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ABSTRACT 

OF THE THESIS OF 

 

 

 

Yara Youssef Bou Nassif  for  Master of Science 

       Major: Chemical Engineering 

 

 

 

 

Title: Enhanced Black Hole Particle Swarm Optimization in Well Placement 

Optimization 

 

 

Engineers and geoscientists work within an asset team on defining well type, well control, 

well placement and facility design towards optimizing the development planning of oil 

and gas fields. Well placement optimization plays a critical role in field development 

planning, since it accounts for a major portion of the capital expenditure and significantly 

affects hydrocarbon recovery. This thesis presents an updated version of the black hole 

particle swarm optimization (BHPSO), a well placement evolutionary optimizer 

introduced by Harb et al. [1]. BHPSO simultaneously optimizes the well count, location, 

type, and trajectory of wells. The importance of the proposed algorithm is that while well 

placement optimization involves a large number of optimization parameters, the BHPSO 

drastically reduces the number of optimization variables as its computational complexity 

is independent of the number of optimized wells. Harb et al. [1] focused on pattern water 

injection. In this research project, we address a different injection scheme: peripheral 

water injection. Here, for each particle in a BHPSO “iteration”, the particle swarm 

optimization (PSO) defines the location of the first producer based on a net hydrocarbon 

thickness (NHCT) map, and the location of the first injector is determined based on the 

permeability thickness (Kh) map of the field. The number of the remaining wells is 

decided by the PSO and, then, using the black hole (BH) operator, producers are 

automatically and optimally placed using a NHCT map, followed by the placement of the 

injectors on a Kh map. After every well placement, the maps are updated by eliminating 

a black hole (a disk and/or a cylinder) around the producers and injectors, each on the 

relevant map respectively. The radius of the black hole is defined by the well spacing. 

The method was extensively tested on both the synthetic Olympus reservoir model and 

the PUNQ-S3 reservoir model. Additionally, a new black holing technique was 

introduced and tested in the process of further optimizing the BH operator results.  

Furthermore, the convergence criteria of PSO is addressed in this study by conducting a 

sensitivity analysis on its algorithmic parameters including the acceleration factors, and 

the swarm size. The Inertia weight, another algorithmic parameter of PSO, was changed 

from a Constant Inertia Weight to a Linearly Decreasing Inertia Weight (LDIW). The 

latter showed improved results over the former in terms of convergence as faster 

convergence was obtained using a LDIW.   
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CHAPTER 1 

LITERATURE REVIEW 

 

In field development planning, engineers and geoscientists work on defining 

well type, well control, well placements, and facility design [2]. Data extracted from 

seismic surveys, cores, logs, fluid samples, well testing and 

production/injection/pressure history is studied and analyzed for building static and 

dynamic models that are used to test different development strategies, forecast 

production, and decide on the optimal field development plan [2]. These development 

strategies are ranked based on economic indicators, oil recovery, risk, and availability of 

injection fluids [3]. Also, the field development plan could be modified or adjusted 

throughout the productive life of the field for several reasons such as poor production 

performance, economics, new technologies (well types or recovery processes), 

environmental constraints, and better understanding of the reservoir due to the reduction 

of uncertainties with time [3].  

One of the most important decisions that significantly impact the recovery 

performance and profitability of a reservoir is the placement of production and injection 

wells. Therefore, the optimization of well placement is crucial in achieving an optimal 

field development plan [4]. Well placement optimization is a process used to determine 

several variables including optimal well location, well count, type, and injection pattern, 

towards maximizing a predefined objective function i.e. NPV, Oil cumulative 

production, plateau length etc... [1]. However, the computational requirement for 

achieving well placement optimization is very high due to the large number of 

simulations needed to test the different combinations of the decision variables involved. 
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Computational requirements may become prohibitively expensive within the context of 

a real oil or gas field development planning project. Hence, finding an efficient 

algorithm that can reduce the computation load of this process is a great benefit to the 

industry [5]. Consequently, in the past decade, substantial research focused on 

automating and developing optimization algorithms for well placement optimization. 

 

1.1. Well Placement Optimization 

The emergence of optimization algorithms in field development optimization 

can be dated back to the early 1990s [6]. In a review conducted by Islam et al. [5] the 

numerous artificial intelligence techniques for well placement optimization problems 

were compared and discussed. Due to reservoir heterogeneities, well placement 

problems yield cost functions that are discontinuous, non-smooth, nonconvex, and 

contain multiple local optima [5]. Well placement optimization challenges can be 

attributed to the aforementioned points; hence it is critical to find a practical algorithm 

to tackle this complexity. The optimization algorithms presented in Figure 1 were 

utilized in well placement optimization problems. These algorithms can be classified 

into 3 main groups: Classical Techniques (Gradient Based), Non-Classical Techniques 

(Gradient-free), and Hybrid Techniques.  
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Figure 1 Algorithms used for Well Placement Optimization [5] 

 

 

The drawbacks of gradient based algorithms are: (1) they often get trapped in a 

local optimum, and (2) the gradient of some models is difficult to estimate. On the other 

hand, gradient-free algorithms have a better tendency to be freed of the local optima. 

They also do not require derivative calculation and hence can work with the model as a 

“black box” [5]. Over time, as gradient based algorithms did not prove to be sufficient 

on their own in optimizing well locations, researchers decided to combine the 2 main 

groups of algorithms: gradient-based and gradient-free algorithms resulting in the third 

group: Hybrid Techniques. The Hybridization of algorithms has proved to work better 

than stand-alone algorithms in some cases [5]. 

Many breakthroughs were made over the past decade in well placement 

optimization. In 2010, Onwualu & Durlofsy [7] introduced Particle Swarm 

Optimization (PSO) to this field. In their work, the performance of optimizing well 

location and type using PSO and GA were compared in which they concluded that PSO 

outperforms GA. Nevertheless, it was stated that the methods were particularly case 

dependent and went on to propose, a year later, an optimization procedure for large 

scale field development called Well Pattern Optimization (WPO). The WPO comprises 
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2 key components: Well Pattern Description (WPD) & Well to Well Perturbation 

(WWP). The core algorithm used within the WPO is PSO. WPD encodes solutions with 

regard to well patterns (5-spot, 9-spot, etc) and pattern operators rather than individual 

well placement, and so the parameters optimized were affiliated with pattern type and 

geometry [8]. Since the optimization variables were dependent on different well 

patterns rather than the wells considered, the amount of optimization parameters was 

significantly reduced. While the optimization of the pattern type and geometry were 

optimized under the WPD representation, the optimization of the location of wells 

within each pattern can be optimized under the WWP representation. When the NPV 

obtained using the WPO was compared to the NPV of that of a standard well pattern 

scenario, the WPO yielded significantly larger NPVs [8]. In 2016, Zhang et al. [9] 

published a work based on the idea presented by Onwualu & Durlofsy. In order to 

reduce optimization complications, Zhang et al [9] narrowed down the number of 

optimization parameters of the WPO by eliminating parameters that they deemed 

unnecessary. Accordingly, they were able to test a perturbation gradient algorithm to 

accelerate the speed of simulation time. In order to validate the gradient algorithm, 

experiments were carried out on both a homogenous and a heterogeneous reservoir 

leading to satisfactory results for the homogenous reservoir. As for the heterogenous 

reservoir, the gradient algorithm resulted in faster convergence than the PSO, however, 

as the well placement optimization problem is convex, the gradient algorithm returned 

some “unreasonable” results. In other words, they concluded that convex optimization 

problems with complicated objective function surfaces highly limit gradient 

optimization methods [9]. The PSO’s instability (non-uniqueness of solution) was also 
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highlighted by Zhang et al [9], stating that PSO is starting point dependent and yields 

different results at different times using the same particle number.  

While PSO was introduced to well placement optimization in 2010, a relatively 

new algorithm known as Artificial Bee Colony (ABC), was shed light on in 2016 in a 

study carried out by Nozohour-leilabady and Fazelabdolabadi [10]. ABC is a swarm 

based stochastic optimization method that is used for global optimization and can 

handle both constrained and unconstrained optimization problems [6]. Nozohour-

leilabady and Fazelabdolabadi [10] used the ABC optimization algorithm to optimize 

over well locations and types. In order to validate the ABC method and compare its 

performance with PSO, the authors used different reservoir models with randomly 

generated permeability. The results obtained proved that the ABC optimization 

algorithm outperformed PSO with regard to finding the global optimum. The ABC’s 

excellence was attributed to it being starting point independent, an attribute PSO lacks 

[10]. While the ABC algorithm is deemed promising for application in well placement 

optimization, it is limited by its ‘out-of-boundary’ solution vectors. This limitation 

causes the algorithm to produce, at some point, ‘new’ solutions outside of the search 

space (i.e. solutions outside the defined boundaries of the problem) [10,11]. The 

aforementioned issue results in solution vectors that are not considered for NPV 

calculations, and while the default treatment for this problem is either to place the 

points back in the search space (at the boundary) or to disregard them, it is inefficient 

[10]. However, in 2018, Udoeyop, Oboh, and Afiakinye [11] carried out a study which 

lead to a modified ABC (MABC) algorithm in which they addressed the ‘out-of-

boundary’ solutions, a task Nozohour-leilabady and Fazelabdolabadi [10] did not 

undertake. The MABC proved to converge faster than the ABC algorithm, towards a 
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global maximum solution, as it was not repeating iterations that had already been 

generated but were located outside the search space. Furthermore, Udoeyop, Oboh, and 

Afiakinye [11] went on to verify the algorithms’ (MABC & ABC) independence of the 

starting point and concluded that the MABC algorithm is a more efficient optimizer, 

and that it surpassed the ABC algorithm in terms of the results obtained. Even though 

MABC was shown to outperform ABC, which in turn was shown to outperform PSO, it 

must be noted that both algorithms did not account for the optimization of well count.  

In 2019, Harb et al. [1] developed a new hybrid evolutionary optimization 

method for well placement. Where Onwualu & Durlofsy [8] combined the well pattern 

operator with the PSO algorithm, Harb et al. [1] combined it with a Black Hole 

Operator resulting in the Black Hole Particle Swarm Optimization (BHPSO).The main 

focus of the BHPSO is on optimizing the well count, location, type, and trajectory of the 

well.  A quality map known as the NHCT map was used to place the wells, and it is an 

indication of the thickness of oil at a certain point in the reservoir. The PSO identifies 

the location of the first well based on the NHCT map. Once the location of the first well 

has been identified, the BHO automatically and optimally places the remaining wells on 

the map based on the highest NHCT value [1]. After every well placement, the map is 

updated by eliminating a disk which is referred to as the black hole. The radius of the 

disk is defined by the well spacing. Since the first well is the only well that is being 

placed by the PSO, then the PSO algorithm initializes the solution vector for the BHO. 

Harb et al. [1] developed an equation called the Technical Well Spacing (TWS) which 

was exclusively used for the BHPSO to ensure that all the wells would have a place on 

the NHCT map which in turn made the algorithm independent of the number of 

optimized wells [1]. Harb et al. [1] conducted a sensitivity to compare between BHPSO 
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and PSO in terms of problem complexity, swarm size, and stochastic nature of the core 

algorithm. The NPV was used as the objective function for both algorithms. It was 

found that BHPSO outperformed PSO with a 40-50% increase in the BHPSO NPV’s 

when compared to the PSO NPV’s [1]. BHPSO also surpassed PSO in terms of CPU. 

The work that was presented focused on optimizing pattern water injection schemes, 

with a future focus on peripheral water injection schemes and convergence criteria. 

