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An Abstract of the Thesis of

Sara Basem Awad for Master of Science
Major: Computer Science

Title: Meta-Learning Techniques for Assessing EEflux (METRIC) ET versus Real ET

Together with the increasing occurrence of drought events in many regions of
the world, the constant need to increase agricultural production demands a more
cautious regional water resources planning and assessment of irrigation needs
and, thus, a more precise estimate of real evapotranspiration (FET). Several
water management challenges have been addressed in recent years by models
utilizing artificial intelligence. The main challenging aspects are represented by
the choice of the best algorithm, availability of climatic data, and having ade-
quate representative features. This study evaluated six machine learning models
in two categories, i.e point-wise (Multi-Layer Perceptron (MLP), Ensemble of
MLP, Meta-Learning), and probabilistic and uncertainty (Mixed Density Net-
works, MCDropout, Deep Ensemble) for accurately estimating daily ET with
limited meteorological data in various climate regions (from dry continental to
Mediterranean climates) and seasons from Ameriflux and Euroflux towers. Our
datasets include a collection of publicly accessible remotely detected information
traversing 26 sites from 2000 to 2018 such as Real ET values (the response vari-
able) obtained from the Ameriflux and Euroflux towers, in addition to, climate
and remotely-sensed data (LST, NDVI, and ALBEDO) obtained from EEflux.

In this thesis, we have incorporated utility-based learning and data oversampling
(SMOGN) techniques targeting to enhance the recall of our models to capture
extreme (relevant) values of ET. Furthermore, we have also experimented with
different feature selection techniques and interpretability tools (SHAP and LIME)
that show that air temperature, relative humidity, LST, and NDVI are the top
contributing features. We have developed our study in a way to permit agricul-
tural specialists and farmers to select between point-wise forecast, or probabilistic
and uncertainty forecast. Our best performing point-wise model is a reptile meta
learner that utilizes a multi-layer perceptron. Our meta-learner model achieved

vi



an R2 of 0.79, RMSE of 0.90, and a Recall of 0.96 on the holdout subset of our
entire dataset.
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Chapter 1

Introduction

1.1 Background

Evapotranspiration (ET) is a metric that calculates the amount of water lost from
the soil either by evaporation from the surface of the soil or through transpiration
from the leaves of the plant. For water use and irrigation water management,
accurate ET estimation is important to combat excessive water loss (Granata,
2019). To accurately estimate ET, researchers have developed several remote
sensing techniques, but its estimation is considered to be a complicated pro-
cess in which several meteorological variables are associated. This has inspired
researchers to use machine learning to predict ET because of their ability to
track complex relationships between dependent and independent variables. Tra-
ditionally, ET was measured using EEflux (Landsat-based evapotranspiration
tool Earth Engine Evapotranspiration Flux (EEflux)), an automated calibration
method initially based on METRIC, which uses the Landsat imagery archive
stored on the Google Earth Engine (Foolad et al., 2018) to estimate EEFlux ET.

In this work, we explore the following research questions:

e Are the predictive models based on machine learning more accurate than
the EEflux predictive models for ET?

e What machine learning systems can be used to outperform classic statistical
approaches for predicting ET?

e Can we minimize the bias between the Real ET and EEflux (METRIC)
ET?

To this end, we see our problem as a regression problem, capturing temporal
and spatial variations in ET throughout the United States and Europe, and ex-
ploring several predictive frameworks that integrate machine learning models at
their foundation, including vanilla pointwise prediction, Google Cloud’s AutoML,
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meta-learning for few-shot prediction, and probabilistic and uncertainty predic-
tion. Our datasets consist of a series of publicly accessible remotely sensed data
spanning 26 sites from 2000 to 2018, such as actual ET values (response variable)
from the Ameriflux and Euroflux towers, as well as weather and remotely sensed
data (LST, NDVI, and ALBEDO) from EEflux. Our data processing includes
elements for unbalanced regression learning using utility-based regression tech-
niques, and in our design, we strive to increase the recall of our models to capture
extreme values of ET on excessively hot weather and that are most relevant to
farmers. Our clustering of data across different climates and seasonality enables
learning to be moved from higher air temperatures to lower air temperatures or
from dry continental or Mediterranean climates (Csa, Dsa). Our Feature Selec-
tion Analysis helps us to further reduce the dimensionality of our problem in such
a way as to require minimal feedback while retaining fair accuracy steps.

Our best performing model turned out to be the point-wise meta learner, using
the Reptile algorithm based on a multi-layer perceptron (MLP — a class of feed-
forward artificial neural network,). At the time of writing, this model achieved
an R2 of 0.79, an RMSE of 0.90, and a Recall of 0.96 on the holdout subset of
the entire dataset. This substantially improves on the results of a suite of sta-
tistical models on the same holdout dataset based on a simple linear regression
model and mixed random effect models for raw and transformed data, a series
of two-parts models (TPM) including TPM with normal regression, TPM with
log-transformed data, and TPM with gamma regression and a log link. The latter
suites achieved an R2 of 0.65 and an RMSE of 1.128 (credit to Dr. S. Kharroubi).
Moreover, this same model enjoys a boost in performance across clusters upon
the various climates, where R2 improves from 0.79 to 0.88, and RMSE improves
from 0.90 to 0.50. This beats the baseline vanilla MLP by about 31.3% to 43.63%
in R2 and by about 24.3% to 48.9% in RMSE, which confirms it is a highly skilled
learner. This also beats Google Cloud Platform’s autoML by about 8.2% to 8.6%
in R2 and by about 10.8% to 48.9% in RMSE.

We have also trained our data using different probabilistic and uncertainty mod-
els. The best probabilistic model is Deep Ensemble. Deep Ensemble yielded an
R2 score of 0.67, an RMSE of 1.15, and a Recall of 0.92 when trained on the
entire dataset. Deep Ensemble witnessed a boost in performance across clusters
upon the various climates, where R2 improves from to, and RMSE improves from
to. Moreover, Deep Ensemble beats MC Dropout by about 0.58% to 1.36% in
R2 and by about 0.68% to 0.94% in RMSE.

We conclude with a SHAP and LIME analysis for interpreting some of our best
performing machine learning models, where it is shown that air temperature, rel-
ative humidity, LST, and NDVI are the top contributing features. SHAP also
revealed across our models that high values of air temperature and NDVI drive
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the models to predict high values of ET. On the other hand, SHAP revealed that
low values of LST (land surface temperature), and relative humidity imply high
values of predicted ET.

1.2 Overview
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Chapter 2

Literature Review

In the work of (Baier & Robertson, 1965), daily Latent Evaporation is estimated
from simple meteorological observations across six research areas in Canada. Me-
teorological observations were taken from May to October each year from 1953
to 1957. Simple and multiple linear correlation and regression were employed
to study the impact of several meteorological and astronomical variables such as
maximum temperature, temperature range, wind speed, vapor pressure deficit,
solar energy, day length, total sky, solar energy on a horizontal surface, and dura-
tion of bright sunshine on the latent evaporation. The simple correlation shows
that solar energy and sunshine were both more closely correlated with latent
evaporation than temperature terms such as maximum and range. Furthermore,
multiple regression analysis as well was employed to study the importance of the
factors involved to develop equations for computing latent evapotranspiration.
Results show that with only having minimum and maximum temperature and
extraterrestrial radiation, the correlation coefficient was highly significant with
R2=0.68. Adding one or more variables of solar energy, vapor pressure deficit,
and wind speed results in the correlation coefficient ranging from R2=0.75 to
R2=0.81. With all the six variables, results would improve to having R2=0.84.

On the other hand, the authors in (Granata, 2019) conducted a study to pre-
dict the actual ET at a Central Florida Site. The data recorded is between 28
September 2000 and 28 September 2004. Several machine learning algorithms
(M5P Regression Tree, Bagging Random Forest, and Support Vector Regression)
were employed on three different input combinations and different models. Model
1 consisted of sensible-heat flux, net solar radiation, moisture content of the soil,
wind speed, mean relative humidity, and mean temperature. Model 2 consisted of
net solar radiation, wind speed, mean relative humidity, and mean temperature.
Model 3 consisted of net solar radiation, mean temperature, and mean relative
humidity. A 10-fold cross-validation method was used where the data is being
split randomly into 10 subsets with one set reserved as the validation data. The
performance of the studied models was evaluated using these statistical indica-
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tors: Nash-Sutcliffe model efficiency coefficient (NSE), Root mean squared error
(RMSE), and Relative Absolute Error (RAE). This study showed that Model 1
yielded the best prediction for all the metrics scoring 0.987 for NSE, 0.14 mm/day
for MAE, 0.179 for RMSE, and 15.4% for RAE for the best performing algorithm
- Random forests. Model 2 and 3 showed quite analogous results but less satis-
factory than Model 1. Future work would be to build a more powerful machine
learning model for predicting the actual ET using the mean temperature, relative
humidity, and net solar radiation with more complex models such as Artificial
Neural Network (ANN) or Extreme Learning Machine (ELM).

Another work is done for estimating real ET is a study by (Huang et al., 2019).
In this paper, the daily ET is estimated with limited meteorological data using
a Categorical Boosting (CatBoost) algorithm and a gradient boosting decision
tree. The result of the latter algorithm is compared to Support Vector Machine
(SVM) and Random Forest (RF). The data used is a combination of meteorolog-
ical data that includes both complete and incomplete combinations of solar radi-
ation, relative humidity, maximum and minimum temperature, and wind speed
from different weather stations during 2001-2015 in South China. The evalua-
tion metrics used are RMSE, Mean Bias Error (MBE), Mean Absolute Percentage
Deviation (MAPD), and R2 score. The study showed that when the complete
combination of input exists, CatBoost reported the best accuracy, unlike for the
other seven stations having incomplete input variables in which SVM reported
the best accuracy scoring for RMSE (from 4.8% to 37.4%) and MAPE (-3.3% to
33.3%). Furthermore, the memory usage and computing time for processing data
are much less for CatBoost which favors it to be a promising algorithm for ET0
estimation.

Nonetheless, the authors in (J. Fan et al., 2018) conducted a study on esti-
mating the daily ET with limited meteorological data from 1961-2010 from eight
representative weather stations in different climates in China. Four different in-
put combinations were studied to evaluate their effectiveness on ET estimation.
These input combinations consisted of daily minimum and maximum tempera-
ture, relative humidity, wind speed, global, and extraterrestrial solar radiation.
A K-fold cross-validation method was used in which data was divided into five
stages with four tree-based machine learning models including Random Forests
(RF), M5 model tree (M5Tree), Gradient Boosting Decision Tree (GBDT), and
eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and
Extreme Learning Machine (ELM). The performance of the studied models was
evaluated using three statistical indicators: Coefficient of Determination (R2),
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). This study
showed that SVM and ELM were the most performing and stable models scoring
the least error when all the input variables were present. Furthermore, XGBoost
and GBDT showed analogous results to those of Support vector machines (SVM)
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and Extreme learning models (ELM) often exhibiting lower computational loss
which favors them to be considered as an alternative technique for predicting
ET. Results showed that in tropical and subtropical zones of China, global solar
radiation was more important than the other variables. Further studies would
include evaluating the given models in regions other than China and also rely on
different time scales (hourly or monthly).

(Kaneko & Kennedy, 2019) introduced the concept of transfer learning from
several regions when predicting real ET, in which they studied maize fields in
different African countries by referring to publicly available remote sensing data.
A long short-term memory (LSTM) based deep learning model was used to pre-
dict crop fields with a Gaussian Process Layer. The data was split into different
splits: a random one and a chronological one. Using a random split, all mod-
els achieved high levels of accuracy, unlike a chronological one based on data
quality. Moreover, their combined model, in which all the countries were trained
collectively, showed that a collective deep learning model performs competitively
with in-country models scoring 0.63 for R2. This aids the idea of learning from
out-of-country features for countries with sparse data. Further studies could be
using different algorithms such as a DNN model.

Since (Baier & Robertson, 1965) used no machine learning models, but rather the
correlation is studied between several meteorological variables and latent evapo-
ration, we were inspired to use Machine Learning to predict real ET. The work
done by (Granata, 2019) has motivated us to experiment with several deep learn-
ing models along with probabilistic and uncertainty models i.e (Mixed Density
Networks, Deep Ensemble. etc..) having different climatic conditions starting
with air temperature, relative humidity, incoming shortwave radiation, etc...
However, (Granata, 2019) only experimented with one site having a subtropical
humid climate i.e. a warm and wet season from June to September and a mild dry
season from October to May. We believe this restriction will not help in model
generalization for unseen climate conditions, thus several sites and climatic re-
gions should be considered. The studies by (Huang et al., 2019) and (J. Fan et
al., 2018) have inspired us to predict real ET from data across several regions,
and not be constricted to specific areas. We conducted a study on predicting
daily ET during the years 2000-2019 for 26 stations collected from Ameriflux and
Euroflux sites in different climate regions and vegetations. Our model is trained
on different input features i.e wind speed, relative humidity, air temperature, land
surface temperature, albedo, normalized difference vegetation index (NDVI), Site
Id, Month, and Vegetation. We vary the aforementioned input features by includ-
ing all stations, only Ameriflux stations, and only Euroflux stations and study
the impact of each. We used a set of pointwise, probabilistic, and uncertainty
models. The data is being split into training, validation, and testing data sets by
60%, 20%, and 20% respectively using a custom split by stations to ensure that
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each station is included in all the data sets. The performance of our models was
evaluated using several error metrics, correlation metrics, and utility-based met-
rics, some of which are as follows: Coefficient of Determination (R2), Root Mean
Squared Error (RMSE), Mean Absolute Error: MAE, Recall, Precision, Accu-
racy, etc... Our work focuses on several regions as opposed to (W. X. L. X. Fan
J. & Xiang, 2019) and we are using more complex models with less and different
meteorological variables using filter-based approach feature selection methods.
Our results reveal that the best machine learning model is when applying meta-
learning using the Reptile algorithm showing (R2 of 0.79, RMSE of 0.9, and
Recall of 0.96). We were also inspired by the work of (Kaneko & Kennedy, 2019)
which led us to apply different clustering techniques. Our clustering of the data
allows for transfer learning from sites with specific climates yielding better results
than the union of clusters. As a result, we got high performing models trained
on specific clusters better than when trained on the union of clusters, as opposed
to low performing models trained on other clusters. Hence, these models trained
on low performing clusters will learn from the ones excellently performing, and
thus yield good results when the model is trained on a union of all clusters.

The report is divided into several chapters. Chapter [3] tackles the system and
hardware setup being used, Chapter [4] tackles different data sources, Chap-
ter [5] tackles different quality control measures, Chapter [6] and Chapter [7]
tackles how data is being generated and transformed into a final coherent form.
Chapter [8] tackles converting our regression problem into a classification-like
problem using utility-based regression and up-sampling techniques. Chapter [9]
lists several feature selection methods and scenarios applied to our data. Chap-
ter [10] tackles different assessment metrics for evaluating our model’s perfor-
mance. Chapter [11] tackles applying better deep learning, generalization, and
ensemble techniques. Chapter [12] states several experimental model setup.
Chapter [13] tackles different point-wise models’ history and implementation.
Chapter [14] tackles the background of uncertainty quantification. Chapter
[15] tackles different probabilistic and uncertainty models. Chapter [16] and
Chapter [17] tackles different interpretability tools as being SHAP and LIME
and the comparison between them.
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Chapter 3

Systems and Hardware

3.1 Frameworks

A set of third-party libraries and frameworks are used in this project which are
available on a central repository known as Python Package Index (PyPI). These
frameworks are downloaded, installed by using a python tool, Preferred Installer
Program (PIP), which is a command-line utility that aids in installing any PyPI
package by issuing the following command: pip install package-name

Installing pip would vary depending on the operating system used:
e For mac users: sudo easy_install pip
e For Linux users: sudo apt-get install python3-pip

Some of the main libraries:

e Tensorflow 2: Offers easy model building, robust ML production, and strong
experimentation tools

e Keras: Offers a set of off-the-shelf deep learning models

e Scikit-learn: Offers a set of off-the-shelf machine learning regression and
classification models

e Pandas: Offers a set of tools for dataset handling and manipulation

e Pandas Profiling: Offers a set of tools for studying the data distribution
and a handful set of visualizations

e Matplotlib: Offers a set of tools needed for plotting

e Rpy2: Offers easy connection between R and python
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3.2 Installation

3.2.1 Google Cloud Service Setup

Install the Google Cloud SDK to be able to run core gcloud commands from the
command-line. To do that, several steps should be done:

e Create a project on google cloud

e Python is required with versions 2.7.9 or higher. To check the Python
version installed on your system

python -V If nothing is displayed, python should be installed depending
on the operating system being used from here

e Follow the steps in here to install gcloud and to initialize it

3.2.2 Correction Setup

e Download the fluxdatagaqc environment.yml file from
here

Create an environemnt in conda:

conda env create —-f environment.yml

Activate the environment:

conda activate fluxdataqaqc

Install fluxdatagaqc in developer mode into your environment using

pip package manager: pip install -e .

e To ensure that the library is working, run:

from fluxdataqaqc import Data, QaQc, Plot

3.3 Configuration

3.3.1 Correction

A configuration file with a “.ini” extension should be created. This file should
include METADATA & DATA sections. The data should either be in (.xlx and
xlsx) or comma-separated value (CSV) text file containing time series input data
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having a column denoting the date and the time and a row indicating the variables
names.

The structure of both sections includes a key mapped to a value (i.e key = value)
which should contain the following information:

METADATA

It should include the following information:
e climate_file_path: The path of the xlsx or xsv data file
e station_elevation: The elevation of the station in meters
e station_longitude: The longitude of the station in decimal degrees
e station_latitude: The latitude of the station in decimal degrees

e site_id: The unique site identifier

DATA

It should include at least the following information:
e date_parser: The date format

date: The name of the data column used

R,.: The key mapping net radiation in the data file

G: The key mapping ground flux in the data file

LE: The key mapping latent flux in the data file

H: The key mapping the sensible flux in the data file

3.4 Environment

The IDE being in use is the Anaconda Jupyter Notebook application which allows
to create, display code chunks and mark up language sections, and being able to
share generated reports with others. Code chunks are developed using Python
which is included by default as part of the IDE.

We’ve further relied on several environments to run our scripts as such:
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3.4.1 HPC Octopus Cluster

We used AUB’s Octopus High-Performance Computing Clusters which offers
strong computing power that is higher than a typical desktop and also offers
GPU usages which we utilized when running TensorFlow models to shorten the
model training time. Moreover, we also configure the RAM specifications, GPU
model type, cores, etc.. and we simply submit our jobs for execution where it
will be added to a queue of executable jobs. But there is only a certain number
of available GPUs to run on which is a limitation to us in addition to the waiting
queue process, which has motivated us to also rely on the Google Cloud platforms
were by configuring our dedicated clusters.

3.4.2 Google Cloud Platform

Moreover, several Google Cloud Services were used to handle retrieving data,
storing data, running and deploying machine learning models including the fol-
lowing:

e Compute Engine: Several virtual machines configured in different regions
were set up to run an automated scraping script to retrieve data from
EEflux Website

e Cloud Storage: Each virtual machine in the Compute Engine section is
linked to a storage section i.e a bucket to store the satellite images being
retrieved from EEflux and to store data sets from other websites

e DataProc Cluster: For each cluster, we set an initialization script to be able
to use python 3 by default since the libraries we are using are compatible
with this version. Furthermore, the jupyter notebook and Anaconda options
are enabled to be able to use them to run our scripts using an interactive
tool

e Al Platform: We are using this service to build machine learning models
and compare our results to the ones obtained from Auto ML which runs
internally a couple of models to find the optimal one for our problem having
the option to predict an outcome using either an online or a batch prediction
approach
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Chapter 4

Study Area and Surveyed Sites

The data set was collected from Flux Towers (Ameriflux and Euroflux) across
different climates and vegetations during the years 2000 till 2018 and their re-
spective Landsat data is collected from the Earth Engine Evapotranspiration
Flux website (EEflux). The data is collected from 26 sites from Ameriflux and
Euroflux. We collected data from sites that represent different climatic zones
and terrestrial vegetation types. Data from towers within the following climates
were selected: Cfa (Humid Subtropical), Dsa (Dry Continental), Csa (Mediter-
ranean), Csb (Mediterranean), and Cwa (Humid Subtropical). Site vegetation
types include Grasslands (GRA), Crop Lands (CRO), Closed Shrublands, Ever-
green Broadleaf Forests (EBF), and Evergreen Needle Leaf Forests (ENF).

4.1 Ameriflux

Ameriflux, one of the DOE Office of Biological and Environmental Research’s
(BER), was launched in 1996. It contains information for more than 50 sites.
This website tracks several sites’ information such as its variables, years it is
collected, geographic location, etc... Data is available on a half-hourly, hourly,
daily, weekly or monthly basis. (Search AmeriFluz Sites, 2019)
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Figure 4.1: Sample Sites from Ameriflux

4.1.1 Methodology

The following procedure is performed in order to retrieve each site’s information:

e First, a list of all existing sites is obtained with different climatic weathers,
vegetation, and the years the data is collected for each and their geographic
location Table [4.1]

e Then, a list of flux and auxiliary variable for each site is retrieved

e Then, each site’s information along with its variables is exported into a
CSV file tracking each variable on a half-hourly basis

To retrieve the elevation in meters per site the following is done:
e Go to https://www.freemaptools.com/elevation-finder.htm
e Select the latitude and longitude option from the selector

e Provide the site’s latitude and longitude and press enter which will result
in displaying the elevation in the map in meters

e Gotohttps://www.maps.ie/coordinates.html and provide the site’s lat-
itude and longitude to validate the elevation being retrieved above

4.1.2 Sites Detalils

Several sites with different climatic weathers and vegetation are studied:
Climates:
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Table 4.1: Ameriflux Sites

Site Id  Latitude Longitude Years Climate Vegetation
US-AR1 36.4267 -99.42 2009 - 2019 Dsa GRA
US-AR2  36.6358 -99.5975 2009 - 2012 Dsa GRA
US-A32  36.819268  -97.819772 2015 - 2019 Cfa GRA
US-A74  36.808464  -97.548854 2016 - 2019 Cfa GRA
US-Bi2  38.109 -121.535 2017 - 2019 Csa CRO
US-Ced  39.8379 -74.3791 2005 - 2019 Cfa CSH
US-Kon  39.0824 -96.5603 2006 - 2019 Cfta GRA
US-Pon  36.76667 -97.13333 1997 - 2001 Cfa CRO
US-Shd  36.93333 -96.68333 1997 - 2001 Cfa GRA
US-Skr  25.362933  -81.077582 2004 - 2019 Cwa EBF
US-Snd  38.0373 -121.7537 2007 - 2015 Csa GRA
US-SO2  33.3738 -116.6228 1997 - 2019 Csa CSH
US-SP2  29.7648 -82.24482 1998 - 2008 Cfa ENF
US-Twt 38.1087204 -121.6531 2009 - 2019 Csa CRO
US-Tw2 38.1047 -121.6433 2012 - 2013 Csa CRO
US-Var  38.4133 -120.9507 2000 - 2009 Csa GRA
US-WlIr  37.5208 -96.855 2001 - 2004 Cfa GRA

Cfa (Humid Subtropical): Mild with no dry season and hot summer

Dry Continental): Hot summer

Dsa (
e Csa (Mediterranean): Mild with dry and hot summer
Csb (

Mediterranean): Mild with dry and warm summer

Cwa (Humid Subtropical): Dry winter and hot summer

Vegetation/IGBP:

e Grasslands (GRA): Lands with herbaceous types of cover. It has permanent
combination of water and vegetation having the vegetation present in salt,
fresh water, or brackish

e Crop Lands (CRO): Lands that are covered with temporary crops followed
by a harvest then a bare soil period

e Closed Shrublands (CSH): Lands having woody vegetation with shrub canopy
cover and less than 2 meters tall

e Evergreen Broadleaf Forests (EBF): Lands that are dominated with woody
vegetation having a percent cover > 60% and height exceeding 2 meters
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e Evergreen Needle Leaf Forests (ENF): Lands that are dominated with
woody vegetation having a percent cover > 60% and height exceeding 2
meters

For more information about each IGBP check here

4.2 Euroflux

European Fluxes Database Cluster: A database that hosts several flux mea-
surements such as meteorological variables, ancillary data, and meta-information
from different sites in and outside Europe. The data is represented in 3 different
levels. Each level has a different format of representing the data. In each “-9999”
indicates a missing value

4.2.1 Methodology

The following procedure is performed in order to retrieve and group the data:

e Request data from here for sites having IGBP code as CRO to retrieve
cropland sites

e Run a script that first extracts all the zip files containing the meteorological
variables

e Group each sites information for all the years in one sheet on a half-hourly
format
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4.2.2 Sites Details

Several sites with different climatic weathers and vegetation are studied:

Table 4.2: Euroflux Sites

Site Id  Description Latitude Longitude Years Vegetation
BE-Lon Lonzee 50.5516198  4.7462339 2004 - 2018 CRO
CH-Oe2 Oensingen crop 47.286417 7.73375 2004 - 2015 CRO
DE-Geb  Gebesee 51.09973 10.91463 2001 - 2019 CRO
DE-KIli  Klingenberg 50.89306 13.52238 2004 - 2018 CRO
DE-RuS Selhausen Juelich 50.86590702 6.447144704 2011 - 2018 CRO
DE-Seh  Selhausen 50.8706233  6.44965306 2007 - 2010 CRO
DK-Fou Foulum 56.484199 9.5872201 2004 - 2005 CRO
DK-Ris  Risbyholm 55.53027778 12.09722222 2004 - 2005 CRO
ES-ES2  El Saler-Sueca (Valencia) 39.27555556 -0.315277778 2004 - 2010 CRO
FI-Jok  Jokioinen 60.8986 23.51345 2000 - 2003 CRO
FR-Avi  Avignon 43.91608333 4.878055556 2004 - 2006 CRO
FR-Gri  Grignon 48.84422 1.95191 2004 - 2019 CRO
[E-Cal  Carlow crop 52.85879167 -6.918136111 2004 - 2008 CRO
IT-BCi  Borgo Cioffi 40.52375 14.95744444 2004 - 2015 CRO
IT-CA2 Castel d’Asso2 42.37721944 12.02603889 2011 - 2014 CRO
IT-Cas  Castellaro 45.07004722 8.717522222 2006 - 2010 CRO
IT-Ro3  Roccarespampani3 42.37539 11.91542 2007 - 2013 CRO
IT-Ro4  Roccarespampani4 42.37333 11.91922 2007 - 2013 CRO
NL-Lan Langerak 51.95360184 4.902900219 2005 - 2006 CRO
NL-Lut  Lutjewad 53.39892222  6.356027778 2006 - 2007 CRO
NL-Mol Molenweg 51.65 4.63908333 2005 - 2006 CRO
UK-ESa East Saltoun 55.9069444  -2.85861111 2003 - 2006 CRO
UK-Her Hertfordshire 51.78379822 -0.47608 2006 CRO
4.3 EEflux

EEflux, Earth Engine Evapotranspiration Flux, is based on the METRIC model
(ref), operating on Google Earth’s Engine System. EEflux generates on-demand
ET estimations for Landsats (5,7 or 8) scenes. This website can process Landsat
scenes from 1984 till the present date in almost every land area on the Globe at
30 m resolution. It has an interactive temporal and spatial search GUI engine in
which a geographic location and date interval is specified to download a geo-tiff
satellite image. Only one satellite image can be viewed or downloaded at a time,
this has urged us to build an automated scraper to download multiple satellite
images for a specified site, a date interval, and a metric without providing any
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manual intervention (“EEFlux: A Landsat-based Evapotranspiration mapping
tool on the Google Earth Engine”, 2015).

4.3.1 Methodology

We have built an automated scraper in python that was fed a set of attributes(latitude,
longitude, date interval) to retrieve a certain metric (EEflux ET, EEflux ETr,
EEflux ETo, or EEflux ETrf). We have run the scraper on different parallel
clusters on the google cloud compute engine to optimize the performance of the
scraping process and thus faster results. We thus further obtained a model out-
put for each satellite overpass and then extracted the mean values for nine pixels
including the tower site (i.e. a 45m buffer around the tower) as well as the %
cloud cover (to discard cloudy pixels). We have retrieved actual ET, Reference
ET (Alfafa and grass), and Evaporative fraction, Albedo, NDVI, and Landsurface
temperature data for the 26 sites obtained above across the years 2000-2018.
The following is performed to retrieve satellite images for the mentioned sites:

1. Build an automated scraper in python that was fed a set of attributes to
retrieve data accordingly. Attributes provided were:

e Latitude: The latitude of the site
e Longitude: The longitude of the site

e Date Info: A range of start and an end date filter with the format
“YYYY-MM-dd”

e Type.id:

— 1 is used for the “eta” parameter which will get the records for
“ACTUAL ET”

— 2 1is used for “etr” parameter which will get the records for “AL-
FAFA REFERENCE ET (ETr)”

— 3is used for “eto” parameter which will get the records for “GRASS
REFERENCE ET (ETo)”

— 4isused for “etrf” parameter which will get the records for “FRAC-
TION REFERENCE ET (ETrF)”

e Metric/Type_Name: A metric or a data layer to download a satellite
image having the following options: “ACTUAL ET”, “ALFAFA REF-
ERENCE ET (ETr)”, “GRASS REFERENCE ET (ETo)”, & “FRAC-
TION REFERENCE ET (ETrF)”

2. After having to select the set of attributes, a list of zip files is downloaded.
Each zip file is named according to the satellite image followed by the metric
and the date on which it was captured on
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3. All files are unzipped to extract the “geo-tift” files representing the actual
image which has a % cloud cover selection

4. The metric value (for instance Actual ET) is then extracted from each image
and then the mean of that metric is calculated based on the 8-neighbor
pixels of the current site which will be useful in case the metric value was
not available for a certain date.

5. Each metric value will then be exported into a CSV file with its respective
date and % cloud cover and its mean value

The above methodology is also explained in details in Algorithm [1]

Algorithm 1 EEflux Scraping

®

BUCKET NAME = “bucketname”

df < Read(“gs:// + BUCKET_NAME + /Data sets”)

site_id =“US-Kon”

type_id = 1

site_df = df[‘Site Id” == site_id]

site_df [“date_info”] = site_df[“start_date”| + “to” + site_df|‘end_date’|
response < Call post api with site_df[“date_info”], site_df[“lat”] and
site_df [“long”|

data = to_dict(response)

9: response_df < Create(data['Date’], data['Tier’], data[id’], data['Cloud’])

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20

type_name <— get(type_id)
for row in response_df do
raster_url < Call post api with row[‘id'] and type_name
BUCKET_NAME < Upload(raster_url)
raster < Unzip file from raster_url
metric_value < Extract metric_value from raster
site_df [“type_name’] = metric_value
site_df [“type_name_mean’] = mean(metric_value)
Del raster

end for
. Export site_df to BUCKET_NAME

4.4 Reference Evapotranspiration

The Reference Evapotranspiration is an estimation of evapotranspiration from
the surface reference and is also known as reference crop transpiration. There are
two types of surfaces: the standardized reference evapotranspiration for the short
crop with a height of around 0.12 m which is denoted by ET, and the standard-
ized reference evapotranspiration for the tall crop with a height of around 0.50
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m which is denoted by ET,. ET, is similar to the clipped, cool-season grass, and
ET, is similar to the full-cover alfalfa (R. G. Allen et al., 2005). The reference
evapotranspiration was introduced to study the behavior of the atmosphere re-
gardless of the crop type, and development. Furthermore, ET, that are measured
at different seasons or locations are considered comparable as they both denote
to ET from the same reference surface being affected by the climate parameters,
therefore ET, can be computed from the weather data and is often a climatic
parameter.

