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An Abstract of the Dissertation
of

Youssef Ali Jaffal for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: An Information Theoretic Analysis of Time-Limited Signaling

Practical communication systems use finite duration transmissions and signal-
ing. As the time-limited signals have infinite bandwidth, they lose some of their
energy when passed through a band-limited channel. In 1948, Shannon derived
the capacity of the band-limited Gaussian channel making use of band-limited
and therefore infinite-duration pulses. In 1965, Wyner derived the channel capac-
ity when using time-limited signals that are “approximately band-limited” in an
asymptotic regime, as the time support of the signals tends to infinity. A major
breakthrough in this theory was achieved by Polyanskiy who studied the channel
coding rates in the finite block-length regime, however the derived results are only
for discrete-time channels. A related theory is the rate distortion theory which
was introduced by Shannon in 1948, where he derived the rate distortion function
for band-limited white Gaussian sources. However his results are obtained by al-
lowing compression at once an asymptotically infinite duration piece from the
source, which is not possible for practical systems. Recently, Kostina studied the
rate distortion theory in the finite block-length regime for discrete-time sources.

In this thesis I study the achievable rates when using signals with finite dura-
tion over a band-limited Gaussian channel, and the main goal is to quantify these
rates when finite-duration codewords are employed over a band-limited channel.
First I considered two system models where infinite duration codewords are trans-
mitted over a band-limited Gaussian channel, however the pulses are restricted
to be time-limited. Second, I considered transmitting finite duration codewords
over a band-limited Gaussian channel and studied the achievable rates and the
available degrees of freedom. Finally I extended this work to the “dual” problem
of rate distortion theory and considered the coding of a time-limited piece of a
band-limited Gaussian source.
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Chapter 1

Introduction and thesis
objectives

1.1 Introduction

Wireless communication systems that use radio waves have tight requirements on
the used spectrum, where every technology should abide by a specific transmit
spectral mask, a mask that allows the communication system to transmit data
within a specific radio band, and guaranties an acceptable level of interference
on the other technologies. As the adjacent radio bands may be used by other
technologies, it is reasonable to consider that in wireless communication tech-
nologies the transmitter confines its transmitted data within its radio band, and
the receiver looks for the transmitted data in this band.

A major factor that affects receiving the transmitted data is the added noise in
the channel. It is intuitive that the received signal power should be high enough
(with respect to the noise power) so the receiver can distinguish the transmitted
signals. The added noise in the channel is often assumed to be an Additive White
Gaussian Noise (AWGN) process. One reason that supports this assumption is
that Gaussian noise has the “worst” distribution that maximizes the entropy for
a given noise variance [1]. Additionally, the central limit theorem supports this
assumption, since the thermal noise results from the additive effect of independent
random motions of electrons.

Information theory determines the bounds that communication systems can-
not surpass. The Legend of Albert [2] addresses the importance of informa-
tion theory for communication engineers. The pioneering works of Claude Shan-
non [1, 3] defined the capacity of real band-limited Gaussian channel to be

C = W × log2

(
1 +

P

N0W

)
bits per second,

where W is the bandwidth of the channel, P is the transmitted signal power, and
N0 is the noise power per cycle. Any data rate below the channel capacity can
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be achieved with arbitrary small probability of error, and no data rate is possible
beyond this channel capacity. Shannon derived first the channel capacity for
the Discrete Time (DT) channel as the block length of the codewords grows
towards infinity. He then used the sampling theorem which provides a one-to-one
relation between the continuous time and discrete time signals: For W -Hz band-
limited signals when sampled at a rate of 2W samples per second, the operation
is invertible and information lossless making use of the “sinc” function defined in
this thesis as

sinc(2Wt) =̂
sin (2πWt)

2πWt
.

Since strictly band-limited signals must be eternal, they cannot be used in
any practical communication system. Moreover, some applications and technolo-
gies require real time communication with unnoticeable delays forcing the use
of relatively short time signals. Some examples of such applications are phone
calls, video conferencing, and online gaming. Additionally, the latency require-
ments are tighter in new generations of cellular communication systems com-
pared to previous generations. For example, some of the goals set by the METIS
project [4] to achieve in 5G systems compared to 4G systems are: to reduce the
end to end latency by a factor of 5, to increase the battery life by a factor of 10,
and to increase the user data rate by a factor between 10 to 100. However, we
do not know a practical theoretical relation between the channel capacity, the
transmission power, the transmission duration and the used radio band.

While the derived formula by Shannon is mathematically rigorous, some of
the made assumptions do not hold in practical settings.

First: the conversion from DT to Continuous Time (CT) and vice versa is not
practical since the “sinc” function needs an infinite time support. Moreover, the
use of any band-limited function with non-zero finite energy is not possible in
practice. In the literature, Wyner [5, 6] and Gallager [7] tackled this issue and
considered the use of T -seconds time-limited codewords. However, they derived
asymptotic results as T → ∞ and reached the same formula derived by Shannon.

Second: the second questionable assumption in practical settings is the use of
infinite block-length codewords which is not feasible. Dobrushin [8], Strassen [9],
and Polyanskiy [10, 11] derived asymptotic expansions for the achievable rates
at a given probability of error. However the results were derived only for DT
channels. One of the results by Polyanskiy is the maximum achievable rates for
L-parallel real Gaussian channels [11, Theorem 4].

Another related “dual” theory is the rate distortion theory which was first
introduced by Shannon in his pioneer work [1]. One of his results is the rate
distortion function for a real W -Hz band-limited white Gaussian source:

RShannon = W log2

(
Q

D

)
bits per seconds, (1.1)
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where Q is the average power of the source and D is the average distortion
level measured using the mean squared error. Obtaining this expression may
be achieved by using the Shannon-Nyquist sampling theorem to transform the
problem to a DT one, and then applying the rate distortion function for the
DT stationary Gaussian source [12, chapter 4.6.3]. Equation (1.1) is obtained
by allowing compression at once an asymptotically infinite duration piece from
the source, and hence the block-length in the equivalent DT model is infinite.
The authors in [13] and [14] investigated the rate distortion theory in the finite
block-length for stationary DT Gaussian sources regime, where they provide a
closed form expression for the approximation of the minimal rate that achieves a
maximum distortion level d with probability 1 − ǫ:

R(n, d, ǫ) ≈ n

2
log2

σ2

d
+

√
n

2
Q−1 (ǫ) log2 e,

where n is the block-length and σ2 is the variance of the source. Both papers
showed that this approximation lies between tight upper and lower bounds.

1.2 Thesis objectives and outcomes

Using finite duration signals over a band-limited channel disagrees with some
assumptions that Shannon used to derive his result: it leads to energy losses, in-
troduces inter-codeword interference and possibly Inter-Symbol Interference (ISI)
within the same codeword, and raises a fundamental question about the degrees
of freedom when using simultaneously a finite time window and a finite radio
band.

Since time-limited signals have infinite radio band support, when passed
through a quasi band-limited filter they lose some of the energy components
outside the radio band and therefore the Signal to Noise Ratio (SNR) decreases.
Moreover, the resulting quasi band-limited signals will have larger time support
and therefore their time support will overlap with the time support of the neigh-
bouring signals. In this study I assume that the channel is an ideal low pass filter
approximating a well-designed Radio Frequency (RF) circuitry at the front-end
of the receiver as done in practical systems. Indeed, RF engineers design low
pass filters to best approximate the ideal low pass filter and the approximation
can be made sharper and sharper by increasing the order of a Butterworth filter
for example. On a final note, Gallager [7, chapter 8] studied the channel ca-
pacity when transmitting time-limited signals over an arbitrary channel H1(f)
such as the ideal low pass filter. In his work H1(f) may not be realizable and
plays the role of a mathematical constraint. And in this thesis I adopt ideal
low pass filters in my models to force the transmitter not to send information
outside the radio band. Therefore the considered channel has infinite memory,
and the issue of inter-codeword interference will be unavoidable. Introducing a
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guard time between the consecutive transmissions suppresses the effect of inter-
codeword interference, but at the cost of reduced usage of the time resource. The
argument that Gallager [7, section 8.5] used for infinite block-length codewords
cannot be applied in the finite block-length case; he stated that by introducing a
very large guard time between consecutive codewords while using infinitely much
larger time support for the codewords, the effect of the lost time resource and the
effect of inter-codeword interference can be suppressed as much as needed. Such
an argument cannot be used in my setting since the time duration of a code-
word is finite and maintained fixed: A trade-off between the guard time length
and the inter-codeword interference must be maintained in the finite duration
transmission systems.

The main goal of this thesis is to study the information rates and the channel
capacity when using T -seconds time-limited transmissions over a W -Hz band-
limited Gaussian channel. A related question is that of determining the de-
grees of freedom in such scenario. The space of finite-energy functions that are
band-limited and time-limited contains only the zero function. It is nevertheless
commonly accepted in the literature that the dimension of the W-T space is ap-
proximately 2WT . This argument is supported by results in [3,15–18] that were
also derived in the asymptotic regime as WT → ∞.

The main tasks I accomplished in this thesis can be summarized as follows:

• To evaluate the achievable rates when using time-limited pulses but with
arbitrarily large codes and possibly infinite transmissions. This task has
been accomplished and it is presented in chapters 3 and 4.

i) In chapter 3 I first derived the achievable rates when sending T -seconds
time-limited pulses using combined Pulse Amplitude Modulation - Or-
thogonal Multi-pulse Modulation (PAM-OMM) systems over a W -Hz
band-limited Gaussian channel, and then performed numerical com-
putations to evaluate them. Interestingly, the results show that these
channel capacities depend on the time-frequency factor c = 2WT .
When c ≥ 1 the achievable rates are almost equal to the Shannon
capacity, and hence the loss of energy has no significant effect. Using
my system model I also established that there are at most 2WT inde-
pendent data symbols. The results of this chapter were published in
the following conference paper:

Y. Jaffal, and I. Abou-Faycal, “Using time-limited pulses in a combined
PAM-OMM system over band-limited channels”, 2019 IEEE Wireless
Communications and Networking Conference (WCNC), 2019, 1-7.

ii) In chapter 4 I considered a classical PAM system and studied optimal
signaling when using time-limited pulses over band-limited AWGN
channels. I adopted an information theoretic approach and quantified
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the achievable rates of such systems. I showed that the Nyquist crite-
rion cannot be satisfied and that signaling at faster than the Nyquist
rate

(
where T < 1

2W

)
is significantly closer to optimality. The deriva-

tions and results of this chapter were published in the following con-
ference paper:

Y. Jaffal, I. Abou-Faycal, “Achievable rates using PAM time-limited
pulses over band-limited channels: From Nyquist to FTN ”, 2019 IEEE
Wireless Communications and Networking Conference (WCNC), 2019,
1-6.

• To study the achievable rates when using finite duration codewords. This
task is accomplished and it is presented in chapter 5, where I considered
a communication system whereby T -seconds time-limited codewords are
transmitted over a W -Hz band-limited AWGN channel. I derived upper
and lower bounds for the achievable rates and the corresponding degrees
of freedom and I numerically evaluated them for sample values of 2WT .
The bounds are asymptotically tight and numerical computations show the
gap between them decreases as 2WT increases. Additionally, the possible
degradation in the available degrees of freedom is upper-bounded by a log-
arithmic function of 2WT . The results of chapter 5 were published in the
following journal paper:

Y. Jaffal, and I. Abou-Faycal. Time-Limited Codewords over Band-Limited
Channels: Data Rates and the Dimension of the WT Space. Entropy, 2020,
22(9).

• To extend this work to the “dual” problem of rate distortion theory, where
sampling a time-limited signal is necessarily “energy-lossy”. This task is
accomplished and the results are presented in chapter 6; I considered the
problem of source coding a T -seconds finite duration piece of a W -Hz band-
limited white Gaussian process with the L2 norm of the error as a distortion
measure. I derived a lower bound and an upper bound for the smallest rate
that guarantees a distortion level with a probability 1− ǫ and I numerically
evaluated these bounds. I also showed that the derived bounds are asymp-
totically tight where they converge to Shannon’s formula. The results of
chapter 6 were published in the following conference paper:

Y. Jaffal, and I. Abou-Faycal. “Lossy coding of a time-limited piece of a
band-limited white Gaussian source.” IEEE International Symposium on
Information Theory (ISIT 2020), 2020, 2327-2331.

5



Chapter 2

Preliminaries and related works

2.1 Prolate spheroidal wave functions

In [19] Slepian and Pollak showed that the Prolate Spheroidal Wave Functions
(PSWFs) possess properties that make them useful in the Fourier analysis of
band-limited functions and time-limited functions. Their work was motivated by
solving the problem of maximum energy concentration. More specifically, among
all W -Hz band-limited functions which function f(t) has the maximum energy
concentration over the time window

[
−T

2
, T
2

]
:

∫ T
2

−T
2

|f(t)|2dt
∫∞
−∞ |f(t)|2dt.

The authors proved that f(t) is the eigenfunction with the highest eigenvalue
of the integral equation

λf(t) =

∫ T
2

−T
2

sin 2πW (t− s)

π(t− s)
f(s)ds, (2.1)

which is a Fredholm integral equation of the second kind [20]- [21]. While the
literature provides numerical methods to solve some Fredholm integral equations,
Slepian and Pollak introduced a brilliant and unique way to solve this integral
equation [22]- [23]; they found the differential operator that commutes with the
integral operator in (2.1), so both operators have the same eigenfunctions. There-
fore the eigenfunctions of the integral equation in (2.1) are some scaled versions
of the solutions of the differential equation

(
1 − t2

) d2u
dt2

− 2t
du

dt
+
(
χ− c2t2

)
u = 0,

where c = πWT and the solutions of this differential equation are the angular
and radial PSWFs.
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For any c = πWT > 0, they defined the PSWFs as an infinitely countable set
of real functions {ϕc,l(t)}l∈N, normalized solutions of the integral equation where
for every l ∈ N,

λc,l ϕc,l(t) =

∫ T
2

−T
2

sin 2πW (t− s)

π(t− s)
ϕc,l(s) ds, t ∈ R.

Property 2.1.1 The PSWFs form a Complete OrthoNormal (CON) set for band-
limited functions [19] with

∫ ∞

−∞
ϕc,l(t)ϕc,m(t) dt = δlm, ∀ l, m ∈ N× N,

where δlm is the Kronecker delta.

Property 2.1.2 The PSWFs are orthogonal over the time window T :

∫ T
2

−T
2

ϕc,l(t)ϕc,m(t) dt = λc,l δlm, ∀ l, m ∈ N× N,

where {λc,l}l∈N are the eigenvalues that are all in the range 0 < λc,l < 1
and decreasing in l [19].

The eigenvalue λc,l may be hence viewed as the energy concentration of ϕc,l(t)
in the time interval

[
−T

2
, T
2

]
and ϕc,0(t) has the highest energy concentration.

Additionally, the PSWFs are real continuous functions that are even when l is
even and odd when l is odd.

In his book [7, section 8.4], Gallager considered a simple system consisting
of a time-limited signal x(t) that produces the output signal y(t) when passed
through a time-invariant filter h(t). As it is desirable to have a CON basis for
x(t) and a CON basis for y(t), Gallager determined that the members of the CON
basis of x(t) should satisfy the following integral equation

λϕ(τ1) =

∫ T
2

−T
2

R(τ1, τ2)ϕ(τ2)dτ2, (2.2)

where

R(τ1, τ2) =

∫ ∞

−∞
h(t− τ1)h(t− τ2)dt.

