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ABSTRACT 
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Title: Non-Invasive Diagnosis and Monitoring of Skin Anomalies 

 

 

Skin cancer, Acne, Eczema, among others, are some of the most commonly occurring 

skin anomalies that impose debilitating strain on the health of affected individuals and 

impede their social and economic welfare. The world health organization estimates 

between 2 to 3 million skin cancer cases occurring globally every year, highlighting its 

commonality. However, traditional skin disease diagnosis techniques typically followed 

by medical professionals, including physicians and dermatologists, primarily rely on 

qualitative and invasive measures, such as visual screening and biopsies. Therefore, 

developing an adjunctive tool that assists medical professionals in providing diagnosis 

that is more accurate in a low-cost, non-invasive manner is highly advantageous. Such a 

novel tool relieves the time-consuming and uncomfortable procedures of traditional 

diagnosis methods. Additionally, proper monitoring and characterization of the 

condition of a skin anomaly increases the chances of successful treatment. Keeping in 

mind that early diagnosis reduces any potential health complications. 

 

Extensive research measures have been taken in the pursuit of non-invasive, low-cost, 

and reliable diagnosis and monitoring methods. In the radio-frequency domain, clear 

differentiation between healthy and malignant tissues has been shown. Throughout this 

thesis, a novel and complete system for the non-invasive diagnosis and monitoring of 

skin anomalies using radio-frequency technology is designed and validated. The 

portable and handheld system comprises a highly sensitive electromagnetic sensor, 

custom wave analyzer circuitry, and the corresponding firmware and statistical 

classification algorithms. The system is then validated by performing clinical trials on 

patients with pre-diagnosed skin cancer and on healthy controls. Our findings illustrate 

a clear, distinct, and consistent differentiation between healthy and cancerous skin 

lesions, thereby conceiving a powerful tool that has the ability to augment traditional 

diagnosis methods to improve clinical diagnosis accuracy and enhance the patients’ 

overall quality of life. 
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CHAPTER I 

INTRODUCTION 

Skin is the largest organ of the human body, covering almost 1.85 square meters 

in area. Several skin anomalies affect skin and cause individuals irritation or even 

hinder daily life activities, such as skin cancer, Psoriasis, Eczema, and Acne. Skin 

cancer is notably one of the most dangerous among these diseases, especially in the case 

of Melanoma [1]. In fact, skin cancer is the most common type of cancer, where the 

world health organization (WHO) estimates that 2-3 million non-Melanoma cancers and 

more than 130,000 Melanoma cancers occur globally each year [2]. Skin cancer is 

divided into two categories, Melanoma and non-Melanoma. Non-melanoma skin 

cancers are mainly Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) 

which are often non-lethal and comprise the largest portion of skin cancers. Non-

Melanoma skin cancer is often a byproduct of excessive exposure to UV radiation and 

is usually present in areas of the body that are regularly exposed to sunlight, such as the 

arms, legs, and the neck [2]. 

On the other hand, Melanoma is referred to as the major cause of death 

originating from skin cancer. Studies indicate the existence of a correlation between risk 

of having malignant melanoma and genetic predisposition as well as UV exposure [2]. 

It is necessary to emphasize that early diagnosis and timely intervention increase the 

chances of successful treatment, enhance survival rate, and prevent harmful 

complications [3].  

Typically, a medical professional follows certain procedures in order to 

diagnose skin anomalies. First, the medical professional starts with visual inspection 
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and seeks the observable signs and symptoms such as the size, color, and shape of the 

lesion. Typically, a dermatoscope, essentially a magnifying lens with integrated 

illumination, allows the dermatologist to examine the anomaly more clearly. If the 

anomaly is suspicious, an invasive surgical procedure known as the biopsy is often 

required. A biopsy involves the extraction of a sample from the suspected lesion in aims 

of performing histopathological examination to determine its malignancy. However, 

biopsies are invasive, uncomfortable, cost-inefficient, and potentially cause 

disfigurement. One type of biopsy, the punch biopsy, can be seen in Fig. 1 [4].  

 

Figure. 1. Punch Biopsy illustration from [4]. 

 

Due to the inconvenient, invasive, and time-consuming methods of diagnosis, 

many researchers have explored the potential of electromagnetic (EM) waves as non-

invasive means for the characterization of healthy and anomalous skin. As a result, 

several publications have verified the ability of EM-based techniques to characterize 

human skin permittivities at different frequencies [5]-[6]. Several other works in the 

literature have identified differences between healthy and anomalous skin tissues [5], 

[7], [8]–[11], which is mainly attributed to the increased interaction between EM waves 
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and the increased water content within malignant skin lesions along with other dielectric 

differences. This technology has also proved its efficacy throughout its application in 

the detection of lung cancer [12], the measurement of skin hydration [13], and several 

other industrial applications such as sub-surface imaging of buried structures [14], 

inspection of glass specimens [15], and even the detection of corrosion [16].   

In this work, we propose a novel, compact, and non-invasive sensing system that 

is tailored for the detection of skin cancer. This system involves a highly sensitive 

electromagnetic sensor, a custom-made wave analyzer, and the corresponding 

classification algorithms. Our proposed system exhibits several advantages that 

distinguish it from other approaches, related to sensitivity, compactness, and design 

optimizations that account for several challenges in such detection systems. 

Additionally, the proposed system is validated by clinical trials on patients and healthy 

volunteers. Finally, the observations are comprehensively analyzed, and the relevant 

statistical models that best differentiate the measured classes are produced. 

Chapter two of this thesis provides a literature review that discusses the 

background technology for such diagnosis and monitoring technique. Chapter three 

discusses the interaction between electromagnetic fields and biological tissues. Chapter 

four presents different techniques of characterizing dielectric materials. Chapter five 

discusses the full device implementation, including background knowledge, EM sensor 

design, and the development of the back-end circuitry. Chapter six discusses the 

performed clinical trials and the pertinent procedures. Chapter seven provides the 

analysis of the obtained results as well as the designed models and their performance. 

Chapter eight concludes the proposed project and delivers insightful vectors for future 

work.  
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CHAPTER II 

LITERATURE REVIEW 

A. Introduction  

The ability of EM fields to non-invasively and non-destructively characterize 

dielectric properties of materials has made it one of the most attractive technologies for 

sensing applications. Consequently, extensive research has been implemented in the 

literature regarding the utilization of EM-based solutions for diverse applications 

spanning the medical, agricultural and industrial domains. In this chapter, we review 

some of the most relevant works in the literature that discuss EM-based sensors and 

signal analyzer circuitry in aims of understanding the current state of research within 

this area. This section will be divided into two sub-sections: Electromagnetic Probes 

and Vector Network Analyzers. 

 

B. Electromagnetic Probes 

1. Millimeter Wave (mm-Wave) Reflectometry 

The work presented in [8] introduces a  system for the early detection of skin 

cancer operating within the mm-Wave portion of the frequency spectrum. Accordingly, 

two design variations based on a mm-Wave reflectometer are introduced. Traditionally, 

a reflectometer is a system that is used to measure the EM signal reflection properties of 

a device under test (DUT). In this case, the reflectometer is utilized to quantify the level 

of the reflected EM waves off skin. Depending on the nature of the specimen under test 

(healthy vs. malignant tissues), the output of the reflectometer is expected to change 

accordingly. The proposed reflectometer circuit is created by combining a Y-circulator, 
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an open-ended waveguide, a Gunn diode, and a zero-bias Schottky diode that outputs 

the voltage magnitude of the reflected wave. The open-ended waveguide is pressed 

against skin tissue while the Gunn diode generates a signal at the frequency of interest. 

The EM waves are then reflected off the skin, and the Y-circulator separates the 

transmitted waves from the reflected ones. The latter then passes through a Schottky 

diode that transforms the time-varying reflected signal into a DC voltage level. The first 

design employs a WR-22 waveguide operating at 42 GHz and the second design 

employs a WR-15 waveguide operating at 70 GHz. The proposed setup in [8] is shown 

in Fig. 2. The system is tested on healthy skin, benign lesions, and BCC tissue, where 

clear differences in terms of the reflected voltages were obtained. The obtained results 

are presented in Table 1.  

 

Figure. 2. Reflectometer setup in [8]. 

 

 

 

 

 



 

 16 

Table 1. Obtained results in [8]. 

 

 

2. Micro-Machined Dielectric Resonator Waveguide at 100 GHz 

In [9], a method for distinguishing tumors from healthy skin is proposed by 

relying on a tapered probe based on a dielectric rod waveguide (DRW) that operates 

between 94 GHz and 106 GHz. The objective of the proposed work is to obtain an 

aperture that is small enough for precision sensing of a tumor without involving 

portions of healthy skin in the measurements. The waveguide and the probe setup are 

shown in Fig. 3. To validate the operation, silicon test materials that contain air gaps of 

variable sizes are designed. These artificial materials are specifically designed to mimic 

the dielectric properties of real anomalies in the skin. Subsequently, the probe’s aperture 

is loaded with the artificial materials that have varying dielectric properties, and then 

the reflection coefficient, 𝑆11, is measured for each material. The results illustrate clear 

differences in the magnitude of the 𝑆11 for the various materials used, as shown in Fig. 

4. This work concludes that the designed probe exhibits adequate sensitivity for 

permittivity values that mimic those of healthy and diseased skin. 

Biological Object Reflection, mV 

Healthy Skin 12-12.8 

Benign Lesion 10.5-11 

Basal Cell Carcinoma 6.8-7.7 
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Figure. 3. Tapered DRW in [9]. 

 

Figure. 4. 𝑆11 measurements for different dielectric samples from [9]. 

 

3. Evanescent Electromagnetic Waves for High Resolution Measurements 

In [18], a new method is introduced for imaging materials with variations in 

conductivity, permittivity, and density. This work proposes a planar resonator that 

utilizes perturbations in its EM field to perform different sensing roles. One of its most 

interesting features is that it overcomes the Abbe barrier. This barrier designates the 

spatial resolution limit that electromagnetic waves can achieve as half the wavelength 

used, or λ/2, where λ is the wavelength. This limit is surpassed by utilizing evanescent 

electromagnetic waves, such as the fringing electric and magnetic fields from a 
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resonator’s conductor. By relying on these evanescent waves, the resolution becomes 

controlled by the geometry of the used probe. Hence, as the probe’s effective sensing tip 

reduces in size, its resolution increases. For that reason, an Evanescent Microwave 

Probe (EMP) based on a  λ/2 microstripline resonator is designed at 985 MHz, and its 

edge is tapered so that the lateral resolution can be increased.  The topology of this 

sensor can be seen in Fig. 6 [18]. 

 

Figure. 5. Tapered EMP in [18]. 

The spatial resolution achieved is around 0.4 µm. It is important to note that the 

electric field decays exponentially with distance from the sample. In addition, Fig. 6 

displays the shift in the frequency and magnitude of the 𝑆11 when the probe is placed 

over a metal, illustrating the sensitivity of the probe. In Fig. 7(a) we can see an optical 

image of a tooth, and Fig. 7(b) shows an image obtained via the EMP scanning over a 

tooth specimen, verifying the ability of the EMP to sense small changes in the dielectric 

properties [18]. 
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Figure. 6. Shift in 𝑆11 and frequency in [18]. 

 
Figure. 7. (a) Optical image of a tooth, (b) EMP image of tooth in [18]. 

 

4. A Near-Field Microwave Sensor 

In [19], a near-field microwave resonator is designed for the detection of 

biological abnormalities in skin. The resonator probe shown in Fig. 8 consists of a gap-

coupled λ/2 microstrip line that is tapered to achieve a finer sensing resolution as well 

as to obtain a higher quality factor (Q-Factor). Furthermore, the design is fabricated and 

tested on chicken meat and fat which were covered with chicken skin to represent 

tumors or lipomas beneath the skin. Then, the specimen is scanned with the proposed 
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probe to produce a 2D 𝑆11 image. The results show a significant change in 𝑆11 

magnitude across fat measurements. Fig. 9(a) and Fig. 9(b) show the used chicken meat 

and the corresponding skin layer. Additionally, Fig. 9(c) and Fig. 9(d) show the 2D 𝑆11 

images of the used specimen after scanning them with the probe. 

 

Figure. 8. Near-field characteristics of the probe in [19]. 

 

Figure. 9. Photograph of sample under test, (a) without skin, (b) with skin, 𝑆11 image 

(c), frequency shift image (d) in [19]. 
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5. High Resolution Imaging Using Resonance Probes 

In [20], two near-field probes for resonance imaging are proposed. First, a 

loaded aperture is designed to resonate at around 4 GHz. The aperture is loaded with a 

folded open loop resonator having a length of  λ/2 at 4 GHz. The second design is a 

helix antenna that operates at 4 GHz. Both structures are designed to exhibit tight field 

localization.  In Fig. 10, we can see the magnitude of the electric field of the helix 

antenna, showing maximum sensitivity, highlighted in red, directly below it [20].  

 

Figure. 10. Magnitude of E-Field in [20]. 

 

Figure. 11. Loaded aperture probe in [20]. 

