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Title: An Integrated TCGA Pan-Cancer Analysis on Biological Variability Across Patients 

 

Introduction: Inter-individual cancer variability remains the main challenge for resistance to 

drug treatment. One of the well-known reasons is the set of genetic alterations and 

polymorphisms affecting target genes, which cause subsequent changes in gene expression 

patterns among patients. Whether the observed variability in gene expression affects 

diagnosis, prognosis, and outcome remain poorly understood. For this, understanding the 

molecular mechanisms underlying biological variability entails identifying the set of 

variable and non-variable genes in different cancer types.   

Aim: In this study, we hypothesize that biological variability metric will identify key genes 

that play a role in cancer diagnosis, progression and drug-response. 

Methods: Biological variability was calculated on patients' transcriptome data across 33 

different cancers retrieved from the TCGA database. Profiling the transcriptome in 

individuals using RNA-seq technologies has been widely used to obtain mRNA-based 

molecular markers. Given the robustness of RNA-seq data, we propose a metric that can 

easily be implemented to detect molecular biomarkers, whether diagnostic, prognostic, or 

therapeutic using gene expression data...  

Results: We derived a list of prognostic and diagnostic markers that were cancer type-

specific or common between cancers. We then derived all the list of potential drug-target 

genes based on their biological variability score and oncogenic properties 

Conclusion: Not only is biological variability an important measure to identify variable and 

non-variable genes in each cancer, but it is key to identify cancer-specific molecular 

markers, predict reliable drug-target genes and identify genes related to cancer progression 

and development. Gaining a deeper understanding of genes expression variability in cancer 

will broaden our knowledge on genes related to resistance early cancer detection, outcome, 

and the development of personalized treatment. 
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CHAPTER I 

INTRODUCTION 

 

With the race towards precision medicine, the past decade has witnessed a rapid 

acceleration in our understanding of the genetic basis of cancer growth and development. 

This was followed by redefining the drug-targeting approaches and moving towards 

personalized treatment [1]. However, the latter was faced with several challenges resulting 

from the inter-individual heterogeneity. This variability is the result of the inherently 

unstable nature of cancer, characterized by a set of genetic alterations in gene expression 

patterns that stems from various molecular aberrations that occur in the disease course [2].  

A key factor for determining inter-individual heterogeneity is studying the 

variability of expression of key genes that play a role in cancer progression and prognosis. 

For example, transcriptome data of patients with Adenoid Cystic Carcinoma revealed that 

20% of the patients had a poor survival rate, due to a set of genes that resembled embryonic 

stem cells [3]. This variability of expression stems from the stochastic nature of genes, 

which is thought to be the consequence of several epigenetic and regulatory factors in the 

genome [4]. Moreover, a multivariate analysis used on transcriptome data of Glioblastoma 

patients identified a set of prognostic markers that played a significant role in disease 

progression and tumorigenesis [5]. 

The variability of drug effectiveness and response is due to the variability of 

expression of cancer biomarkers and drug-targeted genes [6]. For example, molecular 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800907/
https://www.ncbi.nlm.nih.gov/books/NBK6366/
https://academic.oup.com/bioinformatics/article/35/17/3028/5289324
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profiling of prostate cancer biopsies from treated patients identified 7 gene signature 

biomarkers, including a gene that exhibits a chemo-resistant property (ORM1) and two 

cell-cycle related genes that serve as prognostic markers (ADAM7 and FAM72B) [7]. 

Another study by Simonovsky et al identified genetic polymorphism in drug-targeted genes 

and discovered that drugs targeting variable genes tend to be ineffective in the population 

[6].  

With the rapid acceleration of high through-put technologies, several projects have 

emerged like The Cancer Genome Atlas (TCGA) which generated a large amount of 

transcriptomic and epigenetic data [8], and hence created an opportunity for 

bioinformaticians to mine this data and turn it into a valuable recourse. It also allowed 

researchers to explore molecular profiling data through a comprehensive and integrative 

pan-cancer analysis. Zhang et al carried a systematic and pan-cancer epigenetic analysis on 

11 cancer types and identified co-methylation clusters in 11 cancer types [9]. Another study 

by Hoadley et al conducted a comprehensive pan-cancer analysis and identified a common 

subtype characterized by TP53 alterations and deregulation of immune gene signatures 

[10]. More recently, Cao et al investigated common and specific cancer signatures related 

to immune response, cell cycle and angiogenesis through conducting a comparative pan-

cancer analysis [11]. However, understanding how gene expression variability correlates to 

variation drug response and specific cancer signatures is still a challenge.  

