of gravity using the Vainstein mechanism [Vainshtein, 1972]. The idea

is that around any massive object M like the sun we can introduce the Vainstein

radius rV ∼
(

M
m4M2

P

)1/5
. At r < rV non linear effects start to dominate and the
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linear theory can no more be applied. At the same year, Boulware and Deser

discovered that most higher order massive gravity theories suffer from ghosts

[Boulware and Deser, 1972]. Instead of having five degrees of freedom, as in the

linear theory, the non linear one possess 6 degrees of freedom, where the extra

one represents a ghost with negative kinetic energy. Classically, the presence

of ghosts lead to an unbounded Hamiltonian that leads to instabilities. At the

quantum level, ghosts must be avoided to achieve unitarity.

Ghosts not only arise for non linear theories but also for linear theories with mass

term deviating from eq 4.23. This means ghosts appear if a 6= 0 in the following

−1

2
m2
(
hµνh

µν − (1− a)h2
)

(4.24)

In abelian and non abelian gauge theories, gauge bosons gain mass through

the spontaneous local symmetry breaking. Similarly, graviton can attain mass

by spontaneous symmetry breaking SSB of the Lorentz invariance. Few years

later, new Higgs mechanism was introduced by t’Hooft where he used four scalar

fields to break diffeomorphism invariance through their vacuum expectation value

[Hooft, 2007]. After this SSB, we get a massive graviton with five degrees of

freedom and a non-unitary propagating scalar field. The problem of unitarity

pushes physicists to add higher order derivative terms of the scalar to the Ein-

stein Hilbert action and to tune appropriately the negative cosmological constant

[Kakushadze, 2008]. Later on, Chamseddine and Mukhanov [Chamseddine and Mukhanov, 2010b]

proposed a new model for massive gravity via Higgs mechanism. The resulting

model hasn’t suffered from any unitarity problem [Oda, 2010] and hasn’t put any

constraint on the cosmological constant. The idea is to use four scalar fields φA,

where A = 0, 1, 2, 3 to construct the field space tensor
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HAB = gµν∂µφ
A∂νφ

B (4.25)

which will be used to add higher order derivative terms to Einstein Hilbert action.

The resulting theory is ghost free preserving Lorentz and diffeomorphism invari-

ance and doesn’t suffer from any unitarity problem . In addition, it restores the

Fierz-Pauli theory in the broken phase. Moreover, It doesn’t put any constraint

on the cosmological constant. A problem arises in case of coupling this theory

to non-trivial backgrounds, such as a time dependent background or some used

in cosmology, where the ghost state got excited. The dRGT construction man-

ages to decouple the ghost completely except in non-trivial backgrounds. The

Higgs mechanism for graviton in 4D space-time is generalized for an arbitrary

D-dimensional space-time [Oda, 2010].

4.4 Ghost Free Mimetic Massive Gravity

In a subsequent work, Chamseddine and Mukhanov constructed a new well-

behaved ghost free massive gravity theory using the Brout-Englert-Higgs mecha-

nism using four scalar fields φA, A = 0, 1, 2, 3 [Chamseddine and Mukhanov, 2018a].

One of the four scalar fields will be the mimetic scalar field φ0, obeying the

mimetic constraint eq 4.2

.

gµν∂µφ
0∂νφ

0 − 1 = 0 (4.26)
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The four scalars φA, s acquire vacuum expectation value in the broken symmetry

phase, in Minkowski space-time

< φA >≡ xA (4.27)

Using eq 4.25, we can build the diffeomorphism invariant set of scalars

h̄AB = HAB − ηAB (4.28)

Latin indices A,B... are raised and lowered by the Minkownsi metric ηAB =

(1,−1,−1,−1) and Greek indices µ, ν, α... are raised and lowered using the met-

ric gµν .

Using h̄AB, we can construct the mass term for graviton. The mass term will be

different from that of Fierz-Pauli one. The ghost free mimetic massive gravity

theory action becomes

S =

∫
d4x
√
g

[
−1

2
R +

m2

8

(
1

2
h̄2 − h̄ABh̄AB

)
+ λ

(
gµν∂µφ

0∂νφ
0 − 1

)]
(4.29)

where h̄ = h̄AA = ηABh̄
AB. The equation of motion with respect to gµν is

Gµν = − m2

8

(
1

2
h̄2 − h̄ABh̄AB

)
gµν + λ

(
2∂µφ

0∂νφ
0
)

+
m2

2

(
1

2
h̄∂µφA∂νφ

A − h̄AB∂µφA∂νφB
)

(4.30)
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and that of φA

∇µ

(
m2

(
1

2
h̄∂µφA − h̄AB∂µφB

)
+ 4δ0A∂µφ

0

)
= 0 (4.31)

The mimetic constraint eq 4.26 can be written as h̄00 = 0 and is obtained by

varying the action with respect to λ.

To study the degrees of freedom of the massive graviton and to prove that this

theory is ghost free, linear perturbation around the Minkowski background is

performed

gµν = ηµν + hµν

φA = xA + χA (4.32)

To linear order in hµν and χ, Einstein tensor Gµν becomes

Gµν(hρ) = − 1

2

(
∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ∂µ∂νh

)
+

1

2
ηµν
(
∂2h− ∂σ∂ρhρσ

)
(4.33)

where ∂2 ≡ ∂µ∂µ and h ≡ ηµνhµν .

The linearized h̄AB becomes

h̄AB = δAµ δ
B
ν h

µν + ∂AχB + ∂BχA (4.34)
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Then the i− j tensor equation of eq 4.30 becomes

∂2h̄ij − ηij

(
1

2
∂2h̄− 4ḧ

m2

)
= −m2

(
h̄ij −

1

2
ηijh̄

)
(4.35)

which gives the following wave equation for a massive field h̄Tij

(
2 +m2

)
h̄Tij = 0 (4.36)

It is obvious that eq 4.36 describes a massive graviton with five degrees of free-

dom and characterized by the traceless tensor

h̄Tih ≡ h̄ij −
1

3
ηijh̄ (4.37)

To assure the absence of ghosts we need to examine the other linearized vector

and scalar equation of eq 4.30. The Linearized scalar 0−0 equation of eq 4.30 is

4h̄+ ∂i∂jh̄ij = 4λ+
m2

2
h̄ (4.38)

where 4 = −∂i∂i. This allows us to write h̄ in terms of h̄Tij

h̄ = 6

(
∂i∂jh̄Tij − 4λ

3m2 − 44

)
(4.39)
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Equation of motion of λ is obtained by combining the scalar equation with the

trace of the tensorial one eq 4.35

λ̈+
m2

4
λ = 0 (4.40)

