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ABSTRACT 

OF THE THESIS OF 
 

Dalia Raghed Jaber  for Master of Engineering    

     Major: Electrical and Computer Engineering 

 

Title: Explainable Models for Emotion Recognition 

Despite significant advancements in artificial intelligence (AI), most machine learning 

(ML) solutions remain black boxes with little to no explanation of how decisions are 

made. To build trust in AI applications in health care, it is crucial for practitioners and 

patients to understand the reasons behind decisions made by ML models.  In particular, 

there is a need for explainable AI systems for mental health. While there has been 

significant progress in developing stress prediction models, those models provide no 

explanation how they determine a prognosis. In this work, we propose a new design for 

an explanatory AI report of the results of automated stress assessment based on 

wearable sensors. Because medical practitioners and patients are likely to be familiar 

with blood test reports, we modeled the look and feel of the explanatory AI on those of 

a standard blood test report, in which the rows indicate the different physiological 

sources being tested, and the columns indicate the test results and associated 

parameters. The physiological measurements used by the AI model to generate the 

stress report include electrocardiogram, electromyography, electrodermal activity, 

respiration, and body temperature data. The test indicator results, reflecting the AI 

explanation, include the following indicators:  the predicted stress probability, reference 

intervals for normal range of values for each physiological signal, warning flags that 

indicate results in the abnormal stress ranges, and the impact of each physiological 

signal to the overall stress prediction. The stress prediction and impact measures were 

derived using ML explainable models that show the contributions of individual features 

to the overall result of the model. The reference intervals and flags were then derived 

from those contributions. Historical studies in psychology were used to form ground 

truth explanations for the physiological signals. The AI explanation reports were then 

evaluated for usefulness and effectiveness using documented real stress and 

physiological study data from 14 users. The confidence in the predicted stress was 

reflected by the accuracy of the used ML prediction model, which came at F1-binary 

score of 0.78.  The contributions of each physiological signal to the stress prediction 

were shown to correlate with ground truth.  The reference intervals for stress versus 

non-stress were quite distinctive with little variation. In addition to these quantitative 

evaluations, a qualitative survey by an expert in psychiatry confirmed the confidence 

and effectiveness of the explanation report in understanding the different aspects of the 

AI system: result of stress prediction and which physiological (vital) signs were related 

to stressful episodes. The report also provided a source of additional medical insights 

into the patient’s mental health. 
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CHAPTER 1  

INTRODUCTION 

Although stress is a regular part of daily life, long-term stress can have severe 

consequences on health. Chronic mental stress can cause cardiovascular disease, 

depression, and increased susceptibility to infection [2]. The ability to detect when a 

person is stressed might therefore be very useful in efforts to prevent health problems, 

especially in patients with suicidal thoughts [1]. Several artificial intelligence (AI) 

systems have been proposed for early automatic stress detection using physiological 

measurements such as electrocardiogram (ECG) and electromyography (EMG) taken 

from wearable devices [2, 3, 4]. The practical use of AI systems is limited, however, 

because people do not always trust the automated solutions. The primary reason for the 

lack of trust is a lack of transparent explanations of the results produced by AI models. 

Because the impact of wrong diagnosis is high, health professionals and patients are 

reluctant to adopt technologies that are not well understood. We are interested in 

developing an AI-based stress evaluation model that automatically produces a report 

that explains the results of the evaluation in a way that is understandable and useful to 

human users. 

Understanding the reasons behind AI models’ predictions has become so crucial 

that the European Union developed new data privacy rules in 2018 that state that 

companies that are use AI are obliged to provide either detailed explanations of 

individual AI algorithms or general information about how the algorithms make 

decisions when working with personal data [5]. Recently, there have been increasing 

efforts to develop explainable or interpretable AI systems, which make predictions and 
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behave in ways that humans can understand [6]. Despite those efforts, there are still no 

standard criteria by which to evaluate the interpretability of an AI system, nor is there 

even a clear definition of interpretability. Simple machine-learning (ML) models like 

decision trees, rule-based algorithms, and linear regression models may be considered 

interpretable, because they show the direct relationships between features and 

predictions. For more complex ML models, several approaches have been proposed to 

show the relationships, depending on the type of black-box model and the type of input 

data [6]. Some proposed approaches are model agnostic and can explain the outcome of 

any black-box model with any type of input [7, 8], whereas others focus specifically on 

deep neural networks used for image classification [9, 10, 11] or more general types of 

input [12]. One major limitation of previous interpretable AI approaches is that they fail 

to provide a user-centric explanation but instead focus on the mathematical 

relationships between features and predictions. In medicine, deep learning methods 

were used to create heatmaps to explain the predictions of AI systems that use medical 

images such as magnetic resonance images or X-ray images [31, 32, 34]. Other models 

were used to explain medical diagnoses by analyzing the influence of specific features 

on the diagnoses [33, 34]. No interpretable AI has yet been developed for stress 

prediction. 

To address the lack of explainable AI systems for stress prediction, we propose a 

new design for an explainable AI system that evaluates stress using data from wearable 

devices. The explanatory component is inspired by medical blood test reports, which are 

already familiar to health care providers and patients. The predictive component is 

based on the findings of previous scientific studies in psychology. Figure 1 shows a 

sample of the proposed AI report for stress evaluation alongside a typical blood test 
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report. The stress evaluation report includes the different physiological attributes that 

influence the overall probability that the subject is stressed and the reference ranges for 

each attribute. The stress evaluation report and the blood test report share several key 

aspects, including: the names of the individuals features that are measured directly, the 

measured values of the features and the corresponding units, the range of normal values 

for the features, and flags that indicate any abnormal values. The abnormal values on 

the stress report are related to stress. In addition to those attributes, the stress report 

gives an overall probability that the individual is in a state of stress and a quantitative 

measure of the influence of each measured feature, referred to as the ‘IMPACT’, on the 

overall stress probability. The overall stress probability and the IMPACT scores are 

expressed as percentages. 

Figure 1 - Samples of a Blood Test Report [25] and a Stress Evaluation Report 

 

We evaluated our proposed approach with a set of qualitative and quantitative 

experiments. The qualitative experiments focus on the different tests and features 

included in the report. The qualitative assessment was based on inputs from expert 

psychiatrists and meant to determine whether the report provides adequate explanation 

for the AI decisions. In the quantitative assessments, we examined the validity of the 



 

11 

 

overall stress probability, the ranges of normal values presented in the report, the 

IMPACT scores, and the FLAGS. We evaluated the accuracy of the stress evaluation 

using leave-one-user-out cross-validation. We assessed the reliability of the range of 

normal values, or REFERENCE INTERVAL, by checking if the range changes when 

different subsets of patient data are used as the baseline. To assess the reliability of the 

IMPACT scores, we identified the physiological attributes that were affected by stress 

and their relative values during a non-stressful state in previous studies to form a ground 

truth reference. Finally, we assessed the accuracy of the FLAGS by checking how 

consistent the two FLAGS in the stress evaluation report are in indicating the same 

stressful state.  

The key contributions of our work are: 

1. A user-centric stress report based on physiological measurements. We will use AI 

to automatically produce a report of a patient’s stress probability based on ECG, 

electrodermal activity (EDA), EMG, respiration, and temperature data. The report 

will be given in a form that is familiar to medical experts and patients and will 

include the stress probability, the physiological factors on which the stress 

probability is based, the measured value and normal range for each factor, flags 

indicating abnormal values, and the level of contribution of each factor to the 

overall stress probability. 

2. An assessment of our approach. We will qualitatively and quantitatively evaluate 

the validity of the stress report. For the qualitative assessment, expert psychiatrists 

will complete a questionnaire. For the quantitative assessment, each element of the 

report will be evaluated on the basis of the results of previous scientific studies. 



 

12 

 

The remainder of this report is organized as follows. Section 2 presents a literature 

review of existing explainable AI models and automated stress prediction systems. 

Section 3 covers our approach to explain the output of AI-based stress evaluation 

systems. Section 4 presents the implementation and evaluation of our approach. Section 

5 summarizes our findings and plans for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Explainable AI Models 

Approaches to make complex AI prediction models understandable to humans 

generally focus on clarifying the input–output relationship. Different approaches have 

been proposed for different types of data and prediction models. One important 

approach to attempt to explain any black-box model is the Additive Feature Attribution 

method, in which the original black-box model is approximated with a simpler model 

that is easily explainable. The approximation is composed of a linear combination of 

binary variables, as shown in Eq. 1  

𝑔(𝑧′) = 𝜙 + ∑ 𝜙𝑖

𝑖=1

𝑧𝑖
′      (1) 

where 𝑧′𝜖0,1𝑀, with M as the number of simplified input features; and 𝜙𝑖𝜖𝑅, which 

represents the contribution of feature 𝑧𝑖  to the model’s prediction. In the simplified 

features vector, a feature with a value of ‘1‘ is present in the subject, and a feature with 

a value of ’0’ is absent in the subject. 

