
AMERICAN UNIVERSITY OF BEIRUT

GRAPH NEURAL NETWORK
ARCHITECTURES FOR FAST SIMULATION
AND MUON MOMENTUM INFERENCE AT

THE CMS DETECTOR

by

ALI ASSADALLAH HARIRI

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Mechanical Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
December 2020

on Behalf of Dr. Lakkis

on Behalf of Dr. Gleyzer

on Behalf of Dr. Alawieh

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.
Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

AliHariri Assadallah

February 3, 2021

Acknowledgements

I would like to express my sincere gratitude for being given the opportunity to
work on such an exciting topic in collaboration with the CMS experiment at
CERN. For that, I would like to thank the following people who have helped
make this journey possible:

• Dr. Sergei Gleyzer for allowing me to conduct research on Deep Learning
applied to particle physics in addition to his constant supervision through-
out this journey to ensure its success. Our discussions and meetings have
given me great insights and his mentoring will always be remembered as I
tackle new challenges in my career.

• Dr. Mariette Awad, Dr. Issam Lakkis, Dr. Leen Alawieh and Dr. Marwan
Darwish who supervised, reviewed my work and continuously provided the
needed support to ensure an efficient academic research environment.

• My colleagues Darya Dyachkova, Sitong An, Michael Andrews and Emanuele
Usai for the great teamwork and team support that were crucial to my work.

• Christian Hundt, Giuseppe Fiameni and Mozhgan Kabiri Chimeh for their
mentoring throughout the 2020 Helmholtz GPU Hackathon.

• Dr. Hazem Hajj, Dr. Zaher Dawy and Martin Gastal for facilitating the
logistics of the collaboration and showing continuous support.

On the other hand, it is worth noting that challenges are not limited to academic
ones. As I revisit this work in the future, I would like to be reminded of some
challenging conditions that hampered the working progress of most graduate
students at the time. The period between end of 2019 and late 2020 had been one
of the most challenging for Lebanon, while a global pandemic was simultaneously
affecting the global community. That being said, I would not have made it
through this tough period without the support of my family and friends to whom
I dedicate this work.

v

 عَلى قَدْرِ أهْلِ العزَْم تأتي العزَائِم

 وَتأتي علىَ قَدْرِ الكِرامِ المَكارم

يالمتنب -

An Abstract of the Thesis of

Ali Assadallah Hariri for Master of Engineering
Major: Mechanical Engineering

Title: Graph Neural Network Architectures For Fast Simulation
And Muon Momentum Inference At The CMS Detector

Accurate and fast simulation of particle physics processes is crucial for the high-
energy physics community knowing that simulating the particle showers and inter-
actions in the detector is both time consuming and computationally expensive.
Classical fast simulation techniques based on non-parametric methods can im-
prove the speed of the full simulation but suffer from lower levels of fidelity. For
this reason, alternative methods based on machine learning can provide faster
solutions, while maintaining a high level of fidelity. The main goal of a fast simu-
lator is to map the events from the generation level directly to the reconstruction
level. In this thesis work, we present novel approaches for Fast Simulation and
Muon Momentum inference in High Energy Physics. More specifically, we explore
the potential of graph neural networks in various applications including fast simu-
lation of boosted jets and muon momentum estimation in the CMS detector. We
introduce a graph neural network-based autoencoder model that provides effec-
tive reconstruction of calorimeter deposits using the earth mover distance metric.
We also propose to use graph networks to infer the momentum of muons in the
Cathode Strip Chambers given their ability to account for the several features
affecting the particles’ trajectories. We show that graph-based architectures out-
perform conventional deep learning baselines in terms of accuracy and result in
relatively competitive inference and training time. In addition, we optimize our
code for training using NVIDIA Nsight Tools and later investigate the scalability
of our Fast Simulation graph model on multiple GPUs for which we get speedups
of 1.62, 2.19 and 2.73 while scaling from 2 to 4 devices, respectively.

vii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

2 An overview of Particle Physics 4
2.1 The atom: A short history . 4
2.2 The Standard Model . 5
2.3 The Large Hadron Collider . 6
2.4 What is a Jet? . 8

3 The CMS Detector 9
3.1 Structure . 9
3.2 The Silicon Tracker system . 9
3.3 Calorimeters . 11
3.4 Muon Chambers . 12

4 Big Data and LHC Physics 14
4.1 Level 1 Trigger . 14
4.2 Machine Learning in High Energy Physics 15

5 Deep Learning 17
5.1 The human brain motivation . 17
5.2 The neuron: A mathematical insight 18
5.3 The Activation Function . 19
5.4 Fully Connected Networks . 20
5.5 Convolutional Neural Networks 22
5.6 ConvNets: A Neuron perspective 22
5.7 Pooling . 23
5.8 Mathematical details . 23
5.9 Stride and Padding . 24
5.10 The Loss Function . 25

5.10.1 Commonly used loss functions for Regression 28

viii

5.10.2 Commonly used loss functions for Classification 28

5.11 Deep Generative models . 29

5.11.1 Variational Auto-Encoders 29

6 Deep Learning in High Energy Physics 31

6.1 Geometric considerations for detector-image creation 31

6.2 CNN on jet-images . 32

6.3 Deep Learning-based simulations 35

6.4 Limitations . 35

7 An alternative approach, Graph Networks 37

7.1 Definition . 38

7.2 Graph Networks . 39

7.3 The propagation rule . 39

7.4 Graph pooling . 40

7.5 Graph Variational Autoencoders 41

7.6 Graph Networks on Point Clouds 42

7.7 Graph Networks in High Energy Physics 43

7.8 Summary . 45

8 Falcon 46

9 Methods and Results 49

9.1 Data . 49

9.1.1 Definition . 49

9.1.2 Pre-processing . 50

9.2 Use Case: GraphSAGE . 50

9.3 Mincut Pooling . 51

9.4 Model architectures . 51

9.4.1 Jet Reconstruction with Mincut pooling 52

9.4.2 EdgePooling . 53

9.5 Metrics . 54

9.6 Results . 54

9.6.1 Graph generative model with mincut pooling 54

9.6.2 Graph generative model with edgepooling 55

9.6.3 Regular AE . 57

9.7 Computational complexity . 58

9.7.1 Regular VAE Complexity: 58

9.7.2 GVAE Complexity: . 60

9.7.3 Comparison Tables . 61

9.7.4 Comparison with traditional Monte Carlo 61

9.8 Discussion . 63

10 FALCON: GPU Acceleration on NVIDIA GPU 64
10.1 Overview . 64
10.2 Profiling FALCON’s GVAE model 64
10.3 Distributed Deep Learning . 65
10.4 Tesla V100 Architecture . 66
10.5 Scaling FALCON on multiple GPUs 67
10.6 Results . 67
10.7 Discussion . 69

11 Muon momentum estimation in the CMS detector 71
11.1 Dataset . 71
11.2 Methodology . 72
11.3 Results . 73
11.4 Discussion . 75

12 Conclusion 76

A Abbreviations 79

B Material comparison 80

C Porting Falcon to GPU 81

D Features description for Muon Chambers data 83

Chapter 1

Introduction

Early particle accelerators were built in the early 20th century to perform in-depth
studies of the subatomic properties of particles. Today, multidisciplinary fields
ranging from nuclear science to medicine and other industrial applications rely
on particle colliders, the largest of which is currently the Large Hadron Collider
(LHC) at CERN, Geneva. First operated in 2008, the LHC accelerates beams
containing millions of charged particles within a range of milliseconds, colliding
them with opposing beams at four main detector points: CMS, ATLAS, LHCb
and ALICE. A particle shower emerges within the detectors whose characteris-
tics allow them to amplify the recorded particle-sensor interactions into digital
signals to be analyzed by physicists. In-depth analysis of these records is crucial
to extract the most relevant information associated with the unraveling of new
physics that help explain several phenomena such as the origin of the universe,
the properties of its most fundamental forces and the presence of dark matter.
The eclectic nature of both the software and hardware components within the
LHC makes it a highly complex operational environment, hence the rising need
to simulate it. Several simulation software have been developed for deployment
in HEP applications. Geant4 [1] is one toolkit type that relies on full simula-
tion techniques accounting for particle-matter interactions and physical bound-
ary conditions specific to the detector environment. On the other hand, Delphes
is a simulation framework that uses parametric methods to perform HEP simula-
tions, providing a user-interface and the option to specify several properties such
as detector segmentation, etc [2].

Despite their promising results, these simulation techniques require extensive
compute resources and are non-universal, meaning that simulation results are
specific to one set of detector properties at a time. The emergence of deep learn-
ing architectures paved the way for a multitude of applications in HEP including
simulation methods. Di Sipio et. al implement a Generative Adversarial Net-
work (GAN) to learn the represenations of jet pairs at the LHC [3]. Buhmann
et. al combine Variational Autoencoders and GANs for electromagnetic shower

1

reconstructions at the level of the calorimeters [4].Conventional deep learning ar-
chitectures perform convolution on grid-like Euclidean data, mainly in the form
of images.

In this thesis work, I propose the usage of Graph Neural Networks to learn the
representations of jet events resulting from collisions. This methodology allows
the treatment of sparse particle hits within detectors as point clouds in 3D space.
Therefore, these point clouds could be mapped into a dense graph whose nodes
have features indicating the x and y locations of the particle hits and their corre-
sponding measured energy. In addition, the connections between the nodes would
be based on the k-nearest neighbour approach in Euclidean space. To proceed,
we learn on the jet datasets by means of state of the art graph convolution op-
erations. In [5], Qu and Gouskous show that such a methodology of learning on
jet events as graphs is successful as they outperformed all other baselines in the
task of jet tagging. In addition, this method allows us to operate on raw datasets
containing O(100) particles instead of conventional O(1000) particles. That be-
ing said, we shed light on the ability of graph-based architectures to learn the
properties of collider events’ data in latent space for reconstruction purposes, in
addition to their computational performance with regards to conventional deep
learning techniques. Finally, we investigate the ability of graph networks to gen-
eralize to different HEP applications. To proceed, we compare the performance
of a GNN model to fully connected networks and convolutional networks for the
task of muon momentum inference in the Cathode Strip Chambers at CMS. Such
measurements are crucial for improved sample selection within the Trigger sys-
tem where a momentum threshold is applied and accepts batches of recorded
signals accordingly. Having said that, careful muon analysis is crucial to study
different physics phenomena, including the Higgs boson decay processes, one of
which decays to 4 muons.

In a nutshell, the aim of this thesis work is to discuss the potential provided
by graph neural networks (GNNs) in high energy physics applications. Their
ability to learn on sparse representations in the form of point clouds while dis-
regarding the blank space surrounding them makes them a suitable candidate
for detector data whereas the learning process takes place on the particle hits
exclusively. By using them in Fast Simulation and muon momentum inference,
we find that GNNs outperform conventional convolution techniques on images
in reconstructing and classifying collision events. More importantly, the speedup
obtained with respect to traditional Monte Carlo techniques was immense, bear-
ing in mind that even further speedup was noticed during scaling of GNNs on
multiple GPUs. In the next chapters, we start by introducing the field of particle
physics and the need for particle colliders whose geometry we describe as well.
Next, we elaborate on the added value provided by Machine Learning algorithms
in this field, and the obstacles tackled with the rise of Deep Learning architec-

2

tures. Finally, we propose geometric deep learning as an alternative methodology
in HEP by using it in two applications: Fast simulation and muon momentum
inference. Later chapters discuss the methods and algorithms that we build for
our experiments followed by their corresponding results and the metrics adopted
for their assessment.

3

Chapter 2

An overview of Particle Physics

In this chapter we discuss the motivation behind particle accelerators, with the
LHC currently being the largest one ever built. We shed light on some basic
concepts in particle physics related to Standard Model, a theory that describes
the building blocks of our universe.

2.1 The atom: A short history

Atomic theory dates back to the 5th century B.C in Ancient Greece, where the
debate about the origin of matter and its composition sparked controversy among
philosophers of the time. Two Greek philosophers, Democritus and Leuccipus,
suggested that matter could be divided into smaller homogeneous clusters of one
element forming the building block for the universe. This element was named
“atomos”, an ancient Greek term referring to what was thought to be an “indi-
visible entity”. This theory had been rejected until the 16th century when John
Dalton reintroduced the notion of an atom as being specific to each element of the
periodic table where it differs in mass and size. Three centuries later, J.J Thom-
son performed the cathode ray tube experiment where electrodes are connected
to a cathode ray which was deflected when placed between two oppositely charged
plates [6]. This phenomenon confirmed the presence of a negative charge inside
the atom: the electron. Bearing in mind that an atom is neutral in charge, a
counter-balancing positive charge should exist. Having said that, Ernest Ruther-
ford performed a gold foil experiment where a thin sheet of gold was hit with
a beam of positively charged alpha particles, of which a tiny fraction had been
deflected from the gold sheet and observed on a luminescent screen [7]. This
observation suggested that the atom is mostly made of empty space containing
negatively charged electrons surrounding a tiny positively charged space, later
known as the nucleus. Until the mid-twentieth century, scientists considered the
proton, electron and the neutron, to be elementary, indivisible particles acting as
the building block of the universe. However, technological advances allowing the

4

development state-of-the-art physics equipment have shown otherwise.

2.2 The Standard Model

The early twentieth century has witnessed the discovery of cosmic rays. These are
high-energy particles mostly composed of protons and charged nuclei traveling at
the speed of light in outer space, resulting in high-energy collisions penetrating
the Earth’s surface. One simple method to study cosmic rays is through cloud
chambers where particle tracks could be observed with a flashlight through a
black box containing dry ice [8]. As a result, the first subatomic particle was dis-
covered using this equipment: the meson, a particle around 200 times the mass
of the electron. At this point, the physics community was highly motivated to
launch a hunt for more subatomic particles. As studying cosmic rays from outer
space is challenging, one solution is to produce them in the laboratory, which rises
the need for devices able to accelerate particles to the speed of light, simulating
the environment variables in outer space: we need particle accelerators. By the
1970’s, dozens of new particles were introduced, and as years passed, a better
understanding was acquired regarding the 4 types of forces recognized today as
gravity, electromagnetism, the weak force and the strong force. Today, the Stan-
dard Model (SM) is the most accepted scientific theory to decipher and make
sense of the “particle zoo” observed throughout the past decades. It explains
that matter exists by virtue fermions that include quarks and leptons. Matter
is able to interact with the forces of nature by means of bosons. For instance,
the photon is the carrier of the electromagnetic force, while the gluon mediates
the strong force inside hadrons (protons and neutrons). Finally, the most fun-
damental element of the SM is the Higgs Boson, named after British theoretical
physicist Peter Higgs. To shed light on the importance of this particle sometimes
referred to as “God’s particle”, it is crucial to refer to quantum field theory which
considers that the universe is made of a quantum fields whose excitation results
in a Higgs particle that would give protons, electrons and other particles, their
known mass: this is the “Higgs mechanism”.

5

Figure 2.1: The Standard Model [9]

2.3 The Large Hadron Collider

Early twentieth century has seen the operation of the first particle accelerators
starting from UC Berekeley’s cyclotrons in the 1930’s (awarded Nobel Prize in
1939) to CERN’s circular Proton Synchotron (PS) in 1959, ending up with Stan-
ford’s Linear Accelerator (SLAC) in 1966. Today, the world’s largest particle
accelerator is the Large Hadron Collider (LHC) which operates at the European
Organization for Nuclear Research (CERN) in Geneva.

In contrast to earlier linear accelerators, the LHC is a circular accelerator with
the following characteristics: 32 km in diameter, 27 km in circumference and an
underground depth between 50 and 175 meters [10]. The overall structure crosses
the Swiss-French borders. It is made of superconducting magnets operating at
-271.3°C, accelerating beams of either protons or lead nuclei in opposite direc-
tions at the speed of light, and colliding them at four main collision points to be
detected by four detectors: CMS, ATLAS, LHCb and ALICE [11]. The outstand-
ing physical properties of the LHC make it a suitable candidate to unravel new
discoveries through the production and the monitoring of rare physics signatures
at high luminosity collisions of proton or heavy ion beams. For instance, proton
beams in the LHC are introduced with an injection energy of 450 GeV, travel-
ling in vacuumed beams at 99.9999% the speed of light, giving an eventual total
collision energy of 14 TeV resulting from two opposing beams holding proton
energies of 7 TeV each [12][13]. Collision events must occur in a timely manner
to pave room for detectors to perform fast data pre-processing to reject irrelevant
signals (See Chapter 4). Having said that, the LHC is characterized by a bunch
crossing frequency of 40 MHz, meaning that two consecutive proton/heavy ion
bunches are separated by 25 ns. Finally, one of the main aspects of a particle
accelerator is the luminosity, a metric that indicates the number of collisions per
m2 per second. As a matter of fact, future LHC operations are planned to run

6

at luminosity increased by a factor of 10 [14].

The LHC started operating in 2008 in the aim of unraveling new physics,
which was achieved 4 years later in July 2012 by the CMS and ATLAS collab-
orations. The latter observed a signal at an invariant mass of 125 GeV from
diphoton and 4 lepton decay channels. Their data was compatible with the
Standard Model’s Higgs boson theoretical description, and hence the two col-
laborations had announced the long awaited discovery of the Higgs boson. This
event has paved the way for further research to be done in particle physics, es-
pecially for further analysis of the Higgs boson behavior. In fact, recent CMS
experiments succeeded in the measurement of Higgs boson decay rates, produc-
tions and Yukawa coupling to fermions on the one hand [15], and the observation
of the Higgs decay to two bottom quarks on the other hand [16].