The 0−i equation doesn’t give any new degree of freedom. It help us in expressing

h̄0i in terms of h̄Tij and λ. As a result, this theory is ghost free not only at

linear level but to all higher order. Unlike the Fierz-Pauli massive theory, vDVZ

discontinuity is abscent in this model. The true physical degrees of freedom of

this theory is shown in another way using the cosmological perturbation theory

[Chamseddine and Mukhanov, 2018b]. The cosmological implications of mimetic

massive gravity is studied in [Solomon et al., 2019]. The effects of the extra mass

term on Friedmann-Lemaıtre-Robertson-Walker cosmological backgrounds are to

introduce effective radiation, curvature, and cosmological constant terms....
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Chapter 5

Hamiltonian formulation of

Ghost Free Mimetic Massive

Gravity Theory

Hamiltonian formalism forms an alternative to the Lagrangian one. It plays an

important role in counting physical degrees of freedom for a certain system. In

modern physics, it forms the basis of the canonical quantization of any dynamical

system especially those that possess constraints and symmetries, where the canon-

ical variables qi and pi are replaced by linear operators q̂i and p̂i acting on Hilbert

space of states. Canonical formulation forms the basis for some quantum gravity

theories like the loop quantum gravity theory as we are going to discuss in chapter

6. Hamiltonian analysis and canonical quantization was first formulated by Dirac

[Dirac, 1950],[Dirac, 1951],[Dirac, 1958] and then followed by Bergmann and col-

laborators [Anderson and Bergmann, 1951],[Bergmann and Goldberg, 1955],

[Bergmann, 1956]. Since then, Hamiltonian formulation has been considered the

best setup for constructing gauge theories. Later Arnowitt, Deser and Mis-

ner constructed the canonical formulation of gravity (ADM formalism) in 1962
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[Arnowitt et al., 1959],[Arnowitt et al., 1960a],[Arnowitt et al., 1960b],

[Arnowitt et al., 2008].

5.1 Hamiltonian Formalism

In Hamiltonian formalism, a dynamical system is described by set of 2n canonical

coordinates that contains: n generalized coordinates qi and n generalized momen-

tum pi. i ranges from 1 to n, where n is the number of degrees of freedom of

the dynamical system. These canonical coordinates form a 2n dimensional phase

space. Instead of being described by the scalar Lagrangian, a system is described

by the scalar Hamiltonian H that is the sum of both the kinetic energy and the

potential energy. Starting from the action

S =

∫
L(qi, q̇i)dt (5.1)

where L(qi, q̇i) is the total Lagrangian of the system, we can define the conjugate

momentum pi as

pi(qi, q̇i) =
∂L

∂q̇i
(5.2)

Then the total Hamiltonian will be

H =
n∑
i

piq̇
i − L (5.3)
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Each degree of freedom, described by the couple (qi, pi), will have two equations

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(5.4)

Thus, we get a set of 2n Hamiltonian equations of motion describing the dynam-

ical system. Eq’s 5.4 can be written in terms of Poisson bracket

q̇i = {qi, H}

ṗi = {pi, H} (5.5)

where the Poisson bracket is defined as

{f(q, p), g(q, p)} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(5.6)

It should be noted that the canonical coordinates satisfy the following identities

{qi, pj} = δij

{qi, qj} = 0

{pi, pj} = 0 (5.7)

In the case of field theory, the coordinates q and p are functions of a continuous
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parameter x. Similar strategy is followed but you should be carefull in deriving

the equations of motion where the Kronecker delta δij is replaced by the Dirac

delta function δ(x − y). Hence, the sum in the Poisson bracket formula will be

replaced by integral over x.

5.2 ADM Formalism

The ADM formalism of gravity, done by Arnowitt, Deser and Misner

[Arnowitt et al., 2008], is based on the idea of separating time and space. To

achieve this, we define the three dimensional hyperspace
∑

, labeled with time

t and spanned by the metric hµν , to be embedded in the four dimensional man-

ifold M , spanned by the metric gµν . The two metrics are related to each other by

hµν = gµν − εnµnν (5.8)

where nµ is a unit vector normal to
∑

and ε = nµn
µ is it’s norm. For a space-like

hypersurface we have ε = −1 while for time-like one we have ε = 1. The proper

interval between any two hypersurfaces
∑

t(t, x
i) and

∑
t+dt(t+ dt, xi + dxi) is

ds2 = gµνdx
µdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt) (5.9)

where N and Ni are the lapse and the shift functions respectively. They represent

the translation between the two hypersurfaces. The metric gµν is
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NiN
i −N2 Nk

Nk hik

 (5.10)

and it’s inverse gµν becomes

− 1
N2

N i

N2

Nk

N2 hik − N iNk

N2

 (5.11)

The momenta corresponding to the lapse and shift functions are zero while that

for hijis given by

πij =
∂

∂hij
(√
−gLADM

)
=
√
h (hijK −Kij) (5.12)

where Kij is the extrinsic curvature

Kij =
1

2N

(
Ni|j +Nj|i − ḣij

)
(5.13)

The (3 + 1) GR action, written in the ADM formalism, becomes

SADM =

∫
d4x

(
πijḣ

ij −NµHµ

)
=∫

d4x
(
πijḣ

ij −NR0 −N iRi

)
(5.14)
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where

R0 = −
√
h

[
3R + h−1

(
1

2
π2 − πijπij

)]
Ri = −2hikπ

kj
|j (5.15)

The equation of motion with respect to πijis

ḣij = 2Nh−1/2
(
πij −

1

2
hijπ

)
+Ni|j +Nj|i (5.16)

Using the below identity

δhkl(x)

δhij(y)
=

1

2

(
δikδ

j
l + δilδ

j
k

)
δ(x, y) (5.17)

The equation of motion with respect to hij becomes

π̇ij = −N
√
h

(
3Rij − 1

2
hij3R

)
+

1

2
Nh−1hij

(
πmnπmn −

1

2
π2

)
−2Nh−1

(
πimπjm −

1

2
ππij

)
+
√
h
(
N |ij − hijN |m|m

)
+
(
πijNm

)
|m −N

i
|mπ

mj −N j
|mπ

mi

(5.18)

The equations of motion corresponding to the lapse and shift functions gives the

four constraints
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Hµ = 0 (5.19)

The dynamical variables here are the symmetric hij and πij tensors. This gives

us 12 independent components. Four of them are cancelled by the constraints eq

5.19 and another four are cancelled by gauge transformations. Thus, we are left

with four degrees of freedom giving us the two physical degrees of freedom of the

massless graviton.

5.3 Hamiltonian formulation of Mimetic Grav-

ity

The canonical formulation of the extended mimetic gravity theory, with a po-

tential term for φ, was performed by Ola Malaeb [Malaeb, 2015]. Using the

(+,−,−,−) signature for the metric, the (3 + 1) Hamiltonian corresponding to

the φ part of the Lagrangian eq 4.3 is

Hφ =
Np2

2
√
hλ

+
1

2
N
√
hλ[1 + hij∂iφ∂jφ] + pN i∂iφ+N

√
hV (φ) (5.20)

where p is the momentum corresponding to φ

p = N
√
hλ(g00∂0φ+ g0i∂iφ) (5.21)
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λ is a Lagrange multiplier that gives a primary constraint pλ = 0 and a corre-

sponding secondary constraint

{pλ, Hφ} = 0 (5.22)

Using this secondary constraint we can exclude λ from the Hamiltonian 5.20.