 

1.2. Peripheral Water Injection Schemes 

1.2.1. Recovery Mechanisms  

Water injection schemes are a form of secondary recovery mechanisms. 

Recovery mechanisms are used to maximize the recovery of hydrocarbons from a 

reservoir and fall under 2 headings: Conventional Recovery which includes primary and 

secondary recovery mechanisms, and Enhanced Oil Recovery (EOR) which is typically 

a tertiary recovery mechanism. Hydrocarbons are first displaced from the reservoir by 

natural depletion as a result of the energy that is initially present in the reservoir [12]. 

Natural depletion of oil recovers up to 25% of the oil initially in place depending on 

may factors [12]. As the initial pressure in the reservoir decreases to pressures near 

those needed to flow oil/water to the wellbore, artificial lift methods can be used to 

reduce the bottom hole pressure and help “lifting” the oil to the surface. These artificial 

lift techniques are wellbore centric and do not address the bigger picture of enhancing 

recovery from the reservoir. The technical limit of the primary recovery mechanism 

stage is reached when the pressure in the reservoir significantly drops to the point where 

production rates are no longer economical. 
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Secondary recovery mechanisms come in the form of adding artificial energy to 

the reservoir by means of a well while producing oil/gas/water by means of another well 

[12]. Energy is added to the reservoir by injecting either water or gas and is referred to 

as pressure maintenance. Pressure maintenance slows down the pressure decline in a 

reservoir and results in increased oil recovery [13]. The limit of the secondary recovery 

mechanism stage is reached when the fluid injected into the reservoir is produced in 

substantial amounts (e.g. high water cut or gas-to-oil-ratio) leading to uneconomical 

production. 

Tertiary recovery is an attempt to recover oil past primary and secondary 

recovery. The parameters that govern the recovery of the oil are altered by using 

thermal, microbial, (miscible) gas or chemical injection techniques to increase the 

recovery factor by, typically, reducing the irreducible oil saturation [14]. Recovery of 

oil can further be improved by 5-10% by implementing such tertiary recovery 

mechanisms [14]. 

 

1.2.2. Injection Schemes 

Injection schemes play a significant role in maximizing oil production revenues. 

For this role to be achieved, injection scheme projects should lead to both maintaining 

the reservoir pressure and maximizing the sweep efficiency in the reservoir which in 

turn leads to increasing the oil recovery. Sweep efficiency depends on the volume and 

heterogeneity of the reservoir that is contacted by the injected fluid as well as the type 

of injection scheme selected for the reservoir [15]. The four general types of injection 

schemes are: 
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1. Irregular Pattern Injection: Simplest type of injection in which the wells can be 

placed in any manner or pattern that is suitable for injection. 

2. Pattern Injection: the injector wells are placed in repeated patterns throughout the 

field as shown in Figure 2. 

Common pattern injection schemes are: 

• Direct Line Drive 

• Staggered Line Drive 

• Normal 5-Spot/Inverted 5-Spot 

• Normal 7 Spot/Inverted 9-Spot 

• Normal 9-Spot/Inverted 9-Spot 

Normal patterns are patterns that have only one production well per pattern, and 

inverted patterns are patterns that have only one injection well per pattern [16]. 
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Figure 2 Pattern Injection Schemes [12] 

 

3. Peripheral Injection: the injector wells are placed on the outskirts of the reservoir 

as shown in Figure 3. 

In peripheral injection, sufficient permeability is required in order to allow the 

fluid being injected to move at an acceptable rate towards the center of the field 

where the producers are located since the injectors are placed around the 

periphery of the producers [16]. Ahmed [16] also discussed that there will be a 

delay in the field response to the fluid being injected as it takes time for the 

injected fluid to reach the different parts of the reservoir. He also stated that, in 

order to prevent the injection fluid from bypassing any movable oil, the 
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producers that have been watered-out may be converted into injectors, and so 

significant water production quantities can be delayed until the last row of 

producers remains. 

 

Figure 3 Peripheral Injection Scheme [16] 

 

4. Crestal and Basal Injection: In crestal injection, the injector wells are placed at the 

top of reservoirs that have sharp structural features (gas caps). This injection 

scheme is mainly used for gas injection [16]. In basal injection, the injector wells 

are positioned down dip and the fluid is, as seen in Figure 4, injected at the bottom 

of the structure. Basel injection patterns are used in many water injection projects 

to take advantage, and benefit from gravity segregation [17]. 
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Figure 4 Crestal and Basal Injection Schemes [16] 

 

1.2.3. Water Injection Efficiency Challenges 

Factors affecting sweep efficiencies that must be considered when placing 

injector wells are: (1) reservoir heterogeneity including high permeability streaks, faults 

and fractures, (2) free water levels, (3) availability of the fluid being injected (gas or 

water), (4) distance between the wells known as well spacing, (5) adequate fluid 

injection rates so that the desired production rate is obtained, and (6) maximizing the 

recovery of the oil/gas while minimizing production of injected fluid [16]. 

In a case study conducted by Satter et al. [17] on a field located in the Northern 

American continent, low oil recovery using water injection was attributed to low 

formation permeability, to the absence of perforations in specific pay zones, and to the 

channeling of injected water due to fracturing. In another study, Bibars [15] discusses 

the injection challenges faced when producing from the El Morgan Kareem reservoir 

located in the Gulf of Suez. Bibars [15] observed unexpected high-water production 

which was mainly caused by one of the 8 zones (Zone 2) present in the reservoir. After 
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carrying out several studies, it was discovered that the water injected yielded an uneven 

distribution profile in Zone 2 due to its high permeability. This led to the bypassing of 

the oil, by the injected water, in the deeper zones, and almost 80% of the injection rates 

were received by this zone. Similarly, the Spring Field demonstrated an uneven water 

distribution profile caused by a complex reservoir structure [18].  Moreover, a multi-

layered, highly heterogeneous reservoir located in the Sabriyah Field of North Kuwait 

called the Upper Burgan reservoir encountered injectivity complications associated with 

severe faulting and compartmentalization. The compartments were found to have 

varying oil/water contacts, aquifer support, and reservoir pressure [19]. 

 

1.2.4. Peripheral Water Injection Scheme Case Studies 

As highlighted previously, the importance of water injection is to prevent rapid 

pressure decline with time, by providing pressure support to the reservoir, in order to 

enhance the displacement of oil [20]. Additionally, the type of injection scheme 

employed is highly influenced by the characteristics of the reservoir [21]. In some 

reservoirs, it is inefficient to employ a line-drive or 5-spot patterns; while in others, 

peripheral cannot be used.  

 

1.2.4.1. Case Study 1 

 

A study by Guari et al. [22] focused on the improvement made by ADNOC 

Offshore to a field development plan of one of its reservoirs. Based on the initial 

reservoir model a 5 – spot water injection scheme was selected. The injection scheme 

was selected based on testing several field development scenarios in which, due to low 

transmissibility, peripheral water injection showed no added value when compared to 
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natural depletion. Accordingly, 5-spot water injection was adopted. During initial 

production, it was found that the formation transmissibility (KH) ranged between 300-

5300 md. ft, however, further data acquisition was carried out showing transmissibility 

values that are 10 times higher in the crestal region of the reservoir [22]. The mismatch 

of results brought forth further testing as the 5-spot injection was no longer valid. 

Guari et al. [22] then revisited the possibility of implementing peripheral 

injection schemes for several reasons including (1) mitigating risk of early water 

breakthrough, (2) efficient uniform sweep, (3) high connectivity in the reservoir, (4) 

low bubble point pressure, and (5) water cycling risk due to differential depletion. It 

was also mentioned that a 5-spot water injection scheme, due to reasons (3) & (4), 

would risk water breakthrough and lower recovery from layers that have poor reservoir 

characteristics [22]. Peripheral water injection was then compared to 5-spot pattern 

water injection, on an updated simulation model, in which the main difference between 

the development plans was the conversion of the injectors to producers, in the oil pool, 

in the case of peripheral injection.  

The peripheral injection results obtained showed an increased plateau length and 

reduced water cut which is representative of effective sweep and less water cycling. 

Despite the outcome, the saturation map uncovered a fair amount of upswept oil in the 

center part of the reservoir, and a semi-peripheral water injection scheme was employed 

to overcome this drawback. So, 4 injectors were placed in the center of the reservoir, 

and a further reduction in the water cut was observed compared to peripheral water 

injection. The ‘increased injectors with reduced water cut’ phenomena was a result of 

the better pressure support the reservoir was receiving in the middle, whereas, in the 
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case of peripheral injection, the injectors needed to inject larger volumes of water to 

maintain the pressure in the reservoir [22].  

 

1.2.4.2. Case Study 2 

 

The layered and extremely faulted carbonate Mauddud reservoir located in the 

Gulf Region has been dominated by a crestal gas injection recovery mechanism since 

1938 [23]. In 2011, a 5-spot injection scheme was proposed and implemented leading to 

a premature water breakthrough in most of the producers (mainly the producer located 

in the center) [23]. The outcome of using 5-spot injection in a reservoir that is 

comprised of high permeability vugs and layers was deficient sweep and water cycling 

[23]. In 2013, the pattern injection scheme was converted into a peripheral injection 

scheme by turning the water injectors in the center into producers. Hence, this 

realignment reduced water cut and impeded production decline [23]. 

 

1.2.4.3. Case Study 3 

 

Yadav et al. [24] carried out a study on a mature offshore oil field located in the 

Gulf of Suez. The field, first discovered in 1977, was composed of a very complex 

structure. The faults in the reservoirs severely disturbed the field structure dividing it 

into 42 compartments. The primary source of recovery of oil is attributed to bottom 

aquifer support, that is later followed by peripheral water injection as a secondary 

source of recovery [24].  Once water injection began, some layers started to water-out 

due to the reservoir’s heterogeneities and variable pressure across the different layers, 

leading to a decline in field production.  However, early water breakthrough mainly 

occurred in the reservoir units whose vertical communication of flow was blocked by 
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the presence of horizontal shale barriers [24]. Also, as the field constitutes of many 

layers, the wells that were producing from the reservoir units present at the bottom of 

the field produced unreasonable amounts of water that was coming from the injection 

wells or aquifer. Reasons for the aforementioned situation were associated with, again, 

the reservoir’s heterogeneities and higher vertical permeability. Hence, this led Yadav et 

al. [24] to conclude that the application of peripheral water injection added to an aquifer 

filled reservoir with a faulted and complex structure results in poor vertical and areal 

sweep efficiencies. 

It can be noticed that different reservoirs face varying challenges. Satter [17] 

states that these challenges require an integrated team approach that is equipped with a 

detailed and accurate reservoir description. Furthermore, past reservoir performance 

needs to be monitored and interpreted, laboratory analysis needs to be carried out, and 

reservoir models need to be validated and developed. Injection schemes and their 

implementation are critically dependent on a reservoir surveillance program that must 

be developed prior to any project [17]. Reservoir surveillance programs include field 

development planning, reservoir pressure measurement, static and dynamic reservoir 

model updates, pressure transient tests, monitoring well rates and bottom hole pressure, 

water injection rate control, etc [17]. 

 

1.3. Particle Swarm Optimization  

One of the most commonly used optimization techniques, nowadays, is particle 

swarm optimization [25]. PSO is an algorithm that resembles schools of fish or flocks 

of flying birds. The ‘swarm’ represents a group of particles, and the position of each 

‘particle’ represents a solution of the objective function [26]. Initially, the particles are 
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assigned random positions and velocities, and then the particles position in the search 

space is updated depending on a calculated velocity parameter [26]. The individuals or 

particles in this optimizer evolve by competing and cooperating among themselves 

through the entire process. The direction in which each particle in the swarm takes to fly 

is adjusted according to the particles own flying experiences and to the other particles’ 

flying experiences. Each particle represents a possible solution to a problem [26]. 