Another approach that is commonly used to explain black-box models is Local 

Interpretable Model-Agnostic Explanations (LIMEs) [7]. In the LIME approach, the 

input data are perturbed, and the effects of the perturbation on the output are assessed. 

LIME then tries to approximate the machine learning (ML) model with another model 

that is easily interpretable. The interpretable model is a linear combination of the input 

variables with some simplifications and perturbations. The LIME model presents as an 
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output a list of explanations, reflecting the contributions of each variable to the results 

of the original ML model. A weak point of the LIME approach is the instability of the 

explanations, which can differ greatly which small changes in the input data. 

The SHapley Additive exPlanations (SHAP) approach [8] combines LIME with 

Shapely values [20], a concept in cooperative game theory that was developed to 

distribute the gains from a cooperative game to players, or features. SHAP uses locality 

approximation and Shapely additive values to provide an explanation for any black-box 

model. The method uses three criteria: local accuracy; missingness, which does not give 

any importance to missing features; and consistency, which makes sure that even if a 

model changes, the feature impact will still have the same attribution assigned. To 

interpret the prediction of a Convolutional Neural Network (CNN), Zhou et al. [9] 

introduced the concept of class activation mapping (CAM), which indicates the 

discriminative image regions used by the CNN that impact target classification. CAM 

only works on CNNs that are composed of a Global Average Pooling (GAP) layer 

preceding a fully connected layer that produces the output. Deep Learning Important 

Features (DeepLIFT) [12] is another approach that uses back-propagation to explain a 

CNN model. DeepLIFT decomposes the output of a neural network for a specific input 

by backpropagating the contribution of every feature of the input. The Layer-wise 

Relevance Propagation (LRP) [11] method is equivalent to DeepLIFT with the 

reference activation of all neurons set to zero. The main idea behind the LRP algorithm 

is to explain a classifier's prediction specific to a given data point by using the topology 

of the learned model to attribute relevance scores to components of the input. 

In medicine, explainable AI applications have been developed to interpret data 

from imaging studies. A recent study to detect COVID-19 using chest X-ray images 
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[31] introduced a technique called GSInquire that created heatmaps to confirm the 

diagnostic features learned by the proposed COVID-net model. To study the reliability 

of a CNN model designed to identify brain tumors in MRI images, Pereira et al. [32] 

used GradCAM, an improvement of CAM, to create heatmaps that show the factors that 

influenced the classification of features as tumors. For computed tomography (CT) 

imaging, a sensitivity analysis was applied to liver CT images to explain the 

segmentation of tumors [34]. The analysis was performed by maximizing the target 

neuron using gradient ascent. Another new ML system called Prescience was 

introduced [33] to interpret real-time predictions to prevent hypoxemia during surgery. 

The Prescience model uses SHAP attribution to analyze preoperative factors and in -

surgery parameters. In another study [30], a framework was proposed for the design of 

an explanatory display to interpret the prediction of a pediatric intensive care unit in-

hospital mortality risk model. The explanation was displayed in a user-centric manner 

and established using Shapely values.  

Explainable models have not been applied to stress prediction based on 

physiological sensor data. Explainable AI systems for stress prediction need to augment 

their explanations with additional predictive models that provide descriptions of 

biological factors other than the stress state per se. 

2.2 Stress Prediction Systems 

There have been several attempts to create automatic stress prediction systems, 

each using different features to predict or detect stress. To reduce privacy concerns and 

power consumption, some approaches only use data from accelerometers. For example, 

Garcia-Ceja et al. extracted 34 features f rom the time and frequency domains of 



 

16 

 

accelerometer data and fed them into several classification models including Naives 

Bayes, decision tree, and random forest [13]. They were able to achieve an accuracy of 

71% using decision trees. In addition to accelerometer data, Giakoumis et al. included 

GSR and ECG data and behavioral features to predict stress and found that prediction 

based on the physiological data and the behavioral features was more accurate than 

prediction based on physiological data alone [14]. Sun et al. were able to obtain an 

overall accuracy of 92.4% for 10-fold cross validation using GSR, ECG, and 

accelerometer data [15]. Carneiro et al. added a video camera and pressure-sensitive 

touchscreens to accelerometers and obtained an accuracy of 78% in classifying touches 

as stressed or not stressed using J48 tree [16]. Bomogolov et al. predicted stress with 

72.39% accuracy using a random forest classifier based entirely on call logs, Bluetooth 

data, and SMS data from users’ mobile phones [17]. When those data were combined 

with GPS and Wi-Fi information, the accuracy of stress prediction increased to 86% 

[18]. 

Although stress detection has been widely studied, it is still challenging to explain 

the results of the detection systems in a way that is easily understandable to humans. It 

is important for health care professionals and patients to understand the reasons behind 

decisions made by AI models, because the impacts of those decisions can be serious. 

Many of the models described in the literature to predict mental stress use complex 

algorithms to achieve accurate predictions; however, the interpretability of the models 

tends to decrease as the accuracy increases. Hence, there is a need for models that 

provide explanations and interpretations for complex stress prediction. 
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CHAPTER 3 

PROPOSED METHOD 

 

3.1 Problem Description 

The objective of this work is to provide an explanation of the stress prediction 

conducted by AI systems that take as input the physiological signals listed in Table 1. 

The generated explanations need to be suitable for physician and patient 

comprehension. 

Table 1 - Physiological Measurements 

Signal  Measurement 

Electrocardiogram  Electrical activity of the heart 

Electromyography  Electrical activity of muscles at rest and during contraction 

Electrodermal activity Wrist and chest skin conductance 

Temperature  Wrist Temperature 

Respiration Respiration cycle and Respiration rate 

 

There are several challenges that we aim to address. The first challenge is to 

determine what explanation should be displayed for physicians and patients and how the 

explanation should be presented. The second challenge is to develop models that can 

produce the necessary explanations. In order to produce the desired explanations, three 

models are needed (Figure 2). The first model extracts the desired physiological 

features by applying statistical signal processing to physiological data from ECG, EDA, 

EMG, respiration, and temperature sensors. The second model derives the contribution 

of each feature to the overall stress prediction using a separate, feature-based classifier 
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that takes as input the pre-processed features. The third model to determines the ranges 

of feature values that are indicative of a non-stressful state. 

Figure 2 - The Proposed Solution 

 

 

3.2 Proposed Explanations and Corresponding User Interface 

Inspired by standard reports of blood test results, we propose to have the AI 

system automatically generate a report showing the measured values and normal ranges 

for each component of the stress assessment. The aim is to help patients and health care 

professionals understand which physiological factors are related to stressful episodes 

experienced by the patients. 

3.2.1 Organization of the Report 

For ease of reference, a sample blood test report is shown in Figure 3. 
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Figure 3 - An Example of a Standard Blood Test Report 

 

 

The key aspects of the blood test report include: 

• TESTS: the different blood tests included in the report 

• RESULT: the measured values of the different blood tests 

• FLAG: indicators of normal/abnormal test results 

• UNITS: the units of the measured values  

• REFERENCE INTERVAL: the range of normal test values 

To make our AI-generated stress prediction report compatible with what patients and 

health care professionals are used to seeing, we will use a similar organization. An 

example of how the stress prediction report will look is shown in Figure 4. 
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Figure 4 - An Example of a Stress Prediction Report 

 

 

• STRESS PROBABILTY: the stress level of the patient in percentage, varying 

between ‘Not stressed’ (0%) and ‘Extremely stressed’ (100%) 

• TESTS: the different physiological signals included in the report, extracted from 

the physiological signals listed in Table 2. 

• RESULT: the measured values of the physiological signals, typically presented as 

statistical measures (e.g., mean or median over a given interval) of the raw data. 
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• UNIT: the units of the measured values 

• REFERENCE INTERVAL: the range of normal values for the physiological 

signals under non-stressful conditions 

• IMPACT: the percentage contribution of each physiological signal to the overall 

stress prediction (section 3.3 shows how the impact is calculated). 

• FLAGS: indicators of normal/abnormal physiological signals. Red indicates values 

associated with stress, whereas green indicates values not associated with stress. 

Star-shaped flags represent correspondence to the REFERENCE INTERVAL. 

Circle-shaped flags represent the IMPACT of the test result on the overall 

prediction. 

3.2.2 Choice of TEST Signals 

The physiological measurements included in the report are commonly used in 

experimental procedures to study the biological effects of stress [26]. Additional 

features that are crucial to the explanation of the stress prediction are shown in Table 2. 

Acerbi et al. extracted several EDA and ECG features and reported the values at 

baseline and during and stress [21]. They then performed t-tests to identify features 

whose values differed between stressful and non-stressful conditions. In another study, 

the same procedure was followed using only EMG signals [22]. For the temperature and 

respiration features, statistical features are extracted including the mean, maximum, 

minimum, and standard deviation.  