Figure 2.2: Full diagram of the LHC operating detectors and accelerators [17]

7

Figure 2.3: The LHC 100 meters underground [18]

2.4 What is a Jet?

In particle physics, jets are most commonly known as experimental signatures
spotted in the detector deriving from the hadronization of quarks and gluons as
a result of high energy collisions taking place in particle colliders. As a matter
of fact, quarks and gluons cannot exist in a free state in nature due to the colour
confinement suggested by Quantum Chromodynamics (QCD). Instead, quarks
and gluons holding fragments of coloured charge will decay into further coloured
fragments that eventually combine into colourless objects hence satisfying the
colour confinement rule. The process undergone by the quarks and gluons is
called hadronization, a process that results in a shower of hadrons measured at
the level of the different detector layers: the tracker systems, electromagnetic
calorimeters and hadronic calorimeters. The resulting shower of hadrons forms
a narrow cone-like jet whose components are crucial for physicists to trace the
origin of this decay and associate it with a type/flavour of quarks out of 6: up,
down,strange,charm,bottom and top. This is done by means of jet reconstruction
algorithms whose details are out of the scope of this thesis.

8

Chapter 3

The CMS Detector

The Compact Muon Solenoid is a multi-purpose detector used to study particle
properties following beam collisions. As the name suggests, this machine consists
of tightly packed materials that create a suitable operational environment for
physics experiments. In this section, we give an overview of the CMS detector
geometry, the different sub-layers that compose it, and the outer layers serving
as muon detectors.

3.1 Structure

The CMS detector is 15 meters high and 21 meters long [19]. One main com-
ponent is the superconducting solenoid magnet which consists of cylindrical coils
providing a magnetic field of 4T under operation, which equals 100, 000 times
Earth’s magnetic field ! As will be discussed later, this magnetic field causes
bending of the post-collision particles, allowing more precise measurements to
take place. The “onion-shaped” structure of the CMS detector encloses a set of
overlapping sub-detector layers going outwards from the collision point and allow-
ing the extraction of crucial information about post-collision particles including
their energy, momenta, and trajectories.

3.2 The Silicon Tracker system

The innermost sub-detector is a tracker system composed of almost 16,000 sili-
con strip modules connected to readout electronics. Silicon sensors have a high
granularity, thus providing a good spatial resolution and response to particle hits.
The latter travel through the silicon strips, from which an avalanche of electrons
escapes in response to the charge of the colliding particles, resulting in a readable
pulse signal with a duration of a few nanoseconds. This signal is made readable
by APV25 chips which amplify it and provide us with the hit locations allowing
the path reconstruction process to take place [22].

9

Figure 3.1: Layers and components of the CMS detector [20]

Figure 3.2: Section view of the CMS detector showing different particle
trajectories [21]

Figure 3.3: Silicon tracker strips [23]

10

3.3 Calorimeters

The second and third innermost sub-detector layers are the Calorimeters. In
contrast to the tracker system, whose purpose is to identify hits for track recon-
struction, a calorimeter measures a particle’s energy. That being said, the CMS
consists of two such detectors: The Electromagnetic Calorimeter (ECAL) and
the Hadronic Calorimeter (HCAL).

As the name suggests, the ECAL measures energy deposits from electromagnetic
particles; i.e photons and electrons. This is achieved by the means of the lead
tungstate (PbWO4) crystal sensors whose physical properties such as a short ra-
diation length X0 = 0.89 cm and small Moliere radius of RM = 2.2 cm make them
suitable materials to interact with electromagnetic particles [19]. Furthermore,
TableX in Appendix B shows a comparison between several physical properties of
(PbWO4) and another set of materials for potential detector usage. It is observed
that, among the samples, lead tungstate possesses the highest material density
(8.28 g/cm3), the highest refraction index (2.30) and the lowest light decay time
in nanoseconds [24]. Having said that, it is clear that PbWO4 presents the better
characteristics of a scintillator material to be placed in a high irraditation facility
such as the LHC. This is due to this material’s ability to withstand high magnetic
fields and radiations in addition its fast photon burst given its relatively low light
decay time. In total, the CMS detector consists of around 76 000 crystals of
2.2× 2.2 cm front shape and a length of 23 cm [25]. These densely packed crys-
tal towers are distributed as follows: around 61000 towers in the central barrel
section (EB) with a pseudo-rapidity coverage range up to |η| = 1.48 and 14600
towers in the 2 surrounding endcap sections (EE) with 1.479 < |η| < 3.0 [24].
That being said, ECAL’s crystal density property allows better measurements
of particle hit energies at higher resolutions due to reduced fluctuations. The
energy resolution at the ECAL’s EB section is measured as follows:

σ

E
=

2.8%√
E
⊕ 12%√

E
⊕ 0.3% (3.1)

where the first two terms of the equation correspond to the stochastic and noise
contribution to the resolution, respectively while the third term is a constant and
E has units of GeV [26].Attached to these crystals are photodetectors that sense
the bursting light and convert it to an electrical signal.

On the other hand, the Hadronic Calorimeter (HCAL) measures energy deposits
from charged and neutral hadrons, the most known of which are protons and
neutrons. Similar to the ECAL, the HCAL’s total of 9072 towers are distributed
between different sections: barrel (2592), endcap (2592), outer (2160) and forward
(1728) [27]. Nevertheless, the grid topology of the HCAL is much sparser than
the ECAL’s due to different segmentations; ECAL has a fine-grained mesh in

11

Figure 3.4: Schematic view of the CMS Electromagnetic Calorimeter [24]

contrast to HCAL coarser granularity. In terms of material selection, the HCAL
is mainly composed of alternating layers of brass plates and plastic scintillators.
Having said that, hadrons interact with layers of fluorescent materials, resulting
in a light pulse following a particle hit. At this stage, precise measurements of a
hadron’s energy and position are made possible through specially designed optic
fibers that read the light signal at a given hit location and send it to be amplified
and read out. The combined resolution given by CMS’ ECAL+HCAL is given
by:

σ

E
=

110.7%√
E
⊕ 7.3% (3.2)

3.4 Muon Chambers

As the name “Compact Muon Solenoid” indicates, CMS is made of compact
concentric cylindrical detector layers of heterogeneous composition. One of the
main characteristics of this machine is its ability to bend high-momentum muons,
detect them and measure their corresponding momenta. As mentioned in Sec-
tion 1, muons have a mass 200 times bigger than that of the electron. Hence,
these high energy particles cannot be stopped by the calorimeters and will be
detected outwards in the muon chambers. For this purpose, a magnetic field
of almost 4T resulting from a highly conductive solenoid magnet is crucial to
monitor particles as they move away from the Leading Vertex (LV). On the one
hand, it allows the identification of the particle charge, as opposite charges move
in opposite directions. On the other hand, for a known magnetic field value, a
particle’s momentum can be estimated from the bending curvature in its trajec-
tory; high-momentum particles present lower curvature along their path. In a
nutshell, the magnetic field bends the muon trajectory allowing the calculation
of its momentum.

12

Figure 3.5: HCAL segmentation [28]

Figure 3.6: Section view of the ME chambers composing the muon detectors [29]

13

Chapter 4

Big Data and LHC Physics

Throughout history, several particle physics breakthroughs were achieved with
hardware-based setup such as bubble chambers and other detector technologies,
taking the example of the previously mentioned experiments performed by J.J.
Thomson followed by Ernest Rutherford, two discoveries that shaped our un-
derstanding of the atom. Nevertheless, the LHC is one of the biggest experi-
mental setups ever built and records events at a rate that is impossible for a
human inspection to take place. Several detectors spread around the LHC con-
tain well-calibrated hardware components reading billions of events and sending
30 petabytes worth of data to the control center every year. Due to limited
resources, state-of-the-art algorithms are continuously developed at CERN to
purely select events with a high potential of uncovering new physics, while re-
jecting noise. For this purpose, CMS contains a trigger system that operates in
several steps to accept or reject a post-collision event.

4.1 Level 1 Trigger

The Level 1 trigger is a hardware system with a fixed latency. As mentioned
previously, the ECAL, HCAL and Muon Chambers detect different types of par-
ticles. Therefore, these layers of CMS undergo separate trigger procedures. On
the Calorimeter level, energy measurements from all hits are first sent to a re-
gional calorimeter trigger (RCT) where e/y candidate hits are sampled and sent
to the Global Calorimeter Trigger. The latter uses the total energy deposits’
sums (Et) and clusters jets. On the other hand, data from the CSC and DT
muon chambers is first analyzed at the level of each of their corresponding sta-
tions individually (ME 1/1, etc). At this stage, front-end electronics collect hit
information throughout each given station and send them through optical fibers
to the regional track finders. The latter select the suitable muon candidates and
estimate their momenta by measuring the curvature along their trajectory with
a known magnetic field. Finally, the accepted batch of potential muon candi-

14

Figure 4.1: Flow chart summarizing the trigger system operations [30]

dates is transferred to the Global Muon Trigger (GMT), where further sampling
is needed to ensure that no muon is read by multiple trigger systems [30].

4.2 Machine Learning in High Energy Physics

Following the recent breakthroughs in computing hardware, software tools are
able to simulate highly complex and stochastic processes in several disciplines.
In particle physics, Monte Carlo simulations are used as event generators that
follow a pre-defined set of parameters and are later compared to real detector
data where significant statistical conformity with theoretical models could be an
indicator of new physics. Currently, several fast-simulation tools such as Geant4,
Pythia and other state-of-the-art reconstruction software are being developed at
CERN, providing a computationally expensive, yet highly parallelizable frame-
works that notably alleviate the cost from real experiments. At later stages,
simulated and real events need to be scrutinized and sampled. This rises the
need to a data analysis scheme that is able to find patterns and extract high and
low-level features from data collected by events previously described as complex
and stochastic in nature. In this chapter we shed light on the contributions of
Machine Learning algorithms to high-energy physics by shedding light on a set
of applications where those methods provided in state-of-the-art results, outper-
forming all traditional algorithms that account for physics knowledge.

Machine Learning tools are nowadays indispensable in the analysis of post-
collision events. Their applications are mostly concentrated within the hardware
components of the trigger systems, making crucial decisions on what sample of
events to consider for further analysis which could include several tasks. For
instance, in [31], the CMS collaboration used a Boosted Decision Tree to infer
muon momentum from the Level-1 trigger in the muon endcap chamber. They
were able to reach a 95 % efficiency in distinguishing muons with a momentum
above the threshold value of 25 GeV. Other BDT applications include the study of

15

the geometrical features of tracks resulting from hadronic decays for heavy-quark
jet and muon identification [32][33]. In addition, machine learning was crucial
in the Higgs Boson discovery and the confirmation of the standard model’s pre-
dictions regarding the Higgs decays. BDTs were trained to recognize diphoton
signals resulting from decay processes and isolate artificial photon signals. The
accepted batch is then split into clusters whose mass distributions could indicate
the presence of a Higgs signal [34]. ATLAS collaboration used BDTs to study
the decay of the Higgs Boson into tau leptons Z → τ+τ−. Data samples from
the LHC Run 1 were split into 6 kinematic regions, each of which was trained
on a BDT. Combined results showed evidence of Higgs Boson coupling to tau
lepton pairs [35]. CMS and LHCb observed the decay of the strange Bs meson
into muon-antimuon pairs (B → µ+µ−), an event having a probability of 3 in
a billion. Having said that, such measurements are very sensitive to noise and
require careful data analysis for such a signal to be observed. Analysis was done
on p-p collision data at 7 TeV and 8 TeV collected in 2011 and 2012, respec-
tively. Following data preprocessing where event selection takes place, BDTs
were trained on a multitude of variables such as to separate signal-events from
background events. Such variables include particle momenta estimations, track
qualities, etc. Experimental results confirmed the theoretical ones corresponding
to the standard model behavior with standard deviations of 3 and 6, respectively
[34].

In a nutshell, machine learning techniques require physicists to perform feature
engineering on the collected data in order to use them for further analysis. Field-
specific algorithms are used to extract relevant information from raw collision data
to perform primary tasks such as jet clustering and particle track reconstruction.
These tasks pave the way for higher-level information such as particle momenta,
hit energies and jet tags. Despite yielding notable improvements with regards to
traditional algorithms used in particle physics, machine learning techniques result
in high information losses. In [34], a wide range of kinematic information was
left unused. In addition, the need for feature-engineering makes machine learning
techniques are considerably computationally expensive. As CERN aim to con-
tinuously increase luminosity through scheduled updates [14], higher amounts of
data are expected for analysis, hence the massive need for novel algorithms for
analysis which could explore more features with decreasing human intervention.

16

Chapter 5

Deep Learning

Continuous efforts have been made at CERN for the development of algorithms
efficient enough to accommodate the large data volumes while doing fast analy-
sis. The rise of deep neural network architectures and the breakthrough in the
GPU hardware technologies paved the way for numerous applications in multi-
disciplinary fields that rely on the current computer vision algorithms. The latter
are at the core of novel techniques used in molecular research [36][37] and video
tracking [38]. In this chapter, we introduce some core concepts in deep learning
and what makes those algorithms successful in learning on large amounts of data.

5.1 The human brain motivation

The complex anatomy of the human brain has been scrutinized by the scientific
community for a notable period of time. In fact, early theories about the brain
date back to the 4th century B.C when Greek philosopher Hippocrates considered
it to be “the seat of intelligence”, in contrast to Aristotle’s suggestion that the
brain is merely a cooling mechanism for the blood [39]. The invention of the
first microscopes in the 19th century was crucial for neuroanatomists of the time
to offer better insights on the functioning of the brain. In 1863, Otto Dieters
described the first model of what we currently know as the neuron, a type of cells
composing the nervous tissue and characterized by a set of multi-sized branching
known today as dendrites and axons [40]. An inter-connected network of such
neurons is at the center of the nervous system in the human brain. The discovery
of the synapses in 1932 was crucial to explain the communication taking place
between these neuron cells by means of chemical and electrical signalling. A signal
is propagated throughout one neuron’s axon whose terminal contains multiple
branches forming a network of connections with thousands of post-synaptic cells
(receiving neurons). At this stage, the firing of an action potential causes the
release of chemical neuro-transmitters that propagate towards the post-synaptic
cells of target neurons. The latter collect incoming signals from all their adjacent

17

Figure 5.1: Strcuture of one biological neuron [41]

pre-synaptic cells (sending neurons). In case the overall combination overcomes
a certain chemical threshold known as the action potential, a resulting signal is
induced and propagates further throughout this target neuron’s body towards
the next sequence of post-synaptic cells (Figure 5.1).

The above description forms a simplified yet fair explanation of the biological
neural networks considering the scope of this thesis.

5.2 The neuron: A mathematical insight

As mentioned in the previous sub-section, we aim to derive a mathematical for-
mulation describing biological networks in the aim of developing a functioning
neural network to be used in computer programs. Having said that, we reiterate
that a neural network is a branching between individual neurons. In mathemat-
ical terms, these neurons operate using two main vectors: the weight vector w
and the bias vector b. Both vectors w and b are referred to as “model parame-
ters” given that they are a property of a larger model architecture. In addition,
these vectors are “trainable”, meaning that the entries’ values will change over
several iterations as part of an optimization process. Let X = [x1, x2, x3, . . . , xn]
and W = [w1, w2, w3, . . . , wn] be the input feature vector and the weight vector,
respectively. An individual neuron within a specific layer operates on the input
as follows: z = wT .x+ b where b is the bias vector.

Having shed light on the operation of a single neuron, we now define the formula-
tion for a full layer of neurons. As shown in Figure 5.4, the weights resulting from
a previous layer l-1 are propagated towards all the neurons of the following layer
l. We refer to this type of neural networks as “Fully-Connected Networks”, given
that full connections exist between any neuron of one layer and all the neurons
of the following layer. It is worth noting that the numbers of neurons composing
a specific layer can be unique i.e if layer l-1 has n[l−1] = 64 neurons, the number
of neurons n[l] in layer l can be smaller (32), larger (128) or equal to n[l−1].

18

X1

X2

X3

y

z = wT. x +b

y = g(z)

Figure 5.2: Structure of a single neuron wihtin a network

5.3 The Activation Function

The activation functions perform a set of mathematical operations on the input
data and introduce non-linearities to the network, thus making it possible to learn
a wide range of complex tasks. Without an activation function, the output of the
perceptron would be a simple linear function, easy to solve, but very redundant
against complex topologies.There are many activation functions that could be
used with the aforementioned features: the most commonly of which being the
ReLU activation, which we will use in this thesis work.

ReLU

The ReLU (Recti and Linear Unit) has become the most used activation function
in recent years and is given as follows:

f(x) = max(0, x) (5.1)

The behavior of this function, as shown in Figure 5.3, consists in setting the
output to 0 for x less than 0 and to exactly replicate the input to the output, if
x greater than 0.

Sigmoid

This Sigmoid function is an S-shaped function bounded between 0 and 1 on
the vertical axis and given by as:

S(x) =
1

1 + ex
(5.2)

This function is most commonly used in the output for binary classification
problems: Given two classes 0 and 1, the entries with sigmoid output ¿0.5 belong
to class 1, otherwise belonging to class 0.

19

Figure 5.3: A list of the most commonly used activation functions in neural
networks

Hyperbolic Tangent (Tanh)

The hyperbolic tangent is sigmoidal in shape (S-shaped) but has a range of [-1,1]
instead. This allows such an activation function to operate on negative values as
well as positive ones.