Furthermore, since PSO was presented in 1995 it has undergone many enhancements. 

Over time, as researchers familiarized themselves with the algorithm, they derived new 

versions of PSO, developed new implementations of it in a multitude of areas, and 

issued theoretical studies that aimed at exploring the effects that its various algorithmic 

parameters have [27]. Moreover, the computational behavior of a workflow is 

significantly affected by these parameters. In other words, with some settings it may 

uncover desirable computational behavior, while with others, it may not, and so, 

algorithmic parameter selection is of high importance [25]. These algorithmic 

parameters are often referred to as the exploration-exploitation tradeoff in which 

“exploration is the ability to test various regions in the problem space in order to locate 

a good optimum, hopefully the global one, while exploitation is the ability to 

concentrate the search around a promising candidate solution in order to locate the 

optimum precisely”, as defined by Trelea [28]. However, the parameter selection 

process for the algorithm remains empirical to a large extent despite recent research 

efforts [28]. 

 



 

 27 

1.3.1. Algorithmic Parameters  

PSO has several appealing advantages including it being an easy to implement 

algorithm, and also having but few parameters to adjust [29]. These parameters include 

inertia weight (𝑤), learning factors (𝑐𝑔 𝑎𝑛𝑑 𝑐𝑝), swarm size and stopping criteria [27]. 

Many studies were conducted in which researchers study the influence of a single 

parameter and fix the other parameters, while other researchers have accessed the effect 

of multiple parameters at the same time [27]. 

 

1.3.1.1. Inertia Weight 

 

One of the key parameters in PSO is the Inertia Weight (𝑤), however, this 

parameter was not introduced to PSO until 1998 by Shi and Eberhart [26]. The Inertia 

Weight determines how much of the previous particle’s velocity will contribute to the 

current particle’s velocity thereby bringing about a balance between the exploitation and 

exploration abilities of PSO and enhancing convergence [30,31].The aforementioned 

advantages lead to the requirement of fewer iterations to find the optimum if the Inertia 

Weight is suitably selected [33]. Since the adoption of this parameter there have been 

proposals of several strategies for determining its value [29,30], yet Gubta and Choubey 

[32] stated that the four best Inertia Weight techniques that have been introduced over 

the years are: Constant Inertia Weight (CIW), Linearly Decreasing Inertia Weight 

(LDIW), Global-Local Best Inertia Weight (GLBIW), and Chaotic Decreasing Inertia 

Weight (CDIW) [32]. In the following paragraphs, a review of the previously 

mentioned Inertia Weight strategies is given.  

As previously mentioned, the basic PSO algorithm that was presented in 1995 

by Eberhart and Kennedy [33] has no Inertia Weight [33]. Nonetheless, the concept of 
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Inertia Weight was introduced for the first time by Shi and Eberhart in 1998 in which 

they proposed a CIW strategy. They tested their proposed strategy on Schaffer’s f6 

function in order to see the impact in which the inertia weight has on the performance of 

PSO. Moreover, this function was adopted because its global optimum is known. It 

should be noted that, for the purpose of comparison, all the simulations carried out had 

the same PSO settings except the inertia weights. Shi and Eberhart assessed a range of 

constant inertia weights for simulation including 𝑤 = 0, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 

1.1, 1.2, and 1.4, and used a swarm size of 20 particles [26]. 

Shi and Eberhart [26] reasoned that PSO is identical to a local search algorithm 

for inertia weight values less than 0.8. However, they stated that if an acceptable 

solution exists within the initial search space, then the global optimum can be found by 

PSO quickly, else it will not find the global optimum. On the other hand, for inertia 

weight values larger than 1.2, PSO is identical to a global search method. It was 

reported by Shi and Eberhart [26] that larger inertia weight values are not very 

dependent on initial search space solutions, and so PSO would be more capable of 

exploring new areas. In other words, smaller inertia weights tend to promote local 

exploitation while larger inertia weights facilitate global exploration [26]. It was 

concluded that PSO with a constant inertia weight value between 0.9 and 1.2, on 

average, performs better and has a higher probability of finding the global optimum 

[26]. 

In general, Shi and Eberhart [26] deduced, for any optimization search 

algorithm, that the algorithm would be better off at the beginning to exhibit an 

exploration ability in order to find a good seed, and then exhibit a more exploitation 

ability to fine tune the local area around the seed [26]. Based on the previous deduction, 
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Shi and Eberhart [26] brought about an inertia weight function that linearly decreases as 

a function of time. This function is listed in Table 1. They tested it within an inertia 

weight range of 1.4 to 0 and, compared to previous results of constant inertia weight 

values, it showed significant improvement of PSO performance. The authors brought 

their study to an end by suggesting that further studies need to be carried out in order to 

test and see whether a more suitable LDIW range can be found [26].  

Later that year, Shi and Eberhart [34] built on their previous study of the LDIW 

and were able to provide guidelines for selecting the inertia weight parameter. They 

carried out many experiments using the same function (Schaffer’s f6 function) and the 

same settings as their preceding paper. Shi and Eberhart [34] found that experimentally 

a LDIW from 0.9 to 0.4 yields excellent results. Shi and Eberhart [35] then extensively 

investigated the PSO performance with a LDIW from 0.9 to 0.4 by testing on several 

benchmark functions including the Sphere, Rosenbrock, Rastrigin, and Griewank 

functions. Also, swarm sizes of 20, 40, 80, and 160 particles were used. It was reported, 

for all testing cases, that the PSO algorithm was able to converge swiftly, however, 

towards the end of a run, it lacked global search abilities [35]. Nevertheless, results 

illustrate that by using a LDIW, the performance of PSO was improved greatly and 

displayed better results than that of a CIW.  

In 2006, Arumugam and Rao [36] proposed a new inertia weight called the 

Global-Local Best Inertia Weight (GLBIW), listed in Table 1. This strategy is neither 

set as a linearly decreasing function, nor set to a constant value [36], instead it is a 

function of the global and local best values, for each iteration, of the objective function. 

[36]. Arumugam and Rao [36] stated that the suggested strategy improves the 

performance of PSO in terms of both faster convergence and solving high dimensional 
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problems. Furthermore, in 2010, Umapathy, Venkataseshaiah, and Arumugam [37] 

considered testing a CIW, a LDIW, and a GLBIW on a standard IEEE 30 bus test 

system in order to analyze the impact of the three listed inertia weight strategies on the 

PSO performance. The results obtained showed that GLBIW outperformed CIW and 

LDIW in terms of the performance of PSO and resulted in fast convergence, 

consistency, high quality solutions, and an algorithm that is computationally faster [37]. 

In 2007, Feng et al. [38] presented a chaotic decreasing inertia weight (CDIW) 

strategy that was based on the LDIW. Like Shi and Eberhart [26,35], Feng et al. [38] 

investigated the effect of a CDIW, from 0.9 to 0.4, on the performance of PSO, by 

testing on several benchmark functions including the Sphere, Rosenbrock, Rastrigin, 

Griewank, and Schauffer f6 functions. Moreover, all their experiments were carried out 

using a swarm size of 20 particles. Feng et al. [38] indicated the following outcomes of 

a CDIW strategy: an increase in the optimum fitness result, a preferable convergence 

precision, stability, robustness, and better global search ability. It was also noted by the 

authors that the particles were able to move out of a local optimum, when stuck, and 

search for the global optimum result [38].  
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Table 1 Inertia Weight Formulas 

 

1.3.1.2. Acceleration Coefficients  

 

The acceleration coefficients, 𝑐𝑔 𝑎𝑛𝑑 𝑐𝑝, represent the weight in which a particle 

is being pulled towards its best global optima and best local optima, respectively, across 

the iterations carried out in a certain workflow [25,27]. The risk of the particles getting 

trapped in false optima rises when the value of these constants is too high due to the 

abrupt movement of the particles. On the contrary, very low values of the acceleration 

constants would result in slow movement of the particles and lead to a significant 

increase in computational effort [25]. Moreover, it should be noted that when the value 

of the cognitive acceleration coefficient (𝑐𝑝) increases, the particles attraction towards 

the local best optima is enhanced while its attraction towards the global best optima is 

decreased. Conversely, when the value of the social acceleration coefficient (𝑐𝑔) 

increases, the particles attraction towards the global best optima is enhanced while its 

attraction towards the local best optima is decreased [25].  

Name of 

Inertia Weight 
Formula of Inertia Weight Reference 

Constant 

Inertia Weight 
𝑤 = 𝑐 [31] 

Linearly 

Decreasing 

Inertia Weight 

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝐼𝑡𝑒𝑟𝑚𝑎𝑥 − 𝐼𝑡𝑒𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛  [39] 

Global-Local 

Best Inertia 

Weight 

𝑤 = 1.1 −
𝑔𝑏𝑒𝑠𝑡

𝑝𝑏𝑒𝑠𝑡
 [36] 

Chaotic 

Decreasing 

Inertia Weight 

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝐼𝑡𝑒𝑟𝑚𝑎𝑥 − 𝐼𝑡𝑒𝑟 𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛𝑧 

𝑧 = 4𝑧(1 − 𝑧) 

[38] 
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The acceleration factors, in many cases in literature, are set to 2.0 since for most 

problems this a commonly acceptable setting and is also extensively used in practical 

PSO applications [25,27]. The value 1.49445 is another common value used [27]. In 

2001, Carlisle and Dozier [40] suggested in their work that it is favorable to adjust the 

cognitive/social ratio to lean towards the cognitive acceleration coefficient. After many 

experimentations, Carlisle and Dozier [40] reported that 𝑐𝑝 =  2.8 𝑎𝑛𝑑 𝑐𝑔  =  1.3 

returned the best performance, which was later confirmed by Schutte and Groenwold 

[40]. Other researchers were inspired by the linearly decreasing inertia weight strategy 

and implemented it on the acceleration factors, while others experimented with trial and 

error to find values that would best fit their work [25,27]. Overall, in most settings, the 

two acceleration coefficients 𝑐𝑔 𝑎𝑛𝑑 𝑐𝑝 have equal values for the purpose of a same 

weight social and cognitive search [27]. 

 

1.3.1.3. Swarm Size and Stopping/Convergence Criteria 

 

The swarm size, which is the number of particles used for a certain workflow, 

significantly affects the performance of PSO [25].  In most cases, using an increased 

number of particles decreases the number of required algorithmic iterations since the 

particles would be sampling the search space more thoroughly, however the function 

evaluation requirements would increase and slow down the algorithm [25,28]. On the 

other hand, using too few particles would result in the algorithm getting trapped in a 

local optimum, hence decreasing reliability. Usually a swarm size of 20-30 particles 

would be a rational trade-off between cost and reliability, however, in literature, there is 

no precise rule for swarm size selection besides the fact that when the complexity of the 

problem increases, in general, so should the swarm size [25,27,41]. 
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1.3.1.4. Convergence Criteria 

 

Similarly, the convergence/stopping criteria also depend on the problem at hand. 

It can be that a prescribed number of iterations is reached, a specified quality in the 

solution is obtained, a passing of a specified time limit, a lack of deviation in particular 

sequential iterations or a combination thereof [25]. 

 

1.3.2. PSO in Well Placement Optimization 

Many researchers have employed PSO in well placement optimization problems. 

The table below summarizes the different well placement optimization studies that have 

used PSO, over the years, with the combination of algorithmic parameters that they 

used. It can be seen from  

Table 2 that the use of a CIW of 0.721, and acceleration factors equivalent to 

0.193 is very common among researchers in the field of well placement optimization. 