Table 2 - Stress Explanation Features 

Signal Features Description 
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ECG 

𝜇 𝐻𝑅1, 𝜎𝐻𝑅 , 

𝑀𝑎𝑥𝐻𝑅 ,𝑀𝑖𝑛𝐻𝑅 

mean, standard deviation, maximum, and 

minimum heart rate (bpm) 

𝐻𝐹𝐻𝑅𝑉2, 𝐿𝐹𝐻𝑅𝑉  variance in HRV in the high frequency 

range (.15–.40 Hz); variance in HRV in the 

low frequency range (.04–.15 Hz) 

|𝜇|𝑁𝑁3, 𝜎𝑁𝑁 ,𝑀𝑎𝑑𝑁𝑁 , 

𝑀𝑒𝑑𝑁𝑁 ,𝑀𝐶𝑉𝑁𝑁  

mean of the absolute values, standard 

deviation, median absolute deviation, 

median, and median-based coefficient of 

variation of the successive differences 

between the RR intervals (interval between 

two heart beats) 

𝑅𝑀𝑆𝑆𝐷𝑁𝑁 ,𝑃𝑁𝑁20 , 

𝑃𝑁𝑁50 

root mean square of the RR intervals, 

number of interval differences of 

successive RR intervals greater than 20 ms 

or greater than 50 ms 

EMG 

𝜇
𝐸𝑀𝐺4,𝜎𝐸𝑀𝐺 , 

𝑀𝑎𝑥𝐸𝑀𝐺,𝑀𝑖𝑛𝐸𝑀𝐺  

mean, standard deviation, maximum, and 

minimum values of EMG activity in the 

lower trapezius 

#𝑃𝑒𝑎𝑘𝑠𝐸𝑀𝐺 , 𝑅𝑀𝑆𝐸𝑀𝐺 , 

𝑅𝑀𝑆50𝑃𝐸𝑀𝐺 , 𝑅𝑀𝑆90𝑃𝐸𝑀𝐺  

number of peaks in signal, normalized root 

mean square value as a percentage of the 

reference contraction, 50th, 90th percentile 

of rank-ordered root mean square values 

EDA 

𝜇 𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴5, 𝜎𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 , 

𝑀𝑎𝑥𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 , 𝑀𝑖𝑛𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴  

mean, standard deviation, maximum, and 

minimum values of EDA connected to the 

user’s wrist 

𝜇 𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴6, 𝜎𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴 , 

𝑀𝑎𝑥𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴 , 𝑀𝑖𝑛𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴  

mean, standard deviation, maximum, and 

minimum values of EDA connected to the 

user’s chest 

𝜇 𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝐿7, 𝜎𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝐿 , 

𝜇
𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝑅8, 𝜎𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝑅  

means and standard deviations of the skin 

conductance level and skin conductance 

response 

Respiration 

 

𝜇𝑅
𝑒𝑠𝑝𝑅𝑎𝑡𝑒9 , 𝜎𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 , 

𝑀𝑖𝑛𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 , 𝑀𝑎𝑥𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 

mean, standard deviation, minimum, and 

maximum of the respiration rate 

 

1 Hear Rate 
2 Heart Rate Variability 
3 NN-Intervals (time interval between R peaks) 
4 Electromyography 
5 Electrodermal activity recorded from the Wrist 
6 Electrodermal activity recorded from the Chest 
7 Skin Conductance Level recorded from the Chest 
8 Skin Conductance Response recorded from the Chest 
9 Respiration Rate 
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Temperature 𝜇 𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝10 ,𝜎𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 , 

𝑀𝑎𝑥𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 , 𝑀𝑖𝑛𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝  

mean, standard deviation, maximum, and 

minimum values of the temperature 

measured from the user’s wrist 

 

3.2.4 Ground Truth Data 

We evaluated the results of our stress prediction model using ground truth data 

collected from experiments that tested the effects of stress on physiological 

measurements [21,22,23,24]. The ground truth data provide information about which 

physiological features can be used as stress indicators. We compared the list of stress 

indicators obtained experimentally to the list of features determined by our model to 

indicate stress. 

The previous studies recorded the mean values and standard deviations of 

features measured during stressful and non-stressful conditions. They then used 

Kruskal–Wallis tests or Friedman tests to compare the data between the two conditions 

to identify significant differences (p<0.05). They found that the significant features 

were 𝜇𝑁𝑁, 𝜇𝐻𝑅,𝜎𝐻𝑅, 𝑅𝑀𝑆𝑆𝐷𝐻𝑅𝑉, 𝑃𝑁𝑁50𝐻𝑅𝑉, and 𝜇𝐸𝐷𝐴. Table 3 shows the normal 

ranges, stress ranges, and p-values of the significant features. In order to extract stress 

levels of subjects using the EMG signal of the upper trapezius muscle, an experimental 

procedure was performed in which the subjects were faced with three different stressful 

situations: a calculation task, a logical puzzle task, and a memory task. The EMG signal 

was found to be a meaningful feature to detect stress, as its amplitude was higher during 

stress than during relaxed conditions. The same was found for the EMG root mean 

square values. Therefore, on the basis of the experiments performed, we determined that 

the following features show elevated EMG amplitude during stressful situations: 𝜇𝐸𝑀𝐺, 

 

10 Temperature recorded from the Wrist 
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𝑅𝑀𝑆𝐸𝑀𝐺, and 𝑅𝑀𝑆50𝑃𝐸𝑀𝐺. The respiratory system’s response to stress was reported in 

[23,24], showing that the respiration rate  𝜇𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 increases during stress. 

Table 3 - ECG Features Shown Experimentally to Indicate Stress 

Physiological 

Feature 

Range for No 

Stress 

Range for 

Stress 

p-

Value* 

𝜇𝑁𝑁(𝑚𝑠) 788±126 642±96 0.005 

𝜇𝐻𝑅(𝐵𝑃𝑀) 78.45±12.38 95.54±13.69 0.005 

𝜎𝐻𝑅(𝐵𝑃𝑀) 6.43±1.15 10.48±3.88 0.001 

𝑅𝑀𝑆𝑆𝐷𝐻𝑅𝑉(𝑠) 0.04±0.02 0.03±0.01 0.018 

𝑝𝑁𝑁50𝐻𝑅𝑉(𝑠) 22.89±19.44 7.35±4.98 0.043 

* Significant difference between groups (p<0.05) 

 

3.2.5 Online Analytical Processing (OLAP) Customization  

Our stress evaluation report allows for different levels of customization that are 

common with decision support systems. The detailed list of physiological 

measurements can be treated as a multi-dimensional OLAP data warehouse. Different 

levels of extracts and aggregations can be generated and customized to fit users’ needs. 

For example, a simple aggregate custom report might include only heart rate, 

respiration, and body temperature. 

3.3 Model to Derive the Contributions of each Feature to The Stress Probability  

An important aspect of the stress evaluation report is the IMPACT, or indication 

of how much each factor contributes to the overall stress probability. To calculate the 

impact for each factor, we customized the SHAP model, where the total probability of 

stress 𝑃𝑋 (𝑆𝑡𝑟𝑒𝑠𝑠) for each set of TEST measurements 𝑋 is computed as the sum of the 

mean probability 𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠) and the individual contributions of each TEST feature: 
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𝑃𝑋(𝑆𝑡𝑟𝑒𝑠𝑠) = 𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠) + ∑ 𝜙𝑖

𝑖∈𝐹1,…,𝐹𝑁

(2) 

where F represents the choice of physiological feature, and N represents the number of 

features for observation X. 𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠) represents the probability of a random person 

being stressed. The 𝜙𝑖 , also known as the SHAP value, is used to derive the percentage 

contribution of each feature. A positive value indicates that the feature reinforces the 

prediction of stress, whereas a negative value indicates a negative contribution, which is 

an indication of non-stress. Those contributions indicate deviation from the average 

probability of stress 𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠). 

The SHAP 𝜙𝑖  values for each feature 𝑖 can be calculated using any ML classifier 

by removing (nullifying) the features 𝑖 one at a time and then computing the resulting 

predictions. In our model, we used a random forest classifier. Mathematically, the 𝜙𝑖  is 

computed as follows: 

𝜙𝑖 = ∑[f
(S⋃{i})

 (x(S⋃{i}) )-(fs(xs)]   
(

|S|! (|M| − |𝑆| − 1)!

|M|!
)        (3) 

where S is a set of indexes in z’ (as seen in Eq. 1), M is the set of all input features, 

𝑥𝑆 represents the values of the input features in the set S, and 𝑓( ) represents the 

hypothesis function for the classifier. To obtain the SHAP values, a model 𝑓𝑠 is trained 

with the feature 𝑖 withheld, and another model 𝑓(𝑆⋃{𝑖}) is trained with that feature 

present. Then, the predicted values from both models are compared to the current input 

𝑥𝑆. 