Hence, the total action in the (3 + 1) formalism can be written as

S = Sg + Sφ =

∫
d4x

(
πijḣ

ij + ṗ−N
(
R0 + p

√
hij∂iφ∂jφ+ 1

)
−N i (Ri + p∂iφ)−N

√
hV (φ)

)
(5.23)

To check that this theory doesn’t introduce any new degree of freedom, it is im-

portant to check the equations of motion.

The equation of motion with respect to πij is the same as eq 5.16 since the φ part

of the Hamiltonian is independent of πij. The equation of motion with respect

to hij becomes

π̇ij = −N
√
h

(
3Rij −

1

2
h3ijR

)
+

1

2
Nh−1hij

(
πmnπmn −

1

2
π2

)
−2Nh−1

(
πimπ

m
j −

1

2
ππij

)
+
√
h
(
N|ij − hijN |m|m

)
+ (πijN

m)|m

−N |mi πmj −N |mj πmi +
Np∂iφ∂jφ

2
√
hkl∂kφ∂lφ+ 1

− 1

2
N
√
hV (φ)hij (5.24)

The equations of motion resulting from the variation with respect to N and N i

gives the four constraints Hµ = 0 similar to eq 5.19.
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The equation of motion with respect to p

φ̇−N
√
hij∂iφ∂jφ+ 1−N i∂iφ = 0 (5.25)

gives the mimetic constraint eq 4.2. The equation of motion with respect to φ is

ṗ− ∂k

(
Np∂kφ√

hij∂iφ∂jφ+ 1
+Nkp

)
+N
√
h
dV (φ)

dφ
= 0 (5.26)

which is just the conservation of the energy momentum tensorT µν (Bianchi iden-

tity). Hence, both Einstein’s theory and the mimetic one shares the same number

of equations and so the same number of degrees of freedom.

5.4 Hamitlonian Formulation of Ghost Free Mimetic

Massive Gravity

5.4.1 Canonical Form

As mentioned in section 4.4, the ghost free mimetic massive gravity, developed

by Chamseddine and Mukhanov, is a recent theory that predicts a mass term for

graviton, different from that of Fierz Pauli’s one, without generating ghosts. The

action representing this theory is eq 4.29
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S =

∫
d4xL

=

∫
d4x
√
g

[
−1

2
R +

m2

8

(
1

2
h̄2 − h̄ABh̄AB

)
+ λ

(
gµν∂µφ

0∂νφ
0 − 1

)]
(5.27)

The induced metric perturbation h̄AB is given by

h̄AB = gµν∂µφ
A∂νφ

B − ηAB (5.28)

The Minkowski metric ηAB is chosen as (+,−,−,−).

The action eq 5.27 contains higher order terms. Our goal is to formulate the

Hamiltonian analysis of the linearized version of this theory. To achieve this, we

consider the φ terms of the above action, Sφ, and make a small perturbation of

the fields around a broken symmetry phase [Malaeb and Saghir, 2019]

φA = xA + χA (5.29)

The (3 + 1) Sφ action becomes
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Sφ =

∫
d4x
√
g
m2

8
g00
(
−2− 4∂0χ

0 − 2∂0χ
0∂0χ

0 − 2∂0χ
i∂0χ

kηik
)

+
√
g
m2

8
g0k
(
−4∂kχ

0 − 4∂kχ
0∂0χ

0 − 4ηmk∂0χ
m − 4∂0χ

m∂kχ
nηmn

)
√
g
m2

8
+ gik

(
−2ηik − 4ηmk∂iχ

m − 2∂iχ
0∂kχ

0 − 2ηmn∂iχ
m∂kχ

n
)

+
√
g
m2

8
g00g00

(
−1

2
− 2∂0χ

0 − 3∂0χ
0∂0χ

0 − ηrs∂0χr∂0χs
)

+
√
g
m2

8
g00g0k

(
−2∂kχ

0 − 6∂kχ
0∂0χ

0 − 2ηrk∂0χ
r − 4ηrk∂0χ

r∂0χ
0 − 2ηir∂0χ

i∂kχ
r
)

+
√
g
m2

8
g00gik

(
ηik − ∂iχ0∂kχ

0 + 2∂0χ
0ηik + 2∂iχ

rηrk + 4∂0χ
0∂iχ

rηrk + ∂iχ
r∂kχ

sηrs

+∂0χ
0∂0χ

0ηik + ηmnηik∂0χ
m∂0χ

n − 2ηmiηnk∂0χ
m∂0χ

n − 4ηrk∂0χ
r∂iχ

0
)

+
√
g
m2

8
g0ig0k

(
−2ηik − 2∂kχ

0∂iχ
0 − 4ηik∂0χ

0 − 4ηri∂kχ
r − 2ηmrηki∂0χ

m∂0χ
r

−2ηki∂0χ
0∂0χ

0 − 8ηri∂0χ
0∂kχ

r − 2ηrs∂iχ
s∂kχ

r
)

+
√
g
m2

8
g0kglj

(
2∂kχ

0ηjl − 4ηkl∂jχ
0 + 2ηmkηlj∂0χ

m − 4∂0χ
mηmlηkj + 2∂kχ

0∂0χ
0ηlj

−4ηkl∂0χ
0∂jχ

0 + 4∂kχ
0∂jχ

rηrl − 4ηrl∂jχ
0∂kχ

r − 4ηks∂jχ
0∂lχ

s + 2ηmnηlj∂0χ
m∂kχ

n

−4∂0χ
m∂lχ

rηmrηkj − 4∂0χ
m∂kχ

nηmlηnj − 4∂0χ
m∂jχ

sηmlηks + 4ηmkηls∂0χ
m∂jχ

s)

+
√
g
m2

8
gikglj

(
1

2
ηikηlj − ηilηkj + 2ηljηmk∂iχ

m − 4∂iχ
mηmlηkj + ∂lχ

0∂jχ
0ηik

−2ηkj∂iχ
0∂lχ

0 + ηmnηlj∂iχ
m∂kχ

n − 2∂iχ
m∂lχ

rηmrηkj − 2∂iχ
m∂kχ

nηmlηnj

+2ηmkηrj∂iχ
m∂lχ

r − 2ηml)

+ λ
(
g00
(
1 + 2∂0χ

0 + ∂0χ
0∂0χ

0
)

+ 2g0k∂kχ
0
(
1 + ∂0χ

0
)

+ gik∂iχ
0∂kχ

0 − 1
)

(5.30)