These values were determined by Clerc [42] from numerical experimentation, however, 

can be optimized [8]. 

 

Table 2 PSO in Well Placement Optimization 

Title Inertia Weight 
Acceleration 

Factor 
Swarm Size Reference 

Black hole particle 

swarm optimization 

for well placement 

optimization 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 = 𝑐𝑝 =

 1.193 
10,15,20 [1] 
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A New Well-

Pattern-

Optimization 

Procedure for 

Large-Scale Field 

Development 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 = 𝑐𝑝 =

 1.193 
20,40 [8] 

Efficient well 

placement 

optimization 

coupling hybrid 

objective function 

with particle swarm 

optimization 

algorithm 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 = 𝑐𝑝 = 

1.193 
50 [43] 

Optimization of 

Well Placement by 

PSO Assisted by 

Quality Map and 

Gompertz-Based 

Grey Model 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 =

𝑐𝑝 =1.193 
50 [44] 

Application of a 

particle swarm 

optimization 

algorithm for 

determining 

optimum well 

location and type 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 =

𝑐𝑝 =1.193 
5,10,20,30,40 

[45] 

 

Well placement 

optimization using 

metaheuristic bat 

algorithm 

𝑤𝑚𝑖𝑛

= 0.4 𝑤𝑚𝑎𝑥

= 0.9 

(LDIW) 

𝑐𝑔 =

𝑐𝑝 =0.775 
25 [46] 

Well placement 

optimization subject 

to realistic field 

development 

constraints 

[𝑤𝑚𝑖𝑛 =
0 𝑤𝑚𝑎𝑥 = 1.2 

(LDIW) 

𝑐𝑔 =1.2, 𝑐𝑝 = 

1.2 
25 [47] 
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Hybrid differential 

evolution and 

particle swarm 

optimization for 

optimal well 

placement 

𝑤 =  0.721 

(CIW) 

𝑐𝑔 =

𝑐𝑝 =1.193 
5,10,20 [48] 

 

1.4. Study Objective 

In a recent work by Harb et al. [1], the black hole particle swarm optimization 

(BHPSO) was introduced. It is a new hybrid evolutionary optimization method that 

simultaneously and systematically optimizes the well count, location, type, and 

trajectory in a field development plan. The proposed method was implemented and 

tested on the Olympus Challenge focusing on well placement in a pattern water 

injection scheme.  

However, the work did not address the case of peripheral water injection 

schemes which might be a more suitable development scenario depending on the type 

of field under study. The work also didn’t define a clear convergence criterion for the 

algorithm which is very critical considering the small-time window for decisions. 

Hence, we focus in this thesis on expending the applicability and improving the 

performance of BHPSO through: 

1. Implementing Peripheral Injection scheme in the BHPSO workflow (verified 

throughout the course of this work) 

2. Testing and evaluating different black holing techniques  

3. Defining a convergence criterion for BHPSO optimization workflow 
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CHAPTER 2 

FIELD DESCRIPTION 

 

In this work, the algorithm was tested on two synthetic oil fields for well 

placement optimization: Olympus and PUNQ-S3. A description of both fields is 

presented in this chapter.  

 

2.1. Olympus  

Olympus is a synthetic reservoir model developed by TNO for the purpose of a 

benchmark study for field development optimization [49, 50]. It has 342,000 grid 

blocks of which 192,750 blocks are active and is 50 m thick for which 16 layers have 

been modeled [50]. Due to being separated by an impermeable shale layer, the reservoir 

is made up of an upper zone and a lower zone [49]. The upper reservoir zone is made up 

of channel sands, as can be seen in Figure 6, lodged in floodplain shales, while 

alternative layers of coarse, medium, and fine sands make up the lower reservoir zone 

[50].  

50 subsurface realizations where generated for the Olympus field to cover 

uncertainty in reservoir properties. In these realizations, the grid, faults, and OWC are 

kept unchanged, while the porosity, permeability, NTG, and initial water saturation 

vary. The field, on one side, is bounded by a sealing fault while 6 other minor faults 

exist in the reservoir [50]. Moreover, the Olympus is a 2-phase model: oil and water.  

Harb et al. [1] tested well placement in a pattern water injection scheme on Olympus 
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Upper, Realization 22 (U22) and Olympus Lower, Realization 6 (L6). In this study, the 

U22 is used.  

 

Figure 5 Olympus three-dimensional reservoir model. The field shows initial reservoir 

pressure for the Upper 22 realization. Purple, blue and green represent approximately 

200 bars, 206 bars, and 215 bars, respectively 

 

 

 
Figure 6 The 3D field shows horizontal permeability for the Upper 22 realization. 

Orange, yellow and pink represent approximately 1000 mD, 100 mD, and 0, 

respectively 

 

2.2. PUNQ-S3  

PUNQ-S3 is a small-size synthetic reservoir model based on a real field 

operated by Elf Exploration Production [46,51,52]. It has 2660 grid blocks of which 

1761 blocks are active and is approximately 28 m thick [46]. The 2-phase model of oil 
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and water has an average reservoir porosity of 0.2, and an average horizontal 

permeability of 100 mD. To the east and south, the field is bounded by faults, while to 

the north and west it is linked to a fairly strong aquifer [46].  

 

Figure 7: PUNQ-S3 three-dimensional reservoir model. The field shows initial reservoir 

pressure. Pink, blue and green represent approximately 234 bars, 236 bars, and 238 

bars, respectively 

 

 
Figure 8: The 3D field shows horizontal permeability for the PUNQ-S3 field. 

Orange/red, yellow/green and pink represent approximately 1000 mD, 100 mD, and 0, 

respectively 
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2.3. Objective Function 

In this work, the objective function to be optimized is the net present value 

(NPV) and is evaluated over a fixed project period of 20 years. In Table 3, the input 

parameters that are needed to calculate the objective function are listed. 

The NPV is calculated, in US dollars, as follows:  

𝑁𝑃𝑉 =  ∑
𝑅(𝑡𝑖) × ∆𝑡𝑖

(1 + 𝑑)𝑡𝑖/𝜏

𝑁𝑡

𝑖=1

 (1) 

where, d is the discount factor, ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is the time period, in days, between 𝑡𝑖 

and 𝑡𝑖−1, 𝜏 is the number of days in a year, and 𝑅(𝑡𝑖) is the sum of all expenses and 

incomes earned within the time period ∆𝑡𝑖. The cost term 𝑅(𝑡𝑖), in US $, is calculated 

as follows:  

𝑅(𝑡𝑖) =  𝑄𝑜𝑝(𝑡𝑖) × 𝑟𝑜𝑝 − 𝑄𝑤𝑝(𝑡𝑖) × 𝑟𝑤𝑝 − 𝑄𝑤𝑖(𝑡𝑖) × 𝑟𝑤𝑖 − 𝑃 − 𝐷(𝑡𝑖) (2) 

where, 𝑄𝑜𝑝  is the cumulative oil production volume over ∆𝑡𝑖, 𝑄𝑤𝑝  is the cumulative 

water production volume over ∆𝑡𝑖, and 𝑄𝑤𝑖  is the cumulative water injection production 

volume over ∆𝑡𝑖. Rop is the oil revenue (price), rwp is the water production cost, and 

rwi is the water injection cost (all in $/unit volume). P is the platform cost, and 𝐷(𝑡𝑖) is 

the total drilling and completion costs acquired across the ∆𝑡𝑖 time period.  

 

Table 3 Input parameters needed to calculate the objective function 

Contribution Cost Units 

Platform Cost 500 Million $ 

Oil Price 45 $/bbl 

Water Production Cost 6 $/bbl 

Water Injection Cost 2 $/bbl 

Annual Discount Factor 0.08 Dimensionless 
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CHAPTER 3 

METHODOLOGY 

 
The BHPSO algorithm combines two algorithms: (1) the particle swarm 

optimization algorithm (PSO) and (2) the black hole operator (BHO). Both algorithms 

will be described in this section before detailing the approach through which they were 

combined to form the BHPSO. However, the BHO and BHPSO will be described 

through a peripheral injection scheme scenario; the subject of this study. Also, changes 

and improvements for the overall workflow will be highlighted through this scheme.  

 

3.1. PSO – Particle Swarm Optimization  

The PSO algorithm, inspired by the behavior of flocks of birds and schools of 

fish, was developed by Kennedy and Eberhart in 1995 [33]. It is a population based 

stochastic search method that is a member of the swarm intelligence techniques class 

[33]. In the optimization workflow, the ‘swarm’ represents a group of particles, and the 

position of each ‘particle’ represents a solution of the objective function [1,33].  

Initially, the particles are assigned random positions and velocities, then the objective 

function values are calculated for all the particles. The particles position, in the search 

space, is then updated depending on a calculated velocity parameter [33].  Using a 

mathematical formulation, the velocity parameter is calculated based on the particle’s 

velocity from the previous iteration, the particles distance from the position where it 

achieved its local best, and the particles distance from the particle that achieved the 

global best [1]. In each iteration, the algorithm memorizes the particles’ best 

position/solution known as the local best position and the swarms overall best 
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position/solution known as the global best position [1]. Moreover, the objective function 

is calculated at each iteration for each particle. The velocity and positions are calculated 

as follows:  

𝑣𝑖,𝑗(𝑘 + 1) = 𝑤 × 𝑣𝑖,𝑗(𝑘) + 𝑐𝑝𝑟1 (𝑝𝑏𝑒𝑠𝑡 (𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘))

+  𝑐𝑔𝑟2 (𝑔𝑏𝑒𝑠𝑡 (𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘)) 

(3) 

𝑥𝑖,𝑗(𝑘 + 1) = 𝑥𝑖,𝑗(𝑘) + 𝑣𝑖,𝑗(𝑘 + 1) (4) 

where 𝑖, 𝑗, and 𝑘 refer to the particle, the optimization variable, and the current iteration 

respectively. The three main parameters involved in the velocity equation are: the 

cognitive weight (𝑐𝑝), the social weight (𝑐𝑔), and the inertia weight (𝑤). The influence 

of the trend toward the particle’s previous velocity is defined by the inertia weight, as 

the influence of the trend toward the particles local best position is defined by the 

cognitive weight. As for the social weight, it is defined by its effect on the trend toward 

the swarm’s global best position [1]. Note that 𝑟1 and 𝑟2 are two independent random 

variables between 0 and 1. In this work, the star PSO is employed with algorithmic 

parameters of 𝑤 = 0.721, 𝑐𝑝 = 𝑐𝑔 = 1.1931, however by conducting a sensitivity 

analysis on the algorithmic parameters 𝑐𝑝, 𝑐𝑔, and 𝑤 the PSO convergence rate can be 

assessed [1]. The PSO mathematical formulation is demonstrated below:  

Iteration 1: 

1. Initialize the particles with random positions and velocities  

2. Calculate f(x) for each particle 

3. Set 𝑝𝑏𝑒𝑠𝑡(𝑖𝑗) =  𝑥𝑖𝑗 for each particle  

4. Set 𝑔𝑏𝑒𝑠𝑡(𝑖𝑗) = 𝑥𝑖𝑗 of 𝑓(𝑥)𝑚𝑎𝑥 
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Iteration k+1: 

5. Calculate 𝑣𝑖𝑗 for each particle using equation 3 

6. Calculate 𝑥𝑖𝑗 for each particle using equation 4 

7. Calculate 𝑓(𝑥) for each particle 

8. Select local best by finding the maximum value of 𝑓(𝑥) between the current and 

previous iteration for each particle independently. For the 1st particle, if 

𝑓(𝑥1)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 > 𝑓(𝑥1)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 then 𝑝𝑏𝑒𝑠𝑡(11)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 = 𝑝𝑏𝑒𝑠𝑡(11)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 

and 𝑝𝑏𝑒𝑠𝑡(12)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 = 𝑝𝑏𝑒𝑠𝑡(12)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1, else the local best of the current 

iteration will be the position values obtained in the current iteration.  