It can be estimated either from the meteorological data or from the pan evapora-
tion. FAO Penman-Monteith is considered the recommended method for calcu-
lating ET, which uses meteorological data (i.e radiation, air humidity, air temper-
ature, and wind speed data) even when the climatic data are missing ( Chapter 4 -
Determination of ETo, 2019a). On the other hand, the pan evaporation method
is also used to estimate ET, using coefficients to relate the pan evaporation to
ET,.

In our case, the refET library will be used to compute the daily reference ET
following the ASCE Standardized Reference Evapotranspiration Equations for
both ET, and ET, (R. G. Allen, 2005).
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4.4.1 Methodology

We will compute ET, and ET, for all the sites on a daily basis as being stated
by the below algorithm

Algorithm 2 Reference Evapotranspiration Calculation

1 ea = 1013588

2: tmean <— avg(TA)

3: es = 0.6108 x exp(%)

4: rs = SW_IN

5. if WS is NaN then

6: uz =2

7: else

8 uz=WS

9: end if

10: if ET, then

11:  etr < refET.Daily(min_-T A, max_TA, ea, rs, uz, zw, elevation, latitude,
doy, method="asce’).etr()

12:  ETrF_bowen = LE _bowen_corr(mm) | ET,

13: else if ET, then

14:  eto < refET.Daily(min T A, max_TA, ea, rs, uz, zw, elevation, latitude,
doy, method="asce’).eto()

15:  EToF _bowen = LE _bowen_corr(mm) | ET,

16: end if

Detailed information about this algorithm is described in Ref ET

After having computed ET, and ET, which is what we’re studying, we will be
retrieving their equivalent ET, and ET, from EEflux or Climate Engine using
the automated engine scraper in order to compare each.

4.5 Climate Engine

Climate Engine is a web application powered by Google Earth Engine which is
used to analyze and visualize gridded weather data and satellite observations for
decision support related to agriculture, ecology, etc... It supports on-demand
cloud computing of remote sensing data and visualization of climate. We will
use this tool to extract several values in addition to what we’re retrieving from
EEflux for Ameriflux and Euroflux sites.

4.5.1 Methodology

To retrieve the ET, and ET, values for Ameriflux sites, the following is done:
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Set the Type field to Climate/Hydrology
Set the Data field to METADATA /gridMet
Set the variable to one of the following:

— ASCE Grass Reference Evapotranspiration (ET,)
— ASCE Alfalfa Reference Evapotranspiration (ET),)

Set the time period to a custom date range option to vary the start and
end dates depending on the available data per site

Set the region to the point option to be able to add the latitude and longi-
tude per site

Click the get map layer to process the request

After the data is processed and retrieved, it is downloaded in a CSV file
format

Since ET, is not available for Euroflux sites, we will be using the potential evap-
oration instead by doing the following:

Set the Type field to Climate/Hydrology

Set the Data field to CFS Reanalysis

Set the variable to one of the following:
— Potential Evaporation

Set the time period to a custom date range option to vary the start and
end dates depending on the available data per site

Set the region to the point option to be able to add the latitude and longi-
tude per site

Click the get map layer to process the request

After the data is processed and retrieved, it is download in a CSV file

The web application is available in here
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Chapter 5

Quality Control

5.1 Data Cleaning

After data is collected from different sources, it further needs to be cleaned and
corrected.

5.1.1 Ameriflux and Euroflux

e Convert the occurrences of “-9999” with NaN which better indicates a miss-
ing value

e Remove missing LE & its variants
e If more than one variant of a certain column exist, take only the first variant

e Remove data with malformed dates i.e having days or months that do not
exist

e There were negative LE values as well as very high LE values. We thus
limited the ranges of our LE variable to values between 1 and 15 mm

5.1.2 EEflux
e Impute the missing records for Modeled E'T' to be the Mean Modeled ET

e Impute the missing records for ET, to be the Mean Modeled Reference ET,
e Impute the missing records for E'T, to be the Mean Modeled Reference ET,

e Impute the missing records for ET,.F to be the Mean Modeled Reference
ET.F
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e We substituted values of Modeled ET (EEflux ET) that are less than 0.3 to
be 0.3 and values greater than 15 to be 15. The reason for choosing these
values to substitute with is that we have performed a set of experiments with
several cutoffs varying between 0, 0.1,0.2,0.3,0.4,0.5, and 1. Our purpose
for that since we do not want to tamper with a big percentage of the data.
Thus, we checked the percentage of data with values less than the latter
lower bounds. The lowest percentage was observed with the lower bound
0.3 and below. Thus, we performed all our residual analysis experiments
with EEflux ET having the lower bound ranges 0.1,0.2,0.3. The best results
were for 0.3, hence we decided on it.

e We will correct the rows that are redundant i.e (having the same values) in
their input features but only differ in the cloud cover percentage column.
We will only correct one row and we will further discard the others and
consider them as erroneous. To decide on which row to correct and how to
correct it, we will have to rely on real ET and EEflux ET as such:

We compute the difference in EEflux ET values between the redundant
rOwWsS.

— If the difference was less than 0.3, we will further compute the average
for EEflux ET between these rows and discard all the others.

— If the difference was higher than the predefined threshold, then we
will compute the difference between EEflux ET and real ET for each
redundant row. We will keep the row that shows the least discrepancy
(lowest value) and we will discard the others.

5.2 Data Correction

It is often vital to ensure that the hydrometeorological measurements & turbu-
lent fluxes are accurate and to quantify any systematic errors or uncertainties
which play an important role in irrigation and energy management. Eddy covari-
ance (EC), which is used to determine the exchange of water vapor between an
ecosystem and the atmosphere, leads to an underestimation of sensible heat (H)
and latent heat (LE) fluxes by causing non-closure of the surface energy balance
models to estimate them i.e the turbulent heat fluxes are smaller than the avail-
able energy which is the sum of the ground heat flux and net radiation at the
surface (5.1). Several methods have been proposed to correct these fluxes to bet-
ter close the energy balance model. We have computed the corrections using two
approaches: one is applying the Bowens Ratio by (Mauder, 2013). and the other
using a python package library flux-data-qaqc which performs two corrections:
the Energy Balance Ratio method, & a variant of the Bowens Ratio method.

R,—G=H+LE (5.1)
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5.2.1 Bowen’s Ratio

The method proposed by (Mauder, 2013) relies on preserving the Bowen’s ratio
(H/LE) on a half-hourly basis before and after the correction is applied. This
method doesn’t cause the individual flux points (i.e half-hourly) to be perfectly
close but does for the daily time scale.

oo S H, + LE

- Lt s (5.2)
i=1 4n,i 7

H, - % (5.3)

LB = (5.4)

Methodology
1. Remove all records having R,, < 20 which are close to sunset

2. Calculate the correction factor for each day depending on the valid k (half-
hourly) records (eq:5.2)

3. Compute the corrected H (eq:5.3)
4. Compute the corrected LE (eq:5.4)

5. Compute the residual energy balance after the correction to quantify the
difference after correction is applied (eq:5.1)

5.2.2 Bowen’s Ratio - FluxQAQC

The Bowen Ratio energy balance closure method is performed on a daily basis by
preserving the Bowens ratio (H/LE). This correction closes the energy balance
exactly, when the balance is evaluated on a daily time scale (i.e, daily sums), but
not when evaluated on flux data points (e.g., 30-minutes). This is implemented
by authors in flux-data-qaqc.

Methodology
1. Compute the Bowens Ratio /3
H
= 5.5
p= (55)
2. Compute the corrected LE
(Rn — G)
LE.w, = ———= 5.6
1+ >0
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3. Compute the corrected H

Hcorr = LEcorr X 5 (57)

The variables names which are computed using the above approach are as
follows:

e br: Bowen Ratio

e cbr: The energy balance ratio

e cbr_corr: The corrected energy balance ratio

e LE _corr: The corrected Latent energy flux

e H corr: The corrected sensible heat flux

e LT The evaportanspiration

e KT _corr: The corrected evapotranspiration

e energy: The energy that is computed from R, - G
flux: The flux which is computed from LE + H

o flux_cor: LE corr + H _corr

5.2.3 Energy Balanced Ratio (EBR)

The energy balance method constitutes removing extreme values of the daily
time-series data and gap-filling it. Then the inverse of this data is used as a
series of the correction factor for the initial latent energy (LE) and sensible heat
(H) time series flux data. (Mauder, 2013)

1.

Filter out poor quality data if quality control flags are provided with the
data set
E.g.. LE_F_MDS QC is a QC field for a gap filled LE

Compute the energy balance ratio daily from the raw data

H+ LE

EFBR = ——
Rn—-G

(5.8)

Filter out EBR values that are outside 1.5 times the interquartile range

For each day, a sliding window of +/- 7 days (15 days) is used in order to
select up to 15 values

For each day, compute the percentile (defaults to 50) of the 15 EBR values,
then check if the inverse of the EBR is > |2| or if it’s inverse multiplied by
LE would result in a flux greater than 850 or less than -100 w/m?, if that
happens then the gap filling procedure is left for later
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6. If less than +/- 5 days exists in the 15 sliding window day, then compute
the mean EBR for all the days in a +/- 5 day (11 day) sliding window and
then apply the criteria for EBR mentioned in the previous step

7. If no ERB data is available in the +/- 5 sliding window to average, then fill
the remaining gaps of EBR with the mean from a +/- 5 sliding window over
the day of the year mean for all the years on record i.e 5 day climatology.
Then compute the 5 day climatology from the filtered EBR and then apply
the criteria for EBR mentioned in the previous step

8. e Use the filtered EBR time series data to correct LE and H:
1

LE., = LE x EBCcr (5.10)
Hepr = H X EBCep (5.11)

e Then use the corrected turbulent fluxes to calculate the corrected EBR:

HCOT"I“ + LECOT‘T‘

EBRCOT"V‘ -
Rn—G

(5.12)

e Compute ET from LE using the average air temperature to adjust
the latent heat of vaporization

LE
2501000 .51 — (2361 - T¢)

ET = 86400,¢0.qay-1 X (5.13)

having evapotransipiration (ET) in mm - day™*

LE is latent energy flux in w - m ™2
T is air temperature in degrees Celsius

9. Optional Step: Apply gap filling procedure to E'T using gridMET reference
ET by downloading ET,, the overlapping gridMET cell (The site must be
in CONUS) and then computing reference ET fraction ET,r as follows:

e Remove outliers i.e values outside 1.5 times the interquartile range

e Data is then smoothed with a 7 day moving average (i.e a minimum
of 2 days must exist in the window)

e Linear interpolation is applied to fill the remaining gaps

The variable names which are computed using the above approach are as follows:
e LE _corr: The corrected latent energy flux

e H _corr: The corrected sensible heat flux
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ebr: The energy balance ratio

ebr_corr: The corrected energy balance ratio

ET: The evaportanspiration

ET _corr: The corrected evapotranspiration

ebr_corr: The inverse of energy balance closure correction factor
ebr_5day_clim: A 5 day climatology of the filtered Energy Balance Ratio
gridM ET_ET,: Is the gridMET alfalfa reference ET' (nearest cell)

ET,: The reference evaportanspiration

ET,r: The fraction reference evaportanspiration for ET"_corr which is com-
puted by applying: ET corr / grid M ET_ETr
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Chapter 6

Data (Generation

After cleaning and analyzing the Ameriflux & Euroflux data sets, we will need to
correct each data set and then generate the new ones which will then be joined
with their respective EEflux data. To do so, we are using two approaches to
correct our data, the manual or the library correction generation method.

This section focuses on re-sampling the data from hourly to daily after hav-
ing done some cleaning and analysis of our data sets. Newly generated data
will be produced as a result of correcting the data, reference evapotranspiration
generation, and joining the Tower data with its respective EEflux data. We are

using two approaches to correct our data, the manual and the library correction
methods. Each method is described in details in Chapter [5]

6.1 Manual Data Generation
This section focuses on performing all the necessary steps to produce a daily
corrected data set and another that is joint with EEflux using the manual bowen
correction. Steps involved are:

1. Global Variable Initialization

2. Data Cleaning

3. Data Processing

4. Data Aggregation & Correction

5. Reference Evapotranspiration Calculation

6. EEflux Joining with Tower Data
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6.1.1 Global Variables Initialization

This section focuses on setting and initializing the global variables which are used
in the below procedure

e Set BASE_PATH: “Users/saraawad/Desktop/Datasets/Google/”

e Set INPUT_PATH: “/Users/saraawad/Hourly Cleaned/Ameriflux/”

e Set FLUX_PATH: “/Users/saraawad/Desktop/flux-data-qaqc/sites/data”

e Set FLUX_PROCESSED_HOURLY _PATH: BASE _PATH + “Common/Manual/Hourly /”
e Set FLUX_DAILY_PATH: BASE_PATH + “Common/Manual/Daily/”

e Set FLUX_PROCESSED _DAILY PATH: BASE_PATH + “Ref/”

o Set AMERIFLUX_TA: BASE_PATH + “Ameriflux_TA.csv”

e Set EUROFLUX_TA: BASE_PATH + “Euroflux_TA.csv”

e Set EEFLUX_ET_PATH: BASE_PATH + “EEflux/EEflux_sites.csv”

e Set EUROFLUX_ETo PATH: BASE_PATH + “Euroflux_ETo_grass.csv”

e Set EUROFLUX_ETr PATH: BASE PATH + “Euroflux_Potential ET.csv”

e Set AMERIFLUX ETo: BASE_PATH + “Ameriflux_ETo_grass.csv”

o Set AMERIFLUX_ETr: BASE_PATH + “Ameriflux ETr_alfafa.csv”

e Set EEFLUX_ALBEDO_NDVI: BASE_PATH + “EEflux/EEflux_Albedo NDVT.csv”
e Set FLUX_JOINT_PATH: BASE PATH + “Common/Manual/Joint”

6.1.2 Data Cleaning
This section focuses on cleaning the data set and removing NaN values
1. Load each Ameriflux hourly data from the INPUT_PATH
2. Process each data set by doing the following:
(a) Drop invalid columns i.e ones having the suffix “_SSITC_.TEST” or
having the prefix “WS_MAX”

(b) Drop rows having NaN values

(¢) Drop all the input column variants (“NETRAD”, “H”, “G”, “RH”,
“WS”, “TA”) and use only the first variant

(d) Export the processed data sets for each site to FLUX_PATH
(e) Add Euroflux hourly data sets to path FLUX_PATH
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6.1.3 Data Processing

This section focuses on preparing the data set for the correction by computing
columns on the hourly data set and using them when re-sampling the data set to
daily

1. Loop over all the unique sites from sheet “filtered_sites_encoded_all.xlsx”

2. Perform a binary encoding to the Site Id, Vegetation, Climate, and Month
columns as mentioned in Chapter [5]

3. Add columns from the filtered sheet to the current data set
4. Generate date components fields i.e Year, Month, Day columns

5. Check if all the Bowens elements exist i.e (“H”, “LE”, “NETRAD”, “G”),
if so start computing the Bowens correction otherwise exit and do nothing

6. Add a new column “LATENT_SENSIBLE” by summing up “H” + “LE”
when “NETRAD” > 20 otherwise set to 0

7. Add a new column “NETRAD_SOIL” by summing up “NETRAD” + “G”
when “NETRAD” > 20 otherwise set to 0

8. Export each processed data set for each site to path
FLUX PROCESSED HOURLY _PATH with the site id suffixed with “_Hourly.csv”

for instance: US-Var_Hourly.csv
9. Concatenate all data sets into one data set

10. Export the concatenated data set to path FLUX_PROCESSED_HOURLY _PATH
with the name “all_hourly.csv”
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Algorithm 3 Manual Bowen Cleaning and Processing

Data:
Load hourly data from INPUT_PATH into df _hourly
Load sites data from sheet filtered_sites_encoded_all into sites_df
1: Del columns with suffix “_SSITC_TEST” & “WS_MAX”
2: Del NaN rows
3: Del columns with suffix “.17, “27, “.3”
4: Export df _hourly_cl into FLUX_PATH
5: for site in sites_df do
6:  Binary encode “Site_Id”, “Vegetation”, “Climate”, & “Month”
7. Compute “Year”, “Month”, & “Day” from “Date” column
8:  Set BOWENS_ELEMENTS = [“H”, “LE”, “NETRAD”, “G”|
9: if BOWENS_ELEMENTS exists then
10: if “NETRAD” > 20 then
11: LATENT_SENSIBLE < sum(“H”, “LE”)
12: NETRAD_SOIL < sum(“NETRAD”, “G”)
13: else
14: LATENT_SENSIBLE =0
15: NETRAD_SOIL =0
16: end if
17:  else
18: continue
19:  end if
20:  Export df _hourly_cl into FLUX_ PROCESSED HOURLY _PATH

21:  Add site to sites
22: end for
23: Export sites to FLUX_PROCESSED_HOURLY _PATH

6.1.4 Data Aggregation and Correction

This section focuses on re-sampling the data from an hourly to daily basis by
aggregating the correction elements columns and other main columns

1. Load the data sets from path: FLUX_PROCESSED HOURLY _PATH

2. Re-sample the hourly data to daily by aggregating all the main variables and

summing up “LATENT_SENSIBLE” and “NETRAD_SOIL” and grouping
by the “Site Id” and “Date” columns

3. Generate date components fields i.e Year, Month, Day columns

4. Add anew column “C_BOWENS” by dividing “LATENT_SENSIBLE” with
“NETRAD_SOIL”
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10.

11.

12.

13.
14.

. Add a new column “LE_bowen_corr” which is set to “LE” divided by

“C_BOWENS” when “C_BOWENS” > 0 otherwise set to NaN

. Add anew column “H_bowen_corr” which is set to “H” divided by “C_BOWENS”

when “C_BOWENS” > 0 otherwise set to NaN
Drop a row having one of “LE_bowen_corr” and “H_bowen_corr” as NaNs
Drop“LATENT _SENSIBLE” and “NETRAD_SOIL” columns

Generate lags for the columns: “H”, “H_bowen_corr”, “G”, “NETRAD”,
“WS”, “RH”, “TA” as mentioned in Algorithm [8]

Calibrate LE and H by adding a conversion rate to each of “LE_bowen_corr”
and “H_bowen_corr” i.e dividing each by 28.94. The resulting columns will
have a suffix (mm)

Order columns following the below criteria
(a) Columns coming from the filtered sheet i.e Date, Site Id, Year, Month,

Day, Climate, Vegetation, Latitude, Longitude, Elevation(m)

(b) Weather columns i.e WS, RH, TA, NETRAD, SW_IN followed by their
lags i.e WS-1, WS-2,... WS-5, RH-1, RH-2,... RH-5, etc...

(¢) Energy balanced columns i.e G, H, H-bowen_corr, H_-bowen_corr(mm),
LE, LE_bowen_corr, LE_bowen_corr(mm)

(d) Reference ET columns i.e ETo, ETr, ETof bowen, ETrf_bowen
(e) EEflux columns if exists i.e EEflux Albedo, EEflux NDVI, EEflux LST,
EEflux ET, Cloud Cover, EEflux ETo, EEflux ETr

Export each daily data set for each site to path
FLUX _DAILY _PATH with the site id suffixed with“_Daily.csv” for in-
stance: US-Var_Daily.csv

Concatenate all data sets into one data set

Export the concatenated data set to path FLUX_DAILY_PATH with
the name “all_daily.csv”
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Algorithm 4 Manual Bowen Aggregation and Correction

Data:
Load data from sheet FLUX_PROCESSED HOURLY PATH into
df _hourly_pr
1:
2: for df _site in df _hourly_pr do
3:  Group each df _site by Siteld & Date
4:  df _site is re-sampled to df _site_daily
5 LATENT_SENSIBLE + sum(LATENT _SENSIBLE)
6: NETRAD_SOIL + sum(NETRAD_SOIL)
7. C.BOWENS = LATENT_SENSIBLE | NETRAD_SOIL
8 if “C_.BOWENS” > 0 then
9: LE _bowen_corr = LE | C
10: H bowen_corr = H | C
11: else
12: LE bowen_corr = NaN
13: H bowen_corr = NaN
14:  end if
15:  if LE_bowen_corr = NaN or H_bowen_corr = NaN then
16: Del df _site_daily
17.  end if
18:  Del LATENT_SENSIBLE & NETRAD_SOIL
19:  Go to Algorithm [8]
20:  LE_bowen_corr(mm) = LE _bowen_corr | 28.94
21:  H_bowen_corr(mm) = H bowen_corr | 28.94
22:  Sort columns
23:  Export df _site_daily into FLUX_DAILY _PATH
24:  Add df _site_daily to sites
25: end for
26: Export sites to FLUX_DAILY_PATH
6.1.5 Reference Evaporation Calculation

This section focuses on computing ET, and ET, for all the data sets

1. Add ET, to Daily Combined Sites

(a) Load data sets from path FLUX_ PROCESSED _DAILY PATH

(b) Compute the minimum, and maximum air temperatures for each date
by achieving the following:

i. Load the hourly data from path FLUX_PATH
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ii. Re-sample the hourly data to daily by computing the minimum
and maximum air temperature on the hourly data and summing
them up and grouping the data by Site Id and Date fields

iii. Filter the sites prefixed with “US-” which indicates the Ameriflux
sites

iv. Export the filtered sites into a sheet that holds the Ameriflux TA
information to path AMERIFLUX_TA

v. Filter the sites not prefixed with “US-” which indicates the Eu-
roflux sites

vi. Export the filtered sites into a sheet that holds 695874roflux TA
information to path EUROFLUX_TA

¢) Inner merge each site’s data with its I‘GSpGCtiVG ['A information data
g
set

(d) Compute the day of the year
(e) Compute ET, as described in Algorithm [2]

(f) Compute the fraction reference evapotranspiration (ETrF_bowen) by
dividing LE_bowen_corr(mm) by ET,

2. Add ET, to the daily combined sites

3. Repeat the same above procedure to compute ET, by invoking “.etr()”
method and supplying the same field values and adding the generated
columns to the data set

4. Export each data set to path FLUX_PROCESSED _DAILY PATH with
the site name suffixed with “_daily” for instance: US-Var_daily.csv

5. Concatenate all data sets into one data set
6. Export the concatenated data set to path FLUX PROCESSED DAILY PATH

with the name “library_corrected_daily.csv”

6.1.6 EEflux Joining with Tower Data

This section focuses on merging the EEFlux data with the tower data to use for
our study to compare tower versus EEflux data

1. Load the concatenated data set from path FLUX_PROCESSED _DAILY_PATH
2. Get a list of unique sites from the above sheet

3. Load the data set having EEFlux Evapotranspiration for all sites from path
EEFLUX _ET PATH
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4.
D.
6.

7.

10.

11.
12.
13.
14.

15.

Loop over each site
Inner merge the loaded data set with the flux daily data set
If the current site has a prefix “US-” then do the below

(a) Load EEflux ET, from path AMERIFLUX _ETo

(b) Merge the data set generated above with the one loaded from AMER-
IFLUX_ETo

(¢) Load EEflux ET, from path AMERIFLUX _ETr

(d) Merge the data set generated above with the one loaded from AMER-
IFLUX_ETr

(e) Load EEflux Albedo and NDVI data set from path EEFLUX_ALBEDO _NDVI

If the current site does not have a prefix “US-” then do the below

(a) Load EEflux ET, from path EUROFLUX _ETo

(b) Merge the data set generated above with the one loaded from EU-
ROFLUX_ETo

(c¢) Load EEflux ET, from path EUROFLUX _ETr

(d) Merge the data set generated above with the one loaded from EU-
ROFLUX_ETr

(e) Load EEflux Albedo and NDVI data set from path EEFLUX_ALBEDO _NDVI

Set EEflux ET initially to Modeled ET, otherwise, if it is NaN then set it
to Mean Modeled ET

Set EEflux ETo initially to Modeled ETo, otherwise if it is NaN then set it
to Mean ETo

Compute the fraction reference evapotranspiration (EEflux ETrF) by di-
viding EEflux ET by EEflux ET, and then repeating the same procedure
for the EEflux EToF

Drop all the previous generated lags for each site’s data
Re-generate lags for the main variables
Order the columns following the daily ordering mentioned earlier

Drop NaN columns i.e columns having all their rows as NaNs meaning no
valid value at all

Export each data set to path FLUX_JOINT_PATH with the site name
suffixed with “_Joint.csv”
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16.

17.

Concatenate all the data sets

Export the concatenated data sets to path FLUX_JOINT_PATH with
the name “manual_corrected_joint.csv”

6.2 Library Data Generation

This section focuses on performing all the necessary steps to produce a daily
corrected data set and another that is joint with EEflux using the library Bowen
and EBR corrections. Steps involved are:

1.

2.

Global Variable Initialization
Configuration Generation

Data Cleaning

Data Correction

Data Correction Processing

Data Aggregation

Reference Evapotranspiration Calculation

EEflux Joining with Tower Data

6.2.1 Global Variables Initialization

Set BASE_PATH: “Users/saraawad/Desktop/Datasets/Google/”
Set INPUT_PATH: “/Users/saraawad/Hourly Cleaned/Ameriflux/”

Set FLUX_PATH: “/Users/saraawad/Desktop/flux-data-qaqc/sites/data”

Set FLUX_CONFIG_PATH: “/Users/saraawad/Desktop/flux-data-qaqc/sites/output/”
Set FLUX_EBR_PATH: “/Users/saraawad/Desktop /flux-data-qaqc/sites/output/EBR/”

Set FLUX_BOWEN _PATH: “/Users/saraawad /Desktop /flux-data-qaqc/sites/output /Bower

Set CORRECTION_METHOD = 1 for EBR or 2 for Bowens correction

Set isEBR = true for EBR and false for Bowens

Set FLUX_EBR_.BOWEN_PROCESSED_PATH: BASE_PATH + “Common/Daily/”

Set FLUX_COMBINED_PATH: BASE_PATH + “Common/Daily Combined/
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Set AMERIFLUX_TA: BASE_PATH + “Ameriflux TA.csv”

Set EUROFLUX_TA: BASE_PATH + “Euroflux_TA.csv”

Set FLUX_DAILY _PATH: BASE PATH + “Common/Ref/”

Set EEFLUX_ET_PATH: BASE_PATH + “EEflux/EEflux sites.csv”

Set EUROFLUX_ETo_PATH: BASE_PATH + “Euroflux_ETo_grass.csv”

Set EUROFLUX_ETr_PATH: BASE_PATH + “Euroflux_Potential ET.csv”

Set AMERIFLUX _ETo: BASE_PATH + “Ameriflux_ETo_grass.csv”

Set AMERIFLUX _ETr: BASE PATH + “Ameriflux ETr_alfafa.csv”

Set EEFLUX_ALBEDO_NDVI: BASE_PATH + “EEflux/EEflux_Albedo NDV .csv”
Set FLUX_JOINT_PATH: BASE PATH + “Common/Joint Combined/

6.2.2 Configuration Generation

This section generates configuration file for each site

1.

2.

Copy Euroflux hourly data sets to FLUX_PATH

Check if all the main variables i.e ("NETRAD”, "H”, "LE”, "G”, "RH",
"WS” "TA”) exists as columns

If they exist, then generate the configuration file which ends in “.ini” and
contains meta data and variable information as described in Chapter [3]

Export the “.ini” files to path: FLUX_CONFIG_PATH

6.2.3 Data Cleaning

This section handles data cleaning the same way it is handled for the manual
data generation correction

6.2.4 Data Correction

This section applies Bowen and EBR Correction methods by internally converting
the hourly into daily data sets

1.

2.

Load the configuration file for each site from FLUX_CONFIG_PATH

Start with the EBR correction by setting the CORRECTION _METHOD
=1
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. The algorithm will run as described in Chapter [5] and exports a daily and
a monthly version for each site according to the predefined configuration
file, therefore, yielding the new data sets to FLUX_PATH

. Delete the monthly data sets since they are not needed for our study
. Move the exported files to FLUX_EBR_PATH

. After having finished from the EBR Correction, repeat the same steps and
set the CORRECTION_METHOD = 2 to perform the Bowen’s correc-
tion and move the generated files to the path: FLUX_BOWEN_PATH
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Algorithm 5 Library Cleaning and Correction

Data:
Load hourly data from INPUT_PATH into df_hourly
1: Del columns with suffix “.SSITC_TEST” & “WS_MAX”
2: Del NaN rows
3: Del columns with suffix “.17, “27 «.3”
4: Export df _hourly_cl into FLUX_PATH
5: Load hourly data from FLUX_PATH into df _hourly_cl
6: for site_df in df _hourly_cl do
7. Set MAIN_VARS = [“NETRAD”, “H”, “LE”, “G”, “RH”, “WS”, “TA”|
8 if MAIN_VARS exists then
9: Site_id_con fig <— Generate config for site_df
10:  end if

11:  Export Site_id_config into FLUX_CONFIG_PATH

12: end for

13: for site_df in df _hourly_cl do

14:  Load config data from FLUX_CONFIG_PATH into df config
15:  CORRECTION_METHOD =1

16:  site_df corrected <— EBRCorrection(site_df) & df _config

17: Del month data

18:  Export site_df _corrected into FLUX_EBR_PATH

19: end for

20: for site_df in df _hourly_cl do

21:  Load config data from FLUX_CONFIG_PATH into df _config
22:.  CORRECTION_METHOD =2

23:  site_df _corrected < BowenCorrection(site_df) & df _config

24:  Del month data

25:  Export site_df corrected into FLUX BOWEN_PATH

26: end for

6.2.5 Data Correction Processing

This section focuses on cleaning and processing each library correction generated
data set

1. Loop over all the unique sites from sheet “filtered_sites_encoded_all.xlsx”
2. Load the data set from path FLUX_EBR_PATH
3. Set isEBR to true

4. Perform a binary encoding to the Site Id, Vegetation, Climate, and Month
columns as mentioned in Chapter [5]
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10.

11.

12.

13.

. Refactor the generated corrected columns so that to differentiate the ones

coming from EBR or Bowens method by adding a suffix i.e “_ebr” or
“_bowen” to the main columns

. Generate date components fields i.e Year, Month, Day columns

. Check if the main columns exist i.e (“NETRAD”, “H”, “LE”, “G”,“RH”,“WS”,

“TA”) e, if so continue, otherwise exit and do not process the site data fur-
ther

. Generate lags for the columns: “H”, “H_ebr_corr”, “H_bowen_corr”, “G”,

“NETRAD?? , MWS?’ , (LRH?? , (CTA’?

. Calibrate LE, ET and H by adding a conversion rate to each of “LE_ebr_corr”,

“LE_bowen _corr”, “ET _ebr_corr”, “ET _bowen _corr”, “H_ebr_corr” and “H_bowen_corr”
i.e dividing each by 28.94. The resulting columns will have a suffix (mm)

Order columns following the below criteria

(a) Columns coming from the filtered sheet i.e Date, Site Id, Year, Month,
Day, Climate, Vegetation, Latitude, Longitude, Elevation(m)

(b) Weather columns i.e WS, RH, TA, NETRAD, SW_IN followed by their
lags i.c WS-1, WS-2,.. WS-5, RH-1, RH-2,.. RH-5, etc..