Fig. 11 displays the resonantly loaded probe along with its test structure. In Fig. 

12(a), a test structure is constructed using fragments of a dielectric material with 

varying dimensions. After scanning the entire test structure with the helix antenna, the 
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2D 𝑆11 image in Fig. 12(b) is obtained. This 2D image verifies the loaded aperture 

probe’s ability to detect the dielectric fragments due to their distinct dielectric nature. 

Both designs exhibit a high sensitivity and result in high quality images. 

 

Figure. 12. Photograph of sample test structure, (a) optical photograph, (b) S11-based 

image reconstruction from [20]. 

 

6. A Split Ring Resonator Dielectric Probe 

In [21], a split ring resonator (SRR) is investigated for the imaging and 

characterization of composite dielectric materials. Composite dielectric materials 

provide interesting electromagnetic properties such as variable dielectric permittivity 

and magnetic permeability values. Consequently, a sensor must be able to sense the 

fabricated material in order to ensure that the composite’s electromagnetic properties 

match the simulated ones. An SRR is introduced as a sensing element that can achieve 

sub-millimeter resolution as well as the ability to cover larger areas of composite 

materials. The sensor setup can be seen in Fig. 13(a).  The SRR resonates at a certain 

natural resonance frequency based on its inherent capacitance and inductance. When the 

ring is positioned on a material’s surface, these capacitance and inductance values are 

disturbed based on the interaction of the generated EM field with the material under 
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test. This disturbance is manifested as changes in the transmission coefficient, 𝑆21. In 

Fig. 13(b), we can see that the probe is highly sensitive at its open-end gap based on the 

intensity field within. The probe was tested over an array of materials with alternating 

dielectric properties, where a “chess-board”-like material is 3D printed with alternating 

permittivity values. An electromagnetic image is generated after scanning the material 

with the probe, as can be seen in Fig. 14 [21]. 

 

Figure. 13. SRR setup (a), field concentration (b) in [21]. 

 
Figure. 14. The variation of the transmission coefficient S21 as a function of an 

alternating permittivity test structure in [21]. 

 

C. Vector Network Analyzers 

1. Integrated Network Analyzer 

In [22], a highly portable integrated network analyzer is designed and tested. 

The network analyzer abbreviated by “TINA” (Tiny Integrated Network Analyzer) is a 
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solution to the difficult on-device measurement of electrically small antennas. TINA is 

composed of a microcontroller and RF circuitry whose function is to measure the S-

parameters of a two-antenna system, and the device can be seen in Fig. 15. The RF 

circuitry mainly revolves around the AD8302 gain and phase detector. The function of 

the AD8302 is to measure the difference in magnitude and phase of the two inputs 

coming from a directional coupler by outputting voltages that can be later transformed 

into S-Parameters. The results have shown an acceptable level of accuracy for the 

measurement in GSM operation. The schematic of the system can be seen in Fig. 16. 

 
Figure. 15. TINA in [22]. 

 
Figure. 16. System schematic in [22]. 
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2. Single-Port Vector Network Analyzer 

In [23], a VNA design is proposed using an electronically controllable phase 

shifter, a transmission line, and a diode power detector. This VNA architecture relieves 

the complexity of the traditional heterodyne VNAs, and it functions similar to a slotted-

line. By measuring the power of the standing wave formed on the transmission line at 

different locations, the magnitude and phase of the 𝑆11 can be measured. The integration 

of an electronically controllable phase shifter was extremely advantageous in reducing 

the number of needed diodes. This is due to the fact that the phase shifter mimics the 

effect of moving a power detector along the transmission line, resulting in 

measurements at multiple points on it. The block diagram of this system can be seen in 

Fig. 17. Results obtained by the proposed VNA are compared to ones obtained from a 

commercial VNA, and very good agreement is observed as shown in Fig. 18. 

 
Figure. 17. VNA in [23]. 

 
Figure. 18. Comparison between magnitude and phase of S11 of the proposed VNA vs a 

commercial VNA in [23]. 
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CHAPTER III 

THE INTERACTION OF ELECTROMAGNETIC WAVES 

WITH BIOLOGICAL TISSUE 

 
A. Introduction 

In this chapter, we introduce important concepts and terms --relevant to the 

dielectric properties of materials-- that will serve as building blocks for the forthcoming 

study. We also discuss the physiology and anatomy of skin and skin cancer to obtain a 

solid understanding of their constituents which will highlight their differences and 

orient our design decisions. Finally, we emphasize on the link between these differences 

and the variation of the electromagnetic behavior of a sensing structure. 

 

B. Permittivity, Dispersion, and Relaxation 

When discussing the complex dielectric properties of different materials, such as 

skin and other tissues, we are particularly concerned with the complex relative 

permittivity. The permittivity of a material describes how charges within it react when 

exposed to an electric field. In other words, permittivity is a property that allows us to 

understand a material’s ability to store and absorb electromagnetic energy. The complex 

relative permittivity is often referred to the free-space permittivity and denoted by 𝜀𝑟, 

which is defined by 𝜀𝑟 =  𝜀′
𝑟 − 𝑗𝜀′′

𝑟. The real part of the complex permittivity 𝜀𝑟
′  is 

known as the dielectric constant, and the complex part 𝜀𝑟
′′ is known as the dielectric loss 

factor. Both terms, as will be shown in the proceeding section, depend on frequency and 

other factors that are specific to the material under test [24].  

Over the years, numerous works in the literature have experimentally 

characterized the dielectric properties of human tissue, such as skin, muscle, bones, and 
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various other body organs over different frequency ranges [25]–[27]. This was heavily 

motivated by the by the need to understand the effect of EM exposure on tissues, 

specifically relevant to the field of dosimetry, and to aid in building better models used 

in simulations [28].  

The complex relative permittivity of materials and its variation with frequency is 

defined as Dielectric Dispersion, and it is ideally approximated by the Debye model, 

given by (1), where 𝜀∞ is the permittivity at the high frequency limit, 𝜀𝑠 is the 

permittivity at low frequencies, τ is the relaxation time, and ω is the angular frequency 

[24]. 

𝜀𝑟 =  𝜀∞ +
𝜀𝑠− 𝜀∞

1+𝑗𝑤𝜏
       (1) 

The plot in Fig. 19 shows an abstract illustration of the behavior of both the real 

and imaginary parts of the complex permittivity of tissues as a function of frequency. 

Dispersion occurs due to the fact that materials are electrically polarized once exposed 

to an electric field, causing changes in the charge distribution within. Having become 

polarized, the particles within will arrive at a new equilibrium once the applied electric 

field is altered, consequently changing the distribution and orientation of the charged 

particles. The time it takes to reach the new equilibrium is defined as the Relaxation 

Time. Depending on the composition of the material, different relaxation times are 

obtained, providing significant insight into the properties of the MUT [26].  

Due to the complex nature of biological tissue, the simplified Debye model 

given by (1) may not accurately describe its dielectric spectrum. This is a result of the 

existence of multiple compounds and substances within biological tissues that may not 

be characterized using the same relaxation times, which causes different dispersion 
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regions to broaden. As a result, the Cole-Cole model given by (2) modifies the original 

Debye model, most notably by the introduction of a loss factor 𝛼 to account for 

broadening, and it is commonly used to approximate the dielectric spectrum of tissues. 

𝜀𝑟 =  𝜀𝑟
 ′  − 𝑗𝜀𝑟

 ′′  =  𝜀∞ +
𝜀𝑠− 𝜀∞

1+(𝑗𝑤𝜏)1−𝛼
      (2) 

 

Figure. 19. Dispersion ranges from [28]. 

The dielectric spectrum of tissues is typically divided into 3 primary dispersion 

regions known as the α, β, and γ dispersions, as shown in Fig. 19. These dispersions 

relate the change of permittivity at certain frequency ranges to physiological and 

chemical phenomena within the tissue under test. To illustrate, the α and β dispersions 

are primarily caused by the different properties of cell membranes, surface conductance, 

and the cellular structures. Whereas the γ-dispersion that is dominant at sub-GHz 

frequencies is mainly governed by the water and protein content of the tissue [28]. 

Understanding the dispersion properties of biological tissues allows us to 

understand the cause of variability in their dielectric properties. By linking the known 

variability in response of water molecules, proteins, acids, and glucose to variations in 

skin dielectric properties, researchers are able to identify the main factors responsible 

for dielectric variations between anomalies and healthy skin.  
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Fig. 20 illustrates some of the experimental results obtained from the 

characterization of tissues in [26], namely skin and heart tissues respectively, by 

plotting the behavior of the 𝜀𝑟
′  and 𝜀𝑟

′′ as a function of frequency. To obtain these plots, 

measurements were performed on the respective tissues using a dielectric 

characterization kit. This kit is mainly composed of a coaxial probe that is placed 

directly on the MUT, while being connected to a VNA that runs a dielectric 

characterization software. Essentially, the VNA measures the 𝑆11 over a wide 

bandwidth and transforms it into permittivity values.  

 

Figure. 20. The dielectric spectrum of Skin and Heart tissue from [26]. 

 

C. The Physiology and Anatomy of Skin and The Most Common Types of Skin 

Cancer 

 

1. Skin 

Skin, the largest organ of the human body and its first line of defense, is 

composed of three main layers as shown in Fig. 21. The epidermis is outermost layer, 

followed by the dermis and the subcutaneous tissue. The epidermis is primarily 

composed of cells known as keratinocytes, whose function is to synthesize keratin, a 

protein that controls the rigidity of the skin as well as to assume protective roles such as 

response to injury (cytokines). On the other hand, the dermis acts as a durable, yet 
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flexible, layer that prevents mechanical injury and plays important roles in 

thermoregulation whilst including receptors for various stimuli such as temperature and 

pressure. The dermis is composed of different cells such as fibroblasts, ground 

substance, and fibers, and it significantly contributes in synthesizing different 

macromolecules and proteins. Notably, fibroblasts are cells that produce collagen, a 

protein that represents 30% of the dermis’ volume, and it is considered one of the 

building blocks of bones, skin, and other tissues. The last layer, subcutaneous tissue, is 

mainly composed of fat cells known as lipocytes with blood vessels and collagen 

seeping in between. Subcutaneous tissue undertakes roles related to energy storage, 

buoyancy and hormone conversion. The thickness of these layers depends on the 

specimen’s location on the body [29], [30]. For example, the epidermis significantly 

changes in thickness on the eyelid (<0.1mm) when compared to the palms and soles 

(~1.5 mm) [31]. 

 

Figure. 21. The anatomy of skin [4]. 

It is necessary to note that different skin tones react differently to environmental 

factors, where some skin tones are more susceptible to damage from the environment, 
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e.g.: UV-exposure and burns. As a result, the Fitzpatrick skin scale is a system used to 

predict the response of different skin tones to sun exposure based on the amount of 

melanin pigment within. The Fitzpatrick scale is shown shown in Fig. 22. 

 

Figure. 22. The Fitzpatrick Scale [32]. 

 

2. Skin Cancer 

1. Basal Cell Carcinoma (BCC) 

Statistics have shown that 80% of skin cancers are diagnosed as BCC, rendering 

it the most common type of skin cancer. The basal layer in the epidermis, which is 

composed of basal cells, is the starting point for the anomalous growth that results in 

BCC. Essentially, UV-radiation exposure from the sun, aging, among other factors, 

cause alterations in the DNA of the concerned cells, resulting in unrestrained tumor 

growth. In addition, BCC is often located on the most sun-exposed areas such as the 

head and the face. Most BCCs are treatable and cause negligible harm when diagnosed 

and treated early due to its slow progression. However, in rare occurrences it can spread 

into different tissues and cause dangerous complications. Typically, BCC is represented 

by several lesion characteristics that change the appearance of the skin and are not self-

healing, such as elevated pink patches, scaly red patches, brown lesions among others 

[33].  
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2. Squamous Cell Carcinoma (SCC) 

SCC is much less common than BCC, where it is estimated to comprise 20% of 

most skin cancer diagnoses. The SCC originates within the outermost layer of the 

epidermis containing squamous cells. SCC is typically located in the same regions 

where BCC develops, and it also shares the same set of causes, primarily attributed to 

UV-radiation from sun exposure. However, SCC develops and grows faster than BCC, 

meaning that it can possibly spread into other parts of the body more quickly, leading to 

dangerous complications [34]. 

 

3. Melanoma 

Melanoma skin cancer is the most dangerous of the aforementioned cancers. 

This is due to its aggressiveness in rapidly spreading into other tissues. Melanoma 

originates from the mutation of Melanocytes, the producers of Melanin, in the 

epidermis, which is the pigment that gives skin its color. Although the exact causes of 

Melanoma are not fully known, a combination of multiple factors such as UV radiation 

and genetic predisposition are attributed as potential causes. Unlike other skin cancers, 

Melanoma does not only develop on sun-exposed areas, but also in places like the soles 

of the feet, mouth, and the digestive tract. Generally, Melanoma is represented by 

changes in present moles or the birth of unusual growing lesions on the skin [35]. Fig. 

23 illustrates the aforementioned cancers on skin. 