Whenever the filter h(t) is the ideal W -Hz low pass filter,

h(t) =
sin 2πWt

πt
= 2W sinc(2Wt),

7



and by the properties of the “sinc” function,

R(τ1, τ2) =
sin 2πW (τ2 − τ1)

π(τ2 − τ1)
. (2.3)

Note that Gallager made use of one important property of the PSWFs, namely
the Fourier transform of a PSWF is a scaled version of time-limited PSWF

Φc,l(f) =

{
jl
√

T
2Wλc,l

ϕc,l

(
T
2W

f
)

for f ∈ [−W,W ]

0 otherwise

= jl

√
T

2Wλc,l
ϕc,l

(
T

2W
f

)
rect

(
f

2W

)
(2.4)

where j =
√
−1. These transforms solve themselves the integral equation

λc,iΦc,i(f) =

∫ W

−W

sin πT (f − s)

π(f − s)
Φc,i(s) ds, ∀i ∈ N. (2.5)

for −W ≤ f ≤ W . By Mercer’s Theorem [24]

sin πT (f − s)

π(f − s)
=

∞∑

i=0

λc,iΦc,i(f)Φ∗
c,i(s) (2.6)

sin π(f − s)

π(f − s)
=

∞∑

i=0

λc,i

T
Φc,i(f/T )Φ∗

c,i(s/T ) (2.7)

for −W ≤ f, s ≤ W . Note that it can be shown that
√
λc,nΦc,n(f) is bounded,

i.e.
√

λc,n |Φc,n(f)| ≤
√
T (proof by Cauchy Schwartz or using equation (2.6)

with s = f).
In this thesis I use c = 2WT as index for the PSWFs, which is different from

the one used by Slepian and Pollak [19]: more specifically ϕ1,i(t) here is the same
as ϕπ

2
,i(t) in [19]. Define the

[
−T

2
, T
2

]
time-limited version of a PSWF by

Dϕc,l(t) =̂ ϕc,l(t) rect

(
t

T

)
, (2.8)

with L2-norm or energy λc,i.

Property 2.1.3 The normalized time-limited PSWFs

{
Dϕc,i(t)√

λc,i

}

i∈N
form a CON set

for T -seconds time-limited functions.

Denote by ΦD
c,l(f) the Fourier transform of

Dϕc,l(t)√
λc,l

which is equal to

8



ΦD
c,l(f) = jl

√
T

2W
ϕc,l

(
T

2W
f

)
, f ∈ R. (2.9)

Based on (2.4), (2.8) and (2.9), when
Dϕc,l(t)√

λc,l

is passed through an ideal low

pass filter with transfer function rect
(

f
2W

)
, the output is

√
λc,l ϕc,l(t):

Dϕc,l(t)√
λc,l

∗ 2W sinc (2Wt) =
√
λc,l ϕc,l(t). (2.10)

I have used a debugged version of the software package by Adelman et al. [25]
to compute the eigenvalues of the PSWFs. While it is known [7, section 8.4] that
for any γ > 0

lim
c→∞

λc,c(1+γ) = 0, (2.11)

lim
c→∞

λc,c(1−γ) = 1. (2.12)

Fig. 2.1 shows the eigenvalues λc,l of the PSWFs for c = 100 and 84 ≤ l ≤ 116.
Note that

λ100,l < 10−5 for l > 107, & λ100,l > 1 − 10−5 for l < 92.

This transition region between the “extreme” eigenvalues (very close to 1 or 0)
is known to have a length proportional to the logarithm of c [7, section 8.4]. For
example, for c = 2000, λ2000,l is between 10−5 and 1 − 10−5 only in the range
1988 < l < 2011.

85 90 95 100 105 110 115

i

10 -10

10 -5

10 0

100,i

1-
100,i

Figure 2.1: Eigenvalues of PSWFs for c = 100 and 84 ≤ l ≤ 116.

Additionally, by Mercer’s Theorem [24],

sin 2πW (t− s)

π(t− s)
=

∞∑

i=0

ϕc,i(t)ϕc,i(s) for − T

2
≤ t, s ≤ T

2
,

9



and for t = s, integrating over
[
−T

2
, T
2

]
yields

∞∑

i=0

λc,i = 2WT = c. (2.13)

In table 2.1 I list numerical approximations for sample values of
∞∑
i=0

λc,i,
∞∑
i=0

λ2
c,i,

and
∞∑
i=0

λ3
c,i by adding only the first N terms.

c = 100, N = 115 c = 1000, N = 1015
N−1∑
i=0

λc,i 99.999999999988 999.999999967

N−1∑
i=0

λ2
c,i 99.187377724737 998.954076824

N−1∑
i=0

λ3
c,i 98.781143572125 998.431122935

Table 2.1: Numerical approximations for
∞∑
i=0

λc,i,
∞∑
i=0

λ2
c,i, and

∞∑
i=0

λ3
c,i using the

first N summands

In this thesis, shifted (in time and frequency) PSWFs will come in handy. De-
note by αk,h c,l,m the inner product between the lth normalized time-limited PSWF
already shifted in time and frequency by k T -seconds and h 2W -Hz respectively,
and the band-limited version of the mth normalized time-limited PSWF. By equa-
tion (2.10) and using Parseval,

αk,h c,l,m =̂

〈
Dϕc,l(t− kT )√

λc,l

ej2πh2W (t−k T ),
√
λc,mϕc,m(t)

〉

=

〈
ΦD

c,l(f − h2W )e−j2πkTf ,ΦD
c,m(f)rect

(
f

2W

)〉

=

〈
ΦD

c,l(f − h2W )e−j2πkTfrect

(
f

2W

)
,ΦD

c,m(f)

〉
, (2.14)

which can be interpreted as the inner product between the bandlimited shifted
normalized lth PSWF and the mth normalized time-limited PSWF. In Appendix A,
I study the magnitude of αk,h c,l,m and derive various bounds that are used in
chapter 5.

2.2 The capacity of band-limited channels

In this section, I summarize the different derivations of the channel capacity of a
band-limited Gaussian channel, that are proposed by Shannon [1,3], Wyner [5,6],
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and Gallager [7]. In the following the power budget is restricted to P Watts, and
hence the total energy per T -seconds time window is PT . The noise is assumed
to be AWGN with Power Spectral Density (PSD) N0

2
Watts/Hz. The capacity of

W -Hz band-limited channel in the presence of AWGN was first derived by Claude
Shannon [1, 3] to be

C = W × log2

(
1 +

P

N0W

)
. (2.15)

Given an absolute continuous random variable X with Probability Density
Function (PDF) p(x), Shannon [1] defined the differential entropy h(X) as a
measure of uncertainty of X , such that

h(X) = −
∫ ∞

−∞
p(x) log2 p(x)dx.

Shannon proved that the Gaussian distribution maximizes h(X) under the con-
straint that the variance is fixed, where the Gaussian distribution is given by

p∗(x) =
1√
2πσ

e−
x2

2σ2 ,

where σ is the standard deviation. And the corresponding entropy is

h∗(X) =
1

2
log2 2πeσ2.

Also, given another absolute continuous random variable Y with PDF p(y), he
defined the conditional entropy h(Y/X) as a measure of the average uncertainty
in Y when X is known, where

h(Y/X) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) log2

p(x, y)

p(x)
dydx.

Under a power constraint on the codewords, Shannon [1] proved that the channel
capacity is given by

C = max
p(x)

(h(Y ) − h(Y/X)) = max I(X, Y ), (2.16)

where p(x) is such that E [X2] ≤ P and it is optimal when it is Gaussian dis-
tributed. The induced p(y) is a zero mean Gaussian distribution and its variance
is the sum of the variances of X and the noise.
To study the CT channels, Shannon used the sampling theorem which provides a
one-to-one relation between the CT and DT for W -Hz band-limited signals when
sampled no slower than 2W samples per second. Therefore, in any time window
T there are 2WT independent data symbols and hence the energy per sample is
P
2W

. The noise is assumed to be W -Hz band-limited (if not the received signal is

11



passed through a low pass filter). The noise power is N0W and the noise variance
per sample is N0W

T
2WT

= N0

2
.

Per second,

C = 2W × 1

2
log

(
1 +

P
2W
N0

2

)
,

and the channel capacity follows as in (2.15).
In [3], Shannon used a geometrical method to find the capacity of the band-

limited Gaussian channel. Using the sampling theorem he showed that the di-
mension of the W -T space is no more than 2WT , then he considered the signals
in this space that have an average power less than P and mapped them to the
geometrical space; Shannon showed that these signals correspond to the points
that fall within a sphere of radius r =

√
2WTP in the 2WT dimensional geo-

metric space. Let the point q1 to be the point that corresponds to the signal
x1, then if the signal x1 is transmitted through a noisy channel with a noise
power N0W , the received signal y1 will correspond to a point in the geometrical
space that falls within a sphere of radius

√
2WTN0W and centred at q1, and

therefore any received signal will be mapped to a point within a sphere of radius√
2WT (N0W + P ). To be able to extract the sent message with very small prob-

ability of error, the received signals should map to different spheres that do not
intersect. Therefore the maximum number of used messages can be calculated
through dividing the volume of the sphere with radius

√
2WT (N0W + P ) by the

volume of the sphere with radius
√

2WTN0W . The volume of a sphere of radius
r in the 2WT dimensional space is given by

V = αr2WT ,

where α is fixed when 2WT is fixed. Therefore the maximum number of possible
messages is

M =

(√
1 +

P

N0W

)2WT

.

And hence the channel capacity is

C =
log2M

T
= W × log2

(
1 +

P

N0W

)
bits/seconds.

Note that the capacity of the complex channel is

CShannon = 2W log2

[
1 +

P

2N0W

]
bits per seconds, (2.17)

where W is the bandwidth of the baseband channel, P is the average transmit
power and N0 is the spectrum of the additive circularly symmetric complex white
Gaussian noise.
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Although the proof is mathematically rigorous, the method implies the use of
“sinc” pulses which is not practical. In the literature, Wyner [5,6] and Gallager [7]
tackled this issue and considered the use of T -seconds time-limited codewords.
However, they derived asymptotic results as T → ∞ and reached the same for-
mula (2.15) derived by Shannon.

In [5], Wyner considered four different physical models and derived the asymp-
totic channel capacity for each model. Wyner stated that the first two models
suffer from some physical difficulties; the assumed noise in the first model results
in an infinite noise power at the receiver, and the use of strictly band-limited sig-
nals in the second model is not practical and may produce interference between
consecutive codewords. On the other hand, he proved that using a noise model
with finite power results in infinite capacity. Wyner made some assumptions to
avoid these issues in [6] and in the third and fourth models in [5]. He derived
the channel capacity of the different models by relating the continuous time to
discrete time models as Shannon did in [1], but by using the PSWFs and their
property that as 2WT → ∞, the first 2WT PSWFs form asymptotically a CON
set for the time-limited and approximately band-limited signals.

Gallager [7, section 8.5] considered transmitting time-limited signals over a
channel with impulse response h(t). He found that the desirable orthonormal
basis functions for the input signal should satisfy (2.2). Using the input signal
X(t)

X(t) =

N∑

i=0

Xiϕi(t),

produces the signal U(t) at the output of the filter,

U(t) =
N∑

i=0

Xi

√
λiθi(t),

where ϕi(t) and θi(t) are the desired basis functions of the input and the output
respectively. With the presence of AWGN, the received signal will be

Y (t) =
N∑

i=0

(Xi

√
λi + Ni)θi(t),

where Ni are independent Gaussian variables. Therefore, this system model is
mapped to a DT model with parallel independent channels where

Yi =
√
λiXi + Ni for i = 0, 1, 2, ..., N.

In [7, Section 8.3] he considered the special case where H(f) is the ideal low
pass filter and the noise is white and found the capacity to be the same as the
one derived by Shannon, while avoiding the issues of infinite noise power and
infinite capacity. In that special case (where H(f) is the ideal low pass filter) the
transformation between continuous time and discrete time was also done through
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the use of the PSWFs [7, Sections 8.4 and 8.5]. Finally, Gallager provided an
intuitive argument regarding inter-codeword interference [7, Section 8.5]; one can
introduce a large guard time, say T 1−ǫ for some ǫ > 0. Asymptotically, inter-
codeword interference is avoided without affecting the data rates since T 1−ǫ/T →
0 as T → ∞.
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Chapter 3

Combined PAM-OMM with
finite duration pulses

In this chapter, I propose a system model that consists of sending T -seconds time-
limited pulses over W -Hz band-limited Gaussian channel: I specifically consider
a combined PAM-OMM system. I take an information-theoretic approach and
I derive the achievable rates over this system and evaluate them numerically.
These rates are naturally obtained while allowing codewords to have arbitrarily
large block-length. With a view towards practical implementations, although the
CT codewords have infinite duration, the pulses are restricted to be time-limited
as is commonly used in practice.

In my derivations, I rely on techniques inspired by the works in [26] and [27]
where Tsybakov derived the capacity of Gaussian channels under ISI in the first
and Telatar derived the channel capacity of multi-antenna systems in the second.
In broad terms, I conduct the analysis in the frequency domain and I modify my
problem in a manner akin to what is done for multi-antenna systems to be able
to formulate my optimization problem.

Also I use the PSWFs and their properties in my derivations and numerical
computations (I refer the reader to [19] and [7, section 8.4] for the definition
and properties of the PSWFs, some of which are summarized in section 2.1).
Note that the use of the PSWFs is not fundamental in this chapter and other
time-limited filters can be used. In this chapter I will use unique values for the
time window T and the bandwidth W , then c = 2WT is fixed in my system
and therefore I denote the PSWF ϕc,i(t) by ϕi(t) and I denote its corresponding
eigenvalue λc,i by λi. Also I denote the Fourier transform of PSWF by Φi(f) and
I denote the

[
−T

2
, T
2

]
time-limited version of PSWF by Dϕi(t).

3.1 System model

I consider the combined PAM-OMM system illustrated in Figure 3.1, where the
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W

+

N(t)

z(t)

+

g1(t)
Dϕ1(t)√

λ1

∑
a1[k]δ(t− kT )

∑
a0[k]δ(t− kT )

g0(t)
Dϕ0(t)√

λ0

gN(t)
DϕN (t)√

λN

∑
aN [k]δ(t− kT )

x(t)

∑
a′N [k]δ(t− kT )DϕN (−t)√

λN
×

gN(−t)

×Dϕ0(−t)√
λ0

g0(−t) ∑
a′0[k]δ(t− kT )

∑
δ(t− kT )

∑
a′1[k]δ(t− kT )

y(t)
Dϕ1(−t)√

λ1

g1(−t)

×

Figure 3.1: Combined PAM-OMM System Model.

channel is an ideal low pass filter with cut-off frequency W , and the additive
noise N(t) is a real W -Hz band-limited Wide Sense Stationary (WSS), Gaussian
noise process with mean zero, and with PSD SN(f) = N0

2
when f ∈ [−W,W ].

The transmitted signal x(t) consists of a sequence of T -seconds time-limited
signals,

x(t) =

N∑

m=0

∞∑

l=−∞
am[l] gm(t− lT ).

The T -seconds time-limited real pulses {gm(t)}Nm=0 are chosen from the set
of normalized time-limited PSWFs {gm(t) =̂ 1√

λm
Dϕm(t)}m which forms a CON

set for all such signals. This choice is motivated by the work of Gallager [7,
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section 8.4] who showed that the PSWFs are desirable functions when sending
time-limited signals over a band-limited channel.

An average power constraint is imposed on the input whose average transmis-
sion power is

Pavg =

∑N
m=0 E [|am|2]

T
. (3.1)

Since the channel is an ideal low pass filter with cut-off frequency W , using
the properties of the PSWF (refer to section 2.1)

z(t) =

N∑

m=0

∞∑

l=−∞
am[l]

√
λmϕm(t− lT ).

On the receiver side I assume that the filters are also restricted to be T -
seconds time-limited and I use the bank of filters consisting of the normalized

time-limited PSWFs
{

Dϕm(−t)√
λm

}N

m=0
.

Interestingly, the choice of the normalized time-limited PSWFs at the receiver
allows extracting sufficient statistics; the received signal y(t) is W -Hz band-
limited and hence sufficient statistics can be extracted by sampling y(t) at a
rate of 2W samples per second. Following the derivations for both cases leads to
the same optimization problem as shown in section 3.4, where it is shown that
in both cases the rates are computed using the water-filling solution over the
eigenvalues of the same matrix.

Or by intuition, sufficient statistics can be extracted by projecting y(t) on
the set {ϕm(t− kT )}m=N,k=∞

m=0,k=−∞ since the signal of interest z(t) lives in the space
spanned by this set. And by the properties of PSWFs, projecting a band-limited
signal on Dϕm(t−kT )√

λm
is equal to its projection on ϕm(t− kT ) with a scale of

√
λm.

In my system the information symbols and the noise symbols will be scaled by
the same factor and hence the mutual information is the same in both cases.
Also, performing the derivations for both cases leads to the same results and in

the following I focus on the use of
{

Dϕm(−t)√
λm

}N

m=0
at the receiver.