(¢) Energy balanced columns i.e G, H, H_ebr_corr, H_ebr_corr(mm), H_bowen_corr,
H_bowen_corr(mm), LE, LE_ebr_corr, LE_ebr_corr(mm), LE_bowen_corr,
LE_bowen_corr(mm), ET _ebr, ET _ebr_corr, ET_ebr_corr(mm), ET_bowen_corr,
ET _bowen_corr(mm)

(d) Reference ET columns i.e ETo, ETr, ETof_ebr, ETof bowen, ETrf_ebr,
ETrf_bowen

(e) EEflux columns if exists i.e EEflux Albedo, EEflux NDVI, EEflux LST,
EEflux ET, Cloud Cover, EEflux ETo, EEflux ETr

Export the processed EBR data set for each site to path
FLUX_EBR_BOWEN_PROCESSED _PATH with the site id suffixed
with “ebr_daily.csv” for instance: US-Var_ebr_daily.csv

Repeat the same procedure for the Bowens data by loading the data from
FLUX _Bowen PATH and setting isEBR to false

Export the processed Bowen data set for each site to path

FLUX_EBR BOWEN_PROCESSED _PATH with the site id suffixed
with “bowen_daily.csv” for instance: US-Var_bowen_daily.csv
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Algorithm 6 Library Correction Processing

Data:

Load EBR corrected daily data from FLUX_EBR _PATH into df _ebr
Load Bowen daily corrected data from FLUX_BOWEN_PATH into
df _bowen

Load sites data from sheet filtered sites_encoded_all into sites_df

1: Get unique sites from df _hourly
2: for site in unique_sites do

3:  Binary encode “Site_Id”, “Vegetation”, “Climate”, & “Month”

4 CORRECTED_COLUMNS = [“LE_corr”, “H _corr”, “ET _corr”]

5. for col in CORRECTED_COLUMNS do

6: if df ebr then

7: col < col + “_ebr”

8: else if df bowen then

9: col + col + “_bowen”

10: end if

11:  end for

12: Compute “Year”, “Month”, & “Day” from “Date” column

13 Set MAIN VARS = [“NETRAD”,“H” “LE”, “G”,“RH”, “W S” “T' A”]

14: if MAIN_V ARS not exists then

15: continue

16:  end if

17: Go to Algorithm [8]

18:  Set CALIBRATE_VARS = [“LE_ebr_corr”, “LE_bowen _corr”,
“ET _ebr_corr”, “ET _bowen_corr”, “H_ebr_corr”, “H_ebr_corr”|

19:  for col in CALIBRATE_V ARS do

20: LE _bowen_corr(mm) = LE _bowen_corr | 28.94

21:  end for

22:  Sort columns

23:  Export df _ebr into FLUX_EBR_PROCESSED_DAILY_PATH

24:  Export df bowen into FLUX_EBR_PROCESSED DAILY _PATH

25: end for

6.2.6 Data Aggregation

This section focuses on merging the EBR and Bowen correction data sets into
one excel for each site

1. Get a list of unique sites from sheet “filtered_sites_encoded_ all.xlsx”

2. Loop over each site and load the EBR data set into one data set and its
respective Bowen into another data set
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3. Perform an outer merge on both data sets on columns “Site Id” and “Date”
which are unique per row

4. Export each data set to path FLUX_COMBINED _PATH with the site
name suffixed with “_corrected_daily” for instance: US-Var_corrected_daily.csv

Algorithm 7 Library Correction Aggregation
Data:

Load corrected data from FLUX_EBR_PROCESSED DAILY _PATH
into df _daily
Load sites data from sheet filtered sites_encoded_all into sites_df
1: Get unique sites from sites_df
2: for df _site in unique_sites do
3:  for df _site in df _daily do
FILENAME_SUFFIX <+ df_site name
if FILE NAME_SUFFIX ends “ebr” then
Add df _site to df _ebr
else
Add df _site to df _bowen
end if
10: Outer Merge df _ebr & df bowen on Siteld & Date into df _daily_agg
11: Export df daily_agg to FLUX_COMBINED PATH
12:  end for
13: end for

6.2.7 Reference Evaporation Calculation

This section focuses on computing ET, and ET, for all the data sets as described
in the section for the manual data correction generation, it only differs in the
path we import the data from i.e FLUX_COMBINED_PATH and to the
path we export the final data set to i.e FLUX_DAILY_PATH with the name

“library_corrected_daily.csv”

6.2.8 EEflux Joining with Tower Data

This section focuses on merging the EEFlux data with the tower data as described
in the section for the manual data correction generation, it only differs in the path
we import the data from i.e FLUX_DAILY _PATH

6.3 Data Description

The final generated data sets are six data sets as such:
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6.3.1 Data sets

1.

Manual Bowen Daily Data set: This is a daily data set obtained by applying
the manual Bowen correction method on our daily data set. It contains all
the below fields excluding columns with the suffix “ebr” and EEflux columns
other than Albedo, NDVI & LST.

Library Bowen Daily Data set: This is a daily data set obtained by applying
the library Bowen correction method on our daily data set. It contains all
the below fields excluding columns with the suffix “ebr” and EEflux columns

other than Albedo, NDVI & LST.

Library Ebr Daily Data set: This is a daily data set obtained by applying
the library EBR correction method on our daily data set. It contains all the

below fields excluding columns with the suffix “bowen” and EEflux columns
other than Albedo, NDVI & LST.

Manual Bowen Joint Data set: This is a daily data merged with EEflux
data set obtained by applying the manual Bowen correction method on our
daily data set and merging it with EEflux fields. It contains all the below
fields excluding columns with the suffix “ebr”.

Library Bowen Daily Data set: This is a daily data merged with EEflux
data set obtained by applying the library Bowen correction method on our
daily data set and merging it with EEflux fields. It contains all the below
fields excluding columns with the suffix “ebr”.

Library Ebr Daily Data set: This is a daily data merged with EEflux data
set obtained by applying the library Ebr correction method on our daily
data set and merging it with EEflux fields. It contains all the below fields
excluding columns with the suffix “bowen”.

6.3.2 Data Legend

Each data set consists of all or some of the below fields:

Date: The daily date at which the data was recorded at with the format
“MM/dd/YY”

Siteld: A unique identifier for each site
Year: The year at which the data was recorded
Month: The month at which the data was recorded

Day: The day at which the data was recorded
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FElevation: The elevation in meters
Latitude: The latitude
Longitude: The longitude

Climate: If available one of 5 values (Cfa, Csa, Csb, Dsa, Cwa) or Other
for sites coming from Euroflux

Vegetation(IGBP): Values are one of which (CRO, GRA, ENF, CSH,
EBF, DBF, WET, WSA)

WS: Wind speed

RH: Relative humidity

T A: Air temperature

NETRAD: Net radiation

SW _IN: Incoming Shortwave Solar Radiation

G: Ground/Soil flux

H: Sensible heat flux

H _ebr_corr: The corrected sensible heat flux using EBR method

H bowen_corr: The corrected sensible heat flux using Bowen method
LE: Latent energy flux

LFE ebr_corr: The corrected Latent energy flux using EBR method
LE _ebr_corr(mm): The calibrated LE_ebr_corr

LFE bowen_corr: The corrected Latent energy flux using EBR method
LE bowen_corr(mm): The calibrated LE _bowen_corr

ET _ebr: The evaportanspiration calculated from LE and TA using EBR
method

ET _ebr_corr: The corrected evaportanspiration calculated from LE and TA
using EBR method

ET ebr_corr(mm): The calibrated ET _ebr_corr

ET bowen: The evaportanspiration calculated from LE and TA using Bowen
method
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o LT _bowen_corr: The corrected evaportanspiration calculated from LE and
TA using Bowen method

e ET bowen_corr(mm): The calibrated ET _bowen_corr
o gridM ET_ETr: The gridMET alfalfa reference ET (nearest cell)
e E'T,.: The alfafa reference evaportanspiration

o ET.r bowen: The fraction reference evaportanspiration for ET"_bowen_corr,
i.e. ET bowen_corr |ET,

o E'T,.r_ebr: The fraction reference evaportanspiration for ET _ebr_corr, i.e. E'T _ebr_corr
/ ET,

e E'T,: The grass reference evaportanspiration

o E'T,r_bowen: The fraction reference evaportanspiration for ET _bowen_corr,
i.e. ET bowen_corr | ET,

o E'T,r_ebr: The fraction reference evaportanspiration for ET _ebr_corr, i.e. E'T _ebr_corr

| ET,

o FEfluxET: ET from EEflux which initially has the value of ET, if ET is
empty it is populated from the mean of the 8 neighboring pixels

o FFEfluxET,: The grass reference from the Climate Engine

o FFE fluxET,: The grass reference from the Climate Engine

o FFE fluxLST: Land Surface temperature from EEflux

o FEflurNDVI: NDVI from EEflux

o FE fluxAlbedo: Albedo from EEflux

e column_number: The site id, month, and vegetation columns are encoded
using binary encoding with a format of the column name followed by the

number of the encoding column, i.e Siteld_1

e column — number: This is a lag of the column name i.e RH — 1 is the first
lag of RH, RH — 2 is the second lag of RH

We thus denote the LE corrected by Real ET.
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6.3.3 Daily-Joint Mapping

Having two types of data sets. i.e daily and joint and as has been mentioned
above, the daily data set constitutes daily instances, and the joint data set con-
stitutes weekly instances. The joint data set contains EEflux ET that is not
available on our daily data set, we will further need to create a mapping between
the daily and joint data sets as follows:

1

2

Split the data set into a training and testing data set
Save the testing data set
Perform modeling

Add the predicted ET to the testing data set and refer to this data set to
be the daily data set

Merge the daily data set with the weekly data set (the data set having
EEflux ET) on the unique fields

e Site Id

e Date

e Real ET
Export the final data set which contains the real ET predicted ET, and

EEflux ET that is a subset of the daily data set that is mapped to the joint
data set.

6.3.4 Choice of Data set

To decide on which data sets we should be using, we have performed several
experimental evaluations and assessed the performance of each as such:

e Compare Bowen versus EBR Correction: Models trained on the Library

Bowen daily data set yielded better results than those trained on the Library
EBR daily data set by an increase of 77.37% in the model’s accuracy.

e Compare Library Bowen Correction versus Manual Bowen: Models trained

on the Manual Bowen daily data set yielded better results than those trained
on the Library Bowen daily data set by an increase of 4.8% in the model’s
accuracy.

Thus, our chosen data set is the Manual Bowen Daily data set which was the
best amongst them all.
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6.3.5 Final Data set

Each final data set is divided into input features and an output variable as such.
The Manual Data set consists of 10,911 rows.

e Input: Lags are generated for each of the following input features as been
defined by auto-correlation plots by adding a suffix of “-lag number”. For
instance “RH-1" represents the first lag.

— Wind speed (WS)

— Air temperature (TA)

— Relative humidity (RH)

— Net radiation (EEflux NDVI)

— EEflux Albedo

— Land Surface Temperature (EEflux LST)

— Vegetation Encoded: The vegetation is encoded using binary encoding
with a format of the column name followed by the number of the
encoding column, i.e Vegetation_1, Vegeation_2, etc...

— Site ID Encoded: The site ID is encoded using the same strategy as
the vegetation.

— Month Encoded: The month is encoded using the same strategy as
the vegetation.

— EEflux ET: Modeled ET coming from EEflux.

e QOutput: real ET: The calibrated and corrected real ET using Bowen’s
method.
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Chapter 7

Feature Engineering

The feature engineering procedure involves studying the distribution of our fea-
tures, performing exploratory analysis techniques, and applying different data
transformations.

7.1 Time-series Analysis

Our problem is a time-series problem since it exhibits the data component. We
will perform time-series analysis to ensure our data is stationary and further can

be modeled.

7.1.1 Stationary Study

A time series is stationary if it does not exhibit any trend or seasonal effect.
Summary statistics should be consistent among observations for a problem to be
predictable. Several approaches exist for checking if a time series is stationary or
not, some of which are as follows:

e Summary statistics i.e (mean, variance) should be consistent over time

e Statistical tests like Augmented Dickey-Fuller that identifies if the data is
stationary or not based on hypothesis tests.

Augmented Dickey-Fuller (ADF) test is a statistical test known as a unit root
test. The instinct behind a unit root test is that it decides how firmly a time series
is characterized by a trend. It is used to identify if a time series is stationary or
not (Brownlee, 2016). The following are the hypotheses of the test:

e Null Hypothesis (HO): If failed to be rejected, it means that the time series
has a unit root, thus it is non-stationary. It has some time-dependent
structure.
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e Alternate Hypothesis (H1): The null hypothesis is rejected; it means that
the time series does not have a unit root, thus it is stationary. It does not
have time-dependent structure.

We have applied ADF test to our data which yielded the results in Figure [7.1].

ADF Statistic: -15.047017
p-value: 0.000000

Lags used: 23

Critical Values:

1%: -3.960

5%: -3.411

10%: -3.127

Figure 7.1: ADF Results

Figure [7.1] shows that the test statistics i.e (-15.04) is lower than all the critical
values and the p-value < 0.05 meaning we reject the null hypothesis (HO) and
thus the data is stationary.

7.1.2 White-Noise Study

White noise is considered an essential concept in time series prediction. A time
series is a white noise if its variables are identically distributed and independent
with a mean of zero. If a series is a white noise then it resembles a sequence of
random numbers and thus cannot be predicted.

ljung_box_test is used to test if a white noise exists or not. The following are
the hypotheses of the test:

e HO: The data are independently distributed (i.e. the correlations in the
population from which the sample is taken are 0 so that any observed
correlations in the data result from the randomness of the sampling process)

e H1: The data are not independently distributed; they exhibit serial corre-
lation

Conditions to accept /refute the null hypothesis:

e p-value <= 0.05: reject the null hypothesis in favor for the alternative
hypothesis

e p-value > 0.05: fail to reject the null hypothesis.

Given that the test in Figure [7.2] shows that all p-values are less than 0.05,
the time series doesn’t exhibit white noise.
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all p-values for 1ljung box <= 0.05
all p-values for box pierce <= 0.05

Figure 7.2: ljung Box Results

7.1.3 Random Walk Study

A time series is a random walk if one of the following is observed:

e The time series shows a strong temporal dependence that decays linearly
or in a similar pattern.

e The time series is non-stationary and making it stationary shows no learn-
able structure in the data.

We generate auto-correlation plots to study the relationship between lags. We
do that for each input and output feature in Section [7.3.1].

Given the above, the time series doesn’t exhibit a random walk since auto-
correlation plots i.e (for TA, RH, etc..) show a significant relationship between
the lagged observations.

7.2 Exploratory Data Analysis

In this section, we will analyze our data set by studying the distribution of each
feature, generating some summary statistics, and visualizing some plots. We use
the following tools to generate our interpretations:

e pandas-profiling
e facets
e fitter

e matplotlib

7.2.1 Summary Statistics

In this section, the tools used to generate the below are facets and pandas-
profiling.

We will first start with inspecting the number of rows in our data set.
As shown in Table [7.2.1], the number of records in the data set is 10,916.
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https://github.com/pandas-profiling/pandas-profiling
https://github.com/PAIR-code/facets
https://fitter.readthedocs.io/en/latest/_modules/fitter/fitter.html
https://matplotlib.org/
https://github.com/PAIR-code/facets
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling

Number of Observations 10916
Total Missing (%) 0.00%
Total size in memory 4.3 MiB
Average record size in memory | 416.0 B

7.2.2 Data Sources Distribution

In this section, the tool used to generate the below is matplotlib.

We will then visualize how many sites there are for Ameriflux and Euroflux.

Euroflux

Ameriflux

Figure 7.3: Data Sources of Sites

As per Figure [7.3], we note that 84.8% of the sites come from Ameriflux and
only 15.2% come from Euroflux.

We will then visualize the number of rows for each site
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https://matplotlib.org/

Distribution of Sites

Figure 7.4: Distribution of Sites
As per Figure [7.4], the top five representative sites (sites having the highest
number of rows) are as such:
e US-Snd: This is a site pertaining to Ameriflux. It consists of 1,769 rows.

e US-Tw3: This is a site pertaining to Ameriflux. It consists of 1,055 rows.

US-Ced: This is a site pertaining to Ameriflux. It consists of 860 rows.

DE-KIi: This is a site pertaining to Euroflux. It consists of 811 rows.

US-Skr: This is a site pertaining to Ameriflux. It consists of 674 rows.

7.2.3 Climate Distribution

In this section, the tool used to generate the below is matplotlib.

We will then plot the distribution of all the climates.

As per Figure [7.5a], we note that the highest number of rows are for climates
Cfa and Csa (almost 3,000 rows). Climates Cwa, Dsa, and Csb have a compara-
ble number of rows (in the hundreds).

Figure [7.5] shows the density plots for the target variable for each climate.
We note that climates Dsa and Csb show a similar distribution of ET values
ranging from 0 - 5 mm and no rare values are included. However, climates (Csa,
Cfa, Cwa, and Other) somehow show a similar distribution of ET values ranging
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3645.0

75
ET(mm)
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Figure 7.5: Distribution of Climates

from 0 - 12.5 mm, but having rare values.

As been previously noted in Figure [7.4], the top five sites with their respective
climates are as follows:

e US-Snd and US-Tw3: These sites have a Csa climate (Mediterranean: mild
with dry, hot summer).

e US-Ced: This site has a Cfa climate (Humid Subtropical: mild with no dry
season, hot summer).

e DE-KIi: This site has an unknown climate labeled as Other, since Euroflux
does not indicate the climate of each site, we further labeled them as Other.

e US-Skr: This site has a Cwa Climate (Humid Subtropical: dry winter, hot
summer)

Thus, we note that the top three sites are represented by the top two climates
(Csa and Cfa).

7.2.4 Seasonal Distribution

In this section, the tool used to generate the below is matplotlib.

Figure [7.6] shows the density distribution of the target variable ET for the
spring, summer, and winter seasons. We note that the summer and spring seasons
include rare values as they have ET values greater than 5 mm unlike the winter
season. Both seasons show comparable density distributions, however, the winter
season shows a different density distribution with a peak value at (2.5 mm).
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Figure 7.6: Seasons Distribution

7.2.5 Distribution of Input Features

In this section, the tool used to generate the below is fitter.

We will further check the distribution for each of our input features on one of the
most representative sites in our data: US-Ced. We use a package that helps in
identifying the underlying data distribution by comparing the histogram of the
given data with a probability density function of a known distribution i.e normal.
This package is available under fitter. It consists of 80 different distributions from
Scipy and also a list of the common ones to try out on the data, some of which
are as such: “chi2”, “exponential”, “exponpower”, “uniform”, “log”, etc... It
returns the best fit according to the distribution having the least sum of squares
error. It also supports plotting the results to check which distributions happen
to be the best.

Different Fit Distributions for RH Different Fit Di for TA Different Fit Distributions for WS

o0l
00 05 10 15 20 25 30 35

(c) WS

Figure 7.7: Distributions of RH, TA & WS

e The best fit for RH is “norm”
e The best fit for TA is “exponpow”

e The best fit for WS is “chi2”
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Figure 7.8: Distributions of EEflux Albedo, NDVI & LST

e The best fit for Albedo is “powerlognorm”
e The best fit for NDVI is “cauchy”

e The best fit for LST is “lognorm”

Since all our input features do not have the same distribution, we will use a
min-max scaler to scale all the input features with a scale between 0 and 1.

7.2.6 Distribution of Output Variable

In this section, the tool used to generate the below is fitter.
The best fit for ET is “powerlognorm”.

Different Fit Distributions for LE_bowen_corr(mm)
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Figure 7.9: Distribution of LE

7.2.7 Seasonal Trends of TA and RH alongside ET

In this section, the tool used to generate the below is matplotlib

In Figure [7.10], in the first row, the z-axis represents TA in degrees Celsius
versus ET in mm and the y-axis represents the number of data points.

In the second row, the z-axis represents RH in (%) versus ET in mm and the
y-axis represents the number of data points. The first column shows the data for
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Figure 7.10: Ameriflux Site: US-Ced

the winter season and the second columns shows the data for the summer season.

We are studying how TA, RH relate to ET as the seasons change. As shown
in Figure [7.10], TA and ET are directly proportional in the summer (high TA
implies high ET) and winter (Low TA implies low ET') seasons. This aligns with
the observations in Chapter [9] and Chapter [16].

RH and ET are inversely proportional in the summer (low RH implies high ET)
and winter (high RH implies low ET) seasons. This also aligns with the observa-

tions in Chapter [9] and Chapter [16].

We now observe another top representing site from Euroflux (DE-Kli) We note
that in Figure [7.11], the same observations were shown as in Figure [7.10].
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Figure 7.11: Euroflux Site: DE-KIi

7.3 Data Transformations

Several data transformations will be applied to our data set. Since our data set
contains a date component representing a temporal structure, we will create lags
for a set of input columns so that we get rid of the date column in our modeling
and use the lags to symbolize the temporal structure. To create lags, we will
need to perform auto-correlation plots for each input feature. Moreover, we also
binary encode our categorical columns since our models do not work well with
categorical variables.

7.3.1 Autocorrelation

Correlation is a methodology that is used to quantify the strength and the type
of relationship between an observation and its lag(s), this is also called auto-
correlation. A correlation value ranges between -1 and 1. A value close to zero
indicates a weak correlation, whereas a value closer to -1 or 1 indicates a strong
negative or a strong positive correlation respectively.

We will be studying the correlation between an observation and its lags to select
the best number of lags for each input feature. This study is performed using a
variety of plots.

Lag Scatter Plots

Time series modeling assumes a relationship between an observation and the
previous observation. Previous observations in a time series are called lags, with
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the observation at the previous time step called lag=1, the observation at two-
time steps ago lag=2, and so on. A useful type of plot to explore the relationship
between each observation and a lag of that observation is called the scatter plot.
Pandas have a built-in function for exactly this called the lag plot.

It plots the observation at time t on the x-axis and the lag=1 observation (t-1)
on the y-axis.

e If the points cluster along a diagonal line from the bottom-left to the top-
right of the plot, it suggests a positive correlation relationship

e If the points cluster along a diagonal line from the top-left to the bottom-
right, it suggests a negative correlation relationship

We will plot each input feature as follows:

Lags for TA

y(t+1)

ylt+1)

Figure 7.12: Scatter Plots for TA and RH

According to the above scatter plots, we notice that we have a positive corre-
lation for the following features, as the scatter plot starts from the bottom left
reaching the top right forming a diagonal shape which is an indication of a strong
positive correlation:

e TA and its first lags
e EEflux LST and its first lags
e RH and its first lags

Other input fields do not show such an obvious pattern.
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Figure 7.13: Scatter Plots for WS and LST
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Figure 7.14: Scatter Plots for Albedo and NDVI

65



Autocorrelation Plots

We also represent visually this correlation using autocorrelation plots to better
understand the relationship between an observation and its lag. The stronger the
correlation between the output variable and a specific lagged variable, the more
weight that autoregression model can put on that variable when modeling.

The most top features showing high and a positive correlation with their lags are
TA, EEflux LST, and RH.
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Figure 7.15: Autocorrelation Plot

Figure [7.15] shows on the x-axis the number of lags varying from no lags
up to 1000+ lags and on the y-axis, it shows the auto-correlation as a value rang-
ing from -1 to 1 representing a negative correlation and a positive correlation
respectively. It shows the autocorrelation plot of TA and we note that increasing
the numbers of lags to a certain extent will decrease the correlation value. The
highest correlation value was 0.25 which aided in choosing the number of lags for
TA to be 5. We repeat this figure for all our input features and we note that the
best number of lags for each input feature is as such:

e TA: 5 lags

EEflux LST: 5 lags

RH: 3 lags

WS: 2 lags

EEflux Albedo: 2 lags

EEflux NDVI: 2 lags
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7.3.2 Lag Generation

We will generate lags for each input feature by varying
LAG_FOR_.COLUMNS as per the number of lags required for each input feature
by using the autocorrelation analysis above.

Algorithm 8 Lag Generation Algorithm

Data: Load data set into df
LAG _FOR.COLUMNS = [“H_ebr_corr”, “H_bowen_corr”, “H”  “G”,
“NETRAD”, “WS”, “RH”, “TA”, “SW_IN", “EEflux Albedo”, “EEflux
NDVI”, “EEFlux LST”|

Set LAGS_.COUNT =5
for col in LAG_.FOR.COLUMNS do
if col in df.columns then
for lag_-num in LAGS_COUNT do
lag-name = col + "-" + lag_-num
df [lag_-name] <« shift(df[col]) by lag-num
end for
end if
return df
end for
: return df

—_ =
— O

The above algorithm will yield the following output: “H-17, ‘H-2”,.., “H-5" rep-
resenting the 5 lags of “H”.

7.3.3 Data Encoding

We will be converting our categorical columns such as “Site Id”, “Month”, “Veg-
etation” and “Climate” into a numeric binary representation using a binary en-
coder. This technique works as such:

1. Each category is encoded as an ordinal representation.
2. Each ordinal/integer is converted into binary representation.
3. Each binary digit is split into a separate column with the value 0 or 1.

The reason for using this encoding is that it will result in fewer dimensions than
a regular one-hot encoding which results in having a number of columns equal to
the number of unique categories per column. Hence, this will increase our input
feature dimensions drastically.

We use a binary encoding library to achieve that, it is installed by issuing:
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pip install category_encoders
This will result in having variants for each column as such: “Site Id”, “Site Id_0”,
“Site Id_17, etc.. The number of columns produced for each will vary depending
on the unique number of available categories per column.

7.4 Unsupervised Clustering Analysis

Several clustering algorithms are performed to study different patterns and visual-
izations of the output feature in our regression data set(s). Two main approaches
are done: either data is being clustered automatically by using a clustering algo-
rithm (Kmeans, Dendrograms) or by subsetting the data based on a range or a
category for a set of input features.

7.4.1 Clustering by Kmeans and Dendrograms
KMeans

An unsupervised machine learning clustering algorithm that works by initially
selecting random cluster centers (centroids) and then assigning each data point
to its closest cluster by computing its distance from each centroid. The centroid
will be updated by then computing the average of the assigned points and the
procedure will be repeated until no further cluster update is done. This algorithm
requires to specify the number of clusters, to do so for our problem the Elbow
Method is used. Elbow method is a method that helps in selecting the best
number of clusters which depends on computing, Within cluster Sum of Squares
(WCSS), it is defined as the sum of the squared distance between each member
of the cluster and its centroid.
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Figure 7.16: Elbow Method

In this figure, the elbow method shows the best k£ is when k=2, and k=3 so
we will experiment with both.
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Agglomerative Hierarchical Clustering

Is a clustering algorithm referred to as Dendrograms which works by assigning
each point to an individual cluster and then merging the closest pair of clusters
and repeating this step until only a single cluster is left? This merging procedure
depends on calculating the similarity between data points by computing the dis-
tance between the centroids of these clusters in which the points having the least
distance are referred to as similar points and thus we can merge them.

We perform several clustering experiments by varying the input features we fed
to our algorithm.

e Clustering on one weather column only at a time (WS, RH, TA) and we
perform that for k = 2 and k = 3.

e Clustering on two columns (WS RH, WS TA, RH TA) and we perform
that for k = 2 and k = 3.

e Clustering on all three columns (WS, RH, TA) and we perform that for k
=2and k = 3.

e Clustering on different climates encoded columns for k = 4.

The choice of k was based on running the elbow method on KMeans, finding
the best cut, and trying with different k values. The aim of clustering by Kmeans
or Dendrograms is to identify whether certain WS, TA, and RH values would yield
better real ET predictions, rather than modeling on the whole data set with all
ranges of WS, TA, and RH values.

7.4.2 Clustering by Subsetting on Climates

We divided our data into six different data sets (Cfa, Csa, Cwa, Dsa, Csb, and
Other) by subsetting on the climate column and then model on each data set and
experiment with when we have only one range or one climate at a time. This
study is performed to indicate if we’'d gain in performance when modeling on a
certain climate versus when modeling on a union of climates.
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7.5 Seasonality Study

After performing several clustering techniques, we are concerned with identifying
if our data is separable by air temperature on a certain cluster/season. We thus
perform a statistical and modeling assessment on clustering by air temperature
(TA) using Kmeans with £=3. We have tried both Kmeans and Dendrograms,
however, upon clustering with Dendrograms the data did not show a clear sepa-
ration of seasons.

For our choice of k we have used the elbow method as shown in Figure [7.16],
where it shows that the best k£ is k = 2 and £ = 3. We have tested on k=2,
however, no clear separation of seasons was observed. Thus we have chosen k=3
as it clearly shows one season per cluster.

We note that clustering by TA has shown a clear clustering separability por-
traying seasonal representation of each cluster.

As shown in Figure [7.17], it is noted that each figure shows a different in-
terval for air temperature where each interval represents a separate season. Also
the centroid (the center of a cluster) that corresponds to each cluster/season is
as such:

e Cluster 0 - Summer: 25.64837027
e Cluster 1 - Winter: 8.09033212
e Cluster 2 - Spring: 17.69155114

Each cluster centroid is comparable to the median of air temperature as shown
in Table [7.2].

Cluster 0 represents summer, cluster 1 represents winter, and cluster 2 represents
spring. We have performed modeling experiments on each cluster separately and
assess their performance.

As been shown in Table [7.1], that the data is clearly separable into 3 different
seasons i.e summer, winter, and spring seasons respectively.

Cluster Season Data Size

0 Summer 5,504
1 Winter 3,103
2 Spring 5,014

Table 7.1: Cluster by Season
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Season ~ Median TA  Minimum TA Maximum TA Common Range

Summer 25.093 C 21.67 C 35.7 C 21.91 C - 26.09 C
Spring 1791 C 12.89 C 21.66 C 15.36 C - 21.05 C
Winter 8.92 C -9.68 C 12.88 C 574 C-1284 C

Table 7.2: Seasons Statistics

As shown in Table [7.2], it is noted that the clusters are clearly separable and
this is shown through the distribution of the TA values across the three clusters.

e Cluster 0 has TA values between 21.91 C to 26.09 C which clearly signifies
a summer season.

e Cluster 1 has TA values between 5.74 C t012.84 C which signifies a winter
season.

e Cluster 0 has TA values between 15.36 C to 21.05 C which signifies a spring
season.

Furthermore, we plot the distribution of TA for the whole data. Figure [7.17]
shows the density plot for TA across all the clusters ranging from -9 to 38

Density Plot for TA
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Figure 7.17: Density Plot of TA

We further zoom in on each cluster and observe the distribution of each season
alone.
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Figure 7.18: Density Plot of TA Clusters

After inspecting the data and validating that when clustering by TA, the clus-
ters are clearly separable into different seasons, we will further perform modeling
on each cluster alone and assess the results in Chapter [13], and Chapter [15]
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Chapter 8

Utility-Based Regression and
Minority Up-Sampling

Our usage of the UBR Metrics is inspired by the authors in the paper (Ribeiro
& Torgo, 2008) where they developed the UBR framework which allows evalu-
ating regression models in a cost-sensitive manner leading us to transform our
regression problem into a classification-like problem by classifying our output
variable as rare versus not rare. The UBR module often estimates the utility of
any regression model by attaining a balance between cost and benefits from the
obtained predictions by defining a relevance function, rare values, and a relevance
function as follows:

8.1 Relevance Function

Relevance Function is domain-dependent and is used to map each target value
to a spectrum of 0 to 1 values as 0 being not relevant and 1 being relevant. The
most relevant values are also considered rare ie. they do not occur a lot in the
data set. This is used to quantify the benefit of a target variable values given
that they are not uniform across the variable’s domain.

e We separated the data by site Id

e For each site Id, we calculated the percentage of data lying between the
following ranges: [1,2], [3,4], [5,6]...[14,15].

e We check the ranges that have only less than 10% data falling into them
across all sites.

e We define all real ET values falling between these ranges as rare.

e All values falling from ranges [5,15] are considered rare, with 15 being the
rarest.
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8.2 Defining Rarity

Having our target variable bounded between 1 - 15 mm, an experiment is con-
ducted to classify the range of rare versus not rare as follows:

e Data is being split by Site Id

e For each Site Id, the percentage of data lying in ranges [1,2], [3,4], [5,6]....[14,15]
is computed

e Check the ranges having less than 10% data falling into them

e Classify ranges with less than 10% data as being rare. Others are not rare.
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Figure 8.1: Density Plot

All values falling from ranges [5,15] are considered rare, with 15 being the rarest.

Figure [8.1] shows the density plot of LE values ranging between 1 and 15
mm and most data points fall in the lower range.

8.3 Relevance Matrix and Relevance Threshold

Torgo and Rebeiro supported two methods for defining rare values as follows:

e Range: In this type, the user has to define a set of reference points known
as the relevance matrix for him to assess relevance. With [1-4] representing
being more represented unlike range [5-15]. The user will also have to
supply a relevance threshold that ranges from 0-1. We set this value to 0.1
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which is used to classify all target values under it as not rare and all the
values above this threshold to be as rare.