9. Select global best by finding the maximum value of 𝑓(𝑥) between the current 

and previous iteration and setting 𝑔𝑏𝑒𝑠𝑡(𝑖𝑗) = 𝑥𝑖𝑗 of 𝑓(𝑥)𝑚𝑎𝑥 . 

10. Repeat steps 5-9 until maximum number of iterations is reached, or convergence 

is reached. 

 

Table 4 Mathematical formulation of PSO given two decision variables 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒  
𝑁𝑢𝑚𝑏𝑒𝑟 

𝑣(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) 𝑥(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 𝑓(𝑥) 
𝑝𝑏𝑒𝑠𝑡   

(𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡) 

𝑔𝑏𝑒𝑠𝑡   
(𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡) 

 𝐷𝑉1 𝐷𝑉2 𝐷𝑉1 𝐷𝑉2  𝐷𝑉1 𝐷𝑉2 𝐷𝑉1 𝐷𝑉2 

1 𝑣11 𝑣12 𝑥11 𝑥12 𝑓(𝑥1) 𝑝𝑏𝑒𝑠𝑡(11) 𝑝𝑏𝑒𝑠𝑡(12) 

[…,…] 2 𝑣21 𝑣22 𝑥21 𝑥22 𝑓(𝑥2) 𝑝𝑏𝑒𝑠𝑡(21) 𝑝𝑏𝑒𝑠𝑡(22) 

3 𝑣31 𝑣32 𝑥31 𝑥32 𝑓(𝑥3) 𝑝𝑏𝑒𝑠𝑡(31) 𝑝𝑏𝑒𝑠𝑡(32) 

 

In the final part of this study, the effect of a Linearly Decreasing Inertia Weight 

on PSO performance was studied including a sensitivity analysis on the acceleration 
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coefficients, 𝑐𝑝 and 𝑐𝑔. The Linearly Decreasing Inertia Weight (LDIW) is calculated as 

follows:  

𝑤𝐿𝐷𝐼𝑊 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 − 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛 (5) 

𝑣𝑖,𝑗(𝑘 + 1) = 𝑤𝐿𝐷𝐼𝑊 ×  𝑣𝑖,𝑗(𝑘) + 𝑐𝑝𝑟1 (𝑝𝑏𝑒𝑠𝑡 (𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘))

+ 𝑐𝑔𝑟2 (𝑔𝑏𝑒𝑠𝑡 (𝑖,𝑗) − 𝑥𝑖,𝑗(𝑘)) 

(6) 

where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are 0.9 and 0.4 respectively, and 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 is the maximum 

number of allowed iterations. The PSO mathematical formulation, for a LDIW strategy, 

is demonstrated below:  

Iteration 1: 

1. Initialize the particles with random positions and velocities  

2. Calculate f(x) for each particle 

3. Set 𝑝𝑏𝑒𝑠𝑡(𝑖𝑗) =  𝑥𝑖𝑗 for each particle  

4. Set 𝑔𝑏𝑒𝑠𝑡(𝑖𝑗) = 𝑥𝑖𝑗 of 𝑓(𝑥)𝑚𝑎𝑥 

Iteration k+1: 

5. Update the inertia weight value using equation 5 

6. Calculate 𝑣𝑖𝑗 for each particle using equation 6 

7. Calculate 𝑥𝑖𝑗 for each particle using equation 4 

8. Calculate 𝑓(𝑥) for each particle 

9. Select local best by finding the maximum value of 𝑓(𝑥) between the current and 

previous iteration for each particle independently. For the 1st particle, if 

𝑓(𝑥1)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 > 𝑓(𝑥1)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 then 𝑝𝑏𝑒𝑠𝑡(11)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 = 𝑝𝑏𝑒𝑠𝑡(11)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 

and 𝑝𝑏𝑒𝑠𝑡(12)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2 = 𝑝𝑏𝑒𝑠𝑡(12)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛1, else the local best of the current 

iteration will be the position values obtained in the current iteration.  
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10. Select global best by finding the maximum value of 𝑓(𝑥) between the current 

and previous iteration and setting 𝑔𝑏𝑒𝑠𝑡(𝑖𝑗) = 𝑥𝑖𝑗 of 𝑓(𝑥)𝑚𝑎𝑥 . 

11. Repeat steps 5-10 until maximum number of iterations is reached, or 

convergence is reached. 

 

3.2. Black Hole Operator for Well Placement Optimization in a Peripheral Water 

Injection Scheme 

The black hole operator is an algorithm responsible for the generation of ready 

to be used well trajectories, mainly for reservoir simulation purposes. The main quality 

maps used for well placement, the different black holing techniques, and the input 

parameters to the algorithm will all be described in the sections below.  

 

3.2.1. Maps 

3.2.1.1. Net Hydrocarbon Thickness Map 

 

The Net Hydrocarbon Thickness map (NHCT) is the main quality map used for 

producer placement and is an indication of hydrocarbon “sweet” spots in different parts 

of the reservoir. The NHCT map is a version of a map that reflects condensed reservoir 

properties including hydrocarbons initially in place, porosity, and permeability. For a 

3D reservoir simulation model with i and j coordinates, the NHCT is calculated as 

follows for a cell in the aerial direction [1]:  

𝑁𝐻𝐶𝑇𝑖𝑗 = ∑ 𝜑𝑖𝑗𝑘𝑁𝑇𝐺𝑖𝑗𝑘 (1 − 𝑆𝑤𝑖𝑗𝑘
) 𝑍𝑖𝑗𝑘

𝑁𝑘

𝑘=1

 (7) 
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where 𝜑𝑖𝑗𝑘 , 𝑁𝑇𝐺𝑖𝑗𝑘, 𝑆𝑤𝑖𝑗𝑘
, and  𝑍𝑖𝑗𝑘 indicate the porosity, net-to-gross, water saturation, 

and thickness of the grid block cell ijk, respectively [1]. The unit of 𝑁𝐻𝐶𝑇𝑖𝑗 is the same 

as that of 𝑍𝑖𝑗𝑘 which is in meters (feet) since 𝜑𝑖𝑗𝑘, 𝑁𝑇𝐺𝑖𝑗𝑘, and 𝑆𝑤𝑖𝑗𝑘
 are dimensionless. 

An example of a NHCT map is depicted in Figure 9 and Figure 12. The yellow colour 

represents high NHCT, while the purple colour is an indication of areas completely 

saturated with water (no oil). Typically, the yellow regions would be the best location to 

place a producer.  

3.2.1.2. “Kh” Map 

 

 For a pattern injection scheme, the NHCT map is ideal for both producer and 

injector placement, however for a peripheral injection scheme the ‘Kh’ map is more 

suited for the placement of injectors [1]. Where the NHCT map is an indication of the 

hydrocarbon thickness, the Kh map is an indication of the permeability thickness. The 

‘Kh’ Map is the quality map used for the placement of injectors in a peripheral injection 

scheme. It is an indication of permeability “sweet” spots. For a 3D reservoir simulation 

model with i and j coordinates, the Kh is calculated as follows for a cell in the aerial 

direction:  

where 𝑘𝑖𝑗𝑘 denotes the (aerial) permeability of grid block cell ijk [1]. The Kh map 

depicts the outskirts of the reservoir and is dictated by a “ring” through which injectors 

will be placed (See Figure 10 and Figure 13). The yellow colour represents high 

permeability, while the purple colour is an indication of areas of low permeability. 

Typically, the yellow regions would be the best location to place an injector.  

𝐾ℎ𝑖𝑗 = ∑ 𝑘𝑖𝑗𝑘𝑍𝑖𝑗𝑘

𝑁𝑘

𝑘=1

 (8) 
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3.2.1.3. Horizon Map 

 

A structured map known as the Horizon map is a representation of the depth that 

the horizontal section length of a well can be placed in. A reservoir is made up of 

several horizons, and so, in a sensitivity analysis, the horizon that contains the highest 

volume of hydrocarbons initially in place, can be selected to place the well length in.  

 

 

Figure 9 Net Hydrocarbon Thickness Map – U22 

 

 

 
Figure 10 Kh map (Left) and NHCT map (Right) used for well placement in a 

peripheral water injection scheme – U22 
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Figure 11 Illustration of the "Combined" set of two maps: NHCT map and Kh 

map used for well placement in a peripheral water injection scheme – U22 

 

 
Figure 12 Net Hydrocarbon Thickness Map – PUNQ-S3 

 

 

Figure 13 Kh map (Left) and NHCT map (Right) used for well 

placement in a peripheral water injection scheme – PUNQ-S3 



 

 48 

 

 

Figure 14 Illustration of the "Combined" set of two maps: NHCT map and Kh map used 

for well placement in a peripheral water injection scheme – PUNQ-S3 

 

3.2.2. Black Holing Techniques: Point vs Region  

In a pattern water injection scheme, when placing wells, the black hole operator 

searches for the highest NHCT points on the map. The first wells heel/toe is placed at 

this point, and the algorithm goes on to search for the second highest NHCT point to 

place the second well, and so on. However, with the introduction of a peripheral 

injection scheme, a region search option was introduced to the algorithm. This region 

search option was proposed in order to place the injectors based on high permeability 

regions, on the KH map, instead of high permeability points.  

The region search option, known as the Radius Optimal Option, works as 

follows: (1) A radius optimal value (ROV) is given to the region search option in the 

algorithm, which (2) searches for high property regions specific to the map, i.e. 

permeability, NHCT. This search space is defined by a disk with a radius given by the 

ROV. For example, given a ROV of 150 m, the algorithm will take each point on the 

map and create a disk around it with the given radius, as can be seen in the figures 

below. (3) The algorithm will then sum up the value of the points within the disk and 



 

 49 

seek out the disk that returns the highest property value. (4) The first well will be placed 

in the center of this region/disk, and then (5) the algorithm will seek out the disk that 

returns the second highest property value and place the second well there, and so on. 

For example, in Figure 15, the algorithm will return summed up permeability values, 

whereas in Figure 16, the algorithm will return summed up NHCT values. Note that 

values that lie outside the map are valued at 0.  

 

 

Figure 15 Search method given a ROV on a Kh map 

 

 

Figure 16 Search method given a ROV on a NHCT map 
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3.2.3. Input Parameters 

The input parameters to the algorithm are the following:  

• NHCT map 

• Kh map  

• Horizon map 

• Maximum number of wells, 𝑁𝑊 

• Maximum number of producers, 𝑁𝑃 

• Horizontal well length, 𝐻𝑧𝐿 

• Producer well spacing: After the placement of a producer well, the NHCT map 

is updated by eliminating a disk. The radius of the disk, 𝑅𝐷, around the well is 

defined by the producer well spacing (illustrated in Figure 17 and Figure 

18).This disk is referred to as the black hole and prevents any other wells from 

being placed in the blacked-out region since it has a value of 0. Based on a given 

map, when using BHO, the well spacing controls the maximum number of wells 

that can be placed, however, a technical well spacing was introduced to BHPSO 

as an optimization parameter which eliminates this limitation [1]. The technical 

well spacing ensures the placement of any prescribed number of wells since this 

optimization parameter is calculated based on the number of wells involved. 