At the output of the nth filter, the kth sample is

a′n[k] =
N∑

m=0

+∞∑

l=−∞

√
λm√
λn

am[l] 〈ϕm(t− lT ), Dϕn(t− kT )〉

+
1√
λn

〈N(t), Dϕn(t− kT )〉

=
N∑

m=0

(sn,m ∗ am) [k] + wn[k], (3.2)
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where

sn,m[k − l] =

√
λm√
λn

〈ϕm(t), Dϕn(t− (k − l)T )〉

and

wn[k] =
1√
λn

〈N(t), Dϕn(t− kT )〉 .

The noise sequence wn[k] is obtained by passing first N(t) through the bank

of filters with impulse responses Dϕn(−t)√
λn

, and then sampling the resultant sig-

nals vn(t) at kT . The {vn(·)}’s are Jointly WSS (JWSS), zero-mean Gaussian
processes with cross-spectrum

Svmvn(f) =
√

λm

√
λn

N0

2
Φm(−f)Φn(f) =

N0

2

[√
λmΦ∗

m(f)
] [√

λnΦn(f)
]
,

where I used the fact that the Fourier transform of Dϕn(t)√
λn

on the band [−W,W ]

is
√
λnΦn(f). The {wn[·]}’s are therefore JWSS, zero-mean Gaussian processes

with cross-PSD

Swmwn

(
ej2πf

)
=

N0

2
×
∑

k∈Z

[√
λm

T
Φ∗

m

(
f − k

T

)][√
λn

T
Φn

(
f − k

T

)]
.

Writing equation (3.2) in the frequency domain, for f in
[
−1

2
, 1
2

]
,

A′
n

(
ej2πf

)
=

N∑

m=0

Sn,m

(
ej2πf

)
Am

(
ej2πf

)
+ Wn

(
ej2πf

)

where

Sn,m

(
ej2πf

)
=
∑

k∈Z

√
λn

T
Φ∗

n

(
f − k

T

)√
λm

T
Φm

(
f − k

T

)
, (3.3)

and using a vector notation

A′ (ej2πf
)

= S
(
ej2πf

)
A
(
ej2πf

)
+ W

(
ej2πf

)
, (3.4)
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where

A′ (ej2πf
)

=




A′
0

(
ej2πf

)

A′
1

(
ej2πf

)
...

A′
N

(
ej2πf

)


 ,

S
(
ej2πf

)
=




S0,0

(
ej2πf

)
S0,1

(
ej2πf

)
. . . S0,N

(
ej2πf

)

S1,0

(
ej2πf

)
S1,1

(
ej2πf

)
. . . S1,N

(
ej2πf

)
...

...
. . .

...
SN,0

(
ej2πf

)
SN,1

(
ej2πf

)
. . . SN,N

(
ej2πf

)


 , (3.5)

A
(
ej2πf

)
=




A0

(
ej2πf

)

A1

(
ej2πf

)
...

AN

(
ej2πf

)


 ,W

(
ej2πf

)
=




W0

(
ej2πf

)

W1

(
ej2πf

)
...

WN

(
ej2πf

)




with the auto-covariance matrix of W
(
ej2πf

)

ΛW

(
ej2πf

)
=

N0

2
S
(
ej2πf

)
.

3.2 Problem formulation

Let f be a frequency in the range
[
−1

2
, 1
2

]
and denote by r the number of aliased

components in S
(
ej2πf

)
at frequency f .

The matrix S
(
ej2πf

)
can be seen as the sum of r dyadic products:1

S
(
ej2πf

)
=
∑

k∈Z
v(f − k)v†(f − k),

where

v(f) =




√
λ0

T
Φ∗

0

(
f
T

)
√

λ1

T
Φ∗

1

(
f
T

)

...√
λN

T
Φ∗

N

(
f
T

)



, (3.6)

and since the rank of each dyadic product is less or equal to one, then the rank
of S

(
ej2πf

)
is less or equal r. When 2WT is an integer, the number of aliased

components at all frequencies in [−1
2
, 1
2
] is equal to 2WT , and therefore given

the time window T and the bandwidth W , there are at most 2WT independent

1I denote the conjugate transpose of a given matrix M by M†
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symbols. In what follows, possibly more than r PSWFs are used and hence
S
(
ej2πf

)
will not have a full rank.

Since S
(
ej2πf

)
is a Hermitian matrix, it can be decomposed as

S
(
ej2πf

)
= U

(
ej2πf

)
D
(
ej2πf

)
U† (ej2πf

)
,

where U
(
ej2πf

)
is a unitary matrix the columns of which are the eigenvectors of

S
(
ej2πf

)
, and D

(
ej2πf

)
is a diagonal matrix with only r non-zero elements that

correspond to the eigenvalues of S
(
ej2πf

)
. Since U

(
ej2πf

)
is unitary, multiplying

by U† (ej2πf
)

on both sides in equation (3.4) yields

U† (ej2πf
)
A′ (ej2πf

)
= D

(
ej2πf

)
U† (ej2πf

)
A
(
ej2πf

)
+ W′ (ej2πf

)
, (3.7)

where W′ (ej2πf
)

= U† (ej2πf
)
W
(
ej2πf

)
with an auto-covariance matrix

Λ′
W

(
ej2πf

)
=

N0

2
D
(
ej2πf

)
.

Because D
(
ej2πf

)
does not have a full rank, parts of the matrices in equa-

tion (3.7) are statistically irrelevant; let Dr

(
ej2πf

)
to be an (r × r) diagonal

matrix that contains the non-zero eigenvalues of S
(
ej2πf

)
on its main diago-

nal, and let U†
r

(
ej2πf

)
to be the sub-matrix of U† (ej2πf

)
that contains only

the r rows that correspond to the non-zero eigenvalues in D
(
ej2πf

)
. The ma-

trix S
(
ej2πf

)
= Ur

(
ej2πf

)
Dr

(
ej2πf

)
U†
r

(
ej2πf

)
and sufficient statistics in equa-

tion (3.7) are:

U†
r

(
ej2πf

)
A′ (ej2πf

)
= Dr

(
ej2πf

)
U†
r

(
ej2πf

)
A
(
ej2πf

)
+ U†

r

(
ej2πf

)
W
(
ej2πf

)
.

(3.8)

Since Dr

(
ej2πf

)
is a diagonal matrix with positive elements in the main di-

agonal, it has a square root matrix. Define D̂r

(
ej2πf

)
to be the inverse of that

square root matrix and multiplying equation (3.8) by D̂r

(
ej2πf

)
on both sides we

get
Ä′ (ej2πf

)
= Σ

(
ej2πf

)
Ä
(
ej2πf

)
+ Ẅ

(
ej2πf

)
, (3.9)

where

Ä′ (ej2πf
)

= D̂r

(
ej2πf

)
U†
r

(
ej2πf

)
A′ (ej2πf

)
,

Σ
(
ej2πf

)
= D̂r

(
ej2πf

)
Dr

(
ej2πf

)
,

Ä
(
ej2πf

)
= U†

r

(
ej2πf

)
A
(
ej2πf

)
, (3.10)

Ẅ
(
ej2πf

)
= D̂r

(
ej2πf

)
U†
r

(
ej2πf

)
W
(
ej2πf

)
,

where the auto-covariance of Ẅ
(
ej2πf

)
is given by

ΛẄ

(
ej2πf

)
=

N0

2
D̂r

(
ej2πf

)
Dr

(
ej2πf

)
D̂†

r

(
ej2πf

)
=

N0

2
I.
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Note that the trace of the auto-covariance of Ä
(
ej2πf

)
is

tr
(
ΛÄ

(
ej2πf

))
= tr

(
ΛA

(
ej2πf

))
.

Additionally, the average power in equation (3.1) being less than the total
available or allowed transmission power P , can be written as:

1

T

∫ 1
2

− 1
2

tr
(
ΛÄ

(
ej2πf

))
df ≤ P. (3.11)

It is clear that Σ
(
ej2πf

)
is diagonal and it contains the square root of the

non-zero eigenvalues of S
(
ej2πf

)
on its main diagonal. Therefore the entries of

Σ
(
ej2πf

)
are bounded since the entries of S

(
ej2πf

)
are bounded [28]. Moreover,

Σ(i,i)

(
ej2πf

)
are continuous functions of f since the entries of S

(
ej2πf

)
are con-

tinuous [29] and have consequently inverse DT Fourier transforms σi[k] that are
square-summable. Writing (3.9) back in time domain we get

ä′i[k] = (σi ∗ äi) [k] + ẅi[k], 1 ≤ i ≤ r. (3.12)

The problem at hand is that of the achievable rates of channel (3.12) un-
der (3.11). By Tsybakov [26],

R = max
ΛÄ(ej2πf)

1

2T

r∑

i=1

∫ 1
2

− 1
2

log2

(
Σ2

(i,i)

(
ej2πf

)
ΛÄ(i,i)

(
ej2πf

)

N0

2

+ 1

)
df

subject to
1

T

∫ 1
2

− 1
2

tr
(
ΛÄ

(
ej2πf

))
df ≤ P.

(3.13)

The optimization problem in equation (3.13) is convex and it has the well-
known water-filling solution:

ΛÄ(i,i)

(
ej2πf

)
=

(
ν − N0

2

1

Σ2
(i,i) (e

j2πf )

)+

,

and the water level ν is selected such that

1

T

∫ 1
2

− 1
2

tr
(
ΛÄ

(
ej2πf

))
df = P.

3.2.1 Asymptotic analysis as N → ∞
For any practical system N must be finite. But at this stage I consider the
asymptotic case to find an upper bound on the achievable rates; in the following
theorem I show that the achievable rates converge to Shannon’s capacity as N
increases towards infinity.
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Using Mercer’s theorem (2.7)

∞∑

i=0

λi

T
Φi

(
f

T

)
Φ∗

i

(
f

T

)
= 1 (3.14)

and
∞∑

i=0

λi

T
Φi

(
f

T

)
Φ∗

i

(
f − k

T

)
= 0, (3.15)

for any non-zero integer k. This indicates that asymptotically the vectors {v(f−
k)}k are orthonormal.

Theorem 1. For integer values of c = 2WT such that c ≥ 1, there are 2WT
degrees of freedom and the achievable rates converge to Shannon’s capacity as
N → ∞ in the considered system model.

Proof. Asymptotically and as N → ∞, let c = 2WT be a strictly positive integer.
The matrix S

(
ej2πf

)
is the sum of c dyadic products at every f ∈ [−0.5, 0.5].

Moreover, by (3.15) {v(f − k)}k forms an orthonormal set for |k| ≤ c/2 and
therefore S

(
ej2πf

)
has c non-zero eigenvalues that are equal to 1, i.e.,

Σ2
(i,i)

(
ej2πf

)
= 1 i ≤ c.

Therefore, the water-filling solution in (3.13) is the equal-power allocation
solution such that ΛÄ(i,i)

(
ej2πf

)
= PT

c
and consequently, as N → ∞

R =
c

2T
log2

(
1 +

2PT

N0c

)
= W log2

(
1 +

P

N0W

)
,

which is equal to Shannon’s formula.

Moreover, it can be shown that the rates converge to Shannon’s capacity for
any strictly positive real values of c; there will be ⌊c⌋ degrees of freedom over an
interval of measure ⌈c⌉ − c, and ⌈c⌉ degrees of freedom on the remaining part of
the band [−0.5, 0.5]. Therefore there will be c degrees of freedom on average, and
the non-zero eigenvalues of S

(
ej2πf

)
will be equal to 1.

3.3 Numerical results

I perform the numerical computations to find the available degrees of freedom
and the achievable data rates. The integral in equation (3.13) is computed using
Riemann integral with 2097152 uniformly distributed samples for −0.5 ≤ f ≤ 0.5.
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3.3.1 Degrees of freedom

As presented earlier in section 3.2, the degrees of freedom are determined by the
rank of the matrix S

(
ej2πf

)
. For c ∈ {1, 2, 3, 6}, my numerical computations

show that when using at least the first c PSWFs, the rank of the matrix S
(
ej2πf

)

is equal to c for all the 2097152 samples. Moreover, the computed non-zero
eigenvalues of S

(
ej2πf

)
are not close to zero. Therefore one can claim that the

rank of the matrix S
(
ej2πf

)
is c almost everywhere for −0.5 ≤ f ≤ 0.5 (since the

eigenvalues are continuous as proved in section 3.2).
Fig. 3.2 shows the histogram of the computed eigenvalues of S

(
ej2πf

)
when

using the first N + 1 PSWFs for different combinations of c and N . Note that
the eigenvalues get closer to 1 as N increases, therefore the achievable rates are
expected to approach Shannon’s capacity as N increases and this is validated in
the next section.

Figure 3.2: Histograms of the eigenvalues of S
(
ej2πf

)
for different c and N

3.3.2 Achievable rates

In the following results, I fixed the radio band to 1000Hz, and I focused on
the percentage decrease between the achieved rates and Shannon’s formula. I
note from equation (3.13) that the percentage decrease is the same for fixed
P

N0W
= SNR

2W
, and therefore, the results for W 6= 1KHz can be extracted from my

presented results over some range of SNR.
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The question that will be addressed is how many PSWFs should be used
in the proposed system. Although the rank of Σ(f) is equal to c = 2WT , the
column vectors of U†

r(f) given in equation (3.10) lead to the use of the available
PSWFs with different weights. By intuition, the use of PSWFs with almost zero
eigenvalues does not achieve a valuable improvement on the achievable rates of
the system. In my computations I calculated the information rates when using
different numbers of PSWFs; and as expected, the rates saturate after the use of
a certain number of PSWFs, beyond which adding more PSWFs has negligible
effect on the achievable data rates. Interestingly, and as I proved in 3.2.1, the
computed rates approach the Shannon’s capacity as the number of used PSWFs
increases.

Fig. 3.3 shows the percentage decrease between the calculated rates and Shan-
non’s formula for c = 1 when using the first N +1 PSWFs. And as shown in this
figure, using the first four PWSFs achieves more than 99.999% of the Shannon
formula in my selected SNR range.
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Figure 3.3: Convergence of achievable rates for c=1

Table 3.1 presents the maximum percentage decrease between the calculated
achievable rates and Shannon’s capacity for different values of c and when using
the first N +1 time-limited PSWFs as parallel filters. Note that, for the selected
values of c and over the considered SNR range, the achievable rates can be made
arbitrary close to the channel capacity by adding finite number of filters. In-
terestingly, note that the maximum percentage difference is approximately 1%
for c = 1 when using just the first two time-limited PSWFs as parallel filters.
However, as c increases, the convergence towards Shannon’s capacity becomes
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slower.

c = 1 c = 2 c = 3 c = 6
N = c− 1 15.84% 9.16% 6.63% 3.77%
N = c 1.04% 1.12% 1.05% 0.84%

N = c + 1 0.021% 0.053% 0.073% 0.099%
N = c + 2 0.00022% 0.0014% 0.0031% 0.0078%

Table 3.1: Maximum percentage decrease with Shannon’s formula

Fig. 3.4 presents the difference between the calculated achievable rates and
Shannon’s capacity for a range of SNR and different values of c when using only
the first c PSWFs. The results show that the achieved rates increase with c and
they become closer to Shannon’s capacity, which is consistent with the results by
Wyner [5]- [6]; Wyner proved that as c → ∞, it is sufficient to use the first c
time-limited PSWFs (using an OMM system) to achieve Shannon’s capacity.
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Figure 3.4: Percentage decrease with Shannon’s formula for different c

3.4 Sampling the received signal y(t)

Being band-limited, extracting sufficient statistics from the received signal may
be done through sampling it at a rate of 2W samples per second.
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For k ∈ Z and n ∈ {0, 1, .., c−1}, {kc+n}k,c span the set of all integers. The
samples at time kc+n

2W
are

a′n[k] =
N∑

m=0

+∞∑

l=−∞
am[l]

√
λmϕm

([
k − l +

n

c

]
T
)

+ wn[k]

=

N∑

m=0

(bn,m ∗ am) [k] + wn[k], (3.16)

where

bn,m[k − l] =
√
λmϕm

(
[k − l]T +

n

c
T
)
,

wn[k] = N
(
kT +

n

2W

)
.