The IMPACT measure is calculated as the percentage of the features’ 

contributions 𝜙𝑖  as follows: 
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𝐼𝑀𝑃𝐴𝐶𝑇𝑖 ,𝑋 (%) = (
𝜙(𝑖,𝑋)

∑ |𝜙𝑋 |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

) × 100            (4) 

The 𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠) can be computed from historical training data by computing the 

percentage of individuals who are stressed, or the average of the stress probability: 

𝑃𝐴𝑣𝑔(𝑆𝑡𝑟𝑒𝑠𝑠) = 𝑀𝑒𝑎𝑛(𝑦𝑡𝑟𝑎𝑖𝑛)               (5) 

where 𝑦𝑡𝑟𝑎𝑖𝑛 represents true labels of stress predictions for individuals available in 

historical training data. 

The authors of SHAP also proposed KernelSHAP and TreeSHAP and provided 

many global interpretation methods. KernelSHAP is an approach to estimate Shapely 

values inspired by local surrogate models, which are interpretable models used to 

explain the predictions of any black-box ML model. With KernelSHAP, it will be 

possible to use any classification model to provide the stress prediction. As for the 

TreeSHAP, it provides interpretation for any tree-based model and has a faster 

implementation than KernelSHAP. TreeSHAP reduces the computational complexity 

from 𝑂(𝑇𝐿2𝑀), the complexity in KernelSHAP, to 𝑂(𝑇𝐿𝐷2), where T is the number of 

trees, L is the maximum number of leaves in any tree, and is D the maximal depth of 

any tree. In addition to being computationally faster, TreeSHAP allows the creation of 

different visualizations that can help users understand the interpretation. Therefore, we 

used TreeSHAP as the model that assigns the feature contribution and the, tree-based, 

random forest classifier as our prediction model.  

Random Forest Classifier for Stress Prediction 

The measurements in the RESULTS column of the stress evaluation report are 

used as inputs to the random forest classification model, which indicates if the user is 
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stressed or not stressed according to each measurement. The random forest is an 

ensemble method used for classification or regression. It is trained using a bagging 

method, which consists of randomly selecting a subset of the training set, fitting a 

decision tree to each subset, and finally combining the results. For classification, the 

random forest uses the majority votes for the class prediction; because each tree 

provides one vote, the final vote can be the mode or the most frequent class predicted 

by each tree. When working with an imbalanced dataset, a version of the random forest 

classifier known as the ‘balanced random forest’ is highly useful. The balanced random 

forest model randomly under-samples each bootstrap sample to balance the labels. 

Finally, a leave-one-user-out cross-validation scheme is employed where the data of one 

user are held out for testing while the data of the rest of the users are used for training.  

3.4 Model to Extract the Stress Ranges and Reference Intervals 

To determine if the measurements are within a non-stressful range, our model 

provides ranges for each TEST that are related to stress and non-stress, respectively. 

Such ranges are useful to show what the normal values are for each feature and when 

the measurements might indicate stressful conditions. 

We derive the ranges using the IMPACT values generated for each observation in 

the training dataset. First, we separate the feature values by their assigned IMPACT 

values. Then, we group the ones with positive values in a ’Stress Group’ and the ones 

with negative values in a ’No Stress Group’. We then perform a t-test to make sure that 

there is a significant difference between the two groups of values. Then, similarly to 

how many laboratory tests define the Reference Interval, we use a non-parametric 

approach and take the values falling at the 2.5 and 97.5 percentiles in the No Stress 
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Group as the lower and upper limits of the REFERENCE INTERVAL, respectively. For 

the ’stress interval’, we use the values falling at the 2.5 and 97.5 percentiles in the 

Stress Group. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

We evaluated our explainable AI design for a stress evaluation report through a 

set of qualitative and quantitative experiments.  

Figure 5 - Sample of proposed explainable AI report for stress 

 

 

The quantitative assessments aimed to evaluate the reliability and accuracy of the 

following aspects of the explainable AI report, a sample is shown in Figure 5: 

• STRESS PROBABILITY: To test this aspect, we used a standard ML evaluation 

approach as described in section 4.2.1. 

• REFERENCE INTERVAL: To determine how robust the REFERENCE 

INTERVAL is to changes in the input data, we compared the REFERENCE 

INTERVALs created using two different subsets of test results, as described in 

section 4.2.2. 

• IMPACT: To assess the accuracy of the IMPACT values, we examined the 

correlations between the IMPACT values and other stress indicators obtained from 

studies that examined what physiological measurements are affected by stress. The 

results are described in section 4.2.3 
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• FLAGS: To assess the accuracy of the FLAGS as indicators of whether the 

measurements for a particular factor are indicative of a stressful state, we tested 

how consistently the two FLAGS for each feature indicated the same stressful 

state. The results are described in section 4.2.4 

The above evaluations were performed using a 4-fold cross validation to ensure 

balanced subsets of data with sufficient observations. The accuracy of this model, 

known as the system’s confidence level, is the accuracy of the stress prediction model 

which can be considered as a historic accuracy based on historic data. 

The qualitative assessment aimed to determine whether the report provides 

adequate explanation for the decisions of the AI. In the qualitative assessment, expert 

psychiatrists were asked the following questions:  

1. Does the psychiatrist have the components needed to extract the explanation as 

captured by the report components: STRESS PROBABILITY, TESTS, REFERENCE 

INTERVALS FLAGS, and IMPACT? 

2. Are any data missing or are more features needed? 

3. Does the report provide the AI explanation needed for psychiatrists with examples?  

4. Does the report provide the AI explanation needed for patients with examples? 

5. Is the report user-friendly from the perspectives of experts and patients? 

6. Can the explainable reports be useful for additional medical applications such as 

tracking patients’ stress over time or providing other medical insights about the 

relationships between physiological signals and stress? 
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The details of the qualitative assessment section are described in section 4.3.  

4.1 Dataset and Explainable Feature Extraction 

The WESAD (Wearable Stress and Affect Detection) dataset [26] consists of 

different physiological measurements recorded during stressful and relaxed conditions. 

It contains physiological and motion data recorded from wrist-worn and chest-worn 

devices. The devices used are the RespiBAN Professional11, which is placed around the 

subject's chest, and the Empatica E412, which is worn on the subject's non-dominant 

hand. The modalities include EDA and temperature data from an Empatica C4 device. 

The RespiBAN device provides data on respiration; ECG; EDA recorded on the rectus 

abdominis, considering that the abdomen has a high density of sweat glands; EMG 

recorded on the upper trapezius muscle on both sides of the spine; and temperature 

recorded on a sensor placed on the sternum. 

Data were collected from 15 graduate students in a laboratory setting. Each subject 

experienced three conditions: 

1. Baseline: Users were provided neutral reading material (e.g., magazines). 

2. Amusement: Users watched a set of funny videos. 

3. Stress: Users were exposed to the Trier Social Stress (TSST), which is used to 

induce stress in participants. The TSST generally includes three phases: an 

anticipatory speech preparation, speech performance, and verbal arithmetic.  

 

11 http://www.biosignalsplux.com/en/respiban-professional 
12 http://www.empatica.com/research/e4/ 

http://www.biosignalsplux.com/en/respiban-professional
http://www.empatica.com/research/e4/
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We eliminated faulty measurements, such as missing data caused by failures in 

signal recording. The features listed in Table 2 were extracted from the different 

physiological raw signals using the numpy, Neurokit [27], and Biosppy [28] libraries in 

Python. Neurokit is a Python toolbox for statistics and signal processing of data from 

ECG, EDA, EMG, and EEG. Biosppy is a Python toolbox for bio-signal processing. We 

extracted data for 42 features, each with 1640 measurements taken over 90-second 

intervals. The data had an imbalance with 19.7% stress labels. The 𝐹1  score was used as 

the evaluation metric. 

4.2 Quantitative Evaluation 

This section details the quantitative evaluation of the STRESS PROBABILITY, 

REFERENCE INTERVAL, IMPACT, and FLAGS components of the stress report. All 

the evaluations were performed using a 4-fold cross validation to ensure balanced 

subsets of data with sufficient observations. 