RNA-seq data has been widely used in countless areas of cancer research to profile 

the composition of the entire transcriptome, including coding and non-coding RNAs [12, 

13]. It has helped identify a wide range of therapeutic gene targets, biomarkers, and gene 

https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-14-977
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expression patterns among patients. This means that RNA sequencing can reveal a wide 

range of functional and structural changes experienced by genes rather than just revealing 

specific mutations. For example, Biton et al used bladder cancer transcriptome data to 

identify components related to tumor environment and tumorigenesis [14]. However, to our 

knowledge there is no large-scale pan-cancer study that explores cancer diagnostic and 

prognostic biomarkers using gene expression variability. Here, we hypothesize that 

performing a systematic pan-cancer analysis on biologically variable and non-variable 

genes will help us in discovering genes that play role in cancer diagnosis and prognosis. 

In this study, we used RNA-seq of 11,000+ patients from 33 different cancer types 

from the TCGA database to analyze gene expression variability [8]. We derived a metric to 

extract biological variability from the observed total variability in gene expression between 

patients. This metric allowed us to identify cancer types sharing similar patterns in gene 

expression variability. Additionally, we detected association between biological variability 

and molecular biomarkers. 

  

https://www.sciencedirect.com/science/article/pii/S2211124714009048
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CHAPTER II 

THESIS OBJECTIVES AND AIMS 

 

Aims: 

1. Derive a metric to call biologically variable genes based on RNA expression among 

patients of the same cancer type. 

2. Conduct a pan-cancer analysis on transcriptome data from the TCGA database to 

identify biologically variable and non-variable genes in different cancer types. 

3. Extract cancer-specific RNA-based diagnostic and prognostic markers from 

biologically variable genes. 

4. Identify potential drug-target genes based on biological variability score and 

oncogenic property.  
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CHAPTER III 

MATERIALS AND METHODS 

 

A. Data Processing 

Data were downloaded from the TCGA database using custom R/Bioconductor scripts 

and duplicated samples were removed. Some of the primary tumor samples included both 

Formalin-Fixed Paraffin-Embedded (FFPE) and primary solid tumor samples from the 

same patient. Given that FFPE-derived RNA is highly degraded which in turn impacts its 

efficacy as a reliable source for biological analysis [15], we chose to proceed with fresh 

primary solid tumor samples for solid tumors and peripheral blood samples for liquid 

tumors. For this, we used the TCGABioLinks R package 

(https://bioconductor.org/packages/TCGAbiolinks/) to get information on the type of 

biospecimen, whether it is an FFPE or not. Next, we removed duplicated samples using a 

source code available on Github (ShixiangWang/ tcga_replicateFilter.R) [16] 

B. Data Normalization and Transformation 

We performed three normalization techniques in order to choose the best one that fits 

our experimental design. One is Transcript Per Million (TPM) normalization, a within-

sample normalization which uses a biological approach to normalize data by taking into 

account the transcript size [17]. TPM is calculated using the following formula: 

https://pubmed.ncbi.nlm.nih.gov/31856832/
https://bioconductor.org/packages/TCGAbiolinks/
https://gist.github.com/ShixiangWang/33b2f9b49b77eaa8f773b428480f9101
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𝑅𝑃𝐾 𝑖𝑗 =
Rij

𝐿𝑖
 

TPM ij = RPK ij ÷
∑ 𝑅𝑃𝐾 𝑖𝑗

1,000,000
 

where Rij is Read Count of gene i in patient j and Li is the length of gene i in kilobase pair. 

[18]. The second method is log2 (TPM +1), a highly used normalization technique in 

several areas of research. The third and fourth methods are vst (variance stabilizing 

transformation) and rlog (regularized log transformation), two transformation techniques 

acquired from the DESeq package [19]. Rlog performs the same normalization as vst but it 

takes a longer time to compute when analyzing data greater than 100 samples; therefore, we 

proceeded with vst transformation since most of the cancer types had more than 100 

samples.  

In calculating gene expression variability, we need to find the variable and non-variable 

genes regardless of gene expression level. For this we used the SCnorm package [20] which 

computes gene count-depth relationship and determines which of the techniques mentioned 

above is unbiased to any gene expression difference. When using SCnorm, genes that had 

an expression of zero in more than 20% samples were removed. The methods were then 

compared in biological context to check which of the methods help control false 

discoveries.   

https://academic.oup.com/bioinformatics/article/26/4/493/243395
https://www.nature.com/articles/nmeth.4263
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C. Evaluating different normalization and transformation techniques 

For the normalization, we adopted one of the most used techniques, called Transcripts Per 

Million or TPM, that scale all libraries to 1,000,000 reads and takes into consideration the 

gene’s length. We then used the SCnorm package [20] to evaluate the effectiveness of two 

widely used transformation techniques, the log2 and vst (Varying Stabilizing 

Transformation).  In each case, the slope of gene i is calculated by finding the ratio of count 

data y and the sequencing depth x between patients. 