Writing equation (3.16) in the frequency domain, for f in
[
−1

2
, 1
2

]
,

A′
n

(
ej2πf

)
=

N∑

m=0

Bn,m

(
ej2πf

)
Am

(
ej2πf

)
+ Wn

(
ej2πf

)

where,

Bn,m

(
ej2πf

)
=
∑

k∈Z

√
λmϕm

(
kT +

nT

c

)
e−j2πfk

=
√
λm

+∞∫

−∞

ϕm(t)e−j2π f
T
tej2πf

n
c

∑

k∈Z
δ

[
t− kT − nT

c

]
dt

= ej2πf
n
c

√
λm

+∞∫

−∞

ϕm(t)
∑

k∈Z
δ

[
t− kT − nT

c

]
e−j2π f

T
tdt

= ej2πf
n
c

√
λmFT

{
ϕm(t)

∑

k∈Z
δ

[
t− kT − nT

c

]} ∣∣∣∣
f
T

= ej2πf
n
c

√
λm

T

{
Φm(f) ∗

∑

k∈Z
δ

[
f − k

T

]
e−j2πkn

c

}

f
T

= ej2πf
n
c

√
λm

T

{∑

k∈Z
Φm

(
f

T
− k

T

)
e−j2πk n

c

}

=

√
λm

T

∑

k∈Z
Φm

(
f − k

T

)
ej2π(f−k)n

c .
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Using a vector notation

A′ (ej2πf
)

= B
(
ej2πf

)
A
(
ej2πf

)
+ W

(
ej2πf

)
, (3.17)

where

A′ (ej2πf
)

=




A′
0

(
ej2πf

)

A′
1

(
ej2πf

)
...

A′
c−1

(
ej2πf

)


 A

(
ej2πf

)
=




A0

(
ej2πf

)

A1

(
ej2πf

)
...

AN

(
ej2πf

)




B
(
ej2πf

)
=




B0,0

(
ej2πf

)
. . . B0,N

(
ej2πf

)

B1,0

(
ej2πf

)
. . . B1,N

(
ej2πf

)
...

. . .
...

Bc−1,0

(
ej2πf

)
. . . Bc−1,N

(
ej2πf

)




& W
(
ej2πf

)
=




W0

(
ej2πf

)

W1

(
ej2πf

)
...

Wc−1

(
ej2πf

)


 .

Note that

B
(
ej2πf

)
=

1√
T

∑

k∈Z
e(f − k)v†(f − k),

where

e(f) =




1

ej2πf
1
c

...

ej2πf
c−1
c


 v(f) =




√
λ0

T
Φ∗

0

(
f
T

)
√

λ1

T
Φ∗

1

(
f
T

)

...√
λN

T
Φ∗

N

(
f
T

)




Since

e†(f − k)e(f − l) =

c−1∑

n=0

ej2π(k−l)n
c = c δ[k − l],

then

B† (ej2πf
)
B
(
ej2πf

)
=

1

T

∑

k∈Z
v(f − k)e†(f − k)

∑

l∈Z
e(f − l)v†(f − l)

=
1

T

∑

k,l∈Z
v(f − k)e†(f − k)e(f − l)v†(f − l)

=
c

T

∑

k∈Z
v(f − k)v†(f − k).
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The auto-covariance matrix of W
(
ej2πf

)
is diagonal and equal to

ΛW

(
ej2πf

)
= WN0 Ic =

cN0

2T
Ic.

Note that S
(
ej2πf

)
= T

c
B† (ej2πf

)
B
(
ej2πf

)
where S

(
ej2πf

)
is given by equa-

tion (3.5). Therefore, from an information theoretic perspective, the system given
here by equation (3.17) is equivalent to the one derived in equation (3.9).
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Chapter 4

PAM with finite duration pulses

In this chapter I study and evaluate the performance over the band-limited chan-
nel using fixed finite-duration transmit pulses. More specifically I limit my study
to PAM systems and I evaluate the achievable information rates by optimizing
over the two major design components: the pulse shape/receive filter and the
power allocation with which the symbols are transmitted. I assume that the
channel is an ideal low pass filter as explained in Section 1.2.

Perhaps the most popular PAM pulses/receive filters –both studied and widely
used in practice– are the “Nyquist pulses”, i.e., ones where the Nyquist criterion is
satisfied. This is due to the fact that they eliminate ISI and simplify consequently
the receiver’s design. A necessary condition to satisfy the ISI-free criterion is to
have T ≥ 1

2W
, where T is the symbol rate and W is the bandwidth of the pulse.

A well known family of pulses that satisfies this criterion is the family of
Raised Cosine (RC) filters with 2WT = 1+β such that 0 ≤ β ≤ 1. As β increases
the decay of the pulse in time domain becomes faster, and hence truncating it
will have lower effects. However, and for a fixed T , as β increases the required
bandwidth increases.

I consider pulses in three cases of the signaling rate: 2WT > 1, 2WT =
1, and 2WT < 1 and evaluate the information-theoretic achievable rates when
using time-limited pulses. In each case, I compare to the achievable rates when
using band-limited –and hence infinite duration– pulses, which I derive as well.
Considering the case 2WT < 1 is tightly related to the Faster Than Nyquist
(FTN) signaling concept that was first proposed by Mazo [30] where he proved
that speeding up the signaling of the “sinc” pulses by a factor of 25% does not
affect the minimum distance between the codewords when using binary input [31].
This naturally introduces ISI and requires more sophisticated receivers. Part of
my objective in this chapter is to study finite-duration pulses as well as the
corresponding signaling rates. I will answer the fundamental question: “When
using finite-duration pulses, is signaling FTN beneficial?”
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4.1 System model and problem formulation

Let g(t) and ĝ(t) be two unit-energy real-valued functions that are time-limited
to
[
− c

2
, c
2

]
for some positive scalar c. The interest is in the set of functions

{g (t− k) , k ∈ Z} ,

which does not necessarily form an orthonormal set as the inner product

∫ +∞

−∞
g (t− k) g (t− l) dt =

∫ +∞

−∞
g(t− (k − l))g(t) dt

= g(t) ∗ g(−t)

∣∣∣∣
(k−l)

,

is possibly only zero for |k− l| ≥ c and is generally not necessarily a “delta” func-
tion unless c ≤ 1. In what follows I denote by Rg[n] this sampled autocorrelation
and by Rg

(
ej2πf

)
its Fourier transform:

Rg[n] = (g(t) ∗ g(−t))

∣∣∣∣
(n)

=

{
1 n = 0
0 |n| ≥ c

(4.1)

Rg

(
ej2πf

)
=
∑

k∈Z
|G (f − k)|2 .

The objective of this chapter is the analysis of the use of PAM systems that
are parametrized by a symbol interval T and transmit pulses and receive filters
that are of a finite duration. More precisely, I use the PAM pulse-shaping fil-
ter (1/

√
T )g(t/T ) (i.e.,

√
TG(fT ) in the Fourier domain) and the receive filter

(1/
√
T )ĝ(−t/T ). Naturally, these functions are

[
− cT

2
, cT

2

]
time-limited and have

unit-energy.

Figure 4.1 shows a classical PAM system when used over a band-limited linear
Gaussian channel; symbols from a signal constellation are used to modulate the
amplitude of the chosen pulse every T seconds, and H(f) is the channel transfer
function.

The transmitted signal can be written as:

X(t) =
1√
T

+∞∑

k=−∞
A[k] g

(
t

T
− k

)
,

where the {A[k]}k’s are chosen from a given real1 signal constellation. I impose

1For the complex AWGN channel, {A[k]}k’s can be complex and my derivation accommo-
dates the complex case
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{A[k]}k✲ 1√
T
g
(

t
T

)
✲

X(t)
rect

(
f

2W

)

H(f)

✲+
❄

N(t)

Y (t)

1√
T
ĝ
(−t

T

){A′[k]}k
❄
T

Figure 4.1: PAM System Model

on this transmitted signal an average power constraint P :

lim
n→∞

1

cT + 2nT

nT+ cT
2∫

−nT− cT
2

∣∣∣∣∣
n∑

k=−n

A[k]
1√
T
g

(
t

T
− k

)∣∣∣∣∣

2

dt ≤ P

⇔ lim
n→∞

1

cT + 2nT

n∑

k=−n

n∑

l=−n

A[k]A∗[l]Rg[k − l] ≤ P

⇔ 1

T

∞∑

m=−∞
RA[m]Rg[m] ≤ P, (4.2)

where I assumed the data symbols {A[k]} form a stationary process with auto-
correlation function RA[·], and that the limit in (4.2) exists.

When it comes to the channel, I assume that it is an ideal W -Hz band-limited
AWGN channel where the additive noise N(t) is a stationary “White” Gaussian
process with mean zero and PSD SN (f) = No

2
for f ∈ [−W,W ]. The output of

the channel is

Y (t) =
1√
T

+∞∑

k=−∞
A[k] b

(
t

T
− k

)
+ N(t).

where b(t) is the function g(t) “band-limited” to WT -Hz, i.e.,

B(f) = G(f) rect

(
f

2WT

)

⇔ b(t) = 2WT

∫ c
2

− c
2

g(τ) sinc(2WT (t− τ)) dτ.

A filter that is matched to the function 1√
T
ĝ
(

t
T

)
is used at the receiver, the

output of which is sampled every T seconds. The kth sample is

A′[k] =
+∞∑

l=−∞
A[l]s[k − l] + V [k] = (s ∗ A) [k] + V [k], (4.3)
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where the discrete sequence {s[·]} is

s[k] =
1

T

〈
b

(
t

T

)
, ĝ

(
t

T
− k

)〉
= b(t) ∗ ĝ(−t)

∣∣∣∣
k−l

(4.4)

S
(
ej2πf

)
=
∑

k∈Z
B(f − k)Ĝ∗(f − k)

=
∑

k∈Z
G(f − k)Ĝ∗(f − k)rect

(
f − k

2WT

)
. (4.5)

The DT process {V [·]} is the filtered noise N(t) sampled every T seconds:

V [k] =
1√
T

〈
N(t), ĝ

(
t

T
− k

)〉
,

and is hence a DT stationary zero-mean Gaussian process with PSD

SV

(
ej2πf

)
=

No

2

∑
k∈Z

∣∣∣Ĝ (f − k)
∣∣∣
2

rect

(
f − k

2WT

)
. (4.6)

4.1.1 Optimization

My objective is to maximize the mutual information when the system described
in section 4.1 is used, subject to a transmitted average power constraint (4.2)
that can be written using Parseval as,

1

T

∫ 1
2

− 1
2

SA

(
ej2πf

)∑

k∈Z
|G (f − k)|2 df ≤ P. (4.7)

The optimal solution is known to be achieved by a zero-mean DT Gaussian2

process {A[n]}n and the remaining optimization I tackle is over the pulse shaping
filter g(t) and over the spectrum of {A[n]}. By Tsybakov [26] and equation (4.3)
this optimization problem can be formulated as3

R = max
SA(·),g(·)

1

2T

1
2∫

− 1
2

log

[
1 +

SA

(
ej2πf

) ∣∣S
(
ej2πf

)∣∣2

SV (ej2πf)

]
df

subject to
1

T

∫ 1
2

− 1
2

SA

(
ej2πf

)∑

k∈Z
|G (f − k)|2 df ≤ P

g(t) time-limited to
[
− c

2
,
c

2

]

∫ c
2

− c
2

|g(t)|2 dt = 1. (4.8)

2Circular complex whenever the channel is complex
3If the channel is complex, the objective function is twice the one in (4.8)
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In the numerical results presented hereafter, I fix the radio band to 1000
Hz and quantify the percentage difference between the achieved data rates and
Shannon’s expression (2.15). Note that the achievable rates are only dependent
on P,No and W through the ratio P

NoW
and the product 2WT , then the results

for W 6= 1 KHz can be extracted from my presented results over some range of
SNR = 2P/No.

In the remainder of this chapter I study three different cases for the relation-
ship between W and T . In order to set benchmarks, I consider first the case
where the transmit and receive filters are possibly of infinite duration.

4.2 Band-limited filters

I study first the system at hand whenever the transmit pulse and receive filter
are allowed to be of infinite duration –and hence possibly band-limited. Given
that the channel is band-limited, an optimal transmit pulse will naturally be
band-limited as well.

4.2.1 The case where 2WT > 1; Nyquist pulses

As customary in the literature, let T = 1+β
2W

where β denotes “the excess band-
width factor”.

The PAM system satisfies the Nyquist criterion if and only if s[·] defined
in (4.4) is a unit sample, or equivalently

∑

k∈Z
G (f − k) Ĝ∗ (f − k) rect

(
f − k

2WT

)
= 1. (4.9)

When
√
TG(fT ) is band-limited to W -Hz, G(f) is band-limited to WT = 1+β

2

and B(f) = G(f). The use of a matched filter to b(t) at the receiver is information
lossless, in which case equations (4.5) and (4.6) become

S
(
ej2πf

)
=
∑

k∈Z
G(f − k)G∗(f − k)rect

(
f − k

1 + β

)
= 1

SV

(
ej2πf

)
=

No

2
.

The optimal power allocation is known to be flat: SA

(
ej2πf

)
= PT resulting

in achievable rates equal to

1

2T
log

[
1 +

2PT

No

]
=

W

1 + β
log

[
1 +

P (1 + β)

NoW

]
, (4.10)

a result that is consistent with equation (20) in [32].
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Equation (4.10) shows that the achievable rates decrease as β increases, and
the largest value is equal to the Shannon capacity when β → 0. This is consis-
tent with the findings in [32] where the authors found that using Nyquist pulses
imposes some “penalty” on the achievable rates, and that this penalty can be di-
minished by using FTN signaling, a subject I investigate further in Sections 4.2.3
and 4.3.3.

4.2.2 The case where 2WT = 1

In this case, the only satisfying Nyquist’s criterion pulse and receive filter is the
pair of “sinc” functions that achieve the well known formula by Shannon (see
equation (4.10) with β = 0).

4.2.3 The case where 2WT < 1

Now consider the case W = 1−β
2T

where 0 < β < 1. If one uses the W -Hz
band-limited transmit pulse

1√
T
g

(
t

T

)
=

√
2W sinc(2Wt),

and ĝ(t) = g(t), then Ĝ(f) = G(f) = 1√
1−β

rect
(

f
1−β

)
and equations (4.5)

and (4.6) become

S
(
ej2πf

)
=
∑

k∈Z
1

1 − β
rect

(
f − k

1 − β

)
,

SV

(
ej2πf

)
=

No

2

∑
k∈Z

1

1 − β
rect

(
f − k

1 − β

)
.

The optimizing spectrum is SA

(
ej2πf

)
= PT rect

(
f

1−β

)
and achieves the rate

1 − β

2T
log

[
1 +

2PT

(1 − β)No

]
= W log

[
1 +

P

NoW

]
,

which is the same as Shannon’s capacity expression, a result that is consistent
with the results in [33].

In the following theorem I prove the strong statement that, provided some
mild conditions, any band-limited pulse/filter pair achieves Shannon’s capac-
ity (2.15). The “sinc” filters as well as the Root-Raised Cosine (RRC) filters can
be such choices.

Theorem 2. If 2WT ≤ 1, Shannon’s capacity can be achieved by any W -Hz
band-limited transmit pulse and receive filter pair, provided that their Fourier
transforms on [−W,W ] are zero only on a set of measure zero.
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Proof. Let (1/
√
T )g(t/T ) and (1/

√
T )ĝ(t/T ) to be W -Hz band-limited filters.

No aliasing occurs in (4.5), (4.6) and (4.7), and for −0.5 ≤ f ≤ 0.5,

S
(
ej2πf

)
= G(f)Ĝ∗(f) rect

(
f

1 − β

)
,

SV

(
ej2πf

)
=

No

2

∣∣∣Ĝ (f)
∣∣∣
2

rect

(
f

1 − β

)
,

1

T

∫ 1−β
2

− 1−β
2

SA

(
ej2πf

)
|G (f)|2 df ≤ P.

If the subsets of
[
−1−β

2
, 1−β

2

]
where G(f) and Ĝ(f) are zero have zero measure,

using SA

(
ej2πf

)
= PT

(1−β)|G(f)|2 almost everywhere yields an objective function

in (4.8) that equals the Shannon capacity (2.15).

4.3 Time-limited filters

I study now the achievable rates whenever the transmit pulse and receive filter
are of finite durations.

4.3.1 The case where 2WT > 1; Nyquist pulses

As in section 4.2.1, let 2WT = 1 + β. When the pulse and receive filter are
constrained to be of a finite duration, I prove that the problem is essentially “ill-
posed” and the Nyquist criterion cannot be satisfied. More specifically, in the
following theorem I show that the identity (4.9) is not possible.

Theorem 3. For any finite non-negative β, if the transmit pulse and receive filter
are time-limited and the channel is band-limited, then it is impossible to satisfy
the Nyquist criterion.