1 00
Relevance Matrizx = | 4 0 0 (8.1)
15 1 0

e Extremes: In this type, an automated process is used to set the range of
rare values depending on the box cox plot graph of the target variable (real
ET) allocating higher importance to the least represented target variable
values.

relevance
\
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0.0 ] ——————
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2 Rl 6 8 10 12 14
LE_bowen_corr_mm

Figure 8.2: Rare versus Not Rare

Figure [8.2] represents the relevance values of the points in the data set. As
noticed, the relevance values increase as the rarity increases.

8.4 SmoGn

Precision and recall which are acquired from the UBR framework serve something
other than estimating the model’s accuracy. Precision measures the percentage
of relevant results whereas recall measures the percentage of relevant (rare) re-
sults that have been correctly classified by our model. We have applied the work
of (Branco, Torgo, & Ribeiro, 2017) to obtain higher recall values. Authors in
(Branco et al., 2017) propose a SmoGn algorithm that tackles the imbalanced
data for any regression problem. We are concerned with the rare values (high
values) that are poorly represented in our data set. We will thus use SmoGn to
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generate more instances of these values for the model to learn and generalize bet-
ter and to indicate better decisions for the farmer. SmoGn consists of a random
under-sampling technique and two over-sampling ones i.e SmoteR and Gaussian
Noise. SmoGn will produce more synthetic information utilizing SmoteR when
the chose seed and the K-closest neighbors are close in distance and it utilizes
Gaussian Noise when they are not. Moreover, SmoGn also has the option to
down-sample the non-rate data samples, but we will rather focus only on over-
sampling the rare data. This module offers the user the ability to choose the
oversampling percentage, the k for the k-nearest neighbor, and the distance type
(Manhattan, Euclidean, etc...). We also note that we are applying the SmoGn
up-sampling technique on the training data only, not on the validation and test-
ing.

8.5 Utility Based Regression and SmoGn Hyper-
parameters
Several hyper-parameters needs to be tuned when incoporating UBR and SmoGn:
e rel_method: relevance method - range or extremes.

e extr_type: extreme type - high or low (meaning if rare values are high or
low)

e rell: relevance matrix (specified in the study)
e thr_rel: threshold for relevance
e k: K for K-nearest neighbor

e epl: boolean value controlling the possibility of having a repetition of ex-
amples when performing under-sampling by selecting among the “normal”
examples.

e dist: distance function used (Manhattan, Euclidean, etc..)

e cperc: A list containing the percentage(s) of under-or/and over-sampling
to apply to each “class”.

p: A number indicating the value of p if the “p-norm” distance is chosen.

8.6 Customised K-Fold Cross-Validation

We have incorporated K-Fold cross-validation by using a custom split method i.e
we split by site to ensure having the site in each data set.
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8.6.1 K-Fold Cross Validation

Ordinarily in an Al cycle, information is partitioned into training and testing
sets; the training set is then used to train the model and the test set is utilized to
assess the presence of a model. Be that as it may, this methodology may prompt
different issues. In more straightforward words, a change issue alludes to the
situation where our precision acquired on one test is different to exactness gotten
on another test set utilizing a similar calculation.

The solution for this issue is to utilize K-Fold Cross-Validation for execution
assessment where K is any number. We partition the information into K folds.
Out of the K folds, K-1 sets are utilized for training while the leftover set is
utilized for testing. The calculation is trained and tried K occasions, each time
another set is utilized as a testing set while remaining sets are utilized for train-
ing. Finally, the performance of the model is assessed by averaging the scores
across all folds depending on a pre-defined loss.

We will be using 10-fold cross-validation. The data is divided into 10 sets.
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Figure 8.3: KFold Cross Validation

Figure [8.3] portrays how the process of k-fold cross validation works for 5-folds.

We use a GridSearchCV for it uses a brute force mechanism on finding the
best hyperparameters for our model and data set. We have used a grid search
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with cross-validation. We give our grid search the following parameters:
e estimator: The model we are using

e param _grid: The parameters of our model and are displayed in the form of
a dictionary.

e cv: The cross-validation criteria we are using.

e scoring: The scoring function we need to keep track of from sklearn. met-
rics. In our case, we use the mean squared error.

e n_jobs: The number of CPU cores to use to train our model. We set this
to -1 to use all the available cores.

8.6.2 Split Method

The data set will be split first into 80% train and 20% test and then the train
data set is further split into 80% train and 20% validation with having each
site being included in each data set. We also performed another split where the
TRAIN_RATIO is set to 0.7 and TEST_RATIO is set to 0.3 and analyzed the

impact of each split on our model’s performance.

Algorithm 9 Split Data

1: Initialize X _train, X _test, X valid, Y _train, Y _test, Y valid
2: output_column = “LE_bowen_corr(mm)”

3: TRAIN_RATIO = 0.6, TEST_RATIO = 0.2
4: Get unique sites from df

5: for site in unique_sites do

6:  df_site = df|[site]

7. X =df_site

8:  Remove output_column from X

9: Y = df _site[output_column]

10:  train_index = count(X) * TRAIN_RATIO
11 test_index = count(X) * TEST_RATIO

12: X train < X[:train_index]

13: X _test < X|[train_index:test index]

14: X walid < Y|test_indez:]

15: Y _train < Y[itrain_indez]

16: Y _test < Y[train_index:test_index]

17: Y walid < Ytest_index:]
18: end for
19: return X _train, X test, X wvalid, Y train, Y _test, Y _valid
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In Algorithm [9], the data set will be split into training, validation, and
testing data sets based on the specified TRAIN_RATIO and TEST_RATIO. Each
data set will contain records for all the sites we have, in this way our model will
train on all the given sites and will better generalize.
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Chapter 9

Feature Selection

Feature Selection is a mechanism of reducing the number of features when de-
veloping a predictive model to improve the model’s performance and to decrease
the model’s computational cost. The main objective of using feature selection is
to identify the input features that are the most relevant to the target variable.
Different feature selection approaches will be applied under the scope of a super-
vised learning problem.

When applying feature selection our aim is as such:

e Reduce over-fitting: Less redundant data means less opportunity for redun-
dant data/noise-based decision making

e Reduce training time: Less knowledge ensures that the algorithm learn
faster

e Improve accuracy: Less uncertainty in the data means that the accuracy of
the model improves

9.1 Methods

A supervised feature selection method is divided into three groups:

e Intrinsic: It is an approach that attains an automatic feature selection
during the training process.

e Filter: It uses statistical techniques that evaluate how a subset of the input
features are related to the target variable. Some of them are as follows:

— Rank all input features by their score and select the top k input fea-
tures having the highest scores.
The scikit-learn provides this through Select KBest class.

— Convert all scores into a percentage metric and select the ones that
are higher than a minimum percentile.
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e Wrapper: It is a process that selects a subset of the input features based
on trying different subsets of the input features and reporting the ones that
perform best on a predictive model.

We have applied two different methods for feature selection. A filter-based
method based on correlation and mutual information and a wrapper method
based on feature importance.

The most common filter-based feature selection techniques for a regression predic-
tive modeling problem with numerical input and output features are Correlation
and Mutual Information Feature Selection:

9.1.1 Correlation Feature Selection

Correlation Feature Selection is a feature selection approach that measures how
two features change together. An example of such a correlation is Pearson’s cor-
relation coefficient that assumes a Gaussian Distribution and often reports if a
linear relationship exists.

The scikit-learn provides an implementation of this statistics through f_regression()
and it is used as an option in SelectKBest feature selection strategy in order to
select all the features showing a strong linear relationship.
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Figure 9.1: Correlation Feature Selection Bar Plot

Figure [9.1] shows the input features on the x-axis and the scores on the y-axis.
According to Figure [9.1], it is noticed that TA is the top contributing feature
followed by the lags of it, EEflux NDVI, EEflux LST, Month Encoded columns
(Month_1, Month_2) and EEflux Albedo.

9.1.2 Mutual Information Feature Selection

Mutual Information is computed between two features measuring the reduction
in uncertainty for one given a known value for the other.
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It is computed between each input feature and the target variable where it mea-
sures the dependency between two variables. MI ranges from 0 to 1, a low MI
value indicates no correlation/dependency and a high MI value indicates a high
dependency.

It relies on the non-parametric methods being based on entropy estimation and
often utilized in non-linear problems.

The scikit-learn library provides an implementation of mutual information for
feature selection through mutual _info_ regression() and it is used as an option
in SelectKBest feature selection strategy.
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Figure 9.2: Mutual Information Feature Selection Bar Plot

Figure [9.2] shows the input features on the x-axis and the scores on the y-axis.
A score always has a positive value bounded between 0 and 1. The higher the
score, the better contribution an input feature has on its target.

According to Figure [9.2], it is noticed that TA is the top contributing feature
followed by the lags of it, EEflux LST, EEflux NDVI, Month Encoded columns
(Month_1, Month_2), and EEflux Albedo.

This method shows almost the same results as that of the correlation feature
selection methods in terms of the most contributing input features.

9.1.3 Feature Importance

Feature Importance is a mechanism for assigning a score to the input features
depending on how useful each is at predicting the target feature. The computed
scores indicate the relative importance of a feature in the prediction process and
they are often useful to better understand our model, data, and even in input
feature reduction. Moreover, feature importance aid in interpreting our data and
can also be used to select and filter out irrelevant features. By using our best
model we have obtained the below figure.

As noticed in Figure [9.3], the top contributing features are TA, LST and NDVI.
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Figure 9.3: Feature Importance

9.2 Scenarios

The feature selection process starts by ranking all input features by Mutual In-
formation Score using a filter-based feature selection algorithm (SelectKBest),
then our model will be fed the input features one by one in order of the highest
Mutual Information Score.

We also employ Feature Selection methods to reduce the dimensionality of our
problem and strike tradeoffs between accuracy, speed of training, and least de-
manding in terms of input features resulting in the below scenarios:

9.2.1 Scenario A

Scenario A revolves around having a model with all the input features as in
without applying any feature selection method. The columns for this scenario
are Site Encoded, Month Encoded, Vegetation Encoded, TA + 5 Lags, NDVI +
5 lags, LST + 5 lags, Albedo + 5 lags, WS+ 5 lags, and RH + 5 lags.

9.2.2 Scenario B

Scenario B revolves around having a model that is economically inexpensive with
the least training time and least demanding in terms of input features. The
columns for this scenario are Site Encoded, Month Encoded, Vegetation Encoded,
TA, and 5 of its lags.

9.2.3 Scenario C

Scenario C revolves around having a model that is fed a certain number of features
less than the total number of features. The columns for this scenario are Month
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Encoded, Site Encoded, TA + 5 Lags, NDVI + 2 lags, LST + 5 lags, Albedo +
2 lags, WS+ 2 lags, and RH + 3 lags.

9.2.4 Scenario D

Scenario D revolves around having a model that is fed columns that have shown
to be the top contributing columns to our target variable according to SHAP and
as mentioned in Chapter [16]. The columns for this scenario are Ta + 5 Lags,
LST + 5 lags, and RH + 3 lags.

Name Input Combinations

Scenario A All Columns

Scenario B TA(5 lags)

Scenario C TA(5 lags) WS(2 lags)
RH(3 lags)
EEflux LST(5 lags)
EEflux NDVI(2 lags)
EEflux Albedo(2 lags)

Scenario D TA(5 lags) RH(3 lags)
EEflux LST(5 lags)

Table 9.1: Feature Selection Scenarios
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Chapter 10

Assessment and Evaluation
Metrics

We have used regression, correlation and agreement, utility-based regression, and
probabilistic model selection metrics for us to evaluate our models.

All error metrics are computed as per scikit-learn

10.1 Regression Metrics

We are quantifying how well our model is performing using different error metrics
and accuracy measures.

e Mean Squared Error(MSE): A metric that is mostly used for regression
problems. It measures the average of the squared difference between the
target variable and its predicted value. Having the squared behavior plays a
role in over-estimating how bad the model behaves and is often a preferable
metric given the fact that it is differentiable which helps in optimizing it
more.

MSE = lZ(y—g)Q (10.1)

n

where:
n = number of observations
y = array of the target variable values

e Root-Mean-Squared-Error(RMSE): A metric that is mostly used for regres-
sion problems. It is the square root of the MSE metric. It is preferable in
cases where large errors are undesired since it first squares the error before
applying the average.

RMSE =1\[=> (y—1)° (10.2)
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e Mean-Absolute-Error(MAE): A linear score metric that measures the ab-
solute difference between the target variable and its predicted value. It is
often more robust to outliers and doesn’t penalize errors as MSE.

1 .
MAE = EZ ly — 9| (10.3)

e Mean-Absolute-Percentage-Error(MAPE): A metric that measures the per-
centage of how bad the model performs. It is the percentage of MAE. The
least desirable value is 100% and the most desirable is 0%.

100 < ly — 3]
MAPE = — 10.4
w2y (10.4)

e Accuracy: A metric that measures the percentage of how well a model
performs. It is quite the opposite of MAPE. A high value close to 100
indicates a well-performing model. The least desirable value is 0% and the
most desirable is 100%.

Accuracy =1 — MAPE (10.5)

e Coefficient of Determination(R?): A metric that helps in comparing our
model’s performance to a base-line model, which is the mean of the data,
to indicate how well our model behaves in a scale-free matter scaling up to
1. A value close to 1 indicates that the model is performing well.

MSE(model)
MSE(baseline)

R*=1- (10.6)

e Adjusted R?: A metric that is similar to R?, it is often always less than R?
since it only detects improvements when there is a real increasing predictor
rather than improving on increasing terms while the model is not really
improving.

n—1

RR=1—-[—
[n—k:—l

a

) x (1 — R?)] (10.7)

where:
n = number of observations
k = number of independent variables
R?, = Adjusted R?
10.1.1 Negative Accuracy and R? Score

There exists cases where the Accuracy and R? metrics are negative.
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R? Score

The equation of R2 score as defined by scikit-learn is :

9 B residual sum of squares
R7score = 1—

total sum of squares (proportional to the variance of the data)

(10.8)

where:
Residual Sum of Squares (SSres) = Z (y; — fi)? (10.9)
Total Sum of Squares (SStot) = Z (y; — 9)* (10.10)

y; is the actual target variable

fi is the predicted target variable by the model
y is the mean target variable

R? score is defined as the proportion of variance explained by the fit. R-square
is negative if the fit is worse than just fitting a horizontal line. R? score is com-
puted on an assumption that the average line of the target variable is the worst
fit a model can have. SStot (total sum of squares) is the squared difference
between this average line and original data points. Similarly, SSres (residual
sum of squares) is the squared difference between the predicted data points (by
the model plane) and original data points. SSres/SStot yields a ratio of how
SSres is worse with respect to SStot. If our model can build a plane that is
comparatively good than the worst, then in most cases SSres < SStot. It even-
tually makes R? score as positive if you substitute it in the equation. But what
if SSres > Stot? This means that our regression plane is worse than the mean
line (SStot). In this case, the R? score will be negative.

MAPE

The equation of MAPE is as such:

'y

n -
=1

A MAPE > 100% means that the errors are much greater than the actual values.
For instance, if the actual target variable is a 1, and we predict a 3, the MAPE
is 200%. Hence, the accuracy, which is 100-MAPE will be negative.

~

Yi— Yy

x 100 (10.11)

Yi
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10.2 Correlation Metrics and Agreement Met-
rics

We are quantifying how well our model is performing using different correlation

measures.

e Pearson Correlation Coeflicient: It is used to quantify the strength of the
linear correlation between two entities x and y, where the value correlation

= 1 means a positive correlation and the value correlation = -1 means a
negative correlation. The least desirable value is a 0 and the most desirable
is a 1.

X (= — Jal) x (v — [3) 1012)

VI @ =173y [)?

e Spearman Correlation Coefficient: Similar to Pearson but does not mea-
sure the linear correlation, it measures the monotonic correlation between
two entities. “Monotonicity is “less restrictive” than that of a linear re-
lationship.” The least desirable value is a 0 and the most desirable is a
1.

Pearson =

65 d?

n3—n

Spearman =1 — (10.13)

where:
n = data size
d = difference between ranks

e Spatial Correlation Distance: It is the correlation distance between two
entities u and v. The least desirable value is a 0 and the most desirable is
al.

(u—1u) X (v—"7)

|lu —al|o|[v — |2

Distance =1 — (10.14)

e Normalized Mutual Information (NMI): A metric used to study the agree-
ment between two independent labels when the real ground truth is un-
known. It ranges between 0 (no mutual information) and 1 (perfect corre-
lation).
2x 1(Y,C)

[H(Y) + H(C)]

NMI(Y,C) = (10.15)

where:

Y = class labels

C = cluster labels

H() = entropy

I(Y, C) = mutual information between Y and C
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10.3 Probabilistic Model Selection Metrics

e Akaike Information Criterion (AIC): A model selection metric that quanti-
fies the quality of a model with respect to other models. A low AIC is an
indication of a better model. It is often prone to over-fitting when adding
more parameters which increase the model fitness this is why a penalty
term is added for the number of parameters in the model.

AIC =n xlog MSE + 2 X num_params (10.16)

where:
n = number of observations in the training data set
num_params = number of trainable models which is model dependent

e Bayesian Information Criterion (BIC): It is a metric for model selection,
similar to AIC, and can be applied on a finite number of models. Its basis
is on the likelihood function but adds a higher penalty.

BIC = n x log MSE + num_params x log(n) (10.17)

10.4 Utility-Based Regression Metrics

When using the utility-based module, we quantify our model’s performance ac-
cording to utility-based metrics as follows:

e Precision: In regression, Precision is a calculated metric that appraises the
rare/not rare predictions. The least desirable value is a 0 and the most
desirable is a 1 (Ribeiro & Torgo, 2008).

ZCP(??i)ZtE Oé(g]h y1>¢(?)2)
2 o(zts O01)

Precision = (10.18)

where:

= Ui 18 Ypredicted

— Yi 18 Yactual

— ¢ is the relevance function

— tg 18 the relevance threshold

— « is a function which defines the accuracy of the prediction, where
a(Yi, yi) = (Lo (9i, vi)

I() is the indicator function given 1 if its argument is true and 0
otherwise
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— Lo, is a standard 0/1 loss function

e Recall: In regression, Recall computes the portion of events happening in
the domain that are caught by the regression model. Recall is a calculated
metric that appraises the number of true rare predictions yielded from all
rare predictions that should have been made. The least desirable value is
a 0 and the most desirable is a 1 (Ribeiro & Torgo, 2008).

Zd)(yz‘)ZtE a(gi7 yz)¢(yz)
2 o)zt P0:)

Recall = (10.19)

e F'1: It captures the balance between the precision and the recall. The least
desirable value is a 0 and the most desirable is a 1.

precision X recall

F1=2x (10.20)

precision + recall

e ['2: The F2 score is used as well, in which twice the weight is given to recall
as opposed to the weight given to precision. The least desirable value is a
0 and the most desirable is a 1.

preciston X recall

F2=5x

(10.21)

4 x precision + recall

e F0.5: F 0.5 score is used also in which we give twice as much weight to
precision than recall. The least desirable value is a 0 and the most desirable

is a 1. o
precision X recall

F0.5=1.25x (10.22)

0.25 x precision + recall
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Chapter 11

Better Deep Learning
Approaches

Configuring a neural network model is considered as a “dark art” because there
is no ideal rule that would work for all different problem domains, we cannot just
set a model’s configuration for a given data set without having to study the type
of the problem we have. If we're lucky we can copy the configuration of another
network with a similar problem and use them, but this strategy doesn’t always
lead to good results and we’ll more likely work on models that are different than
the ones in the literature. This has motivated us to follow tricks and techniques
mentioned by Jason Brownlee’s Better Deep Learning Book which emphasizes
areas for improving the model such as adaptive learning rates, regularization
methods, ensemble techniques, etc...

Several techniques are employed to improve our model’s weight, performance,
and its ability to generalize to new un-seen data by following most of the listed
approaches as mentioned in (Brownlee, 2019).

To improve our model in terms of weight, performance, and its ability to gen-
eralize to new un-seen data we followed most of the below listed approaches
including:

11.1 Better Learning Techniques

These techniques are applied to our neural network model to improve our model’s
weights in response to our training data set. It revolves around several techniques
starting by configuring carefully the capacity of the model, hyperparameters that
are related to optimizing the network using stochastic gradient descent algorithm,
and to update the weights using the backpropagation of the error. Some of these
techniques are as such:

91



11.1.1 Configuring Capacity

Configuring the model’s capacity is performed by varying the number of layers
and the number of nodes in the model. We have varied the number of layers of
the model by trying out 1 to 5 layers and compared the mean squared error for
each case. The average of the target variable is 3.826096.

e Layer 1: MSE 1.509

Layer 2: MSE 3.952

Layer 3: MSE 1.683

Layer 4: MSE 3.955

Layer 5: MSE 3.952

BN

0 25 5 75 100 125 150 175 200
Figure 11.1: MSE for different number of layers

The x-axis shows the number of epochs as the model is being trained on 200
epochs and the reported test MSE by varying the number of layers. We can
see that as the number of epochs increases the MSE decreases until the model
stabilizes i.e. almost after 55th epochs and layers 1 and 3 are considered better
candidates than the others as they have lower MSE and tend to stabilize faster
than others.

11.1.2 Configuring Batch Size

We have trained our model using the stochastic gradient descent algorithm which
revolves around using the model’s current state to make predictions and compute
the difference between the predictions and the actual values of our target and
then use this as an estimate of the error gradient which is further used to update
the model’s weight. The number of training examples we use to estimate this
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error is the batch size. Since the more training is applied the more accurate the
estimate will be, our model performance will be enhanced iteratively, We will
vary different batch sizes starting with a small size until we reach the end of our
training examples:

1. Batch Gradient Descent: The batch size is set to the total number of train-
ing examples. It uses a relatively larger learning rate and more training
epochs.

2. Minibatch Gradient Descent: The batch size is set to a size that is more
than one and less than the total number of training examples.

In our experiment, we tried a batch size of 32, 64, and to the total number of
training samples, i.e. 6,536 and we observe MAE and MSE error metrics.
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Figure 11.2: MSE for Batch = 32

As it is observed, according to the reported MAE MSE and by visualizing the
graphs that the train and validation data error metrics track each other so having
a mini-batch gradient descent i.e.(batch size of 32 or 64) is a good candidate.
Moreover, it is not worth setting the batch size to be equal to the training data
size.
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Figure 11.4: MSE for Batch = Data size
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11.1.3 Configuring Loss Function

A neural network is trained using a stochastic gradient descent that requires a
loss function to calculate the error. We have varied several error functions and

compared each.
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It is observed from the learning curves of different loss functions meaning that
the squared logarithm error does not generalize well to unseen data, unlike the
other candidates.

11.1.4 Configuring Learning Rate

The learning rate is a hyperparameter that shows that the weights in our model
are updated the thing that controls the rate at which the model learns. It is a
positive value that ranges usually between 0 and 1. The adaptive learning rate
would tune the learning rate in response to how the model is learning. Some of
the well known adaptive learning rates that are used are Adaptive Gradient Algo-
rithm (AdaGrad), Root Mean Squared Propagation (RMSProp), and Adaptive
Momentum Estimation (Adam).
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Figure 11.6: Optimizers

We have trained an MLP model for 300 epochs. It is observed from the learning
curves that Adam and RMSProp are considered good candidates and others do
not generalize well since there is a large gap between the training (represented in
blue) and validation (represented in orange).

11.1.5 Applying Data Scaling Approaches

This chapter studies different scaling approaches being applied to the input fea-
tures and how they affect the network’s weight’s update procedure and thus
affecting the model’s performance.

11.1.6 Applying Batch Normalization

We have added batch normalization to our neural network model which often
adds stability to the learning process by standardizing the layer’s input.

11.2 Better Generalization Techniques

These techniques are applied to our neural network model to improve our model’s
generalization to unseen/holdout data set and to reduce overfitting a model on
the training data set whereby performing very well on the training data set and
badly on the testing data set. Those techniques that often aim to reduce the
generalization error are referred to as regularization techniques. Techniques vary
starting from penalizing a model for having high weights, adding noise, adding
drop-out layers, rescaling the weights, etc... The following list summarizes some
of these techniques:
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11.2.1  Applying Weight Regularization

This approach penalizes the model when having large weights by updating our loss
function to encourage smaller weights and thus lower’s the model’s complexity.
There are several approaches to penalize the model, one of which is to calculate
the size of the weights by using the L1 or L2 norm. L2 or weight decay is
often used more in the neural network field. We experimented with different
values of varying the kernel regularizer of an L2 norm. A line plot showing
the MAPE between the train and test data sets is created. The MAPE starts
high and then lowers at value = 10-4 to its lowest. However, as we increase
the weight regularization parameter values, the MAPE increases back. However,
as we increase the weight regularization parameter values, the MAPE increases
back.
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Figure 11.7: Weight Regularization Learning Curve

11.2.2 Activity Regularization

This approach penalizes the activations of the units of the neural network model
to encourage more sparse representations. We experimented with different values
of an activity regularizer using an L1 norm and tracked MAPE between the train
and testing data sets, we notice that 1072 is not a good candidate for our model.
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Figure 11.8: Activity Regularization Learning Curve

11.2.3 Forcing Small Weights With Weight Constraints

This approach updates the model’s weight by rescaling each when its norm ex-
ceeds a pre-defined threshold. We have compared two experiments: In the first
experiment, we didn’t add any constraint to our model. Then, in the second ex-
periment, we added a unit norm as a kernel constraint to penalize our model. We
computed MSE and MAPE for the training and validation data sets. W noticed
that we did not get that significant improvement from adding the constraint.
However there is a small improvement i.e. at the end of the experiment, the test
MSE improved from 1.65 to 1.42 and MAPE improved from 37
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Figure 11.9: No Constraint
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Figure 11.10: Unit Norm Constraint

11.2.4 Adding Drop out Layers

Adding a drop out often leads to excluding randomly connections/weights while
training the network causing to decrease in the tight coupling between network
nodes. This should be a value between 0 and 0.5. We experimented with different
drop-out values ranging from 0.1 to 0.5 and we compared MAPE between the
training and testing data sets. We note that we do not have an over-fitting
problem in the data set we are tackling but as it is observed that the MAPE
value is at its lowest at dropout=0.2.
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Figure 11.11: Dropout Variations Learning Curve
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11.2.5 Adding Noise

This approach will often cause to decrease in some dependence on the input by
introducing a statistical variation to the input layer. We did not have to add any
noise to our data set as we did not see any need for it.

11.2.6 Early Stopping

This approach is used to monitor the model’s performance on the holdout data
set while training and stops when the performance starts to degrade. By this, we
can monitor any error metric. Early stopping callback is being introduced which
will track in our case the validation MAPE per epoch with a patience value of
10. Once triggered the model will stop training but will wait with the patience
of 10 epochs before stopping if no improvement was observed. This is done since
we will not benefit to proceed further because we do not see any improvement
and would rather see worse results or no improvements afterward. However, the
model at the end of the training phase might not be the best i.e. the one having
the lowest MAPE on the validation data set, this is why we add another callback
which is the ModelCheckpoint which will save the best model observed during the
training phase depending on the measure we choose to observe on the validation
data set.

After having to apply better deep learning approaches and tunning hyperpa-
rameter using a grid search, we come up with the best hyperparameters that we
have used in our final experiments.

e The number of hidden neurons: This number represents the model’s ca-
pacity to learn, having a more complex model requires a higher number of
neurons, but a too high number will cause the model to memorize the data
set and overfit. The number of hidden neurons is set to 64.

e Activation function: A function that is attached to each neuron in the
network and decides if a neuron should be fired or not based on its input. if
this input happens to be relevant to the model’s prediction. It also aids in
mapping the output to a range between 0 and 1 or -1 and 1. The activation
function is set to softmax.

e kernel initialization: This is used for setting the initial weights to be uni-
form.

e Kernel regularizer: We have added an L2 norm kernel regularization with
a value of 0.001

e Batch Normalization: A mechanism for adjusting and scaling the input to
speed up the learning process. It reduces the amount by which the hidden
unit values shift around.
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e Drop out: A regularization technique that revolves around randomly drop-
ping neurons so that their weights will not be updated resulting in improv-
ing generalizing and decreasing a model’s ability to overfit. It ranges from
0 to 0.5. We set this to 0.4.

e The number of layers: The number of hidden layers in our model between
the input and output layers. This is set to 2.

e Optimizer function: A function that is defined to reduce the loss by updat-
ing the weights or learning rates. We set it to Adam which is an adaptive
learning algorithm that often adapts or learns the learning rate itself.

e Loss function: The loss function compares the model’s predicted value
against the grounded truth. We set it to mean squared error which is
often used for a regression problem.

e Epochs: The number of iterations the training data set is being shown to
the neural network model while training. This is set to 500 with monitoring
validation mape to stop early if the validation scores start to drop.

e Batch Size: A mini-batch size is the number of samples that we give to our
model after the parameter update occurs. The batch size is set to 64.

e Scaling: Data is being normalized using MinMax Standardization with a
range of 0, 1.

11.3 Better Predictions Techniques

These techniques are applied to our starting neural network model to decrease
the variance in the performance of our final model. The variance can be reduced
by combining predictions from different models which are referred to as ensemble
learning. In other words, we introduce bias to reduce our model’s variance.
Ensemble learning also often produces better predictive performance or at least
ensures consistent predictive results. There are several techniques to form an
ensemble, i.e. we can vary the training data per member, vary the members
that contribute to the ensemble, vary the way we combine predictions from these
members, and so on. Some of the techniques are as follow:

11.3.1 Model Averaging Ensemble

A neural network model often is prone to overfitting and suffers from high vari-
ance. This issue could be further addressed by training several models and com-
bining their predictions. This approach is known as model averaging where we
end up averaging the predictions we obtained. In this chapter, we experimented
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with 5 MLP models with the same best hyperparameters configurations we have
used and recorded the different error and correlation metrics for each. Then, we
computed the average scores across them.

Error Metrics ensemble_0 ensemble_1 ensemble_2 ensemble_3 | ensemble_4 | ensemble_avg
Average 3.747154763 3.747154763 3.747154763 3.747154763 | 3.747154763 3.747154763

R2 0.63 0.58 0.63 0.64 0.64 0.64
Adjusted R2 0.63 0.57 0.62 0.64 0.63 0.64
MAE 0.87 0.97 0.88 0.87 0.87 0.87
MSE 1.44 1.66 1.45 1.4 1.43 1.4
RMSE 1.2 1.29 1.2 1.18 1.19 1.18
Spearman 0.79 0.78 0.79 0.8 0.79 0.8

MAPE 29.46 34.83 30.78 30.59 29.85 31.102

Accuracy 70.54 65.17 69.22 69.41 70.15 68.898

Figure 11.12: Error Metrics for different ensembles

Hence, the final average score for R2 is 0.64 and accuracy is 68.89% which is
better than running an individual model.

11.3.2 Weighted Average Ensemble

When applying a modeling averaging ensemble technique the predictions are be-
ing combined from each model equally without giving any emphasis to the more
skillful models, however, In the weighted average ensemble approach we add a
weight to each model’s prediction to indicate its trust. In this chapter, we trained
5 MLP models with the same hyper-parameters. Each time we grab a subset of
these models and compute the test metrics of this ensemble subset. We vary the
ensemble subset starting from one member until we take all members. Then,
we compare these metrics to that of the one formulated after training on each
model separately. It can be seen that the single model’s MAPE score is lower
than the ensemble but the ensemble MAPE score is more precise. The orange
line plot represents the ensemble scores and the blue line plot represents each
model’s score.