4.2.1 Evaluation of the STRESS PREDICTION  

The STRESS PREDICTION is made using the balanced random forest classifier. To 

evaluate the classifier, the data was divided into four subsamples and a 4-fold cross-

validation approach was followed. Because the dataset was imbalanced, with 19.7% of 

the labels representing the class ’stress’, we chose the 𝐹1  binary score metric, which 

only reports results for the stress labels. The results of the cross validation are shown in 

Table 4. The average 𝐹1  binary score was 0.75, which is an indication of high accuracy 

but less than what was achieved in the literature using different input features [8]. 
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Table 4 - Evaluation of the Balanced Random Forest Classifier on the Binary 

Classification Task: Stress vs. Non-Stress 

4-Fold Validation F1-Binary Score 

Fold 1 0.93 

Fold 2 0.63 

Fold 3 0.91 

Fold 4 0.64 

Average Score 0.78 

 

 

4.2.2 Evaluation of the REFERENCE INTERVAL 

The REFERENCE INTERVAL is defined by the range of values in healthy, non-

stressed individuals. The STRESS INTERVAL, on the other hand, includes the test 

results of stressed individuals. The intervals were determined using the method 

described in section 3.4. We followed a statistical approach to create the REFERENCE 

INTERVAL from the No-Stress Group. The 42 features along with their intervals are 

shown in Table 5. We evaluated the REFERENCE INTERVAL by 1) validating that 

the Stress and No-Stress Groups, separated by the sign of the IMPACT, were 

independent, belonging to two different distribution and 2) evaluating the robustness of 

the REFERENCE INTERVAL. 

To check if the values assigned to the Stress Group and No-Stress Group belonged 

to two different distributions with two independent ranges, we performed a t-test for 

each feature in the training dataset. The p-values obtained for the features are shown in 

Table 5. For all tests, the p-value was less than 0.05, which confirmed that the 

measured values for each feature were significantly different between the stressful 

condition and the non-stressful condition. 
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Table 5 - Intervals and P-Values for the Values of each Feature under Stressful and Non-

Stressful (Reference) Conditions 

Feature Stress Interval Reference Interval P-Value 

𝑀𝑎𝑥𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴  11.27 ± 7.99 3.79 ± 3.03 1.35 E-110 

𝜇𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴 10.73 ± 7.5 3.7 ± 2.95 5.12 E-118 

𝑀𝑖𝑛𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴  11.12 ± 7.84 3.75 ± 3 1.21 E-103 

𝜇𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝐿 -4.33 ± 4.11 -14.88 ± 13.52 2.18 E-128 

𝜎𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝐿, 1.65 ± 1.5 5.45 ± 4.82 8.51 E-161 

𝜇𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝑅 15.54 ± 15.3 12.72 ± 11.82 6.45 E-57 

𝜎𝐶ℎ𝑒𝑠𝑡𝑆𝐶𝑅 5.65 ± 5.47 0.84 ± 0.73 9.69 E-139 

𝜎𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴 0.15 ± 0.14 0.01 ± 0.01 8.9 E-180 

𝐻𝐹𝐻𝑅𝑉 2.72 E+11 ± 2.57 E+11  2.35 E+12 ± 1.82 E+12 5.12 E-227 

𝐿𝐹𝐻𝑅𝑉  3.03 E+11 ± 3.03 E+11 2.88 E+12 ± 2.3 E+12 4.87 E-226 

𝑀𝑎𝑑𝑁𝑁 21.43 ± 15.72 74.11 ± 42.68 1.02 E-204 

𝑀𝐶𝑉𝑁𝑁 0.03 ± 0.02 0.09 ± 0.05 4.28 E-196 

|𝜇|𝑁𝑁  701.81 ± 82.84 954.91 ± 170.8 1.3 E-219 

𝑀𝑒𝑑𝑁𝑁 693.93 ± 80.36 959.64 ± 191.07 5.41 E-214 

𝑃𝑁𝑁20 33.61 ± 28.55 75.35 ± 14.49 1.19 E-220 

𝑃𝑁𝑁50 15.15 ± 15.15 38.6 ± 33.12 1.57 E-167 

𝑅𝑀𝑆𝑆𝐷𝑁𝑁 28.54 ± 18.23 94.8 ± 46.63 2.69 E-230 

𝜎𝑁𝑁 39.89 ± 25.97 107.69 ± 51.22 2.92 E-218 

𝑀𝑎𝑥𝐻𝑅 105.74 ± 18.24 73.42 ± 13.06 4.72 E-229 

𝜇𝐻𝑅 91.57 ± 15.91 63.79 ± 11.09 7.57 E-229 

𝑀𝑖𝑛𝐻𝑅 80.45 ± 14.26 56.6 ± 11.27 5.56 E-215 

𝜎𝐻𝑅 9.04 ± 3.72 3.37 ± 1.85 8.91 E-228 

𝑀𝑎𝑥𝐸𝑀𝐺 1.04 E-02 ± 8.33 E-02 4.91 E-02 ± 3.48 E-02 3 E-68 

𝜇𝐸𝑀𝐺 1.215 E-07 ± 7.94 E-07 - 1.24 E-07 ± 6.41 E-07 4.04 E-91 

𝑀𝑖𝑛𝐸𝑀𝐺 - 9.72 E-02 ± 7.28 E-02 - 2.88 E-02 ± 1.27 E-02 7.38 E-146 

# 𝑃𝑒𝑎𝑘𝑠𝐸𝑀𝐺  6416.5 ± 866 6955 ± 721 1 E-49 

𝑅𝑀𝑆𝐸𝑀𝐺 1.09 E-02 ± 5.06 E-03 4.83 E-03 ± 9.7 E-04 1.16 E-226 
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𝑅𝑀𝑆50𝑃𝐸𝑀𝐺  1.09 E-02 ± 5.05 E-03 4.83 E-03 ± 9.7 E-04 3.82E-226 

𝑅𝑀𝑆90𝑃𝐸𝑀𝐺  1.09 E-02 ± 5.04 E-03 4.83 E-03 ± 9.7 E-04 3.43E-225 

𝜎𝐸𝑀𝐺 1.09 E-02 ± 5.06 E-06 4.83 E-03 ± 9.7 E-07 2.56 E-226 

𝑀𝑎𝑥𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 13.11 ± 3.36 18.34 ± 2.08 1.04 E-229 

𝜇𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 11.68 ± 2.69 16.91 ± 2.4 4.95 E-231 

𝑀𝑖𝑛𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 9.82 ± 2.33 15.32 ± 2.96 7.3 E-232 

𝜎𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 2.08 ± 1.19 0.56 ± 0.42 3.62 E-225 

𝑀𝑎𝑥𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴   
5.07 ± 4.05 0.55 ± 0.43 4.65 E-223 

𝜇𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 4.36 ± 3.69 0.33 ± 0.21 2.73 E-232 

𝑀𝑖𝑛𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 4.23 ± 3.56 0.32 ± 0.21 2.78 E-232 

𝜎𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴  0.17 ± 0.16 0.01 ± 0.01 4.87 E-212 

𝑀𝑎𝑥𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 , 31.79 ± 2.12 34.99 ± 0.92 2.88 E-175 

𝜇𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 31.69 ± 2.1 34.93 ± 0.93 1.65 E-178 

𝑀𝑖𝑛𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝  31.66 ± 2.15 34.91 ± 0.92 5.33 E-173 

𝜎𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝  0.06 ± 0.04 1.39 E-02 ± 4.44 E-03 6.13 E-211 

 

 

Because the REFERENCE INTERVAL is obtained using the existing 

observations, it is dependent on the data used. Therefore, it is important to determine if 

the range would be different if it were based on another set of observations. We 

evaluated the robustness by performing again a 4-fold cross validation. In each fold, the 

REFERENCE INTERVAL from each of the training and testing subsets are generated. 

We compare these intervals using the relative percentage different (RPD) method which 

evaluates the change in the REFERENCE INTERVAL. For each feature, we computed 

the RPD between the intervals generated using the respective subsets with Eq. 6: 

𝑅𝑃𝐷𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
|𝜇𝑅𝐼𝐴−𝜇𝑅𝐼𝐵|

2𝜇𝑅𝐼𝐵

× 100        (6) 
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By computing the RPD for each feature, we obtained of 16.8% total difference from the 

cross-validation as seen in Table 6. between the intervals. Because that difference is 

relatively small, we concluded that the REFERENCE INTERVAL is robust to changes 

in the data used to calculate it and is therefore reliable. 

 

Table 6 - Evaluating the robustness of the reference interval 

4-Fold Validation Total RPD (%) 

Fold 1 20.5 

Fold 2 15.4 

Fold 3 15.4 

Fold 4 16.2 

Average RPD 16.8 

 

4.2.3 Evaluation of the IMPACT  

The IMPACT of each feature was generated using Eq. 1 and Eq. 3, which are based on 

the SHAP method. The accuracy and success of the SHAP method were proven outside 

of this paper [8]. The IMPACT can be positive or negative, indicating that the 

corresponding feature contributes to an increase or decrease in the overall stress 

probability, respectively. We evaluated the IMPACT parameter from two perspectives: 

its effectiveness as an indicator of stress and its ability to provide insights into the 

causes of stress in a given individual. 