The second step is to make small perturbation of the metric around the flat one

gµν = hµν + ηµν (5.31)
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Then, to first order in perturbation, h̄AB becomes

h̄µν = −hµν + ∂µχν + ∂νχµ (5.32)

The linearized theory possess a second order action in hµν and χA, knowing that

λ is of first order in perturbation, Sφ becomes

Sφ =

∫
d4x
√
g

(
∂0χ

0

(
m2

8

(
−2h00 − 2∂0χ

0 + 4∂iχ
i + 2hikηik

)
+ 2λ

)
+∂0χ

i

(
m2

8

(
−4∂iχ

0 − 2∂0χi − 4h0jηij
))

+h0k
(
m2

8

(
−4∂kχ

0 − 2h0iηik
))

+h00
(
m2

8

(
−1

2
h00 + 2∂iχ

i + ηikh
ik

)
+ λ

)
+hik

m2

8

(
2ηik∂

jχj − 4∂kχi
)

+ hikhlj
m2

8

(
1

2
ηikηlj − ηilηkj

)
+
m2

8

(
−2∂iχ

0∂iχ0 + 2∂iχ
i∂kχ

k − 2∂kχj∂jχk − 2∂iχj∂iχj
))

(5.33)

The second order linearized Einstein Hilbert action Sg

Sg =

∫
d4xLg

= −1

4

∫
d4x

(
∂µh

µν∂νh− ∂µhµσ∂νhνσ +
1

2
∂σh

µν∂σhµν +
1

2
∂µh∂

µh

)
(5.34)

To construct the complete Hamiltonian of this theory, it is important to find the
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conjugate momenta of the variables. The conjugate momenta of χ0 and χi are

respectively

P =
∂L

∂χ̇0
=
m2

8

√
g
(
−2h00 + 4∂iχ

i + 2hikηik
)

+ 2
√
gλ− 4

√
g
m2

8
χ̇0 (5.35)

Pi =
∂L

∂χ̇i
=
m2

8

√
g
(
−4∂iχ

0 − 4h0jηij
)
− m2

2

√
g∂0χi (5.36)

The conjugate momenta of h00, hoi and hmn are respectively

Π = −1

4
∂mh

0m (5.37)

Πl =
1

4
∂lh

00 +
1

4
∂lηrsh

rs − 1

2
∂iηlrh

ri (5.38)

Πmn =
1

4
∂ih

i0ηmn −
1

4
ηmn∂

0ηrsh
rs +

1

4
ηmrηns∂

0hrs (5.39)

Inverting equations eq 5.35 and 5.36 allows us to express χ0 and χi in terms of

their momenta respectively

χ̇0 =
−2
√
gm2

P +
1

4

(
−2h00 + 4∂iχ

i + 2hikηik
)

+
4λ

m2
(5.40)

χ̇i =
−2P i

m2
√
g
− ∂jχ0ηij − h0i (5.41)
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Inverting eq 5.39 allows us to write the following

∂0hqt = 4ηmqηntΠmn − 2ηqtηijΠij +
1

2
∂ih

i0ηqt (5.42)

The φ dependent Hamitlonian Hφ of the theory becomes

Hφ = Pχ̇0 + Piχ̇i − Lφ

= −√g
(
hij
m2

8

(
4ηij∂kχ

k − 4∂jχi
)

+
m2

8
hijhkl

(
−ηikηjl +

1

2
ηijηkl

)
+
m2

8

(
−2∂iχ

j∂iχj − 2∂iχ
j∂jχ

i + 4∂iχ
i∂jχ

j
)

+ληijh
ij + 2λ∂iχ

i
)
− Ph00

2
+ ηijh

ijP

2
+ P∂iχ

i −
4λ2
√
g

m2

+
4Pλ

m2
− P 2

m2
√
g
− PiP

i

m2
√
g
− Pih0i − P i∂iχ

0 (5.43)

Eq 5.43 shows the presence of λ which is just a Lagrange multiplier. To get rid

of it, we use the secondary constraint resulting from the primary one pλ = 0

0 = ṗλ = {pλ, H} (5.44)

Then, λ can be expressed as

λ =
P

2
√
g
− m2

8
ηijh

ij − m2

4
∂iχ

i (5.45)
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The total Hamiltonian becomes

H = Hφ +Hg

H = Π ˙h00 + Πiḣ0i + Πijḣij + Pχ̇0 + Piχ̇i − L

=

∫
d4x

(
+

1

2
ηijΠij∂kh

k0 + 2ΠijΠklη
ikηjl − ΠijΠklη

ijηkl

+
1

16
∂ih

i0∂jh
j0 − 1

4
∂ih

ij∂jh
klηkl +

1

4
∂ih

ij∂lh
klηjk

−1

4
∂ih

0k∂ih0lηkl −
1

8
∂ih

km∂ihlnηklηmn +
1

8
∂ih

kl∂ihmnηklηmn

− 1

m2
√
g
PiP

i − Pih0i − P i∂iχ
0 + h00

(
1

4
∂j∂ih

ij − 1

4
∂i∂

ihklηkl −
1

2
P

)
−m

2

8
hij(2ηij∂kχ

k − 4∂jχi)−
m2

8
hijhkl

(
−ηikηjl +

1

2
ηijηkl

)
−m

2

8

(
−2∂iχj∂

iχj − 2∂iχ
j∂jχ

i + 2∂iχ
i∂kχ

k
))

(5.46)

5.4.2 Equations of Motion

Studying the equations of motion is important the determine the characteristics

of the physical fields in this theory. The equations of motion with respect to χ0

and χi are respectively

Ṗ = − ∂iP i (5.47)

Ṗi = −m
2

4
∂ih

kjηkj +
m2

2
∂jh

kjηki +
m2

2
∂j∂

jχi (5.48)
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The equations of motion with respect to P and Pi are respectively

χ̇0 = − h00

2
(5.49)

χ̇i +
2

m2
√
g
Pi + ∂iχ

0 + h0jηji = 0 (5.50)

Linearizing the mimetic constraint, eq 4.26, gives

h̄00 = gµν∂µφ
0∂νφ

0 − 1

=
(
h00 + 1

) (
1 + ∂0χ

0
) (

1 + ∂0χ
0
)
− 2h0i

(
1 + ∂0χ

0
) (
∂iχ

0
)

+hij
(
∂iχ

0
) (
∂jχ

0
)
− 1

= h00 + 2∂0χ
0 = 0 (5.51)

which is exactly eq 5.49.