103



30 o

10 15 20 25 30 35 40 45 50

Figure 11.13: Weighted Average Single versus Ensemble Model

11.3.3 Re-sampling Ensemble

An effective model requires members to disagree and vary with their prediction
errors causing them to be good in different ways. To achieve this difference
between models, we train each on a different subset by using one of many re-
sampling techniques i.e. cross-validation, random splits, or bagging.

e Random Splits: Data is repeatedly and randomly divided into training and
testing data sets. We trained an MLP model with 10 splits and in each
split, then we randomly divided the train data set into train and validation
respectively by 80% 20%. Finally, we recorded some error metrics.
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e Cross Validation: Data is divided into k-folds. Each fold acts as a holdout
set where others are being used for training We train an MLP model with
k-fold=3 and in each fold we split the train data into train and validation
data sets and recorded some error metrics. We notice that as we train more
subsets we get better scores for an ensemble. An ensemble of 3 models
achieves the lowest MAPE, but the score of a single model is much better
compared to that of an ensemble, and the reported average MAPE = 29.280
with a standard deviation of 0.579.
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Figure 11.15: Cross Validation Split

e Bagging: Data is being randomly sampled with replacement and the rest is
used for testing. We trained an MLP model with 3 splits and in each split,
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we re-sample data with replacement (bagging) and divided the data into
a train data set and a validation data set. Also, we recorded some error
metrics. An ensemble of subset 1 achieves the lowest MAPE, but the scores
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Figure 11.16: Bagging

of a single model are much better compared to that of an ensemble, and
the reported average MAPE = 28.544 which seems better than when using
cross validation.
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11.3.4 Horizontal Ensemble

When having a small number of training data compared to unlabeled data, the
model often suffers from high variance, and it’s hard to figure out which is the
best model to use. This has motivated the introduction of an approach named
horizontal ensemble. It is a method that revolves around using several models
being members of an ensemble and saving their results at the end of a contiguous
block of epochs before the end of the training phase and then averaging their re-
sults. This would result in better performance than randomly choosing one as our
final model. This method is proposed by Jingjing Xie, et al. in their 2013 paper
Horizontal and Vertical Ensemble with Deep Representation for Classification.
The following is done:

e We select models that are trained for a relatively stable range of epochs.
e The resulted predictions are then averaged.

We have trained an MLP model on 400 epochs and then started to save the
model results while the epoch varies from 350 until the end. In total, 50 models
were saved. These 50 models are being used to form an ensemble. We then
compared the results we got out of the ensemble versus a single model. The
orange represents the ensemble and the blue dots represent the single scores. it
is noted that the scores for the ensemble are much better than that of a single
model. Also, they stabilize more as we increase the number of epochs and predict
more test data.
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11.3.5 Cyclic Learning Rate Snapshot Ensemble

Forming an ensemble is often better than relying on a single model since it has a
lower generalization error but we often suffer from computational cost. For that
matter, we could train multiple snapshot models during a single run and form
an ensemble, but this will lead to similar prediction errors. Also, we need an
approach to have diverse skills for each which is why we use aggressive learning.
An aggressive learning rate schedule involves changing the learning rate over the
training epoch called cosine annealing. This methodology requires specifying the
initial learning rate and the total number of training epochs. It has the impact of
starting with a large learning rate that would rapidly decrease towards the end
before increasing again. This causes the model’s weights to change dramatically.
Initially, the weights are more likely to be good which results in having diverse
skills per model or snapshot. Each time the model converges, we save the snapshot
and add it to the ensemble.

11.3.6 Stacked Generalization Ensemble

Stacked Generalization or Stacking is an approach where we create a completely
new model by combining predictions out of sub-models. This is often used as
a replacement of only averaging the results of the model’s which often have the
same contribution. It constitutes of 2 levels:

e Level 0: In this level, we make predictions out of the training data.

e Level 1: In this level, we take the output from level 0 to be our input and
we learn how to make predictions from this data. In this level, we denote
the model to be a meta-learner.

11.3.7 Average Model Weight Ensemble

In this approach, we combine the weights from several models into a single model
for making predictions which would result in a more stable and better-performing
model. Models are being created with either equal, linearly, or exponentially
weighted average of the parameters out of multiple models as follows:

e We load 5 previously trained MLP models.

For each model, we get the weights of its layers.

Compute the average of all the layer weights
e Loop over a subset of the models.

e Assign an equal, linear, or exponential weight for each subset.
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e Evaluate error metrics on the test data for each subset.
e Evaluate error metrics on the test data for every single model.
e Compare the above two steps.

We experimented with building an ensemble of 5 Multi-layer perceptron models.
Each model has the same hyper-parameters. However, we are varying the learning
rate that we are passing to the model starting with a large number i.e 0.1. We
deployed an aggressive learning rate schedule that involves changing the learning
rate over the training epoch which further forces a change in a model’s weight.
Then, we average the result of the scores we got. We often got more consistent and
stable results when combining several ensemble strategies rather than obtaining
random predictions out of a single model.
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Chapter 12

Experimental Variations

12.1 Experiment A
Real ET versus ET (predicted or obtained by EEflux METRIC). We denote this
experiment by Experiment A. Error metrics are calculated between Variable 1
and Variable 2:

e Variable 1: Real ET

e Variable 2: Predicted ET or EEflux METRIC ET

High R2 (close to 1) and low error metrics indicate that our model can predict
Real ET well.

Research Question: Which model best estimates Real ET?

12.2 Experiment B

The proportional residual between Real ET and Predicted ET is computed by
getting the error metrics corresponding between two entities:

e Variable 1: EEflux ET / Real ET
e Variable 2: EEflux ET / Predicted ET
We denote this experiment by Experiment B.

Research Question: Which model best minimizes the proportional bias between
the Real ET and EEflux ET?
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12.3 Experiment C

The absolute residual between Real ET and Predicted ET is computed by getting
error metrics and other accuracy measures corresponding between two variables:

e Variable 1: EEflux ET - Real ET
e Variable 2: EEflux ET - Predicted ET

We denote this experiment by Experiment C.

Research Question: Which model best minimizes the absolute bias between the
Real ET and EEflux ET?

12.4 Experiment D

A combination between the proportional and the absolute residual. The combi-
nation residual between Real ET and Predicted ET is computed by getting the
error metrics corresponding between two entities:

e Variable 1 : (EEflux ET - Real ET) / Real ET
e Variable 2 : (EEflux ET - Predicted ET) / Predicted ET

We denote this experiment by Experiment D.

Research Question: Which model best minimizes the combined bias between
the Real ET and EEflux ET?
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Chapter 13

Point-wise Modeling

Point-wise Modeling is a single estimated prediction made by the trained model
for a given entry.

A set of point-wise regression models were evaluated starting with a base model
i.e a Vanilla Multi-layer Perceptron Model (MLP) to an Ensemble of MLP reach-
ing a Meta-learning Model.

We have applied several better deep learning, generalization, and ensemble tech-
niques for improving the model’s weight, performance, and its ability to generalize
to new unseen data such as adaptive learning rates, regularization methods, en-
semble techniques. etc.. to our models as mentioned in Chapter [11].

Data is further split into 70/30 ratio and utility-based regression techniques are
employed.

13.1 Models

We experimented with the following Point-Wise Prediction Models:

13.1.1 Vanilla Point-wise BDL Model

Multi-layer perceptron model (MLP) is denoted by Vanilla Point-wise BDL Model.
It is a neural network model and a supervised learning algorithm that learns a
function given a data set.

13.1.2 Ensemble of MLP

We experimented with building an averaged ensemble of five MLP models by vary-
ing the learning rate and deploying cosine annealing for scheduling the learning
rate with the same best hyper-parameters for each MLP model.

114



13.1.3 Meta-Learning

Meta-learning is a process of learning how to learn. We learn an initialization for
network parameters in such a way that the network is able to adapt to new tasks
quickly.

13.1.4 Auto ML

Auto ML Table is a supervised learning service that trains a machine learning
model with the data provided using the standard machine learning workflow
which consists of data preparation, model training, evaluation, deployment, and
prediction. It defines your problem and model based on the type of the tar-
get column, if it contains numerical data, then a regression model will be used
otherwise a classification model. This tool is integrated with Google Cloud Al
Platform where it internally tries several deep learning models and chooses the
best based on MSE. We have used AutoML for the Manual Bowen daily data set
and trained on 70% of the data size. The best model that AutoML selected was
a DNNLinear model. Furthermore, it also outputs the feature importance for all
the input features scoring the highest for the air temperature feature followed by

Month encoded, EEflux NDVI, RH, etc. ..

13.2 Choosing the Best Model

We have performed Experiment A on all our point-wise models which were trained
on all the input features.
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Metrics Experiment A
Models Average ET 3.74715476
Train Size 8,729
Test Size 2,182
Recall 0.80873
F2 0.81749
R2 0.63
RMSE 1.21
MLP MAE 0.9
Accuracy 69.5
NMI 1
Training Time (seconds) 637.84
Testing Time (seconds) 0.124
Recall 0.941
F2 0.944
R2 0.619
RMSE 1.22
Ensemble MLP MAE 0.88
Accuracy 68.7
NMI 1
Training Time (seconds) 755.32
Testing Time (seconds) 0.78
Recall 0.96005225
F2 0.96157961
R2 0.79383871
RMSE 0.9088138
MLP-Reptile MAE 0.67232353
Accuracy 76.6164768
NMI 0.99512033
Training Time (seconds) | 1665.2541
Testing Time (seconds) | 97.1628394

Figure 13.1: Point-wise models
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As shown in Figure [13.1], we note that MLP is the least performing model
with an R2=0.63 and Recall=0.80 hence we call it our base model and MLP-
Reptile is the most performing model with an R2=0.79 and Recall=0.96 hence
we call it our best model.

We will measure the percentage of improvement between variable a and vari-
able b and it will be used in the below sections as such:

metric, — metric,

percentage of improvement = (13.1)

metric,

where metric, represents the value of the metric we are measuring for model a
and metric, represents the value of the same metric we are measuring but for
model b. An example of a metric we are studying is R2.

13.3 Base Model

Our base model is a Vanilla Point-wise BDL Model. It is composed of at least
3 layers of nodes: An input layer, a hidden layer, and an output layer. It relies
on a technique known as backpropagation which performs a backward pass that
aims in minimizing a loss function between the actual target and its predicted
value by tuning the input’s weights.

13.3.1 Architecture

We train our regression problem using a neural network that consists of two
hidden layers with a softmax activation function each. Both hidden layers consist
of 64 hidden neurons followed by an output layer. A dropout layer is added
between each hidden layer to reduce over-fitting and the model is further trained
on 500 epochs with the loss function being mean squared error. This is our base
model that is tuned based on applying different better deep learning techniques
as mentioned above.

13.3.2 Hyper-parameters

We tuned a set of hyper-parameters for they gave the highest accuracy and lowest
error metrics. They are as follows:

e The number of hidden neurons: This number represents the model’s ca-
pacity to learn, having a more complex model requires a higher number of
neurons, but a too high number will cause the model to memorize the data
set and overfit. The number of hidden neurons is set to 64.
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Activation function: A function that is attached to each neuron in the
network and decides if a neuron should be fired or not based on its input if
this input happens to be relevant to the model’s prediction. It also aids in
mapping the output to a range between 0 and 1 or -1 and 1. The activation
function is set to softmax.

kernel initialization: This is used for setting the initial weights to be uni-
form.

Kernel regularizer: We have added an L2 norm kernel regularization with
a value of 0.001.

Batch Normalization: A mechanism for adjusting and scaling the input to
speed up the learning process. It reduces the amount by which the hidden
unit values shift around.

Drop out: A regularization technique that revolves around randomly drop-
ping neurons so that their weights will not be updated resulting in improv-
ing generalizing and decreasing a model’s ability to overfit. It ranges from
0 to 0.5. We set this to 0.4.

The number of layers: The number of hidden layers in our model between
the input and output layers. This is set to 2.

Optimizer function: A function that is defined to reduce the loss by updat-
ing the weights or learning rates. We set it to Adam which is an adaptive
learning algorithm that often adapts or learns the learning rate itself.

Loss function: The loss function compares the model’s predicted value
against the grounded truth. We set it to mean squared error which is
often used for a regression problem.

Epochs: The number of iterations the training data set is being shown to
the neural network model while training. This is set to 500 with monitoring
validation MAPE to stop early if the validation scores start to drop.

Batch Size: A mini-batch size is the number of samples we give to our
model after the parameter update occurs. The batch size is set to 64.

Scaling: Data is being normalized using MinMax Standardization with a
range of 0, 1.

13.3.3 Implementation

We have built a multi-layer perceptron neural network and we have applied a
variety of better deep learning, generalization, and ensemble techniques by em-
ploying a grid search for tuning hyper-parameters and incorporating utility-based

118



learning. The data set is divided into 70% training and 30% testing without re-
placement and the training data set is further divided into training and validation
data sets.

This module outputs validation scores, standard deviation validation scores, test
scores, in addition to all necessary plots, figures, and data sets needed and found
here

This module code is implemented using Keras. Our implementation is available
in here and consists of the following python script:

e keras neural network ubr.py: The main script file that contains the neural
network architecture, hyper-parameter tuning, and utility-based regression
integration.

13.4 Best Model

Meta-Learning has recently emerged as a methodology for learning from small
amounts of data by learning from a variety of related tasks. It seeks to optimize
a fast-learning algorithm using a data set of tasks. Each task is a regression
or classification problem with a certain distribution (same problem in different
domains). Each task is composed of training and testing data sets. (Yin, 2020)
Our algorithm will be fed a training data set and therefore, will produce an agent
that will produce a good average performance on the testing data set. We aim
to validate as has been proposed by authors in (Finn et al., 2017) if we can train
a model that can easily adapt to a new task having only a few data points. We
will further validate that using a real-world data set of a 2D structure rather
than what is implemented by the authors in (Finn et al., 2017) as a sine wave
regression problem of 1D.

Moreover, will meta-learning trained with the same number of examples and
the same architecture of our base model (MLP) beat our MLP point-wise model?

In summary, meta-learning does not only learn to solve a new task, however,
it learns to solve many tasks by learning each time a new task. i.e upon experi-
ence (learns to learn).

13.4.1 Meta-Learning Approaches

A target few-shot task is handled either using a metric-based approach or an
optimization-based approach.
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Learning to embed: Metric-Based Meta-Learning

Metric-based Meta-Learning (metric learning) learns a distance function between
data points to categorize the test instances based on the K labeled examples. The
distance function is composed of two steps: one is an embedding function that
encodes instances into a certain space and the other is a similarity metric i.e Eu-
clidean distance or cosine similarity that is used to compute how close any two
instances are in the space. If we were able to learn the distance well on the train-
ing tasks, then the model will generalize well on the target task without further
fine-tuning. This approach is not concerned with updating a network’s weights.
Examples of networks/models using the metric-based approach are Siamese Net-
work, Machine Network, etc... This has been mentioned in detail (Wenpeng Yin,
2020).

Learning to fine-tune: Optimization-Based Meta-Learning

Optimization-Based Meta-Learning works by learning a good initial parameter
initialization for a neural network model using only a few samples and few gra-
dient steps to reach an optimal point for a new unseen task. We have performed
several experimental evaluations using a family of meta-learning algorithms that
use the optimization-based approach (Nichol, Achiam, Schulman,2018) as such:

e Model Agnostic Meta-Learning (MAML): A meta-learning algorithm that
learns by learning from a variety of related tasks consisting of only a small
number of data points and then the meta-learner will produce a quick
learner that will be able to generalize well on new related tasks.

e Reptile: A first-order meta-learning algorithm that is somehow similar to
MAML and works by sampling a task repeatedly and moving the initial-
ization towards the trained weights on a task.

e FOMAML v2: An approximation to MAML by ignoring second-order deriva-
tives. The computational cost of it is only related to computing gradient
descent since FOMAML is a first-order MAML algorithm.

13.4.2 MAML Algorithm Explained

A model-agnostic meta-learning was proposed by (Finn, Abbeel, Levine, 2017).
It learns initialization parameters that often allow the model to adapt efficiently
and quickly to an unseen task with only a few samples. It is agnostic in the sense
that it can be applied to any neural network model. MAML is considered hard
to train since it involves two levels of training: the meta-backpropagation implies
the computation of gradients of gradients (second-order derivatives) (Wenpeng
Yin, 2020).

It consists of the following steps per episode/iteration:
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Given: A model f with parameter 6 having a distribution over tasks p(7T')
where

e 0: Denotes the initial weight vector parameter for the model that we aim
to tune

0": Denotes the optimal weight vector parameter for the model for a specific
task

T': Denotes a task and each task could represent a regression or classification
problem with a certain distribution. It is composed of training and testing
data sets that are often assumed to come from the same distribution of
tasks p(7T).

e p(T): Denotes the probability distribution of a task

Episodes: Represents the number of iterations or the number of different
combinations of tasks we use to train our model. We perform a grid search
in order to choose the number of episodes/iterations per experiment.

Batch of for each task
tasks T
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Figure 13.2: MAML Algorithm from (Finn et al., 2017)
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1. We randomly initialize 6.

2. Sample a batch of tasks T; from a set of tasks
i.e. T; ~ p(T), assume we have n tasks T= {T, Ty, Ts5.... T}

3. Inner Loop:

e For each T;, we sample k data points to prepare the training and
testing data sets

— Direm = (1, y1),(z2, y2).....(Tk, yr): is used in the inner loop to
find the optimal parameters ¢’;

— Dt = (21, y1),(x2, Y2).....(Tk, yi): is used in the outer loop to
find the optimal 6

e We apply a supervised learning algorithm on D!*" and calculate the
mean squared error loss using gradient descent to get the optimal
parameters

‘9; . 9; =0 — OéVgLn(f@) (132)
for each task resulting in n optimal parameters i.e. {€'1, 0’5, 0'5....0',}
as mentioned by (Finn et al., 2017) where:

— «a: Represents the step size hyper-parameter
— Vi: Represents the Gradient descent

— L1,(fp): Represents the loss function for task T;, In our regression
problem, the loss function is mean squared error.

4. Outer Loop: Meta — Learner

e We minimize the loss by calculating the gradient descent with respect
to our optimal parameter ¢’; in the test data set Dy, as shown in
Figure [13.2]

e We update our randomly initialized parameter 6 using the test data
set.

5. Repeat steps 2 to 4 for some n number of episodes (iterations/epochs) until
our solution converges to an optimal solution where the mean squared loss
starts to minimize reaching a very low value without further increasing or
the number of episodes is reached.

13.4.3 Reptile Algorithm Explained

A first-order optimization-based meta-learning algorithm (Nichol, Achiam Schul-
man, 2018) that is similar to MAML given both are model-agnostic and rely on
meta-optimization through gradient descent. It works by sampling a task repeat-
edly and moving the initialization towards the trained weights on a task.

122



Given:

e 0: Denotes a vector of parameters for the model

e T Denotes a task

L: Denotes any loss function, in our case we use mean squared error to be
our loss function given our problem is a regression problem

e k: Denotes the number of gradient steps we seek to reach an optimal solu-
tion using gradient descent.

e SGD(L,#, k) Denotes the function i.e (stochastic gradient descent) that
performs k gradient steps on loss L starting with # and returns the final
parameter vector

e Episodes: Denotes the number of iterations or the number of different com-
binations of tasks we use to train our model.

1. Initialize 0
2. For each iteration/episode

(a) Sample a task 7" in any approach in such a way all tasks belong to
the same probability distribution. Each task is a learning problem

(regression or classification problem) with a loss Ly (Nichol, Achiam,
& Schulman, 2018)

(b) Compute the weights W of our neural network using SGD

(c) Update 6 in the direction of W — @ or using stochastic gradient de-
scent or Adam being an adaptive learning rate optimization algorithm
designed for training neural networks.

13.4.4 Difference between MAML and Reptile

Both seek an initialization for the parameters of a neural network having that the
network will be fine-tuned using a small amount of data only from a new task.
MAML uses the gradient descent algorithm, whereas Reptile performs stochastic
gradient (SGD) without having to compute the second derivative. As a result,
Reptile is less expensive than MAML (Nichol & Schulman, 2018).

MAML also optimizes the efficiency of an algorithm on the support/testing set
ensuring the learned algorithm can learn fast in the few-shot samples of the target
task. In contrast, Reptile works by optimizing the system to work well on all the
training tasks and may work well for the case the training tasks are close to the
target tasks. (Wenpeng Yin, 2020). Figure [13.3] summarizes the difference
between MAML and Reptile.
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MAML Reptile

Itis idered i pensive to train since it involves two

levels of training: lhle eta-backp ion implies the putation of Less memory and putational wise as pared to MAML
gradients of gradients.

It unrolls and differentiates through the computation graph of the gradient | It performs a stochastic gradient without having to unroll a
descent algorithm putation graph or compute the second derivative.

Figure 13.3: MAML versus Reptile

In order to decide on which algorithm to use for us to proceed with our ex-
periments, we have run an experiment comparing MAML and Reptile algorithms
and reported the best algorithm on our daily data set.

Gradients steps versus MSE

—— maml
2 reptile

0 5 10 15 20 ) 0
Gradient steps

Figure 13.4: Gradient steps versus MSE

Figure [13.4] shows the gradient steps on the z-axis and the loss being mean
squared error on the y-axis.

It is observed that as we increase the gradient steps, the loss decreases in both
MAML and Reptile. However, Reptile converges much faster than MAML.

Thus our best model is a Multi-layer perceptron (MLP) model that is based
on the Meta-Learning Reptile algorithm. We denote it by MLP-Reptile.

13.4.5 Meta-Learning and Conventional Approaches

e In an conventional approach, tasks are often solved from scratch using a
learning algorithm unlike meta-learning where we learn from other tasks.

e In an conventional approach, models do not usually perform well when
the data is expensive or rare to collect or even when compute resources are
unavailable. However, meta-learning can learn using only few-shot samples.
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e In an conventional approach, the initial weights of a model are not optimized
as opposed to optimization-based meta-learning where the initialization is
optimized internally resulting in having a better head-start than traditional
models.

13.4.6 Meta-Learning and Multi-tasking

Multi-tasking is a process that learns all of the tasks simultaneously faster than
learning them independently. This approach is considered effective when the
tasks share some commonality. However, meta-learning is a process that learns
a new task more quickly given prior experience or knowledge on previous tasks
even for learning in different domains. Thus multi-tasking can be considered a
form of meta-learning.

13.4.7 Meta-Learning and Transfer Learning

Transfer Learning uses the knowledge gained from a source task to improve learn-
ing on a target task by pre-training a parameter prior and optional fine-tuning
(Task A helps Task B). Meta-Learning however, refers to a methodology that aids
in improving transfer learning. It assumes that the training and target tasks come
from the same distribution meaning they refer to the same problem but represent
two different domains. This strict assumption is not adopted by transfer learn-
ing since it can pre-train on any source task that is helpful to that of a target task.

Transfer learning becomes handy when we do not have data and we want to
generalize to a field that is similar to ours. However, meta-learning is considered
a better candidate when sparse data and no existing pre-trained models.

13.4.8 Architecture

We train our regression problem using a neural network that consists of two
hidden layers with a RELU activation function each. The hidden layers consist
of 40 and 60 hidden neurons respectively followed by an output layer.

13.4.9 Hyper-parameters

The hyper-parameters we tuned for MLP-Reptile are as follows:

e Number of layers: The number of hidden layers that compose the neural
network other than the input and output layers.

e Number of neurons for each layer: The number of hidden neurons for each
layer.
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Activation: The activation function used in each hidden layer is ReL.U.
Loss: The loss function we are optimizing is the mean squared error.
Optimizer: The optimizer used is an adaptive optimizer which is Adam.

Inner Learning rate: The learning rate that we use for the training process
which we feed to our optimizer.

We vary the parameters that are related to the meta-learning task:

Episodes/Tasks: It represents the number of iterations or the number of
different combinations of tasks we use to train our model. Each task could
correspond to a different input combination.

Gradient steps: It represents the number of gradient steps we seek to reach
an optimal solution.

13.4.10 Implementation

We have built a Reptile Meta-Learner and employed hyper-parameters tuning and
utility-based learning. The data set is divided into 70% training and 30% testing.

This module outputs testing scores, in addition to all necessary plots, figures,
and data sets needed and found here

This module code is implemented using Tensorflow. Our code is inspired by
the Github code which is available here, but we have further tuned the scripts to
match our implementation of providing a dynamic data set of two dimensions.

Our implementation is available here and divided into several files as such:

dataset_preparation.py: This script contains the definition of the data set
and some processing helper methods.

TaskGenerator.py: This script contains the generation of the training and
testing data sets.

MAML.py: This script contains the definition of the MAML model.
FOMAML.py: This script contains the definition of the FOMAML model.
Reptile.py: This script contains the definition of the Reptile model.

maml_reptile.py: This script contains the code for training all our defined
models on different tasks, on the training data set, and then evaluating the
testing data set.
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e maml _reptile_climate.py: This script contains the code for training on differ-
ent climates and defining them to be our training tasks and then evaluating
on a new climate.

We ran the testing experiment 100 times to produce stable and consistent results
each time on a different subset. This is not a hyper-parameter to tune, this is
just a number set to 100 as per (Kiat, 2018) where the authors simulated a 1D
random sine wave problem with 10000 episodes. This is comparable to our data
size which is almost 10,911 rows.

We tuned the MLP-Reptile hyper-parameters by utilizing a grid search and
Utility-based regression. Each range of values for each hyper-parameter is chosen
based on what is accepted in the literature and based on applying different better
deep learning techniques as mentioned in Chapter [11].

e Number of layers: [1, 2, 3, 4, 5]

e Number of neurons per layer: [40, 64, 128, 256]

e Inner Learning rate: [0.001, 0.01, 0.1, 0.2, 0.3]

e Episodes: [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000]
e Gradient steps (k): [1, 32, 64]

The best hyper-parameter combination yielding the highest Accuracy and lowest
error metrics is:

e Number of layers: 2

e Number of neurons for the first layer: [40]

e Number of neurons for the second layer: [64]
e Inner Learning rate: [0.01]

e Episodes: This value is dependent on the experiment performed for each
climate/cluster. The best hyper-parameter for each experiment is summa-
rized in Table [13.1]

Experiment/Climate Csb  Dsa  Other Csa  Union of Clusters Cfa Cwa

Sampling Randomly 500 500 3000 3000 3000 3000 3000
Sampling By Climate 1500 1500 1500 1500 3000 1500 1500

Table 13.1: Number of Episodes per Climate

e Gradient steps (k): [1]
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Experiment/Season  Spring Winter Summer Union of Clusters
Sampling by Season 3000 3000 3000 3000

Table 13.2: Number of Episodes per Season

The best UBR and SmoGn parameters are:
e rel method = “range”
e extr_type = “high”
e coef = 1.5
e relevance_pts = np.array([[1, 0, 0],[4, 0, 0], [15, 1, 0]])
e thr rel=0.1
e Cperc = np.array([1,1.2])
e repl = False
e dist = “Manhattan”
e p=2
e pert = 0.1

More details about each UBR and SmoGn parameters are found in Chapter [8]

13.4.11 Tasks Definition

We have performed a variety of experimental variations and varied our training
and testing tasks and further evaluated the impact of these variations by either
splitting our data randomly, by climate, or by season.

A task represents a shuffled single data set. We define our training and test-
ing tasks as follows:

1. Option 1 (Sampling Tasks Randomly):

e Training Task: A training task represents 70% of our data set. In this
sampling option, we use one training task.

e Testing Task: A testing task represents the other 30% of our data set.
In this sampling option, we use one testing task.

2. Option 2 (Sampling Tasks by Climate):
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e Training Task: A training task represents a single climate from Table
[13.3]. In this sampling option, we use five training tasks.

e Testing Task: A testing task represent an unseen climate from Table
[13.3]. In this sampling option, we use one testing task.

3. Option 3 (Sampling Tasks by Season):

e Training Task: A training task represents a single season from Table
[7.1]. In this sampling option, we use one training task.

e Testing Task: A testing task represent the same season from Table
[7.1]. In this sampling option, we use one testing task.

Sampling Tasks Randomly

We shuffled our data set and took 70% to be as our training task and 30% to be
as our testing task. We have varied the number of episodes/iterations we used
to run our experiments and evaluated our testing data by running them on 100
iterations as been defined in (Finn et al., 2017) and since it is a reasonable number
to ensure we achieve consistent testing results. Moreover, tasks are also shuffled
per iteration. For this split, we performed several experimental variations on all
the daily data, and each climate alone.

Sampling Tasks By Climate

We have shuffled our data set and took five of the climates as being referred in
Table [13.3] to be our training tasks and the remaining climate to be our newly
unseen testing task. We have further performed a variation of these experiments
in terms of testing each time on a new climate and increasing the number of
episodes for each of the training tasks/climates.

Climate Description Data set Size
Cfa Humid subtropical 3645

Cwa Humid subtropical 674

Csa Mediterranean 3509

Csb Mediterranean 615

Dsa Dry Continental 807

Other  Unlabeled/Unclassified 1666
Table 13.3: Climates

The reason for this split is to study the impact of testing our meta-learner on
a completely new climate and to see if a worse performing climate can benefit
out of a good performing climate which often emphasizes the power of transfer
learning.
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Sampling Tasks By Season

After performing several clustering techniques, we are concerned with identifying
if our data is separable by air temperature on a certain cluster/season. We thus
perform a statistical and modeling assessment on clustering by air temperature
(TA) using Kmeans with k=3. We note that clustering by TA has shown a clear
clustering separability portraying seasonal representation of each cluster.

Cluster 0 represents summer, cluster 1 represents winter, and cluster 2 represents
spring. We have performed modeling experiments on each cluster separately and
assessed their performance. More details about the seasonality study is available
in Chapter [7]

13.5 Results

We will present the testing results for all the sampling techniques we have per-
formed and further analyze each. We have conducted Experiment A across MLP-
Reptile, MLP, EEflux (METRIC), AutoML, and Stat on our daily data (union of
clusters) and on different sampling techniques. We have conducted Experiment
A on all the mentioned models across different feature selection scenarios (sce-
nario A, scenario B, scenario C, and scenario D). However, we will first compare
MLP-Reptile before and after Up-sampling in order to proceed with the best
experimental setup.

13.5.1 Utility-Based Learning and SmoGn Up-sampling

We have performed Experiment A on our best point-wise model (MLP-Reptile)
that is obtained from Section [13.2] and compared the result of this experiment
to when we apply SmoGn upsampling to our data set. SmoGn upsampling is ap-
plied to our best model (MLP-Reptile). Details for the SmoGn hyper-parameters
are found in Section [13.4.10].

Figure [13.5] portrays the experimental results for the union of clusters (all the
data set) before SmoGn and after SmoGn using an MLP-Reptile model. MLP-
Reptile with no SmoGn is performing better than MLP-Reptile with SmoGn by
an R2 of 5.13%, Accuracy of 6.94%, Recall of 0.52%, and F2 of 0.07%. The
reason for that is because Meta-Learning is by itself powerful even with few shot
examples, so no need for further upsampling in our case. Upsampling is adding
only more noise to our data set and thus the results are not as good as before
applying SmoGn.

Takeaway Message: Applying SmoGn to our MLP-Reptile model was not as
efficient where MLP-Reptile with SmoGn yielded in a decrease in R2 by 5.14%, in
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Metrics Union of Clusters - Before SmoGn | Union of Clusters - After SmoGn
Models Average ET 3.74581288 3.74581288
Train Size 7638 7638
Test Size 3,273 3,273
Recall 0.96005225 0.96512443
F2 0.96157961 0.96088148
R2 0.79383871 0.75509963
RMSE 0.9088138 1.00634559
MLP-Reptile [MAE 0.67232353 0.76596618
Accuracy 76.6164768 71.6423255
NMI 0.99512033 0.99485215
Training Time (seconds) 1665.2541 2548.1658
Testing Time (seconds) 97.1628394 134.313482
Data size 10,911 10,911

Figure 13.5: Before and After SmoGn

Accuracy by 6.94%, in Recall by 0.52%, and in F2 by 0.07% as opposed to without
up-sampling. SmoGn has created noisy data samples which caused our model’s
performance to degrade. Thus we continue with using MLP-Reptile without any
SmoGn techniques for any further experiments.