4.2.3.1 Effectiveness of the IMPACT values as indications of stress: 

To demonstrate the ability of the IMPACT parameter to explain how each feature 

affects stress, we examined the correlation between the IMPACT values for the features 

in our report and the results of previous studies. The previous studies found that the 
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following features were affected by stress: 𝜇𝐻𝑅,𝜎𝐻𝑅, 𝑅𝑀𝑆𝑆𝐷𝐻𝑅𝑉, 𝑃𝑁𝑁50𝐻𝑅𝑉 ,𝜇𝐸𝐷𝐴, 

𝜇𝐸𝑀𝐺, 𝑅𝑀𝑆𝐸𝑀𝐺, 𝑅𝑀𝑆90𝑃𝐸𝑀𝐺, and 𝜇𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒. Those studies recorded for some of the 

features the range of values that indicated a normal or non-stressful state. For those 

features, the experimental reference intervals provide insight on whether the test result 

is indicative of a stressful or normal state. We tested whether the IMPACT parameter 

could provide the same information by creating a contingency table showing the 

relationship between the test results that were assigned a positive or negative IMPACT 

value and the test results that fell within or outside the experimental reference interval. 

We then performed a Chi-squared test for each feature. We also used the 4-fold cross 

validation to create a contingency table for each subset of data. A sample of the results 

of one of the folds is shown in Table 7. 

The experiment showed what the normal and stressful ranges were for the ECG 

and EDA features (Table 3); however, for the EMG features and respiration rate, they 

only specified if the feature values increased or decreased with stress, without providing 

normal ranges. Therefore, for those features, the REFERENCE INTERVAL used in the 

Chi-squared test was the one generated by our model, as shown in Table 5. 

We performed the Chi-squared test on each feature of the testing data in each 

fold with the null hypothesis that the two categories separated on the basis of IMPACT 

and the REFERENCE INTERVAL were not correlated. A sample of the computed p-

values and the contingency matrix are shown in Table 7. In each of the 4-folds, all of 

the tests resulted in a p-value < 0.05, indicating that the null hypothesis was not 

supported by the data. Therefore, we rejected the null hypothesis and confirmed a 

correlation between the results of using the REFERENCE INTERVAL and the 
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IMPACT, respectively, as stress indicators. Thus, the IMPACT was found to be an 

effective parameter to indicate stress. 
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Table 7 - Results of Chi-Squared Tests for SHAP Evaluation of Stress Prediction 

 Impact > 0 Impact < 0  p-value 

𝑝𝑁𝑁50𝐻𝑅𝑉 ∉ ’Ref. Int.’ 5 69 
1.76E-07 

𝑝𝑁𝑁50𝐻𝑅𝑉 ∈ ’Ref. Int. 23 12 

𝑅𝑀𝑆𝑆𝐷𝐻𝑅𝑉 ∉ ’Ref. Int.’ 2 57 
2.86E-16 

𝑅𝑀𝑆𝑆𝐷𝐻𝑅𝑉 ∈ ’Ref. Int.’ 48 13 

𝜇𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 ∉ ’Ref. Int.’  72 2 
2.86E-25 

𝜇𝑅𝑒𝑠𝑝𝑅𝑎𝑡𝑒 ∈ ’Ref. Int.’ 0 46 

𝜇𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 ∉ ’Ref. Int.’ 25 0 
2.18E-25 

𝜇𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 ∈ ’Ref. Int.’ 1 94 

𝜇𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 ∉ ’Ref. Int.’  117 1 
3.53E-11 

𝜇𝑊𝑟𝑖𝑠𝑡𝑇𝑒𝑚𝑝 ∈ ’Ref. Int.’ 0 2 

𝜇𝑁𝑁 ∉ ’Ref. Int.’ 34 6 
1.64E-21 

𝜇𝑁𝑁 ∈ Ref. Int.’ 0 80 

𝜇𝐻𝑅 ∉ ’Ref. Int.’ 17 25 
1.06E-04 

𝜇𝐻𝑅 ∈ ’Ref. Int.’ 7 71 

𝜎𝐻𝑅 ∉ ’Ref. Int.’  39 26 
7.60E-06 

𝜎𝐻𝑅 ∈ ’Ref. Int.’ 53 2 

𝑅𝑀𝑆𝐸𝑀𝐺 ∉ ’Ref. Int.’ 81 0 
5.804e-26 

𝑅𝑀𝑆𝐸𝑀𝐺 ∈ ’Ref. Int.’ 1 38 

𝑅𝑀𝑆50𝑃𝐸𝑀𝐺 ∉ ’Ref. Int.’  80 0 
4.75e-25 

𝑅𝑀𝑆50𝑃𝐸𝑀𝐺 ∈ ’Ref. Int.’  2 38 

𝜇𝐸𝑀𝐺 ∉ ’Ref. Int.’  8 22 
1.57E-03 

𝜇𝐸𝑀𝐺 ∈ ’Ref. Int.’ 4 86 
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4.2.3.2 Insights provided by the IMPACT 

Figure 6 provides a summary of the mean IMPACT values assigned to each feature 

from all observations. The length of the bar represents the average impact of the feature 

on stress. The results show that the main physiological indicators of stress are  related to 

the electrical heart activity and the skin conductance measured from the chest or the 

wrist. 

Figure 6 - Average Impact of Physiological Features on Stress 

 

 

4.2.4 Evaluation of the FLAGs 

The two FLAG columns in the stress report inform the patient and health care 

professionals if any measures should be taken regarding the corresponding feature as it 

relates to stress. We evaluated the consistency between the two FLAG indicators. Then, 

we evaluated the insights provided by the FLAGS into the causes of stress. 
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4.2.4.1 Consistency between the two FLAGs 

We extracted data for four factors from the sample report in Figure 3 to illustrate 

the evaluation (Figure 7). The star-shaped FLAGs are associated with the 

REFERENCE INTERVAL, whereas the circle-shaped FLAGs are associated with the 

IMPACT. If the star-shaped FLAG is green, then the measured value of the feature is 

within the REFERENCE INTERVAL. Red star-shaped FLAGs indicate values that are 

outside the REFERENCE INTERVAL. If the circle-shaped FLAG is red, then the effect 

of the feature at the measured level is to increase stress. If the circle-shaped FLAG is 

green, then the effect of the feature at the measured level is to decrease stress. Because 

both FLAGS are supposed to indicate signs of stress, they should be consistent for each 

feature. 

Figure 7 - Test Results Extracted from a Sample Report  

 

 

The FLAGS consistency was again performed by dividing the data into 4 

subsets. In each subset, the report was generated per observation of data  and the 

percentage of flag consistency was evaluated. The percentage of consistency per subset 

of data is represented in Table 8. Overall, there was 80% consistency between the two 

FLAGS. 
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Table 8 – Flag evaluation through consistency check 

4-Fold Validation Consistency (%) 

Fold 1 81 

Fold 2 79 

Fold 3 80 

Fold 4 80 

Average Score 80 

 

The bar charts shown in Figure 8 show the percentages of reports in the training 

data which shows the consistency (blue bars) and inconsistency (orange bars) between 

the FLAGS for each feature. The results showed that the FLAGS with the most 

inconsistency were mainly associated with the features extracted from the chest EDA 

and the EMG signal. Four features had inconsistency greater than 50%. Features with 

high inconsistency would not be considered good stress indicators compared with other 

features with low inconsistency 
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Figure 8 - Consistency of the Two FLAGS 

 

 

4.2.4.2 Insights provided by the FLAGS 

The FLAGs in the stress prediction report might help explain the predicted stress 

probability. To illustrate that, we consider an example report generated for one 

individual (Figure 8). In that report, the model predicted that the user was stressed with 

a probability of 63%. The values registered for the ECG signal and chest EDA indicate 

a stressful state, which is represented by the positive IMPACT and the red FLAGS. The 
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37% model uncertainty is due to the features that had green FLAG indicators, which 

include the minimum, maximum, and mean values of the EDA signal recorded from the 

wrist. 

Figure 9 – Test Results Extracted from a Sample Report showing insights provided by the 

FLAGS 

 

 

4.3 Qualitative Assessment 

The qualitative assessment aimed to determine whether the psychiatrists and 

patients can understand the prediction of the AI system. A questionnaire was provided 

to an expert psychiatrist to provide their evaluation on the explanation report. The 

questionnaire was accompanied by instructions on how to interpret and read the report 

in addition to a description of each TEST in the report, found in Appendix A. 

The following section will include a summary of the questionnaire’s result, the 

full questionnaire and answers can be found in Appendix A-4. 
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4.3.1 Does the psychiatrist have the components needed to extract the explanation as 

captured by the report components? 

The expert psychiatrist assessed the report parameters and physiological 

attributes used to be moderately to extremely useful to help them and the patient 

understand how the model is making its decision. One of the TESTS signals was 

labeled as not useful: “EDA recorded from the Chest” taking into consideration the 

practicality of collecting these measurements from the patients. However, in this work 

we are considering that the equipment to collect all of the measurements is available 

and focusing on making sure that the report provides the needed information for the 

psychiatrists to understand how the system provided its prediction. 