𝑠𝑙𝑜𝑝𝑒(𝑖) =
yb − ya

xb − xb
 

D. Filtering Following Biological Variability Calculation 

Once we collected the biologically variable genes, we filtered out the non-variable 

genes (Biological variability < 0) that had a mean expression of at most 0.5 following 

normalization. Then, we removed the genes that had a length of less than 200 kb to filter 

out all the non-coding RNA and we excluded the X &Y genes in our analysis so that they 

won't interfere in the biological variability results. 

Genes biotype was determined using the Ensembl Biomart [21], which stratified the 

genes into protein-coding, non-coding and pseudogenes. The latter were filtered out during 

the analysis. Genes that had a biological variability less than or equal to zero were 

considered non-variable and genes with a biological variability greater than 0 were 

variable.  
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E. Cancer type-specific diagnostic markers 

Given a cancer type, we focused on the least variable genes to extract the diagnostic 

markers that are gene-cancer specific by comparing their variability score in the respective 

cancer to their score in other cancer types. Ideally, biomarkers should be cancer-specific 

and possess similar gene expression patterns between cancer patients [22]. Cancer-specific 

diagnostic markers were extracted by exploring the protein-coding genes that possessed a 

biological variability score less than -5 in one cancer and variable in other cancers. We 

validated our results by comparing them to Clinical Interpretation of Variants in Cancer 

(CIViC) Database (http://bionlp.bcgsc.ca/civicmine/). This database uses text-mining 

approaches to extract all the clinically relevant biomarkers from published articles [23].  

F. Extracting Prognostic Markers  

Prognostic markers are more prone to genetic variability and may predispose to 

treatment response. This is because prognostic markers reflect the tumor stage and give us 

insights to possible remissions and recurrence of cancers [24]. Prognostic markers are 

identified by looking at the alterations in gene expression patterns of protein-coding genes 

related to cancer progression and proliferation [24]. Therefore, to extract the prognostic 

markers, we looked for the variable genes with scores greater than 4 that are either cancer-

specific or common in no more than 6 cancers. We also validated our results using the 

CIViC Database [23]. 

http://bionlp.bcgsc.ca/civicmine/
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G. Extracting drug-target genes  

First, we got all FDA-approved drugs with their drug-target genes from the 

Genomics of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/) [25]. Then, we checked the oncogenic property 

(oncogene, TSG, oncogene/TSG) of the drug target genes using the OncoKB database 

(https://www.oncokb.org/cancerGenes) [26].  

To extract the potential drug-target genes from our data, we annotated the genes 

based on their oncogenic property; then we picked the oncogenes that have a low 

variability score in several cancers.  

  

https://www.cancerrxgene.org/
https://www.oncokb.org/cancerGenes
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CHAPTER IV 

RESULTS 

A. Compiling RNA-seq data for 33 cancer types from the TCGA database 

Transcriptome data profiles of human tumor samples were obtained from The Cancer 

Genome Atlas (TCGA) database GDC portal [8]. In July 2019, there were 11,315 samples, 

spanning 33 cancer types. Primary tumor and matched normal tissue samples were selected 

in each cohort as represented in figure 1. Only 21 cancer types have normal samples, of 

which only 16 cancers have more than 10 matched normal tissue samples. To derive a 

metric for calling biologically variable genes, we used the primary tumor samples owing 

their large number of samples in different cancer types. 

 

Figure 1. Number of tumor and normal samples in each of the TCGA cancers. 
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 In this study we processed and downloaded harmonized raw count RNA-seq data (data 

aligned to the most updated human gene assembly, hg38) and processed it using 

R/Bioconductor programming language with a total of 56,734 coding and non-coding genes 

in each cancer. Raw data was filtered for FFPE samples (Materials and Methods). 

B. Data Normalization and Transformation 

Raw transcriptome data may vary due to some uncontrolled experimental conditions, 

also known as batch effects [27][28]. Consequently, it must be normalized and transformed 

prior to any analysis so that genes belong to different samples and expression levels can be 

compared. Essentially, normalization corrects for differences in sequencing depth between 

RNA-seq libraries/samples and for gene lengths while transformation alleviates differences 

between gene groups with varying expression levels. Therefore, choosing the best 

normalization and transformation methods help reducing systematic-derived variability, 

prevent biased results in our analysis, and make transcriptome data comparable across 

samples.  

To this end, we first tested several combinations of normalization and transformation 

techniques and evaluated them by estimating the gene count-depth relationship on 10 

equally-sized expression groups ranging from low to high [20] (Material and Methods, Fig. 

2 and 3). The test on different expression groups will allow us to identify the method that 

has no bias to gene expression levels.  