• Injector well spacing: After every injector placement, the Kh map is updated by 

eliminating a cylinder. The radius of the cylinder is defined by the injector well 

spacing. A cylinder is used to form the black hole for the injectors instead of a 
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disk since the Kh map takes the form of a ring, as illustrated in Figure 17 and 

Figure 18.  

• δAzimuth: Increment to be used in optimizing the well azimuth. 

• Radius Optimal Value (ROV) 

 

3.2.3. Producer Placement in a Peripheral Water Injection Scheme 

The algorithm starts by placing the producers in the following manner: 

1. To create the producers’ heels/toes: 

a. Find the point with the highest NHCT value, denoted as Pointopt, in 

the NHCT map. 

b. Place the producer at Pointopt. This point may represent the heel or 

the toe of the well. This could depend on, for example, the platform 

location in an offshore development planning problem. 

2. Generate the horizontal well length and optimize its azimuth. 

3. Place the horizontal well length in the right horizon. 

4. Eliminate a disk of centre Pointopt and radius equivalent to the input 

producer well spacing from the NHCT map. This is typically equivalent to 

setting a value = 0 for every point within this disk and is illustrated in Figure 

17 and Figure 18. 

Repeat until the number of input producers is reached. (Note that if the input 

producer well spacing does not allow for all the input number of producers to be placed 
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on the map, then the process will be repeated until the number of producers that fit on 

the given map is reached.) 

 

3.2.4. Injector Placement in a Peripheral Water Injection Scheme 

The Kh map is then used to place the injectors:  

5. To create the injectors’ heels/toes: 

a. Find the region with the highest Kh value, denoted as Regionopt, in 

the Kh map. (Radius of this region is given by an input ROV) 

b. Place the injector at the centre of Regionopt. 

6. Repeat steps 2 and 3. 

7. Eliminate a cylinder with a radius equivalent to the injector well spacing 

(Figure 17 and Figure 18). 

8. Repeat until 𝑁𝑊 − 𝑁𝑃 is reached. (Note that if the input injector well spacing 

does not allow for 𝑁𝑊 − 𝑁𝑃  to be placed on the map, then the process will 

be repeated until the number of injectors that fit on the given map is 

reached.) 

It was mentioned earlier that sufficient permeability is required for a peripheral 

injection scheme in order to allow the fluid being injected to move at an acceptable rate 

towards the producers. Hence, for the aforementioned reason, the option of placing 

injectors in high permeability regions instead of placing them based on high 

permeability points was adopted in this study. Moreover, a region search is later 

explored for the placement of producers. This is done by searching for high NHCT 
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regions to place the producers instead of placing them based on the highest NHCT 

point.  

 

 

Figure 17 Process through which wells are being generated by the BHO given the input 

parameters – U22 
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Figure 18 Process through which wells are being generated by the BHO given the input 

parameters – PUNQ-S3 
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3.3. BHPSO 

The BHPSO process is summarized in Figure 19. The algorithms different 

building blocks are described below as applied to the placement of wells in a peripheral 

injection scheme. 

 

3.3.1. Convergence Criteria 

As mentioned earlier, the algorithmic parameter selection process for the 

algorithm highly affects the convergence criteria of PSO, however, setting convergence 

criteria for this algorithm is still a very challenging task which remains empirical to a 

large extent. Nevertheless, an attempt at enhancing the convergence criteria of BHPSO 

was addressed in chapter 4. Moreover, in this work, when one of the two conditions 

listed below is met, BHPSO declares convergence:  

1. A prescribed number of iterations, Iterationmax is reached. In this work, 

Iterationmax = 100 when testing on the PUNQ-S3 field, and Iterationmax = 50 

when testing on U22. 

2. A lack of deviation between the particles, 𝜀, is reached. In this work, 𝜀 =

0.000001. 

It should be mentioned that the Olympus field was used only for verification testing 

with a number of maximum iterations half of that of the PUNQ-S3 field due to 

limitations in simulation time and computation power.  

 

3.3.2. Initialization of the Optimization Parameters 

The solution vector, of the BHO, is initialized by the PSO algorithm and includes 

the following parameters:  
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a. Row index of the i and j coordinates of the toe/heel of the first producer on the 

NHCT map 

b. Row index of the i and j coordinates of the toe/heel of the first injector on the 

Kh map 

c. Well count: a number bounded between a given minimum and maximum.  

d. Horizontal section length: a number bounded between a given minimum and 

maximum.  

e. Producer Horizon: a number bounded between the existing horizons of the field 

being used.  

f. Injector Horizon: a number bounded between the existing horizons of the field 

being used.  

g. Producer Well spacing factor (𝐹𝑝): dimensionless parameter bounded by 0.5 and 

2.5. This parameter is defined in section the section below. 

h. Injector Well spacing factor (𝐹𝑖): dimensionless parameter between 0.5 and 2.5. 

This parameter is defined in the section below. 

i. Radius Optimal Value: a number bounded between a given minimum and 

maximum.  

Note that in the original BHPSO, both producers and injectors were placed in the 

same horizon, however in real life scenarios wells are not necessarily placed in the same 

horizon, and for this reason, this enhancement was made in which the BHPSO 

workflow can optimize over the producer and injector horizon placement independently. 

Moreover, the parameters that are introduced to the BHPSO workflow through a 

peripheral injection scheme: b, h and i.  
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3.3.3. Placement of the First Well 

The first producer (pattern injection), and the first producer and injector 

(peripheral injection) are the only wells whose placement is decided by PSO, and for 

this reason, the entire BHPSO workflow is independent of the number of wells. Note 

that the aforementioned characteristic of BHPSO drastically increases its efficiency. 

Moreover, the first producer’s location (i- and j- coordinates) is selected by PSO, and 

then the BHO eliminates a disk around the selected i- and j- coordinates with a radius 

equivalent to the Producer Technical Well Spacing (PTWS) from the NHCT map. 

Similarly, the first injector’s location (i- and j- coordinates) is selected by PSO. The 

BHO then eliminates a cylinder around the selected i- and j- coordinates with a radius 

equivalent to the Injector Technical Well Spacing (ITWS) from the Kh map.  

Previously it was mentioned when using the BHO independently, the maximum 

number of wells that can be placed on a map is controlled by the well spacing, however, 

when using the BHPSO, a well spacing optimization parameter known as the ‘well 

spacing factor’ is introduced in order to calculate the TWS. The TWS ensures a place 

for all the wells on the map, via the well spacing factor, and was derived for BHPSO 

exclusively:  

𝑇𝑊𝑆 =  𝐹√
𝐴𝑟

𝜋𝑁𝑤
 (9) 

𝑃𝑇𝑊𝑆 =  𝐹𝑝√
𝐴𝑟

𝜋𝑁𝑝
 (10) 

𝑇𝑊𝑆 =  𝐹𝑖√
𝐴𝑟

𝜋(𝑁𝑤 − 𝑁𝑝)
 (11) 
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where 𝐴𝑟 is the total NHCT cut off area, 𝑁𝑤 the maximum number of wells, 𝑁𝑝 the 

maximum number of producers, and 𝐹 the well spacing factor. Equation 9 was 

originally derived for a pattern water injection scheme in which all the wells shared the 

same TWS since they are being placed on the same map. However, for a peripheral 

water injection scheme, where 2 maps exist, 2 separate technical well spacings will need 

to be calculated, hence the derivation of equation 10 and equation 11.  

 

3.3.4. Placement of Remaining Wells  

Once the first well/wells are placed, the remaining wells are placed by the BHO. 

The number of the remaining producers and injectors is decided by PSO, and they are 

sequentially placed using the NHCT map and KH map respectively. Also, the ‘well 

spacing’ value used in the BHO is replaced with the PTWS and ITWS for producers 

and injectors respectively, and so a ‘black hole’ around the producer of a radius equal to 

the PTWS is eliminated from the NHCT map and a cylinder around the injector of a 

radius equal to the  ITWS is eliminated from the Kh map.  

 

3.3.5. Case of Horizontal Wells – Well Azimuth Optimization, Horizons, and Well 

Length 

In the case of horizontal wells, the horizontal trajectory (azimuth) is assessed by 

the BHO in which the NHCT correlating to the different azimuths is calculated. The 

azimuth is then placed in the trajectory of cells having the maximum cumulative NHCT. 

The azimuth increment, in this work, is a parameter that is set by the user and can be 

changed. Moreover, in this work an azimuth increment of 10° was selected. Horizons 

are specified vertical layers in which the horizontal section of the well is placed in. 
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Once the trajectory of the well is selected, the layer in which the well is placed in is 

optimized by PSO. The horizontal well length is another parameter that is decided by 

PSO.  

 

3.3.6. PSO Updates 

Each PSO iteration is composed of a series of particles known as simulation cases, 

in which, at each iteration, every single particle updates its optimization parameters. The 

update of the optimization parameters is followed by the update of the velocity and 

position of each particle. In the optimization process, once this happens, each particles’ 

updated position defines the values of the parameters of the next iteration. This process 

is repeated until convergence is met. 

Figure 19 BHPSO workflow 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this chapter, the efficiency of the presented BHPSO methodology will first be 

tested accordingly through its application on both the Olympus and PUNQ-S3 fields for 

a peripheral water injection. Then, the Radius Optimal search option will be explored 

on a pattern water injection scheme, and on the producers in a peripheral injection 

scheme (since, as mentioned earlier, that the injectors in a peripheral injection scheme 

are placed on the Kh map using a Radius Optimal Option search method). Note that the 

main purpose of the 2nd activity is to test whether wells should be placed based on high 

property points, or based on a region search characteristic, which is the new concept we 

demonstrated throughout this thesis. In the final activity, the traditional Constant Inertia 

Weight (CIW) is replaced with a Linearly Increasing Inertia Weight (LDIW) in order to 

study its effect on PSO performance. This study is also associated with a sensitivity 

analysis on the acceleration coefficients, 𝑐𝑝 and 𝑐𝑔. 

The boundaries for the parameters that bound the search space of PSO are 

enlisted in Table 5, Table 6, Table 7, and Table 8, and are used throughout all the 

sections of this study.  
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Table 5 Pattern Water Injection PSO Initialization Boundaries – Olympus Upper  

Well Count 10-16 

Number of Producers 4-8 

Producer Horizon 1-6 

Injector Horizon 1-6 

First Producer Index x-y coordinates of 

the NHCT map 

Technical Well Spacing Factor 1-2.5 

Horizontal Well Length 400-700 

 

 
Table 6 Pattern Water Injection PSO Initialization Boundaries – PUNQ-S3 

Well Count 6-12 

Number of Producers 4-8 

Producer Horizon 1-5 

Injector Horizon 1-5 

First Producer Index x-y coordinates of 

the NHCT map 

Technical Well Spacing Factor 1-2.5 

Horizontal Well Length 300-600 

 

 
Table 7 Peripheral Water Injection PSO Initialization Boundaries – Olympus Upper   

Well Count 12-16 

Number of Producers 6-8 

Producer Horizon 1-6 

Injector Horizon 1-6 

First Producer Index x-y coordinates of 

the NHCT map 

First Injector Index x-y coordinates of 

the Kh map 

Producer Well Spacing Factor 1-2.5 

Injector Well Spacing Factor 1-2.5 
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Horizontal Well Length 400-700 

Radius Optimal Value 100-400 

 

 
Table 8 Peripheral Water Injection PSO Initialization Boundaries – PUNQ-S3 

Well Count 8-14 

Number of Producers 3-7 

Producer Horizon 1-5 

Injector Horizon 1-5 

First Producer Index x-y coordinates of 

the NHCT map 

First Injector Index x-y coordinates of 

the Kh map 

Producer Well Spacing Factor 1-2.5 

Injector Well Spacing Factor 1-2.5 

Horizontal Well Length 300 - 600 

Radius Optimal Value 50 - 200 

 

 
4.1. Implementing a Peripheral Injection Scheme in the BHPSO Workflow 

In order to test the functionality of the code, a swarm size of 5 particles was used 

for the simulation. A sensitivity analysis on the number of particles will be conducted at 

a later stage. The boundaries shown in Table 5, Table 6, Table 7, and Table 8 were used 

and the optimization run for each field was repeated 3 times over a fixed number of 20 

iterations due to the stochastic nature of BHPSO. 