5.4 Fully Connected Networks

The previous sub-section describes the operation of a single neuron. At this
point, we shed light on the operation of entire layers of neurons within a neural
network. As mentioned previously, each layer l-1 containing n[l−1] neurons will
propagate the weights to a following layer l containing n[l] neurons. To proceed,
vectorization of each neuron’s weights is needed to prevent working with for
loops, which makes it computationally inefficient to train. In other words, weight
vectors of layer l are stacked vertically into one vector W of shape n[l] × n[l−1].
As a result, the hidden representation of the data at layer [l] is obtained using

20

Figure 5.4: A fully-connected network showing with 3 hidden layers

Figure 5.5: Weights and biases

the following equation:

z[l] = W [l].a[l−1] + b[l] (5.3)

Next, an activation function is applied to the output of hidden layer [l] in order
to introduce non-linearity, hence the input to layer [l+1] is given by:

a[l] = g[l]z[l] (5.4)

As the name indicates, Fully-Connected Networks (FCNs) are characterized
by full connections between the neurons of subsequent layers, i.e the neurons of
one layer are fully connected to the activations of the previous layer on the one
hand, and their activated signal is shared with the entire networks of neurons of
the next layer. Given an input of any type, the FCN acts as a universal function
approximator characterized by a multi-layer perceptron aiming to associate each
instance of this input with a class (Classification task) or a value (Regression
task).

21

Figure 5.6: Convolution operation with stride 1

5.5 Convolutional Neural Networks

A convolutional neural network is a Deep Learning algorithm having its root
in Computer Vision originally for the purpose of image processing [42]. This
technique owes its success in capturing image features to convolutional kernels.
As shown in Figure 5.6 these kernels are best described as windows of fixed size (in
this case 2x2) sliding across a subset of pixels in an incremental process until the
entire image span is covered. These filters are characterized by a set of randomly
initialized yet trainable parameters/weights that are used to convolve the image
pixels. The amount of horizontal and vertical kernel displacements across the
span of an image is defined by the stride. For instance, a stride of 1 corresponds
to an increment of one pixel horizontally until the entire width is convolved by
the kernel filter. At this point, the kernel filter slides back to the first column
with an increment of 1 pixel downwards and performs the same operation. That
being said, the stride, the kernel size in addition to the number of filters to be
used are manually defined. In fact, the higher the complexity of the data features
and dependencies, the more kernel filters are needed to process such complexities.

5.6 ConvNets: A Neuron perspective

In contrast to Fully-Connected Networks, ConvNets have sparser connections
within the neurons. The latter are defined in a three-dimensional space by the
network’s width, height and depth. The width and height parameters are equiva-
lent to the size of the kernel filter convolving the input image. Within this part of
the network, the connectivity is local in nature, i.e each neuron processes the set
of pixels/entries of size width x height associated with its corresponding region of
the image. For instance, Fig. 5.7 below shows that the resulting output neurons
are only connected to the previous layer’s neurons if the latter were part of the
kernel, i.e their receptive field. On the other hand, the depth to the network
corresponds to the number of channels present in the input. Neurons are fully
connected along this region.

22

Cell 1

Cell 2

Cell 3

Cell 5

out1

out2

Figure 5.7: Corresponding neural connection to the convolutions in Fig 5.6

Figure 5.8: Max and Min Pooling examples

5.7 Pooling

Real world datasets, mainly 3D images and videos, are often dense. They are
characterized by a multitude of channels and considerably high resolution. As
seen in the previous section, convolutional kernels preserve an input image’s size
provided that a stride of 1 is chosen. That being said, pooling layers are intro-
duced to further reduce the dimensionality of the input and alleviate the compu-
tational load required to process the data throughout the training process [43].
We distinguish between three main types of pooling: Max Pooling (most often
used), Average Pooling and Min Pooling. Depending on the choice, pooling layers
slide across the input data and return the maximum, minimum or average pixel
value present within a window frame whose size is manually set (Figure 5.8). In
addition to dimensionality reduction, pooling layers are helpful in noise cancel-
lation on the one hand, and the extraction of the most representative features
on the other hand. In other words, pooling operations help us retain the most
important semantics in an image.

5.8 Mathematical details

So far we have discussed neural networks in terms of interconnected sets of neu-
rons that propagate input signals across them, perform convolutional and pooling

23

Figure 5.9: Convolution kernel

operations on multiple-channels by means of filters sliding by a pre-defined stride,
pass these signals through FCNs and accordingly determine the class/value of
each datapoint in this input. While this description provides a good visual in-
sight into the entire signal propagation process, it does not cover the underlying
mathematics behind it. Given an input image f, a convolutional kernel h is ap-
plied to this image by operating on its pixel values as follows:

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[i, j]f [m− i, n− j] (5.5)

where m and n are the row and column indices of the resulting matrix. The
convolution operation consists of multiplying each element of the kernel by the
corresponding element location in the image. Eventually, a summation of the
products is performed, and the resulting integer is the corresponding entry of the
output matrix. For square kernels, we consider the kernel center pixel to have
a coordinate of [0,0] and label the neighbouring pixels accordingly. To better
explain this process, an example is provided in Fig 5.9

The output matrix’ entry at location [1,1] is given by:
y[1, 1] =

∑
j

∑
i x[i, j] · h[1 − i, 1 − j] = x[0, 0] · h[1, 1] + x[1, 0] · h[0, 1] + x[2, 0] ·

h[−1, 1] + x[0, 1] · h[1, 0] + x[1, 1] · h[0, 0] + x[2, 1] · h[−1, 0] + x[0, 2] · h[1,−1] +
x[1, 2] · h[0,−1] + x[2, 2] · h[−1,−1] = 1 · 1 + 2 · 2 + 3 · 1 + 4 · 0 + 5 · 0 + 6 · 0 + 7 ·
(−1) + 8 · (−2) + 9 · (−1) = −24

5.9 Stride and Padding

In the previous examples we assumed that the kernel filters slide across an image
at a rate of one pixel both horizontally and vertically, resulting in a reduced
feature map of size (n-w) x (n-w) where n and w are the sizes of the input
image and kernel filter (both square for simplicity), respectively. Yet, we have
the flexibility to specify the size of the resulting feature map by means of two
additional parameters: stride and padding. In fact, the horizontal and vertical
pixel displacement of the filter window could be manually adjusted. For instance,

24

a stride of [2,2] will operate on an image by skipping two pixels from the left
horizontally following a convolution. Having covered the entire horizontal scope,
the filter displaces vertically downwards by 2 pixels and proceeds. Having said
that, the stride parameter clearly affects the output shape of the feature map.
On the other hand, the padding parameter considers whether the feature map
preserves the same output shape as the input image, in which case the type of
padding is called ‘SAME’ and is characterized by adding zero rows and columns
to overcome the overlapping issue of the window filter. Otherwise, the feature
map is reduced under the ‘VALID’ padding type which terminates once the kernel
filter has covered the entire image scope.

Output Width =
W − Fw + 2P

Sw
+ 1 (5.6)

Output Height =
H − Fh + 2P

Sh
+ 1 (5.7)

Same Padding

Output Width = ceil(
W

Sw
) (5.8)

Output Height = ceil(
H

Sh
) (5.9)

Valid Padding

Output Width = ceil(
W − Fw + 1

Sw
) (5.10)

Output Height = ceil(
H − Fh + 1

Sh
) (5.11)

5.10 The Loss Function

In the previous sections we covered the forward propagation process for neural
networks. We shed light on convolution operations used to detect features within
images, the signal propagation between neurons of convolutional layers and fully
connected layers, and the latter’s ability to provide a classification or regression
score. At this point, we define the backpropagation process which is the key ele-
ment for training neural networks by means of iterative techniques. To reiterate,
neural networks are better considered as very complex function approximators,
whose parameters we want to optimize. Prior to explaining the optimization
process for a neural network, we start by introducing it through a basic example.
Figure 5.10 shows the plot of a function f(x) = 0.5x2 − 8cos(x), for which the
global minimum is to be found.

25

Figure 5.10: Plot showing the function f(x) with the corresponding roots and
local minima

Figure 5.11: Gradient descent process during the optimization on f(x)

To proceed from the initial location represented by the red dot, a step up-
wards to the right is needed. As a result, the red dot is displaced from an initial
point (x,f(x)) to a certain position (y,f(y)) on the plot (Figure 5.11). The line

connecting x and y is given by l(t) = f(x)−f(y)
x−y (t − x) + f(x) and could be visu-

alized in the form of y=at+b whereas a is the slope. If the slope is too big, y
is further away from x. The size of this displacement of y from x depends on a
parameter referred to as the learning rate and is used to define the displacement
as follows: y = x0 + f ′(x0). If λ is set too large, the global maximum/minimum
could be missed resulting in a deviating behavior. If λ is too small, the optimiza-
tion process could take too many steps to reach the global minimum, resulting in
a very slow behavior. Therefore, careful assignment of a learning rate is required
to train neural networks.

26

Figure 5.12: Multi-dimensional optimization process using gradient descent [44]

In contrast to this fairly simple 2D example, neural network training is often
characterized by an optimization process in a much higher dimensional space.
In fact, recent advances in hardware accelerator technologies paved the way for
machines to work on optimization problems with parameter numbers ranging
from hundreds to recent models containing millions of parameters! A better vi-
sualization of an actual deep learning optimization process is provided in Fig 5.12

Unlike the previously defined function f(x), the plot above is associated with
an abstract function of higher complexity and dimensionality. Training a neural
network refers to finding the global minimum for this function, which is defined
by high-order range of parameters, in contrast to 2 points for Figure 5.10. The
function under disposal is referred to as the loss function. In other domains, it is
known under different terms such as cost function or error function (For instance,
when trying to optimize the thickness of fins in heat sinks in order to maximize
heat transfer). To proceed, iterative process goes in the direction of the negative
gradient of this loss function until convergence occurs around its local minimum.
This method is visualized in Figure 5.12 and is called the gradient descent [45].

In the sub-section below we introduce the most commonly used loss functions
in Deep Learning. Let L be the loss function, y the real output and ỹ the model
predicted output.

27

5.10.1 Commonly used loss functions for Regression

Mean Squared Error:

L(ỹ, y) =
1

N

N∑
i=0

(y − ỹ)2 (5.12)

Mean Absolute Error:

L(ỹ, y) =
1

N

N∑
i=0

|y − ỹ| (5.13)

Hubert Loss:

Lδ(y, ỹ) =

{
0.5 ∗ (y − ỹ)2, |y − ỹ| ≤ δ

δ ∗ (|y − ỹ| − 0.5 ∗ δ), otherwise
(5.14)

5.10.2 Commonly used loss functions for Classification

Binary Crossentropy:

L(ỹ, y) =
1

N

N∑
i=0

[y × log(ỹi) + (1− y)× log(1− ỹi)] (5.15)

Categorical Crossentropy:

L(ỹ, y) = −
M∑
j=0

N∑
i=0

(yij × log(ỹij)) (5.16)

28

5.11 Deep Generative models

Despite the success of deep learning architectures on labeled data (supervised
learning), current research trends in AI investigate whether such models are
capable of ”self-learning” on unlabeled data. This research field offers several
benefits, mainly the alleviating the time required to label large amounts of data.
In addition, unsupervised learning in AI plays a crucial role in reducing the bias
induced by human labeling processes.The most widely used generative models in-
clude Generative Adversarial Networks [46] and Variational Auto-Encoders [47].
Their ability to model complex distributions in addition to dealing with missing
data and interpolation makes them an interesting candidate for numerous appli-
cations in the medical field, video tracking, and molecular chemistry [36].

5.11.1 Variational Auto-Encoders

Variational Auto-Encoders (VAEs) introduced by Kingma and Welling [47] are
deep generative models that encode the input data into a latent space as prob-
ability distributions, in contrast to regular encoders that encode single points.
Given any multidimensional input x, a VAE aims to embed the probability den-
sity of x into a latent space z through p(x|z)×p(z)

p(x)
where p(x) is intractable and

is given by P (x) =
∫
P (x|z)P (z)dz: this would be the encoding process of the

data into latent representations. Yet, the integral above requires extensive com-
putation time for a complete integral evaluation over all latent variables. To
overcome this issue, we approximate the probabilistic encoder as a parametrized
posterior distribution. For instance, the true posterior P(z—x) is modeled as
standard Gaussian distributions and is approximated using a family of distri-
butions q given by qλ(z|x). Assuming q is Gaussian, it can be represented by a
set of trainable parameters λ consisting of the approximate Gaussian distribution
mean and variance, hence λxi = (µxi, σ

2
xi) for any given data point xi. Finally, the

decoder through which the final reconstruction of the data is obtained is modeled
as a likelihood function pθ(x|z) parametrized by θ.

To proceed, the quality of the data reconstruction by means of the VAE ar-
chitecture is to be evaluated. Bearing in mind that our transformed data in
latent space is a probability distribution on the one hand, and the fact that we
approximate its parameters and as those of a standard Gaussian with mean 0
and variance 1, a metric that compares differences between these two distribu-
tions is needed. Numerous studies consider Wasserstein distance to be a suitable
metric for such tasks [ref]. Briefly speaking, this metric is inspired from work on
the optimal transport theory. It measures the cost associated with transporting
components of one probability distribution to reconstruct the shape of another
distribution under study in a given M-dimensional space. More details on this

29

metric will be given in a later section. In our case, the KL (Kullback-Leibler)
divergence is the most conventional metric used among recent studies on VAEs to
compare the distribution of the transformed data in hidden space to a reference
distribution of any choice. From another perspective, the KL divergence provides
an insight on the robustness and reliability of a function q in approximating the
real latent space p. Mathematically, this equation is given by:

KL[qλ(z|x)||p(z|x)] = Eq[logqλ(z|x)− Eq[logp(x, z)] + logp(x)] (5.17)

Bearing in mind that the difference between distributions should be as small as
possible, the goal is then to minimize the KL divergence by choosing the optimal
parameter λ for the function qλ(z|x).
Let ELBO(λ) = Eq[logp(x, z)] − Eq[logqλ(z|x)]. Referring back to Eq 6.1, we
get: logp(x) = ELBO(λ) + KL(qλ(z|x)||p(z|x)). By Jensens’ inequality, the
KL Divergence is always greater than or equal to 0. Therefore, as log p(x) is a
constant term, minimizing KL equates maximizing the ELBO term. The final
term of the ELBO equation written with respect to our network functions is given
by Eq. below whose derivation can be found in Appendix.

ELBOi(θ, φ) = Eqθ(z|xi)[logpφ(xi|z)]−KL(qθ(z|xi)||p(z)) (5.18)

Figure 6.4: Variational Autoencoder architecture for collaborative filtering [48]

In a nutshell, a VAE maximizes the ELBO function with respect to parameters
φ and θ that are optimized throughout the training process.

30

Chapter 6

Deep Learning in High Energy
Physics

The success of deep learning in particle physics has been notable in recent years.
Its ability to learn on complex topologies with no feature engineering while deal-
ing with low-level information paved the way for improvements in several tasks
in this field. Computer vision techniques used for object detection and image
classification outperformed other techniques [10]. These techniques have been
adopted in high energy physics in tasks such as jet tagging and particle identifi-
cation. For instance, CNNs provided a new approach for detector data analysis
through image processing where they are most successful. For this purpose, new
approaches were taken with regards to LHC detector data.

6.1 Geometric considerations for detector-image

creation

The structure of detector layers is characterized by densely packed towers form-
ing a mesh-grid shape within calorimeters (see section 2). As a result, several
studies approximated calorimeter towers as pixel grids being part of a 3D im-
age, the latter being the entire calorimeter system. Geometric considerations
are required to account for the difference in tower granularity and segmentation
between calorimeter layers. In [10] , Andrews et. al suggest two approaches
to tackle the difference in segmentation and overlapping regions and proceed
with jet-image creation for both ECAL and HCAL. The first approach suggests
an HCAL-centric geometry, whereby the HCAL segmentation is preserved while
hits from ECAL endcap are projected into a grid having the same segmenta-
tion as the ECAL barrel’s. As a result, a 280 x 360 image is obtained, covering
the same pseudo-rapidity range as the HCAL and allowing the combination of
these grid hits into one composite image. Alternatively, the second approach is
ECAL-centric and consists of unrolling the ECAL barrel and ECAL endcap layers

31

Figure 5.1: Recurrent Neural Network architecture taking jet embedding as
input for jet classification [49]

into two separate images with dimensions of 170 x 360 and 100 x 100, respec-
tively. These two approaches are adapted for the creation of ECAL images. An
HCAL-centric creation of HCAL images is simpler due to the same segmentation
between sections of the HCAL Endcap (HE) and HCAL Barrel (HB). Therefore,
particle hits have the same location (in η − φ or xyz coordinates) at different
depths are summed and a 56 x 72 image is created, covering both HB and HE
ranges. Otherwise, an ECAL-centric approach for HCAL images projects HCAL
data into an EE-like segmentation, resulting in a 100 x 100 image.

6.2 CNN on jet-images

In [49], Louppe et. al tried a set of approaches for jet classification. One approach
is the projection of the jets’ 4-momenta into images and testing their performance
on MaxOut [50][51] and kt [52] architectures. This led to ROC AUC results of
0.8418 and 0.8277, respectively. The best architecture is a Recursive Neural Net-
work that takes jet embeddings of clusters derived from the kt algorithm in [13]
as input (Fig.8).This model results in a ROC AUC of 0.9222 with 100 times less
parameters than the MaxOut architecture, and with 100 0000 samples compared
to 6M in [12].