 

D. Interaction of EM Waves with Skin Lesions 

Throughout the literature, it is concluded that an increased water content in 

malignant tissues is highly correlated with the dielectric variations at sub-GHz  
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frequencies, which is identified through dispersion analysis [36].  

 

Figure. 23. Illustration of BCC, SCC, and Melanoma [37]. 

For example, in [17], the dielectric properties of freshly excised healthy and 

malignant tissues are characterized at an ultra-wide bandwidth. Fig. 24(a) shows the 

measurement setup and a piece of excised skin to be used in the characterization 

experiment. After analyzing the dielectric properties of these excisions, the study  

concludes with the existence of statistically significant differences in the dielectric 

properties of malignant and healthy tissues. Fig. 24(b) shows an overlapped plot of the 

real and complex permittivities of healthy skin, BCC, and SCC, with clear differences 

shown between them. It is also concluded that water content within BCC and SCC was 

the primary cause of variation in the dielectric properties. 

Furthermore, the work presented in [10] also illustrates the powerful ability of 

EM waves to differentiate between healthy and malignant tissues by relying on a ultra-
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wideband synethic imaging system, as shown in Fig. 25.  The system is tested on 

excised BCC and SCC cancers, and is able to differentiate between cancerous and 

healthy skin based on their electromagnetic reflectivity, as summarized in Fig. 25. 

Finally, several publications have had the similar goal of characterizing tissues 

at a wide range of frequencies such as [6], [17], [26], [36], further illustrating the 

interaction between healthy and anomalous tissues. A comprehensive list of dielectric 

properties and models can be obtained from [25]-[27]. 

 
Figure. 24. The test setup in [17], and the corresponding measured permittivity values 

of BCC, SCC, where (a) shows the real part, and (b) shows the complex part. 

 

 
Figure. 25. System overview and obtained results [10]. 
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E. Discussion 

The complex permittivity, an electrical property that explains how an applied 

electric field interacts with a material, is the fundamental concept behind EM-based 

material sensing. Based on the plethora of research within the literature, it is shown that 

the complex permittivity of healthy skin is different than that of a diseased skin. This 

difference can be quantified using the right equipment and techniques to ultimately 

predict whether a suspected lesion is cancerous or healthy. This conclusion forms the 

basis of this study. It also highlights the fact that designing a tailored RF-based solution 

can produce an impactful and clinically practical non-invasive skin cancer detector. 

Such a device reduces the patient’s discomfort and improves the throughput and 

accuracy of a medical professional. 
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CHAPTER IV 

TECHNIQUES FOR DIELECTRIC CHARACTERIZATION 

A. Introduction 

As discussed in Chapter III, materials have different electromagnetic properties 

based on their composition. In the literature, many techniques have been introduced 

with the common goal of characterizing dielectric materials. By characterizing different 

materials, we are obtaining the permittivity and loss tangent. Observing changes in 

these properties provides important insight on the nature of the specimen under test. In 

our case, the variations are in skin permittivity, which is necessary to distinguish 

whether a skin lesion is healthy or anomalous [6], [10], [19]. To achieve 

characterization, different methods that share similar fundamentals exist within the 

literature. Generally, most of these techniques depend on the effects of perturbing the 

EM field within a microwave structure, which invokes a direct effect on the measured 

𝑆11, the Q-factor, and the frequency of operation of the used microwave structure [24]. 

These dielectric characterization techniques include Reflection methods, Reflection and 

Transmission methods, Resonator methods, and Resonant-perturbation methods [24]. 

The focus of our proposed study is on planar resonator methods that utilize the concept 

of resonant perturbation. This decision is motivated by the inherent compactness of 

planar structures, their convenient integration with different devices and circuits, and 

their enhanced sensitivity. Planar methods utilize microwave structures that are of 

planar nature, primarily composed of microstrip-based structures such as transmission 

lines (TLs), TL-based resonators, and TL-based antennas. When an electromagnetic 

wave propagates from one medium to another with different EM properties, portions of 

the wave are reflected and transmitted, as shown in Fig. 26. By measuring the amount 
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of reflection or transmission, one can deduce the electrical properties of the MUT. The 

typical method of performing dielectric characterization depends on reflection methods 

that utilize coaxial probe kits, which is hailed as the gold standard for dielectric 

characterization over wide frequency ranges. However, this method requires bulky 

hardware that is often very expensive [38]. An example of a dielectric probe kit with the 

required VNA is shown in Fig. 27. 

 

Figure. 26. Wave at a boundary from [24]. 

 

 

Figure. 27. A typical dielectric characterization kit with a VNA [38].  
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B. Planar Non-Resonant Methods 

Non-resonant methods, as the naming suggests, employ TL-based structures that 

do not resonate, such as open-ended or short-circuited TLs. These methods include two 

sub-categories: Reflection and Reflection/Transmission methods, and they are discussed 

in the following sections [24]. 

 

1. Reflection Methods  

To characterize the properties of a MUT using the reflection method, the MUT 

itself is prepared in a way that allows it to fit as a substrate for a microstrip transmission 

line where it is sandwiched between two conductors, as shown in Fig. 28(a). Then, the 

MUT’s properties are extracted from the TL’s changing reflection properties which are 

typically measured by a VNA. This technique is quite challenging since it requires 

precise sample preparation and fabrication [24].  

 

2. Transmission/Reflection Methods 

In this method, the MUT is placed on top of a transmission line as shown in Fig. 

28(b). To obtain the dielectric properties, both the reflection coefficient (𝑆11) and the 

transmission coefficient (𝑆21) are measured. The material properties can then be 

calculated through numerical procedures and full-wave analysis [24].  

 

Figure. 28. Transmission Line and loaded transmission line from [24]. 

(a) (b) 
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C.  Planar Resonant Methods 

Resonant methods utilize resonating structures to characterize material 

properties. The primary principle of operation relies on the changes in the frequency of 

resonance and the Q-factor upon loading the structure with the MUT, thereby forcing 

loading effects that perturb the structure’s EM field distribution. Two examples of such 

resonating structures are discussed below [24].  

 

1. The Planar One-Port Resonant Probe 

This structure utilizes a one-port planar resonator and it operates based on the 

resonant perturbation theory, where a MUT is placed within the near-field region of the 

structure. When the MUT is placed within the resonator’s illumination region near its 

open end, as shown in Fig. 29, the EM fringing fields emanating from this aperture will 

be disturbed due to the presence of this MUT. Consequently, the resonant frequency, 

the 𝑆11, and Q-factor will change, thereby reflecting the properties of the MUT. 

Essentially, the probe can be modeled by a resonant LCR circuit, as shown in Fig. 

30(a). When the probe is loaded with a MUT, the LCR model is augmented by a 

capacitor or an inductor that represent the loading effect of the MUT, as shown in Fig. 

30(b). 

 

Figure. 29. Near-field probe from [24]. 
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Figure. 30. Circuit models from [24]. 

In addition, the length of the resonant probe dictates its frequency of operation, 

and this fact is crucial for understanding the penetration depth of the resulting 

evanescent fields that emanate from the open-end. This depth determines the maximum 

distance at which a buried specimen can be detected. The general rule is, the lower the 

frequency, the deeper the field penetration, and vice versa, as illustrated in Fig. 31 [24]. 

 

Figure. 31. Effect of frequency on penetration depth in [24]. 

 

2. The Ring Resonator 

Ring resonators are two-port microstrip-based ring-shaped resonators that follow 

specific length requirements that dictate their operational frequency. Fig. 32 illustrates a 

typical gap-coupled ring resonator used in dielectric characterization. In this topology, 
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the MUT is placed directly on top of the ring resonator, fully covering it. After 

introducing the sample, numerical methods are used to relate the resultant shift in the 

resonator’s resonance frequency to the MUT’s dielectric properties [24]. 

 

 

Figure. 32. Ring resonator from [24]. 

 

3. The Ribbon Resonator: 

As shown in Fig. 33, a ribbon resonator consists of a half-wave length resonator 

that is fed by gap-coupling. Similar to the ring resonator case, the MUT can be used as 

the resonator’s substrate or it can be used to directly load the resonator. The change in 

the resonant frequency leads to the estimation of the MUT’s dielectric constant . 

However, the presence of the coupling gaps adds extra EM field fringing that 

effectively changes the electrical length of the resonator, a change that must be taken 

into account to obtain maximum accuracy. A typical solution is to use two ribbon 

resonators operating at different resonance frequencies, where the additional electrical 

length due to fringing can be cancelled out [24]. 
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Figure. 33. Ribbon resonator from [24]. 

 

D. Discussion 

Several EM structures have been introduced; however, they all share the same 

fundamental concept of being susceptible to the effect of the material under test on the 

properties of the resulting EM fields. In the grand scheme of our application, 

understanding the properties and physical requirements of each structure enabled us to 

design a sensor topology that best suits skin lesion measurements. As such, the 

microstrip-based resonant-type sensor topology is adopted since it can be highly 

compact, easily integrated within a system, and is highly sensitive to surrounding 

materials.  
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CHAPTER V 

THE SKIN ANOMALY DETECTION DEVICE 

A. Introduction 

Our proposed EM sensing system is composed of three parts, the highly 

sensitive EM sensor, the wave analyzer circuitry, and the corresponding software. The 

EM sensor is the component responsible for sensing the dielectric differences between 

healthy and malignant lesions. In addition, a wave analyzer circuit must be present to 

perform the crucial roles of generating the high frequency signals and retrieving the 

waves that reflect off the skin lesion under test in order to extract the parameters that 

enable us to quantify the observed differences. In this chapter, we define the main 

parameters that we are measuring, the requirements of such a system, the EM sensor 

design procedure, and the wave analyzer design procedure. Additionally, the 

constituents of such a wave analyzer are briefly explained due to their crucial 

importance in understanding the proposed architecture. Finally, the proposed designs 

are tested, and their performance is validated in a series of tests. 

 

B. What are we measuring? - Scattering Parameters (S Parameters) 

Our measurements revolve around S parameters. In short, S parameters are 

quantities that describe the reflection and transmission characteristics of RF devices and 

sensors [39]. In our application, the main S parameter of interest is the 𝑆11 which is 

known as the reflection coefficient. As mentioned previously in chapters I, II, and III, S 

parameters of RF devices will change depending on the properties of a material loading 

the device, such as a skin lesion under test. Furthermore, the 𝑆11 is a complex value that 
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is characterized by its magnitude and phase, both of which are necessary quantities that 

provide significant insight within specific sensing applications  

 

C. The Microwave Sensor 

First, we must introduce a key term to our method of sensing, which is the near-

field. Generally speaking, the near-field corresponds to a region of space directly 

surrounding a radiating structure, such as a sensor, where the EM fields are decoupled 

and non-propagating.  The different field regions can be seen in Fig. 34 [40].  

 

Figure. 34. Radiation regions [40]. 

Due to the varying dielectric properties of skin and anomalies, there is a 

complex loading effect to the radiating structure, which leads to changes in S-parameter 

magnitude, phase, and resonance frequency. It is this process through which we can 

acquire information regarding a specific tissue [24]. 

The objective herein is to design a sensor that is highly sensitive, compact, cost-

effective, and tailored for skin anomaly detection.  
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1. Preliminary Microwave Sensor Design 

In this section we propose a microwave sensor design based on a capacitively-

coupled microstrip half-wavelength resonator. The proposed sensor is distinguished by 

several attractive features such as a simple planar topology, compactness, enhanced 

sensitivity, and its naturally high quality-factor due to its patch antenna resemblance 

[40]. This sensor is composed of a feeding line, a matching network, and the resonant 

element. The sensor is designed using the Ansys Electronics Desktop electromagnetics 

simulator [41]. Additionally, the sensor utilizes a 0.79 mm thick RT Duroid 5880 

substrate with a dielectric constant of 2.2. In this topology, the resonant element is 

designed to resonate at 5.73 GHz, which corresponds to an optimized resonant element 

length of 21 mm.  In addition, the resonant element is 1 mm wide, which corresponds to 

a line impedance of 85 ohms that subsequently tapers to a 2 mm long, 0.2 mm wide, 

line that corresponds to 100 ohms. By adopting a narrow resonant element width, we 

significantly increase the quality factor of the sensor [18], [42]. The higher quality 

factor allows for the observation of shifts in frequency more clearly due to the narrow 

bandwidth. Both are crucial features when the sensor is employed in a dielectric 

characterization application, which assure higher measurement resolution and enhanced 

sensitivity to the properties of the MUT. Additionally, the narrower section at the 

sensor’s tip increases the density of E-fields at this location, which equivalently 

increases the strength of the evanescent fields fringing from the sensing tip. This will be 

crucial in discerning the dielectric differences between healthy and cancerous lesions 

beneath the tip. 

Furthermore, the narrow resonant element results in a high input impedance [39] 

which necessitates the design of an impedance matching section that transforms the 



 

 46 

sensor’s impedance to the standard 50 ohm impedance at the input. Consequently, the 

resonant element is fed using a capacitive coupling gap and a 5 mm microstrip line with 

an 85-ohm characteristic impedance. The capacitive coupling gap behaves as a lumped 

element capacitor with a limited range of small capacitance values. Lumped elements, 

when compared to distributed elements such as microstrip-based solutions, are known 

to increase the quality factor of a system due to their inherent narrow bandwidth effects.  