 

4.1.1. Olympus U22 

The peripheral injection BHPSO runs on U22  returned 3 different well 

placements which can be seen in Figure 20, Figure 21, and Figure 22. Also, in the 

figures below, each case is accompanied by its corresponding BHPSO performance. 
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Note that the green, yellow, and red points on the graph represent the best, middle, and 

worst combination of decision variables obtained in an iteration, respectively.   

For case 1, the final and best iteration in the optimization run returned a total 

well count of 15 with a well length of 700 m and a ROV of 258 m. Moreover, the 

producers and injectors are placed in horizon 2 and 4 respectively with an optimum 

producer well spacing of 1208 m and optimum injector well spacing of 498 m. Case 1 

yielded a NPV of $1090 MM with well costs equivalent to $363.072 MM, respectively.   

 

 

Figure 20 Case 1 of a BHPSO Peripheral Injection – U22 

 

For case 2, the global optimum reached in a series of 20 iterations resulted in a 

NPV of $1049.30 MM. Well costs reached $367.12 MM with 16 wells being placed in 

the field. The producers and injectors are placed in horizon 3 and 4 respectively, have a 

well length of 532 m, a ROV of 371 m, and a producer and injector well spacing of 

1261 m and 498 m respectively.  

 

 
 

Figure 21 Case 2 of a BHPSO Peripheral Injection – U22 
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Case 3 returned an optimal well count of 12, a producer well spacing of 1328 m, 

an injector well spacing of 629 m, a ROV of 334 m and horizontal well lengths of 453 

m that are placed in horizon 5 and horizon 3 for the producers and injectors 

respectively. The NPV obtained in this scenario is valued at $995.7 MM with well costs 

of $269.39 MM.  

 

 

Figure 22 Case 3 of a BHPSO Peripheral Injection – U22 

 

4.1.2. PUNQ-S3 

Similarly, the peripheral injection well placement using BHPSO, for 3 runs, on 

the PUNQ-S3 field can be seen in Figure 23, Figure 24, and Figure 25 with each cases’ 

relative BHPSO performance.  For case 1, a 20-iteration run led to global optimum 

NPV of $1496.67 MM, and well costs of $144.88 MM. Moreover, producer well 

spacing, injector well spacing, ROV and horizontal well length are 1128 m, 255 m, 154 

m, and 304 m, respectively. The 5 producers are placed in horizon 3, while the 6 

injectors are placed in horizon 2.  
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Figure 23 Case 1 of a BHPSO Peripheral Injection – PUNQ-S3 

 

As for case 2, 8 wells are spread across both the KH and NHCT maps with the 

producers having a well spacing of 1350 m and injectors a well spacing of 361 m. The 

producers are placed in horizon 4 while the injectors are placed in horizon 5. The ROV 

is 169 m and the horizontal well length is 493 m. This case resulted in a NPV of 

$1445.27 MM, with corresponding well costs of $116.18 MM.  

 

 

Figure 24 Case 2 of a BHPSO Peripheral Injection – PUNQ-S3 

 

Case 3 returned a NPV of $1552.70 MM, and well costs of $179.33 MM. 

Producer and injector well spacings are 758 m and 511 m, respectively. The 7 generated 

producers are placed in horizon 4 and the 6 generated injectors are placed in horizon 3, 

and have a horizontal section length of 540 m. The ROV obtained is 192 m. 
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Figure 25 Case 3 of a BHPSO Peripheral Injection – PUNQ-S3 

 

4.2. Testing and Evaluating Different Black Holing Techniques: Point vs 

Region Search 

In order to demonstrate the difference between placing a well based on a high 

property point (point search) and based on a high property region (region search), a 

fixed set of input parameters were fed to the Black Hole Operator (independent of 

PSO), and tested on both well placement techniques in order to highlight the difference 

between them. This was done for both the Olympus and PUNQ-S3 field.  

 

4.2.1. Pattern Water Injection 

In Figure 26 and Figure 27, both simulation runs have a well spacing of 800 m, 

producer horizon = 1, injector horizon = 2, number of producers = 5, number of 

injectors = 5, and horizontal well length = 600 m, however, Figure 27 is given a radius 

optimal value of 400 m which allows for the change in the placement of wells. Figure 

26, which is the case in which the wells are placed based on high NHCT points returned 

a NPV of $913 MM while Figure 27, which is the case in which the wells are placed 

based on high NHCT regions returned a NPV of $727 MM. 
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Figure 26 Point Search Method in a Pattern Injection Scheme – U22 

 

 
 

Figure 27 Region Search Method in a Pattern Injection Scheme – U22 

 

In Figure 28 and Figure 29, a well spacing of 1300 m is applied to both the 

simulation runs along with a producer horizon = 1, injector horizon = 2, number of 

producers = 4, number of injectors = 4, and horizontal well length = 500 m. Moreover, 

Figure 29 is given a radius optimal value of 150 m. Figure 28, which is the case in 

which the wells are placed based on high NHCT points returned a NPV of $1427 MM 

while Figure 29, which is the case in which the wells are placed based on high NHCT 

regions returned a NPV of $1472 MM. 
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Figure 28 Point Search Method in a Pattern Injection Scheme – PUNQ-S3 

 

 

Figure 29 Region Search Method in a Pattern Injection Scheme – PUNQ-S3 

 

4.2.2. Peripheral Water Injection  

For a peripheral water injection scheme, 3 different search method combinations 

will be studied:  

1- The first is the combination that is originally adopted in this work which is 

placing the producers based on the highest NHCT point on the NHCT map, and 

placing the injectors based on the highest Kh regions on the Kh map. However, 
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whether it is a reliable strategy or not to place the injectors based on high 

permeability regions, it is not confirmed, and for this reason:  

2-  the second combination of search methods will be placing both the producers 

and injectors using a point search method, while  

3- the third combination is placing both the producers and injectors using a region 

search method.  

The three combinations which can be seen in the figures below display a 

producer well spacing of 800 m, an injector well spacing of 400 m, producer and 

injector horizons of 1 and 2 respectively, and a horizontal well length of 600 m with 5 

producers and 5 injectors. Figure 30, being the first combination and having an injector 

ROV of 400 m, returned a NPV of $817 MM, while Figure 31, being the second 

combination yielded an NPV of $775 MM. Moreover, Figure 32, the third combination, 

having a producer ROV = 300 m and Injector ROV= 400 m, returned a NPV of $949 

MM. It should be noted that combination 1 and 2 will have the producers placed in the 

same manner, while combination 1 and 3 will have the injectors placed in the same 

manner. 

 

 

Figure 30 Point Search Method (Producers) and Region Search Method (Injectors) in a 

Peripheral Injection Scheme – U22 
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Figure 31 Point Search Method in a Peripheral Water Injection Scheme – U22 

 

 

Figure 32 Region Search Method in a Peripheral Water Injection Scheme – U22 

 

Similarily, for the PUNQ-S3 field, the three combinations which can be seen in 

the figures below displayed a producer well spacing of 1300 m, an injector well spacing 

of 650 m, producer and injector horizons of 1 and 2 respectively, and a horizontal well 

length of 500 m with 4 producers and 4 injectors. Figure 33, being the first combination 

and having an injector radius optimal value of 200 m, returned a NPV of $1352 MM, 

while Figure 34, being the second combination yielded an NPV of $1340 MM. 

Moreover, Figure 35, the third combination, having a producer Radius Optimal Value = 

200 m and Injector Radius Optimal Value = 200 m, returned a NPV of $1373 MM.  
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Figure 33 Point Search Method (Producers) and Region Search Method (Injectors) in a 

Peripheral Injection Scheme – PUNQ-S3  

 

 

Figure 34 Point Search Method in a Peripheral Water Injection Scheme – PUNQ-S3 

 

 

Figure 35 Region Search Method in a Peripheral Water Injection Scheme – PUNQ-S3 
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It can be seen that in some cases a point search method yields higher NPV than 

that of the region search method, and vice versa. However, it should be noted that the 

input parameters are not optimized over and the above study was done soley to 

highlight the affect of the search methods on the well placements given fixed 

parameters. Furthermore, in order to study the effect that the search methods have on 

the NPV and which method should be adopted for the BHPSO algorithm, a study was 

carried out using BHPSO on the different combinations listed above. However, before 

carrying out this study, a sensitivity analysis was conducted on the number of particles 

to be used.  

 

4.2.3. Sensitivity Analysis – Number of Particles  

In this work, 5,10,15 and 20 particles are simulated to test for NPV redundancy. 

It should be noted that the particle sensitivity analysis is conducted according to the the 

original BHPSO methodology, and was done for both pattern and peripheral water 

injection schemes. Moreover, extensive testing is done using the PUNQ-S3 field while 

U22 is used for verification purposes only due to its limitations in simulation time.  

Each swarm size was simulated 10 times across 100 iterations as can be seen in 

the figures below. Figure 36, Figure 37, Figure 38, and Figure 39 display results for 

5,10,15 and 20 particles, respectively, for a pattern water injection scheme. The average 

NPV for a a swarm size of 5 particles returned an average NPV of  $1511 MM, while 

swarm sizes of 10, 15 and 20 particles returned NPV’s of $1583 MM, $1622 MM, and 

$1616 MM, respectively. For a peripheral water injection scheme,  

 

Figure 40, Figure 41, Figure 42, and Figure 43 display results for 5,10,15 and 20 

particles, respectively. The average NPV’s attained are $1564 MM, $1619 MM, $1623 
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MM, and $1648 MM for 5, 10, 15, and 20 particles respectively. It can be noticed that 

an increase in swarm size led to an increase in the average NPV across both injection 

schemes, furthermore, the NPV results varied significantly for any swarm size below 20 

particles. A swarm size of 20 particles returned redundant results in both injection 

schemes, and for this reason, all simulated results in this study will be carried out using 

a swarm size of 20 particles. 

 

Figure 36 Pattern Water Injection Particle Sensitivity Analysis – 5 Particles 
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Figure 37 Pattern Water Injection Particle Sensitivity Analysis – 10 Particles 

 

 

 

Figure 38 Pattern Water Injection Particle Sensitivity Analysis – 15 Particles 
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Figure 39 Pattern Water Injection Particle Sensitivity Analysis – 20 Particles 

 

 

 
 

Figure 40 Peripheral Water Injection Particle Sensitivity Analysis – 5 Particles 
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Figure 41 Peripheral Water Injection Particle Sensitivity Analysis – 10 Particles 

 

 

 

Figure 42 Peripheral Water Injection Particle Sensitivity Analysis – 15 Particles 
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Figure 43 Peripheral Water Injection Particle Sensitivity Analysis – 20 Particles 

 

4.2.4. BHPSO Application for Search Method Testing 

As mentioned in the section above, BHPSO must be applied to the search 

methods, independently, in order to compare between them. Using 20 particles, BHPSO 

was applied to the PUNQ-S3 field simulating 10 times across 100 iterations for a 

pattern and peripheral injection scheme using the search methods and combinations 

discussed above. The results obtained are displayed in Figure 44 through Error! 