In [53], Andrews et. al used convolutional neural networks with a ResNet-15
architecture for classifying a jet-image as corresponding to a quark or gluon. Fol-

32

Figure 5.2: Convolutional Neural Networks on three-channeled images for jet
tagging [54]

lowing image-preprocessing steps that follow the same guidelines as in [3], they
obtained a ROC AUC of 80.17 outperforming the previously used recursive net-
work in [11]. Komiske et. al [54] investigated the performance of CNNs on the
task of quark/gluon jet tagging. They relied on similar geometric considerations
for image processing and added ‘color’ the detector images by associating pixel
intensities in 3D images to the transverse momentum values. For instance, red,
green and blue channels composing a regular image correspond to momenta of
charged particles, neutral particles and pixel-level charged-particle counts, respec-
tively (Fig.9).As a result, more information regarding hit energy could be taken
into account. Experimental results of this study show the ability of CNNs to
perform equally well and sometimes better than previous jet-tagging approaches
such as deep learning without color, Fisher’s Linear Discriminant, shallow dense
networks and boosted decision trees.

Other CNN applications in particle physics include event classification. In
[55], Aurisano et.al developed a Convolutional Visual Network (CVN) were used
for neutrino event detection on data collected from detectors of the NOvA ex-
periment at Fermilab. The data consists of two types of images representing the
detector’s top view and side view of grid cells containing energy hits. The latter
are clustered and separated from background signal caused by cosmic rays. Fi-
nally, they are fed to the CVN, paving the way for 3D event reconstruction and
the neutrino event classification reaching an accuracy of 69%, further reinforcing
the credibility of detector-based pixel images in high energy physics. On the
other hand, deep learning techniques are used for noise reduction. Due to the
high luminosity in the beam, it is unavoidable for additional parasitic interactions

33

Figure 6.3: RNN hit predictor taking 3 hit coordinates as input and outputs a
2D next-hit prediction [57]

to occur between the collision products. This rises the need for the algorithms
used in analysis to account for such interactions also known as pileup which act
as a noisy signal that should be separated. Similar to [56], Komiske et.al use an
image-based approach and associate pixel intensities with energy distributions to
build the Pileup Mitigation with Machine Learning (PUMML) model. The lat-
ter is fed with three-dimensional images with each channel corresponding to the
charged LV particles, charged pileup particles and neutral particles, respectively.
In contrast to previous studies shedding light on classification performance, this
model was the first machine learning approach to perform regression on jet ob-
servables and returns cleaned energy distributions resulting exclusively from the
leading vertex. Evaluation was done on simulated collision data generated on
Pythia with pileup addition by overlaying soft QCD events. Correlation coef-
ficients with jet observables have shown it to be a robust model performing as
well as previous methods [18], giving space for further improvement on pileup
mitigation using deep learning.

Image-based approaches have seen notable success for jet-substructure classifi-
cation, where data contains several explorable detector features such as hit lo-
cations, hit energies and momenta. However, such approaches are hampered by
the irregular grid structure of detectors on the one hand, imposing limitations
on the image resolution in the data, and by the difficulty of transferring these
approaches to other tasks such as particle tracking. That being said, other deep
learning models in particle physics have been adopted. In [57], Farrell et.al model
the dynamics of a particle trajectory using two Long Short Term Memory based
models (LSTM). The first model uses a RNN that performs regression on the
next hit location prediction given the current and previous coordinates (Fig.10).
By minimizing a mean-squared error loss function, this model achieves reasonable
results falling within 1 mm error in the z-direction.

The second model performs the same next-hit location prediction in a multi-
modal manner. It uses maximum likelihood estimation using a Gaussian proba-
bility distribution. The resulting prediction matches well with the actual track
with a performance that is equally as good as the RNN model. Furthermore, in
[58], Liechti uses RNN for track reconstruction of low-momentum particles, out-
performing XGBoost with an accuracy of 87% compared to 80% with the former
approach. The success of RNN in hit prediction tasks is due to its ability to

34

account for the sequential aspect presented by particle trajectories after decays.

6.3 Deep Learning-based simulations

As discussed in previous chapters, Deep Learning provided notable contributions
to the field of high energy physics. In fact, feeding deep neural networks with
raw detector data to be processed at low-level has outperformed traditional al-
gorithms with reliance on feature engineering and physics-based pre-processing
[59]. This resulted in a surge in DL-based applications in HEP for a multitude of
tasks such as jet classification [60] and trajectory prediction [58]. Nevertheless,
the success of deep networks on LHC data is not limited to supervised tasks. As
a matter of fact, recent work in Artificial Intelligence sheds light on the potential
of deep networks architectures as unsupervised models. This could be explained
by the fact that labeling data is a timely expensive task, especially when dealing
with very large datasets. Therefore, the ability to train on unlabeled data pro-
vides multiple advantages including the time saved for labeling data on the one
hand and alleviating human bias/errors throughout the labeling process on the
other hand. Moreover, the ability of these models to train on unlabeled raw data
makes them proper candidates for reconstruction tasks such as simulations. That
being said, these architectures referred to as deep generative models have been
widely used recently for image generation and segmentation. Recent advances in
the field of deep learning and computer vision have produced notable applications
in particle physics as well [61]. The potential of generative models for simulat-
ing collision events is a very active area of research. In [4], a combination of a
Variational Autoencoder (VAE) and a Generative Adversarial Network (GAN)
is used to simulate electromagnetic showers in calorimeters. Other studies focus
on GANs for QCD Dijet events [3] and hadronic jets [62]. In our study, we make
use of VAEs [47] and geometric deep learning to learn a compressed representa-
tion of the data to be used for reconstruction of high-energy physics events. As
detector data in non-Euclidean by nature, we use geometric deep learning tech-
niques including spatial graph convolutional layers [63] to learn the properties of
the graph-like jets and spectral clustering layers to compress these graphs into
smaller, more representative nodes.

6.4 Limitations

As seen in the previous section, image-based representations of calorimeter im-
ages paved the way for novel deep learning algorithms to be trained on such
grid-like data format. Convolutional filters would scrutinize the detector pix-
els in the search for patterns specific to a unique decay event associated with a
jet. Such techniques outperformed conventional algorithms and machine learn-

35

ing methods such as Boosted Decision Trees in numerous tasks in High Energy
Physics. Despite their massive success, using convolutional networks on detector
images comes with major downsides. On the one hand, most of the detector
pixels undergoing convolution operations through filters are zero pixels. In fact,
detector layers in CMS are very dense and it is expected that only a fraction of
towers will receive the particle hits. That being said, our input data is very sparse
yet very large in dimensionality whereas most of the entries are empty, resulting
in a larger data size affecting the computational performance due to memory re-
quirements. In addition, the loss function will compare the model’s output to an
output array with mostly zeros, hence the model can learn to output too many
zeros to reduce the loss, which affects the model accuracy. In addition, in many
cases, particle hits from two ore more different collision events could fuse into
one common calorimeter cell. As discussed in [5], it is unclear how the CNN fil-
ters could discern the fusion of non-additive quantities such as the particle types
into one single cell. This issue worsens when dealing with unsupervised data for
representation learning. Finally, one last downside of image-based approaches
for CNN is the limitation associated with the complex detector granularity. In
fact, the detector layers’ resolution is hardly homogeneous. This is especially the
case for regions that overlap between the barrel and endcap section (See Chap-
ter 3) where a fixed-size (η, φ) resolution of (0.025 × 0.025) highly undermines
the complexity of the geometry at those locations. As discussed in [53], ECAL
and HCAL detectors are characterized by different segmentations, especially in
the endcap regions, hence posing a challenge for the construction of high-fidelity
detector images.

In a nutshell, CNNs provide a promising performance on particle physics tasks,
especially when mapping event data into images where their performance is max-
imal. Yet, mapping detector data into images of given resolutions is problematic
due to the sparse nature of the events within calorimeter cells and the latter’s
heterogeneous and complex detector geometry. As a result, there is a need to
map these convolution operations into hit locations under consideration, with
disregard to the numerous empty cells surrounding them.

36

Chapter 7

An alternative approach, Graph
Networks

Deep learning techniques have notably shaped the analysis of several types of
data including images, videos and speeches. In addition, the previous sections
have shown how these techniques are multi-disciplinary, as they were transfer-
able to particle physics where they set the ground for several explorations. The
latter inspired from computer vision techniques and used different network ar-
chitectures to unravel new physics. In spite of alleviating the cost associated
with feature engineering adapted in classical machine learning algorithms, neu-
ral network architectures such as CNNs still have limitations to consider. These
include information loss due to geometrical considerations on detectors that per-
form data projection on detector layers’ grids with reference granularity. In addi-
tion, CNNs require a set of steps for image pre-processing that could be lengthy
and computationally costly as they have a high number of trainable parameters.
Therefore, data is frequently transformed to be treated as a regular structure
in the Euclidean domain. Nevertheless, numerous types of data are irregular in
shape, which raises the need for new approaches to analyze data having a non-
Euclidean geometric structure. That being said, graphs are an example of a data
type whose structure is suitable to represent various complex problems involving
interactions between entities. As a result, recent studies have shed light on the
potential of Geometric Deep Learning (GDL). Based on graph theory, GDL aims
to transfer deep learning techniques, mainly convolution operations and pooling,
to irregular-structured data such as graphs and manifolds [64] [65].

This method has been successful in a multitude of applications. In ecommerce,
graph architectures have shaped the way user-product interactions occur with
the recent advances in recommender systems, allowing the use of graphical repre-
sentations where edges represent similarities between items defined as nodes [66].
In sciences, graph networks provided a new platform for molecular and drug re-
search, where graphs represent molecular compounds whose interacting molecules

37

Figure 7.1: 2D Convolutions vs Graph Convolution [64]

through one or more bonds are defined as nodes and edges, respectively [26]. Fi-
nally, a commonly example of graph networks in the DL community uses the
CORA citation networks dataset, where nodes are scientific papers whose neigh-
bors form the list of citated work in this paper [26].

In the section on Deep Learning, we mentioned how CNNs make use of the image
data’s locality and shift invariance, allowing convolution operations to extract
features in a Euclidean domain through sliding kernel filters. This approach is
not feasible in the non-Euclidean domain because the local connectivity differs
between entities; i.e different entities could be connected to a different number of
neighbors. At this point onwards, we define these entities as nodes (or vertices)
whose connectivity is defined by a set of edges whose architecture is pre-defined
with an adjacency matrix.

7.1 Definition

A graph is denoted by G = (V,E,A) where V is the set of vertices composing
the graph, E the set of edges connecting these vertices, and A being an N x N
adjacency matrix, where N is the total number of nodes in the graph. Associated
with each vertex V is a set of features describing it. These are given in a feature
vector X ∈ RN×D with D being the number of features per node.

Let vi ∈ V denote a vertex and eij = (vi, vj) ∈ E an edge connecting this
vertex to a neighbor vj. Aij then denotes the value wij at the jth column of the
ith row of the adjacency matrix. In the case of a weighted adjacency matrix, wij
represents the weight of an edge connecting two vertices, indicating the effect
presented by vj on vi’s features as compared to other neighbors. An un-weighted
adjacency matrix is characterized by a wij value equal to 1 if a connection exists
between two vertices, and a value of 0 otherwise. The total sum of neighbors for
a node vi represents the degree of this node and is given by

∑n
j=0wij where n is

the number of neighbors. At this stage, we distinguish two types of graphs: A
directed graph is one where the edges unidirectionally point from one vertex to
the neighboring one. As a result, it is likely that wij 6= wji in such a case. In

38

contrast, connectivity and edge features go both ways in an un-directed graph
hence wij = wji [21].

7.2 Graph Networks

Kipf et.al [67] presented one of the first attempts to perform convolution on
graphs. The concept behind Spectral Graph Convolution is inspired from Graph
Signal Processing whereas a feature vector X associated with the node attributes
of a graph G is treated as a signal in the frequency domain. In order to perform
convolution on graphs in the spectral domain, the first step consists of calculating
the normalized graph Laplacian given by:

L = In −D−
1
2AD−

1
2 = UΛU (7.1)

In Eq, In is an identity matrix, D ∈ Rnxn is the diagonal degree matrix given
by Dij =

∑n
j=0wij, Λ ∈ Rnxn is the diagonal matrix of eigenvalues of eigenvalues

of L where Λii = and U ∈ Rnxn is the graph Fourier basis, a matrix containing
the eigenvectors of L ordered by eigenvalues.

At this point, eigendecomposition of the graph Laplacian matrix has been done,
hence factorizing it into as many eigenvectors as the total number of nodes in the
graph. The convolution operation can now be performed using a spectral kernel
that would be multiplied by the node signals. In [24], Hammond et. al suggest
that the kernel on Λ can be formulated as a truncated expansion in terms of
Chebyshev polynomials, as shown in the following formula:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̃) (7.2)

where Λ̃ = 2
λmax

Λ− In, λmax being the largest eigenvalue in Λ.

The kernel gθ is applied to the diagonal matrix of eigenvalues. Θ is a vector
containing Chebyshev coefficients to reduce the number of parameters, T con-
tains Chebyshev polynomials and K is the order of neighborhood away from a
given node to be covered.

7.3 The propagation rule

Having performed the convolutions operation on neighbor node attributes, this
signal needs to be aggregated and propagated k times in order to update the
features of the node under study for the next iteration. A hidden GCN is given
by H i = f(H i−1, A) where H i = N ×X i represents the node features at iteration

39

i and f is a propagation function, most commonly the ReLU function. The
simplest form of the propagation rule accounts for the node features by summing
them prior to aggregation. This method known as the sum rule is given by:
hvi = AiX =

∑N
j=1AijXj where hvi represents features of node v at the ith

iteration. Nevertheless, one problem arising from this method is its inability to
account for self-features i.e the features of the node under consideration. The
mean rule addresses this issue using a self-loop by adding the identity matrix to
the adjacency matrix Â = A+ I. The mean rule is given by:

hvi = D−1AiX =
N∑
k=1

D−1i,k

N∑
j=1

D−1i,kAi,jXj =
N∑
j=1

D−1i,i Ai,jXj =
N∑
j=1

1

Di,i

Ai,jXj =
N∑
j=1

Ai,j
Di,i

Xj

(7.3)
where D is the diagonal degree matrix where the ith row and column represent the
degree of node i. Since all other entries are 0, the summation over k is irrelevant
and can thus be removed.

One last formulation accounts for both the degrees of node i on the one hand
and the neighbor nodes’ on the other hand. The spectral rule formulation is
given by:

hvi = D−0.5AiD
−0.5X =

N∑
k=1

D−0.5i,k

N∑
j=1

Ai,j

N∑
l=1

D−0.5j,l Xj =
N∑
l=1

D−0.5i,i Ai,jD
−0.5
j,l Xj

(7.4)

where the third summation over l aggregates features from the nodes that are
directly connected to the neighbor j of node I under study. This rule helps to
avoid overfitting in case some nodes have notably higher or lower degrees than
others.

7.4 Graph pooling

As seen in Chapter 4, pooling operations on Euclidean data are successful in
reducing the number of trainable parameters and learning compressed represen-
tations of images. Given the dense nature of some graph such as social networks
characterized by thousands and sometimes millions of nodes, a similar operation
in the non-Euclidean domain is needed. Having said that, recent studies have
shed light on several approaches that use pooling in graph neural networks. Early
studies on graph pooling make use of a graph’s topology to learn clusters of it
through conventional graph coarsening algorithms that perform eigendecomposi-
tion in the Laplacian domain. This clustering method is referred to as Graclus
and has been used in several GNN applications [68] [69]. Later methods make

40

more use of node features through global pooling such as the SortPool layer in-
troduced by Zhang et.al in [70]. SortPool embeds an unordered set of nodes
vertices after several GCN operations and arranges them in a sorted fashion of
fixed size prior to feeding them to a 1-D CNN and a fully connected network for
classification. Despite setting a good baseline for graph and node classification
using pooling, global pooling fails to account for the hierarchical aspect between
the nodes and the fact that some clusters of nodes are more representation of the
overall graph than others. These drawbacks were tackled by Yhing et.al in [71]
where they introduce DiffPool, a hierarchical graph pooling that, in contrast to
graclus, operates on an assignment matrix S by learning on it. More specifically,
DiffPool assigns to each node within a graph of p clusters at layer l a probability
of belonging to one of q clusters in layer l + 1 where q ≤ p. Other studies on
graph pooling disregard clustering through assignment matrices and proceed by
assigning relevance scores by means of attention layers whereas we selected the
top-k nodes or edges as is the case with SAGEPool and EdgePool, respectively
[72] [73].

7.5 Graph Variational Autoencoders

The potential of Variational Auoencoders on non-Euclidean data in deep gen-
erative model applications remains under-explored. Variational Graph Auto-
Encoders (VGAE) were first introduced by Kipf et.al in [74] for unsupervised
learning-based tasks such as link prediction on the following citation network
datasets: Cora [75], Citeseer and Pubmed. This was a crucial architecture that
facilitated the analysis of graph structures with large numbers of nodes, mainly
social networks and citation networks. The latter could be trained in a more
computationally efficient manner while still giving state-of-the-art accuracy. For
instance, VGAE and a regular GAE outperformed conventional graph kernels
such as DeepWalk [76] and Spectral Clustering [77] in the link prediction task
with accuracies of 91.4 and 91 % for the VGAE and GAE, respectively.