The sensor is shown in Fig. 35(a), and the generated E-field across its resonant 

element is plotted in Fig. 35(b), which verifies that the maximum E-field intensity is at 

the designated tapered sensing tip. Fig. 35(c) illustrates how a specimen under test 

(SUT) will be placed beneath the tapered tip of the sensor. In addition, Fig. 35(c) also 

illustrates a projection of the E-field emanating from its tip, which verifies that the 

maximum sensitivity (highlighted in red) is focused directly beneath the sensing tip. 

Finally, the sensor is fabricated as shown in Fig. 36, then measured using the Keysight 

N9923A Fieldfox VNA [43]. Furthermore, excellent agreement is obtained between the 

measured 𝑆11 and the simulated one, as shown in Fig. 37. 

               

Figure. 35. The proposed EM Sensor. 

(a) (b) (c) 
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Figure. 36. The fabricated sensor. 

 

Figure. 37. The measured and simulated 𝑆11 of the proposed sensor. 

 

2. The Improved Microwave Sensor  

Despite the high quality factor of the designed sensor in the previous subsection, 

several key challenges related to performance, sensitivity, and usability were identified 

upon employing the sensor in a real-world practical application. These challenges are 
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categorized into skin lesion sensitivity issues, susceptibility to environmental noise, and 

impractical stand-off requirements. Each of these challenges are discussed in the 

consequent subsections.  

a. Sensitivity 

Center to the functionality of a microwave sensor specifically designed for skin 

lesion diagnosis is its ability to discern between cancerous and healthy skin lesions 

accurately and practically. The previously designed microwave sensor relied on the 

evanescent fields that reside between the very narrow conductive tip and the ground 

plane, as shown in Fig. 38. After its evaluation, two main problems related to sensitivity 

were detected. First, upon the placement of a SUT beneath the sensing tip, the sensor 

exhibited low sensitivity, which was depicted by the minor changes in the 𝑆11 response. 

This is attributed to the small area in which the evanescent fields reside, especially that 

the conductor of the resonant element is extremely narrow, which reduces the effective 

EM-field density that is capable of interacting with a SUT. A second factor attributed to 

the low sensitivity is due to the microstrip nature of the sensor, wherein the EM fields in 

such a structure are not solely confined to the sensing tip. In fact, the bulk of these 

fields is concentrated within the substrate, situated directly beneath the resonant 

element, as illustrated by the straight red lines in Fig. 38. Additionally, a significant 

portion of the these fields fringes through air and into the substrate around the resonant 

element, as illustrated by the red curves in Fig. 38. The second sensitivity-reducing 

impediment is the crucial dependence on short stand-off distance, which is the 

separation between the sensor’s tip and the SUT. This is a consequence of the low 

evanescent field density in a miniscule sensing area, which requires SUTs to be placed 

within a few micrometers away from the sensing tip. Such short stand-off distance 
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renders the sensor highly impractical and significantly prone to errors originating from 

movement and pressure during measurements. These factors emphasize the adoption of 

new measures that enhance the sensitivity of such sensors. 

 

Figure. 38. EM field locations at the sensor's tip. 

b. Environmental Noise 

When designing a sensor that will be hand-operated at conditions that are far 

from a controlled laboratory setting, one must take several critical factors into 

consideration. Primarily, the proximity of different materials, such as the hand of the 

operator or a SUT, to undesired regions on the sensor leads to unwanted loading effects 

that cause erroneous measurements. Not only that, ambient radiation from different RF 

sources common in public places, such as mobile phones and WiFi routers, can also 

introduce noise into the system, potentially compromising the fidelity of the 

measurements. The previous sensor, being essentially an unshielded radiator, was 

particularly susceptible to the aforementioned problems.  

c. Physical Nature of Skin 

Understanding the physical nature of the specimen subjects of this application, 

namely the human skin, must also be taken into consideration. Skin is elastic and 

flexible, and knowing that the proposed sensors are composed of stiff materials that will 
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be pressed against it, a sinking action will occur. This slight sinking of the sensor into 

the skin will expose the sensitive tip to an area larger than the boundary of the skin 

lesion, which contributes to reduced sensitivity. This emphasizes the need for a proper 

structure that not only ensures a fixed distance from the skin, but also preserves its 

flatness.  

d. Sensor Design 

In order to tackle the aforementioned challenges, a new sensor is developed. The 

improved sensor adopts some of the elements from the previous sensor’s design due to 

their convenience, while introducing new features that overcome the shortcomings of 

the previous one. As such, the improved sensor adopts a similar half wavelength 

resonator as its sensing element that operates at 4.75 GHz. This sensor is designed on an 

RT Duroid 5880 substrate having a dielectric constant of 2.2 and a thickness of 0.79 

mm. Furthermore, two main sections comprise this sensor, a matching network and the 

resonant element. First, the resonant element is characterized by its length, 19.825 mm, 

corresponding to an optimized half wavelength at 4.75 GHz, as well as its narrow width 

of 1 mm, corresponding to an 85-ohm characteristic impedance.  

To overcome the sensitivity challenges, a solution is devised in which part of the 

resonant element and its emanating fields are actively involved in the sensing 

procedure, representing stronger and denser EM-fields at the sensing tip. This solution 

is implemented by extending the length of the resonant element and connecting it to a 

hemispherical sensing tip of 1.3 mm radius. This connection is achieved by means of a 

via through a cylindrical substrate of 6 mm radius and 0.79 mm thickness, as shown in 

Fig. 39. This hemispherical tip will emanate stronger evanescent fields around it when 

compared to the evanescent fringing field from the previous sensor that lacked the 

resonant extension. Fig. 40(a) shows the E-field concentration along the resonant 
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element, while Fig. 40(b) shows a tilted view of the sensor that highlights the increased 

concentration of the E-field at the hemispherical tip. Additionally, the hemispherical tip 

is optimally chosen to suit the measurement of skin cancers which are typically larger 

than 1 mm. In Fig. 40(c), the EM illumination region of the sensor is shown, where the 

red projection illustrates the maximum sensitivity region, which is directly beneath the 

tip. Consequently, when the sensor is positioned directly above a SUT, the interaction 

of the electromagnetic field with the specimen under test is maximized.  

 

Figure. 39. Topology of the improved microwave sensor. 

 

Such necessary modifications to the sensor’s topology will enable a clearer observation 

of the dielectric differences between lesions, a more practical stand-off distance of 2 

mm, and the full inclusion of the suspected lesion in the sensing procedure without 

incorporating unwanted adjacent lesions into the measurement. 

Furthermore, a metallic shield is designed to the dimensions of the sensor, 

which, fundamentally, is a conductive enclosure that prevents sensing from undesired 

regions and mitigates the introduction of ambient RF noise into the system. This 

enclosure also includes a cutout at the sensing tip of the sensor, where desired sensing 

will be performed at the tip. Fig. 40(d) shows the sensor within its metallic enclosure. In 
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addition, the enclosure includes a partition that accepts a 2 mm-thick cylindrical foam 

spacer that fixes the distance between the sensing tip and the SUT according to this 

thickness. Furthermore, the topology of this shield enables us to preserve the flatness of 

the underlying skin when placing the sensor on a skin lesion. A typical sensing scenario 

including the sensor and an SUT is shown in Fig. 41. 

 

 

 

Figure. 40. (a) E-field distribution along the resonator, (b) along the hemispherical tip. (c) 

E-field projection on a SUT. (d) The enclosed sensor. 

(a) 
(b) 

(c) (d) 
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Figure. 41. An illustration of a typical sensing scenario. The figure is modified from 

http://www.scientificanimations.com/wiki-images/. 

e. Impedance Matching 

The narrow width of the resonant element within the proposed sensor will result 

in a high input impedance [39], which must be transformed to 50 ohms in order to 

achieve a good impedance match between the feeding structure and the sensor. Not only 

that, the presence of the conductive shield enclosing the sensor must also be accounted 

for during simulations to obtain maximum accuracy. As a result, a matching network is 

designed between the resonant element and its 50-ohm input. This matching network 

comprises a 43.5-ohm microstrip line of 4.5 mm in length that is then connected to an 

open stub having a characteristic impedance of 32.8 ohms and a length of 1.2 mm. 

Furthermore, triangle-like cutouts are made from the 43.5-ohm line to better optimize 

the overall impedance matching.  

f. Performance  

This sensor is fabricated, then measured by the Fieldfox VNA [43] to validate its 

performance. The measured and simulated 𝑆11 are in excellent agreement, as shown by 

the overlapped plots in Fig. 42. Finally, the sensor is fitted within its enclosure, as 

shown in Fig. 43. 
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g. Safety and SAR Analysis 

The proposed sensor operates within the microwave region, a non-ionizing 

portion of the EM frequency spectrum [39]. This ensures the safety of our method, 

which does not pose any of the health risks associated with ionizing radiation, such as 

X-rays [44]. Furthermore, the Federal Commissions Committee (FCC) adopts certain 

standards and requirements to regulate the emission levels of radiating structures to 

mitigate any health risks, such as the ANSI/IEEE C95.1-1992 [45]. Accordingly, the 

FCC limits the Specific Absorption Ratio (SAR) – a measure of the amount of RF 

energy absorbed by human tissues – from wireless devices, to 1.6 W/Kg. The proposed 

sensor operates at -15 dBm, where a peak SAR of 0.1 W/Kg is obtained, well below the 

recommended limit.  

 
Figure. 42. The simulated and measured 𝑆11 of the proposed sensor. 
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Figure. 43. Photograph of the assembled sensor within its enclosure. 

 

D. Backend Analyzer Circuit 

An EM sensor is the front-end of a sensing system that interacts with an MUT; 

however, it cannot operate on its own. The second crucial part of the proposed sensing 

system is the backend wave analyzer. This wave analyzer will handle the generation of 

the stimulus signals sent to the sensor at the front-end, analyze the reflected signals in 

the sensing procedure, extract the magnitude and phase of the 𝑆11, and perform the 

required input/output (IO) operations to record and process the obtained data.  

The objective herein is to design a custom, portable, compact, and cost-efficient 

analyzer that operates from 2.3 GHz to 6 GHz that will seamlessly connect to the 

proposed sensor. This wave analyzer will perform the reflection coefficient 

measurement duties that a typical VNA would do, only at a fraction of the cost, with 

extreme miniaturization, and the ability to run custom software that suits the application 

at hand. 

Before leaping into the architecture and design of our custom analyzer, it is 

essential to gain an appropriate understanding of the typical microwave structures that 



 

 56 

constitute such a system. The following section will briefly introduce the functionality 

of each of these components.  

 

1. Microwave Structures 

a. Directional Coupler 

The directional coupler is a four-port network used to couple a fixed amount of 

an incident wave or a reflected wave traveling in one direction. By looking at Fig. 44, 

we can see that the input power is supplied through Port 1, and a portion of this power 

is coupled to Port 3 by a factor that dictates the level of coupling. Port 2 is the through 

port, where most of the power is transmitted to a load, and Port 4 is an isolated port 

which ideally should not receive any power from Port 1. In analyzer circuits and VNAs, 

the directional coupler is responsible for sampling the incident and reflected waves to 

and from a device under test, e.g.: sensor, antenna. Center to the functionality of a 

directional coupler is the Directivity. Directivity dictates the ability of a directional 

coupler to isolate the undesired reflected signals from the coupled port. Having a 

directional coupler characterized by a good directivity is necessary for the accurate 

functionality of an analyzer circuit, since lower directivity values typically result in 

reflected signals coupling to undesired ports. This impedes the ability to accurately 

measure the reflection coefficient, and equivalently, results in inaccurate measurements 

in a sensing application [39]. 

 

Figure. 44. Directional Coupler illustration from [23]. 
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b. RF Amplifier 

Weak RF signals, such as the ones received by mobile phones or the ones 

coupled from a reflected signal in a directional coupler, cannot be directly processed 

due to their low power. Mainly, the RF amplifier boosts such weak signals up to certain 

levels for appropriate processing in later stages of the RF chain. These amplifiers are 

characterized by their gain, which is expressed in dB [39]. 

c. Mixer 

A mixer is a three-port device that is center to many communication 

applications, such as radio transmitters and receivers. The function of a mixer is to 

either raise (up-convert) or lower (down-convert) the frequency of a desired signal. For 

instance, in transmitters, the mixer receives a low-frequency baseband signal and up-

converts it to the RF range for suitable communication. In receivers, the mixer receives 

the high frequency input signal and down-converts it to baseband for suitable digital 

signal processing, which is difficult to accomplish at high frequencies [39]. 

d. Filter 

A filter is a device that, based on its configuration, allows certain frequencies to 

continue propagating into the system while blocking others. Different types of filters 

exist, such as: low-pass, high-pass, band-pass, and band-stop [39]. Utilizing filters in 

such systems is crucial to minimizing the interfering signals that result from harmonics 

or other non-linearities present within the system. These signal interferers can 

significantly degrade the operation of the entire system, and ultimately, prevent accurate 

measurements. 
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e. Phase-Locked Loop (PLL) and Voltage-Controlled Oscillator (VCO) 

RF systems deal with signals characterized by different frequencies. The source 

of these signals is usually a VCO. The VCO outputs different frequencies based on the 

applied voltage. In more complex systems, PLLs perform the job of frequency synthesis 

by employing multiple VCOs to cover wider frequency ranges and ensures the phase 

synchronization between the input and the output of the loop [39]. 