The method is considered to be effective if the slope of the count-depth for all 

expression levels is flat, or near 0 in mathematical terms. Figure 2 shows the slopes of 3 

file:///C:/Users/Hebaf/OneDrive%20-%20American%20University%20of%20Beirut/Project/paper/Benchmarking%20differential%20expression%20analysis%20tools%20for%20RNA-Seq%20normalization-based%20vs.%20log-ratio%20transformation-based%20methods.pdf
https://academic.oup.com/bib/article/14/6/671/189645
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different expression groups (low, medium and high) in a selection of 6 different cancers for 

clarity, chosen randomly out of the 33 cancers: BRCA (Breast invasive carcinoma), ACC 

(Adrenocortical carcinoma), KICH (Kidney Chromophobe Carcinoma), BLCA (Bladder 

Urothelial Carcinoma) , COAD ( Colon Adenocarcinoma) , and LGG (Brain Lower Grade 

Glioma). The 3 expression groups fell respectively in the 10-20th, 40-50th and 50-70th 

quantiles. Prior to normalization, the slopes of the raw count data in all of the expression 

groups were greater than 0 (non-flat; Fig 2A). In contrast, both log2 (TPM+1) and vst 

methods showed slopes closer or equal to zero in all of the expression groups (Fig 2C-D), 

as opposed to TPM alone (Fig. 2B).  

 

Figure 2. Comparison of the Count Sequencing Depth Slopes between different 

normalization techniques. Slopes for log count data and sequencing depth for 3 different 

expression groups, low (blue), moderate (black) and high (red), determined by their median 

expression in each quantile in 6 different cancers. Slopes of the genes that fall in each of the 

3 quantiles were averaged.  
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To further confirm our findings, we calculated the densities of the slopes within 

each of the 10 equally sized expression groups for the different normalization techniques on 

one cancer type, the KICH cancer dataset. Again, both log2 (TPM +1) and vst (Fig. 3C and 

D respectively) were successful in reducing the variability between different expression 

groups as compared to raw counts or TPM alone (Fig. 3 A and B, respectively). 

 

Figure 3. Comparison of the densities of slopes of 10-equal expression group for different 

normalization techniques. Density plots of the count depth relationship of 10 equally sized 

gene groups (A)  Unnormalized raw data from the KICH dataset (B) Data normalized using 

TPM (C) Data normalized using log2(TPM+1) (D) Data normalized using vst 

 

In conclusion, both log2(TPM+1) and vst methods were effective in reducing technical 

variabilities between genes and thereby eliminating batch effect. However, since vst is slow 

to calculate for large number of genes and is considered to be conservative, we adopted the 

log2(TPM +1) as a method for normalizing and transforming TCGA gene expression data. 
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C. Estimating Biological variability from normalized and transformed RNA-seq 

data 

Inter-tumor heterogeneity remains a major challenge in cancer research. This is due to 

due to genetic polymorphism in key genes that play a role in cancer progression and 

proliferation; hence affecting response to treatment. In order to identify these genes, we 

measured the biological variability of transcriptome data across all samples/patients of a 

cancer for each of the 33 cancers from the TCGA database. While CV (coefficient of 

variance) and total variance were previously used to calculate gene expression variability 

between patients, the former has shown to be biased towards low expressed genes and the 

later towards highly expressed genes [29][30].  

Total variability in gene expression can be due to three factors: biological variability 

(1), technical variability (2), and the variability that arise from shot or counting noise (or 

sampling during the experimental procedure) (3) (Fig 4). 

 

Figure 4. Variability in gene expression arises from 3 forms of variability (biological 

variability, technical variability and shot noise) 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002443
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Total variability is mathematically defined as the average of the squared differences from 

the Mean. For a gene x, total variability will correspond to: 

𝑆2 =  
∑ (𝑥𝑖 −  𝑥) 2n

i=1

𝑛 − 1
 

Biological variability is the variability we intend to measure; it stems from the natural 

variation of gene expression patterns between patients. 

Technical variability is the variability that arises from sequencing variance during library 

preparation steps; it represents the random variability between technical replicates 

associated with experimental procedures like amplification, reverse transcription, and RNA 

extraction. However, RNA-seq experiments proved to have excellent technical 

reproducibility, and it was shown that technical replicates are 97- 99% similar [31]. Taking 

this into account, we assume the technical variability to be equal to zero.  

Last, shot or sequencing noise variability emerges from the uncertainty in 

measuring count data; it’s the unavoidable noise that arises from RNA-seq experiments and 

recurs even if everything in the experimental procedure is the same [32]. For example, even 

if the transcripts' and aliquots' concentrations are equal in the flow cell lanes, the count data 

will still vary, and this variability is known as shot noise [32]. The shot noise follows a 

Poisson distribution since, unlike microarrays that measure continuous data, RNA-seq 

measures count data, and therefore can't be assumed to follow a normal distribution (Fig. 
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5). Poisson distribution considers each individual piece of mRNA to be randomly drawn 

from a pool of mRNA. 