Proof. First note that for all k ∈ Z, G(f − k) and Ĝ∗(f − k) are analytic as
they are the Fourier transforms of compactly supported functions which are in

L1(R) by the Cauchy-Schwarz inequality. Consequently,
{
G(f − k)Ĝ∗(f − k)

}
k

are analytic for all k ∈ Z and
∑

k∈AG(f − k)Ĝ∗(f − k) is analytic for any fi-
nite set of integers A. Since β is finite, one can find an open interval where∑

k∈ZG(f − k)Ĝ∗(f − k)rect
(

f−k
2WT

)
contains only a finite number of aliased com-

ponents indexed by A. Consequently,
∑

k∈AG(f−k)Ĝ∗(f−k) cannot be constant
over any open interval for otherwise, by the identity theorem, it is constant ev-
erywhere and will not have non-zero finite energy. In conclusion, the sum cannot
be equal to one for all f .
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In light of the previous theorem, I consider in what follows time-limited ver-
sions of Nyquist pulses such as RRC filters. More precisely, I consider ĝ(t) = g(t)
to be a truncated (to c-seconds) RRC filters.

In Figure 4.2 I numerically evaluate the achievable rates and plot the degrada-
tion in performance of RRC filters for sample values of β and c. This degradation
is measured as the percentage decrease from Shannon’s formula, and hence the
closer the curve is to zero the better. One can make the following observations:
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Figure 4.2: Performance of time-limited RRC and band-limited RRC

• For a fixed β note that as expected, as c increases the performance of the
time-limited RRC improves toward that of the band-limited RRC (i.e. RRC
with infinite time span) given by (4.10).

Additionally, the larger the value of β, the faster this convergence is.

• As the SNR increases the percentage decrease from Shannon’s expression is
larger, converging to 100 β

1+β
. Keeping in mind that the percentage decrease

is the same for a given value of SNR
2W

, one can conclude that the RRC pulse
achieves a relatively good performance for low SNR

2W
. As an example, for

W = 1 MHz and at SNR = 30 dB, the percentage decrease for c = 5 and
β = 0.3 is less than 0.065%.
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4.3.2 The case where 2WT = 1

Since WT = (1/2), no aliasing occurs in (4.5) and (4.6), then

S
(
ej2πf

)
= G(f)Ĝ∗(f) f ∈

[
−1

2
,
1

2

]

SV

(
ej2πf

)
=

No

2

∣∣∣Ĝ (f)
∣∣∣
2

f ∈
[
−1

2
,
1

2

]
,

and hence

R = max
SA(·),g(·)

1

2T

1
2∫

− 1
2

log

[
1 +

2

No

SA

(
ej2πf

)
|G(f)|2

]
df

subject to
1

T

∫ 1
2

− 1
2

SA

(
ej2πf

)∑

k∈Z
|G (f − k)|2 df ≤ P

g(t) time-limited to
[
− c

2
,
c

2

]

∫ c
2

− c
2

|g(t)|2 dt = 1,

where I simplified the fraction in the “log” by removing
∣∣∣Ĝ (f)

∣∣∣
2

from the numer-

ator and the denominator. This is possible since Ĝ(f) is the Fourier transform
of a time-limited function with non-zero finite energy (and hence it is in L1(R)),

then it is analytic and the set of frequencies where
∣∣∣Ĝ (f)

∣∣∣
2

is zero has zero mea-

sure, and it can be cancelled. Perhaps surprisingly, the information rates depend
only on the transmit filter g(t).

The next question is “what is the optimal finite-duration pulse g(t)”? Using
calculus of variation leads to a non-linear Fredholm integral equation. While for
c ≤ 1 the integral equation is reasonable, for any other value of c the integral
equation is rather intractable. In what follows I present the numerical approach
I adopted to search for the optimal solution. The approach is based on using the
PSWFs and their corresponding eigenvalues.

Numerical solution

Denote the duration of the pulse shaping filter by Ts = cT and let cs = 2WTs =
2WTc. The PSWF4 parametrized by Ts and W is denoted ϕcs,i(t), λcs,i is its

4When it comes to the index of the PSWFs, I will use cs = 2WTs throughout this chapter.
Note that the parameter “cs” here is different from the one used by Slepian and Pollak [19].
More specifically ϕ1,i(t) here is the same as ϕπ

2 ,i(t) in [19].
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corresponding eigenvalue and Dϕcs,i(t) denotes the [−Ts

2
, Ts

2
] time-limited PSWF

ϕcs,i(t). Since the time-limited PSWFs form a complete orthogonal set for Ts

seconds time-limited functions, then g(t) and b(t) can be uniquely written as
a linear combination of time-limited PSWFs and band-limited PSWFs respec-

tively: g(t) =
∑∞

i=0 αi

√
T√

λcs,i
Dϕcs,i(tT ) and b(t) =

∑∞
i=0 αi

√
Tλcs,i ϕcs,i(tT ),

where
Dϕcs,i(t)√

λcs,i
and ϕcs,i(t) are unit-norm functions and the constraint on the

norm of g(t) can be written as
∑∞

i=0 α
2
i = 1.

I use the first (N + 1) PSWFs in my computations as an approximate sub-
optimal solution and I use the optimization toolbox in “MATLAB” to optimize
for the values of {αi}i’s.

It is worth noting that in [34, chapter 7] the author used the PSWFs in the
context of FTN signaling. The author considered the PSWF with index zero
only and studied the power-out-of-band and the minimum distance between the
shifted pulses. In this work, I study the achievable rates and I search for the
optimal combination of PSWFs which span time-limited pulses.

Figure 4.3 presents the results when using the first (N + 1) PSWFs in the
solution for c = 3. As expected, the obtained filters are even and differ for various
levels of SNR.
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Figure 4.3: Performance of the obtained filters for 2WT=1 and c=3

Two different ranges of SNR are noted, ones where the results behave differ-
ently: SNR < 20 dB and SNR > 30 dB. For SNR < 20 dB, numerical results
show that using the first 5, 9, 13 or 17 PSWFs achieves almost the same perfor-
mance, and one can conclude that this numerical solution is quasi-optimal over
the considered SNR range.

On the other hand, in the range SNR > 30 dB using more PSWFs achieves
tangible improvements despite the fact that the corresponding eigenvalues of
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these added PSWFs are very small; for example λ3,13 ≈ 1.299 × 10−17 and by
adding {Dϕ3,13(t), Dϕ3,14(t), Dϕ3,15(t), Dϕ3,16(t)} sizeable improvements are still
achieved in the results. One may conclude that this numerical solution is further
from optimality over this SNR range. I conjecture that the lower values of c
and SNR, the closer are the approximations using the first (N + 1)-PSWFs to
optimality.

In Figure 4.4 I plot the percentage decrease of the time-limited RRC for
c = 5 with two different values of β, namely 0.1 and 0.3. I also show on the
same graph the percentage decrease of the numerically obtained optimal filter
for c = 5 when using the first 17 PSWFs. Naturally, even with 17 PSWFs the
optimized time-limited pulse outperforms the time-limited RRC over the whole
SNR range. This agrees with the fact that the dimension of the W−T space is
approximately 2WT ( [3, 15–17]), which indicates that one has at most 2WT
independent symbols every T seconds. In the case where 2WT = 1 as here, one
has at most one independent symbol every 1

2W
seconds and by using Nyquist

pulses with 2WT > 1 one ends up under-using the available degrees of freedom.
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Figure 4.4: Time-limited RRC vs time-limited filters with 2WT=1

4.3.3 The case where 2WT < 1

Let 2WT = 1 − β as in section 4.2.3. Since no aliasing occurs in (4.5) and (4.6)

S
(
ej2πf

)
= G(f)Ĝ∗(f) rect

(
f

1 − β

)
,

SV

(
ej2πf

)
=

No

2

∣∣∣Ĝ (f)
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2

rect

(
f

1 − β

)
,
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and the achievable rates are

R = max
SA(·),g(·)

1

2T

1−β
2∫

− 1−β
2

log

[
1 +

2

No
SA

(
ej2πf

)
|G(f)|2

]
df

subject to
1

T

∫ 1
2

− 1
2

SA

(
ej2πf

)∑

k∈Z
|G (f − k)|2 df ≤ P

g(t) time-limited to
[
− c

2
,
c

2

]

∫ c
2

− c
2

|g(t)|2 dt = 1.

As in section 4.3.2 and by using the same proof, R does not depend on ĝ(t). I
summarize these findings in the following theorem.

Theorem 4. If the pulses are time-limited and the channel is band-limited such
that 2WT ≤ 1, then the achievable rates are independent of the time-limited
receive filter.

I applied the numerical solution proposed in section 4.3.2, with cs = 2WTs =
2WTc = (1 − β)c. I considered the values β = 0.2 and c = 5 and used the
PSWFs {ϕ4,i(t)}i. In Figure 4.5, I present the results when using the first (N+1)
PSWFs in the numerical solution. Surprisingly, the obtained filters when using
the first 9 PSWFs almost achieve the Shannon capacity as the losses are less
than 3.1 × 10−5% over the considered SNR range. This comes at the expense of
the system operating at a faster rate than the 2WT = 1 case. For example in
Figure 4.5, the receiver generates 25% more samples than case B. Also note that
the obtained filters are even and vary with the SNR level (as in section 4.3.2).

It is apparent that signaling at a rate faster than the Nyquist rate
(

1
2W

)
is

beneficial, and this is due to the additional diversity which allows better control
of the continuous time codewords. However this improvement in the achievable
rates requires more complicated transmitter and receiver designs.
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Figure 4.5: Performance of the obtained filters for 2WT=0.8 and c=5
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Chapter 5

Finite duration codewords over
band-limited Gaussian channel

In this chapter, I consider transmitting CT finite duration codewords over a band-
limited Gaussian channel. My main goal is to investigate the degrees of freedom
and the achievable pairs of data rates and probability of error. I use a similar
approach to Wyner [5, 6] and Gallager [7] (using the PSWFs) to transform the
problem from CT to DT and vice versa, and then I apply the (adapted) results
by Polyanskiy [11] for parallel DT AWGN channels.

5.1 System Model and Problem Formulation

I consider a system model where a T -seconds time-limited codeword is trans-
mitted over a linear Gaussian channel with transfer function H(f)—assumed to
be an ideal W -Hz low-pass filter, and an additive complex Gaussian noise N(t),
assumed to be a stationary W -Hz band-limited “white” process with mean zero
and PSD SN(f) = No for f ∈ [−W,W ]. With a system in mind whereby other
codewords may be transmitted—possibly by other users—consecutively and/or
in neighboring bands, I denote by C0,0(t) the codeword carrying the data packet
of interest, and by {Ck,h(t)}(k,h)∈Z2\{(0,0)} those carrying other data packets, pos-
sibly transmitted by other devices and interfering with the message of interest as
illustrated in Figure 5.1. My model is based on the reasonable assumption that
all codewords follow the same modulation techniques, since every frequency band
is usually allocated to a unique technology which abides by specific standards,
and the neighboring bands are more likely to be used by the same technology.

In what follows, I consider various scenarios where some or all of those inter-
fering codewords are present and I denote by I ⊂ Z2 \ {(0, 0)} the set of other
present codewords. The overall signal going through the channel can hence be
written as the sum of the codeword of interest and the other interfering code-
words:
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x(t) = C0,0(t) +
∑

(k,h)∈I
Ck,h(t),

where Ck,h(t) is non-zero only over t ∈ [−T/2 + kT, T/2 + kT ]. On the receiver
side, the data packet of interest is to be recovered from y(t), t ∈ [−T/2, T/2], a
T -seconds time-limited version of the output of the channel r(t).

+

C0,0(t)

C−1,−1(t)

C−1,1(t)

C1,−1(t)

C1,1(t)

C0,−1(t)

C0,1(t)

C−1,0(t) C1,0(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

H(f)

x(t) z(t)

N(t)

T
2

−T
2

y(t)r(t)
rect

(
f

2W

)

Figure 5.1: Continuous time system model.

I assume that, whenever present, a transmitted codeword satisfies the power
constraint,

1

T

∫ T
2

−T
2

|Ck,h(t + kT )|2 dt ≤ P. (5.1)

As Gallager proved that the PSWFs are the desirable CON set when sending
a time-limited codeword over a band-limited channel [7, Section 8.4], I use the
normalized time-limited PSWF as orthogonal pulses to send the data symbols.
Hence the codewords can be written as

Ck,h(t) =
∞∑

l=0

ak,h,l
Dϕc,l(t− kT )√

λc,l

ej2πh 2W (t−k T )

which are non-zero only on t ∈
[
−T

2
+ kT, T

2
+ kT

]
, where c = 2WT . Represent-

ing the continuous time signal Ck,h(t) by the symbols {ak,h,l} is known as “signal
space representation” in the context of digital communications. The {ak,h,l}’s
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are chosen from a given complex signal constellation and by Plancherel and (5.1)
they satisfy

1

T

∞∑

l=0

|ak,h,l|2 =
1

T

∫ T
2

−T
2

|Ck,h(t + kT )|2 dt ≤ P. (5.2)

When it comes to the noise, N(t) is band-limited and can be hence decom-
posed as

N(t) =
∞∑

l=0

nl ϕc,l(t),

where {nl}l∈Z are independent zero-mean complex circular Gaussian random vari-
ables with variance N0. Note that the use of PSWFs is necessary here to get
independent random variables.

At the receiver, sufficient statistics are clearly obtained by projecting y(t) on
the set of normalized time-limited PSWF to extract the data symbols. It is worth
noting that since r(t) is band-limited and has finite energy, it is necessarily ana-
lytic and it is therefore sufficient to know r(t) over any open interval to determine
it fully. As a consequence, from an information-theoretic perspective, whether
r(t) as whole is available or only y(t), the information rates are identical.

The problem at hand is to maximize the information rates given a maximum
probability of error. This is naturally related to the available degrees of freedom
when sending time-limited codewords over a band-limited channel, which is the
maximum number of independent data symbols that can be transmitted to the
receiver.

In the following section, I consider various scenarios and derive upper and
lower bounds for the data rates and the degrees of freedom.

5.2 Bounds on the Data Rates

5.2.1 An Upper Bound

To derive an upper bound, I consider the case where only C0,0(t) is transmitted
over the channel. By ignoring the other transmitted codewords I ignore the effect
of inter-codeword interference, and I obtain upper bounds on the rates and the
degrees of freedom since interference can only be harmful. In this scenario, the
input to the channel can be written as

x(t) =
∞∑

m=0

a0,0,m
Dϕc,m(t)√

λc,m

,
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and the received signal r(t) is band-limited and can be written as

r(t) =

∞∑

m=0

a0,0,m
√

λc,mϕc,m(t) + N(t) =

∞∑

m=0

[
a0,0,m

√
λc,m + nm

]
ϕc,m(t)

⇒ y(t) = r(t) rect

(
t

T

)
=

∞∑

m=0

[
a0,0,m

√
λc,m + nm

]
Dϕc,m(t) =

∞∑

m=0

ymDϕc,m(t),

where ym =
√

λc,m a0,0,m + nm. From an information theoretic perspective, the
considered system model is equivalent to the discrete time system model in Fig-
ure 5.2 where r′m = ym/

√
λc,m = a0,0,m + nm/

√
λc,m.

+

+

a0,0,0

a0,0,m r′m

r′0

n0/
√
λc,0

nm/
√
λc,m

Figure 5.2: Equivalent discrete time system model.

The noise components {nm/
√
λc,m} are independent, zero-mean complex cir-

cular Gaussian random variables and each complex channel is equivalent to two
usages of independent real (real and imaginary) channels with additive Gaussian
noise with variance N0/2λc,m per dimension. If E

[
|a0,0,m|2

]
= 2PmT (where PmT

is the second moment per dimension), the power constraint in (5.2) can be written

as 2

∞∑

m=0

Pm ≤ P and the signal to noise ratio per dimension for r′m is
2λc,mPmT

N0
.

One can notice that it is possible to send infinitely many independent sym-
bols in such a system. However, only a finite number of them, say L, is useful
because the energy per symbol is finite and the noise energy of the mth channel is
increasing towards infinity as m increases to infinity (λc,m tends to 0 as m tends
to ∞ as shown in Section 2.1). Note that L depends on c = 2WT since there
are approximately c eigenvalues λc,m that are close to 1, and naturally L grows
to infinity with c.