 

2. Proposed VNA Architecture: WaveWhisperer 

a. General Overview 

The proposed analyzer system, “WaveWhisperer”, comprises the analog and 

digital circuitry, the code, and the algorithms that facilitate the configuration of this 

system and the analysis of the measured data. The functional block diagram of the 

proposed architecture is shown in Fig. 45. The WaveWhisperer operates as follows: A 

frequency synthesizer, known as the Source, is programmed to sweep and output a 

specific range of frequencies encompassing a sensor’s frequency of operation. The 

output of the source is connected to two directional couplers whose purpose is to couple 

portions of the incident and reflected signals propagating towards and from the sensor, 

respectively. These coupled signals are of high frequency content and must be down-

converted to enable further processing. Consequently, two mixers are used to perform 

this action on the reflected and incident waves simultaneously. For these mixers to 

operate, a second frequency synthesizer, known as the Local Oscillator (LO) must be 

used to drive the LO port of the mixers. The LO produces two 180 ° out of phase 

outputs, where each output drives the LO port of a corresponding mixer. The source and 

LO frequencies are set to be 40 MHz apart, resulting in two 40 MHz down-converted 
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signals at the output of each mixer. The lower 40 MHz signal passes through an 

attenuator for amplitude regulation. Furthermore, both 40 MHz signals then pass 

through a low-pass filter to block harmonics and intermodulation products from 

propagating into the detectors. Then, each 40 MHz signal is split into two signal paths 

that will be connected to two detectors that accept two inputs each. As will be discussed 

in the following sections, one of the arms of the split 40 MHz signals must undergo a 90 

degrees phase shift before being fed to the detector. Finally, the detectors output the 

gain and the phase of the input signals to a microcontroller that performs the rest of the 

digital processing.  

 

Figure. 45. A functional block diagram of the proposed analyzer architecture. 

b. Component Details and Functionality 

i. PLL 

To generate the required frequencies that energize our proposed sensor and to 

perform down-conversion, two high-performance frequency synthesizers (PLLs), 

MAX2871 from Maxim Integrated [46] are used to fulfill the roles of the Source and 

LO. One of the most attractive features of this PLL is its wide output bandwidth, 23.5 

MHz to 6 GHz. Furthermore, the MAX2871 is fully software programmable through a 
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simple 4-wire SPI interface, allowing simple configuration for the choice of generated 

frequency, power level, phase, among other settings. In addition, the MAX2871 has two 

fully differential outputs, A and B. This means that each of A and B has two ports that 

are 180º out of phase. The first PLL, the Source will be used to generate the frequencies 

that energize the sensor, utilizing only one output, A. The second PLL which acts as an 

LO, utilizes output A as a testing port to verify the intended performance, while output 

B’s differential ports will be used as the LO signals feeding the two mixers in our 

architecture. To perform successful communication, one must understand the interface 

protocol of the MAX2871 and its underlying registers. This PLL contains seven 32-bit 

registers in total, six of which are write-only and one is read-only. Each register is 

organized in a way such that the 29 most significant bits (MSBs) are data bits while the 

last 3 bits (LSBs) are the register address. One of the 4 wire SPI interface logic 

connections, known as the load-enable (LE), controls the loading of bits into registers. 

If the LE is set to logic low, the data is loaded into the register MSB first. When LE is 

toggled to logic high, the MSBs are loaded into the register whose address is in the 

LSB. According to datasheet recommendations, all register values must be programmed 

twice with at least 20ms delay in between the writes at startup. 

PLLs require an external low frequency oscillator, typically a quartz crystal 

oscillating between 10-140 MHz, to be connected as the reference signal. In our design, 

the crystal oscillates at 40 MHz. The oscillating signal coming from the crystal 

oscillator acts as the base frequency (PFD), thereby allowing the PLL to generate 

multiples of this base frequency based on integer or fractional coefficients stored in 

programmable registers to achieve a desired frequency. To synthesize a desired 

frequency, the 40 MHz signal incoming from the crystal oscillator is multiplied within 
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the PLL by certain factors that result in the desired frequency. The MAX2871 operates 

in two modes, the Integer-N and the Fraction-N modes. The Integer-N mode, as the 

name suggests, allows for the synthesis of integer multiples of the base frequency. On 

the other hand, the Fraction-N mode, enables the synthesis of a fractional multiple of 

the base frequency. Equation (3) governs the aforementioned operation, where F/M is 

zero in Integer-N mode, and non-zero otherwise. N, F, and M are the parameters of 

interest when synthesizing a frequency, and they represent values stored as bit 

sequences in different registers. 

𝑁 + (
𝐹

𝑀
) = (

𝑓𝑅𝐹𝑂𝑈𝑇𝐴 𝑥 𝐷𝐼𝑉𝐴

𝑓𝑃𝐹𝐷 
 )     (3) 

N is the integer multiple of the PFD that results in the desired frequency, and the 

fractional remainder 
𝐹

𝑀
 represents the fractional value resulting from the division of the 

desired frequency by the PFD. M is the modulus which can take values from 1-4095, 

while DIVA is the output divider that can take values from 20 to 27, depending on a list 

of frequency ranges as shown in Table. 2. 

Example A - Integer: Assume we want to synthesize a 4.8 GHz and our crystal 

oscillator frequency (PFD) is 40 MHz, while M is chosen to be 4000 for high 

resolution, then, the following procedure is followed in order to produce the desired 

frequency: 

Get DIVA: By looking at Table. 2, 4.8 GHz requires a DIVA value of 1. 

Get N: N = DIVA x Desired Freq / PFD = 1 x 4.8 GHz/40MHz = 120. 

Since 4.8 GHz is an integer multiple (120) of 40 MHz, then the fractional mode is 

unneeded, hence, F/M will be 0. Finally, these values are loaded into their respective 

registers and the frequency is synthesized. 

Example B- Fractional: Assume that we would like to synthesize 2.537 GHz, then: 
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Get DIVA: DIVA = 2, since 1500 MHz ≤ 2537 MHz ≤ 3000 MHz according to Table. 

2. 

Get N: DIVA x Desired Freq / PFD = 2 x 2.537 GHz/40MHz = 126.85. This time, 

126.85 is no longer an integer – it’s a fraction. This means that N = 126 and F/M is the 

remainder = 0.85. 

Get F: F = 0.85*4000 = 3400. 

These values are then loaded into their respective registers and the frequency is 

synthesized.  

Table 2. DIVA values for different frequency ranges. 

DIVA Frequency Range 

1  3000 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 6000 MHz 

2 1500 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 3000 MHz 

4 750 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 1500 MHz 

8 375 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 750 MHz 

16 187.5 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 375 MHz 

32 93.75 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 187.5 MHz 

64 46.875 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 93.75 MHz 

128 23.5 MHz ≤ 𝑓𝑅𝐹𝑂𝑈𝑇𝐴 ≤ 46.875 MHz 

 

The full programming sequence can be understood from the [46], and an Arduino 

implementation from [47] was modified to suit this application’s needs. 

ii. Directional Couplers 

Directional couplers, which were defined previously, are used to couple the 

incident and reflected signals from our sensor. The directional couplers used are two 
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ZHDC-10-63+ units from mini-circuits [48] and they are characterized by a high 

directivity of 33 dB as well as a wide bandwidth of operation from 2 GHz to 6 GHz. 

The high directivity of these directional couplers is crucial in significantly reducing 

directivity errors and enabling easier calibration.  

iii. Mixers 

As mentioned previously, operating at very high frequencies imposes severe 

constraints on the hardware that can be used to process such signals. As a solution, the 

high frequencies are lowered in a process called down-conversion to 40 MHz using two 

SIM-762H+ mixers from mini-circuits [49]. These mixers are characterized by their 

simple passive design as well as their large bandwidth of operation from 2.3 GHz to 6 

GHz.  

iv. Filters: 

The synthesizers, mixers, and amplifiers are of non-linear nature. This means that 

additional frequency components will be injected into our detectors, critically distorting 

our desired frequency of interest due to the inability of our detectors to distinguish 

between a desired and an undesired frequency. As a result, 40 MHz low-pass filters 

(LPFs) are designed to allow the desired low frequency to pass unattenuated while 

heavily attenuating the higher frequencies. Advanced Design System (ADS) [50] is 

used to design these LPFs, which follow the Pi topology comprising two 47 pF shunt 

capacitors and a 220 nH series inductor in between. The ADS schematic is shown in 

Fig. 46. Furthermore, Fig. 47(a) shows the obtained 𝑆21of these filters and their 

corresponding cut-off frequencies, and Fig. 47(b) illustrates the extreme attenuation at 

undesired frequencies. 



 

 64 

 

 

 

v. Detectors: 

Gain and phase detectors compose the core of this system. These detectors will 

perform the crucial role of measuring the differences between the previously down-

converted signals to produce the reflection coefficient 𝑆11. The detector used is the 

AD8302 Gain and Phase Detector from Analog Devices [51]. Essentially, the AD8302 

Figure. 46. ADS schematic of the 40 MHz LPF. 

Figure. 47. Simulated results of the LPF at (a) small bandwidth, and (b) large 

bandwidth. 
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enables the measurement of the power gain and the phase difference between its two 

input signals from low frequencies up to 2.7 GHz.  The magnitude of the input signals 

can range from -60 dBm to 0 dBm, and the AD8302 can achieve a maximum gain or 

loss measurement of 30 dB between the input signals. The AD8302 outputs the gain 

values as DC voltages across its gain pin, where the measurements are expressed as 30 

mV/dB and obey the output characteristics shown in Fig. 48(a). In addition, the 

AD8302 measures the phase difference between the input signals from 0-180° and also 

outputs the result as a DC voltage across its phase pin. The phase measurements are 

expressed as 10 mV/degree and obey the output characteristics shown in Fig. 48(b).  

Ideally, the AD8302, in conjunction with a pair of directional couplers, can 

perform VSWR measurements by forming an inexpensive reflectometer. However, the 

AD8302 suffers from two main drawbacks that prohibit its use as a network analyzer in 

our system. First, the frequency range of operation (DC to 2.7 GHz) is much lower than 

the frequencies used by our proposed sensors (4-6 GHz). The second issue is the phase 

ambiguity. The AD8302 measures an absolute value of the phase shift ∆𝜃 which falls 

within 0-180° without information on its sign. For example, the same DC output is 

common for both ± ∆𝜃 phase differences as shown in Fig. 48(b). This phase ambiguity 

prevents the acquisition of the full 𝑆11, and also impedes the necessary calibration, 

where the true phase must be known. Vector calibration  is a powerful feature that must 

be present due to its effectiveness in reducing multiple types of measurement errors, and 

it helps in minimizing the gap between an ideal response and an uncalibrated one. These 

errors include: directivity errors, matching errors, line-loss, and phase mismatch.  
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Figure. 48. The magnitude response of the AD8302 (a), and its phase response (b) [51]. 

 

Several design-level decisions are implemented to expand the frequency range 

of operation as well as to disambiguate the phase. To expand the frequency range of 

operation, it is decided to utilize a frequency down-conversion stage (composed of the 

previously discussed elements) that lowers the frequency of operation from a few GHz 

to an intermediate frequency (IF) of 40 MHz that is lower than the maximum operation 

frequency of 2.7 GHz. This IF is chosen carefully since the choice of frequency controls 

the type of hardware and interconnects between the down-conversion stage and the 

detectors. 40 MHz is chosen as the IF for three reasons: 1) This frequency is relatively 

low when compared to GHz frequencies. Hence, it simplifies the connection between 

the succeeding components, particularly transmission line effects such as impedance 

mismatch and undesired coupling between lines are almost negligible at such low 

frequency and short line length. 2) The design of  lumped element filters at 40 MHz is 

simpler when compared to RF filters. In the case of lumped element filters at high 

frequencies, unwanted parasitics that degrade the performance of the filter will be 

present. On the other hand, distributed-element filters at high frequencies require more 

physical space and increase the risk of high frequency interference. 3) Building a filter 
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at such a low IF ensures the proper attenuation of all harmonics and spurs generated by 

the PLL and the amplifier.  

As for phase ambiguity, one solution is to utilize two AD8302 units, with 

appropriate phase shifting at the input terminals to attain a phase-shift measurement 

from 0 to 360º. The two 40 MHz incoming signals representing the coupled incident 

and reflected signals are split into two, resulting in 4 signal lines. Each detector accepts 

one half from every other signal. Detector #1 will receive a reference signal and a 

reflected signal at its input, while detector #2 will receive a reference signal that is 

shifted by 90º from its original state, and another unaltered reflected signal as well. 