Reference source not found.. 

It can be seen, for a pattern water injection, that the results obtained for both 

search methods are in close proximity. For a point search method, an average NPV of 

$1616 MM was obtained, while for a region search method, an average NPV of $1635 

MM was obtained. A 1% increase in the average NPV was found when using a region 

search method.  
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Figure 44 BHPSO Pattern Water Injection Results – Point Search Method (PUNQ-S3) 

 

 

 

Figure 45 BHPSO Pattern Water Injection Results – Region Search Method (PUNQ-S3) 
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combination 2 (Point search for both producers and injectors; Figure 47) can be 

discarded. However, for combination 1 (Figure 46) and combination 3 (Error! 

Reference source not found.) which differ in the placement technique of the 

producers, an average NPV of $1648 MM was obtained for combination 1, while an 

average NPV of $1645 MM was obtained for combination 3, hence a bare difference of 

0.18% in the average NPV between combination 1 and combination 3.  

 

 

 

Figure 46 BHPSO Peripheral Water Injection Results – Point Search Method 

(Producers) and Region Search Method (Injectors) (Combination 1-PUNQ-S3) 
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Figure 47 BHPSO Peripheral Water Injection Results – Point Search Method 

(Combination 2-PUNQ-S3) 

 

 

 
 

Figure 48 BHPSO Peripheral Water Injection Results – Region Search Method 

(Combination 3-PUNQ-S3) 
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It should be noted when using a region search method, for a pattern water 

injection scheme, an extra decision variable is added to the system hence increasing the 

systems complexity and simulation time, whereas for a peripheral water injection 

scheme, 1 decision variable is added to the system for combination 1, while 2 decision 

variables are added to the system when using combination 2. So, it can be concluded 

that for a pattern water injection, the original search method of placing the wells based 

on high NHCT points will not be altered, while for a peripheral water injection scheme, 

the injectors will be placed based on high permeability regions, while the producers will 

be placed based on high NHCT points (combination 1).  Moreover, this conclusion was 

made based on the fact that adding complexity to the system for a mere increase in the 

average NPV has no significance.  

Nevertheless, in order to justify the interpretation made above, the search 

method techniques were tested on U22 for a pattern water injection scheme. For reasons 

mentioned in section 3.3.1., BHPSO was simulated 3 times across 50 iterations. The 

results obtained verfiy the observation made above. The point search technique returned 

an average NPV of $1103 MM and the region search technique returned an average 

NPV of $1167 MM, resulting in an insignificant 5.5% increase in the average NPV for 

a region search method.  
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Figure 49 BHPSO Pattern Water Injection Results – Point Search Method U22 

 

 

 

Figure 50 BHPSO Pattern Water Injection Results – Region Search Method U22 
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4.3. Defining a Convergence Criterion for the BHPSO Workflow 

In the final part of this work, a linearly decreasing inertia weight was introduced 

to the BHPSO in order to enhance the convergence of the particles. Testing was carried 

out on the PUNQ-S3 field only since this inertia weight strategy is being applied in 

order to study its characteristics only. 

 

4.3.1. Sensitivity Analysis on Acceleration Coefficients 

A sensitivity analysis on the acceleration coefficients was first conducted in 

order to find a good combination between these coefficients and the inertia weight 

strategy. This was done because the combination of these algorithmic parameters has a 

significant influence on the algorithm. Acceleration coefficients of 𝑐𝑝 = 𝑐𝑔 = 0.5, 

0.775, 1, 2, 2.5, and 3 were tested independently across 30 iterations. The results 

obtained are displayed in the figures below. It can be seen that for 𝑐𝑝 = 𝑐𝑔 = 0.5, 0.775, 

1, 2.5, and 3 (Figure 51, Figure 52, Figure 53, Figure 55, and Figure 56), the NPV 

results were not redundant, however, for a 𝑐𝑝 = 𝑐𝑔 = 2 (Figure 54), they were. 

Acceleration coefficients with values of 0.5, 0.775, 1, 2.5 and 3 were discarded, and the 

study was carried on by setting the acceleration coefficients to 2. 
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Figure 51 BHPSO Pattern Water Injection Results with c = 0.5 – LDIW 

 

 

 

Figure 52 BHPSO Pattern Water Injection Results with c = 0.775 – LDIW  
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Figure 53 BHPSO Pattern Water Injection Results with c = 1 – LDIW 

 

 

 

Figure 54 BHPSO Pattern Water Injection Results with c = 2 – LDIW 
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Figure 55 BHPSO Pattern Water Injection Results with c = 2.5 – LDIW 

 

 

 
Figure 56 BHPSO Pattern Water Injection Results with c = 3 – LDIW 
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ability to fine tune the local area around the seed. Moreover, Figure 57 through Figure 

59 display particle behavior for 𝑐𝑝 = 𝑐𝑔 = 0.5, 0.775 and 1 respectively, while Figure 

60, Figure 61, and Figure 62 display the particle behavior for 𝑐𝑝 = 𝑐𝑔 = 2, 2.5 and 3 

respectively, which do not yet display the characteristic mentioned above. Note that 

each of the figures below is representative of all 10 runs that were carried out for each 

acceleration coefficient value.  

 

 
Figure 57 Representative BHPSO Performance of a LDIW with c = 0.5 

 

 
Figure 58 Representative BHPSO Performance of a LDIW with c = 0.775 
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Figure 59 Representative BHPSO Performance of a LDIW with c = 1 

 

 
Figure 60 Representative BHPSO Performance of a LDIW with c = 2 

 
Figure 61 Representative BHPSO Performance of a LDIW with c = 2.5 
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Figure 62 Representative BHPSO Performance of a LDIW with c = 3 

 

4.3.2. LDIW Testing 

In order to further assess the characteristics of a LDIW strategy, a study on the 

PUNQ-S3 field was carried out, for both pattern and peripheral water injection schemes, 

in which the iterations were increased from 30 to 100 and repeated 10 times. The 

obtained results (LDIW results) are compared with those in section 4.2. (CIW results) in 

terms of average NPV, redundancy, and convergence.  

It can be seen in Figure 44 and Figure 63 (Pattern water injection scheme), and 

Figure 46 and Figure 64 (Peripheral water injection scheme) that in terms of average 

NPV and redundancy, for both injection schemes, that both inertia weight strategies 

returned comparable results. Where the case of a pattern water injection scheme with a 

CIW returned an average NPV of $1616 MM, a pattern water injection scheme with a 

LDIW returned an average NPV of $1620 MM. Similarily, for a peripheral water 

injection scheme, a CIW strategy returned an average NPV of $1648 MM, while a 

LDIW strategy returned an average NPV of $1652 MM.  
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Figure 63 Pattern Water Injection Results for LDIW 

 

 
Figure 64 Peripheral Water Injection Results for LDIW 
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hence decreasing simulation time. The aforementioned advantage can be seen in Figure 

65, Figure 66, Figure 67, and Figure 68 where a representatitve BHPSO performance 

for each inertia weight strategy is displayed. Figure 65 displays a representative BHPSO 

performance of a pattern water injection scheme using a CIW strategy while Figure 66 

displays a representative BHPSO performance of a pattern water injection scheme using 

a LDIW strategy. Likewise, Figure 67 displays a representative BHPSO performance of 

a peripheral water injection scheme using a CIW strategy while Figure 68 displays a 

representative optimization run of a peripheral water injection scheme using a LDIW 

strategy. It can be seen that a LDIW strategy reached very similar global best values as 

that of the CIW strategy, however the LDIW strategy allowed for shorter simulation 

time than those of the CIW strategy since the particles neared convergence at much 

earlier stages/iterations. In other words, a LDIW strategy returned identical results to 

those of a CIW strategy in a shorter amount of time.  

 

 

Figure 65 Representative BHPSO Performance of a Pattern Injection Scheme – CIW 
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Figure 66 Representative BHPSO Performance of a Pattern Injection Scheme – LDIW 

 
Figure 67 Representative BHPSO Performance of a Peripheral Injection Scheme – CIW 

 
Figure 68 Representative BHPSO Performance of a Peripheral Injection Scheme – 

LDIW 
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CHAPTER 5 

CONCLUSION 

 

In this study, a peripheral water injection scheme was introduced to the black 

hole particle swarm optimizer since, depending on the field of study, it might be a more 

suitable development scenario than pattern water injection. The developed optimization 

method was implemented, tested and verified on both the Olympus and PUNQ-S3 

fields. It should be noted that implementing the BH (manual input) on the Olympus and 

PUNQ-S3 fields resulted in NPVs of $817 MM (Figure 30) and $1352 MM (Figure 33), 

respectively, for a peripheral injection scheme, while, on the other hand, implementing 

the BHPSO (optimizing input), using only 5 particles, resulted in a 17-25% (Figure 20, 

Figure 21, and Figure 22) increase in the NPV for the Olympus field, and a 7-15% 

(Figure 23, Figure 24, and Figure 25) increase in the NPV for the PUNQ-S3 field.  

The new black holing technique (region search) was tested on the PUNQ-S3 

reservoir model, and its results were verified using the Olympus reservoir model. For a 

peripheral water injection scheme, results showed that the placement of injectors on the 

KH map using a region search method outperformed those of placing the injectors on 

the KH map using a point search method. As for the placement of producers on the 

NHCT map, the NPV results returned were in close proximity, however, a region search 

method depicted increased system complexity and simulation time. Similarly, for a 

pattern water injection scheme, the point search technique outmatched the region search 

technique in terms of system complexity and simulation time.  

The convergence criteria of PSO was also addressed in this study which first 

included a sensitivity analysis on the swarm size (5,10,15 and 20 particles), however, a 

maximum of 20 particles was used due to system limitations (number of available 
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licenses). For both pattern and peripheral injection schemes, results displayed, in terms 

of NPV redundancy, that a swarm size of 20 particles would be the best swarm size to 

use to carry out testing. It should be noted that redundant NPV results are an indication 

of reliability, while the use of too few particles would result in the algorithm getting 

trapped in a local optimum, hence decreasing reliability and leading to varying NPV 

results. The use of a swarm size of 5, 10, and 15 particles was disregarded due to the 

variation in the NPV results which lead to decreased reliability. Moreover, while the use 

of a higher number of particles could result in better results since the particles would be 

sampling the search space more thoroughly, the function evaluation requirements would 

increase and slow down the algorithm. A balance between the number of particles and 

simulation time needs to be found. 

The Inertia weight, another algorithmic parameter of PSO, was changed from a 

Constant Inertia Weight (CIW) to a Linearly Decreasing Inertia Weight (LDIW). The 

CIW used in the original BHPSO has a constant inertia weight value of 0.721 and 

acceleration factor values equivalent to 1.1931. As for a LDIW strategy, the inertia 

weight value varied from 0.9 to 0.4 across the iterations, while a sensitivity analysis was 

conducted on the acceleration factors (𝑐𝑝 = 𝑐𝑔) for values of 0.5, 0.775, 1, 2, 2.5 and 3. 

The optimal acceleration factor value with regard to NPV reliability was: 𝑐𝑝 = 𝑐𝑔 = 2. 

The LDIW showed improved results in terms of convergence over the CIW which 

included: faster convergence and fine-tuning of the local search.  

Future work includes: (1) sensitivity analysis on the number of particles with 

regards to other fields so that the swarm size to be used in accordance with BHPSO can 

be verified (20 particles), (2) testing the LDIW on the Olympus field, (3) and then 

comparing the LDIW strategy to other inertia weight strategies, listed in chapter 1, by 
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implementing them in the BHPSO algorithm and testing them on the PUNQ-S3 and 

Olympus fields. 
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