Polyanskiy [10] derived upper and lower bounds and an approximation for the
achievable rates at a given probability of error in the finite block-length regime.
In [11], he studied the parallel Gaussian channel set-up where N memoryless
parallel channels of different noise power are used each n times. Following the
methodology in [10] and applying the Berry–Esseen inequality [10] Lemma 14
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over n× N real independent variables shows that the maximum number of bits
that can be transmitted is

n

2

N−1∑

m=0

log2

[
1 +

2λc,mPmT

N0

]
−

√√√√n

N−1∑

m=0

V1

[
2λc,mPmT

N0

]
Q−1(ǫ) + O(log2(nL)) bits

(5.3)

where

• ǫ ∈ (0, 1) is the probability of error,

• V1[θ] = θ
2

θ+2
(θ+1)2

log2
2 e,

• {Pm} is the water-filling solution such that Pm =
[
µ− N0

2λc,mT

]+
and n

N−1∑

m=0

Pm =

P ,

• and L is the number of non-zero {Pm}’s, which is less or equal N .

It is worth noting here that the asymptotic expansion in (5.3) was first derived
by Strassen in 1962 for discrete memoryless channels [9, Theorem 1.2].

In Polyanskiy’s work [11] N is constant and n grows towards infinity and
hence [11, Theorem 4] shows an O(log2 n) term instead of the O(log2 nL) term
here in (5.3). In my scenario, each channel m in Figure 5.2 has a different noise
power, but each has two dimensions with the same noise power. In my scenario
therefore n = 2, L is of the order of (and grows with) c and the term O(log2 nL)
becomes O(log2 L) as n is constant and equal to 2. These derivations yield the
following lemma:

Lemma 1. An upper bound on the data rates is given by,

RUB(ǫ, P, c) =
1

T

∞∑

m=0

log2

[
1 +

2λc,mPmT

N0

]
− 1

T

√√√√2
∞∑

m=0

V1

[
2λc,mPmT

N0

]
Q−1(ǫ)

+
1

T
O(log2(L)) b/s.

=
1

T

L−1∑

m=0

log2

[
1 +

2λc,mPmT

N0

]
− 1

T

√√√√2

L−1∑

m=0

V1

[
2λc,mPmT

N0

]
Q−1(ǫ)

+
1

T
O(log2(L)) b/s. (5.4)

where

• ǫ ∈ (0, 1) is the probability of error,
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• V1[θ] = θ
2

θ+2
(θ+1)2

log2
2 e,

• {Pm} is the water-filling solution such that Pm =
[
µ− N0

2λc,mT

]+
and 2

∞∑

m=0

Pm =

2
L−1∑

m=0

Pm = P ,

• and L is the number of non-zero {Pm}s.

5.2.2 Lower Bounds

In what follows, I derive a lower bound on the rates by jointly:

• Finding an upper bound on the interference.

• Using only the first N PSWFs to transmit data.

Subsequently, I optimize over the value of N to obtain tighter bounds as well
as lower bounds on the degrees of freedom.

I study below three scenarios for the interference and derive a lower bound
for these scenarios.

Consecutive Single Band Codewords (CSB)

I consider first the case where a single band is used and only the codewords
{Ck,0(t)}k∈Z are transmitted over the channel, i.e., I = {(k, 0), k ∈ Z∗ =̂ Z\{0}}
as shown in Figure 5.3.

C0,0(t)C−1,0(t) C1,0(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

Figure 5.3: Single band interference.

In the case where only the first N PSWFs are used,

x(t) = C(0,0)(t) +
∑

k∈Z∗

Ck,0(t) =

N−1∑

l=0

a0,0,l
Dϕc,l(t)√

λc,l

+
∑

k∈Z∗

N−1∑

l=0

ak,0,l
Dϕc,l(t− kT )√

λc,l

,
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and the received signal is the sum of an information bearing signal, an interfering
signal and additive channel noise,

r(t) =

[
N−1∑

l=0

a0,0,l
√

λc,l ϕc,l(t)

]
+

[∑

k∈Z∗

N−1∑

l=0

ak,0,l
√
λc,l ϕc,l(t− kT )

]
+ N(t).

Projecting r(t) on the mth normalized time-limited PSWF—which can be
done using an appropriate matched filter—results in

ym = λc,m a0,0,m + wm,

where the interference plus noise term wm is

wm =
∑

k∈Z∗

N−1∑

l=0

αk,0 c,l,m ak,0,l +
√

λc,m nm,

where αk,h c,l,m is defined in Equation (2.14). To be able to apply Polyanskiy’s
theorem for this lower bound and the following lower bounds, the received sym-
bols {ym} should be independent Gaussian variables, and {wm} should also be
independent Gaussian variables. Note that I can treat {wm} as independent here
because I am deriving a lower bound (being dependent will help to increase the
possible data rates).

Next, I upper bound its second moment,

E
[
|wm|2

]
= E



∣∣∣∣∣
∑

k∈Z∗

N−1∑

l=0

αk,0 c,l,mak,0,l

∣∣∣∣∣

2

+ λc,mN0

=
∑

k∈Z∗

E



∣∣∣∣∣
N−1∑

l=0

αk,0 c,l,mak,0,l

∣∣∣∣∣

2

+ λc,mN0.

Since the {ak,0,l}N−1
l=0 are not necessarily uncorrelated for a fixed k, I use the

upper bound ∣∣∣∣∣
N∑

l=1

cl

∣∣∣∣∣

2

≤ N
N∑

l=1

|cl|2 , (5.5)

and the fact that E
[
|ak,0,l|2

]
= 2PlT to upper bound the second moment

E
[
|wm|2

]
≤
∑

k∈Z∗

N
N−1∑

l=0

∣∣ αk,0 c,l,m

∣∣2 E
[
|ak,0,l|2

]
+ λc,mN0

= N
N−1∑

l=0

2PlT
∑

k∈Z∗

∣∣ αk,0 c,l,m

∣∣2 + λc,mN0.
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Using the bound (A.11) derived in Appendix A

∑

k∈Z∗

∣∣ αk,0 c,l,m

∣∣2 ≤ λc,l(1−λc,l) =⇒ E
[
|wm|2

]
≤ N

N−1∑

l=0

2PlT λc,l(1−λc,l)+λc,mN0.

Using the alternative bound (A.7) and the fact that
N−1∑

l=0

2PlT ≤ PT ,

∑

k∈Z∗

∣∣ αk,0 c,l,m

∣∣2 ≤ λc,m(1−λc,m) =⇒ E
[
|wm|2

]
≤ λc,m [N(1 − λc,m)PT + N0] .

Therefore the second moment of the interference term is upper-bounded by

ICSB[m] =̂ min

(
N

N−1∑

l=0

2PlT λc,l(1 − λc,l) , λc,mN(1 − λc,m)PT

)
, (5.6)

and the signal to noise and interference ratio per dimension in ym is lower-bounded
by

SCSB[m] =̂
λ2
c,m2PmT

ICSB[m] + λc,mN0
.

These derivations yield the following lemma:
Lemma 2. A lower bound on the data rates is given by

RCSB(ǫ, P, c) = max
N,{Pm}m

1

T

[
N−1∑

m=0

log2[1 + SCSB[m]]

−

√√√√2

N−1∑

m=0

V1[SCSB[m]]Q−1(ǫ) + O(log2(L))

]
, (5.7)

where L is the number of non-zero {Pm}s.

Single Time-Slot Multi-Band Codewords (STMB)

In this scenario multiple bands in a single time-slot are used and only the code-
words {C0,h(t)}h∈Z are transmitted over the channel, i.e., I = {(0, h), h ∈ Z∗} as
shown in Figure 5.4 below.

As above, the output of the mth matched filter is

ym = λc,m a0,0,m + wm,

where the interference plus noise term is now

wm =
∑

h∈Z∗

N−1∑

l=0

α0,h c,l,m a0,h,l +
√

λc,m nm.
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C0,0(t)

C0,−1(t)

C0,1(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

Figure 5.4: Single time-slot interference.

Using the bound (A.12), one can upper bound the second moment of wm;

∑

h∈Z∗

∣∣ α0,h c,l,m

∣∣2 ≤ λ2
c,m(1 − λc,m)

λc,l
,

then

E
[
|wm|2

]
= E



∣∣∣∣∣
∑

h∈Z∗

N−1∑

l=0

α0,h c,l,ma0,h,l

∣∣∣∣∣

2

+ λc,mN0

≤ λ2
c,m(1 − λc,m)N

N−1∑

l=0

2PlT

λc,l
+ λc,mN0.

Alternatively, using the bound (A.8)

∑

h∈Z∗

∣∣ α0,h c,l,m

∣∣2 ≤ λc,m(1 − λc,l),

the second moment of wm can be upper bounded by

E
[
|wm|2

]
= E



∣∣∣∣∣
∑

h∈Z∗

N−1∑

l=0

α0,h c,l,ma0,h,l

∣∣∣∣∣

2

+ λc,mN0

≤ λc,mN

N−1∑

l=0

(1 − λc,l)2PlT + λc,mN0.

Therefore the second moment of the interference term is upper-bounded by

ISTMB[m] =̂ min

(
λ2
c,m(1 − λc,m)N

N−1∑

l=0

2PlT

λc,l
, λc,mN

N−1∑

l=0

(1 − λc,l)2PlT

)
.

(5.8)
These derivations yield the following lemma:
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Lemma 3. The corresponding lower bound on the data rates is given by

RSTMB(ǫ, P, c) = max
N,{Pm}m

1

T

[
N−1∑

m=0

log2[1 + SSTMB[m]]

−

√√√√2

N−1∑

m=0

V1[SSTMB[m]]Q−1(ǫ) + O(log2(L))

]
,

(5.9)

where L is the number of non-zero {Pm}’s and

SSTMB[m] =
λ2
c,m2PmT

ISTMB[m] + λc,mN0
.

Consecutive Multi-Band codewords (CMB)

I consider now the case where all the codewords {Ck,h}(k,h)∈Z2 are transmitted
over the channel. The analysis follows as above and the interference plus noise
term wm is

wm =
∑

(k,h)∈Z2\(0,0)

N−1∑

l=0

αk,h c,l,m ak,h,l +
√
λc,m nm

=

[∑

k∈Z∗

N−1∑

l=0

αk,0 c,l,m ak,0,l

]
+

[∑

h∈Z∗

N−1∑

l=0

α0,h c,l,m a0,h,l

]

+


 ∑

(k,h)∈Z∗×Z∗

N−1∑

l=0

αk,h c,l,m ak,h,l


+

√
λc,m nm.

Upper bounds on the second moments of the first two interference terms have
been derived in Sections 5.2.2 and 5.2.2, respectively, and it remains to derive
one for the third term. By Equation (5.5),

E



∣∣∣∣∣
∑

k∈Z∗

∑

h∈Z∗

N−1∑

l=0

αk,h c,l,m ak,h,l

∣∣∣∣∣

2

 ≤ N

N−1∑

l=0

E



∣∣∣∣∣
∑

h∈Z∗

∑

k∈Z∗

ak,h,l αk,h c,l,m

∣∣∣∣∣

2



= N
N−1∑

l=0

∑

h∈Z∗

∑

k∈Z∗

E
[
|ak,h,l|2

] ∣∣ αk,h c,l,m

∣∣2 ≤ N
N−1∑

l=0

2PlT
∑

k∈Z∗

∑

h∈Z∗

∣∣ αk,h c,l,m

∣∣2 .

Using bound (A.13) and Equations (5.6) and (5.8),

E
[
|wm|2

]
≤ ICSB[m] + ISTMB[m] + N

N−1∑

l=0

(1 − λc,l)2PlT + λc,mN0
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Alternatively, using bound (A.14),

E
[
|wm|2

]
≤ ICSB[m] + ISTMB[m] + N

N−1∑

l=0

λc,m

λc,l

(1 − λc,m)2PlT + λc,mN0,

Therefore, the second moment on the interference terms is upper-bounded by

ICMB[m] =̂ ICSB[m] + ISTMB[m]

+ min

(
N

N−1∑

l=0

(1 − λc,l)2PlT , N

N−1∑

l=0

λc,m

λc,l
(1 − λc,m)2PlT

)
.

These derivations yield the following lemma:
Lemma 4. The corresponding lower bound on the data rates is given by

RLB(ǫ, P, c) = max
N,{Pm}m

1

T

[
N−1∑

m=0

log2[1 + SCMB[m]]

−

√√√√2

N−1∑

m=0

V1[SCMB[m]]Q−1(ǫ) + O(log2(L))

]
, (5.10)

where L is the number of non-zero {Pm}s and

SCMB[m] =̂
λ2
c,m2PmT

ICMB[m] + λc,mN0
.

5.3 Numerical Results

In what follows, I use W = 1 KHz and ǫ = 10−3 in my computations. Since I
consider the complex base-band channel, an equivalent real pass-band channel
will have 2W -Hz bandwidth (i.e., 2 KHz in my case), and L complex degrees of
freedom in base-band is equivalent to 2L real degrees of freedom in passband.

In the following I evaluate the degrees of freedom and the data rates for
different SNR levels (in dB) as L depends on the SNR; for example, since the
water-filling algorithm is used for Equation (5.4), L can be increased by increasing
the “water level” in the water-filling algorithm, which means that the SNR level
must be increased. Note that for a fixed c, the ratio of the derived bounds to
Shannon’s capacity (Equation (2.17)) depends only on P,No and W through the
ratio P

NoW
, and the results for W 6= 1 KHz can be extracted from my presented

results for an appropriate range of SNR = 2P/No.
To evaluate the bounds in Equations (5.4), (5.7), (5.9) and (5.10), I used the

optimization toolbox in MATLAB to search for the optimal solution in {Pm}m.
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When it comes to the upper bound (5.4), the water-filling choice used by Polyan-

skiy only maximizes the term
∑∞

m=0 log2

[
1 + 2λc,mPmT

N0

]
and not the whole expres-

sion. However, the water-filling choice almost achieves the same performance as
the optimization routine with negligible differences. When it comes to the term
O(log2(L)), I specialize it to 1

2
log2(2L) for the sake of numerical computations;

I used the constant 1
2

as Polyanskiy conjectured in Equation (4.218) in his the-
sis [10], and I used the term 2L inside log2(.) since the number of real independent
variables is 2L (as explained in Section 5.2.1). Interestingly, the term 1

2
log2(n)

(where n is the block-length) was first conjectured by Dobrushin [8] in 1961 for
some discrete symmetric channels.

5.3.1 Upper Bound

To solve Equation (5.4), the following quantity is maximized using the optimiza-
tion tool in MATLAB

RN
UB = max

Pm

1

T

N−1∑

m=0

log2

[
1 +

2λc,mPmT

N0

]
− 1

T

√√√√2
N−1∑

m=0

V1

[
2λc,mPmT

N0

]
Q−1(ǫ),

over {Pm}N−1
m for different values of N . The solution being decreasing with m,

L is the value of N where RN
UB saturates (which is the same as the number of

non-zero Pm’s after saturation). I adopt similar method and notations for all the
bounds presented hereafter.

Figure 5.5 shows the obtained RN
UB for c = 1000 and at SNR = 50 dB, and in

this example the obtained degrees of freedom are L = 1004. The upper bound
on the rates is

RUB(ǫ, P, c) = RL
UB +

1

2T
log2(2L) bits/sec.

I compute L and the corresponding upper bound RUB for different values of
c and for different levels of SNR. Figure 5.6 shows the difference (L− c) between
the obtained degrees of freedom and c = 2WT , and as expected, L increases as
the SNR increases (in a manner akin to the water-filling solution: as the water
level increases, it is possible to use additional PSWFs). However, the additional
degrees of freedom (beyond c) increase slowly with c and L/c → 1 as c increases
towards infinity.

In Figure 5.7 I plot the obtained upper bound on the rates together with
the Shannon capacity. Notice that the gap between the upper bounds and the
Shannon capacity decreases as c increases.

The ratio of the bounds to the Shannon capacity can be seen in Figure 5.9
below.
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Figure 5.5: Saturation of RN
UB for c = 1000 and SNR = 50 dB.
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Figure 5.6: Upper bounds on the degrees of freedom.
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Figure 5.7: Upper bounds on the data rates.
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5.3.2 Lower Bounds

In this section, I present the numerical results for Sections 5.2.2–5.2.2 (Equa-
tions (5.7), (5.9) and (5.10)), and I apply the same numerical method I used in
the previous section. Note that I omitted the results for CSB since the lower
bounds when using either CSB or STMB are almost the same with no significant
differences.