4.3.2 Does the report provide the AI explanation needed for psychiatrists and 

patients? 

The report was found to be providing the needed explanation for the psychiatrist 

and patient. In addition, the OLAP approach was found to be moderately important in 

providing a simpler explanation to the patient. However, the TESTS were thought to be 

neither clear nor unclear for the patients. 

4.3.3 Are any data missing or are more features needed? 

No additional features or components were found to be required. 

4.3.4 Is the report user-friendly from the perspectives of experts and patients? 

The evaluation of the report was provided as follows: the report’s display and 

the instruction manual were easy to follow. As for the report’s organization it was found 

to be a little confusing. 
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4.3.5  Can the explainable reports be useful for additional medical applications? 

The expert psychiatrist considered the report to be very useful for a medical 

diagnosis. It could be successfully used to track patient’s stress over time. In addition, 

the explanation report allows to study the relation between physiological signals and 

stress. 

4.4 Discussion on Difference in Reference Intervals  

The Reference Interval per physiological measurement, indicating the no-stress 

range, might be different between genders and more specifically it might be different 

per individual. In this section, we aim to study the difference in reference intervals 

generated by gender and then per individual for some features. For this analysis, we will 

consider the features that were assigned a positive impact higher than 5 % in the report 

of Figure 4. These features are: 𝜎𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴, 𝜎𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴, 𝑀𝑎𝑥𝐻𝑅, 𝜇𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴,𝑀𝑎𝑥𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴, 

|𝜇|𝑁𝑁, and 𝜇𝐻𝑅. We aim to study if a significant difference is found between the 

reference intervals generated: 

a. Based on gender  

b. Per individual. 

By generating the reference interval using the data of each individual separately, 

we found that the reference intervals of 𝜎𝑊𝑟𝑖𝑠𝑡𝐸𝐷𝐴 , 𝜎𝐶ℎ𝑒𝑠𝑡𝐸𝐷𝐴 and 𝑀𝑎𝑥𝐻𝑅  showed the 

higher difference between individuals, compared to the other studied features. 

However, if we compare the reference intervals of the same features by 

separating the subjects into Males and Females, we found that the main difference in 

reference intervals was in the |𝜇|𝑁𝑁, 𝜇𝐻𝑅 and 𝑀𝑎𝑥𝐻𝑅  . However since the data was 

collected from 3 Females and 11 Males and since we have few inputs per individual, we 
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cannot confirm our analysis as a larger dataset is required to draw much reliable 

insights. 
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CHAPTER 5 

CONCLUSION 

In this work, we provided an explanation for stress prediction by AI systems based on 

physiological measurements. We aimed to address the limitation apparent in the stress 

prediction literature, which is the lack of sufficient explanation of the prediction to 

allow patients and health care professionals to trust the diagnosis. To make AI-based 

stress evaluation more user-friendly and medically beneficial, we propose a method to 

provide an explanatory report that is configurable on the basis of users’ needs. Users 

would be able to know what biological features had the most influence on the results of 

the stress evaluation in addition to any health-related abnormalities. 

Several challenges are addressed in this thesis. We determined what explanation to 

display for health care professionals and patients and also how to present the 

explanation. In addition, we developed AI models that can produce the necessary 

explanations. The explanations are presented in an explanatory report that lists the 

different physiological attributes that influence the stress probability, similarly to how 

the results of blood tests are presented. We used models that determine a mathematical 

relationship between the data and the prediction to provide information about the 

influence of each feature on the overall results of the stress evaluation. The 

physiological measurements used in the stress report include signals related to heart 

activity, muscle activity, body temperature, and skin conductance. The report uses the 

same physiological features that are commonly used in experiments to study the 

biological effects of stress. 
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The effectiveness of the report was evaluated using a quantitative and a qualitative 

assessment. The stress prediction accuracy was shown to be comparable to state of the 

art at an F1-score of 0.78. The contributions of each physiological signal to the stress 

prediction was shown to correlate with ground truth. The evaluation of the reference 

interval showed that the chosen intervals were reliable. In addition to these quantitative 

evaluations, a qualitative survey with a psychiatrist confirmed the confidence and 

effectiveness of the explanation report in understanding the stress prediction made by 

the AI system. 

Our future work on interpretable AI-based stress evaluation will include the 

addition of more explanatory features related to the emotional states of the patient, such 

as sadness, relaxation, anxiousness, or happiness. In addition, the implementation of a 

user-study that takes into consideration all the missing parameters that would have been 

useful in our analysis, such as a larger dataset. Since it will allow separating the data of 

individuals based on gender and age group and obtain enough observations per user for 

a better analysis and more accurate results.  

For the proposed user-study, the number of participants should be around 30 

subjects, separated between 15 Males and 15 Females. We would separate them into 4 

groups to compare between the normal and stress related physiological measurements based 

on gender and age : (1) Females between 18-25, (2) Females between 26-35, (3) Males between 

18-25 and (4) Males between 26-35. The collected measurements will include the Respiration 

Signal, the ECG signal, the EMG signal collected from the Trapezius muscle and the EDA and 

Temperature measured from the wrist.  

Two different experiments can be performed. The first experiment would be in a controlled 

environment which includes a series of relaxed and stressful tasks to be performed by the 
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subjects. For the stress conditions, the users will be exposed to the Trier Social Stress Test 

(TSST) as well as puzzles and logical tasks. The duration of the stress experiments will 

be 2 hours. As for the relaxed conditions, the subjects will be provided neutral reading 

materials such as magazines for 20 minutes, they will be required to watch a set of 

funny video clips for 15 minutes, for amusement and finally they will perform 

controlled breathing exercises after each stress experiment in the aim of returning to a 

close to neutral/no stress state. The duration is 7 minute and to be performed after each 

stress experiment. The labels will be collected using three self-reports: PANAS, STAI 

(State-Trait Anxiety Inventory) and Short Stress State Questionnaire (SSSQ). 

Another type of experiment can be performed to collect the needed data in the 

“wild”. The users will be asked to collect around 10 hours of measurements. More data 

is required in this experiment to make sure we have enough stress labels and since in the 

“wild” there are many factors that could lead to the collection of incorrect/faulty 

measurements (such as disconnected device, low battery, …). Every 45 minutes the user 

will be asked to fill out the PANAS and the STAI questionnaires,  
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APPENDIX 

QUESTIONNAIRE FOR PSYCHIATRISTS  

1. Instructions Manual: Description of Report Components 

 

 

In this section the different aspects of the report. 

• TESTS: Type of physiological Signal. These measurements include attributes 

extracted from the physiological signals.  

• RESULT: Current measurement of each physiological attribute in 'TESTS' 

represents the value of the features extracted from the raw recorded signals for this 

prediction during a period of 90 seconds. These features are typically statistical 

measures of the raw data.  

• UNITS: Units of physiological signal  

• STRESS PROBABILITY: The model prediction on how stressed the user is based 

on all the test results provided. 

• REFERENCE INTERVAL: Range of normal physiological measure when patient 

is not stressed, provided by our model. 

• IMPACT: The Impact provides indication of which physiological signals have 

more impact on the stress prediction by ranking the signals in descending order of 

impact. The idea is to calculate the feature's percentage contribution to the total 

probability of stress prediction. A feature with a negative impact decreases the stress 

probability and increases it otherwise. 

• FLAG: Indicator of normal/abnormal signal in relation to stress. The Flag is 'red' if 

the test result is indicating stress and 'green' otherwise. The Star-shaped Flag is a 

representation of the correspondence to the non-stressful range. If the test result is 

inside of the normal/no stress range, this flag will be presented in Green and in red 

otherwise. The Circle-shaped Flag is a representation of the impact the test result 

has on the prediction: if the test impact is negative, this flag will be presented in 

green and red otherwise. The Red color is therefore an indication for stress.  