 

Figure 5. Estimating biological variability. Technical variability is estimated as 0 since 

technical replicates are 97-99% similar. Shot Noise follows a Poisson distribution in which 

the variance is equal to the mean. 

 

As such, in mathematical terms, the biological variability of a gene expression can be 

obtained using the formula where Xi corresponds to the Poisson distribution variance: 

𝑉𝑎𝑟 𝑋𝑖 =
∑ (𝑥𝑖 −  𝑥) 2𝑛

𝑖=1

𝑛 − 1
− 𝜇𝑋𝑖 

Using the above formula, we estimated the biological variability of all genes in each of the 

33 cancer types. We then classified the genes into two categories based on their biological 

variability measure: 1) “Variable” for genes with variability > 0; 2) “Non-Variable” for 
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genes with variability <= 0. We suggest that genes classified in each category pose certain 

biological and functional roles in cancer development and detection. 

D. Biological variability is cancer specific    

To gain an idea about the extent of biologically variable genes in different cancers, we 

compared the range of variability for each cancer in the 33 different cancer types.  As 

shown in Fig. 6. Glioblastoma (GBM) and Skin Cutaneous Melanoma (SKCM) were the 

cancers with the lowest and highest range, respectively. Interestingly, the high number of 

variable genes observed in SKCM may explain to the heterogeneity and plasticity of the 

tumor [33]. 

We notice that several cancers share the same lowest non-variable gene. For example, 

FTL gene encodes Ferretin light chain, a protein that is important for iron homeostasis and 

TMSB10 (Thymosin Beta 10) plays an important role in cytoskeleton organization. These 

genes along with other housekeeping genes like GAPDH, ACTB and ribosomal proteins 

like RPL8 (60S ribosomal protein L8) and RPL7A (60S ribosomal protein L7a) are genes 

with low variability scores most likely related  to their basic cellular functions and thus 

justifies their use as reference genes since they are stably expressed and consistent across 

all cancer types [34]. 

On the other hand, each cancer has its unique highly variable gene. For example, 

PRAC1 is the gene with the highest variability in Colon Adenocarcinoma. Interestingly, 

PRAC1 is known for being deferentially expressed between right sided and left-sided colon 

https://www.ncbi.nlm.nih.gov/books/NBK481858/
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cancer [35]. Another example is the orosomucoid 1 gene (ORM1) in Prostate 

Adenocarcinoma, a highly biologically variable gene promoting prostate cancer metastasis 

through its involvement in cancer metabolism and immune response activity [36].  

 

Figure 6. Range of biological variability between cancers. Plot showing the least variable 

gene in gene cancer and the highest variable gene with their respective biological 

variability score in each cancer. The blue dots represent the least variable gene and the 

orange dot represents the highest variable gene in each cancer. The dashed line is the cutoff 

between variable and non-variable genes (Biological Variability =0). 

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.3592
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101066/
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E. Pan-Cancer Analysis provides further context into cancer-specific biological 

variability 

Systematic pan cancer analysis using multi-omics data has been the new paradigm to 

understand individual cancers and to extract information based on transcriptome profiles 

beyond tissue-of-origin cancer classification [37]. Several pan-cancer studies have 

identified gene networks signatures of prognostic and diagnostic properties [38][39].  

We started by performing cross-tumor clustering to examine whether biological variability 

is tumor specific and to extract common or cancer specific biological variability signatures. 

For this we collected the list of biologically variable protein-coding genes for each of the 

33 cancers and clustered the cancers based on their gene expression variability (Fig. 7). 

Interestingly, cancers with the same histological origin exhibited similar gene signature 

patterns and were clustered together (Fig. 7A). For instance, Kidney Chromophobe 

Carcinoma (KICH), Kidney renal clear cell carcinoma (KIRC) and kidney renal papillary 

cell carcinoma (KIRP) were clustered together indicating that they share similar biological 

variability profiles. Similarly, for Colon adenocarcinoma (COAD) with Rectum 

adenocarcinoma (READ) and Brain Lower Grade Glioma (LGG) with Glioblastoma 

(GBM); However, the last 2 cancers possess a unique gene variability pattern, different 

from all the other solid tumors, as they formed an outer group to all other cancer types. To 

further explore this similarity, we calculated the correlation in biological variability for all 

pairs of cancers and plotted it (Fig. 7B). The Correlation analysis of gene expression 

variability confirmed the similarity observed above and, additionally, showed that Acute 

Myeloid Leukemia (LAML) possesses a biological variability pattern that does not match 
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with any of the TCGA cancers (Fig 7B). Given that expression variability was tumor-type 

specific, this suggests the existence of potential mRNA-based biomarkers that could be 

detected using biological variability. 