Given their notable success in network mining, a multitude of researchers have
shed light on the potential of graph-based architectures in their area of specialty.
Today, graph generative models are the core of molecular chemistry and drug
research. This could be explained by the fact that molecular compounds are de-
fined by an explicit non-Euclidean/graph-like topology. Hence, researchers were
motivated to map a given molecular structure into a graph topology to be used
in a deep graph generative model for several tasks such as molecule classification
[ref], property prediction [36] and novel constrained molecular shape generations
[37]. In [37], Simonovsky and Komodakis develop a GraphVAE model for molec-
ular graph generation using 2 datasets: QM9 [78] and ZINC [79]. The nodes
(atoms) are embedded into latent space vector representation approximating an

41

isotropic Gaussian prior distribution N(0, I). Then, their probabilistic graph
decoder outputs a fully connected graph with k nodes where k is a pre-defined
maximum number of nodes within a graph. Their conditional VGAE outputs a
limited number of valid chemical compounds, yet remains a major step towards
incorporating deep generative models in molecular chemistry.

Figure 7.3: Graph Autoencoder architecture [80]

7.6 Graph Networks on Point Clouds

Rather than mapping any sparse structure defined by coordinates in a M-dimensional
space into a multi-channel image to be fed to a fully-connected or convolutional
network, such structures could now be treated as point clouds in M-dimensional
space. Recent studies have shed light on the potential of deep learning in incor-
porating such sparse representations for numerous applications, mainly classifi-
cation, shape retrieval and part segmentation. To proceed, the notion of Per-
mutation Invariance in point clouds must be highlighted. For instance, training
neural network models on images requires the former to be invariant or ”resilient”
to any rotations and augmentations of these images. Similarly, point cloud ro-
tations and node permutations should not affect the model output. In [81], Qi
et. al developed PointNet, a deep learning model that accounts for the permuta-
tion invariance of points within their 3D representation to perform classification
and segmentation tasks. More specifically, given a sample of N points in 3D
space, PoinNet is invariant to N ! permutations of this sample. Eventually, this
model was able to obtain a mean Intersection-Over-Union (mIOU) of 83.7 on
the ShapeNet part dataset [82], outperforming all baselines. Later on, Qi et.al
introduced an upgraded version, PointNet-++, whereas local structures can be
discerned in the metric space by performing PointNet recursively on overlap-
ping local regions of point clouds to extract higher level features [83].Eventually,
PointNet-++ reaches a mIOU of 85.1

Having introduced the early deep learning techniques on point clouds, we now

42

shed light on the incorporation of graph neural networks in such applications,
and the added value they present. In [84], Wang et.al introduced the Dynamic
Graph CNN, a novel architecture that learns on raw 3D data by means of Edge
Convolution (EdgeConv) layers. These layers operate in a dynamic fashion on
point clouds mapped into a graph topology defined by node features,edge fea-
tures and an adjacency matrix. The latter is defined by means of k-nearest
neighbours for each node in 3D space at input level, and in latent space within
hidden layers. This architecture was trained on ModelNet40 [85] for classifica-
tion, reaching a mean class accuracy of 90.7% and an overall accuracy of 93.5%.
In addition, DGCNN was trained for part segmentation on the Shapenet part
dataset reaching a mIOU of 85.2, outperforming all baselines except PointCNN
[86].Another scenario where graph convolution is performed on 3D point clouds is
shape reconstruction through generative modeling (more details in Section 7.4).
For instance, Bouritsas et. al [87] make use of GNNs in learning latent rep-
resentations of 3D meshed topologies of human faces. The latter are encoded
into latent space through a sequence of graph convolution and pooling operators.
Their Neural3DMM model then smoothly reconstructs the meshes from latent
space.

The aforementioned techniques for learning on point clouds were crucial for the
advancement of deep learning research on non-Euclidean structures, which are
the most dominant forms of data around us. For instance, their ability to incor-
porate raw data into graph architectures and applying spatial convolution solely
on the nodes and edges under consideration makes them a suitable replacement
for imaged-based CNN techniques in terms of memory requirements and compu-
tational complexity.

7.7 Graph Networks in High Energy Physics

Having discussed the applications of graph-based architectures on point clouds,
we now emphasize on the promising aspect of such methods in particle physics.
Several attempts have been recently made to approach particle collision events
spread within detectors as point clouds mapped into graph topologies. This
technique is memory-efficient as it operates directly on the raw data associated
with particle hits’ locations in the calorimeter and their respective momenta.
Consequently, a multitude of GNN applications surged in HEP. In [5], Qu and
Gouskos introduce ParticleNet, a deep learning architecture with similar prop-
erties as DGCNN in [84] for jet tagging purposes. In this study, they perform
classification using the Top jets [88] and Quark/Gluon datasets [89], respectively.
To proceed, their model is fed with 4 main features of jets including the η − φ
coordinates of the hits, the PID and their respective hit energies. Next, k-nearest

43

neighbor approach is used to connect each node (particle) to k neighbours around
it according to its η − φ coordinates: this defines the graph topology of the jet.
Finally, the input is propagated through EdgeConv layers along which the graph
topology changes depending on node coordinates in latent space. Eventually,
ParticleNet outperforms baselines including ResNetXt-50, P-CNN and PFN in
both top tagging and quark/gluon classification with AUC scores of 0.9858 and
0.9116, respectively. Yet, one downside of ParticleNet is its relatively slow infer-
ence time on GPU (0.92 ms compared to 0.018 ms for PFN). This is due to the
slower nature of EdgeConv layers.

Other graph-based applications in HEP include Pileup Mitigation [90] and par-
ticle reconstruction [91] [92]. In[90], Martinez et.al make an extented version of
the PUPPI algorithm (PileUp Per Particle Identification) [93] using deep learning
and graph networks. Their model called PUPPIML takes as input several particle
features, mainly their coordinates, charge and probability of being a pileup (for a
detailed description refer to [90]). The input mapped into a graph which is fed to
3 consecutive Gated Graph Neural Network (GGNN) layers. Eventually, a fully
connected network processes the embedding of individual nodes and outputs a
binary pileup classification score. The GGNN architecture outperforms baselines
such as PUPPI, FCN, GRU and the SoftKiller algorithm in pileup classification
performance (ROC of 96.1%). This technique is efficient on the node level and
is similar by analogy to graph network architectures used for node classification
tasks in social networks and citations networks whereas the algorithms are used
for recommendation of products or classification of articles, respectively.

On the other hand, Ju et.al [91] make use of GNN modules based on Interac-
tion Networks from [94] to perform particle track reconstruction in calorimeters
of complex geometries. They pre-process data belonging to the barrel region of
the detector only (See Chapter 2) by assigning cylindrical coordinates (r, φ, z) as
node features and the differences between them (∆η,∆φ) as edge features. To
proceed, they encode the input graph’s node and edge features into latent space
through two fully connected networks. Next, they perform N iterations of graph
layers to learn the interaction between particles in latent space (N=8 was found
to perform best). Eventually, a decoder with two fully connected networks recon-
structs the particle track. Their model resulted in an overall relative efficiency of
95% for track finding.

44

7.8 Summary

From the aforementioned studies, we can conclude that Graph Neural Networks
show a notable potential on point clouds on the one hand, then in the field of HEP
on the other hand. Their ability to study interactions between interconnected
nodes in 3D space and any latent space makes them a strong candidate for the
study of collision events obtained at the CMS detector. That being said, this
thesis work will shed light on the ability of graph-based architectures to perform
a set of tasks such as fast simulation of boosted jets from the parton level on
the one hand and the estimation of muon momenta at the level of Cathode Strip
Chambers on the other. Further details are discussed in the next chapters.

45

Chapter 8

Falcon

Particle collisions taking place at the LHC are very complex in nature. Hence,
several attempts have been made to reconstruct collision events through the de-
velopment of advanced probabilistic models and Monte Carlo techniques. A prob-
abilistic model of the event reconstruction problem could be described as follows:

p(r-particles|θ) =

∫
R(r-particles|particles)H(particles|partons)

×P (partons|θ) dparticles dpartons

(8.1)

where p represents the probability density of observing a set of reconstruction
particles given a point in the parameter space and Rparticles is the detector
response [95]. The latter, as previously mentioned, could be approximated in
different ways depending on the type of simulation being performed; either a Full
simulation using Geant [1][96], or a parametric simulation using the DELPHES
framework [2]. The former is an interactive software toolkit used in HEP to simu-
late the interaction of particles with matter while accounting for several boundary
conditions such as detector geometry, magnetic field and other physical aspects.
Despite their accurate representation of collider events, Geant-based simulations
are highly complex and require extensive computing resources, bearing in mind
that higher amounts of data need to be collected from the LHC in the future. As a
result, Fast Simulation techniques have been introduced as a computationally ef-
ficient and faster alternative at the expense of complexity. DELPHES framework
has been introduced as a toolkit for fast detector response simulation whereas the
environment consists of the trackers, calorimeters and muons systems wrapped
around the beam axis. Users are able to specify the segmentation of the calorime-
ters on the one hand, and the strength of the applied magnetic field on the other
hand. Eventually, this software allows us to perform numerous tasks such as jet
reconstruction originating from a photon/electron or the calculation of missing
jet transverse momenta. In a nutshell, DELPHES is a C++ - based code that

46

uses simplified detector geometries to simulate particle interactions with matter,
hence mapping the detector response into a parametric function. Nevertheless,
a major issue with this method is its non-universality. For instance, each simu-
lation is unique to the underlying detector geometry under consideration, hence
the need to hand-code the framework accordingly with any required detector
changes. In this work, we shed light on new methods that utilize non-parametric
methods to simulate the detector response function. The first such application
was led by Ted Knuteson through the development of the TurboSim program in
[97]. Our Falcon project could be considered as an updated version of TurboSim
and its package consists of two main components: the builder and the simulator.
The former is used to derive a formulation for the response function through
the analysis of fully simulated events. On the other hand, the simulator uses the
builder’s formulation of events at the parton level to simulate the resulting events
at the reconstruction level. In probabilistic terms, the simulator estimates the
product given by:

R(r − particles|particles)×H(particles|partons) (8.2)

The end-result of the simulator will be a jet corresponding to different types of
flavors such as electrons, muons and taus. A proof of principle in addition to
further information on FALCON’s early work can be found in [95].

The above mentioned models have shown early success in representing detec-
tor data. For instance, DELPHES has shown promising results in several tasks
such as Jet reconstruction, missing transverse momenta calculation and Pileup
mitigation using the Jet Area method [2]. Figure 8.1 shows the energy reso-
lution resulting from the DELPHES simulation of electron and photon showers
as compared to the original resolutions of these showers at the CMS detector.
Considering the rising need for scalability of any given model to cope with the
larger amounts of data to be produced in LHC at higher luminosities, the search
for computationally efficient and data-friendly algorithms continues. That be-
ing said, the next section will shed light on the promising aspect of Artificial
Intelligence and Deep Neural Networks in Particle Physics, and their ability to
learn the properties of collider events’ data to perform a variety of tasks using
both supervised and unsupervised methods. Eventually, we explain how FAL-
CON makes use of these novel techniques in Fast simulation applications and how
these methods are more efficient than the traditional Monte Carlo-based models.

47

Figure 8.1: The energy resolution resulting from the DELPHES vs original
resolution at the CMS detector [2]

48

Chapter 9

Methods and Results

9.1 Data

9.1.1 Definition

In this work, we make use of the CMS Open Data release [98] - publicly acces-
sible data from the LHC experiments. We consider the boosted top quark jets
produced using Pythia 6, a program for generating particle collisions events. The
data was transformed into image-based form, specifying the location and values
of energy deposits in the calorimeter by following the prescription in [60]. The
data consists of almost 30000 samples of 3x125x125 arrays representing the mesh
and the segmentation of 3 detector stages: Tracker, ECAL and HCAL subdetec-
tors, respectively. We aim to reconstruct jets that deposit their energy in the
calorimeters, initially focusing only on the ECAL subdetector hits. The non-zero
hits within this 125x125 array correspond to the hit energy of the corresponding
particle shower deposited at that specific grid cell.

Figure 9.1: Comparison between the energy deposits in the Tracker, ECAL, and
HCAL calorimeter layers.

49

Figure 7.2: GraphSAGE message passing through neighborhood feature
aggregation[99]

9.1.2 Pre-processing

We pre-process the data by selecting the non-zero hit locations within the array,
providing their respective x and y locations as per the calorimeter segmentation.
Afterwards, we concatenate the x,y locations with their corresponding hit energy
at that location. At this stage, each sample has the shape Nx3 where N is the
number of non-zero particle hits within the detector for one specific sample jet,
with each sample containing 3 features: the x,y locations and their hit energies,
respectively. In the next section we show that N is also the number of nodes
within one graph representing a jet.

9.2 Use Case: GraphSAGE

In our work we are interested in embedding node representations of a graph into
a latent space. As our point cloud data of physics jets does not have a unique
pre-defined topology, it is possible that propagating messages within direct neigh-
bouring nodes is not enough to generalize the description over the whole network.
Therefore, we refer to GraphSAGE [99], an inductive learning framework that as-
sumes nodes within the same neighbourhood to have similar embeddings and pro-
ceeds by aggregating information from higher-level neighbourhoods. The depth of
the latter is described by a constant K, whereas K=2 refers to two-hop neighbor-
hood relative to the node under study. Furthermore, in contrast to conventional
spatial convolutions where message passing is performing within an entire neigh-
bourhood, GraphSAGE samples random nodes from the given neighbourhood
and aggregates and their latent space features. The latter are then concatenated
with the node’s initial embedding at that same iteration and sent to an activation
function. Therefore, GraphSAGE is a memory efficient deep learning algorithm
that makes a suitable candidate for a graph encoder-decoding process of physics
jets given its ability to learn on long-range neighborhoods.

50

Algorithm 1 Multi-layer GraphSAGE pseudo-code

0: Input: Graph G=(X,A) where X is the feature matrix and A the adjacency
matrix in the model’s lth layer; X ∈Rn×d and A ∈Rn×n with n=number of
nodes in a graph, d=feature dimension.
Let u be a node’s features and V be the neighbourhood of this node.

0: for l = 1, 2, . . . , L do
0: for v ∈ V do
0: hLN (v) ←aggregatel(h

l−1
u ,∀u ∈ N (V))

0: hlv ←σ(W l.CONCAT (hl−1v , hlN (v)))
0: end for
0: Normalize the feature vectors prior to message passing:

0: hlv ←
hlb
‖hlv‖

0: end for
0: Aggregate hidden features to original node:
0: hv+1 ← hlv,∀v ∈ V =0

9.3 Mincut Pooling

In this work we make use of Mincut Pooling layer used by [100] to compress
graph representations. Given a graph G = (N,E) with N being the number of
nodes and E the number of edges. Mincut Pooling operates by distributing the
graph nodes into clusters with similar latent features by means of a cluster as-
signment matrix S ∈ {0, 1}N×K with Si,j = 1 indicating the inclusion of node i
in cluster j. In mathematical terms, this process is described by [101] as follows:
argmaxQ∈RN×K = 1

K

∑K
k=1Q

T
kAQk having a solution Q∗ = UKO where UK is the

matrix of eigenvectors ordered by the K largest eigenvalues. Graph spectral clus-
tering learns a cluster assignment matrix S by linear transformations of the node
representaions in latent space followed by softmax activation for class/cluster as-
signment. This method clusters nodes according to the graph topology and node
features; nodes that have similar features or are closely connected should have
similar representations in latent space and are likely to fall within the same clus-
ter. To proceed, the pooled feature matrix and adjacency matrix are calculated
as follows:

APool = ST ÃS (9.1)

XPool = STX (9.2)

9.4 Model architectures

In this study, we make use of geometric deep learning methods where convolu-
tion operations are translated to non-Euclidean structures, in contrast to pre-

51

vious studies where the entire grid-like structure of a given detector is used as
an input to fully-connected or convolutional layers for classification or regres-
sion purposes [54][55]. Therefore, we consider particle hits within a detector to
be interconnected nodes in a graph. In contrast to molecular chemistry, where
the graph topology is constrained by the molecule shape [37], jets in particle
collisions are not characterized by such pre-defined topology. We proceed by con-
necting each node to its k-nearest neighbours based on Euclidean distance given
by

√
(x− xi)2 + (y − yi)2 with xi and yi referring to this node’s coordinates. In

this thesis, we present two methodologies for jet reconstruction through decod-
ing from latent space. The first method, GVAE-Mincut,consists of embedding
the graph’s node features into latent space through SAGE layers while pooling
the graph nodes to get a compressed representation of this graph. The second
method,GVAE-EdgePool uses a simpler architecture whereas node features are
embedded into latent space without pooling. In latent space, we obtain a hidden
representation with the same number of nodes and different number of features
which are in vectorized form. On the one, we compare the performance of our
model to that of a graph model that uses EdgePooling. Next, we compare the
reconstruction and number of parameters of both graph models with a regular au-
toencoder that operates on images. Finally, we check for the speedup obtained by
using deep generative models as compared to traditional Monte Carlo techniques.