By substituting eq 5.36, for Pi, in eq 5.50, we get

m2

(
∂ρh̄ρk −

1

2
∂kh̄

)
= 0 (5.52)

Up to linear order, eq 5.47 gives
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m2√g
8

(
−2ḣ00 + 4∂0∂iχ

i + 2∂0h
ikηik

)
+2
√
gλ̇− 4

√
g
m2

8
χ̈0 +

m2√g
8

(
−4∂i∂jχ

0ηij − 4∂ih
0i
)

−
m2√g

2
∂i∂0χ

i = 0 (5.53)

which is, upon replacing h by h̄, exactly the same as

∂0λ−
m2

4

(
∂ρh̄ρ0 −

1

2
∂0h̄

)
= 0 (5.54)

The remaining equation of motion eq 5.48 gives the expression of the conjugate

momentum Pm.

The linearized equation of motion of h00 is

G00(−h̄ρσ) = 2λ+
m2

4
h̄ (5.55)

which is equivalent to

4h̄+ ∂i∂jh̄ij = 4λ+
m2

2
h̄ (5.56)

where G00 is the (0− 0) component of the below linearized Einstein tensor

Gµν(hρσ) = − 1

2

(
∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ∂µ∂νh

)
+

1

2
ηµν
(
∂2h− ∂σ∂ρhρσ

)
(5.57)
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The Linearized equation of motion of h0i is

G0i(−h̄ρσ) = −m
2

2
h̄0i (5.58)

which is equivalent to

4h̄0i + ∂0∂
kh̄ki + ∂0∂i

(
4

m2
λ− 1

2
h̄

)
= m2h̄0i (5.59)

Finally, the linearized equation of motion of hij is

Gij(−h̄ρσ) = −m
2

2

(
h̄ij −

1

2
ηijh̄

)
(5.60)

using eq 5.57, the (i− j) equation becomes

∂2h̄ij − ηij

(
1

2
∂2h̄− 4λ̈

m2

)
= −m2

(
h̄ij −

1

2
ηijh̄

)
(5.61)

The equations of motions obtained here, are exactly the same as that obtained in

the paper of Chamseddine and Mukhanov [Chamseddine and Mukhanov, 2018a].

5.4.3 Poisson Bracket

To examine the number of physical degrees of freedom, we need to study the

constraints and construct the Poisson brackets.
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The conjugate momenta Π and Πi, eqs 5.37 and 5.38 respectively, leads to the

below four first primary constraints

T = Π +
1

4
∂kh

0k

Ti = Π− 1

4
∂ih

00 − 1

4
∂iηrsh

rs +
1

2
∂lηirh

rl (5.62)

The total Hamiltonian, eq 5.46, shows that h00 is just a Lagrange multiplier. This

leads to an extra primary constraint N

N = −1

4
∂j∂ih

ij +
1

4
∂i∂

ihklηkl +
1

2
P (5.63)

The Poisson brackets of these five first primary constraints with the total Hamil-

tonian, lead to a set of secondary constraints. The time change of T is

{T,H} = +
1

4
∂j∂ih

ij − 1

4
∂i∂

ihklηkl −
1

2
P = 0 (5.64)

Up to linear order, P
2

can be written as m2

8

√
gh̄ + λ

√
g. After substitution, we

notice that the time change of T is exactly the same as the equation of h00 eqs

5.55, 5.56.

Similarly, the time change of Ti is given by the Poisson bracket

{Tk, H} = −
(

+
1

8
∂k∂jh

0j − 1

2
∂i∂

ih0jηkj − Pk −
1

2
∂k
(
ηijΠij

))
+

1

4
ηij∂k

(
hij
)
− 1

2
ηkj∂i

(
hij
)

= 0 (5.65)
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which is the equation of motion of h0i eqs 5.58,5.59. The time change of N is

{N,H} = 0 (5.66)

hµν and χA represent fourteen independent fields. The presence of four primary

and four secondary constraint reduces the number of degrees of freedom to six.

The additional primary constraint leaves us with five independent physical de-

grees of freedom representing the massive graviton. Thus, this theory is indeed

ghost free.

5.4.4 Looking at the Mimetic Term

To make sure that the mimetic term doesn’t represent ghosts, we need to examine

it’s energy density. To achieve this, we start expanding our Hamiltonian eq 5.46

to second order in scalar perturbations. For small perturbations, different fields

are expanded as follows

χ0 = χ0

χi = χ̃i − ∂iπ

h00 = −2φ

h0i = 0

hij = 2ψηij (5.67)

Substituting these perturbations in the Hamiltonian and using the mimetic con-

straint h̄00 = 0, the scalar Hamiltonian becomes, up to second order,
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Hscalar =

∫
d4x

(
ψ4 ψ − 3m2

4
ψ2 − 2χ̇04 ψ − m2

2
ψ4 π +

m2

4
4 π4 π

+χ̇0P − P i∂iχ
0 − 3ψ̇2 − 1

m2
PiP

i

)
(5.68)

Up to first order in scalar perturbations, the momenta P eq 5.35 and Pi eq 5.36

become

P = 24 ψ

Pi = −m
2

2
∂iχ

0 +
m2

2
∂iπ̇ , (5.69)

Varying the scalar Hamiltonian eq 5.68 with respect to χ0 and substituting the

above expressions for P and Pi, we get

ψ̇ =
−m2

4

(
χ0 − π̇

)
. (5.70)

which is exactly the scalar perturbation of eq 5.47

Ṗ = −∂iP i. (5.71)

Keeping two variables only, ψ and π, the above scalar Hamiltonian becomes
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Hscalar =

∫
d4x

(
ψ

(
4− 3m2

4

)
ψ +

4

m2
ψ̇

(
4− 3m2

4

)
ψ̇

−m
2

4
(2ψ4 π −4π4 π)− 2π̇4 ψ̇

)
(5.72)

To get the energy density of the mimetic term λ, we need to diagonalize the

Hamiltonian by finding an expression of ψ in terms of λ and π. Expanding the

equation of motion of h00 eq 5.56 or the equation of λ eq 5.45, up to first order

in scalar perturbation, we get

4ψ − 3m2

4
ψ = λ+

m2

4
4 π (5.73)

which gives

ψ =

(
4− 3m2

4

)−1(
λ+

m2

4
4 π

)
(5.74)

Upon substituting the expression of ψ in eq 5.72, the Hamiltonian turns to be

diagonlaized and function of the mimetic term only

Hλ =

∫
d4x

(
−16λ̇2

m2 (3m2 − 44)
− 4λ2

(3m2 − 44)

)
. (5.75)

The momentum of λ, pλ, is
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pλ =
−32λ̇

m2 (3m2 − 44)
(5.76)

In terms of pλ, the Hamiltonian becomes

Hλ = −p
2
λm

2 (3m2 − 44)

64
− 4λ2

3m2 − 44
(5.77)

To check the sign of the energy density of λ, we consider different modes. For

plane wave modes of wave number ~k, 4 is −k2. For modes with k � m, the

above energy density reduces to

−4

m2k2

(
λ̇2 +

m2

4
λ2
)
. (5.78)

This appears to be negative and singular as m2 goes to zero. However, looking

at the equation of motion that we get from Hλ

λ̈+
m2

4
λ = 0,

we deduce that λ̇ ∝ mλ. This fact avoids the singularity m2 → 0. For m2 → 0

the energy density of the λ term becomes

εmim ' λ− λ2

k2
(5.79)
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where the second term is due to the gravitational self interaction which is much

smaller than the first term for λ � k2. In this limit, the energy density is

positive. The problem arises if we consider λ > k2. In this limit, the linear

perturbation theory will be no more valid. Hence, we need to re-examine the

non-linear theory again. [Chamseddine and Mukhanov, 2018b]. It is well known

that the self interaction between matter results in a negative gravitational energy

which reduces the total energy density. If this negative energy becomes compa-

rable to the linear term then we might end with a universe with zero total energy!