Figure 5.8 shows the obtained lower bounds on the degrees of freedom. Note
that for given scenario (CSB, STMB or the general lower bound), the results are
almost the same for different SNR levels; increasing the signal power will only lead
to increasing the power of the interference (see Equations (5.7), (5.9) and (5.10)),
and the effect on the signal to interference ratio remains negligible. Moreover,
the results for the different scenarios are very close (±1 on average). Although
L − c decreases as c increases, it decreases slowly and L/c → 1 as c increases
towards infinity.

I propose approximating the degrees of freedom for the general lower bound
by the following equation

LLB =̂ c− 1.35 log2(c) + 3.25, (5.11)

and I draw “LLB − c” in Figure 5.8. It is expected that “LLB − c” is a loga-
rithmic function of c since the transition region of the eigenvalues of PSWFs is a
logarithmic function of c (as shown in Section 2.1).
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Figure 5.8: Lower bounds on the degrees of freedom.

Figure 5.9 shows the ratio of the obtained bounds to the Shannon capacity.
For a fixed c and as SNR increases, the bounds get relatively closer to capacity
and the gap between the upper bound and the lower bound increases. In addition,
for a fixed SNR, as c increases, the gap between the bounds decreases.
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Figure 5.9: Upper and lower bounds on the rates.

5.4 Possible Enhancements on the Bounds

Since the obtained upper and lower bounds on the rates (Figure 5.9) are very
close for SNR = 30 dB, the bounds are tight and a good approximation for the
optimal data rates is reached. However, the gap between the upper and lower
bounds increases as the SNR increases. For instance, the gap between the upper
and lower bounds for c = 200 and SNR = 70 dB is 5.5% of Shannon’s capacity,
which means that one or both bounds are loose. In the following I present some
possible improvements on the bounds.

5.4.1 A Tighter Upper Bound

To derive the upper bound, I ignored the interference due to other codewords
and the obtained degrees of freedom surpassed 2WT for SNR ∈ {50 dB,70 dB}.
However, the results in the literature shows that the asymptotic dimension of
the W-T space is 2WT , and thus adding the constraint that the the codewords
must be time-limited will not increase the available degrees of freedom. So one
can conclude that the obtained upper bound on the degrees of freedom is not
tight. One possible way to improve this upper bound is to force the degrees of
freedom to be at most 2WT , and hence, L in constrained to be less or equal
to 2WT in Equation (5.4). In other words, the normalized time-limited PSWFs
Dϕc,m(t)√

λc,m
with m ≥ 2WT will not be used to transmit data and their allocated

power Pm’s are forced to be zero. The obtained upper bound will decrease and
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hence the gap between the upper and lower bounds will decrease.

In Figure 5.10 I present the numerical values for the tighter upper bound
(TUB) in addition to those of the upper bound. When c = 200, note that the
tighter upper bound achieves improvements of 0.8% and 1.5% for SNR = 50 dB
and SNR = 70 dB, respectively.
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Figure 5.10: Tighter upper bound on the rates vs. the old ones.

5.4.2 Introducing a Guard Time or a Guard Band be-
tween the Codewords

The use of a guard time or a guard band is expected to decrease the effect of
inter-codeword interference which drives towards increasing the achievable rates.
On the other hand a portion of the time resources or frequency resources will
not be used which decreases the data rates. Therefore, there must be an optimal
guard time and an optimal guard band that maintain a good trade-off between
the lost resources and the improvement of the inter-codeword interference.

Using a guard time TG reduces the upper bound to RUB(TG) = RUB
T

T+TG
, but

introducing a guard band does not affect it. When it comes to the lower bound,
deriving a closed form expression has proven to be difficult.

Nevertheless, if adding a guard time is beneficial, the optimal guard time T ∗
G

must satisfy RUB(T ∗
G) ≥ RLB where RUB and RLB are given by Equations (5.4)

and (5.10) and hence
T ∗
G

T
≤ RUB

RLB
− 1. In Figure 5.11, I draw the obtained upper

bound on T ∗
G. Naturally, it increases as the SNR increases since the relative

difference between the bounds increases as the SNR increases.
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5.5 Conclusion

The derived bounds on the achievable rates were found to be tight for for low
values of SNR/W (for example W = 1 KHz and SNR = 30 dB or equivalently
W = 100 KHz and SNR = 50 dB). However, the gap between the bounds
increases as this SNR/W ratio increases.

When it comes to the available degrees of freedom, the numerical results
showed that the potential decrease from 2WT is upper bounded by a logarithmic
function of 2WT and hence the relative reduction is asymptotically negligible.

Based on the results of this chapter, one can approximate the achievable data
rates by

R(ǫ, P, c) =
L

T
log2

[
1 +

PT

N0L

]
−

√
2L

T

√
V1

[
PT

N0L

]
Q−1(ǫ) +

1

2T
log2(2L),

where V1(θ) = θ
2

θ+2
(θ+1)2

log2
2 e and L is in the range c− 1.35 log2(c)+ 3.25 ≤ L ≤ c.

This approximation is guaranteed to be between the derived bounds, and hence
is a “good” one for low values of SNR/W .
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Chapter 6

Lossy coding of a time-limited
piece of a band-limited white
Gaussian source

In this chapter I study the coding rates of a T -seconds finite duration piece from
a W -Hz band-limited white Gaussian process with the L2 norm of the error as
a distortion measure. When it comes to the discrete representation of the CT
process, the short duration sub-functions are projected on the set of PSWFs,
which produces an infinite number of independent but not identically distributed
Gaussian random variables. I show that only a finite set of them can be used for
coding, where I refer to the size of this set as the “effective” blocklength. I use
similar tools to the ones used to develop rate distortion theory for independent
and identically distributed Gaussian random variables in the finite blocklength
regime in [13] and [14], and I derive an upper bound and a lower bound and I
evaluate them numerically.

6.1 System model

Consider a real continuous-time source that produces a zero mean W -Hz band-
limited Gaussian process X(t) with a flat PSD that I label as “white”

SX(f) =

{
σ2 f ∈ [−W,W ]
0 otherwise

, (6.1)

and define -as shown in Figure 6.1, the sub-functions {Xk(t)}k∈Z as

Xk(t) =

{
X(t) t ∈

[
kT − T

2
, kT + T

2

]

0 otherwise
.

I study the problem of coding independently the sub-functions {Xk(t)}k∈Z
and without loss of generality, I focus on the signal X0(t). With practicality in
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X0(t) X1(t)X−1(t)
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3T
2− 3T

2 −T
2

T
2

Figure 6.1: X(t) is encoded by independently coding {Xk(t)}k∈Z.

mind, X0(t) must be represented by a finite number of bits, say R bits, and hence
only M = 2R representation signals can be used. Let {Ym(t)}Mm=1 denote the set
of an optimal representation. To encode X0(t), the nearest representation signal
Yṁ(t) is selected and the binary representation of the integer ṁ is used to encode
X0(t). When it comes to the reconstruction of X0(t), the index ṁ is recovered
from the generated bits and the reconstruction of X0(t) is the signal Yṁ(t).

Being different from X0(t), the loss or distortion of the reconstructed signal
is measured using the mean squared error, i.e. the L2-norm of the difference be-
tween the original and the reconstructed signals. Since X0(t) is time-limited, the
optimal representation signals are also T -seconds time-limited, and the distortion
is defined as

d (X0(t) − Yṁ(t)) =
1

T

∫ T
2

−T
2

|X0(t) − Yṁ(t)|2 dt. (6.2)

To evaluate the performance of the coding scheme, I adopt the same criterion
described in [13], namely a guaranteed distortion level d with probability (1− ǫ),

P [d (X0(t) − Yṁ(t)) > d] ≤ ǫ. (6.3)

The problem at hand is to find the minimum possible rate R∗, for a given
fixed d and ǫ. I tackle this problem by finding and solving an equivalent discrete
model.

Being band-limited, by property 2.1.1 of the PSWFs, X(t) can be written as a

combination of PSWFs X(t) =
∑

i∈N X̂iϕc,i(t), where c = 2WT and
{
X̂i

}
i∈N

are

independent and identically distributed Gaussian random variables with mean
zero and variance σ2 [7, section 8.4]. Consequently, X0(t) is a combination of
normalized time-limited PSWFs:

X0(t) =
∑

i∈N

√
λc,iX̂i

Dϕc,i(t)√
λc,i

=
∑

i∈N
Xi

Dϕc,i(t)√
λc,i

,

where {Xi}i∈N are independent Gaussian random variables with mean zero and
variances λc,iσ

2 respectively. Being time-limited, by property 2.1.3 the {Ym(t)}’s
are also linear combinations of these time-limited PSWFs Ym(t) =

∑
i∈N Ym,i

Dϕc,i(t)√
λc,i

,
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and {Ym(t)}Mm=1 can be designed by selecting the appropriate discrete signals
Ym = {Ym,i}i∈N for m = 1, · · · ,M .

The problem at hand now boils down to coding a discrete source that gener-
ates independent random variables X = {Xi}i∈N each Gaussian Xi ∼ N (0, λc,iσ

2)
through selecting the nearest representation signal Yṁ. By Parseval, the distor-
tion (6.2) is equal to

d(X,Yṁ) =
1

T

∑

i∈N
|Xi − Yṁ,i|2 .

In what follows, I adopt a methodology that is similar to the one used in [13];
I derive upper and lower bounds for the smallest possible R. I emphasize that
the problem at hand is different than the one in [13] since here the smallest
set with probability (1 − ǫ) is an –infinite dimensional– ellipsoid. Moreover, an
infinite number of identical –infinite dimensional– spheres is required to cover
this ellipsoid, as presented in the next section.

6.2 Bounds

Examining the expression of the Gaussian probability density function, one can
see that the smallest-volume set E such that the generated vector X falls inside
it with probability (1 − ǫ) is an –infinite dimensional– ellipsoid centered at the
origin. Ellipsoid E has a radius ri = a

√
λc,iσ in dimension i, where a is a constant

determined by ǫ.

Now consider any set A with probability (1 − ǫ) under pX(·). To guarantee
that (6.3) is satisfied, for any vector X ∈ A there must be at least one represen-
tation signal Ym such that

∑

i∈N
|Xi − Ym,i|2 ≤ dT. (6.4)

The distortion being the usual L2(R) distance (6.4), one can consider that
each Ym covers a sphere B with radius

√
dT . Therefore, {Ym}Mm=1 and their

corresponding spheres should cover A. Denote by R∗ the smallest number of bits
needed to encode X0(t) while satisfying equation (6.3).

6.2.1 Converse – Lower Bound

For the sake of the technical proof, I define for every positive integer k the positive
scalar ak to be the solution to

P
[
Zk < a2k

]
= (1 − ǫ), (6.5)
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where Zk is chi-square distributed with k degrees of freedom. Note that a2k
is increasing and using the Berry-Esseen theorem [10, theorem 13], for some

|β| ≤ 12
√
2√

k
,

a2k = k +
√

2k Q−1 (ǫ + β) ≤ k +
√

2k Q−1 (2ǫ) , k ≫ 1. (6.6)

Theorem 5. Under the guarantee that the distortion does not exceed d with
probability (1 − ǫ), coding a T -seconds piece from a W -Hz band-limited white
Gaussian process of spectrum σ2 requires more than

RL = max
k≥1

1

2

k−1∑

i=0

log2

[
λc,ia

2
kσ

2

dT

]
bits,

where the {ak}’s are as in (6.5).

Proof. A lower bound on the number of bits needed to encode the subset Xk =
{Xi}k−1

i=0 while satisfying

P

[
k−1∑

i=0

|Xi − Ym,i|2 > dT

]
≤ ǫ

is also a lower bound on R∗. Therefore I derive a lower bound for encoding
this subset -denoted by Rk

L, and a lower bound RL = max
k≥1

Rk
L is obtained. The

existence of the maximum is presented right after the proof, where I show that
arg max

k
Rk

L is finite and is expected to be close to c.

Whenever Xi ∼ N (0, λc,iσ
2), the shape Ek that contains the smallest volume

in which Xk falls with probability (1 − ǫ) is a k-dimensional ellipsoid centered
at the origin with radius ri = ak

√
λc,iσ in the ith dimension. The interior of

Ek is represented by the equation
∑k−1

i=0
x2
i

λc,i
≤ a2kσ

2. Let Ak be an arbitrary k-

dimensional shape with probability (1−ǫ), the volume of which is lower-bounded
by the volume of Ek. Denote by Bk the k-dimensional sphere with radius

√
dT .

Finally, dividing the lower bound on the volume of Ak by the volume of Bk yields

Rk
L = 1

2

∑k−1
i=0 log2

[
λc,ia

2
kσ

2

dT

]
.

Note that the maximization is well defined and one can expect the “effective
blocklength”,

nL = arg max
k

1

2

k−1∑

i=0

log2

[
λc,ia

2
kσ

2

dT

]
, (6.7)

to be close to c for the following reasons:

• For 0 ≤ i ≤ k ≪ c, λc,i ≈ 1 and a2k increases with k. Therefore, the right
hand side of (6.7) increases with k whenever it is sufficiently smaller than
c.
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• For c ≪ i ≤ k, λc,i decreases exponentially towards 0 (as shown in Fig-
ure 2.1) while a2k increases almost linearly with k. Consequently, the right
hand side of (6.7) decreases with k when it is sufficiently larger that c.

6.2.2 Achievability – Upper Bound

First note that an infinite number of –infinite dimensional– spheres of shape B is
required to cover the ellipsoid E: Indeed, let M̂k to be the number of spheres Bk

required to cover Ek (where Bk and Ek are as defined in Section 6.2.1). Using the
result of Dumer et al. [35, Theorem 1], log2 M̂k is lower bounded by

1

2

∑

i∈Λk

log2

[
λc,ia

2
kσ

2

dT

]
,

where Λk = {0 ≤ i < k such that λc,ia
2
kσ

2 > dT}. By (6.6) a2k grows to infinity as

with k and so does M̂k. Therefore, finding an achievable covering of the ellipsoid
E will not lead to a useful upper bound.

To derive the upper bound, I give up on coding the whole vector X and
I divide it into tow sub-vectors, where the first sub-vector is encoded and the
second one is treated as pure distortion.

Theorem 6. It is possible to encode a T -seconds portion of a W -Hz band-limited
white Gaussian process with PSD defined in (6.1) using

RU = min
k

log2M


 âkσ√

dT − b̂2kσ
2

, k


 bits, (6.8)

with the guarantee that the distortion does not exceed d with probability (1 − ǫ),
where

M(r, n) =





e (n lnn + n ln lnn + 5n) rn n ≤ r
n (n lnn + n ln lnn + 5n) rn n

lnn
≤ r < n

7(4/7) ln 7

4

√
2π

n
√
n
[
(n−1) ln rn+(n−1) ln lnn+ 1

2
lnn+ln π

√
2n√

πn−2

]

r (1− 2
lnn)

(
1− 2√

πn

)
ln2 n

rn 2 < r < n
lnn

√
2π

√
n
[
(n−1) ln rn+(n−1) ln lnn+ 1

2
lnn+ln π

√
2n√

πn−2

]

r (1− 2
lnn)

(
1− 2√

πn

) rn 1 < r ≤ 2

(6.9)
and where âk and b̂k are defined as

P

[
k−1∑

i=0

X2
i < â2kσ

2

]
= P

[ ∞∑

i=k

X2
i < b̂2kσ

2

]
=

√
1 − ǫ, (6.10)

where Xi are independent ∼ N (0, λc,iσ
2).
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Proof. First divide X into two sub-vectors Xk = {Xi}k−1
i=0 and X̂k = {Xi}∞i=k.

Consider the coding scheme where only Xk is encoded into bits while taking into
account the distortion associated with ignoring X̂k. Consider the k-dimensional
sphere Sk centered at the origin with a radius âkσ that guarantees that Xk falls
inside Sk with probability

√
1 − ǫ. Being independent1,

P

[
{Xk ∈ Sk} ∩ {

∞∑

i=k

X2
i < b̂2kσ

2}
]

= (1 − ǫ).

Note that whenever
∑∞

i=k X
2
i < b̂2kσ

2, the maximum allowable distortion for en-

coding Xk is dT − b̂2kσ
2.

The problem at hand becomes the problem of finding the smallest achievable

number of spheres with radius
√

dT − b̂2kσ
2 that can cover Sk. The proof proceeds

as in that of [13, Theorem 2] and equation (6.9) is identical to [13, equation (7)]–
making use of results in [36, 37].