9.4.1 Jet Reconstruction with Mincut pooling

To learn the properties of these jets as graphs in addition to a compressed repre-
sentation to be used in an encoder-decoder architecture, we develop a Graph VAE
architecture whose encoder embeds the node features into latent space dimen-
sions through Dense GraphSAGE layers [99], then compresses them into smaller
dimensions using dense mincut graph pooling operations inspired by [100] where
spectral clustering of the graph nodes is performed. A pictorial representation
of our model is given in Figure 9.2. The latter shows the process of sampling
non-zero hits from grid arrays and mapping them into graphs, resulting in an
adjacency matrix A and a feature matrix X. Both matrices are used as input
to a total of 3 Dense GraphSAGE layers within the model’s encoder of, each of
shape (batch size, nnodes, nfeatures). Amid those GraphSAGE layers are two Dense
Mincut Pooling layers that downsample the graphs’ nodes to smaller dimensions.
Furthermore, the compressed graph representations are linearly transformed into
a final latent space layer at which stage they undergo reparametrization to allow
backpropagation to take place. Finally, a decoder performs decoding of the la-
tent space compressed nodes to obtain upsampled feature matrix X and adjacency
matrix A, respectively as follows:

Xrec = SXPooled;Arec = SAPooledST (9.3)

where S is a learned cluster assignment matrix similar to the one defined in [100].

52

Input	arrays
(125x125)

SAGE MINCUT
POOLING

Non	zeros
{'X',	'A'}

X

A

SAGE

mu sigma

LINEAR LINEAR

Reparametrize

Reconstructed	Jets
(Batch	size,
1000,3)

MINCUT
POOLING SAGE

LINEARUPSAMPLE SAGESAGEUPSAMPLESAGE

Figure 9.2: Model architecture of the Graph Variational Autoencoder showing
GraphSAGE layers and pooling blocks.

To proceed with training, we choose k=4 as the number of nearest neighbours
to be connected to each node. In addition, we use the Adam optimizer with a
learning rate of 0.001. Finally, our loss function includes the MSE loss between
node features on the one hand, and the Kullback-Leibler divergence between the
latent space and the real P(z|x) distribution. Prior to training, we split our
dataset into 70% training, 20% validation, 10% testing.

9.4.2 EdgePooling

We compare the performance of our Mincut GVAE with an EdgePooling based
autoencoder. This model learns a hidden representation of jets as graphs by per-
forming message-passing within the nodes i.e spatial GCN and by compressing
their large representation by means of localized pooling transformations as de-
scribed by [73]. Similar to attention mechanisms, transformed node features are
first concatenated and undergo a tanh activation which computes node scores.The
latter are then normalized by means of a softmax activation.Eventually, we ob-
tain a sorted list of edge scores from which the top k% are selected where k is
the percent of graph reduction to perform.

Through both GVAE methods (Mincut and EdgePooling-based), we use the
tanh activation function in the first layer of the encoder, with the rest of the layers
using ReLU activation afterwards. In addition, adding batch normalization seems
to stabilize training further, so it was added within encoder layers.

53

9.5 Metrics

First introduced in 2019, the Earth Mover Distance (EMD) metric describes the
space of two collider events [102]. It represents the minimum ”work” needed
to be applied by the movements of energy fij from particle i in one event to
particle j in the other so that event E is rearranged into event E ′. In other words,
given two probability distributions, the EMD tells how costly it is to reshape all
elements of on distribution (in our case a point cloud) to become similar to the
other one, in analogy to the physical work unit in Joules used in classical physics.
In mathematical terms, given two distributions or point clouds I and J, the EMD
value can be computed as follows:

EMD(I, J) = min
fij

∑
i∈I

∑
j∈J

fij
Rij

R
+ |

∑
i∈I

pTi −
∑
j∈J

pTj | (9.4)

where R is the radius of the jet event, R2
ij = (yi−yj)2 + (φi−φj)2 is the rapidity-

azimuth distance. In addition, fij represents the quantity of work required to
transport one particle from jet I to its compatible location within jet J. This
transport is constrained by the following condition:

fij > 0,
∑
j∈J

≤ pTi ,
∑
i∈I

fij ≤ pTj (9.5)

∑
i∈I

∑
jJ

fij = min(
∑
i∈I

pTi ,
∑
j∈J

pTj) (9.6)

We therefore use the EMD metric to assess the quality of reconstructed jets
produced by our fast simulation.

9.6 Results

We obtain our results after training on a Tesla P100 GPU provided by the Google
Colaboratory framework.

9.6.1 Graph generative model with mincut pooling

In Figure 9.5 we show the reconstruction result for several simulated jets from
our Mincut GVAE model. The plots show that our model’s decoder is able to
accurately reconstruct the jets from compressed latent vectors, both in terms
of locations and energy values. In addition, Figure 9.6 shows the EMD values
corresponding for 4800 reconstructed jets. Relatively low values of the EMD
imply a high-level of similarity between GVAE reconstructed and fully-simulated
jets. Testing the GVAE with mincut pooling gives us a RMSE value of 1.7378.
In terms of inference time, our GVAE model spends a total of 0.0638 seconds

54

on a batch of 64 jets, which is orders of magnitude smaller than running full
simulation.

Figure 9.5: Reconstructed GVAE jet (right) in the detector as compared to the
real simulated jet (left)

Figure 9.6: Earth Mover Distance values histogram

9.6.2 Graph generative model with edgepooling

We compare the graph architecture above with a graph autoencoder that takes
performs EdgePooling to compress that graph representation of the jets under

55

study. The decoder uses the UnPooling layer suggested by [73]. Results show the
inability of the EdgePooling graph model to accurately learn the jet representa-
tions and reconstruct their topology. The RMSE in testing is 19.03258 which is
10 times higher than the RMSE value for the proposed model. On the one hand,
Figure 9.7 show the reconstructions provided by this model displaying mediocre
topology reconstructions and energy scales which are biased towards the high-
est values. On the other hand, the EMD plot corresponding to EdgePool-based
GVAE shows that the EMD values are around 10 times higher than those of the
model suggested above. Finally, the inference time presented by EdgePooling for
the same batch of 64 samples is 2.1587 seconds as compared to 0.1235 seconds
with GVAE. This is mainly due to the slow nature of the EdgePooling operations.
The latter required further optimization in the process of aggregating node fea-
tures in the hidden space and finalizing the edge score for graph contraction.

Figure 9.7: Reconstructed GVAE jet (right) in the detector as compared to the
real simulated jet (left) using EdgePooling

56

Figure 9.8: Earth Mover Distance values histogram for EdgePooling

9.6.3 Regular AE

The figure below shows reconstructions of jets through a regular autoencoder. It
is notable that the autoencoder model is not able to accurately learn the repre-
sentations of the jet events as compared to a graph autoencoder. Given that this
approach is image-based, the EMD metric cannot be applied to it as the latter is
solely for point cloud data. That being said, one additional advantage of convolv-
ing directly on point clouds and the usage of EMD on them is the permutation
invariant property of this metric with regards to non-Euclidean data. Table 9.1
shows a comparison of the number of model parameters for each of our graph
model, the graph EdgePooling model and a regular autoencoder, respectively.

57

Figure 9.9: Regular Autoencoder reconstruction results

Model Mincut Graph VAE EdgePool GVAE AE
Number of parameters 104 511 118 870 3 093 810

Inference time (s) 0.0638 2.1587 0.1478

Table 9.1: Model parameter comparison

9.7 Computational complexity

9.7.1 Regular VAE Complexity:

For a regular VAE, we proceed by performing regular convolution operations
given as follows (See Section 4.8):

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[i, j]f [m− i, n− j] (9.7)

where m and n represent the row and column indices, respectively. From the
equation above, we realize that the number of operations is proportional to the

58

filter size on the one hand and the image’s row and column dimensions on the
other hand, bearing in mind that the stride and padding effects are minimal
with respect to the latter variables i.e for either stride=1 or 2 the compute term
is still dominated by the row/column dims. In addition, we account for the
feature dimension d as it indicates how many channels of arrays we are dealing
with. Consequently, a single layer convolving over one array has a compute term
proportionality given by:

O ∝ s× s2 × w × h× d (9.8)

Generally speaking the filter size is square hence s2 = s leading to

O ∝ s2 × w × h× d (9.9)

At this stage, we extend our model to accommodate multiple layers with pool-
ing. By convention, we proceed with an assumption that the channel upscaling
within the encoder has a factor of 2, and that the image size is reduced to half by
dimensionality reduction/pooling. To study the effect of performing multi-layer
pooling and convolution to double the colour dimensions, we proceed as follows:
Let the right term of equation 8.7 equal a constant α.

Given:

• out imsize = 1
2
× in imsize = 1

2
× sizeheight × 1

2
× sizewidth

= 1
4
× sizeheight × sizewidth = 1

4
× w × h

• out channelsencoder = 2× in channelsencoder
Therefore, we model a multi-layer encoder with convolutional and pooling oper-
ations as a series S given by:

S = α +
1

4
× α +

1

4
× 1

4
× α + . . .+ (

1

4
)l × α =

L∑
l=0

α(
1

4
)l = α

L∑
l=0

(
1

4
)l (9.10)

At this stage, we want to find the upper bound of the equation S as a function of
α. In complexity theory, this upper bound indicates the maximum growth rate
that a certain function/model can achieve, hence providing us with a description
of the asymptotic behavior of the model’s compute complexity. We say that
our model (S in this case) grows at the order of this upper bound. Having
said that, we notice that S in equation 8.8 is a geometric series in analogy to
Sn ≡

∑n
k=0 r

k = 1−rn+1

1−r . Since −1 < r < 1 in our case (r=0.25), the convergence

at n → ∞ becomes: S ≡ S∞ =
∑∞

k=0 r
k = 1

1−r . As a result, performing infinite
such layers in the model’s encoder will be up-bounded as:

α

L∑
l=0

(
1

4
)l ≤ α

∞∑
l=0

(
1

4
)l (9.11)

59

= α
1

1− 1
4

=
4

3
α (9.12)

Therefore, performing infinite convolutional layers within a variational au-
toencoder with the first given assumption will converge towards the result ob-
tained in Eq 8.10. In other terms, the encoder model is bounded by α =
s2 × w × h × d. At this stage, we embed the second assumptions for down-
sampling using Eq 8.9 by considering that the colour channels will double in size
within the encoder layers, eg: (64,128,256,etc ...). This results in the following
equation:

s2 × w × h× d
L∑
l=0

(
1

4
)l × 2l ≤ s2 × w × h× d

∞∑
l=0

(
1

4
)l × 2l (9.13)

⇒ s2 × w × h× d
L∑
l=0

(
1

2
)l ≤ s2 × w × h× d

∞∑
l=0

(
1

2
)l (9.14)

Given another geometric series with r = 1
2
, we get:

⇒≤ s2 × w × h× d
∞∑
l=0

(
1

1− 1
2

) = 2× s2 × w × h× d (9.15)

Finally, since the entire baseline model is an encoder-decoder, and knowing that
the decoder has the same architecture as the encoder in reverse, we just multiply
the above equation by 2 and obtain the final upperbound UB in terms of a given
batch size to be:

UB = 4s2whd× batch sizeUB = 4s2whd× batch sizeUB = 4s2whd× batch size (9.16)

9.7.2 GVAE Complexity:

The complexity of our model is mostly centered towards the GraphSAGE layers.
As discussed in Section 9.2, GraphSAGE operates by sampling a set of random
k nodes from L-hop neighbourhoods in order to reduce bias with regards to
neighbouring nodes on the one hand and aggregate from as further as possible
from the central node on the other hand. The complexity of a GraphSAGE layer
is hence shaped by kL for the convolution operation on a single node. For a
whole batch bs of graphs with nG nodes each having feature dimension d, the
complexity is proportional to bsnGk

Ld2. For L layers of GraphSAGE present in
both our encoder and decoder, the complexity is proportional to the term given
by

O ∝ 2LbsnGk
hd2 + knGD (9.17)

How does the the function above converge?
Equation 8.5 is dominated by the first term, for which we start by investigating its

60

convergence when L→∞. Let variable α = nG× kh× d2 describe the dominant
components of equation 9.17. Assuming infinite graph convolutional layers, the
equation converges as follows:

S = α +
1

2
× α +

1

2
× 1

2
× α + . . .+ (

1

2
)l × α (9.18)

which, similar to the VAE case above, is a geometric series having r = 1
2
. Hence:

S =
L∑
l=0

α(
1

2
)l ≤

∞∑
l=0

α(
1

2
)l (9.19)

At this point, we use the second given bullet for the graph model case stating
that colour channels will double in size for each layer. This leads to

S ≤ α

∞∑
l=0

(
1

2
)l × 2l ≈ α (9.20)

Finally, accounting for the decoder, the function S is bounded by 2. Therefore,
the upper bound for our graph model in terms of a given batch size is:

UB = 2α = 2nGk
hd2 × batch sizeUB = 2α = 2nGk
hd2 × batch sizeUB = 2α = 2nGk
hd2 × batch size (9.21)

9.7.3 Comparison Tables

Since we have two different models with different terms, the most valid way for
comparison is by tabulating the most common values for these variable terms
and comparing them with respect to the batch size. For instance, a graph model
does not have a kernel filter of size s, nor a grid input of size w by h. Similarly,
a regular autoencoder is not defined by a specific number of nodes and L-hop
neighborhood. That being said, the first table shows the most common results
for the filter size, width and height represented by s, w and h respectively. The
output for that table is then given by s2wh. The second table shows the different
values for nG, k and h referring to the number of nodes, the number of neighbours
and hop-neighborhood, respectively. Given that our jets do not go beyond 1000
hit on most of the time, we test for 1000 on the one hand, and take a worst case
scenario of 1500 hits on the other hand. Then, the output is given by nGk

h. The
outputs for the tables belonging to the Graph model are clearly much lower as
compared to the AE model.

9.7.4 Comparison with traditional Monte Carlo

For benchmarking, we compare the inference time of that of the conventional
methods, such as Monte Carlo simulations, that are used for approximating the

61

s w h Output

3 125 125 140625
4 200 200 640000
2 75 75 22500

Table 9.2: Autoencoder average variable values

nG k h Output

1000 4 2 16000
1000 8 2 64000
1500 4 1 6000

Table 9.3: Graph Autoencoder average variable values

probability density function. Such method takes 45 seconds for the event batch
of the same size. In contrast to this results, the graph method takes around 0.1
second for the inference, which is over 400% speedup.

Figure 9.10: Speedup comparison for boosted top quark jets

62

9.8 Discussion

We therefore conclude that our approach is successful in reproducing particle
physics boosted jets data at high-levels of fidelity and with acceptably low in-
ference times relative to other models. For instance, it is clear from the figures
that the model spans the range of the real jet distributions accurately in terms
of topology on the one hand and energy scale on the other hand. In addition,
we quantify the difference between real and reconstructed point cloud distribu-
tions by means of the Earth Mover Distance metric. A comparison of the mincut
pooling approach and the EdgePooling one shows that the former provides a bet-
ter range for the work required to shape its model output distribution into the
real one. Finally, the RMSE achieved by the graph generative model with min-
cut pooling is the lowest compared to GVAE with EdgePooling and the regular
VAE.These results pave the way for more further investigations to be done on
sparse detector data by means of graph representations.

For future work, the scope of this project could safely be extended for applica-
tions that include multiple channels such as the Tracker system and the Hadronic
Calorimeter (HCAL). Furthermore, the promising results shown by graph mod-
els on reconstruction tasks make them a suitable candidate for other applications
such as jet tagging and particle tracking. While some studies have already started
with this approach such as ParticleNet [5], the added value of hierarchical learn-
ing by means of novel graph pooling layers remains under-explored. Finally, given
that graph networks can accurately reconstruct jet events as point clouds in a
timely efficient manner, we are then interested in seeing how our model scales
on multiple GPUs for even faster computations to occur. Having said that, this
scaling process is discussed in the next chapter.

63

Chapter 10

FALCON: GPU Acceleration on
NVIDIA GPU

10.1 Overview

This year our FALCON project was accepted to the 2020 Helmholtz GPU Hackathon,
a five-day event organized by Helmholtz-Zentrum Dresden-Rossdendorf (HZDR),
Jülich Supercomputing Centre (JSC) and Helmholtz Federated IT Services Soft-
ware Cluster (HIFIS) [103]. The Hackathon’s duration was of 5 days during
groups of scientists interested in computing and porting their applications to
GPU have gained a hands-on experience in GPU acceleration and code opti-
mization under the guidance of experts from NVIDIA and other institutes and
industries.
To proceed, the participating groups were given two options for accessing GPU
supercomputer facilities:

• The first option is to connect to the TAURUS cluster present at TU Dresden
in Germany. This system is composed of the following hardware: a total of
128 NVDIA K80 GPUs in 64 nodes and Intel Haswell CPUs in addition to
NVIDIA V100 GPUs with IBM POWER9 CPUs.

• The second options is using raplab-hackathon which contains 10 NVIDIA
DGX-1 compute nodes with 8 NVIDIA Volta V100 GPUs per node. Each
GPU has a 16 GB RAM, which makes it easier to train larger batches and
models. Finally, the cluster has 48 core Intel (R) Xeon (R) Gold 5118 CPUs
per node with 192 GB of RAM @2.30 GHz.

10.2 Profiling FALCON’s GVAE model

Prior to fully training our model and porting it the multi-GPUs, we need to
scrutinize our code to investigate the data loading efficiency and any potential

64

processes, especially CPU-based, that could be affecting the training speed. For
this purpose, we apply a profiling run on our code for a few training iterations (not
epochs) using the NVIDIA Nsight Systems’s Visual Profiler. The profiling process
can be visualized in Appendix C. It was notable that our code was spending too
much time on the DataLoading process, a CPU-based task. In fact, prior to the
hackathon, we adopted the strategy of creating graphs from the raw detector data
and storing them as ”.pt” files containing the information about node features
and edge indices for each sample. This method had resulted in a 2 GB file
containing Data objects with dictionaries ’X’ and ’edges’ referring to the feature
and adjacency matrices, respectively. Consequently, moving the entire training
dataset from the CPU to the GPU was computationally intensive even when
increasing the number of workloaders.
To tackle this issue, we decided to generate the graphs representing the jets on the
spot prior to sending them to GPU for training. In fact, we stored our raw data
in parquets files which allow suitable ”lazy-loading” of the data, a very useful
option in our case where the data is too large to be loaded entirely at once. In
other words, our new dataloading strategy is as follows:

• Generate a batch of the raw detector data on the spot.