Assume we read a phase difference output of 1.5V from detector #1, as shown in Fig. 

49. We cannot distinguish whether the phase difference is 45º or -45º. Then, we read the 

output of detector #2, which is shifted by 90º. If the original phase is -45º (point A), 

then detector #2 must output 1.2V (point A’), whereas if the true phase is B, detector #2 

must output 0.6 V (B’). 

 

Figure. 49. The effect of introducing a 90º phase shift [52]. 

The aforementioned 90º phase shift is achieved by designing a T-type LPF that 

generates a 90º phase shifter at the desired IF (40 MHz). Fig. 50 shows the ADS 
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schematic of the proposed filter, Fig. 51(a) shows the phase shifter’s response that 

allows the 40 MHz signal to pass unattenuated, and Fig. 51(b) shows the filter’s phase 

response at 40 MHz. 

 

 

Figure. 50. ADS schematic of the 90 degrees phase shifter. 

 

 
Figure. 51. Simulated performance of the phase shifter. 

vi. Microcontroller 

In order to communicate with the different ICs, provide power, and perform 

signal read-out, an Arduino Nano 33 IoT microcontroller is used [53]. This Arduino is 
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characterized by its compactness, suitable performance, and its wireless connectivity. In 

addition, this particular model supports castellated mounting holes which enable the 

solderability of the entire module onto the WaveWhisperer PCB, which achieves higher 

overall compactness. 

c. WaveWhisperer Schematic 

This section showcases the schematic diagrams for the WaveWhisperer’s 

electronic circuit which is designed using the easyEDA CAD software [54]. These 

schematics reveal the used components, their wiring, biasing, and associated lumped 

components. The schematics are divided into 3 parts: Microcontroller and Power, PLL, 

and Down-conversion and Detection, which are shown in Fig. 52-54. 

It is important to highlight that specific supply voltages are required to power 

the various components of the system. In our system, the microcontroller is powered by 

a 5V external USB supply that feeds four low drop-out voltage regulators (LDOs) 

responsible for creating the voltages required by the various components within the 

circuit. The chosen LDOs from Texas Instruments [55] ensure a stable voltage across 

sensitive components such as the PLL. Three of these LDOs transform the 5V into three 

3.3V sources that simultaneously feed different parts of the PLL. The fourth LDO 

transforms the 3.3V into a 1.8V supply voltage required by the crystal oscillator. 
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Figure. 52. The schematic of microcontroller and the power sections of the proposed 

architecture. 
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Figure. 53. The schematic of the utilized PLL. 

 

Figure. 54. The schematic of the down-conversion and detection chain. 

 

d. WaveWhisperer Layout 

After completing the schematic diagram, the layout of the printed circuit board 

(PCB) is then manually produced by positioning the components in their most optimal 

location, and then carefully routing the impedance-controlled RF traces, the digital 
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signal traces, and the power planes. PCBs come in many variants that are characterized 

by their number of layers and their dielectric material.  

i. The 4 Layer PCB: 

Typically, high-performance RF boards utilize multi-layer1 PCBs such as 4 or 

more layers, as opposed to only 2-layer PCBs due to multiple reasons. First, multi-layer 

RF boards possess better isolation between the different planes, meaning that noise and 

undesired radiation between the power planes, high-speed signal routes, and RF 

transmission lines is reduced. In addition, having a multi-layer board ensures the 

presence of a continuous ground plane beneath transmission lines, which is necessary to 

maintain the characteristic impedance of these lines. Furthermore, integrated circuits 

(ICs) particularly at RF, typically have small packages and pins, which require very 

narrow 50-ohm routing lines. In a 2-layer stack-up, the thickness of the dielectric 

material used as well as its dielectric constant dictate relatively large line widths that 

complicate routing and potentially compromise proper impedance matching. The PCB 

of our analyzer circuit adopts a 4-layer stack-up that is commonly recommended for RF 

and high-speed designs. Each layer serves a designated role, as discussed below:  

• Layer 1 - RF Transmission Lines and High-Speed Signals: This is the top-

most layer at which various components are placed along with the RF 

transmission lines and high-speed signal lines. Layer 1 is shown in Fig. 55(a). 

• Layer 2 - Continuous Ground Plane: An unobstructed continuous ground 

plane beneath the first routing layer that ensures the proper impedance control 

for the RF transmission lines. This layer also shields other layers from undesired 

parasitic coupling. Layer 2 is shown in Fig. 55(b). 

 
1 By layers we mean the copper planes on top of the dielectric material. 
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• Layer 3 - Power plane: This layer is reserved for constructing sub-planes that 

correspond to different voltages generated by the top-layer LDOs in order to 

power the different components accordingly. To power a component, a via is 

inserted between a supply trace on the top layer and the required power sub-

plane on layer 3. The voltages present in this plane are 3.3V and 5V. Layer 3 is 

shown in Fig. 55(c). 

• Layer 4 – Signal and Ground: This layer, through vias from layer 1, is used to 

route connections between the top layer components that would have been 

otherwise impossible or tedious to route due to the presence of other obstructing 

lines and components on layer 1. Layer 4 is shown in Fig. 55(d). 

An additional view of the top layer that includes the corresponding copper mask 

and silkscreen is shown in Fig. 56. A 3D CAD rendering of the top and bottom layers is 

shown in Fig. 57. Furthermore, an exploded view of the multi-layer PCB is shown in 

Fig. 58. 

 

 

Figure. 55. The different layers of the PCB. (a) Layer 1, (b) Layer 2, (c) Layer 3, and 

(d) Layer 4. 
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Figure. 56. A Top-layer view of the designed PCB. 

Figure. 57. 3D rendered view of the top and bottom layers. 
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Figure. 58. Exploded view of all layers. Blue layers represent the silkscreen, golden 

layers represent copper, and white layers represent the dielectric material. 

 

ii. Commercial PCB Stack-up and RF Transmission Lines: 

PCB fabrication houses offer multiple stack-ups that are characterized by 

different properties that suit different applications, such as the thickness of each 

dielectric layer and its dielectric constant. The chosen 4-layer stack-up is an impedance 

controlled one known as the JLC7628 from JLCPCB [56]. One of the most important 

features of this stack-up is the dielectric constant and thickness of the dielectric material 

between the top conductor layer and the 2nd layer which is the ground plane. The 

dielectric constant of this layer is 4.6 and its thickness is 0.2 mm. For a 50-ohm 

transmission line, the aforementioned properties result in a line width of 0.31mm, which 

is ideal for impedance-controlled routing between finely pitched pins.  

iii. Via Stitching and Ground Pour:  

Via Stitching, is the placement of vias around transmission lines carrying high 

frequency signals to prevent undesired radiation and interference [57]. Hence, the 

overall RF leakage and coupling is reduced. The red ellipses in Fig. 59 highlight the 

vias surrounding transmission lines. In addition, a ground pour, refers to the placement 
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of a ground plane that surrounds routing lines and components, which aids in reduced 

cross talk and improved EMI suppression.   

 

 

Figure. 59. Locations of the VIA stitches and the ground pour. 

iv. WaveWhisperer Fabrication 

After completing the design layout, the PCBs were sent to the JLCPCB [56] 

fabrication house. The finished PCB is shown in Fig. 60. Then, the required ICs, 

capacitors, resistors, inductors, and the microcontroller were soldered onto their 

designated positions using hot-air soldering. The top and bottom layers of the 

WaveWhisperer containing the respective soldered components are shown in Fig. 61. 

On the other hand, the source frequency module is implemented by soldering the PLL 

IC and its required components to a second vacant WaveWhisperer PCB while keeping 

other pads empty, as shown in Fig. 62. Furthermore, the compactness of the 

WaveWhisperer, whose dimensions are 25.4x80.6 mm2, is demonstrated by placing it in 

the palm of the hand, as shown in Fig. 63. 
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Figure. 60. The fabricated PCB. 

 
Figure. 61. The soldered PCB (a) top layer, and (b) bottom layer. 

 

Figure. 62. The source frequency module. 



 

 78 

 

Figure. 63. The WaveWhisperer PCB in the palm for scale. 

 

e. WaveWhisperer Testing 

i. Frequency Synthesizer Testing 

To validate proper communication between the microcontroller and the PLL and 

examine the PLL’s operation, a series of frequency synthesis tests are conducted. The 

computer is connected to the WaveWhisperer via USB and the Arduino IDE software 

[58] is launched. The Arduino IDE provides a serial interface for programming the 

WaveWhisperer and specifying the desired output frequency that we want to synthesize, 

along with other settings. Next, the frequency diagnostics port (port A) of the 

WaveWhisperer is connected to a spectrum analyzer that will display the synthesized 

frequencies. The WaveWhisperer is programmed to synthesize the frequencies 1 GHz, 2 

GHz, 3 GHz, and 6 GHz. By looking at the snapshots recorded from the spectrum 

analyzer in Fig. 64, we confirm the successful frequency synthesis by observing the  

desired generated frequencies.  
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Figure. 64. Screenshots from the spectrum analyzer, showing the synthesized 

frequencies: (a) 1 GHz, (b) 2 GHz, (c) 3 GHz, and (d) 6 GHz. 

 

ii. Results: Raw Measurement Data, Noise, and Filtering 

After verifying successful frequency synthesis, the functionality of the different 

blocks within the WaveWhisperer is examined by observing the uncalibrated 𝑆11 data 

for the used EM sensor. First, the transmitter and the receiver modules of the 

WaveWhisperer are connected to achieve the necessary serial communication, as shown 

in Fig. 65. Then, the receiver module is connected to the PC via a USB cable for power 

and control. Afterwards, the directional couplers are used to couple portions of the 

incident and reflected signals from the EM sensor. 
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Figure. 65. WW while powered on. The red LED module is the transmitter, and the blue 

LED module is the receiver. 

 

The EM sensor used operates at 4.75 GHz. The raw magnitude and phase data 

from detector #1, within the WaveWhisperer, is plotted in Fig. 66. The raw gain values, 

which are DC voltages, are transformed into their 𝑆11 dB equivalent by relying on (4) 

[51]. On the other hand, the measured DC voltages representing the phase angle values 

are transformed to their equivalent 0-180º values by relying on (5) [51].  

𝑃𝐼𝑁𝐴 − 𝑃𝐼𝑁𝐵 (𝑑𝐵) =
𝑉𝑀𝐴𝐺−900𝑚𝑉

−30𝑚𝑉
    (4) 

     ∆𝜃 (°) =
𝑉𝑃𝐻𝑆−900𝑚𝑉

10𝑚𝑉
 +90º     (5) 

The uncalibrated 𝑆11 magnitude, corresponding to the red plot in Fig. 66, shows 

a deviation from the 0 dB level in the non-resonant regions of the sensor. In an ideal 

situation, the 0 dB level means that the completely reflected signal as well as the 

incident signal coming from the coupled ports of the directional couplers are equal.  

This deviation implies an imbalance between the reflected and incident wave paths 

within the WaveWhisperer, which is expected since the components within have 

inherent losses and are not ideal. To account for this imbalance, calibration techniques 
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are typically adopted to improve the observed response and bring it closer to an ideal 

one. One of these calibration techniques, known as the short-circuit calibration, is 

applied here. The concept is that we first load the WaveWhisperer with a DUT that 

causes full-wave reflection, such as a short circuit. Then, the response of the reflected 

and incident paths is measured, providing us with quantitative information regarding the 

imbalance. Then, the difference between obtained response and the ideal measurement 

(0 dB) is computed and added to any subsequent measurements to account for the 

imbalance. This calibration technique is applied to our EM sensor, and the calibrated 

response exhibits significant improvements that closely resemble an ideal one, as shown 

in Fig. 66.  

 

Figure. 66. The raw and the calibrated 𝑆11 of the used EM sensor. 

Furthermore, the WaveWhisperer is then used to perform measurements –

identical to clinical ones that utilize a VNA—using our EM sensor. Accordingly, the 

magnitude of the sensor’s 𝑆11 is measured in both free-space and while being loaded 

with a volunteer’s forehead skin. Fig. 67(a) presents the outcome of both the unloaded 

and loaded states, where the latter is represented by a shift in the frequency of operation 
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as well as the magnitude of the 𝑆11. Initially, the response was slightly noisy, which is 

attributed to high frequency noise and the inaccuracies of the microcontroller’s ADC 

which is sampling the DC voltage measurements coming from the detectors. To reduce 

this noise, a Finite Impulse Response (FIR) low-pass filter is utilized. The designed 

filter was found to provide optimal results when the passband frequency is 150 Hz, and 

the stopband frequency is 1000 Hz. As a result, the response obtained after the 

application of the FIR filtering was smoother and contains less noise, as shown in Fig. 

67(b). 

 

Figure. 67. (a) The 𝑆11 response with and without loading. (b) The FIR filtered 

response. 

 After measuring the magnitude, the phase response of each detector is also 

measured. Fig. 68 presents these responses in a raw unloaded state, a raw filtered state, 

a raw loaded state, and a raw filtered state. The 0-180º phase response from each of the 

two detectors is used to calculate the corresponding 0-360º phase response in both the 

unloaded and loaded states. The raw unloaded and loaded phase responses are plotted in 

Fig. 69(a) and the filtered counterparts are plotted in Fig. 69(b).  