The Hamiltonian formulation of ghost free mimetic massive gravity theory

shows that this theory is indeed ghost free with five physical degrees of free-

dom describing graviton. In contrary to the linear Fierz Pauli’s massive gravity

theory that suffers from the vDVZ discontinuity, this theory doesn’t since the

constrained mimetic scalar field mixes in a different way leading to a different

mass term.
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Chapter 6

Mimetic Horava Gravity

Strong, weak, electromagnetic and gravitational forces are the three fundamen-

tal forces in nature that govern the interaction between the constituents of this

universe. They differ between each others according to their strength and range.

Weak, electromagnetic and strong interactions are well defined in the context

of standard model as gauge theories respecting a certain local symmetry. The

discovery of the Higgs bozon (2012) was the best proof for it’s success. The stan-

dard model is the best paradigm to construct a quantum field theory for these

interactions. Incorporating gravity in it has not been a successful step since GR

describes gravity in terms of the metric, which is a dynamical quantity. In addi-

tion, the symmetries in GR is the diffeomorphism and Local Lorentz ones that

are related to the coordinates of space-time. Such issues makes the quantization

of gravity a challenging one. As mentioned before, several reasons have pushed

physicists to quantize gravity. Quantizing gravity is essential to explain the early

universe and singularities. Moreover, using the classical GR theory to unify grav-

ity with the other interactions, described by a well defined quantum field theory,

is impossible. The idea of quantum gravity started with Rosenfeld who talked

about the need for quantizing gravity [Rosenfeld, 1930]. For a detailed review of
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the history of quantum gravity review [Rovelli, 2000]. In general, several theories

have been formulated to quantize gravity, directly or indirectly. The main goal

of direct quantum gravity theories is to quantize gravity. They start from a given

classical theory of gravity and apply certain quantization rules. The covariant

and canonical quantum gravity theories fall into this class of quantum gravity

theories. In the covariant theory, we usually start from the gravitational path

integral

Z[g] =

∫
Dgµν(x)eiSEH [gµν(x)] (6.1)

and they apply the perturbation strategy by expanding the metric around a back-

ground one ḡµν

gµν = ḡµν +
√

32πGfµν (6.2)

where fµν denotes the quantized graviton field.

Things resemble the perturbation theory applied for the other forces. Unfortu-

nately, the resulting theory is not renormalizable because the coupling constant

[GN ] has negative mass dimension [GN ]. In addition, the graviton propagator

is proportional to 1
k2

.To remove divergences, physicists start adding higher order

derivative terms to the Einstein-Hilbert action [Stelle, 1977].

SR2 [gµν ] =

∫
M

d4x
√
−g
(

Λ +
R

2
+ αRµνR

µν + βR2

)
(6.3)
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Although such combination renders the theory renormalizable, it makes it un-

stable because the higher derivatives introduce additional ghost-like degrees of

freedom. These negative energy particles are due to the presence of orders of

time derivative higher than two in the modified action eq 6.3. The second direct

approach to quantum gravity is the canonical one. The Hamiltonian formulation

of gravity is constructed at the classical level and then everything is translated

into the quantum.

String theory belongs to the indirect theories of quantum gravity. It’s main goal

is to construct a unified quantum theory of all interactions.

6.1 Horava-Lifshitz (HL) Gravity

Higher order spatial derivatives are important to improve the UV behavior of

the theory while the higher order time derivatives are introducing ghosts!! A

possible resolution was suggested by Horava who chose to break Lorentz invari-

ance LI only at very high energies. Horava’s action is restricted to contain time

order derivative terms only up to second order while the order of spatial deriva-

tive is kept arbitrary. The restriction on the time derivatives solves the problem

of ghosts. Such strategy resembles the usual technique of quantum field theory

QFT of usual interactions. The only difference is that Horava chose to break

Lorentz invariance by a Lifshitz-type of anisotropic scaling between space and

time. [Wang, 2017].

x→ bx

t→ bzt (6.4)
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where z is the dynamical critical exponent. At low energies the invariance is

restored again.

According to dimensional and power counting analysis, Horava found that his

theory is renormalizable when z = 3. The rescaling choice eq 6.4 not only break LI

but also the four dimensional diffeomorphism invariance. The spatial invariance is

still respected. Based on these requirements, it is easy to construct the Horava’s

action. Working in the ADM formalism and using the variables (N,N i, gij),

Horava’s action will be made up of terms build up of the below tensors and

scalars and their linear combinations.

Rij, Kij,∇i, ai (6.5)

Rij is the three dimensional Ricci tensor constructed from the 3D metric gij.

Kij is the Extrinsic curvature defined as

Kij ≡
1

2N
(− ˙gij +∇iNj +∇JNi) (6.6)

∇i is the Covariant derivative with respect to gij and ai is defined as

ai ≡
N, i

N
(6.7)

One of the terms constructing the Horava’s Lagrangian is the gravitational

Chern-Simons term given by

ω3(Γ) ≡ Tr(Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ)

= εijk(Γmil ∂jΓ
l
km +

2

3
ΓnilΓ

l
jmΓmkn) (6.8)

68



where Γ is the christoffel symbol defined using the metric gij. The second term

constructing the Horava’s action is ∝ CijC
ij where Cij is the Cotton-York tensor

defined by

Cij = εiklk (Rj
l −

1

4
Rδjl ) (6.9)

Other terms are like:

KijK
ij, K2, RRijR

ij, KijR
ij, aia

i, R2, RijR
ij... (6.10)

To summarize, Horava’s Lagrangian, as any Lagrangian, can be written as the

sum of 2 terms: the kinetic one LK and the potential one LV . Only the extrinsic

curvature Kij contains time derivative of the metric gij. Thus, the kinetic term

of the Lagrangian is made up of only two terms KijK
ij and K2. All the other

terms constitute the potential terms of the Lagrangian LV .

There are plenty of these terms. To reduce them, Horava imposed extra condi-

tion on the lapse function, the projectable condition N = N(t), which eliminates

all the terms proportional to ai and it’s derivatives. Thus, ending up with the

minimal theory. Extra conditions have been imposed like the detailed balance

one on the potential part of the Lagrangian [Mukohyama, 2010].