 

Figure 7. Correlation between the 33 cancers based on biological variability measure. (A) 

Hierarchal clustering of the TCGA cancers based on biological variability score.  Rows and 

columns represent genes and cancer types, respectively. (B) Hierarchical distance clustering 

matrix analysis of the TCGA cancers obtained by using the Manhattan distance method. 

This shows how similar or dissimilar are cancer types in terms of biological variability in 

genes. Red highlights pair of cancers with high similarity in their biological variability. 

LAML shows increased distance (blue squares, high dissimilarity) with all other cancer 

types highlighting its uniqueness. 

 

Last, we checked whether variable or non-variable genes are more or less common 

between cancer types. For this, we calculated the frequency of shared high or low variable 

genes among the 33 cancer types (Fig. 8). Our data showed that the majority of genes with 

high biological variability are unique to one cancer and that several of the least variable 

genes were found common between cancers (Fig. 8). For instance, approximately 285 high 
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variable genes (red) are shared among 3 cancer types as opposed to only 39 low variable 

genes.  

Again, this shows that genes biological variability is highly cancer-specific and its use will 

allow us to unravel cancer specific biomarkers including prognosis and diagnosis genes.  

  

Figure 8. Frequency of common cross-variable genes. The y-axis represents the frequency 

of occurrence of low variable genes (blue) and high variable genes (red) across all the 33 

cancers. The x-axis represents the count of genes. The number of common variable genes 

increases as the frequency of their occurrence as variable between cancers decreases. As for 

the non-variable genes, the number of common genes seems to interplay with highest 

counts at frequency = 1 (only non-variable in one cancer) or 33 (non-variable in all of the 

33 cancers).  For example, 285 genes appear as variable in 3 cancers while only 39 genes 

appear as non-variable. 
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F. Genes encoding diagnostic molecular markers are non-variable. 

Our previous data highlighted the cancer-specific nature of biological variability. We 

thus asked whether cancer-specific non-variable genes are enriched for diagnostic markers. 

Naturally, for a gene to be classified as diagnostic marker, it has to show low biological 

variability among patients of the same cancer type. Therefore, we filtered for genes with a 

low biological variability score in a specific cancer (biological variability < -5) which 

resulted in a total of 131 genes. We then represented the data in a heatmap showing 

diagnostic molecular markers in rows and cancer types in columns (Fig. 9). This approach 

allowed the identification of genes that lack biological variability in one cancer and for 

which the gene is a characterized diagnostic marker.  

For instance, KLK3 is a gene that encodes a prostate-specific antigen (PSA), the 

biomarker for prostate adenocarcinoma [40] and showed to be exclusively non-variable in 

prostate adenocarcinoma (PRAD) with a biological variability score of -14.5, while it was 

variable in the remaining 32 cancers (Fig. 9). 

In addition to KLK3, we derived several biomarkers for other cancers, among them 

were KRT6A, a biomarker for Head and Neck Carcinoma; CHGA, a biomarker for 

Pheochromocytoma and Paraganglioma; APOA2 and APOA1, biomarkers for Liver 

hepatocellular carcinoma and many others... (Fig.9, Supplementary Table 1). While some 

diagnostic markers were specific to one cancer, like the one mentioned above, others were 

found in more than one cancer, specifically those with the same histological origin. For 

example, READ and COAD share the same diagnostic markers, including an important and 

well-studied gene: CEACAM5 (Fig. 9). This gene encodes carcinoembryonic antigen 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106437/
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(CEA), a classical diagnostic marker for colorectal cancer [41]. The same goes for LGG 

and GBM that share several low variability genes. However, we also notice in this case the 

presence of genes with low variability in LGG compared to GBM (i.e. sox1) which suggest 

that our metric allows the identification of diagnostic markers able to differentiate between 

very similar cancer types. 

Last, we crossed compared the list of 131 genes identified here with the list of diagnostic 

markers from the CIViC database (Material and Methods) and identified 104 common hits. 

This shows that the biological variability metric proposed here is able to identify known 

and de-novo diagnostic markers.  
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Figure 9. Detecting diagnostic molecular markers. Heatmap showing genes (rows) that are 

exclusively non-variable (score <  -5) in a specific cancer type (columns). Blue squares 

indicate that the gene is not variable at the specific cancer type. Note that a non-variable 

gene in a specific cancer type may exhibit high variability in other cancer types which 

justify the scale range from -10 to +10.  