 From Fig. 67 and Fig. 69, we are able to successfully validate that our wave 

analyzer, the WaveWhisperer, is capable of measuring the frequency shift and the 
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changes in the phase and magnitude of the 𝑆11 that are practically witnessed within 

clinical settings. 

 
Figure. 68. The phase response of the two detectors in: (a) the raw unloaded state, (b) 

the FIR filtered unloaded state, (c) the raw loaded state, and (d) the filtered loaded state. 

 

Figure. 69. (a) The raw unloaded and loaded 0-360º phase response. (b) The FIR filtered 

version of the phase response. 
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E. Discussion 

The design of the initial EM sensor unveiled major challenges to its successful 

utilization as a diagnostic sensor. These challenges oriented the rationale behind the 

updated design decisions that formed the cornerstone of the second, improved, and 

tailored EM sensor. Particularly, the improved sensor introduces a lesion-optimized 

sensing tip that aims to enhance the interaction between the emanating electromagnetic 

fields and the skin lesion under test. This enhancement is achieved through adopting a 

customized hemispherical sensing tip that focuses and enhances the density of the 

emanating EM fields. Such a technique leads to an improved measurement sensitivity at 

a practical stand-off distance. The sensor also makes use of a designed metallic 

enclosure that restricts the sensor’s sensing to the particular lesion under test beneath 

the sensing tip. This also prevents sensing from the surrounding interferers such as 

objects in close proximity to the sensor and ambient RF noise. These crucial design 

decisions and modifications enabled a much more sensitive and robust sensor that is 

optimal for lesion sensing procedures. 

Furthermore, the realization of the WaveWhisperer wave analyzer and its 

successful validation substantiates that such technology can be miniaturized and 

customized to suit the application at hand. Essentially, the WaveWhisperer employs a 

custom RF chain composed of magnitude and phase detectors, frequency sources, 

down-conversion stages, among other RF components. The WaveWhisperer ultimately 

aims to measure the properties of the reflection coefficient that in turn, highlight the 

properties of a specimen under test. By integrating the WaveWhisperer and the 

developed lesion-optimized sensor into one product, we have effectively produced a 
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powerful RF sensing system that otherwise would have forced researchers to adopt 

physically impractical, highly expensive, and non-customizable alternatives.  
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CHAPTER VI 

CLINICAL TRIALS 

A. Introduction 

Trials are conducted to validate the operation of our sensor and technique in an 

intended clinical setting. The performed clinical trials include testing on patients with 

pre-diagnosed skin cancer as well as healthy control participants. Furthermore, the 

clinical trials in this study are approved by the Institutional Review Board at the 

American University of Beirut. These clinical trials consist of testing the developed EM 

sensor on a population of 23 participants, which is divided into 12 patients and 11 

healthy volunteers. The following sub-sections detail the measurement procedure for 

each participant group. 

 

B. Measurements on Skin Cancer Patients 

The patients involved in this clinical trial are readily pre-diagnosed with skin 

cancer, where 11 were diagnosed with BCC and 1 was diagnosed with SCC. Our 

measurements are performed on patients only minutes before undergoing Moh’s surgery 

for the extraction of their cancer. During these measurements, the primary Moh’s 

surgeon is present and oversees the procedure, and the patients have signed the pertinent 

informed consent. The patient population includes 6 males and 6 females with ages 

ranging between 32 and 87. Our measurements are performed in vivo while the cancer 

is still intact on the skin prior to its extraction. This is crucial in order to preserve the 

fidelity of the measurements especially that the temperature of the body as well as 

external factors, such as hydration, dryness, or added preservative solutions cause 

changes in the dielectric properties of the specimen used  [6], [8], [26], [59], [60]. 
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Furthermore, works in the literature [61]–[63] have compared the effect of in-vivo and 

ex-vivo measurements on dielectric properties of a specimen under test, where it is 

shown that differences in the dielectric properties do exist, especially if the 

environmental and physiological conditions of the specimen are not preserved. 

As a result, we propose and adopt a measurement approach that utilizes multiple 

techniques to advance the measurement accuracy and preserve the fidelity of the 

specimen’s properties while accounting for the aforementioned variables. Our approach 

is based on performing differential in-vivo clinical measurements to overcome the 

challenges faced when measurements are executed on previously excised and pre-

processed excisions. This means that we avoided any form of altering the specimen 

under test, whether by extracting it from its natural environment, decreasing its 

temperature, or introducing preservative solutions that are typically required for ex-vivo 

measurements.  

The differential mode entails measurements on the cancer as well as on the 

adjacent healthy tissue in order to diminish the effect of variables that are common to 

both. As such, measurements are performed by positioning the sensor directly on top of 

the cancer, where the foam separator embedded within the sensor maintains a fixed 

distance between the sensing tip and the specimen. Then, 10 measurements of the 

magnitude and phase of the reflection coefficient are recorded at each site. Next, the 

sensor is placed on the adjacent healthy tissue and an additional 10 measurements of the 

same parameters are recorded. Multiple measurements are performed on each site in 

order to obtain an average value that reduces the random error and the potential 

fluctuations in the sensor’s response. The cancers included in our study were obtained 

from diverse locations on the face, and they were mostly spread across the nose, cheeks, 
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temples, forehead, and the scalp, as illustrated Fig. 70. Furthermore, the characteristics 

of the examined skin cancers for each patient are presented in Table. 3. 

 

Figure. 70. Most common cancer locations throughout the clinical trials. This figure is 

modified from https://www.pixtastock.com/illustration/60972716. 

 

Table. 3. Patient details. 

Patient # Gender Type Site Dimensions 

mm2 

1 M SCC Temple 1.5x1.1  

2 F BCC Forehead 15x10 

3 M BCC Tip of nose 8x10 

4 M BCC Tip of nose 5x5 

5 F BCC Side nose 6x4 

6 F BCC Side nose 4x3 

7 M BCC Top cheek 1.6x1 

8 M BCC Scalp NA 

9 M BCC Ear lobe NA 

10 F BCC Forehead NA 

11 F BCC Upper nose NA 

12 F BCC Scalp NA 



 

 89 

 

C. Measurements on a Healthy Control Group 

Obtaining a large dataset of healthy skin measurements at different locations on 

the skin provides additional insight on the general properties of healthy skin and leads 

to more accurate data models. As a result, measurements are performed on 11 healthy 

individuals, 5 males and 6 females, where measurement locations are chosen to be 

similar to those that were previously performed on skin cancer patients. Similarly, 

measurements are repeated 10 times per site until all sites are tested. It is also worth 

mentioning that all participants are characterized by type III skin on the Fitzpatrick skin 

scale [32]. Table. 4 summarizes the details of both healthy and patient populations and 

their respective measurements. 

Table 4. Overall subject and measurement information. 

Number of Subjects 23 

Number of Patients 12 

Number of healthy controls 11 

Patient Measurements /Patient 20-40 

Healthy Measurements /Patient 90 

Ages 24 – 87 

Conditions BCC, SCC, Healthy 

 

D. Discussion 

The involvement of healthy individuals and skin cancer patients in our clinical trials 

served to clearly demonstrate the differences between the healthy and diseased skin. 

Additionally, the in-vivo differential mode of testing on both groups provides an 
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unadulterated interrogation of the measured specimen’s nature, leading to high-quality 

measurements within a realistic measurement setting. Notably, the quality of the 

measurements has a direct effect on the sensor’s ability to detect differences between 

the various measured specimen, and ultimately, impacts the ability to achieve accurate 

diagnosis and classification. 
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CHAPTER VII 

ANALYSIS, RESULTS, AND DISCUSSION 

A. Introduction 

The magnitude and phase data of the reflection coefficient (𝑆11) both provide 

the necessary information that eventually determines the difference between the 

measured specimens, which are composed of tissues with different complex permittivity 

values. By relying on a statistical analysis of their properties, we can ultimately 

distinguish between benign or malignant skin lesions. Our proposed EM sensor along 

with the FieldFox VNA [43] are used to perform these measurements and record them. 

In each measurement, whether on healthy or cancerous lesions, we sweep 1001 points 

from 4 GHz to 5 GHz, 10 times. The 10 redundant measurements per site are then 

averaged to reduce any random fluctuations. These measurements are obtained by 

positioning the EM sensor on the healthy and cancerous specimens and lightly pressing 

against the skin with constant pressure to ensure proper contact between the sensor and 

the skin, as shown in Fig. 71. Finally, the data is categorized based on the nature of the 

specimen, e.g.: healthy, cancerous, where each category includes a set of 𝑆11 magnitude 

measurements and a set of 𝑆11 phase measurements. In the following sub-sections, we 

evaluate the proposed sensor’s performance, explore two approaches for data modeling 

and prediction, and analyze the obtained results. 

 

B. Performance: The Distinct Response to Healthy and Cancerous Skin Lesions 

 

The plots in Fig. 72 and Fig. 73 represent our proposed sensor’s raw 𝑆11 

measurements on a patient’s cancerous lesion and its adjacent healthy skin in terms of 
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magnitude and phase, respectively. The response of the sensor in both cases is 

manifested as a shift in the resonance frequency, as well as changes in the magnitude 

and phase of the sensor’s measured 𝑆11 from an initial unloaded state. We can also 

observe the existence of distinctive characteristics for the cancerous and healthy 

measurements in terms of resonance frequency and 𝑆11. These differences, their levels, 

and their associated trends, form the basis of our analysis in the coming sections.  

 

 

Figure. 71. The EM sensor placed on top of skin. 
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Figure. 72. 𝑆11 magnitude measurement of a skin cancer and its adjacent healthy skin. 

 

Figure. 73. 𝑆11 phase measurement of a skin cancer and its adjacent healthy skin. 

 

C. Model Design, Analysis, and Results 

 

1. Imbalanced to Balanced Data: Synthetic Minority Oversampling Technique 

(SMOTE): 

 

In practical applications, and specifically medical ones, classes used in data 

analysis may not be balanced, in other words, they might not have an equal number of 

observations, which might lead to misclassification [64]. The class with the fewest 

observations is called the minority class, whereas the majority class is characterized by 
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its higher number of observations. As a direct consequence to this imbalance, models 

using such training data will result in higher classification accuracy for the majority 

class, while exhibiting lower accuracy for the minority class.  In fact, our primary 

information of interest often lies in the minority class, such as disease prevalence [65] . 

Notably, balancing the data has been proven to improve the prediction capability of a 

machine learning model. For this reason, the SMOTE [66], a widely popular algorithm, 

is introduced as a mean to synthesize new data points instead of replicating the pre-

existing data to balance the minority class, such as cancer measurements. Such 

oversampling enables higher accuracy and deeper insight. SMOTE has seen numerous 

applications within the literature in applications where data imbalance prevails [65]–

[69]. The SMOTE algorithm, based on a distance metric, interpolates between a 

specified number of neighbors from the pre-existing dataset to generate the new data 

point. For instance, Fig. 74 shows 5 minority class points: xi to xi4 that are used to 

create the 4 new minority class instances, r1-r4 [66]. In the upcoming sections, SMOTE 

will be used to increase the minority class observations, i.e.: skin cancer observations. 

 
Figure. 74. Illustration of SMOTE synthesis [62]. 

 

2. Support Vector Machines (SVM): 

a. Introduction 

SVM is one of the most powerful and commonly used machine learning 

algorithms that are employed in a variety of applications. The SVM is a kernel-based 
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machine learning algorithm used in regression and classification applications, and it falls 

under the category of supervised learning algorithms [70]. Notably, SVM is commonly 

employed in a plethora of medical binary classification applications due to its powerful 

classification ability, such as several cancer classification and prediction problems [71]–

[74]. The primary objective of the SVM is to generate an accurate boundary, known as 

the hyperplane, between the groups of data to be classified. The SVM takes training data 

as well as pre-defined outcome labels to train the model. In addition, one of the most 

important characteristics of the SVM is its soft margin. The soft margin is a separator 

between the data classes that is formed by border-line data points belonging to the 

different classes to form what is known as Support Vectors. In other words, support 

vectors utilize some of the data points from both classes to build the decision boundary.  

SVM utilizes functions known as kernels that, if necessary, transform the input 

data into higher dimensions where the classes become linearly separable. There are 

several kernel functions, the most common ones are the Linear, Polynomial, RBF, and 

the Sigmoid, where each one of them is capable of producing different hyperplanes to 

separate the different classes, as illustrated in Fig. 75. Typically, an SVM model is 

tested with different kernel functions, and the kernel function that results in an SVM 

with the lowest K-Fold Cross Validation Error is then adopted as the best predictor. 