I emphasize that I didn’t consider encoding the shape having the smallest
volume since the number of equal k-dimensional balls that cover a k-dimensional
ellipsoid is less tractable than that of those that cover a sphere, and the available
results in the literature are not satisfactory as shown in [38, Section V.A].

I refer to nU = arg min
k

log2M
[

âkσ√
dT−b̂2kσ

2
, k

]
as the effective blocklength for

the upper bound. Using the Berry-Esseen theorem and table 2.1, one can show

that â2k =
∑k−1

i=0 λc,i+
√

2
∑k−1

i=0 λ2
c,iQ

−1
(
1 −

√
1 − ǫ

)
+O(1) and b̂2k =

∑∞
i=k λc,i+√

2
∑∞

i=k λ
2
c,iQ

−1
(
1 −

√
1 − ǫ

)
+ O

(∑∞
i=k λ3

c,i∑∞
i=k λ2

c,i

)
. As k increases to infinity, b̂2k and

â2k converge to zero and a constant respectively by virtue of (2.13) and table 2.1.
For k ≫ c, âkσ√

dT−b̂2kσ
2

remains essentially constant and the log2M[· · · ] term is

increasing for sufficiently large k implying that nU is finite and expected to be
close to c.

6.3 Asymptotic analysis as T → ∞
Theorem 7. As T goes to infinity, the rate per second converges to the Shannon

rate W log2

[
2Wσ2

d

]
bits/sec.

Proof. First note that as T goes to infinity, so does c. I established above that
for all k ∈ N,

1

2T

k−1∑

i=0

log2

[
λc,ia

2
kσ

2

dT

]
≤ R∗

T
≤ 1

T
log2M


 âkσ√

dT − b̂2kσ
2

, k


 .

1One can look for another trade-off between the probabilities of the two events.
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For any γ > 0, one can choose k = c(1 − γ) in the lower bound. Using
equation (2.12) and the fact that a2k ≥ k +

√
k/2 for c –and hence k– large

enough

R∗

T
≥ (1 − γ)W log2

[
2W (1 − γ)σ2

d

]
+ (1 − γ)W log2

[
1 +

√
1

2c(1 − γ)

]
.

By continuity of the logarithm, the second term is arbitrarily small as c → ∞.
Similarly, choose k = c(1 + γ) in the upper bound and use equation (2.11) to
show that as c –and hence k– goes to infinity,

R∗

T
≤ (1 + γ)W log2

[
2Wσ2

d

]
.

6.4 Numerical results

I compare the derived bounds with Shannon’s expression (1.1) by computing the
ratio R

T×RShannon
= R

0.5 c log2

[
2Wσ2

d

] .

Using MATLAB, I numerically estimate the solution of equation (6.10), which
is needed to compute the upper bound. In Figures 6.2, and 6.3 I present the
numerical results using various sample values for d, ǫ, W , and σ2.

The results show that the relative gap between the bounds decreases as T
increases (or equivalently as c increases).

For ǫ = 10−2 and over the selected range of c, I found:

• 1 ≤ nU − c ≤ 2 and nL = c + 2 for d = 1
4
2W

• 4 ≤ nU − c ≤ 6 and 6 ≤ nL − c ≤ 8 for d = 1
1000

2W .

Although I used relatively low level of distortion in Figure 6.3, the relative
gap between the bounds remains small, and the bounds remain tight in this case.

6.5 Remarks

On the discrete-time representation of the time-limited piece: My analysis is done
through projecting the time-limited piece on the set of PSWFs. While there are
alternative ways to represent the time-limited piece by a discrete-time vector
such as a Fourier series decomposition or through sampling, the use of PSWFs is
necessary to get independent random variables as shown in [7, section 8.4].

On non-white band-limited Gaussian sources: Whenever X(t) is a W -Hz
band-limited Gaussian process with non-flat PSD, projecting it on the set of
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Figure 6.2: Bounds vs.c for σ = 1, W = 1000Hz, d = 1
4
2W and ǫ = 10−2 in the

first figure and ǫ = 10−4 in the second.
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PSWFs does not provide independent discrete-time symbols. One possible way
to tackle the problem is to follow the derivations by Gallager in [7, section 8.4]
to find a CON set that produces independent discrete-time symbols. However,
the resulting Fredholm integral equation is difficult to solve [23].
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Summary and conclusions

Wireless communication systems are allocated specific radio bands, where the
transmitter should confine its transmissions within the allocated band while
maintaining low level of interference on the neighbouring bands, and the re-
ceiver should look for the data in this band since the neighbouring bands may be
used by someone else. Therefore the capacity of band-limited channels derived
by Shannon is very useful since it determines the highest possible data rates for
such systems. However, band-limited signals are not practical since they need
an infinite time support. It is therefore interesting to study the achievable data
rates when sending time-limited-signals over band-limited channels.

A related problem is to determine the optimal source coding rates of a time-
limited piece taken from a band-limited source; some “approximately band-
limited” signals are treated as band-limited signals and are usually passed through
a low pass filter and then sampled, because any information outside the band of
interest is useless (for example frequency components of the sound that are out-
side the human audible range).

In chapter 3 I evaluated the achievable information rates when using finite
duration pulses in a combined PAM-OMM system over a band-limited Gaussian
channel. I have shown that when the time-frequency factor c = 2WT is greater
or equal to 1, Shannon’s channel capacity can be achieved by using the proposed
combined PAM-OMM system. Although achieving the exact Shannon’s capacity
requires the use of very large number of parallel filters, I numerically showed that
the losses can be made negligible by using a finite number of parallel filters. For
example, for c = 1 using 5 parallel filters incurs less than 1.5 × 10−6% losses in
the data rates over the considered SNR range. Finally, I provided a new and
non-asymptotic (in WT ) proof for the fact that one can have at most 2WT
independent symbols given certain time window T and certain bandwidth W .

In chapter 4 I studied the information rates of PAM systems when the channel
is a W -Hz band-limited AWGN channel and assessed the performance when using
time-limited pulses. I considered three scenarios with different signaling rates;
first using Nyquist pulses with 2WT > 1, second transmitting at the Nyquist
rate (2WT = 1), and third when 2WT < 1. I derived the achievable rates for the
three cases when using band-limited (hence non-constrained) pulses which serve
as upper bounds for practical PAM systems with time-limited pulses. In the first

68



scenario my numerical computations indicate that the use of time-limited RRC
has a negligible degradation in achievable rates at low SNR

2W
. In the second sce-

nario I numerically searched for the optimal time-limited filters by performing an
expansion on the PSWFs basis. Considering incrementally more basis elements,
I approximate the optimal solution by often using only a few PSWFs. In the
third scenario, numerical results show that signaling at faster than the Nyquist
rate is significantly beneficial and surprisingly, it can achieve rates that are very
close to Shannon’s capacity.

Based on the results of chapter 3 and chapter 4, one can conclude that: when
using infinite blocklength codewords, the effect of using time-limited pulses can
be made negligible.

In chapter 5 I studied the maximum achievable rates and the available degrees
of freedom when transmitting T -seconds time-limited codewords over a W -Hz
band-limited AWGN channel. I made use of the PSWFs to switch to DT and
then applied the results by Polyanskiy. I derived the upper bound by ignoring the
interference due to other codewords, and I derived lower bounds by deriving upper
bounds on the inter-codeword interference. Finally I proposed an approximation
of achievable rates and the available degrees of freedom based on the numerical
results.

In chapter 6 I studied the rate distortion limits when independently coding
T -seconds time-limited signals from a W -Hz band-limited white Gaussian source
using finite block lengths. I derived upper and lower bounds and I numerically
evaluated them. As the time frequency index c = 2WT increases, the relative
gap between the bounds decreases and the derived bounds approach Shannon’s
formula.

The natural extension of this work is the study of the achievable rates for CT
fading channels. The difficulty of the problem is accentuated by the Doppler effect
where the bandwidth of the signals changes. Additionally, the signals undergo
additional transformations when passed through the channel which renders these
problems harder.
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Appendix A

Properties of αk,h c,l,m

The inner product between the lth normalized time-limited PSWF already shifted
in time and frequency by k T -seconds and h 2W -Hz respectively, and the band-
limited version of the mth normalized time-limited PSWF is denoted in this thesis
by αk,h c,l,m. By Equation (2.10) and using Parseval,

αk,h c,l,m =̂

〈
Dϕc,l(t− k T )√

λc,l

ej2πh 2W (t−k T ),
√
λc,mϕc,m(t)

〉

=

〈
ΦD

c,l(f − h 2W )e−j2πk Tf ,ΦD
c,m(f) rect

(
f

2W

)〉

=

〈
ΦD

c,l(f − h 2W )e−j2πk Tf rect

(
f

2W

)
,ΦD

c,m(f)

〉
.

Property A1. The coefficients αk,h c,l,m satisfy

αk,h c,l,m = jm−l

√
λc,m

λc,l
α−h,−k c,m,l.

Proof. This can be readily obtained by noting that by (2.9)

αk,h c,l,m =

〈
Dϕc,l(t− kT )√

λc,l

ej2πh2W (t−kT ),
√
λc,mϕc,m(t)

〉

=

〈
ΦD

c,l(f − h2W )e−j2πkTfrect

(
f

2W

)
,ΦD

c,m(f)

〉

=

〈
jl
√

T

2W
ϕc,l

(
T

2W
(f − h2W )

)
e−j2πk Tf rect

(
f

2W

)
, jm
√

T

2W
ϕc,m

(
T

2W
f

)〉

= jl−m T

2W

〈
ϕc,l

(
T

2W
(f − h2W )

)
, ϕc,m

(
T

2W
f

)
rect

(
f

2W

)
ej2πk Tf

〉
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By a change of variable ν = Tf/2W ,

αk,h c,l,m = jl−m
〈
ϕc,l(ν − hT ), ϕc,m(ν)rect

( ν
T

)
ej2πk2Wν

〉

= jl−m
〈
ϕc,l(ν), Dϕc,m(ν + hT )ej2πk2W (ν+hT )

〉

= jl−m

√
λc,m

λc,l

〈
Dϕc,m(ν + hT )√

λc,m

e−j2πk2W (ν+hT ),
√
λc,lϕc,l(ν)

〉

= jm−l

√
λc,m

λc,l
α−h,−k c,m,l.

Upper Bounds

Various upper bounds on the magnitude of αk,h c,l,m may be found using Cauchy
Schwarz’s inequality.

Property A2. The magnitude of αk,h c,l,m is upperbounded by

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

(2k+1)T/2∫

(2k−1)T/2

|ϕc,m(t)|2 dt (A.1)

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

(−2h+1)T/2∫

(−2h−1)T/2

|ϕc,l(t)|2 dt (A.2)

∣∣ αk,h c,l,m

∣∣2 ≤
(−2k+1)T/2∫

(−2k−1)T/2

|gh,l(t)|2 dt (A.3)

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|g−k,m(t)|2 dt (A.4)

where

gh,l(t) =̂

[
Dϕc,l(t)√

λc,l

ej2πh 2Wt

]
∗ 2W sinc (2W t)

Gh,l(f) =̂ ΦD
c,l(f − h 2W ) rect

(
f

2W

)
.
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Before proceeding to the proof, I specialize the bounds (A.3) and (A.4) to the

values of h = 0 and k = 0 respectively. Using the fact that g0,l(t) =

[
Dϕc,l(t)√

λc,l

]
∗

2W sinc (2W t) =
√

λc,l ϕc,l(t),

∣∣ αk,0 c,l,m

∣∣2 ≤
(−2k+1)T/2∫

(−2k−1)T/2

|g0,l(t)|2 dt = λc,l

(−2k+1)T/2∫

(−2k−1)T/2

|ϕc,l(t)|2 dt (A.5)

∣∣ α0,h c,l,m

∣∣2 ≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|g0,m(t)|2 dt =
λ2
c,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|ϕc,m(t)|2 dt. (A.6)

Proof. Bound (A.1) is obtained by using Cauchy Schwarz,

αk,h c,l,m =

〈
Dϕc,l(t− k T )√

λc,l

ej2πh 2W (t−k T ),
√
λc,mϕc,m(t)

〉

=

〈
Dϕc,l(t− k T )√

λc,l

ej2πh 2W (t−k T ),
√
λc,mϕc,m(t)rect

(
t− k T

T

)〉

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

∥∥∥∥ϕc,m(t)rect

(
t− k T

T

)∥∥∥∥
2
∥∥∥∥∥
Dϕc,l(t− kT )√

λc,l

∥∥∥∥∥

2

= λc,m

(2k+1)T/2∫

(2k−1)T/2

|ϕc,m(t)|2 dt.

When it comes to (A.2), using Property A1,

∣∣ αk,h c,l,m

∣∣2 =
λc,m

λc,l

∣∣ α−h,−k c,m,l

∣∣2 ≤ λc,m

(−2h+1)T/2∫

(−2h−1)T/2

|ϕc,l(t)|2 dt.
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Bound (A.3) may be derived as follows:

αk,h c,l,m =

〈
ΦD

c,l(f − h 2W )e−j2πk Tf rect

(
f

2W

)
,ΦD

c,m(f)

〉

=

〈
ΦD

c,l(f − h 2W ) rect

(
f

2W

)
,ΦD

c,m(f) ej2πk Tf

〉

=
〈
Gh,l(f),ΦD

c,m(f) ej2πk Tf
〉

=

〈
gh,l(t),

Dϕc,m(t + k T )√
λc,m

〉

=

〈
gh,l(t) rect

(
t + kT

T

)
,
Dϕc,m(t + k T )√

λc,m

〉
,

and hence, by Cauchy Schwarz

∣∣ αk,h c,l,m

∣∣2 ≤
(−2k+1)T/2∫

(−2k−1)T/2

|gh,l(t)|2 dt.

Using Property A1, bound (A.4) is readily obtained

∣∣ αk,h c,l,m

∣∣2 =
λc,m

λc,l

∣∣ α−h,−k c,m,l

∣∣2 ≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|g−k,m(t)|2 dt.

When it comes to sums over one index, the following inequalities can be
immediately obtained.

Corollary A1. The following bounds are directly obtained from the respective bounds
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derived above.

∑

k∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m(1 − λc,m) (A.7)

∑

h∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m(1 − λc,l) (A.8)

∑

k∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤


‖gh,l(t)‖2 −

T/2∫

−T/2

|gh,l(t)|2 dt


≤‖gh,l(t)‖2 (A.9)

∑

h∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

λc,l


‖g−k,m(t)‖2 −

T/2∫

−T/2

|g−k,m(t)|2 dt


≤ λc,m

λc,l
‖g−k,m(t)‖2

(A.10)
∑

k∈Z∗

∣∣ αk,0 c,l,m

∣∣2 ≤ λc,l(1 − λc,l) (A.11)

∑

h∈Z∗

∣∣ α0,h c,l,m

∣∣2 ≤ λ2
c,m

λc,l
(1 − λc,m). (A.12)

Finally, considering sums over the two indices k and h, note by Plancherel
that

∑

h∈Z∗

‖gh,l(t)‖2 =
∑

h∈Z∗

‖Gh,l(f)‖2=
∑

h∈Z∗

(2h+1)W∫

(2h−1)W

∣∣ΦD
c,l(f)

∣∣2 df = (1 − λc,l),

and hence bounds (A.9) and (A.10) imply

∑

h∈Z∗

∑

k∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤(1 − λc,l) (A.13)

∑

h∈Z∗

∑

k∈Z∗

∣∣ αk,h c,l,m

∣∣2 ≤ λc,m

λc,l
(1 − λc,m). (A.14)
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Appendix B

Abbreviations

AWGN Additive White Gaussian Noise
CON Complete Orthonormal
CMB Consecutive Multi-Band
CSB Consecutive Single Band
CT Continuous Time
DT Discrete Time
FTN Faster Than Nyquist
ISI Inter-Symbol Interference
JWSS Jointly Wide Sense Stationary
OMM Orthogonal Multi-pulse Modulation
PAM Pulse Amplitude Modulation
PDF Probability Density Function
PSD Power Spectral Density
PSWF Prolate Spheroidal Wave Function
RC Raised Cosine
RF Radio Frequency
RRC Root-Raised Cosine
SNR Signal to Noise Ratio
STMB Single Time-slot Multi-Band
TUB Tighter Upper Bound
WSS Wide Sense Stationary
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