 

TESTS Result Unit Impact(%)

WristEDA_STD  = 0.036 μS 0.001334 - 0.015556 8.84

Explanation Report for Stress Prediction
Stress Probability: 63%

Flags Reference Interval
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2. Instructions Manual: How to Read and Interpret The Report 

 

 

 

 

 

 

Figure 10 - Description of the Report's Attributes 

Figure 11 - Instructions on Report's Interpretation 
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3. Instructions Manual: Description of Physiological Attributes 

Signal: Electrodermal Activity (EDA) 

 EDA is neurological control of the rate of sweat gland production in the skin. It refers to the electrical changes measured at the surface of the skin. It captures the 
electrical conductance across the skin, measured in microSiemens (μS) 

EDA SCL reflects the level of physiological arousal from the electrical skin conductivity.  
EDA SCR is an indication of autonomic nervous system arousal 

Recorded 
from the 

Chest 

ChestEDA_Max μS Maximum value of electrodermal activity  

ChestEDA_Mean μS Mean value of electrodermal activity  

ChestEDA_Min μS Minimum value of electrodermal activity  

ChestEDA_SCLMean μS Mean value of the average level of skin conductance (SCL) 

ChestEDA_SCLSTD μS Measure of how far the values of the skin conductance level (SCR) differ from the mean 

ChestEDA_SCRMean μS Mean value of the average changes of the skin conductance level (SCL)  

ChestEDA_SCRSTD 
μS 

Measure of how far the values of the skin conductance response (SCR) differ from the mean,   

ChestEDA_STD μS Measures how far the EDA values vary from the mean EDA 

Recorded 
from the 

Wrist 

WristEDA_Max μS Maximum value of electrodermal activity  

WristEDA_Mean μS Mean value of electrodermal activity  

WristEDA_Min μS Minimum value of electrodermal activity  

WristEDA_STD μS Measures how far the EDA values vary from the mean EDA 

    
Signal: Body Temperature  

Measure of the body temperature in Celsius (°C) 

Recorded 
from the 

Chest 

ChestTemp_Max °C Highest temperature  

ChestTemp_Mean °C Average value of the temperatures  

ChestTemp_Min °C Lowest temperature  

ChestTemp_STD °C Measures how far the temperatures vary from the mean Temperature  

Recorded 
from the 

Wrist 

WristTemp_Max °C Highest temperature   

WristTemp_Mean °C Average value of the temperatures    

WristTemp_Min °C Lowest temperature   

WristTemp_STD °C Measure of the temperature's variation from the mean  
 

Signal: Heart Rate Variability 
 

Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats. It is measured by the variation in 
the beat-to-beat interval. Other terms used include: "cycle length variability", "RR variability" (where R is a point corresponding to the peak of the 

QRS complex of the ECG wave; and RR or NN is the interval between successive Rs) 

 

 
ECG_HRV_HF ms² Variance in HRV in the High frequency (.15 to .40 Hz)  

ECG_HRV_LF ms² Variance in HRV in Low Frequency (.04 to .15 Hz)  

ECG_HRV_madNN ms Median absolute deviation of NN intervals  

ECG_HRV_mcvNN ms Median-based coefficient of variation of NN intervals  

ECG_HRV_meanNN ms Mean value of the successive difference between the RR intervals which is the interval two heart beats.  

ECG_HRV_medianNN ms 
Median value of the successive difference between the RR intervals which is the interval two heart 
beats. 

 

ECG_HRV_pNN20 % 
The proportion of number of pairs of successive NNs that differ by more than 20 ms divided by total 
number of NNs. 

 

ECG_HRV_pNN50 % 
 The proportion of number of pairs of successive NNs that differ by more than 50 ms divided by total 
number of NNs. 

 

ECG_HRV_RMSSD ms  the square root of the mean of the squares of the successive differences between adjacent NNs  

ECG_HRV_sdNN ms the standard deviation of NN intervals  

    
 

Signal: Heart Rate  

the number of times the heart beats in the space of a minute, measure in beats per minute 

 

 
ECG_MaxHR Beats per Minute Highest heart rate recorded from   

ECG_MeanHR Beats per Minute Average of the recorded heart rates    

ECG_MinHR Beats per Minute Lowest heart rate recorded from   

ECG_StdHR Beats per Minute Measure of the heart rate's variation from the mean   

 

Signal: electromyography (EMG)  

The EMG signal is a biomedical signal that measures electrical currents generated in muscles during its contraction representing neuromuscular 
activities. The motor unit recruitment is reflected in the EMG signal amplitude This is a measure of the trapezius muscle. 

 

 
EMG_Min mV Minimum value of the EMG Signal   

EMG_Max mV Maximum value of the EMG Signal  

EMG_STD mV Standard deviation of the EMG Signal   

EMG_RMS90P mV 90th percentile of the root mean square (RMS) of the EMG Signal  

EMG_RMS mV The increase in RMS is related to the recruitment of additional motor units and an increased firing rate  

EMG_RMS50P mV 50th percentile of the RMS of the EMG Signal  
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Questions & Results 

 

 

 

 

Part 1 – Assessment of Report listing all physiological 
Attributes 

 

How useful are the report parameters for the physician in understanding how the 

model is making its decision? 

Report Stress 

Indicators 

Not at 

all 

useful 

Slightly 

useful 

Moderately 

Useful 

Very 

Useful 

Extremely 

Useful 

Additional 

Comments 

Flags ☐ ☐ ☐ ☒ ☐  

Reference Interval ☐ ☐ ☐ ☒ ☐  

Impact ☐ ☐ ☒ ☐ ☐  

Stress factors (Tests) ☐ ☒ ☐ ☐ ☐  

Stress Probability ☐ ☐ ☐ ☐ ☒  

 

How useful are the report parameters for the patient in understanding how the 

model is making its decision? 

Report Stress 

Indicators 

Not at 

all 

useful 

Slightly 

useful 

Moderately 

Useful 

Very 

Useful 

Extremely 

Useful 

Additional 

Comments 

Flags ☐ ☐ ☒ ☐ ☐  

Reference Interval ☐ ☐ ☒ ☐ ☐  

Impact ☐ ☒ ☐ ☐ ☐  

Stress factors (Tests) ☐ ☒ ☐ ☐ ☐  

Stress Probability ☐ ☐ ☐ ☐ ☒  

 

How useful are each of the physiological signals for the physician in understanding 

how the model is making its decision? 

Signals Not at 

all 

useful 

Slightly 

useful 

Moderately 

Useful 

Very 

Useful 

Extremely 

Useful 

Additional 

Comments 

ECG Heart Rate ☐ ☐ ☐ ☐ ☒  

ECG HRV ☐ ☐ ☐ ☒ ☐  

Wrist Temperature ☐ ☐ ☐ ☐ ☒  

EMG ☐ ☐ ☒ ☐ ☐  

Respiration Rate ☐ ☐ ☒ ☐ ☐  
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How useful is the usage of physiological attributes for the physician in 

understanding how the model is making its decision? 

Not at all 

useful 

Slightly 

useful 

Moderately 

Useful 

Very 

Useful 

Extremely 

Useful 

Additional Comments 

☐ ☐ ☐ ☒ ☐  

 

Does the report provide the AI explanation needed for psychiatrists? 

 ☒ Yes ☐No 

If No, kindly specify what other features/signals can be included, or what other additional 
information should be added to the report. 

1. Practicality may be a deterring factor 

2.  

3.  

 

Does the report provide the AI explanation needed for patients? 

☒ Yes ☐No 

If No, kindly specify what other features/signals can be included, or what other additional 
information should be added to the report.  

1.  

2.  

3.  

How useful is the usage of physiological attributes for the physician in 

understanding how the model is making its decision? 

Not at all 

useful 

Slightly 

useful 

Moderately 

Useful 

Very 

Useful 

Extremely 

Useful 

Additional Comments 

☐ ☐ ☐ ☒ ☐  

 

Does the report provide the AI explanation needed for psychiatrists? 

 ☒ Yes ☐No 

If No, kindly specify what other features/signals can be included, or what other additional 
information should be added to the report. 

1. Practicality may be a deterring factor 

2.  

3.  

 

Does the report provide the AI explanation needed for patients? 

☒ Yes ☐No 

If No, kindly specify what other features/signals can be included, or what other additional 
information should be added to the report.  

1.  

2.  

3.  

Part 2 – Assessment of Report listing specific tests 
 

We integrated a report customization approach in the purpose of making the report clearer to 

patients and physician by allowing them to choose the tests they need and produce the 

corresponding explanation. 

 

On a scale from 1 to 5 (1=not important, 5=very important), How much is this approach 

important in providing a more comprehensible and useful report to the patient? 

 

On a scale from 1 to 5 (1=very clear, 5= not clear at all), taking into consideration the table 

describing each test, how clear could the test attributes be to the patient? (knowing that 

they can specify the tests used to generate the report) 

 

 

 

 

 

 

☐ 1 ☐ 2 ☐ 3 ☒ 4 ☐ 5 Other comments:  

☐ 1 ☐ 2 ☒ 3 ☐ 4 ☐ 5 Other comments:  
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Can this report be used to track patient’s stress state over time? 

☒ Yes ☐ No 

 

Can this report be used to study the relation between physiological signals and stress? 

☒ Yes ☐No 

Part 3 – GUI Assessment 
 

How clear is the report’s display? 

Hard to 

follow 

A little 

Confusing 

Easy to 

follow 

Additional Comments 

☐ ☐ ☒  

 

How clear is the report’s organization? 

Hard to 

follow 

A little 

Confusing 

Easy to 

follow 

Additional Comments 

☐ ☒ ☐  

 

How clear is the instruction manual that will be added to the report? 

Hard to 

follow 

A little 

Confusing 

Easy to 

follow 

Additional Comments 

☐ ☐ ☒  
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