• Sample the non-zero hits’ x,y locations.

• Find the energy values at those locations and concatenate them with the
corresponding x,y coordinates.

• Generate a graph using the k-nearest neighbour algorithm resulting in a
feature matrix X and adjacency matrix A for each sample in the batch.

• Save the samples as dense data objects and send them to the GPU for
training

Having said that, adopting the new loading strategy resulted in a 50% reduction
in training time!

10.3 Distributed Deep Learning

Having profiled our model on trained it for performance monitoring using the
new dataloading strategy on a single GPU, we were able to proceed with porting
our model to check how it scales on multiple GPUs. Multi-GPU programming is
necessary on many occasions where scientists are either dealing with datasets too
large to fit into single GPU memory or developing models with a large number
of trainable parameters. These obstacles apply to our case as we are training
thousands of graphs each of which contains an average of 700 nodes and 4 times
the number of edges. Having said that, it is in our best interest to distribute

65

our training on multiple GPUs. To proceed, there are two options under disposal
for GPU acceleration: data parallelization and model parallelization. The former
approach is crucial in scenarios where the dataset takes much of the memory space
(or is even bigger than the allocated memory) which prompts the user to send
smaller batches hence increasing training time. In that case, multiple batches can
be sent to different GPUs where the same model layers operate on them (Multiple
Input Single Instruction) after which the GPU nodes synchronize and aggregate
the output layers for backpropagation to take place. On the other hand, model
parallelization consists of distributing the deep learning model parameters into
multiple devices operating sequentially on a single batch of data. At that point,
every time a batch is transformed through the layers on one GPU device and sent
to the next one, another batch is simultaneously allocated to the first GPU and
so on. Both methods play a crucial role in accelerating training and inference
of DL models. Yet, data parallelization is much less complex to apply and is
usually the first option for data scientists to consider.At this point, we proceed
with scaling our model to multiple GPUs using Horovod [104], a deep learning
library for distributed training of DL models supporting many frameworks such
as PyTorch, TensorFlow and MXNet. Horovod operates based on MPI (Message
Passing Interface) concepts that dictate our mutlti-gpu process. For instance,
Horovod takes as input the size parameter referring to the number of processes
P in training, followed by the Rank parameter unique to process and numerated
from 0 to P-1. Finally, LocalRank indicates the unique process ID within each
device (0 to NGPUS).

10.4 Tesla V100 Architecture

Amid the rising significance of High Performance Computing (HPC) on the one
hand and the surge in data availability on the other hand, it was crucial to com-
bine the aspects of HPC and AI for advanced scientific research to take effect.
For instance, the extension of AI to HPC applications could pave the way for
large scale simulations for astrophysics, molecular dynamics, climate science and
other scientific fields. Having said that, NVIDIA’s 2017 GTC (GPU Technology
Conference) saw the introduction of the Tesla V100 GPU, currently one of the
world’s most powerful GPU devices providing a platform for accelerated Deep
Learning research, HPC and other graphics applications [105]. On the other
hand, this processor belongs to the Volta GPU architecture family which played
a massive role in shaping the success of Artificial Intelligence-based applications.
In fact, the Volta architecture is characterized by the embedding of CUDA cores
and Tensor Cores which highly enhance compute performance for floating point
operations [106]. CUDA cores are specialized compute hardware that perform
parallel processing. In contrast to CPU cores, CUDA cores are much numerous
ranging from hundreds to thousands of cores. Having said that, the Tesla V100

66

architecture contains 5120 CUDA cores spread among Streaming Multiprocessors
(SM). On the other hand, the Volta architecture provided the first generation of
Tensor cores which have notably enhanced the speedup of deep learning architec-
tures. A tensor core is a compute unit that specializes in matrix multiplication
and is characterized by its ability of downscaling the entries to FP16 for faster
computation to take place and returning either an FP16 or an FP32 matrix as
output. Accordingly, a user would choose an optimum between gained speedup
and lost precision for their GPU-based application.

10.5 Scaling FALCON on multiple GPUs

We train our FALCON model on the raplab-hackathon cluster using Volta V100
GPUs having 16 GB of RAM. Following profiling and code optimization for
enhance CPU performance, we scale the training on multiple GPUs using the
Horovod library. To get a baseline performance, we compare the results to the
training done on a single GPU with a batch size of 32 for 100 iterations i.e a total
of 3200 graph samples. The performance of the scaling is documented both in
the section below.

10.6 Results

Throughout scaling we notice an increase in the performance with an increase
in the GPU devices used. To calculate the resulting speedup from scaling, we
take as reference the Mean Execution Time (MET) resulting from training on
one GPU. For NGPUs = 2, the mean execution time is 85.48 seconds. Bearing
in mind that we are training twice the amount of data overall, we get MET per
GPU = 42.74 seconds. The resulting speedup for NGPUs = 2 is given by

METsingleGPU
METperGPUusingNGPUs

=
69.34

42.74
= 1.62 (10.1)

Applying the same speedup calculation method, going from 2 to 4 GPUs, we get
speedups of 1.62, 2.19 and 2.73, respectively. Therefore, we conclude that our
model scales well on multiple GPUs using Horovod, which is a useful information
for future work on FALCON and similar graph generative models. Nevertheless,
we have been faced with some minor downsides. For instance, Table 10.1 shows
some loss in performance due to parallelization efficiency. This could be explained
by an inefficient communication between the GPUs once parallel batch training
has been done, hence increasing latency which in turns affects the training time.
This issue can be overcome at a lower level where the user proceeds with pro-
gramming the kernel directly, which can be done using CUDA programming.
This task is out of the scope of this thesis for now as we are solely interested to

67

get a general picture of how the model scales to multiple GPUs. Further opti-
mization could be deferred to future work.

On the other hand, we used NVIDIA’s Automatic Mixed Precision (AMP)
library which enables mixed precision training of deep learning models with sup-
port to distributed parallel training. This approach has the potential to boost the
speedup of model training by enabling the support of FP16 operations through-
out the model’s layers. This step offers several benefits such as the reduction in
required memory for FP16 as compared to 32-bit floating points. In addition,
the data transfer and linear algebra operations are performed much faster using
lower precision formats.

Figure 10.1: Plot of multi-gpu performance

Table 10.1: Table of multi-gpu performance

68

Figure 10.2: Comparison plot of how our model scales to multiple GPUs

10.7 Discussion

Throughout this event we were able to perform further optimization of our code
for jet reconstruction through graph autoencoding. Our first step was to profile
the code to monitor the process load taking place in the CPUs and GPUs. As
the dataloading was timely expensive even with an increased number of threads
per process, we decide to adopt a different strategy for batch loading to remove
this bottleneck. Consequently, we generate batches of graphs on the spot in the
CPU prior to sending them to the training model on the GPU. This change has
reduced the training time by 50%, allowing us to proceed with scaling on multiple
GPUs. Having trained on a single Tesla V100 GPU as a baseline, we proceeded
by scaling the model to multiple GPUs using the Horovod library. Results show a
notable speedup as we distribute to multiple devices going from 2 to 4. Yet, some
performance is lost in the parallelization due to some inefficient communication
between the GPUs following weight propagation process. For future work, users
are necouraged to try programming the MPI kernel for further optimized paral-
lelization performance which would boost the speedup even further. Finally, the
apex framework was used for distributed training while enabling mixed precision
training of our graphs. No significant change in the training time was noted with
the usage of FP16 throughout the layers. This could be due to the incompatibil-
ity of the graph convolution operations provided by dependencies with the apex
commands. Another possible reason is the dense nature of our batches. In the
future, it is recommended to sparsify the input graphs and their corresponding

69

convolutional layers accordingly.
In a nutshell, we can confidently report that graph-based architectures hold a
promising potential in high energy physics applications. In contrast to image-
based approaches, graph neural networks allow us to operate on a range of hun-
dreds of hits as compared to thousands and even more in alternative ways.

70

Chapter 11

Muon momentum estimation in
the CMS detector

We aim to explore to potential offered by graph networks in LHC physics tasks.
In our case, we try to infer muon momentum from data collected in the Cathode
Strip Chambers.

11.1 Dataset

Our dataset consists of more than 3 million muon events generated using Pythia.
The dataset is an npz file containing 2 numpy arrays ‘variables’ and ‘parameters’.
The first array ‘variables’ contains 87 features, 84 of which serve as input variables
and 3 other serving as road variables: pattern straightness, zone, median theta,
respectively. This is due to the fact that we have 12 detector planes in the CSCs,
each of which contains 7 features (12*7=84). For a better perspective on the
data format of this array please refer to tables in Appendix D. The second array
‘parameters’ contains 3 columns described in Table 4.
During pre-processing, we remove samples with number of hits smaller than 4,
indicating noisy data whose output cannot be determined. Consequently, the
number of samples has been reduced to 1.4 million events in order to account for
the events recorded in all muon chambers. The input consists of hit coordinates
of the muons at four different chambers of the CSC, while we consider the muon
momentum for the output. At this stage,it is worth noting that our data is highly
imbalanced and biased towards muon velocities with low to medium momenta.
Therefore, we consider scaling techniques for highly skewed distributions such as
log transforms and inverse transforms. In our case, applying the latter resulted
in the most ”Gaussian-like” distributions as shown in Fig 11.1 below. Hence, we
proceed with predicting the inverse momenta of muons.

So far, three baseline models have been tried:a LightGBM model, a fully con-
nected network and a convolutional neural network (CNN). All three architectures

71

Figure 11.1: Distribution of pt momentum (right) as compared to 1/pt momen-
tum (left)

will be trained on predicting 1/pt and will be compared to the performance of a
Graph Neural Network.

11.2 Methodology

We suggest Graph Neural Networks (GNN) as a new method to measure momenta
in the muon chambers. If successful, this family of architectures could pave the
way for new deep learning applications in particle physics regarding the trigger
system. To proceed, we investigate model performance in 3 ways: regression on
the muon’s pT value, regression on the muon’s inverse pT value given the better
distribution it provides (Fig 11.1) and classification of 4 classes of ranges within
which the momenta fall. We implement three architectures that serve as baseline
for comparison.

• Our first baseline is a Fully-Connected Neural Network (FCNN) composed
of 5 dense layers of 512,256 and 3x128 neurons, respectively. The ReLU
activation is used following each linear transformation. In addition, for the
cases of pT ,1/pt and 4 classes, the output functions are linear, sigmoid and
softmax, respectively.

• Our second baseline is a Convolutional Neural Network (CNN) character-
ized by 3 convolutional layers each having a kernel size of 2x2 and channels
of 512,128 and 128, respectively. Following the convolutional block is a
fully connected network that takes as input a flattened CNN output and
transforms it through 4 fully-connected layers (256,128,128,64) to get an
eventual output.

• Our final baseline is a LightGBM model, a decision tree-based gradient
boosting framework. We perform bayesian optimization on a set of param-

72

eters to further improve our training. The optimized parameters are the
learning rate, bagging fraction, minimum child sample, maximum depth,
Lambda 1, Lambda 2, feature fraction and early stopping. Their corre-
sponding values can be found in Appendix D.

Our main model is a GNN that performs a set of spatial convolution operations
in addition to attention layers. A diagram describing our model can be found
in Figure 11.2, whereas GCN refers to a Graph Convolution block with the cor-
responding input and output channels marked within. As seen in the diagram,
our graph input undergoes 4 spatial convolutions in total amid which 2 global
attention layers are applied whose concatenation is market by the

⊕
symbol.

Next, a three sets of fully connected layers transform the hidden representation
of the graph into one vectorized output resulting in the desired momentum value
or class.

Input	arrays
(125x125)

GCNNon	zeros
{'X',	'A'}

X

A

GCN Global
AttentionGCN GCN

FCN

FCN

FCN

Output

Global
Attention

Figure 11.2: Graph Architecture for Muon Mmentum estimation: the raw data
mapped into feature and adjacency matrix undergo a set of graph convolution op-
erations followed by attention layers over two steps. The latter are concatenated
and fed into a classification score through linear transformations

11.3 Results

Our GNN model shows improvements with respect to the baselines which include
FCNN and CNN.The results are shown in the figures below for their predictions
both on the regular momentum pT and the inverse momentum 1/pT . For instance,
the GNN model results in lower Mean Absolute Error (MAE) in the regression
tasks for both outputs. On the other hand, the bin classification performance is
notably better with a graph-based architecture given that the f1-scores and accu-
racies are higher. We could deduce that for all models, high momentum particles
are easier to detect as compared to low momentum ones. This is observed in both

73

Figure 11.3

Figures 11.3 and 10.4 where we train on the momentum pT and inverse momen-
tum 1/pt, respectively. For instance, the MAE values decrease with increasing pT
ranges, while the bin classification accuracy increases, while the same behavior
applies to the F1 scores.

74

Figure 11.4

11.4 Discussion

We present a new perspective for measuring the momenta of subatomic parti-
cles in the muon chambers where we cast the muon data collected at the CMS
detector into a geometric deep learning problem. We present a novel problem for-
mulation that does not assume muon data to be Euclidean, i.e. grid-structured,
but frames their data in a graph format. Advanced deep graph architectures such
as graph convolutional networks with attention layers were investigated and were
proven accurate and competitive with conventional approaches in estimating the
regular or inverse momenta of muons. Provided the GNN accuracy, it would be
interesting to investigate the efficiency of architectures such as message passing
networks and interactions networks on a multitude of other regression tasks in
particle physics.

75

Chapter 12

Conclusion

In this work we shed light on the potential of graph-based architectures for rep-
resenting particle jets resulting from high-energy collisions on the one hand and
subatomic particles in the muon chambers on the other hand. Graph neural net-
works tackle the issue of data sparsity in particle detectors by allowing the model
to directly learn from the particle hits while disregarding empty cells during the
training of the model. Our first application of graph architectures is in Fast Sim-
ulation. We develop a graph encoder-decoder model to learn the representation
of Boosted Jets for future simulation purposes. Through spatial convolution, the
model is able to learn the interactions between particle hits forming the topol-
ogy.In addition, the GVAE model performs message passing based on the SAGE
algorithms [99] in order to learn latent space representations of the point clouds
as graphs. The latter is sequentially compressed by means of Mincut pooling to
preserve the most representative nodes in latent space. This pooling layer learns
a cluster assignment matrix through linear transformations, arranging the nodes
with similar features into a unified neighborhood. Once encoding into latent
space is done, a trained decoder with reverse encoder architecture upsamples the
compressed vectors to the original reconstruction, leading to a proof-of-concept
simulator. Our results show that our graph model can accurately learn to re-
construct point cloud events at the level of the Electromagnetic Calorimeter, as
seen from the visual reconstructions and the MSE loss. On the one hand, com-
paring the Earth Mover Distance histograms of two Graph VAE models shows
that the Mincut Pooling-based architecture performs better. On the other hand,
the visual reconstructions obtained by applying a regular Autoencoder on Eul-
cidean data shows the inability of such models to compete with the graph models
when learning on sparse data. Eventually, a compute performance comparison
shows lower numbers of model parameters for our Mincut Pooling GVAE model
as compared to EdgePooling GVAE and regular AE. A complexity analysis with
tabulated values of the most common parameters dominating the complexity
equation shows that our model’s computational efficiency is competitive with
baseline approaches and could outperform them in many scenarios depending

76

on the selected parameters. From a practical perspective, the inference time of
our model has massively outperformed the EdgePooling-based model and shows
competitiveness with a regular AE model as indicated in Table 9.1.

Next, we investigated the scalability of our model. Throughout the 2020 Helmholtz
GPU Hackathon, we started on optimizing our code using NVIDIA Nsight Sys-
tems’ Profiling Tools to check for any bottlenecks, especially in CPU-based pro-
cesses. We proceed by changing the graph generation process within our code
by implementing it on the spot after batch loading, resulting in 50% speedup in
training. Using the Horovod library, we perform data parallel training proceeding
from 2 to 4 Tesla V100 GPU devices resulting in speedups of 1.62, 2.19 and 2.73
respectively compared to a baseline of single GPU training.

Our second application of graph-based architectures is on muon momentum in-
ference in Cathode Strip Chambers. Getting these measurements accurately is
crucial for the trigger system operation as it allows better selection of muon
batches which paves the way for scientists to study decay processes with higher
reliability models. That being said, graph networks have been proven competitive
with conventional machine learning and deep learning techniques in the estima-
tion of muon momenta, with a momentum inference accuracy of at least 94% for
low momentum samples until 98% for high momentum ones.

Future Work

For future work, an extension of the Fast Simulation approach to multiple chan-
nels including the tracker and HCAL systems is recommended. One approach to
proceed with this application is by making inter-detector connections of graphs
and adding a detector class term to the loss function, resulting in an overall of 3
classes. Once such a model is ready, it could serve as a single GPU baseline to
investigate the scalability of the model on multiple GPUs when simulating the
entire 3 channels within the CMS detector. However, the mapping of multiple
channels into point cloud graphs is not trivial and hence building its topology
and applying graph pooling to its data remains an open question. In addition,
the scalability of our model was hampered by the parallelization efficiency and
hence future improvements include a re-programming of the kernel, whose im-
provement on the speedup cannot be estimated at the moment. Eventually, for
the muon momentum inference problem, it is recommended for the current code
and baselines to be run on FPGA, which will be the adopted hardware within
the trigger system. The behavior of the model could deviate a little from the
GPU’s, therefore requiring some modifications.