13.5.2 Sampling Tasks Randomly

We have conducted Experiment A across several models on our daily data (union
of clusters) and on different clusters that are shuffled randomly with a split ratio
of 70/30. The best feature selection scenario yielding the best Accuracy, Recall,
and the least error metrics is “Scenario C”. We will show the results for that
scenario and all other scenarios will be presented in the appendix.

We have performed seven experiments where each experiment represents train-
ing and testing on the same climate. The number of episodes for each cluster is
summarized in Table [13.1] for the sampling randomly approach. Experiments
are defined as such:

e Cluster Csb: We randomly train on 500 episodes using a 70/30 split of
climate Csb

e Cluster Dsa: We randomly train on 500 episodes using a 70/30 split of
climate Dsa

e Cluster Other: We randomly train on 3000 episodes using a 70/30 split of
climate Other

e Cluster Csa: We randomly train on 3000 episodes using a 70/30 split of
climate Csa

e Union of Clusters: We randomly train on 3000 episodes on 70% of the data
and test on 30% of the data for all the climates
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e Cluster Cfa: We randomly train on 3000 episodes using a 70/30 split of
climate Cfa

e Cluster Cwa: We randomly train on 3000 episodes using a 70/30 split of
climate Cwa

Clusters Cluster Csb | Cluster Dsa | Cluster Other| Cluster Csa Union of Clusters| Cluster Cfa | Cluster Cwa
Models Average ET 2.4071607 2.6196219 3.50686273 4.00808472 3.74581288 4.00774363 | 4.51677034
Train Size 431 565 1167 2457 7638 2552 472
Test Size 184 242 499 1,052 3,273 1,093 202
Recall 0.0001 0.0001 0.0001 0.0001 0.78 0.73 0.0001
F2 0.0001 0.0001 0.0001 0.0001 0.78 0.72 0.0001
R2 -30.577819 | -1.4356181 -0.888912 -0.4214216 -0.9572085 -1.8242985 | -0.4214216
RMSE 3.82441468 | 1.37960202 | 2.51340802 2.35727511 2.79025128 3.33013862 | 2.35727511
EEflux (METRIC) |MAE 2.38679044 1.2173055 2.02203571 1.54465131 2.1026953 2.39641085 | 1.54465131
Accuracy NA 41.8801079 | 42.6522932 69.4002766 39.1700276 33.7737912 | 69.4002766
NMI 0.98412698 1 0.86805742 0.98870571 0.90721809 0.82271656 | 0.98870571
Training Time (seconds) NA NA NA NA NA NA NA
Testing Time (seconds) NA NA NA NA NA NA NA
Recall 0.0001 0.94021794 | 0.96386927 0.97080728 0.96005225 0.96732238 | 0.97984997
F2 0.0001 0.9529583 0.96234943 0.96431185 0.96157961 0.96722553 | 0.98129906
R2 0.52397249 | 0.63417245 | 0.72493756 0.73748261 0.79383871 0.85639626 | 0.88049752
RMSE 0.64055749 0.8603871 0.97749839 0.99249297 0.9088138 0.77587707 | 0.50704663
MLP-Reptile MAE 0.51605497 0.6399777 0.75571992 0.75410042 0.67232353 0.58284988 | 0.39129795
Accuracy 73.2309573 | 70.4912265 | 70.0605258 74.8355267 76.6164768 80.9146655 | 90.4018855
NMI 1 1 0.99021936 0.98981888 0.99512033 0.99929661 | 0.99935315
Training Time (seconds) | 373.96572 401.5446 600.85776 1016.22102 1665.2541 950.77944 486.321
Testing Time (seconds) 107.2686 112.074272 104.385039 115.58596 97.1628394 167.007247 | 110.067949
Recall 0.00001 0.89798946 | 0.88680246 0.92673028 0.9259478 0.9297036775 | 0.9497509582
F2 0.00001 0.00004 0.9110401 0.93378058 0.9378146 0.9406024293 0.00004
R2 0.51104046 | 0.40678114 | 0.51188491 0.60148922|  0.65130298 0.6795279101| 0.5571167
RMSE 0.65575748 | 1.14578606 1.40731786 1.22366767 1.17380524 1.195869171 | 0.98225045
MLP MAE 0.52224957 | 0.84170251 1.00921214 0.87698342|  0.82042826 0.8242660495| 0.75835168
Accuracy 744137471 | 63.4869533 | 63.5327184 74.3498917 74.328515 74.58439234 | 76.6873862
NMI 1 1 1 1 1 1 1
Training Time (seconds) | 285.46254 168.297828 131.949494 156.614623 260.793119 190.669224 | 425.939502
Testing Time (seconds) 1.27572989 0.9590857 0.16196299 0.55923653 1.1848011 0.58198786 | 0.68710041
Recall - - - - - - -
F2 - - - - - - -
R2 R - R - - - -
RMSE - - - - - - -
Stat MAE - - - - - - -
Accuracy - - - - - - -
NMI - - - - - - -
Training Time ( ds) - - - - - - -
Testing Time (seconds) - - - - - - -
Recall - - - - - - -
F2 - - - - NA NA -
R2 - - - - 0.736 0.801 -
RMSE - - - - 1.012 0.988 -
Auto ML MAE - - - - 0.71 0.706 -
Accuracy - - - - 75.95 77.37 -
NMI - - - - NA NA -
Training Time (seconds) - - - - 7200 7200 -
Testing Time (seconds) - - - - NA NA -
Data Size 615 807 1666 3,509 10,911 3,645 674

Figure 13.6: Experiments for Random Sampling
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Figure [13.6] portrays the experimental results across different climate clus-
ters and the union of clusters. We compare the performance of our four models:
EEflux (METRIC), MLP (base model), MLP-Reptile (best model), and Auto
ML. We note that MLP-Reptile is performing the best among all others in pre-
dicting Real ET across all cluster variations, producing an R2 score of 0.79, an
RMSE of 0.90, and an Accuracy of 76.6% on the union of clusters. Transfer
learning is also highlighted when training the model on the union of clusters.
All the four models performed poorly on some climate clusters (Dsa, Csb), but
excellently on the others (Other, Csa, Cfa, Cwa). This implies that the mod-
els have learned from well-performing clusters yielding more accurate predictions
on the others. The clusters are ordered from worst to best in terms of their results.
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Figure 13.7: Experiment A Scatter Plot for Random Sampling

Figure [13.7] illustrates on the z-axis the Real ET (mm) and on the y-axis the
Predicted ET (mm). It shows the testing data set for MLP (base model), MLP-
Reptile (best model), and EEflux (Metric) model across the best climates and
the union of climates ordered according to their performance. It is noticed that
the MLP-Reptile shows a better diagonal fit than the MLP model and EEFlux
(METRIC) model across Climate Cfa and Union of Climates. The points in the

133




EEflux (METRIC) model were scattered and not centered around the bisector.
MLP-Reptile trained on Climate Cfa yielded a better concentration around the
bisector in comparison to the union of climates.
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Figure 13.8: Line plots for MLP-Reptile across all Sites

Figure [13.8] shows Real ET versus Predicted ET for all the sites for our
testing data for the MLP-Reptile model.

The x-axis represents the date in years and the y-axis represents the Real ET
versus the Predicted ET for each site.

As shown in Figure [13.8], Predicted ET by MLP-Reptile model tracks ex-
cellently the Real ET in almost all of the years for all the sites.

We further zoom into one of these sites (site US-Kon)
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Figure 13.9: Line plots for MLP and MLP-Reptile for US-Kon

Figure [13.9] shows Real ET versus Predicted ET as a function of daily data
per years (2007 - 2013) for site US-Kon for our testing data across two models:
MLP and MLP-Reptile (top to bottom respectively) for the sampling randomly
approach.

The top sub-figure shows the Real ET (blue line) versus the Predicted ET (orange
line) values across the years for the MLP model. It is noticed that the Predicted
ET poorly tracks the Real ET in almost all the date intervals.

The bottom sub-figure shows that the Predicted ET by MLP-Reptile model tracks
excellently the Real ET in almost all of the years outperforming the MLP model.

We have further conducted a residual analysis study for the union of clusters
and the best performing clusters (Cfa, and Cwa) by studying the performance
of Experiment B, Experiment C, and Experiment D across different models as
shown in Figure [13.10]

Figure [13.10] shows the experimental results across the best climate clusters

and their union. We contrast the performance of the MLP (base model) and
the MLP-Reptile (best model) in minimizing the residual biases as mentioned in
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Models

MLP-Reptile

MLP

Stat

Clusters Union of Clusters Climate Cfa Climate Cwa
Average ET 3.74581288 4.00774363 4.51677034
Residuals Experiment B | Experiment C | Experiment D | Experiment B | Experiment C | Experiment D | Experiment B | Experiment C | Experiment D
F2 0.88 0.96 0.88 0.94 0.97 0.94 0.00001 0.00001 0.00001
Recall 0.87 0.96 0.87 0.94 0.97 0.94 0.00001 0.00001 0.00001
R2 0.85 0.87 0.85 0.96 0.95 0.96 0.97 0.96 0.97
RMSE 0.33 0.91 0.33 0.17 0.72 0.17 0.09 0.47 0.09
MAE 0.17 0.69 0.17 0.11 0.56 0.11 0.06 0.39 0.06
Accuracy 81.32 NA NA 84.14 NA NA 90.32 0.38 21.12
NMI 1 1 1 1 1 1 1 1 1
Training Time (seconds) NA NA NA NA NA NA NA NA NA
Testing Time (seconds) NA NA NA NA NA NA NA NA NA
F2 0.90409877 | 0.95434995 | 0.90409877 | 0.82050605 | 0.95123475 | 0.82050605 |0.8794761207| 0.876168284 |0.8794761207
Recall 0.9075685 0.96087003 0.9075685 0.82252352 | 0.95476534 | 0.82252352 |0.8778934055| 0.90680395 |0.8778934055
R2 0.89104851 | 0.79241899 | 0.89104851 | 0.83533646 | 0.90550819 | 0.83533646 | 0.82581324 | 0.838308139 | 0.82581324
RMSE 0.25743452 | 1.17444166 | 0.25743452 | 0.52665946 | 1.02763797 | 0.52665946 |0.2335694667 | 1.128385327 |0.2335694667
MAE 0.1592884 0.86227765 0.1592884 0.20473133 | 0.71031845 | 0.20473133 | 0.152916216 | 0.9789949276| 0.152916216
Accuracy 74.6067405 NA NA 80.2056478 | 0.78499978 | 17.5142884 | 74.87414534 NA NA
NMI 1 1 1 1 1 1 1 1 1
Training Time (seconds) NA NA NA NA NA NA NA NA NA
Testing Time (seconds) NA NA NA NA NA NA NA NA NA
F2 - - - - - - - - -
Recall - - - - - - - -
R2 - - - - - -
RMSE - - - - - - - -
MAE - - - - - - - -
Accuracy - - - - - - -
NMI - - - - - - - -
Training Time (seconds) - - - - - - - -
Testing Time (seconds) - - - - - - - - -
Data set Size 10,911 10,911 10,911 3,645 3,645 3,645 674 674 674

Figure 13.10: Residual Analysis for Random Sampling

Experiments B, C, and D. We note the following:

e MLP-Reptile outperforms all models in minimizing the absolute bias across
the union of clusters, producing an R2 score of 0.87, and MAE of 0.69

e MLP-Reptile outperforms all others in minimizing the proportional bias
across the union of clusters, producing an R2 score of 0.85, MAE of 0.17,
and Accuracy of 81.32%

e MLP-Reptile outperforms all others in minimizing the combined bias across
the union of clusters, producing an R2 score of 0.85, and MAE of 0.17

e Experiment B was the best in terms of all the reported metrics compared to
Experiment C and Experiment D. Thus, minimizing the proportional bias
was the most successful residual analysis

In Figure [13.11], the columns represents Experiments B, C, and D respectively
and the row represents the two variables as been defined for each experiment in
Chapter [12] for MLP-Reptile Model as being our best model for the union of
climates. We note that Experiments B and D show very comparable visualiza-
tions having the points scattered around the bisector with a bit more distribution
as opposed to Experiment C. Experiment C show a better diagonal than the oth-
ers. However, quantitative results as shown in Figure [13.10] indicate that
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Figure 13.11: Residual Analysis Scatter Plots for Random Sampling

MLP-Reptile was the best point-wise model in minimizing the proportional bias,
which is represented by Experiment B.

N.B: AutoML results are not reported as earlier since we could not extract the
testing data set for us to compute the above metrics.

Takeaway Message: MLP-Reptile was the best point-wise model to predict
Real ET. MLP-Reptile beats MLP in R2 by 31.3% to 43.63% and in RMSE by
24.3% to 48.9%. MLP-Reptile also beats AutoML in R2 by 8.2% to 8.6% and
in RMSE by 10.8% to 48.9%. MLP-Reptile performs best in climates Cfa and
Cwa (Humid Subtropical - mild with a dry season and hot summer), which is
considered suitable for farmers who would need to know irrigation factor values
the most in these types of climates, rather than a climate with rich irrigation and
moist seasons. MLP-Reptile trained on climates (Cfa, and Cwa) beat the union
of climates in R2 by 7.05% to 10.2%, in Accuracy by 5.3% to 14.8%, and in Recall
by 0.72% to 1.94%. Also Figure [13.7] confirms our quantitative observations
present in Figure [13.6]. Moreover, MLP-Reptile was the best model to mini-
mize the proportional bias i.e Experiment B. MLP-Reptile beats MLP model in
R2 by 6.09% -8.98% and in RMSE by 36.5% - 60.86%.

13.5.3 Sampling Tasks By Climate

We have conducted Experiment A across MLP-Reptile, MLP, EEflux (METRIC),
AutoML, and Stat on our daily data (union of clusters) and on different clusters
where each experiment represents training on 5 climates and testing on a new
unseen climate/cluster. The best feature selection scenario yielding the best Ac-
curacy, Recall, and the least error metrics was “Scenario C”. We will show the
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results for that scenario and all other scenarios will be presented in the appendix.

We have performed six experiments. The number of episodes for each cluster
is summarized in Table [13.1] for the sampling by climate approach. Experi-
ments are defined as such:

Cluster Other: We train on 1500 episodes on climates Cfa, Csa, Csb, Cwa,
and Dsa. Each climate is being trained on 300 episodes and we further
tested on climate Other.

Cluster Csb: We train on 1500 episodes on climates Cfa, Csa, Dsa, Cwa,
and Other. Each climate is being trained on 300 episodes and we further
tested on climate Csb.

Cluster Dsa: We train on 1500 episodes on climates Cfa, Csa, Csb, Cwa,
and Other. Each climate is being trained on 300 episodes and we further
tested on climate Dsa.

Cluster Csa: We train on 1500 episodes on climates Cfa, Cwa, Dsa, Csb,
and Other. Each climate is being trained on 300 episodes and we further
tested on climate Csa.

Union of Clusters: We randomly train on 70% of the data and test on 30%
of the data as we performed when sampling randomly.

Cluster Cfa: We train on 1500 episodes on climates Csa, Cwa, Dsa, Csb,
and Other. Each climate is being trained on 300 episodes and we further
tested on climate Cfa.

Cluster Cwa: We train on 1500 episodes on climates Cfa, Csa, Dsa, Csb,
and Other. Each climate is being trained on 300 episodes and we further
tested on climate Cwa.
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Clusters Cluster Other | Cluster Csb | Cluster Dsa Cluster Csa Cluster Cwa | Cluster Cfa |Union of Clusters
Model. Average ET 3.50686273 24071607 2.6196219 4.00808472 4.51677034 | 4.00774363 3.74581288
Train Size 1167 431 565 2457 472 2552 7638
Test Size 499 184 242 1,052 202 1,093 3,273
Recall 0.0001 0.0001 0.0001 0.0001 0.0001 0.73 0.78
F2 0.0001 0.0001 0.0001 0.0001 0.0001 0.72 0.78
R2 -30.577819 -1.4356181 -0.888912 -0.4214216 -0.4214216 | -1.8242985 -0.9572085
RMSE 3.82441468 1.37960202 | 2.51340802 2.35727511 2.35727511 | 3.33013862 2.79025128
EEflux (METRIC) MAE 2.38679044 1.2173055 | 2.02203571 1.54465131 1.54465131 | 2.39641085 2.1026953
Accuracy NA 41.8801079 | 42.6522932 69.4002766 69.4002766 | 33.7737912 39.1700276
NMI 0.98412698 1 0.86805742 0.98870571 0.98870571 | 0.82271656 0.90721809
Training Time (seconds) NA NA NA NA NA NA NA
Testing Time (seconds) NA NA NA NA NA NA NA
Recall 0.95836498 0.00001 0.9968438 0.95078851| 0.97061932 | 0.97244863 0.96005225
F2 0.95317854 0.00001 0.98343192 0.95194721| 0.96932869 | 0.96443131 0.96157961
R2 0.51502544 | 0.64649444 | 0.66991301 0.64660694| 0.70194802 | 0.74999103 0.79383871
RMSE 1.28065653 0.52061519 | 0.78535687 1.18139397| 0.81465905 1.0435972 0.9088138
MLP-Reptile |MAE 0.97235766 | 0.42287481 | 0.66053179 0.86498617| 0.62125474 | 0.80548712 0.67232353
Accuracy 58.9122087 | 78.0025861 | 65.3091185 70.7481218| 82.8338769 | 70.7639216 76.6164768
NMI 0.99949038 0.97077763 | 0.97500197 0.99964107| 0.99935315 | 0.98730802 0.99512033
Training Time (seconds) | 532.017945 446.64288 490.45944 478.31976| 514.83822 465.90543 946.89702
Testing Time (seconds) 3.90707994 | 3.15307021 | 3.31060839 3.65248013| 3.88436794 | 3.30065608 97.1628394
Recall 0.88680246 0.00001 0.89798946 0.92673028| 0.9497509582 | 0.9297036775 0.9259478
F2 0.9110401 0.00001 0.00004 0.93378058|  0.00004  |0.9406024293 0.9378146
R2 0.51188491 0.51104046 | 0.40678114 0.60148922| 0.5571167 [0.6795279101 0.65130298
RMSE 1.40731786 | 0.65575748 | 1.14578606 1.22366767| 0.98225045 | 1.195869171 1.17380524
MLP MAE 1.00921214 | 0.52224957 | 0.84170251 0.87698342| 0.75835168 |0.8242660495 0.82042826
Accuracy 63.5327184 | 74.4137471 | 63.4869533 74.3498917| 76.6873862 | 74.58439234 74.328515
NMI 1 1 1 1 1 1 1
Training Time ( ds) 131.949494 285.46254 168.297828 156.614623| 425.939502 | 190.669224 260.793119
Testing Time (seconds) 0.16196299 1.27572989 | 0.9590857 0.55923653| 0.68710041 | 0.58198786 1.1848011
Recall - - - - - - -
F2 - - - - - - -
R2 - - - - - - -
RMSE - - - - - - -
Stat MAE - - - - - - -
Accuracy - - - - - - -
NMI - - - - - - -
Training Time ds) - - - - - - -
Testing Time (seconds) - - - - - - -
Recall - - - - - - -
F2 - - - - - NA NA
R2 - - - - - 0.801 0.736
RMSE - - - - - 0.988 1.012
Auto ML MAE - - - - - 0.706 0.71
Accuracy - - - - - 77.37 75.95
NMI - - - - - NA NA
Training Time ds) - - - - - 7200 7200
Testing Time (seconds) - - - - - NA NA
Data Size 1666 615 807 3,509 674 3,645 10,911

Figure 13.12: Experiments for Climate Sampling
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Figure [13.12] portrays the experimental results across different climate clus-
ters and the union of clusters. We compare the performance of our four models:
EEflux (METRIC), MLP (base model), MLP-Reptile (best model), and Auto
ML. We note that MLP-Reptile is performing the best among all others in pre-
dicting real ET across all cluster variations as been noted in Figure [13.6].
However, when experimenting with climate Csb, the results have improved sub-
stantially with an R2=0.52 to an R2=0.64. This often emphasizes the power of
transfer learning from other pre-trained climates as this experiment have learned
from training on climates Cfa, Cwa, Csa, etc..

W Real ET(mm)
e Predicted ET(mm)

= Real ET(mm)
W Predicted ET(mm)

Climate cfa Climate Cfa

Climate Csa Climate Csa

Climate Csb Climate Csb

Climate Cwa Climate Cwa

Climate Dsa Climate Dsa

Climate Other

00 25 50 75 100 125 150 17s P 25 50 75 100 1's ®o

(b) Sampling Tasks By Climate

(a) Sampling Randomly

Figure 13.13: Sampling Tasks Randomly vs Sampling Tasks By Climate

In Figure [13.13], the z-axis shows ET (mm) where the blue color represents
the Real ET and the orange color represents the Predicted ET(mm) and the y-
axis shows the density plot for each climate. We plot Real ET versus Predicted
ET across all the available climates (Cfa, Csa, Csb, Cwa, Dsa, and Other) and
we compare the plots for when we sample the tasks randomly or sample tasks
by climate. We note that climate Cfa, which is proven to be the best perform-
ing in Figure [13.10] and Figure [13.12], offers the best trace for Real versus
Predicted ET (mm). Climate Csa and Cwa also show comparable performance,
unlike Dsa, Csb, and Other.

Takeaway Message: MLP-Reptile was the best point-wise model to predict
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Real ET. Randomly sampling our data seems to be a better candidate than sam-
pling by climates for all the climate experiments excluding climate Csb where R2
has improved substantially with an R2=0.52 to an R2=0.64.

In this approach, we do not have a cluster achieving better than the union of
clusters. The residual analysis will only be performed for the union of clusters
which has the same results as mentioned in Figure [13.10].

13.5.4 Sampling Tasks By Season

After observing model performance on climate clusters, we now aim to study
model performance across different seasons. We identify three seasons: Summer,
Winter, and Spring. We note that clustering by TA using Kmeans, where k =
3 was the most successful in showing distinct seasons per clusters (more details
are explained in Chapter [7]). We have conducted Experiment A across MLP-
Reptile, MLP, EEflux (METRIC), AutoML, and Stat on our daily data (union
of clusters) and on different seasons that are shuffled randomly with a split ratio
of 70/30. The best feature selection scenario yielding the best Accuracy, Recall,
and the least error metrics was “Scenario A”. We will show the results for that
scenario and all other scenarios will be presented in the appendix.

We have performed three experiments where each experiment represents training
and testing in the same season. The number of episodes for each season is sum-
marized in Table [13.2] for the sampling tasks by season approach. Experiments
were defined as such:

e Spring: We randomly train on 3000 episodes using a 70/30 split on the
spring season data set that are clustered by TA using Kmeans, k& = 3 on
the first cluster

e Winter: We randomly train on 3000 episodes using a 70/30 split on the
winter season data set that are clustered by TA using Kmeans, £ = 3 on
the second cluster

e Union of Clusters: We randomly train on 3000 episodes on 70% of the data
and test on 30% of the data for all the seasons

e Summer: We randomly train on 3000 episodes using a 70/30 split on the
summer season data set that are clustered by TA using Kmeans, k = 3 on
the third cluster
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Clusters Spring Winter Union of Clusters Summer
Models Average ET 3.60 2.31 3.75 4.95
Train Size 3510 2173 9535 3853
Test Size 1,504 930 4,086 1,651
Recall 0.0001 0.61 0.7380189 0.0001
F2 0.0001 0.62 -1.0526854 0.0001
R2 -1.60 -2.65 -1.0526854 -1.24
RMSE 2.59 2.72 2.90773858 3.19
EEflux (METRIC) |MAE 2.06 1.82 2.20007924 2.47
Accuracy 51.06 20.42 41.2920661 46.22
NMI 0.93 0.89 1.00 0.94
Training Time (seconds) NA NA NA NA
Testing Time (seconds) NA NA NA NA
Recall 0.98010285 0.98848097 0.96005225 0.96857497
F2 0.97435973 0.98155799 0.96157961 0.96950832
R2 0.73425867 0.78356457 0.79383871 0.8188632
RMSE 0.83562006 0.59280902 0.9088138 0.90699729
MLP-Reptile MAE 0.65292369 0.45399813 0.67232353 0.67363146
Accuracy 75.8003462 76.4829892 76.6164768 82.102536
NMI 0.98439695 0.98051135 0.99512033 0.99365577
Training Time (seconds) | 875.09322 875.09322 946.89702 890.09322
Testing Time (seconds) 36.9717534 30.0078702 97.1628394 32.3838
Recall 0.94 0.85 0.93551997 0.93
F2 0.94 0.00005 0.94241968 0.94
R2 0.58 0.27 0.6655619 0.52
RMSE 1.41 0.96 1.11807771 1.12
MLP MAE 1.02 0.69 0.81582267 0.82
Accuracy 73.54 64.85 73.3617402 71.14
NMI 1.00 1.00 1.00 1.00
Training Time (seconds) 189.84 85.08 280.67 159.47
Testing Time (seconds) 0.13 0.12 0.22 0.15
Recall - - - -
F2 - - - -
R2 - - - -
RMSE - - - -
Stat MAE - - - -
Accuracy - - - -
NMI - - - -
Training Time (seconds) - - - -
Testing Time (seconds) - - - -
Recall - - - -
F2 - - NA -
R2 - - 0.736 -
RMSE - - 1.012 -
Auto ML MAE - - 0.71 -
Accuracy - - 75.95 -
NMI - - NA -
Training Time (seconds) - - 7200 -
Testing Time (seconds) - - NA -
Data Size 5,014 3,103 13,621 5,504

Figure 13.14: Experiments for Seasonality Sampling
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Figure [13.14] portrays the experimental results across different season clus-
ters and the union of clusters. We compare the performance of our models:
EEflux (METRIC), MLP (base model), and MLP-Reptile (best model). We note
that MLP-Reptile is performing the best among all others in predicting Real ET
across all cluster variations, producing an R2 score of 0.81, an RMSE of 0.90,
and an Accuracy of 82% for the summer season. All models performed well on
all the clusters/season but with showing the best results for the summer season.
The clusters are ordered from worst to best in terms of their results.

B Real ET(mm)
BN Predicted ET(mm)

Spring

Summer

Winter
00 25 50 75 10.0 125 15.0 175

Figure 13.15: Density Plots for Sampling Tasks By Season

In Figure [13.15], the z-axis shows ET (mm) where the blue color represents
the Real ET and the orange color represents the Predicted ET(mm) and the y-
axis shows the density plot for each season. We plot the testing results of each
season after training our data using MLP-Reptile. The density plots for each
figure show that the Predicted ET tracks well the Real ET for each season as the
orange density plot is very close to the blue density plot.

Takeaway Message: MLP-Reptile was the best point-wise model to predict
Real ET. MLP-Reptile beats MLP in R2 by 22.7% to 63% and in RMSE by
35.60283688% to 38.5%. MLP-Reptile trained on the summer season beat the
union of clusters/seasons in R2 by 2.46%, in Accuracy by 6.58%, and in Recall
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by 0.82%. The best performing season was the summer season i.e cluster 0.

We have further conducted a residual analysis study for the union of clusters
and the best performing season (summer) by studying the performance of Exper-
iment B, Experiment C, and Experiment D across different models as shown in
Figure [13.16]

Clusters Union of Clusters Summer
Models Average ET 3.74581288 495404614
Residuals Experiment B | Experiment C | Experiment D | Experiment B | Experiment C | Experiment D
F2 0.88 0.95 0.88 0.85 0.96 0.85
Recall 0.87 0.94 0.87 0.86 0.97 0.86
R2 0.83 0.80 0.83 0.85 0.89 0.85
RMSE 0.36 1.21 0.36 0.35 0.89 0.35
MAE 0.17 0.89 0.17 0.13 0.68 0.13
Accuracy 78.30 NA NA 85.77 NA NA
NMI 1 1 1 1 1 1
Training Time (seconds) NA NA NA NA NA NA
MLP-Reptile |Testing Time (seconds) NA NA NA NA NA NA

F2 0.90409877 | 0.95434995 | 0.90409877 [0.8216872112]0.9198795306|0.8216872112
Recall 0.9075685 0.96087003 0.9075685 |0.8151052758|0.9268766942|0.8151052758
R2 0.89104851 0.79241899 | 0.89104851 |0.7810277976|0.8002154798|0.7810277976
RMSE 0.25743452 1.17444166 | 0.25743452 |0.3939926512| 1.474056194 |0.3939926512
MAE 0.1592884 0.86227765 0.1592884 |0.1999883284 | 1.124324691 |0.1999883284
Accuracy 74.6067405 NA NA 77.81998631 NA NA
NMI 1 1 1 1 1 1
Training Time (seconds) NA NA NA NA NA NA

MLP Testing Time (seconds) NA NA NA NA NA NA
F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (seconds) - - - - - -
Testing Time (seconds) - - - - - -

Stat Data set Size 10,911 10,911 10,911 5,504 5,504 5,504

Figure 13.16: Residual Analysis for Seasonality Sampling

Figure [13.16] shows the experimental results across the best season cluster
and its union. We contrast the performance of the MLP (base model) and the
MLP-Reptile (best model) in minimizing the residual biases as mentioned in Ex-
periments B, C, and D. We note the following:

e MLP-Reptile outperforms all models in minimizing the absolute bias across
the union of clusters, producing an R2 score of 0.80, and MAE of 0.89

e MLP-Reptile outperforms all models in minimizing the proportional bias
across the union of clusters, producing an R2 score of 0.83, MAE of 0.17,
and Accuracy of 78.30%

e MLP-Reptile outperforms all others in minimizing the combined bias across
the union of clusters, producing an R2 score of 0.83, and MAE of 0.17
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e Experiment B was the best in terms of all the reported metrics compared to
Experiment C and Experiment D. Thus, minimizing the proportional bias
was the most successful residual analysis

13.6 Takeaway Message

Sampling randomly showed the best results for all the climates as opposed to
sampling by climates except for climate Csb. Sampling randomly showed an
improvement from MLP to MLP-Reptile for climate Cwa by 57.14% in R2 and
48.9% in RMSE.

Moreover, when sampling by seasons results was also well-performing, yielding
the highest accuracy and R2 for the summer season with R2=0.81 and Accu-
racy=82% even better than the union of clusters by 2.46% in R2, 6.69% in Ac-
curacy, and 0.83% in Recall as indicated in Figure [13.14]. Also, for all the
sampling approaches, MLP-Reptile was the best model to minimize the propor-
tional bias i.e Experiment B. MLP-Reptile beats MLP model in R2 by 6.09% -
8.98% and in RMSE by 36.5% - 60.86% for when sampling randomly.

13.7 Models’ Stability and Performance

For all our experiments, we have evaluated our testing data set on 10-100 folds
in order to yield consistent and stable results rather than random ones. We will
compare the performance of our models in terms of different metrics i.e (the
most accurate, the least training time, and the one yielding the least bias and
variance).

13.7.1 Most Accurate Model

When comparing our models in terms of accuracy, it is noted that MLP-Reptile
is the best point-wise model with an accuracy of 76.6% as opposed to the MLP
model yielding an accuracy of 74.33%.

13.7.2 Most Precise Model

When comparing our models in terms of utility-based metrics, it is noted that
MLP-Reptile is the best point-wise model with a recall of 0.96, and precision of
0.97 as opposed to the MLP model yielding a recall of 0.93, and precision of 0.99.
Thus the MLP-Reptile model is a better candidate in capturing correctly rare
from non-rare values as it has a higher recall than an MLP model.
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13.7.3 Least Training Time Model

When comparing the training time of our models, MLP took 260 seconds for
learning with 500 epochs, however, MLP-Reptile took much more time optimizing
the training process with 1,665 seconds with 3000 epochs/episodes. MLP-Reptile
requires more time to converge to a better solution, however, it can learn with
only a few-shot examples.