G. Genes encoding prognostic molecular markers are variable. 

Since clinical variables such as disease stages are not enough to predict cancer 

outcomes, even in patients that possess similar clinicopathological characteristics, 

identifying cancer-specific prognostic markers as well as tumor progression markers based 
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on gene expression variability is necessary to provide evidence-based treatment decisions 

and improve clinical outcomes [42]. A reliable prognostic marker can provide cancer-stage 

information and measure the risk of disease progression [43]. Prognostic markers are 

characterized by a set of epigenetic and genetic alterations of genes corresponding to cancer 

development and proliferation that influence the disease outcome [24]. The expression 

levels of these markers progressively change with the progression of cancer [44]. Some 

prognostic markers may be cancer-specific like UPK 2 (uroplakin 2) in bladder cancer [45] 

while others may serve as common prognostic markers like IGF2 (Insulin growth factor 2) 

[46]. 

In order to identify genes with a putative prognostic and predictive outcome, we 

extracted highly variable genes with scores greater than 4 and we narrowed down our 

analysis to those that are only common in less than 6 cancers (Fig. 10, Supplementary 

Table 1). This resulted in a list of 473 putative prognostic markers identified based on 

biological variability. 

For instance, REG3A and REG1A are two well studied prognostic markers for 

colorectal cancer that showed increased biological variability in colorectal, rectal and 

pancreatic adenocarcinomas. Overexpression of these genes activates AKT and ERK 1/2 

pathways and promotes tumor proliferation [47]. Another example is PIP (Prolactin-

induced protein), a highly biologically variable gene in breast cancer whose targets were 

shown recently to be related to poor response to chemotherapy [48]. Same for IGF2 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511498/
https://www.sciencedirect.com/science/article/pii/S0888754318304592
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826180/
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(insulin-like growth factor 2), a highly variable oncogene in liver cancer and whose 

overexpression accelerates liver tumor formation [49]. 

 

Figure 10. Detecting prognostic molecular markers based on biological variability of gene 

expression. Genes (row) with a biological variability scores greater than 4 where plotted for 

each of the 33 cancer types (columns). Note that a gene with a high variability score in one 

https://pubmed.ncbi.nlm.nih.gov/27614046/
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cancer can exhibit a low variability score in other cancers hence the scale range from -10 to 

+10. Red depicts genes with high variability scores and blue those with a low variability 

score. 

 

Last, similar to the analysis in the previous section, we crossed compared the list of 

473 genes identified with the list of prognostic markers from the CIViC database (Material 

and Methods) and identified 99 common hits. 

In summary, both diagnostic and prognostic analysis above show that using biological 

variability helps us identify novel RNA-based diagnostic and prognostic markers that can 

assist in tumor early detection and outcome.  

H. Drug Efficacy Based on Gene Variability 

Genetic polymorphism, mutations, and copy number alterations are all factors that 

affect gene expression levels which in turn cause a heterogeneous response to cancer drug 

therapy [50]. Drug efficacy has been directly linked to gene expression variability; In fact, 

drugs that have been withdrawn from the market were shown to target highly variable 

genes [6]. To test this on our data, we got the list of the FDA-approved cancer drugs from 

the Genomics of Drug Sensitivity in Cancer (GDSC) database [25] and we checked the 

biological variability of their respective drug-target genes. We noticed that 99% of these 

drugs target genes are non-variable (Fig. 11A). Once we collected this list, we further 

annotated the genes as oncogene or tumor suppressor gene based on their oncogenic 

classification using OncoKb, a comprehensive and oncology-based database [26]. Out of 

these drug-target genes, 45% were oncogenes, 12% were tumor suppressor genes, and 2% 

had both oncogene/tumor suppression gene biological property (Fig. 11B) most of which 
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are involved in apoptosis signaling, RTK signaling, EGFR signaling, and cell cycle 

regulation pathways. 

 

Figure 11. Donut plots showing the categorization of the drug-target genes from GDSC 

Database based on their variability score and oncogenic property. (A) Variable drug target 

genes (n=54) account for 1% of the total drug target genes that are targeted therapeutically 

by FDA approved drugs, while non-variable genes account (n=2805) account for 99%. (B) 

Stratification of the drug target genes based on their oncogenic property. Majority of the 

drug target genes are oncogenes (45%), while few have tumor suppressor genes (12%). 

Since most of the approved drugs target non-variable genes with the above 

properties (Fig. 11), we collected the list of all the oncogenes and tumor suppressor genes 

from the 33 cancers and checked their respective biological variability score (Fig. 12). 