77

Broader Impact

The FALCON simulation work is part of an open-source project, and has a po-
tential to impact many researchers who rely on particle simulations for physics
studies. In terms of ethical and future societal consequences, the computational
efficiency provided by the generative model presented in this work, allows to
compete with computational and times of conventional Deep Learning techniques
while outperforming their reconstruction accuracy. In the absence of adequate
computational resources, this type of simulation would be an advantage to the
research, as it provides an opportunity for a speedup of obtaining the results.
At the same time, due to a need for some computational requirements of our
implementation, those with very limited access to computing resources may be
at a disadvantage. Finally, we set a platform for future simulation applications to
take place, possibly covering more detector layers and wider ranges of information.

78

Appendix A

Abbreviations

HEP High Energy Physics
SM Standard Model
LHC Large Hadron Collider
CMS Compact Muon Solenoid
CSC Cathode Strip Chambers
ECAL Electromagnetic Calorimeter
HCAL Hadronic Calorimeter
QCD Quantum Chromodynamics
ML Machine Learning
BDT Boosted Decision Tree
DL Deep Learning
FCN Fully-Connected Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GDL Geometric Deep Learning
GNN Graph Neural Network
GCN Graph Convolutional Network
PDF Probability Distribution Function
VAE Variational Autoencoder
GVAE Graph Variational Autoencoder
GAN Generative Adversarial Network
EMD Earth Mover Distance
ROC Receiver Operating Characteristic
AUC Area Under the Curve
RMSE Root Mean Square Error
MAE Mean Absolute Error
GPU Graphics Processing Unit
CUDA Compute Unified Device Architecture

79

Appendix B

Material comparison

Comparison of different material candidates for ECAL sensors [107]

80

Appendix C

Porting Falcon to GPU

Figure: Profiling of FALCON’s GVAE training using NVIDIA’s Visual Profiler

81

Figure: Volta GPU architecture showing CUDA and Tensor Cores within SM
[105]

82

Appendix D

Features description for Muon
Chambers data

Table: Station distributions in the muon chamber

Table: Features to be monitored for each hit

Table: Dataset format covering the content of the entire 87 columns in the
Numpy file ‘variables’

83

Table: Dataset format covering the content of the 3 columns in the Numpy file
‘parameters’

Table: Bayesian optimization of hyperparameters for the LightGBM model

84

Bibliography

[1] J. Allison et al., “Geant4 developments and applications,” IEEE Transac-
tions on Nuclear Science, vol. 53, no. 1, pp. 270–278, 2006.

[2] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemâıtre,
A. Mertens, and M. Selvaggi, “Delphes 3: a modular framework for fast sim-
ulation of a generic collider experiment,” Journal of High Energy Physics,
vol. 2014, Feb 2014.

[3] R. Di Sipio, M. F. Giannelli, S. K. Haghighat, and S. Palazzo, “Dijetgan:
a generative-adversarial network approach for the simulation of qcd dijet
events at the lhc.,” Journal of High Energy Physics, 2019(8), 110., 2019.

[4] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol,
and K. Krüger, “Getting high: High fidelity simulation of high granularity
calorimeters with high speed,” arXiv preprint arXiv:2005.05334, 2020.

[5] H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Physical Review
D, vol. 101, Mar 2020.

[6] E. A. Davis and I. Falconer, JJ Thompson and the Discovery of the Electron.
CRC Press, 2002.

[7] E. Rutherford, “Lxxix. the scattering of α and β particles by matter and the
structure of the atom,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 21, no. 125, pp. 669–688, 1911.

[8] S. Hetherton, “How to make your own cloud chamber.”
https://home.cern/news/news/experiments/how-make-your-own-cloud-
chamber, 2015.

[9] A. B. Arbuzov, “Quantum field theory and the electroweak standard
model,” 2018.

[10] C. Rhodes, “Large hadron collider (lhc),” Science progress, vol. 96, pp. 95–
109, 03 2013.

85

[11] “The large hadron collider.” https://home.cern/science/accelerators/large-
hadron-collider.

[12] F. CERN, “Lhc the guide,” 2009.

[13] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and
P. Proudlock, LHC Design Report. CERN Yellow Reports: Monographs,
Geneva: CERN, 2004.

[14] G. Apollinari, O. Brüning, T. Nakamoto, and L. Rossi, “High luminosity
large hadron collider hl-lhc,” arXiv preprint arXiv:1705.08830, 2017.

[15] A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar,
T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. E. Del Valle, and
et al., “Combined measurements of higgs boson couplings in proton–proton
collisions at

√
s = 13 TeV,” The European Physical Journal C, vol. 79, May

2019.

[16] A. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer,
J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, and et al.,
“Observation of higgs boson decay to bottom quarks,” Physical Review
Letters, vol. 121, Sep 2018.

[17] F. Marcastel, “CERN’s Accelerator Complex. La châıne des accélérateurs
du CERN,” Oct 2013. General Photo.

[18] H. Jarlett, What happened while the LHC slept over winter?, 2017.

[19] “Detector.” https://cms.cern/detector.

[20] T. Sakuma and T. McCauley, “Detector and event visualization with
sketchup at the cms experiment,” Journal of Physics: Conference Series,
vol. 513, p. 022032, Jun 2014.

[21] S. R. Davis, “Interactive Slice of the CMS detector,” Aug 2016.

[22] “Silicon Strip Tracker Performance results 2018,” Sep 2018.

[23] Silicon Strips—CMS Experiment.

[24] C. Biino, “The CMS electromagnetic calorimeter: overview, lessons learned
during run 1 and future projections,” Journal of Physics: Conference Se-
ries, vol. 587, p. 012001, feb 2015.

[25] A. Seiden, “Characteristics of the atlas and cms detectors,” Philosophical
transactions. Series A, Mathematical, physical, and engineering sciences,
vol. 370, pp. 892–906, 02 2012.

86

[26] Journal of Instrumentation, vol. 8, p. P09009–P09009, Sep 2013.

[27] G. Baiatian et al., “Design, Performance, and Calibration of CMS Hadron-
Barrel Calorimeter Wedges,” Tech. Rep. CMS-NOTE-2006-138. 1, CERN,
Geneva, May 2007.

[28] S. Abdullin, V. Abramov, B. Acharya, M. Adams, N. Akchurin, U. Akgun,
E. Anderson, G. Antchev, S. Ayan, S. Aydin, et al., “Design, performance,
and calibration of cms hadron-barrel calorimeter wedges,” The European
Physical Journal C, vol. 55, no. 1, pp. 159–171, 2008.

[29] P. Kumari et al., “Improved-RPC for the CMS muon system upgrade for
the HL-LHC,” JINST, vol. 15, p. C11012. 11 p, May 2020.

[30] V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar,
T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, and
et al., “The cms trigger system,” Journal of Instrumentation, vol. 12,
p. P01020–P01020, Jan 2017.

[31] D. Acosta, A. Brinkerhoff, E. Busch, A. Carnes, I. Furic, S. Gleyzer, K. Ko-
tov, J. F. Low, A. Madorsky, J. Rorie, B. Scurlock, and W. S. and, “Boosted
decision trees in the level-1 muon endcap trigger at CMS,” Journal of
Physics: Conference Series, vol. 1085, p. 042042, sep 2018.

[32] A. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer,
J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, and et al., “Identi-
fication of heavy-flavour jets with the cms detector in pp collisions at 13
tev,” Journal of Instrumentation, vol. 13, p. P05011–P05011, May 2018.

[33] R. Aaij, B. Adeva, M. Adinolfi, Z. Ajaltouni, S. Akar, J. Albrecht,
F. Alessio, M. Alexander, A. Alfonso Albero, S. Ali, and et al., “Search
for dark photons produced in 13 tev pp collisions,” Physical Review Let-
ters, vol. 120, Feb 2018.

[34] “Observation of the rare bs0 →µ+µ decay from the combined analysis of
cms and lhcb data,” Nature, vol. 522, p. 68–72, May 2015.

[35] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Him-
mel, A. Aurisano, K. Terao, and T. Wongjirad, “Machine learning at the en-
ergy and intensity frontiers of particle physics,” Nature, vol. 560, no. 7716,
pp. 41–48, 2018.

[36] Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo,
K. Chen, H. Jiang, and M. Zheng, “Pushing the boundaries of molecular
representation for drug discovery with graph attention mechanism,” Jour-
nal of Medicinal Chemistry, vol. 63, 08 2019.

87

[37] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” 2018.

[38] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger,
and B. Leibe, “Mots: Multi-object tracking and segmentation,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 7942–7951, 2019.

[39] M. Oleksowicz, “Aristotle on the heart and brain,” European Journal of
Science and Theology, vol. 14, pp. 77–94, 06 2018.

[40] M. Costandi, “The discovery of the neuron,” History of Neuroscience, Neu-
roscience, Tuesday, 2006.

[41] B. Mehlig, “Artificial neural networks,” 2019.

[42] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Neural Information Processing Sys-
tems, vol. 25, 01 2012.

[43] J. Nagi, F. Ducatelle, G. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi,
J. Schmidhuber, and L. M. Gambardella, “Max-pooling convolutional neu-
ral networks for vision-based hand gesture recognition,” pp. 342–347, 11
2011.

[44] A. Amini, A. Soleimany, S. Karaman, and D. Rus, “Spatial uncertainty
sampling for end-to-end control,” 2019.

[45] J. Zhang, “Gradient descent based optimization algorithms for deep learn-
ing models training,” 2019.

[46] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[47] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2014.

[48] G. Karamanolakis, K. R. Cherian, A. R. Narayan, J. Yuan, D. Tang, and
T. Jebara, “Item recommendation with variational autoencoders and het-
erogeneous priors,” in Proceedings of the 3rd Workshop on Deep Learning
for Recommender Systems, pp. 10–14, 2018.

[49] G. Louppe, K. Cho, C. Becot, and K. Cranmer, “Qcd-aware recursive neural
networks for jet physics,” Journal of High Energy Physics, vol. 2019, Jan
2019.

88

[50] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, “Parton shower uncer-
tainties in jet substructure analyses with deep neural networks,” Physical
Review D, vol. 95, Jan 2017.

[51] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” 2013.

[52] M. Cacciari and G. P. Salam, “Dispelling the n3 myth for the kt jet-finder,”
Physics Letters B, vol. 641, no. 1, pp. 57–61, 2006.

[53] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini,
B. Poczos, and E. Usai, “End-to-end jet classification of quarks and gluons
with the cms open data,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 977, p. 164304, Oct 2020.

[54] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, “Deep learning in
color: towards automated quark/gluon jet discrimination,” Journal of High
Energy Physics, vol. 2017, Jan 2017.

[55] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner,
G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neu-
ral network neutrino event classifier,” Journal of Instrumentation, vol. 11,
p. P09001–P09001, Sep 2016.

[56] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D. Schwartz,
“Pileup mitigation with machine learning (pumml),” Journal of High En-
ergy Physics, vol. 2017, Dec 2017.

[57] S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.-R.
Vlimant, S. Zheng, J. Bendavid, M. Spiropulu, G. Cerati, L. Gray,
J. Kowalkowski, P. Spentzouris, and A. Tsaris, “Novel deep learning meth-
ods for track reconstruction,” 2018.

[58] S. Liechti, “Particle track reconstruction using a recurrent neural network
at the µ- 3e experiment,” 2018.

[59] D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and its application
to lhc physics,” Annual Review of Nuclear and Particle Science, vol. 68,
p. 161–181, Oct 2018.

[60] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos, “End-to-end physics
event classification with the cms open data: Applying image-based deep
learning on detector data to directly classify collision events at the lhc,”
Computing and Software for Big Science, vol. 4, no. 1, pp. 1–14, 2020.

89

[61] K. Albertsson, P. Altoe, D. Anderson, J. Anderson, M. Andrews, J. P. A.
Espinosa, and D. ... Bonacorsi, “Machine learning in high energy physics
community white paper,” arXiv preprint arXiv:1807.02876, 2018.

[62] P. Musella and F. Pandolfi, “Fast and accurate simulation of particle de-
tectors using generative adversarial networks,” Comput Softw Big Sci 2: 8,
2018.

[63] T. Danel, P. Spurek, J. Tabor, M. Smieja, L. Struski, A. Slowik, and
L. Maziarka, “Spatial graph convolutional networks,” arXiv e-prints, arXiv-
1909, 2019.

[64] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks,” IEEE Transactions on Neural Networks
and Learning Systems, p. 1–21, 2020.

[65] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, p. 18–42, Jul 2017.

[66] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining, Jul 2018.

[67] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-
volutional networks,” 2017.

[68] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” 2017.

[69] S. Rhee, S. Seo, and S. Kim, “Hybrid approach of relation network and
localized graph convolutional filtering for breast cancer subtype classifica-
tion,” 2018.

[70] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learn-
ing architecture for graph classification,” in Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

[71] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
2019.

[72] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” 2019.

[73] F. Diehl, “Edge contraction pooling for graph neural networks,” 2019.

90

[74] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” 2016.

[75] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, p. 93, Sep.
2008.

[76] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk,” Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’14, 2014.

[77] L. Tang and H. Liu, “Leveraging social media networks for classification,”
Data Min. Knowl. Discov., vol. 23, pp. 447–478, 11 2011.

[78] L. Ruddigkeit, R. Deursen, L. Blum, and J.-L. Reymond, “Enumeration
of 166 billion organic small molecules in the chemical universe database
gdb-17,” Journal of chemical information and modeling, vol. 52, 10 2012.

[79] T. Sterling and J. Irwin, “Zinc 15 - ligand discovery for everyone,” Journal
of chemical information and modeling, vol. 55, 10 2015.

[80] “Graph auto-encoders.” https://github.com/tkipf/gae.

[81] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” 2017.

[82] L. Yi, L. Guibas, V. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, A. Lu,
Q. Huang, and A. Sheffer, “A scalable active framework for region anno-
tation in 3d shape collections,” ACM Transactions on Graphics, vol. 35,
pp. 1–12, 11 2016.

[83] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” 2017.

[84] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph cnn for learning on point clouds,” 2019.

[85] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” 2015.

[86] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution
on X -transformed points,” 2018.

[87] G. Bouritsas, S. Bokhnyak, S. Ploumpis, M. Bronstein, and S. Zafeiriou,
“Neural 3d morphable models: Spiral convolutional networks for 3d shape
representation learning and generation,” 2019.

[88] G. Kasieczka, T. Plehn, J. Thompson, and M. Russel, “Top quark tagging
reference dataset,” Mar. 2019.

91

[89] P. T. Komiske, E. M. Metodiev, and J. Thaler, “Energy flow networks:
deep sets for particle jets,” Journal of High Energy Physics, vol. 2019, Jan
2019.

[90] J. A. Martinez, O. Cerri, M. Pierini, M. Spiropulu, and J.-R. Vlimant,
“Pileup mitigation at the large hadron collider with graph neural networks,”
2019.

[91] X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, L. Gray, T. Klijnsma,
K. Pedro, G. Cerati, J. Kowalkowski, G. Perdue, P. Spentzouris, N. Tran,
J.-R. Vlimant, A. Zlokapa, J. Pata, M. Spiropulu, S. An, A. Aurisano,
J. Hewes, A. Tsaris, K. Terao, and T. Usher, “Graph neural networks for
particle reconstruction in high energy physics detectors,” 2020.

[92] S. R. Qasim, J. Kieseler, Y. Iiyama, and M. Pierini, “Learning representa-
tions of irregular particle-detector geometry with distance-weighted graph
networks,” The European Physical Journal C, vol. 79, Jul 2019.

[93] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identifi-
cation,” Journal of High Energy Physics, vol. 2014, Oct 2014.

[94] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and physics,”
2016.

[95] G. Brooijmans et al., “Les Houches 2015: Physics at TeV colliders - new
physics working group report,” in 9th Les Houches Workshop on Physics
at TeV Colliders, 5 2016.

[96] S. Agostinelli et al., “Geant4—a simulation toolkit,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 506, no. 3, pp. 250 – 303, 2003.

[97] B. Knuteson, “Systematic analysis of hep collider data,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 534, p. 7–14, Nov 2004.

[98] C. O. D. Portal, “http://opendata.cern.ch.”

[99] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” 2018.

[100] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” 2020.

[101] X. Y. Stella and J. Shi, “Multiclass spectral clustering,” in null, p. 313,
IEEE, 2003.

92

[102] P. T. Komiske, R. Mastandrea, E. M. Metodiev, P. Naik, and J. Thaler,
“Exploring the space of jets with cms open data,” Physical Review D,
vol. 101, Feb 2020.

[103] “Helmholtz GPU Hackathon 2020, howpublished = https://www.fz-
juelich.de/shareddocs/termine/ias/jsc/en/events/2020/helmholtz-gpu-
hackathon-2020.html: :text=the

[104] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[105] M. H. N. S. Luke Durant, Olivier Giroux, Inside Volta: The World’s Most
Advanced Data Center GPU, 2017.

[106] NVIDIA TESLA V100 GPU ACCELERATOR.

[107] The CMS electromagnetic calorimeter project: Technical Design Report.
Technical Design Report CMS, Geneva: CERN, 1997.

93