After choosing the appropriate kernel function, the model is trained using a training data 

set and pre-determined labels, and then its prediction performance is validated using a 

testing dataset. Throughout our study, we will employ SVM as our classification model.  
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Figure. 75. Typical SVM hyperplanes [75]. 

b. K-Fold Cross Validation 

Typically, a classification model is evaluated based on its prediction 

performance, which is achieved by dividing a dataset into a training dataset and 

validating its performance by utilizing a testing dataset. This methodology, however, 

may not provide the most optimal evaluation, since only one subset from the entire 

dataset was used to evaluate a model’s accuracy. K-Fold CV is introduced to solve this 

problem by dividing the dataset into K partitions, and iteratively ensures the usage of 

each partition for testing while the remaining partitions are reserved for training. K-Fold 

CV is especially important when comparing the performance of a model using different 

kernel functions. The kernel that results in a model’s lowest K-Fold CV is the one 

exhibiting the highest prediction performance on the utilized data set and must therefore 

be used in the designed model. 

c. Performance Metrics 

Some of the most common evaluation metrics for machine learning algorithms 

that will be used throughout this study are Sensitivity, Specificity, Accuracy, and 
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Youden’s index (YI). These metrics are derived from the confusion matrix elements, 

namely the True Positive (TP), False Positive (FP), True Negative (TN), and False 

Negative (FN) rates.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
∗  100    (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
∗  100    (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃 +𝑇𝑁+𝐹𝑃+ 𝐹𝑁)
∗  100    (10) 

𝑌𝐼 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)      (11) 

 

3. Approaches for Classification and Prediction  

a. Correlation-Based Classification 

 

The magnitude and the phase of the 𝑆11 for patients and healthy volunteers 

are collected. For patients, the 𝑆11 measurements are organized into measurements 

of cancerous-lesion origin and of adjacent-healthy origin. Likewise, for the healthy 

volunteers, 𝑆11 measurements at different locations that mimic the locations of 

cancerous lesions are organized according to their measurement location, e.g.: 

Temple 1, Temple 2, Forehead 1, and Forehead 2. Originally, the 𝑆11 data is 

measured at 1001 points, where each point corresponds to a frequency step of 1 

MHz within the 4 GHz to 5 GHz frequency span. To reduce computation time and 

improve data visualization, the insignificant 𝑆11 measurements surrounding the 

resonance bandwidth of the sensor are omitted. As such, for each patient we choose 

a bandwidth of 141 MHz centered around its resonance frequency of the cancer 

measurement (typically ~4.6 GHz). Similarly, the corresponding healthy 

measurement of the same patient is also centered around its new resonance 

frequency within a larger 200 MHz bandwidth. This larger bandwidth allows us to 
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choose the 141 observation points of the healthy measurements that coincide within 

the 141 cancer-measurement frequency range, essentially allowing us to maintain 

the shift in the resonance frequency from the cancer reference. Fig. 76 represents the 

𝑆11 magnitude of the cancerous and healthy lesions of 12 patients, and Fig. 77 

represents the phase response for 10 patients. Similarly, Fig. 78 and Fig. 79 

represent the magnitude and phase response of measurements on two adjacent 

forehead locations on 11 healthy volunteers. It is worthy to note that the 

measurements of patients, whether in magnitude or phase, exhibit distinct 

differences in terms of the shift in frequency and the magnitude and phase of the 

𝑆11. On the other hand, measurements on healthy volunteers exhibit an extreme 

degree of similarity.  

 
Figure. 76. 𝑆11 magnitude variation between healthy and cancerous lesions for 12 

patients. 
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Figure. 77. 𝑆11 phase variation between healthy and cancerous lesions for 10 patients. 

 
Figure. 78. 𝑆11 magnitude variation between two forehead locations for 11 volunteers. 



 

 100 

 
Figure. 79. 𝑆11 phase variation between two forehead locations for 11 volunteers. 

Afterwards, the squared correlation, also known as the coefficient of 

determination, denoted by 𝑟2, is calculated between the differential measurements 

of each subject. For patients, we obtain 𝑟𝐻−𝐶
2  for both the phase and magnitude 

measurements of the healthy skin and the cancerous lesion within a patient, and for 

healthy volunteers we obtain 𝑟𝐻−𝐻
2  for the phase and magnitude measurements at 

two adjacent healthy locations. These correlation values essentially demonstrate the 

relation between the tested classes of skin (cancerous and healthy). Furthermore, we 

obtain the value of 1 − 𝑟2 for all correlation values, since it better represents 

differences within the two classes when compared to 𝑟2.  

Since measurements on patients (correlation values) are less than 

measurements on healthy volunteers, we are dealing with a typical data imbalance 
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scenario in medical applications. For this reason, we employed the well-known 

SMOTE oversampling algorithm to increase our patient measurement population. 

As a result, we expanded the measurement data from 10 correlation points (each 

corresponding to a patient) to 44 points, effectively balancing the data with the 44 

healthy measurements. As for healthy volunteers, 141 points are also extracted 

around the resonance frequency at each measurement location, and the same 

alignment procedure to that of patients is applied to maintain shifts in frequency.  

At this stage, the best data model will be sought to provide the model that 

can best predict malignancy of skin lesions. The model to be used utilizes the 

previously discussed SVM classifier, and an iterative procedure is followed to 

determine the kernel function that results in the smallest K-Fold CV. Towards this 

end, the data is divided into 90% training data while the remaining 10% are reserved 

for testing. For our study, we evaluated the most common kernel functions, namely, 

the Polynomial, Linear, and Radial Basis Function (RBF) kernels. Our results have 

shown that the polynomial kernel achieved a K-FOLD CV error of 6.2% when 

compared to Linear and RBF kernels, as summarized in Table. 5. Hence, the 

polynomial kernel along with training data and the corresponding labels are used to 

construct our SVM classifier. The process of choosing the training and testing data 

is repeated 20 times, where each time the data is shuffled randomly before being fed 

into the SVM classifier.  

Our model exhibits significant statistical results, as represented by the 

outcome of our performance metrics. This model is characterized by a 3.3% test 

error, a sensitivity of 97.85%, a specificity of 95.4%, a YI of 93.25%, and an 

accuracy of 96.67%, as summarized in Table. 6. Fig. 80 shows the 1 − 𝑟2 values of 



 

 102 

the overall magnitude and phase measurements for all subjects along with their 

respective predictions. The healthy measurements are represented by blue dots, the 

cancerous lesions are represented by red stars, the red squares are cancer 

predictions, and the blue squares are healthy predictions. Additionally, four runs of 

the SVM model fed by shuffled training and testing data are illustrated in Fig. 81, 

where a clear distinction is shown between cancer measurements, healthy 

measurements, and the chosen support vectors with the respective SVM hyperplane 

boundaries. Finally, the effect of SMOTE is analyzed by plotting all test errors with 

respect to the test numbers in the cases of with and without SMOTE in Fig. 82.  As 

expected, the model employing SMOTE achieved significantly less test errors 

compared to the model without SMOTE. 

 

Table 5. CV evaluation of the polynomial, RBF, and linear kernels. 

METRIC POLYNOMIAL RBF LINEAR 

K-FOLD CV 6.2% 6.6% 9% 

 

 

   

Table 6. Performance metrics for the best SVM model. 

BEST 

KERNEL 

TEST 

ERROR 

SENSITIVITY SPECIFICITY YI ACCURACY 

POLYNOMIAL  3.3% 97.85% 95.4% 93.25% 96.67% 
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Figure. 80. The overall magnitude and phase sample points and the corresponding 

predictions. 

 
 

Figure. 81. Four runs of the SVM model fed by training and testing data shuffled 

randomly. 

 



 

 104 

 
Figure. 82. The model's test outcome with and without SMOTE employed. 

 

b. Feature Selection Wrapper 

 

In this approach, we rely on the magnitude and phase values of the 𝑆11 within a 

chosen bandwidth, essentially resulting in a large feature pool instead of relying on 

correlation values as in approach #1. The objective of this approach is to traverse every 

feature (frequency) within our selected range and analyze the corresponding 

observations (magnitude and phase for every patient and control) measured at these 

features, and ultimately extract the feature sets that best predict the outcome. In this 

approach, we take the difference between the healthy and cancerous measurements of 

patients (∆𝐻𝐶) and the difference between the healthy measurements at different 

locations for the healthy volunteers (∆𝐻𝐻). This difference is applied to both the 

magnitude and phase data, e.g.: (∆𝑀𝐴𝐺𝐻𝐶), (∆𝑃𝐻𝐻𝐶), (∆𝑀𝐴𝐺𝐻𝐻), and (∆𝑃𝐻𝐻𝐻). If the 

entire 141-point range is taken, we would have 141 points for ∆𝑀𝐴𝐺 and 141 points for 

∆𝑃𝐻, which results in 282 features. Since many of these features surrounding the 

resonance bandwidth of the sensor are insignificant for our analysis, the data must be 
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reduced by omitting ∆𝑀𝐴𝐺 and ∆𝑃𝐻 that fall below preset thresholds. As such, the raw 

magnitude and phase data pass through a normalization block that selectively omits 

∆𝑀𝐴𝐺 values below a threshold of 10 dB and the ∆𝑃𝐻 values below a threshold of 30º. 

Additionally, these magnitude and phase values are normalized to limit their 

distribution between 0 and 1.  

To account for the data imbalance between the majority class (healthy 

volunteers) and the minority class (cancer patients), the SMOTE is used to balance the 

patient and control classes. As such, 34 additional observations to the patient minority 

class are generated using the SMOTE, for both the ∆𝑀𝐴𝐺 and ∆𝑃𝐻. To perform feature 

selection, a modified form of the Forward Feature Selection Wrapper (FFSW) technique 

is employed. The FFSW takes the number of best features to be sought as a parameter 

labeled num_features. Once num_features is specified, the FFSW will traverse the 

entire feature pool in aims of finding the best set of num_features that results in the 

lowest test error. Our developed algorithm runs the sequential feature selection while 

using the SVM classifier as the model. The FFSW is iterated for three kernel functions: 

Polynomial, RBF, and Linear. Within each iteration, the K-Fold CV, with a K of 10, is 

calculated for each newly added feature set. This allows us to observe what number of 

features, out of the best features, results in the lowest K-Fold CV. This procedure is 

repeated for all kernel functions. Then, the kernel resulting in the lowest K-Fold CV is 

chosen along with its set of best features.  Fig. 83 shows the K-Fold CV for each kernel 

as a function of num_features. 

After identifying the best kernel function and the optimal number of features, an 

SVM model is trained on data at the aforementioned features. Then, the model is 

validated 10 times using test data at the best features, where the testing and training data 
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are randomly shuffled. This approach resulted in significant results based on our 

predefined performance metrics, as summarized in Table 7. 

 

Figure. 83. CV error as a function of number of features for every used kernel function. 

 

 

Table 7. Performance metrics for the FFSW approach. 

BEST 

KERNEL 

TEST 

ERROR 

SENSITIVITY SPECIFICITY YI ACCURACY 

POLYNOMIAL  1.1% 97.9% 100% 97.9% 98.9% 

 

 

D. Discussion 

The presented system establishes a unique and innovative platform that 

successfully blends EM-based sensing with medical diagnostics. The combination of 

several sensor design decisions tailored for malignant lesion detection enhanced our 

sensitivity in the microwave frequency range. Our findings, through robust statistical 

modeling, attest to our system’s ability to electromagnetically interrogate suspected skin 
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lesions non-invasively. It is necessary to note that the enhanced sensitivity of the sensor, 

and specifically the multi-feature statistical analysis methods adopted by our approach, 

unlocked deep insights into the nature of the skin lesion under test and highlighted the 

importance of analyzing the data at multiple features. Our results are highly 

encouraging, exhibiting sensitivity, accuracy, and specificity > 95%, which paves the 

way for the development of a commercial solution that can be potentially integrated into 

clinical settings.  
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

Skin cancer diagnosis methods are time-consuming and invasive, and there is 

currently no simple, portable, and cost-effective screening alternative for quick and easy 

integration into a clinical setting. As a result, we proposed an EM-based sensing system 

composed of a highly sensitive front-end sensor operating at 4.75 GHz and its 

corresponding backend wave analyzer for the quick non-invasive diagnosis of skin 

cancer. In collaboration with medical professionals from the AUBMC, clinical trials are 

conducted on patients with skin cancer to validate the functionality of our system. Our 

findings are very encouraging, where significant and clear differences between 

cancerous lesions and healthy tissues are observed. Furthermore, we studied the 

relationships within the obtained data and the corresponding trends, which culminated 

in developing two statistical classification models. Our two classification models are 

SVM-based classifiers that follow two approaches, a correlation-based one, and a best-

feature selector. Both approaches yielded significant specificity, accuracy, and 

sensitivity. Our proposed work successfully and definitively validates the strength of the 

proposed system and techniques which have a great potential into becoming a tool that 

augments the traditional inspection techniques followed by medical professionals. 

 Future versions of the proposed system aim to increase processing speed by 

utilizing performance microcontrollers and field programmable arrays (FPGAs), on-

board memory, an external analog-to-digital convert (ADC), and sensors that operate at 

multiple frequencies to explore trends at more features. Furthermore, we also aim to 

expand our clinical trials to include a larger number of skin cancer patients, including 

different types of skin cancer and potentially other debilitating diseases.  
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