Although Horava’s theory have several cosmological applications concerning the

horizon issue and the flatness one, it still suffers from several problems [Hořava, 2011]

even after imposing the 2 extra conditions, the projectable and the detailed

balance ones. First of all, the Newtonian limit of the theory doesn’t exist
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[Lü et al., 2009]. Moreover, the breaking of the diffeomorphism invariance gen-

erates new dynamical degrees of freedom which remain strongly coupled as we ap-

proach the ”GR limit” [Charmousis et al., 2009], [Blas et al., 2009], [Li and Pang, 2009].

To solve these issues, several modifications to the initial theory have been pro-

posed. Unfortunately, these modified Horava’s theories prove to suffer from ad-

ditional problems [Henneaux et al., 2010].

6.2 Mimetic Horava Gravity

Recently, Chamseddine, Mukhanov and Russ were able to regenerate the Ho-

rava quantum gravity model in a diffeomorphic invariant way, without the risk

of introducing ghosts. There work was based on mimetic gravity. Using the

mimetic scalar field φ, all the terms of Horava gravity action, respecting the

space diffeomorphism, are constructed from four dimensional tensors subjected

to synchronous gauge [Chamseddine et al., 2019].

In the ADM formalism, the metric is written as

ds2 = N2dt2 − γ(dxi +N idt)(dxj +N jdt), i = 1, 2, 3 (6.11)

where γij = −gij. In the synchronous gauge, the solution to the mimetic con-

straint eq 4.26 is

φ = t+ A (6.12)
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Thus, φ can represent a specific hypersurface with a timelike unit vector nµ = ∂µφ.

In addition, we define the projection operator P ν
µ as

P ν
µ = δνµ − ∂µφ∂kφgνk (6.13)

satisfying the following relations

P ρ
µP

ν
ρ = P ν

µ

P ν
µφ = 0 (6.14)

In the synchronous gauge, the projection operator have the following components

P 0
0 = 0

P i
0 = 0

P 0
i = 0

P j
i = δji (6.15)

Using nµ and P ν
µ , it is easy to construct tensors with the only non zero compo-

nents are along the space direction.

The extrinsic curvature Kij, used to construct the terms of Horava’s action, can

now be easily defined in terms of φ in the synchronous gauge as .
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Kij = −1

2
γ̇ij = −∇i∇jφ

Kj
i = γjlKil = ∇i∇jφ

K = Ki
i = (ln

√
γ) = 2φ (6.16)

In the synchronous gauge and using the projection operator, the components of

the 3 dimensional Ricci tensor 3Rij, coincides with i− j components of the below

tensor

R̃µν = Pα
µ P

β
ν Rαβ + 2φ∇µ∇νφ−∇µ∇ρφ∇ν∇ρφ−Rγ

µδν∇
δφ∇γφ (6.17)

Thus, the 3-dimensional Ricci scalar 3R, which coincides with Ricci scalar R̃, can

be easily found by contracting R̃µν with gµν

R̃ = 2Rµν∂µφ∂νφ−R− (2φ)2 +∇µ∇νφ∇µ∇νφ (6.18)

Writing the components of the extrinsic curvature Kij and that of the three di-

mensional Ricci tensor 3Rij and the Ricci scalar 3R in terms of φ, now we can

start constructing the basic terms of the Horava’s action in terms of the mimetic

field. For example, the Cotton-York tensor eq 6.9 is now defined as

C̃µ
ν = − 1√

−g
εµρkλ∇λφ∇ρ(R̃νk −

1

4
gνkR̃) (6.19)
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The Chern-Simons form is added to Horava’s action through the below term

∫
dφ ∧ ω̃P =

∫
dφ ∧ (ωP −∇λdφ ∧Rτ

λ∇τφ) (6.20)

where ωP = Γνµ ∧ dΓµν + 2
3
ΓµνΓνρΓ

ρ
µ

Gathering all the terms together, we can write the mimetic Horava action as

I =

∫ √
−g(∇µ∇νφ∇µ∇νφ− (2φ)2 + R̃)d4x (6.21)

where R̃ is given by eq 6.18.
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Chapter 7

Mimetic Horava Gravity and

Surface Terms

The Hamiltonian analysis is usually the second step after the construction of any

field theory. The existence of surface terms in the action formalism makes it hard

to perform the canonical analysis. Einstein Hilbert (EH) theory is an example

of field theories with the surface terms problem. The reason behind the presence

of these surface terms, in EH Lagrangian, is the second order derivative of the

dynamical variable, the metric gab, hidden in the Ricci scalar R. These second

order derivatives may lead to equations with third order derivatives that leads

to the presence of ghosts. To avoid such a problem, integration by part can be

applied to remove the second order derivative terms from the main Lagrangian.

Thus, the main EH Lagrangian (Ricci Scalar R) will divide into two parts, the

first contains first order derivative terms that are responsible for deriving the field

equations and the second is the surface one that hides the second order derivative

terms in it. Surface terms don’t contribute to the field equations. Ignoring the

presence of these surface terms,in canonical formulation, creates problems unless

certain boundary terms is added to the constraint to give a well defined equa-
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tions of motion. It is better to remove these surface terms from the beginning.

Einstein proposed to remove the surface term by subtracting it from the main

action [Einstein, 1952]. Thus, the new Lagrangian for general relativity becomes

L = R−Lsurface. Unfortunately, the new action is not a diffeomorphic invariant.

The important property of the boundary term that should be added to the EH

action is to kill all the normal derivatives of the metric on the boundary surface.

There are plenty of boundary terms satisfying the above condition as shown by

Charap and Nelson in [Charap and Nelson, 1983]. This is done by adding to the

EH action a boundary term that keeps the action invariant under diffeomorphism.

The well known boundary term is the Gibbons-Hawking-York term which de-

pend on the extrinsic curvature K [York Jr, 1972], [Gibbons and Hawking, 1977],

[York, 1986]. Thus, the new surface-independent GR action becomes

I = (16π)−1
∫
M

R
√
gd4x− 1

8π

∫
∂M

d3x
√
hK (7.1)

where ∂M is the boundary of M, hab is the induced metric on ∂M and K is the

trace of the second fundamental form on ∂M .