13.7.4 Learning Experience

We have computed validation scores, validation standard deviation, and evaluated
our model on a shuffled testing data set for each fold. In addition to that, we
have outputted a learning curve which represents the mean squared error loss
versus the number of epochs between the training and validation data sets.

e For MLP Model: We have computed validation scores and plotted the
learning curve.

— MLP yields an accuracy of 74.33% for the testing data set, and an
accuracy of 73.34% for the validation data set.

— MLP yields an MSE of 1.38 mm for the testing data set, and an MSE
of 1.37 mm for the validation data set.

MSE Loss
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Figure 13.17: Learning Curve

As shown in Figure [13.17], it is noted that as the number of epochs in-
crease, the mean squared error loss decreases for both validation and train-
ing data sets. However, when the number of epochs is greater than 200, the
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validation and training data set track each the one another well reaching
a constant learning experience i.e the loss does not decrease/improve any-
more. Thus our model is able to learn the output well and does not suffer
from neither high bias or high variance.

For MLP-Reptile Model: We have built our MLP-Reptile model on top of
an MLP model and evaluated our testing data over 100 runs. For each
run, we shuffled our testing data set and averaged the error metrics and
accuracy measures. Thus resulting in stable results.
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Chapter 14

Uncetainty Quantification

Quantifying uncertainty is becoming more relevant in machine learning and is of-
ten a necessity for clients. Especially when the implications of a wrong prediction
are high, you need to know what the likelihood (distribution) of an individual pre-
diction is. You're probably thinking about using Bayesian methods to quantify
this. But these approaches have their downsides, too. For example, when dealing
with large quantities of data or lots of parameters, it can be computationally
costly. An example in real life where the implications of a wrong prediction are
high is when using a medical diagnosis model. This model should not only take
care about the accuracy but it should also quantify how certain the prediction
is, if the uncertainty is too high, the doctor is notified to take this into account
in his decision process. Another applicable example is self-driving cars that have
not learned from sufficient data. In this case, if the car is unsure where there is a
pedestrian on the road, we would expect it to let the driver take charge. Thus the
need for quantifying uncertainty and further distinguishing between at least two
types of uncertainty is often referred to as aleatoric and epistemic uncertainties.

14.1 Uncertainty Types

We need to distinguish between the type of uncertainty to calculate the uncer-
tainty. There are plenty of different uncertainty types. We are concerned with
capturing the difference between Aleatoric and Epistemic uncertainty. Aleatoric
(alluded to as aleatory) uncertainty captures uncertainty in the data itself. Epis-
temic uncertainty is the uncertainty in the model (Kana, 2019).
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Figure 14.1: Uncertainty Types

14.1.1 Aleatoric Uncertainty

Aleatoric uncertainty (or statistical uncertainty) captures the uncertainty in the
data generation process i.e. randomness in our data as being an irreducible as-
pect of the predictive variance. It is considered irreducible since it cannot be
resolved by collecting more data since it is randomness from the data itself.

An aleatoric uncertainty is decomposed into homoscedastic uncertainty and het-
eroscedastic uncertainty. Homoscedastic uncertainty remains consistent regard-
less of the input value whereas the heteroscedastic uncertainty changes with hav-
ing different input values.

An example of variability in data is as such: Let’s consider we have house area
to be our only input feature and the house price to be our output variable. It
happens that for the same house area we have different house prices in the data
set. This variance in the house price is referred to as aleatoric uncertainty.

Figure [14.2] represents a real linear process (y = x) that was sampled around
r=—2.5and r = 2.5,

A sensor malfunction presented noise in the left cloud which led to high aleatoric
uncertainty. This uncertainty cannot be reduced by providing more measure-
ments since the sensor keeps yielding errors around z = —2.5 by design (noise).

An aleatoric uncertainty can be estimated by having a deep neural network to
output the parameters of a probability distribution P(y|x) of the target.
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Figure 14.2: Aleatoric Uncertainty

Aleatoric uncertainty can be computed as such (Hullermeir & Waegeman, 2020):

aleatoric_uncertainty = o> (14.1)

The variance of the error term o2 corresponds to the aleatoric uncertainty. In

our case the error term used is root mean squared error (RMSE). We use 0%,,55
as o2
The unit used is (mm?) which is the same as the unit of our target variable but

squared i.e (ET).

We use deep ensemble as being our best model to quantify uncertainty. A deep
ensemble consists of an ensemble of neural networks. Each neural network of this
ensemble is tested on the testing data. Hence, per data point, we have an array
of RMSEs RMSE pertaining to a neural network model in this ensemble. Hence,
we can compute the variance of the RMSE per point. (Hullermeir Waegeman,
2020).

14.1.2 Epistemic Uncertainty

Epistemic uncertainty (or systematic uncertainty) is the uncertainty in the model
itself describing what is not known to the model because of limited data and
knowledge. An example of this uncertainty: I am uncertain about the number
of people living in Lebanon, however, I can obtain this information by giving
more evidence. Epistemic uncertainty can be reduced and explained given more
enough training samples. It is also referred to as model uncertainty.

High epistemic ambiguity exists in regions where there is little to no observations
for training. This ambiguity occurs because there are so many model parameters
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Figure 14.3: Epistemic Uncertainty

that could describe the fundamental phenomena of the ground reality and this is
often the case for the left i.e (x = —4 to = —3), middle i.e (x = —1 to x = 1),
and right i.e (x = 3 to x = 4) portions of our clouds as shown in Figure [14.3].
Here we are not sure which model parameters better describe the results. Given
more data in this area, the uncertainty will be reduced. It is important to define
such spaces in high-risk applications.

An epistemic uncertainty can be estimated by performing a Bayesian inference
which aims to utilize the posterior distribution P(6|D) that is obtained by apply-
ing Bayes’ theorem. Bayes’ theorem revolves around computing the probability
of an event given some prior belief or knowledge as such:

P(D|§) x P(6)
P(D)

P(O|D) = (14.2)

where:
e 0 and D are any two independent events.

e P(f): The prior distribution that represents our beliefs about the true value
of the parameters.

e P(D|#): The likelihood distribution that is dependent on P(D).

e P(D): The marginal distribution of the data or known as the evidence.
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e P(A|D): The posterior distribution that represents our belief about the
parameter values after we have computed everything on the right-hand
side taking the observed data into account.

Therefore we can compute the posterior distribution of our parameters using our
prior beliefs updated with our likelihood using the Bayesian inference which is
the process of identifying the population properties or a probability distribution
from the given data using Bayes’ Theorem. However, in practice, it is often con-
sidered hard to obtain samples from the true posterior.

Epistemic uncertainty can be computed as such (Hullermeir & Waegeman, 2020):

epistemic_uncertainty = o’ ppr (14.3)

where 0%, is the variance of the posterior distribution or probability density
function pertaining to the probability distribution predicted by the probabilistic
model.

The unit used is (mm?) which is the same as the unit of our target variable but
squared i.e (ET).

14.1.3 Total Uncertainty

Total uncertainty is computed after having calculated the epistemic and aleatoric
uncertainties.

total_uncertainty = epistemic_uncertainty + aleatoric_uncertainty  (14.4)
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Chapter 15

Probabilistic and Uncertainty
Modeling

The previous point-wise models often predict one output value on every set of
input features. However, point estimates are not always a good choice since they
are prone to be erroneous and are limited to presenting one option rather than an
allowed range. Hence, we introduced models outputting a probability distribution
over an output space and we have incorporated uncertainty quantification in each
model’s predictions as mentioned in Chapter [14]. It is important to quantify
uncertainty since a machine learning model is considered of no use if having low
error metrics, high accuracy, but often uncertain. We will be experimenting with
several probabilistic and uncertainty models as such:

e Mixed Density Network
e Monte-Carlo Dropout (MC Dropout)

e Deep Ensemble

15.1 Mixed Density Networks

Mixed Density Networks (MDN), a variant of the neural network, was developed
by (Bishop, 1994). It maps multiple outputs to a single input. MDN is similar
to a standard neural network but only differs in having the final layer mapped to
a mixture of distributions. It predicts a class of probability distribution referred
to as a Mixture Gaussian distributions for the output.

For each input z, we will predict a probability distribution function (pdf) that is
a probability-weighted sum of multiple Gaussian probability distributions with
different means and standard deviations.

A sampling-free uncertainty-aware estimation method is proposed by (Sungjoon Choi

153



& Oh, 2017) which utilizes a mixture density network for modeling complex dis-
tributions. This algorithm uses single stochastic forward paths to drop out an
approach for uncertainty acquisition. Uncertainty is further decomposed into two
categories: an explained and unexplained variances corresponding to epistemic
and aleatoric uncertainties. Learning from the demonstration (Lfd) method is
proposed where it is used to switch to a rule-based approach when an MDN cap-
tures an explained variance when training an aggressive controller in a simulated
environment. Lfd was applied to a real-world driving data set from the US High-
way and it outperformed other methods in terms of safety in the sense that it
had captured the explained variance on the out-of-distribution inputs.

In addition to what is proposed in (Sungjoon Choi & Oh, 2017), we have further
tuned the model’s hyper-parameters and studied different input combinations

and their impact on our model’s performance in terms of utility-based regression
metrics and uncertainty:.

15.1.1 Architecture

The probability distribution is formalized as such:

PIY = yIX = 1) = 3 W(a)(y, p(2). oi(x)) (15.1)

Equation 15.1: Taken from (otoro.net, 2015)

K: Total number of Gaussians or components in a mixture.

IT;: It acts as multiplier or weight, for every ¢ Gaussian. All weights must
sum to one: S N 1T, = 1.

wi: It is the mean for the 7. Gaussian.

e 0;: It is the standard deviation for the ¢ Gaussian. All of o; are positive.

¢ is the Gaussian function for a given mean and standard deviation. ¢(y, i, o)
~75= oxp(—5(1)?).
1. Our model will consist of several hidden layers, each is formalized as: z;, =

activationFunction(W;,z + b;,). The activationFunction could be a tanh,
relu, etc...

2. The output layer will consist of our three parameters II, o,
211 = WHZh + bH
Zg — Wgzh + bg
2y = Wuzh + bu
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3. For our loss function, we aim in minimizing the negative log-likelihood of
the distribution or maximizing the logarithm of the likelihood of the output
distribution.

loss(Y = y|X = x) = —log (Z,K Hi($)¢(yaﬂi($)70i($))>

4. We will then use each in order to determine the parameters of the mixture

of Gaussian distributions that can be used further.
I — _oetm)
i SR exp(em,)

o; = exp(zo,)
Hi = Zp

15.1.2 Hyper-parameters

We experimented with several experiments by varying some of the following
hyper-parameters:

e Number of Epochs: The number of iterations the training data set is being
shown to the neural network model while training.

e Dropout: A regularization technique that revolves around randomly drop-
ping neurons so that their weights will not be updated resulting in improv-
ing generalizing and decreasing a model’s ability to over-fit. It ranges from
0 to 0.5.

e Learning Rate: A tuning parameter that determines the step size at each
iteration while moving toward a minimum of a loss function

e Number of layers: The number of hidden layers in our model between the
input and output layers.

e Hidden 1: The number of hidden neurons for the first layer.
e Hidden 2: The number of hidden neurons for the second layer.

e Activation: A function that is attached to each neuron in the network and
decides if a neuron should be fired or not based on its input if this input
happens to be relevant to the model’s prediction. It also aids in mapping
the output to a range between 0 and 1 or -1 and 1.

e Number of Mixtures: The number of Gaussian mixtures, this is being varied
per experiment.

e Optimizer: A function that is defined to reduce the loss by updating the
weights or learning rates.

e Distribution of the target: The distribution of our output variable.
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15.1.3 Implementation

We have built an MDN network and employed hyper-parameters tuning and
utility-based learning. The data set is divided into 70% training and 30% testing.

This module outputs testing scores, in addition to all necessary plots, figures,
and data sets needed.

This module code is implemented using Tensorflow. Our code is inspired by
the Github code which is available here, but we have further tuned the script
files to match our implementation of providing dynamic hyper-parameters and
dynamic data set processing with a real-world data set of 2 dimensions.

Our implementation is available here and divided into several files as such:

e colors.py: This python file contains a dictionary of colors per each uncer-
tainty type and true versus predicted output.

e dataset_preparation.py: This python file contains the set up for our data
set.

e distribution.py: This python file contains some exploratory analysis for
checking our target distribution.

e mixture_model.py: This file contains the neural network model architecture
which further initializes each input, hidden and an output layer of a neural
network.

e mixture_training.py: This file contains the training process of a neural net-
work.

e mixture_evaluation.py: This file contains the evaluation process of the neu-
ral network by training the neural network and evaluating it on the testing
data set and further reporting the predictions with their uncertainty. It
also includes the options to tune the hyper-parameters of the network.

e plotting.py: This file contains functions for plotting different uncertainties
and plotting the real output and the predicted output and its variance.

We tuned the MDN hyper-parameters by utilizing a grid search and Utility-based
regression. Each range of values for each hyper-parameter is chosen based on what
is accepted in the literature.

e Number of Epochs: [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000]

e Dropout: [0, 0.1, 0.2, 0.3, 0.4, 0.5]
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e Learning rate: [0.001, 0.01, 0.1, 0.2, 0.3]

e Number of layers: [1, 2, 3, 4, 5]

e Hidden 1: [40, 64, 128, 250]

e Hidden 2: [40, 64, 128, 256]

e Activation: [Relu, Tanh, Softmax]

e Number of Mixtures: [1, 3, 5, 10, 15, 20|

e Optimizer: [Adam, SGD, RMSprop]

e Distribution of the target: [Normal, Log, Exponentiall

The best hyper-parameter combination yielding the highest Accuracy and lowest
error metrics is:

e Number of Epochs: [3000]
e Dropout: [0.4]

e Learning rate: [0.001]

e Number of layers: [2]

e Hidden 1: [128]

e Hidden 2: [128]

e Activation: [Rely]

e Number of Mixtures: [3]
e Optimizer: [Adam]

e Distribution of the target: [Normal]

15.2 Monte-Carlo Dropout

Monte-Carlo Dropout as mentioned in (Gal & Ghahramani, 2016) works by run-
ning multiple forward passes T' through the model with a different dropout value
(set the weight to zero) each time where it computes the predictive mean and
variance out of the sampled network outputs. It applies a dropout mask during
predictions/testing not only during the training phase and is one of the popular
methods for modeling predictive uncertainty.
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We have used the same framework that was developed by authors in (Gustafsson,
Danelljan, & Schon, 2020) as they propose an evaluation framework to estimate
epistemic uncertainty in deep learning. It is designed to test the robustness
in real-world computer vision applications and is employed on the street-scene
semantic segmentation (classification) and depth completion task (regression).
Their proposed framework is also applied to toy classification and regression
problems to provide the first properly extensive framework that compares the
two current state-of-the-art scalable methods: MC-dropout and ensembling. Re-
sults have shown that ensembling consistently provides more reliable uncertainty
estimates and always outperforms MC-dropout.

We have developed further evaluation of the uncertainty where we decomposed
it into epistemic and aleatoric uncertainty and studied the impact of uncertainty
while varying our input features and further developed more visual figures to
demonstrate our comparison.

15.2.1 Architecture

The neural network is built using PyTorch. It consists of linear hidden layers
having a ReLLU activation and a dropout layer after each hidden layer. Then a
final linear output layer is added which outputs the mean predictions and the
model’s uncertainty.

The scoring/loss function that we use is the negative log likelihood, which is
defined as: where:

L(0,y) = —logPs(y) (15.2)

Equation 15.2: Taken from (Bloch, 2019)

e ( is the parameters of the distribution
e P is the predicted probability distribution

e y is the real outcome

15.2.2 Hyper-parameters

We experimented with several experiments by varying some of the following
hyper-parameters:

e Number of Epochs: The number of iterations the training data set is being
shown to the neural network model while training.
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Batch Size: A mini-batch size is the number of samples we give to our
model after the parameter update occurs.

Dropout: A regularization technique that revolves around randomly drop-
ping neurons so that their weights will not be updated resulting in improv-
ing generalizing and decreasing a model’s ability to over-fit. It ranges from
0 to 0.5.

Learning Rate: A tuning parameter that determines the step size at each
iteration while moving toward a minimum of a loss function

Number of layers: The number of hidden layers in our model between the
input and output layers.

Hidden 1: The number of hidden neurons for the first layer.
Hidden 2: The number of hidden neurons for the second layer.

Activation: A function that is attached to each neuron in the network and
decides if a neuron should be fired or not based on its input if this input
happens to be relevant to the model’s prediction. It also aids in mapping
the output to a range between 0 and 1 or -1 and 1.

Optimizer: A function that is defined to reduce the loss by updating the
weights or learning rates.

15.2.3 Implementation

We have built a neural network based on MC Dropout forward passes and em-
ployed hyper-parameters tuning and utility-based learning. The data set is di-
vided into 70% training and 30% testing.

This module outputs testing scores, in addition to all necessary plots, figures,
and data sets needed and found here

This module code is implemented using PyTorch. Our code is inspired by the
Github code which is available here, but we have further tuned the scripts to
match our implementation of providing a dynamic data set of two dimensions.

Our implementation is available here and divided into several files as such:

e datasets.py: This python file contains the processing of the training data

set along with the processing of the testing data set.

e model.py: This file contains the neural network model architecture which

further initializes each input, hidden, and output layer of a neural network.
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train.py: This file contains the training process of a neural network with
outputting the performance of the network concerning the number of epochs.
All hyper-parameters are defined here and we then save the network’s
weights and loss per epoch.

eval.py: This file contains the evaluation process of the already trained
network by loading the model’s weights and providing the testing data set
and then outputting the mean and different uncertainty types.

We tuned the MC Dropout hyper-parameters by utilizing a grid search and
Utility-based regression. Each range of values for each hyper-parameter is chosen
based on what is accepted in the literature.

Number of Epochs: [100, 150, 200, 250, 300, 350, 400, 450, 500]
Batch Size: [16, 32, 64, 128]

Dropout: [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Learning rate: [0.001, 0.01, 0.1, 0.2, 0.3]

Number of layers: [1, 2, 3, 4, 5]

Hidden 1: [40, 64, 128, 256|

Hidden 2: [40, 64, 128, 256]

Activation: [Relu, Tanh, Softmax|

Number of Mixtures: [1, 3, 5, 10, 15, 20]

Optimizer: [Adam, SGD, RMSprop]

The best hyper-parameter combination yielding the highest Accuracy and lowest
error metrics is:

Number of Epochs: [150]
Batch Size: [32]
Dropout: [0.2]

Learning rate: [0.001]
Number of layers: [2]
Hidden 1: [64]

Hidden 2: [64]
Activation: [Relu]

Optimizer: [Adam]
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15.3 Deep Ensemble

Regardless of the advantages of MC-Dropout, a few disadvantages likewise ex-
ist. For instance, the number of forward passes 1" of the network during forecast
needs to stay sufficiently high, which can be computationally costly. Moreover,
(Balaji Lakshminarayanan & Blundell, 2017) states that having a fixed dropout
rate is also considered another limitation since it cannot be learned during the
training process. This has motivated authors in (Balaji Lakshminarayanan &
Blundell, 2017) to use Deep Ensemble as an alternative approach to model un-
certainty.

Deep Ensemble is a group of neural network models used to predict uncertainty. It
trains multiple individuals models with different parameter initialization. These
models are treated as a uniformly-weighted mixture model, and they consolidate
network outputs to yield the final forecasts like bagging(bootstrapping) as shown

in Figure 15.1

Bootstrap Bootstrap) Bootstrap)

Figure 15.1: Deep Ensemble

We have used the author’s implementation in (Gustafsson et al., 2020) and stud-
ied the impact of uncertainty on our model’s prediction through different input
combinations.
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15.3.1 Architecture

The neural network is built using PyTorch. It consists of linear hidden layers
having a ReLU activation and a dropout layer after each hidden layer. Then a
final linear output layer is added which outputs the mean predictions and the
model’s uncertainty.

The scoring/loss function that we use is the negative log likelihood, which is
defined as: where:

L(0,y) = —logFy(y) (15.3)

Equation 15.3: Taken from (Bloch, 2019)

0 is the parameters of the distribution
Py is the predicted probability distribution

y is the real outcome

15.3.2 Hyper-parameters

We experimented with several experiments by varying some of the following
hyper-parameters:

Number of Epochs: The number of iterations the training data set is being
shown to the neural network model while training.

Learning Rate: A tuning parameter that determines the step size at each
iteration while moving toward a minimum of a loss function

Number of layers: The number of hidden layers in our model between the
input and output layers.

Hidden 1: The number of hidden neurons for the first layer.
Hidden 2: The number of hidden neurons for the second layer.

Activation: A function that is attached to each neuron in the network and
decides if a neuron should be fired or not based on its input if this input
happens to be relevant to the model’s prediction. It also aids in mapping
the output to a range between 0 and 1 or -1 and 1.

Optimizer: A function that is defined to reduce the loss by updating the
weights or learning rates.

Number of the ensemble (M): The number of ensemble members.

162



15.3.3 Implementation

We have built a Deep Ensemble neural network consisting of five members and
employed hyper-parameters tuning and utility-based learning. The data set is
divided into 70% training and 30% testing.

This module outputs testing scores, in addition to all necessary plots, figures,
and data sets needed and found here

This module code is implemented using PyTorch. Our code is inspired by the
Github code which is available here, but we have further tuned the scripts to
match our implementation of providing a dynamic data set of two dimensions.

Our implementation is available here and divided into several files as such:

e datasets.py: This python file contains the processing of the training data
set along with the processing of the testing and validation data sets.

e model.py: This file contains the neural network model architecture which
further initializes each input, hidden, and output layer of a neural network.

e train.py: This file contains the training process of a neural network with
outputting the performance of the network concerning the number of epochs.
All hyper-parameters are defined here and we then save the network’s
weights and loss per epoch.

e cval.py: This file contains the evaluation process of the already trained
network by loading the model’s weights and providing a holdout data set
to ensure no over-fitting occurs.

e test.py: This file contains the testing process of the already trained network
by loading the model’s weights and providing the testing data set and then
outputting the mean and different uncertainty types.

We tuned the Deep Ensemble hyper-parameters by utilizing a grid search and
Utility-based regression. Each range of values for each hyper-parameter is chosen
based on what is accepted in the literature.

o Number of Epochs: [100, 150, 200, 250, 300, 350, 400, 450, 500]

Learning rate: [0.001, 0.01, 0.1, 0.2, 0.3]

Number of layers: [1, 2, 3, 4, 5]

Hidden 1: [40, 64, 128, 256]

Hidden 2: [40, 64, 128, 256]
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e Activation: [Relu, Tanh, Softmax]

e Number of Mixtures: [1, 3, 5, 10, 15, 20]

e Optimizer: [Adam, SGD, RMSprop]

e Number of ensemble: [1, 2, 3,4, 5,6, 7, 8,9, 10]

The best hyper-parameter combination yielding the highest Accuracy and lowest
error metrics is:

e Number of Epochs: [150]
e Learning rate: [0.001]
e Number of layers: [2]
e Hidden 1: [64]
e Hidden 2: [64]
e Activation: [Relu]
e Optimizer: [Adam]
e Number of ensemble: 5
The best UBR and SmoGn parameters are:
e rel_method = “range”
e cxtr_type = “high”
e coef = 1.5
e relevance_pts = np.array([[1, 0, 0],[4, 0, 0], [15, 1, 0]])
e thr rel=0.1
e Cperc = np.array([1,1.2])
e repl = False
e dist = “Manhattan”
o p=2
e pert = 0.1

More details about each UBR and SmoGn parameters are found in Chapter [8]
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15.4 Results

We will present the testing results for all the clustering techniques we have per-
formed and further analyze each. We have conducted Experiment A across Deep
Ensemble, MC Dropout, EEflux (METRIC), and Stat on our daily data (union
of clusters) and on different clusters (cluster by climate or cluster by seasons).
We have conducted Experiment A on all the mentioned models across differ-
ent feature selection scenarios (scenario A, scenario B, scenario C, and scenario
D). However, we will first perform Experiment A between different probabilistic
models to note the best performing model.

15.4.1 Choosing the Best Model

We have performed Experiment A on all our probabilistic models which we
trained on all the input features (“Scenario A”). Data is split into 70% training
and 30% testing and we further evaluated the results of each probabilistic model.
This is performed to indicate the best performing model for us to proceed with
our experimental variations using the best candidate. Table [15.1] shows the

Error Metrics | MC Dropout Scores | Deep Ensemble Scores | MDN Scores
Average 3.74715476 3.74715476 3.747154763
F1 0.95035504 0.94711805 0.9355302
F2 0.9286266 0.93252082 0.929859227
F05 0.97312467 0.96217955 0.941270768
Precision 0.98892041 0.97248953 0.945137113
Recall 0.91468468 0.92303676 0.926116621
R2 0.62293978 0.64621753 0.58741328
Adjusted R2 0.61449814 0.63829703 0.578176264
RMSE 1.1669836 1.130388 1.220722663
MSE 1.3618507 1.2777771 1.490163819
MAE 0.8501126 0.8284513 0.889568496
MAPE 30.1460988 28.0285631 29.9684217
Accuracy 69.8539012 71.9714369 70.0315783
Pearson C.C. 0.79176997 0.80621273 0.778911564
Spearman C.C. | 0.8060766 0.818636 0.789701743
Spatial Distance | 0.20823003 0.19378727 0.221088436
NMI 0.9990108 1 1

AIC 679.3 539.55 876.76

BIC 684.99 545.25 882.45
Data Size 10911 10911 10911

Table 15.1: Comparing probabilistic models
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testing scores for the probabilistic models that we are studying. We note the
following scores:

e MC Dropout scores an R2=0.6 and an Accuracy of 70%
e Deep Ensemble scores an R2=0.64 and an Accuracy of 72%
e MDN scores an R2=0.59 and an Accuracy of 70%

According to all the scores and error metrics, Deep Ensemble is the best perform-
ing model amongst other models.

As per Table [15.1], we note that the results of MC Dropout and Deep En-
semble seem very comparable but yielding better results for the Deep Ensemble
Model. Thus, we will perform experiments by sub-setting on all the climates and
performing seasonality study i.e clustering by air temperature for the two models,
and evaluate the results.

15.4.2 Utility-Based Learning and SmoGn Up-sampling

We have performed Experiment A on our best probabilistic model (Deep En-
semble) that is obtained from Section [15.4.1] and compared the result of this
experiment to when we apply SmoGn up-sampling to our data set. SmoGn up-
sampling is applied to our best model (MLP-Reptile). Details for the SmoGn
hyper-parameters are found in Section [15.3.3]

Metrics Union of Clusters - Before SmoGn | Union of Clusters - After SmoGn
Models Average ET 3.75 3.75
Train Size 7638 7638
Test Size 3273 3273
Recall 0.93 0.82
F2 0.92 0.81
R2 0.67 0.52
RMSE 1.15 1.32
MLP-Reptile MAE 0.80 0.99
Accuracy 74.51 64.11
NMI 1.00 0.98
Training Time (seconds) 511.57 2548.17
Testing Time (seconds) 0.12 134.31
Data size 10911 10911

Figure 15.2: Before and After SmoGn

Figure [13.5] portrays the experimental results for the union of clusters (all
the data set) before SmoGn and after SmoGn using a Deep Ensemble model.
Deep Ensemble with no SmoGn is performing better than Deep Ensemble with
SmoGn by an R2 of 28.84%, Accuracy of 16.22%, Recall of 13.41%, and F2 of
13.58%. Up-sampling is adding more noise to our data set and thus the results
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are not as good as before applying SmoGn. Thus we continue with using Deep
Ensemble without any SmoGn techniques for any further experiments.

Takeaway Message SmoGn has left a negative impact on our best model Deep
Ensemble, decreasing the Recall by 13.41%, the F2 measure by 13.58%, the R2
score by 28.84%, and the Accuracy by 16.22%.

15.4.3 Climate Study

We have conducted Experiment A across several models on our daily data (union
of clusters) and on different climate subsets that are shuffled randomly with a
split ratio of 70/30. The best feature selection scenario yielding the best Accu-
racy, Recall, and the least error metrics was “Scenario C”. We will show the
results for that scenario and all other scenarios will be presented in the appendix.

We have performed seven experiments where each experiment represents training
and testing on a climate subset. Experiments are ordered from the least perform-
ing to the best performing. As per Figure [15.3].

Experiments are defined as such:

e Cluster Dsa: We randomly train on climate Dsa using a 70/30 split

e Cluster Other: We randomly train on climate Other using a 70/30 split
e Cluster Cwa: We randomly train on climate Other using a 70/30 split
e Cluster Csb: We randomly train on climate Csb using a 70/30 split

e Cluster Csa: We randomly train on climate Csa using a 70/30 split

e Union of Clusters: We randomly train on all the climates using a 70/30
split

e Cluster Cfa: We randomly train on climate Cfa using a 70/30 split

167



Clusters Climate Dsa Climate Other Climate Cwa Climate Csb Climate Csa Union of Climates Climate Cfa

Models Average ET 2.52 3.50 449 229 3.99 3.74 3.98
Train Size 565 1167 472 431 2457 7638 2552
Test Size 242 499 202 184 1052 3273 1093
F2 0.53 0.00001 0.00001 0.00001 0.86 0.79 0.73
Recall 0.51 0.00001 0.00001 0.00001 0.84 0.79 0.75
R2 -0.12 -1.16 -1.62 -5.97 0.23 -0.78 -1.64
RMSE 1.24 247 2.75 1.74 2.00 2.67 3.27
MAE 110 1.93 2.03 1.45 1.40 2.01 2.57

Accuracy 38.11 41.86 54.30 33.93 65.21 44.52 35.13
NMI 0.86 0.89 0.90 0.96 0.95 0.87 0.83
Training Time NA NA NA NA NA NA NA
EEflux (METRIC) |Testing Time NA NA NA NA NA NA NA
F2 0.0001 0.90 0.97 0.00001 0.94 0.93 0.94
Recall 0.90 0.88 0.97 0.00001 0.92 0.92 0.93
R2 0.48 0.50 0.59 0.60 0.65 0.67 0.69
RMSE 1.10 1.42 0.89 0.59 1.20 115 1.16
MAE 0.80 1.02 0.61 0.45 0.82 0.80 0.82
Accuracy 66.17 64.35 84.29 78.85 76.19 74.51 75.50
NMI 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Training Time 113.26 154.14 117.56 113.26 223.16 511.57 223.90
Deep Ensemble | Testing Time 0.01 0.04 0.01 0.06 0.04 0.12 0.03
F2 0.0001 0.90 0.96 0.00001 0.93 0.93 0.94
Recall 0.89 0.87 0.96 0.00001 091 0.92 0.93
R2 0.45 0.48 0.54 0.53 0.61 0.66 0.68
RMSE 1.14 1.45 0.95 0.64 126 117 117
MAE 0.78 1.05 0.66 0.49 0.87 0.83 0.83
Accuracy 69.14 63.79 83.48 76.59 7533 72.73 74.93
NMI 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Training Time 155.18 203.32 203.32 136.40 220.15 566.67 6751.83
Testing Time 0.01 0.15 0.01 0.05 0.32 0.77 0.05
MC Dropout Data set Size 807 1666 674 615 3509 10911 3645

As per Figure [15.3], the following is noted:

e Climate Dsa is the least performing climate

Figure 15.3: Sampling by Climate Results

e Climate Csa shows comparable results to that of the union of clusters/climates

e Climate Cfa is the best-performing climate and shows better results than
the union of climates with an R2=0.686 and Accuracy=75.5% for the
Deep Ensemble Model and an R2=0.682 and Accuracy=74.9% for the MC
Dropout Model

e Union of clusters shows an R2=0.669 and Accuracy=74.5% for the Deep En-
semble Model and an R2=0.660 and Accuracy=72.7% for the MC Dropout

Model

e As been shown earlier in Table [15.1], Deep Ensemble is the best perform-
ing model for all climates not only for the union of climates but results for

Climate Cfa are very comparable.
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Figure 15.4: Experiment A Scatter Plot for Climate Study

Figure [15.4] illustrates on the z-axis the Real ET (mm) and on the y-axis the
Predicted ET (mm). It shows the testing data set for MC Dropout (base model),
Deep Ensemble (best model), and EEflux (Metric) model across the best climates
and the union of climates ordered according to their performance. It is noticed
that the Deep Ensemble shows a better diagonal fit than the MC Dropout model
and EEFlux (METRIC) model across Climate Cfa and Union of Climates. The
points in the EEflux (METRIC) model were scattered and not centered around
the bisector. Deep Ensemble trained on Climate Cfa yielded a better concentra-
tion around the bisector in comparison to the union of climates.