From the list, we identified MCL1 (MCL1 Apoptosis Regulator, BCL2 Family Member), a 

putative drug target oncogene, that possesses low variability score across several cancers 

(Fig. 12). This gene has shown to be frequently overexpressed in several human cancers 

and was directly linked to cancer drug resistance [51]. Several drugs targeting this gene 

have been released into the market like Obatoclax Mesylate, MIM1 [52][53]. This allowed 
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us to look at other non-variable oncogenes like Eukaryotic initiation factor 4A2 (EIF4A2) 

and Calreticulin (CALR) which can serve as drug-target genes due to their low variability 

score and their involvement in cell-cycle regulation and apoptotic pathways giving them 

their oncogenic property [54][55].   

Not only will this be important to derive the list of potential drug-target genes, but 

also to extract the ones that may elicit a varied drug response, like IGF2 and SERPINB3 

(Fig. 12), considering that the responsiveness and effectiveness of drugs has been 

associated with expression variability [6]. Overall, this gives us a scope of all the potential 

genes that can be targeted therapeutically in each cancer based on their oncogenic property 

and biological variability score. 

 

Figure 12.Potential oncogenes and tumor suppressor genes that can be targeted 

therapeutically. The blue boxes, gray and red boxes are oncogenes, onco/TSG, tumor 
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suppression genes respectively. The orange points represent all the possible drug-target 

genes. 
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CHAPTER V 

DISCUSSION 

 

Inter-individual variability is a fundamental issue in cancer research. It poses 

challenges in identifying molecular markers that can help us detect cancer at an early stage 

and predict response to drug treatment. This variability is the cumulative result of genetic 

alterations in expression patterns of key genes that play a role in disease progression and 

proliferation. In this study, we calculated biological variability using the RNA-seq data 

from the TCGA dataset for the purpose of identifying genes that play a significant role in 

cancer development and early detection. 

Our first step was to choose the best normalization technique. As shown, log2(TPM 

+1) was the only normalization method unbiased towards different expression levels, unlike 

TPM, and it ranked better than DESeq vst transformation when answering biological 

questions. When vst transformed the data, it reduced the dependence of the variance on the 

mean, thus altering the gene expression data and consequently, the biological variability 

measure. However, log2(TPM +1) preserved the data and was the best performing 

normalization technique. 

We applied our biological variability metric on 11,315 cases in 33 different cancers 

from the TCGA database. Once we obtained the list of non-variable and variable genes, we 

performed pan-cancer analysis, and we found out that physiologically related cancers have 

similar expression variability patterns. Moreover, we noticed that while some genes had 
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similar biological variability scores between cancers, others were unique to their respective 

cancer. This suggests that we can extract mRNA-based molecular markers from biological 

variability scores. We linked diagnostic markers to non-variable genes since the former 

should have similar expression levels between patients and thus a low variability score. 

Conversely, we linked prognostic and tumor progression markers to highly variable genes 

since the tumor microenvironment changes as the patient progresses through cancer stages, 

leading to the downregulation or upregulation of genes in different pathological pathways. 

The results obtained were consistent with previous findings, as shown in the CIViC 

database, indicating that our metric is reliable. 

Upon analyzing the biological variability of 198 cancer drug-target genes, we found 

out that all the FDA-approved drugs target non-variable genes. Response to drug treatment 

has been previously linked to expression variability, where drugs showed to be ineffective 

when targeting highly variable genes [6]. Once we annotated the drug-target genes, we 

noticed that most of them are non-variable oncogenes. This gave us the opportunity to 

search for all the oncogenes and tumor suppressor genes in our dataset, which can later be 

used as a reference for genes that can be targeted therapeutically. 

Notably, there are some limitations to our study. Very few cancers in the TCGA 

data include clinical data on the drug treatment administered to the patients and treatment 

response and some cancers had missing information on tumor stage and vital state, which 

didn't allow us to dwell deeper into the relationship of gene expression variability and 

clinical response. However, we were able to use the GDDC database to get information on 
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the drug-target genes and drug treatment. Future research should be done on detecting 

therapeutic biomarkers of drug sensitivity. 
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APPENDIX 

Cancer Type Number of Diagnostic Markers Number of Prognostic Markers 

ACC 1 37 

BLCA 0 58 

BRCA 0 23 

CESC 0 52 

CHOL 0 62 

COAD 3 13 

DLBC 4 7 

ESCA 0 107 

GBM 13 0 

HNSC 9 33 

KICH 6 15 

KIRC 1 12 

KIRP 1 7 

LAML 2 5 

LGG 27 0 

LIHC 30 44 

LUAD 0 28 

LUSC 0 26 

MESO 0 17 

OV 1 4 

PAAD 0 34 

PCPG 22 19 

PRAD 11 4 

READ 5 12 

SARC 0 47 

SKCM 1 78 

STAD 0 38 

TGCT 1 35 

THCA 4 11 

THYM 2 21 

UCEC 0 28 

UCS 0 39 

UVM 6 4 

Supplementary Table 1: Number of diagnostic and prognostic markers identified in each 

cancer.  



 

 

 