7.1 Mimetic Horava Gravity and Surface Terms

Before performing the Hamiltonian analysis of the mimetic Horava theory, it is

essential to check if there exist surface terms in the action eq 6.21. We are going

to show that the surface terms in the mimetic Horava action will cancel among

each other [Malaeb and Saghir, 2020]. The mimetic Horava action eq 6.21 can

be rewritten as
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I =

∫ √
−g(−R− 2∇µ(2φ∇µφ) + 2∇σ(∇µ∇σφ∇µφ))d4x (7.2)

We define the following actions

IH =

∫ √
−gRd4x (7.3)

I1 =

∫ √
−g(−2∇µ(2φ∇µφ)d4x) (7.4)

and

I2 =

∫ √
−g(2∇σ(∇µ∇σφ∇µφ)d4x) (7.5)

To check if the action eq 7.2 suffers from any surface term, we need to vary each

action eqs 7.3,7.4 and 7.5 alone. The variation of the Einstein Hilbert action gives

δIH =

∫
γ

Gαβδg
αβ
√
−gd4x−

∮
∂γ

εhαβδgαβ,µn
µ|h|

1
2d3y (7.6)

Where

nµn
µ = ε

gµν = εnµnν + hµν (7.7)
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The variation of I1 gives

δI1 = I ′1(δφ) + 2

∮
∂γ

∇µφ
1

2
gρσgαλ(2δgρλ,σ − δgρσ,λ)∂αφdΣµ (7.8)

where

I ′1(δφ) = 2

∮
∂γ

∇µφ2δφdΣµ + 2

∮
∂γ

∂µδφ2φdΣµ. (7.9)

The variation of I2 term gives

δI2 = I ′2(δφ)− 2

∮
∂γ

gρτ (δgµτ,σ + δgστ,µ − δgµσ,τ )∇ρφ∇µφdΣσ (7.10)

Where

I ′2(δφ) = 2

∮
∂γ

∇µ∇σδφ∇µφdΣσ + 2

∮
∂γ

∇µ∇σφ∇µδφdΣσ (7.11)

By setting δφ = 0 on the boundaries, I ′1(δφ) and I ′2(δφ), could be integrated out

(surface of a surface) and will vanish .

Our aim is to study under what condition (if any) the surface terms, over δgµν ,

of δIH , δI1 and δI2 will cancel out upon addition. Knowing that
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dΣµ = nµε|h|
1
2d3y (7.12)

and the completeness relation of the metric is

gαβ = εnαnβ + hαβ (7.13)

it turns out that the surface terms will cancel out upon the choice of

nµ = ∂µφ. (7.14)

Hence, under the condition 7.14, the surface terms in the mimetic Horava action

cancel each others without the need to add extra term as in the case of pure

Einstein gravity theory,
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Chapter 8

Conclusion and Future Work

In this dissertation, three topics were considered, unification of gauge and grav-

ity Chern-Simons theories in 3D space-time, canonical formulation of ghost free

mimetic massive gravity and the mimetic Horava gravity and surface terms.

To reach the unification of both gravity and gauge theories in 3D space-time,

we based our work [Saghir and Shamseddine, 2017] on the work of Chamseddine

and Mukhanov [Chamseddine and Mukhanov, 2016b] for the unification of grav-

ity and gauge theories. This could be achieved in two different ways based on

the starting point. In the first method, we proved that the pontryagin density

of the larger group SO(6) splits into the pontryagin density of gauge theory with

SO(3) group and that of gravity with SO(3) group. Since the pontryagin density

is the divergence of the Chern-Simons form, the unification can be translated

from 4D to 3D space-time. The other method is to start working directly with

Chern-Simons actions and make the splitting using the characteristics of gamma

matrices [de Wit and Smith, 2012]. The quantization of the coupling constant κ

depends on the chosen group. If we start using the compact SO(6) group, the

coupling constant is quantized while it is not for the SO(1,5) group. After con-

sidering the weak coupling limit, we deduced that the partition function of the
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larger group SO(6) or SO(1,5) is indeed a topological invariant quantity without

the need to add any extra term as Witten did [Witten, 1989]. Further work can

be done by generalizing this work to consider supersymmetric groups. It should

be noted that by gauging the supergroups, or by extending the space-time man-

ifold to a supermanifold, or both we can extend our Chern-Simons theory into a

supersymmetric one. The idea is to choose the suitable supergroup corresponding

to SO(1,5). According to [Chamseddine, 1990], we can choose our supergroup to

be

O(6, 1)⊕ SU(2), (8, 2) (8.1)

The second topic is related to mimetic gravity theory which predicts dark matter

without the addition of any extra degree of freedom [Chamseddine and Mukhanov, 2013].

There exits several extensions to this theory. A recent one is the ghost free

mimetic massive gravity [Chamseddine and Mukhanov, 2018a],

[Chamseddine and Mukhanov, 2018b]. The graviton gain mass using the BEH

mechanism using four scalar field where one of them acts as the mimetic field.

The theory is free from any negative energy particles. Our work is to perform the

Hamiltonian analysis of this theory [Malaeb and Saghir, 2019]. After defining the

momenta of the variables and constructing the Hamiltonian up to second order in

perturbation, we continue to find the equations of motion. One of them describes

a massive graviton hTij and another one describes the mimetic dark matter λ. The

other fields can be expressed as linear combinations of these two. Poisson brack-

ets are computed and the physical degrees of freedom are found to be six, five

for graviton and one for the mimetic field. To make sure that λ doesn’t represent

ghosts, we found the scalar part of the Hamiltonian up to second order and we

deduced that the energy density of λ is indeed positive. Further work can be
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done by formulating the Hamiltonian analysis of the non linear theory to prove

that it is indeed ghost free.

The third topic is related to mimetic Horava gravity, another extension of mimetic

gravity [Chamseddine et al., 2019]. Using the mimetic field, Chamseddine and

Mukhanov regenerated the Horava quantum gravity model in a diffeomorphism

invariant way without the presence of ghosts. We proved that the mimetic Ho-

rava action doesn’t suffer from any surface terms, as the case of pure Einstein

Hilbert action. The surface term resulting from the variation of Einstein Hilbert

action is canceled with that resulting from the variation of the added terms in

the mimetic Horava action [Malaeb and Saghir, 2020]. Further work can be done

by formulating the Hamiltonian analysis of this theory .
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[Wang, 2017] Wang, A. (2017). Hořava gravity at a lifshitz point: a progress

report. International Journal of Modern Physics D, 26(07):1730014.

[Witten, 1988] Witten, E. (1988). Topological quantum field theory. Communi-

cations in Mathematical Physics, 117(3):353–386.

[Witten, 1989] Witten, E. (1989). Quantum field theory and the jones polyno-

mial. Communications in Mathematical Physics, 121(3):351–399.

[York, 1986] York, J. W. (1986). Boundary terms in the action principles of

general relativity. Foundations of Physics, 16(3):249–257.

[York Jr, 1972] York Jr, J. W. (1972). Role of conformal three-geometry in the

dynamics of gravitation. Physical review letters, 28(16):1082.

90



[Zakharov, 1970] Zakharov, V. I. (1970). Linearized gravitation theory and the

graviton mass. JETP Lett.(USSR)(Engl. Transl.) 12: 312-14 (5 Nov 1970).

[Zlatev et al., 1999] Zlatev, I., Wang, L., and Steinhardt, P. J. (1999).

Quintessence, cosmic coincidence, and the cosmological constant. Physical

Review Letters, 82(5):896.

91




	Blank Page
	Blank Page