We have further conducted a residual analysis study for the union of clusters
and the best performing climates (climate Cfa) by studying the performance
of Experiment B, Experiment C, and Experiment D across different models as
shown in Figure [15.5]

Figure [15.5] shows the experimental results across the best climate cluster
and its union. We contrast the performance of the Deep Ensemble and the MC
Dropout Models in minimizing the residual biases as mentioned in Experiments
B, C, and D. We note the following:
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Clusters Union of Clusters Climate Cfa
Models Average ET 3.74623853 3.98847666
Residuals Experiment B | Experiment C | Experiment D | Experiment B | Experiment C | Experiment D
F2 0.90 0.95 0.90 0.91 0.95 0.91
Recall 0.91 0.96 0.91 0.92 0.96 0.92
R2 0.83 0.78 0.83 0.88 0.87 0.88
RMSE 0.26 1.14 0.26 0.25 1.12 0.25
MAE 0.16 0.82 0.16 0.15 0.81 0.15
Accuracy 76.25 NA NA 75.88 NA NA
NMI 1 1 1 1 1 1
Training Time (seconds) NA NA NA NA NA NA
Deep Ensemble | Testing Time (seconds) NA NA NA NA NA NA
F2 0.88 0.95 0.88 0.92 0.95 0.92
Recall 0.88 0.96 0.88 0.92 0.96 0.92
R2 0.90 0.83 0.90 0.89 0.88 0.89
RMSE 0.30 0.75 0.85 0.77 0.74 0.77
MAE 0.17 1.12 0.30 0.24 1.08 0.24
Accuracy 77.15 0.82 0.17 0.14 0.79 0.14
NMI 1.00 1.00 1.00 78.11 NA NA
Training Time (seconds) 1 1 1 1 1 1
MCDropout | Testing Time (seconds) NA NA NA NA NA NA
Fz - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (seconds) - - - - - -
Testing Time (seconds) - - - - - -
Stat Data set Size 10,911 10,911 10,911 3,645 3,645 3,645

Figure 15.5: Residual Analysis for Climate Study
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e MC Dropout outperforms all others in minimizing the absolute bias across
the union of clusters, producing an R2 score of 0.83, and MAE of 1.12

e MC Dropout outperforms all others in minimizing the proportional bias
across the union of clusters, producing an R2 score of 0.90, MAE of 0.30,
and accuracy of 77.15%

e MC Dropout outperforms all others in minimizing the combined bias across
the union of clusters, producing an R2 score of 0.9, and MAE of 0.30

e Experiment B was the best in terms of all the reported metrics compared to
Experiment C and Experiment D. Thus, minimizing the proportional bias
was the most successful residual analysis
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Figure 15.6: Residual Analysis Scatter Plots for Climate Study

In Figure [15.6], the columns represents Experiments B, C, and D respectively
and the row represents the two variables as been defined for each experiment
in Chapter [12] for Deep Ensemble Model as being our best model for the
union of climates. We note that Experiments B and D show very comparable
visualizations having the points scattered around the bisector with a bit more
distribution as opposed to Experiment C. Experiment C show a better diagonal
than the others. However, quantitative results as shown in Figure [15.5] indicate
that MLP-Reptile was the best point-wise model in minimizing the proportional
bias, which is represented by Experiment B.

N.B: AutoML results are not reported as earlier since we could not extract the
testing data set for us to compute the above metrics.

Takeaway Message: Deep Ensemble was the best probabilistic model to pre-
dict Real ET. Deep Ensemble beats MC Dropout in R2 by 0.58% to 1.36% and
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in RMSE by 0.68% to 0.94%. Deep Ensemble performs best on climate Cfa (Hu-
mid Subtropical - mild with a dry season and hot summer), which is considered
suitable for farmers would need to know irrigation factor values the most in this
type of climate, rather than a climate with rich irrigation and moist season. Deep
Ensemble trained on climate Cfa beats the union of climates in R2 by 2.5%, in
Accuracy by 1.34%, and in Recall by 0.86%. Figure [15.4] confirms our quan-
titative observations present in Figure [15.3].

15.4.4 Seasonality Study

We have conducted Experiment A across Deep Ensemble, MC Dropout, EEflux
(METRIC), and Stat on our daily data (union of clusters) and on different sea-
sons where each experiment represents training and testing on the same season.
The best feature selection scenario yielding the best Accuracy, Recall, and the
least error metrics was “Scenario C”. We will show the results for that scenario
and all other scenarios will be presented in the appendix.

We have studied the model’s performance in each separate season. There exist
three clusters where each belongs to a season.

Cluster 0 represents summer, Cluster 1 represents winter, and Cluster 2 repre-
sents spring.

We have performed three experiments. Experiments were defined as such:

e Winter: We randomly train and test on the winter season data set using a
70/30 split. This data set is obtained by clustering on TA using Kmeans,
k = 3 on the third cluster

e Spring: We randomly train and test on the spring season data set using a
70/30 split. This data set is obtained by clustering on TA using Kmeans,
k = 3 on the second cluster

e Summer: We randomly train and test on the summer season data set using
a 70/30 split. This data set is obtained by clustering on TA using Kmeans,
k = 3 on the first cluster

e Union of Clusters: We randomly train on all the seasons using a 70/30 split
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Clusters Winter Spring Summer Union of Clusters
Models Average ET 2.32873773 3.59964093 4.95491741 3.74623853
Train Size 2173 3510 3853 7638
Test Size 93 1,504 1,651 3,273
Data sets Validation Testing Validation Testing Validation Testing Validation Testing
F2 NA - NA - NA 0.00001 NA 0.79
Recall NA - NA - NA 0.00001 NA 0.79
R2 NA - NA - NA -2.81 NA -0.78
RMSE NA - NA - NA 3.73 NA 2.67
MAE NA - NA - NA 2.82 NA 2.01
Accuracy NA - NA - NA 44.35 NA 44.52
NMI NA - NA - NA 0.91 NA 0.87
Training Time (seconds) NA NA NA NA NA NA NA NA
EEflux (METRIC) |Testing Time (seconds) NA NA NA NA NA NA NA NA
F2 0.00001 0.00001 0.00001 0.92 0.95258539 +- 0.005 0.94 0.91971708 +- 0.006 0.93
Recall 0.00001 0.87 0.00001 0.90 0.94989474 +- 0.006 0.94 0.89825806 +- 0.010 0.92
R2 0.29446581 +- 0.05 0.34 0.40 0.49 0.65071812 +- 0.03 0.56 0.68636934 +- 0.0155 0.67
RMSE 1.2425307 +- 0.04 1.01 1.00 1.20 1.1765621 +- 0.04 1.42 1.2579134 +- 0.030 115
MAE 0.8735857 +- 0.03 0.73 0.71 0.89 0.8879817 +- 0.037 1.06 0.82197434 +- 0.017 0.80
Accuracy 70.3756755 +- 1.07 67.45 68.92 69.80 65.9157068 +- 1.88 69.72 72.5975055 +- 1.08 74.51
NMmI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Training Time (seconds) 500.57 500.57 576.02 576.02 21821 21821 511.57 511.57
Deep Ensemble | Testing Time (seconds) 0.23 0.23 0.04 0.47 0.29 0.29 0.12 0.12
F2 0.00 0.00 0.00 0.00 0.95262973 +- 0.004 0.94 0.92634674 +- 0.0009 0.93
Recall 0.00 0.85 0.00 0.86 0.94541887 +- 0.004 0.94 0.91003093 +- 0.0012 0.92
R2 0.25108739 +- 0.017 0.32 0.30785995 +- 0.03 0.34 0.65077549 +- 0.03 0.51 0.62330324 +- 0.006 0.66
RMSE 1.2801583 +- 0.014 1.03 1.2306799 +- 0.03 1.01 1.1764655 +- 0.06 1.49 1.2413518 +- 0.009 1.17
MAE 0.88716304 +- 0.013 0.72 0.86948097 +- 0.03 0.72 0.9167441 +- 0.044 112 0.86196303 +- 0.006 0.83
Accuracy 70.6880409 +- 0.54 69.52 69.5291483 +- 1.26 68.19 64.4176989 +- 2.26 66.70 72.2507273 +- 0.186 72.73
NMI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Training Time (seconds) 299.44 299.44 271.15 271.15 361.78 361.78 566.67 566.67
MCDropout Testing Time (seconds) 0.25 0.25 0.29 0.29 0.40 0.40 0.77 0.77
F2 - - - - - - - -
Recall
R2
RMSE
MAE
Accuracy
NMI
Training Time
Testing Time - - - - - - - -
Stat Data set Size 3,103 3,103 5,014 5,014 5,504 5,504 10,911 10,911

Figure 15.7: Seasonality

As per Figure [15.7], the following is noted:

e The winter season (Cluster 1) was the worst-performing as opposed to the
other clusters/seasons with an R2=0.34 and an Accuracy=67.4% for the
Deep Ensemble Model and an R2=0.31 and an Accuracy=69.5% for the
MC Dropout Model.

e The summer season (Cluster 0) was the best performing as opposed to
the other seasons with an R2=0.55 and an Accuracy=69.71% for the Deep
Ensemble Model and an R2=0.51 and an Accuracy=66.7% for the MC
Dropout Model.

We have further conducted a residual analysis study for the union of clusters and
the best performing season (Summer) by studying the performance of Experi-
ment B, Experiment C, and Experiment D across different models as shown in
Figure [15.8]

Figure [15.8] shows the experimental results across the best seasonality cluster
(summer) and its union. We contrast the performance of the Deep Ensemble
and the MC Dropout Models in minimizing the residual biases as mentioned in
Experiments B, C, and D. We note the following:
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Clusters

Q

Union of Clusters

Models Average ET 4.95491741 3.74623853
Residual Experiment B | Experiment C | Experiment D | Experiment B | Experiment C | Experiment D
F2 0.85 0.95 0.85 0.90 0.95 0.90
Recall 0.85 0.95 0.85 0.91 0.96 0.91
R2 0.84 0.86 0.84 0.83 0.78 0.83
RMSE 0.28 1.30 0.28 0.26 1.14 0.26
MAE 0.18 1.01 0.18 0.16 0.82 0.16
Accuracy 79.21 NA NA 76.25 NA NA
NMI 1.00 1.00 1.00 1 1 1
Training Time (seconds) NA NA NA NA NA NA
Deep E ble | Testing Time (seconds) NA NA NA NA NA NA
F2 0.82 0.94 0.82 0.88 0.95 0.88
Recall 0.82 0.95 0.82 0.88 0.96 0.88
R2 0.81 0.83 0.81 0.90 0.83 0.90
RMSE 0.31 1.43 0.31 0.85 0.75 0.85
MAE 0.19 1.14 0.19 0.30 1.12 0.30
Accuracy 77.50 NA NA 0.17 0.82 0.17
NMI 1.00 1.00 1.00 77.15 NA NA
Training Time (seconds) NA NA NA 1 1 1
MCDropout | Testing Time (seconds) NA NA NA NA NA NA
F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (seconds) - - - - - -
Testing Time (seconds) - - - - - -
Stat Data set Size 5,504 5,504 5,504 10,911 10,911 10,911

Figure 15.8: Residual Analysis for Seasonality Study
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e Deep Ensemble outperforms all others in minimizing the absolute bias
across the summer season, producing an R2 score of 0.86, and MAE of
1.01

e Deep Ensemble outperforms all others in minimizing the proportional bias
across the summer season, producing an R2 score of 0.84, MAE of 0.18,
and accuracy of 79.21%

e Deep Ensemble outperforms all others in minimizing the combined bias
across the union of clusters, producing an R2 score of 0.84, and MAE of
0.18

e Experiment B was the best in terms of all the reported metrics compared to
Experiment C and Experiment D. Thus, minimizing the proportional bias
was the most successful residual analysis

Takeaway Message: Deep Ensemble was the best probabilistic model to predict
Real ET. Deep Ensemble beats MC Dropout in R2 by 0.58% to 1.36% and in
RMSE by 0.68% to 0.94%. The best performing season was the summer season
with an R2=0.55 and an Accuracy=69.71%.

15.5 Uncertainty Quantification

After examining with several probabilistic models and noting that Deep Ensemble
was our best model in terms of yielding the highest Accuracy and lowest error
metrics. We will further confirm that by comparing MC Dropout and Deep
Ensemble using uncertainty metrics for “Scenario C” as we have used in the
previous sections.
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Figure 15.9: Uncertainty Quantification between MC Dropout and Deep Ensem-
ble

Figure [15.9], shows on the z-axis 100 testing data points for the MC-
Dropout (in orange), and Deep Ensemble models (in blue). The y-axis shows the
aleatoric, epistemic, or total uncertainty in (mm?). As shown in Figure [15.9],
the aleatoric, epistemic, and total uncertainty is higher for the MC Dropout
Model meaning MC Dropout Model is less certain than Deep Ensemble.

Thus we will continue with studying with different feature selection methods
utilizing our best probabilistic and most certain model i.e Deep Ensemble.

We have experimented with four different experimental variations, each pertain-

ing to a feature selection method, utilizing Deep Ensemble as mentioned in Table
[15.2].
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Combinations

Model Name

Input Combinations

1
2
3

DeepEnsemblel  Scenario A
DeepEnsemble2 Scenario B
DeepEnsemble3 Scenario C

DeepEnsemble4 Scenario D

All Columns

TA(5 lags)

TA(5 lags) WS(2 lags)
RH(3 lags)

EEflux LST(5 lags)
EEflux NDVI(2 lags)
EEflux Albedo(2 lags)
TA(5 lags) RH(3 lags)
EEflux LST(5 lags)

Table 15.2: Feature Selection Scenarios
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Models Metrics Standard Deviation Validation | Validation Scores | Testing Scores
Recall 0.00798687 0.89880748 0.92287661
F2 0.00514443 0.91605511 0.93288075
R2 0.01579645 0.67335243 0.65560319

Deep Ensemblel | RMSE 0.03028143 1.2837521 1.1772883
Accuracy 1.00480863 70.9085482 74.1304804
Training Time (seconds) | NA NA 505.57238
Testing Time (seconds) NA NA 0.07739592
Recall 0.00578996 0.88924413 0.91049342
F2 0.00510831 0.91291401 0.92412707
R2 0.01095162 0.6243729 0.58659515

Deep Ensemble2 | RMSE 0.01980728 1.3766387 1.2898555
Accuracy 0.93372673 69.5943482 71.1985056
Training Time (seconds) | NA NA 470.6844
Testing Time (seconds) NA NA 0.06228161
Recall 0.01048178 0.89825806 0.92338169
F2 0.006626 0.91971708 0.93430161
R2 0.01557407 0.68636934 0.6698199

Deep Ensemble3 | RMSE 0.0302498 1.2579134 1.152733
Accuracy 1.0857688 72.5975055 74.5091767
Training Time (seconds) | NA NA 511.56939
Testing Time (seconds) NA NA 0.12408829
Recall 0.00762346 0.84030658 0.8765349
F2 0.00570801 0.86924625 0.89724382
R2 0.01117238 0.25798637 0.33982586
RMSE 0.01447867 1.9348506 1.6299812
Accuracy 1.50555374 50.6338111 56.7280494
Training Time (seconds) | NA NA 505.5
Testing Time (seconds) NA NA 0.11339784
Training Dataset Size NA NA 7638

Deep Ensemble4 | Testing Dataset Size NA NA 3273

Table 15.3: Feature Selection Experiments

Table [15.3].

When comparing different error and accuracy measures, it is noted that Deep-
Ensemble3 was the best performing amongst all as shown in Table [15.3] having
R2 = 0.67, Accuracy = 74.5% and Recall = 0.92.
Our best feature selection method is the one named “DeepEnsemble3”.

We will further want to quantity the epistemic, aleatoric, and total uncertainty
for all the feature selection methods and analyze which one is the least uncertain
or the most certain.
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Epistemic Uncertainty
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Figure 15.10: Epistemic Uncertainty

Figure [15.10] represents the epistemic uncertainty for 100 data points of
the testing data set. The z-axis represents the number of data points and the
y-axis represents the epistemic uncertainty in mm? which is of the same unit as
our output variable.

As shown in Figure [15.10], we note the following:
e DeepEnsemblel was the most uncertain
e DeepEnsemble4 was the least uncertain
e DeepEnsemble3 seems to fall between DeepEnsemblel and DeepEnsemble4
e DeepEnsemble2 shows analogous results to that of DeepEnsemble4

The reason for having DeepEnsemble2 and DeepEnsemble4 to be the least un-
certain since they have fewer input combinations meaning they are less complex
in terms of their dimensions. However, DeepEnsemblel and DeepEnsemble3 are
less certain since they have higher input combinations i.e higher dimension.

In addition to that, it is noted that as the data points increase from 10 to 100
data points, the red line (DeepEnsemble4) for instance decreases which validates
the theory behind the epistemic uncertainty in the sense that with more data,
the epistemic uncertainty decreases.
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Moving to studying the aleatoric uncertainty as shown in Figure [15.11], we
note the following:

Aleatoric Uncertainty

—— DeepEnsemblel
—— DeepEnsemble2 ﬂ
—— DeepEnsemble3
6 1 —— DeepEnsemble4

~
£
E
)
£
£ 4
[
v
5
© 37 ‘ A
—
B \
3 21
< '
0 )
0 20 40 60 80 100
Data points

Figure 15.11: Aleatoric Uncertainty

e DeepEnsemble4 was the most uncertain
e DeepEnsemblel and DeepEnsemble3 were the least uncertain
e DeepEnsemble2 shows analagous results to that of DeepEnsemble4

We note a different behavior of what we visualized earlier for the epistemic uncer-
tainty. As we increase the problem dimension (i.e moving from DeepEnsemble4
to DeepEnsemble2 to DeepEsemble3 to DeepEnsemblel), as we are moving from
a lower feature selection dimension to a higher dimension, the epistemic uncer-
tainty increases and the aleatoric uncertainty decreases as shown and explained
in Figure [15.11] and Figure [15.10]. Moreover, the reason epistemic un-
certainty is increasing is because fitting a model will become more difficult and
require more data when the problem dimension increases.

We will further study the impact of the total uncertainty as shown in Figure
[15.12]
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Figure 15.12: Total Uncertainty

We note the following:
e The most uncertain model is DeepEnsemble4 followed by DeepEnsemble2.

e DeepEnsemblel and DeepEnsemble3 were the most certain showing analo-
gous results.

15.6 Takeaway Message

After performing climate study and seasonality study using Deep Ensemble and
MC Dropout, we note that our best performing model was Deep Ensemble with
an R2 = 0.669 and Accuracy = 74.5% for the union of clusters and with an R2 =
0.68 and an Accuracy = 75.5% for climate Cfa which was the best-performing cli-
mate. Furthermore, we did not benefit much from the cluster by air temperature
(seasonality study) as opposed to the climate subset study has been indicated
earlier.

After computing different error and accuracy metrics for several feature selec-
tion methods and studying the impact of the uncertainty on each, the best model
we chose is “DeepEnsemble3” as has been shown and explained in Figure [15.12]
as it is the most certain model.

181



Moreover, it is also noted that our uncertainty quantification confirms what we
have as being the best model in Table [15.3].

In Figure [15.12], DeepEnsemblel shows comparable results to DeepEnsem-
ble3, but since it has higher dimensions i.e more input features as per Table
[15.2], its epistemic uncertainty is higher as shown in Figure [15.10].

15.7 Models’ Stability and Performance

For all our experiments, we have evaluated our testing data set on 100 repetitions
in order to yield consistent and stable results rather than random ones. We will
compare the performance of our models in terms of different metrics i.e (the most
accurate, the most certain, the least training time, and the one yielding the least
bias and variance).

15.7.1 Most Accurate Model

When comparing our models in terms of accuracy, it is noted that Deep Ensemble
is the best probabilistic model with an accuracy of 74.51% as opposed to the MC
Dropout model yielding an accuracy of 72.73%.

15.7.2 Most Precise Model

When comparing our models in terms of utility-based metrics, it is noted that
Deep Ensemble is the best probabilistic model with a recall of 0.923, and pre-
cision of 0.978 as opposed to the MC Dropout model yielding a recall of 0.916,
and precision of 0.99. Thus the Deep Ensemble model is a better candidate in
capturing correctly rare from non-rare values as it has a higher recall than an
MC Dropout model.

15.7.3 Most Certain Model

When comparing our models in terms of uncertainty, it is noted that MC Dropout
shows high fluctuations as shown in figure Figure [15.9] for all the uncertainty
types. However, Deep Ensemble shows low uncertainty values and more stable
values for each uncertainty type. Thus, the most certain model is the Deep
Ensemble model.

15.7.4 Least Training Time Model

When comparing the training time of our models, MC Dropout took 566.67 sec-
onds for learning with 200 epochs, however, Deep Ensemble took 511.57 seconds
with 200 epochs.
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15.7.5 Learning Experience

We have computed validation scores, validation standard deviation, and evaluated
our model on a shuffled testing data set for each fold.

e For MC Dropout Model: We have computed validation scores and plotted
the learning curve.

— It yields an accuracy of 72.73% for the testing data set, an accuracy of
72.2% for the validation data set, and a validation standard deviation
of 0.186.

— It yields an MSE of 1.37 mm for the testing data set, an MSE of 1.54
mm for the validation data set, and a validation standard deviation of
0.02.

Thus the training and validation scores are very comparable for MC Dropout;
meaning the validation data set is tracking well the training data set.

e For Deep Ensemble Model: We have computed validation scores and plotted
the learning curve.

— It yields an accuracy of 74.51% for the testing data set, an accuracy of
72.5% for the validation data set, and a validation standard deviation
of 1.08.

— It yields an MSE of 1.32 mm for the testing data set, an MSE of 1.58
mm for the validation data set, and a validation standard deviation of
0.07.

Thus the training and validation scores are very comparable for Deep En-
semble; meaning the validation data set is tracking well the training data
set.
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Chapter 16
SHAP

16.1 Background

In numerous utilizations of Al, users are usually inquired to trust a model for it
would help them to make better choices, but a “doctor will not simply operate on
a patient simply because the model said so.” (Marco Tulio Ribeiro & Guestrin,
2016). This is also applicable for lower-stakes events such as picking a movie to
watch from Netflix; we’ll need to have some kind of trust in our model. Trust
could be built by understanding the rationale behind a model’s prediction. For
instance, as been shown in Figure [16.1], that the model predicts that a cer-
tain patient has the flu and the prediction is further explained by an “explainer”
i.e (SHAP or LIME) that sheds lights on the symptoms that are most relevant
to the model. Having this information about the model, the doctor is simply
capable of deciding whether the model can be trusted or not. SHAP (Shapley

Feature Engineering

ata prepared for
training the model

14 Data Preparation
D

(merge tables to have a
consolidated table with features
and the target in one single
table)

data for the model to be able
to learn better)

Model
(LGBM, Keras model)

Stakeholders

Figure 16.1: Explaining a model’s prediction
Additive exPlanations) is a technique for interpreting a model’s prediction and

being able to explain its output. Each feature has a SHAP value which indicates
its importance or how much it contributes to a particular prediction.

184



SHAP value is the “average of the marginal contributions across all permuta-
tions.” SHAP values as been explained in (Parsa & Movahedi, 2020) has several
benefits:

e Global Interpretability: A set of SHAP values can show how each predictor
often contributes i.e negatively or positively to the output feature. In the
case of classification, SHAP shows if a low or high value of an input feature
contributes to increasing or decreasing the probability of the output variable
belonging to a certain class. In the case of regression, SHAP shows if a low
or high value of an input feature contributes to increasing or decreasing the
value of an output variable. The SHAP interpretation is examined on the
whole data set.

e Local Interpretability: Each observation has a collective SHAP value. The
SHAP interpretation is examined on a subset of the data. Local inter-
pretability helps us define and contrast the effects of the input features on
the target variable. This is important because SHAP allows us to study
each instance of any input variable, and analyze its effects on our model
prediction.

e Flexibility: It can be computed for any tree or neural network-based model.
Keras and Tensorflow models are supported by SHAP by using a Deep
Explainer. DeepExplainer is a class specialized for computing SHAP values
for neural network models.

16.1.1 Dealing with Categorical Data

Our data set consists of several encoded columns i.e Site Id, Month, and Vege-
tation. Each column is encoded and hence is split into several columns having a
value of 0 or 1 which is why it is difficult to indicate the importance of the Site
Id or the other columns as a whole. To represent the encoded columns as one
column we have performed the same strategy as mentioned by the author of the
SHAP package Lundberg and thus did the following:

e Fit our neural network model
e Compute the SHAPely value array for each data point in our data frame.

e Sum up the SHAPely values corresponding to the encoded parts of each
column. Example (Sum up the SHAPely values for Site Id 1, Site Id 2, Site
Id 3) resulting in 1 value only which will indicate the importance of that
column as a whole

e Perform an OR operation on the encoded column parts to produce one
column for each encoded column (Parsa & Movahedi, 2020)
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This will result in having 1 column which has the SUM of the SHAPely values
instead of having all its parts.

16.2 Point-wise and Probabilistic SHAP

SHAP supports a wide range of plots and each has its own purpose, we will re-
strict our study to summary bar plots, summary plots, and decision plots.

We perform SHAP analysis on our best point-wise and probabilistic models which
are based on a multi-layer perceptron neural network. The same analysis is re-
flected for both since SHAP takes a neural network estimator.

16.2.1 SHAP Summary Bar Plot

In Figure [16.2], the z-axis represents the mean SHAPely value for each variable
and the y-axis represents the input features. A SHAPely value will determine the
impact of each input feature on our predictions in the sense of how much does
the input contributes to decreasing or increasing the value of the output feature.
It does not show us if this shift is a positive or a negative, or if this shift caused
the Predicted ET to be closer to the Real ET. As shown in Figure [16.2], TA
is the largest contributor which shifted the output variable by an average of 0.8
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Figure 16.2: Summary Bar Plot
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16.2.2 SHAP Summary Plot

This plot is often more descriptive than Figure [16.2] since it shows the negative
and positive relationships of the predictors with the target variable. This plot
shows the following information:

e Feature Importance: Input features are ranked in a descending order with
respect to their importance of contributing to the output feature.

e Impact: The horizontal location shows whether the effect of that value is
associated with a higher or lower prediction.

e Original Value: A red color indicates whether a variable’s value is high and
blue color indicates whether a variable’s value is low. A mix of red and blue
shows that the input variable value is around the average.

High
Ta o ee—— . -
Month_encoded oo -—w-
Site_encoded +-
RH -
EEflux LST . -..+
EEflux NDVI +
EEflux LST-1 .
ws -+ ..
EEflux NDVI-1 + y
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TA-5 +
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EEflux Albedo + -
EEflux LST-3 +
EEflux NDVI-5 +. .
TA-2 4
: u L T T Low
-2 0 2 4 6

SHAP value (impact on model output)
Figure 16.3: Summary Plot

From Figure [16.3], we analyze that TA is the highest contributing feature
for our model. When TA has high values, the SHAPely values are high (hence the
model output value increased) followed by EEflux LST and TA having the same
analysis results. LST values, for example, yield higher SHAPely values when they
are low and lower SHAPely values when they are high. Month and site, since
they are encoded variables, cannot be measured by their value. It can only be
mentioned that they rank second and third in terms of contribution respectively.
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16.2.3 SHAP Decision Plot for All Predictions

In Figure [16.4], the x-axis represents the model’s output and the y-axis lists
the input features ordered by their importance in a descending order. The top
and bottom vertical bands represent the model output value (real ET). Each pre-
diction is represented by a colored line indicating its importance. At the top of
the plot, each line strikes the z-axis at its corresponding observation’s predicted
value. This value determines the color of the line on a spectrum. Moving from
the bottom of the plot to the top, SHAPely values for each feature are added to
the model’s base value (a value that would be predicted if the model wasn’t ex-
posed to the top contributing features). This shows how each feature contributes
to the overall prediction. Figure [16.4] represents the decision plot on a global

TA
Month_encoded
Site_encoded
RH

EEflux LST
EEflux NDVI
EEflux LST-1
WS

EEflux NDVI-1
RH-1
Vegt_encoded
TA-1

RH-2

EEflux NDVI-2
TA-5

WS-1

EEflux Albedo
EEflux LST-3
EEflux NDVI-5
TA-2

Model output value

Figure 16.4: Summary Decision Plot Global

level i.e for all the predictions.

As it is observed, the model output value before introducing the major contribut-
ing input variables was restricted between 2 and 5 mm, then this range witnessed a
big shift upon introducing EEflux NDVI, EEflux LST, RH, Site, Month, and TA.
The red color denotes a high-value influence (introduction of a variable yielded
in a higher value Real ET), and the blue color denotes a low-value influence (in-
troduction of a variable yielded in a lower value Real ET). For instance, TA has
a negative impact on ET values from 0 to 4, causing a decrease in the predicted
ET value. However, TA has a positive impact on ET values that are greater than
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4, causing a decrease in the predicted ET value.

16.3 Observations

High values of TA imply high values of predicted ET.

High values of EEflux NDVI imply high values of predicted ET.
Low values of RH imply high values of predicted ET.

Low values of WS imply high values of predicted ET.

Low values of EEflux LST imply high values of predicted ET.

Low or high values of EEflux Albedo does not indicate a certain range or
pattern for ET.

TA, EEflux LST, and RH are the top contributing features

All of our observations appear to be in concurrence with what irrigation special-
ists consider to be valid. We would also like to shed light on the fact that the
observations we noted did not change when we tested SHAP on the most accurate
or rare predictions.
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Chapter 17
LIME

17.1 Background

LIME, a local interpretable model-agnostic explanation, is a technique used to
explain the predictions of any machine learning model in an interpretable manner
and evaluate its usefulness in various tasks related to trust (Marco Tulio Ribeiro
& Guestrin, 2016). LIME is a surrogate model that explains an individual pre-
diction of a black-box machine learning model by tweaking the input slightly and
further testing the changes in prediction. The tweak should be small so that we
are still close to our original data point. In other words, LIME models the impact
of the changes in the prediction based on the changes to the input. We often use
surrogate models if a model is too complex to test. Hence, the surrogate model
is a basic model that imitates complex model mechanisms. Surrogate models are
usually a linear regression or decision tree trained on a complex model’s original
inputs and predictions.

LIME approximates a black-box model by a simple model locally i.e (one in
the neighborhood of the prediction we want to explain), rather than approxi-
mating a model globally. A local interpretation is considered essential since it
shows how each data point is affected individually by the input features. The
authors of LIME argued that locality is a special aspect of LIME, for it is im-
portant to analyze each test point individually rather than make a generalization.

The steps taken to train a local surrogate model are as follows:
e Select a testing point that we wish to interpret its result

e LIME creates a data set of permutations out of the selected point and gets
the black-box predictions for these points

e LIME weights the newly generated data set concerning their proximity
(using Euclidean distance) to the selected point
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e Interpret the prediction by analyzing the local model

17.2 Observations

We applied LIME after we split our data by 70/30 ratio and performed shuffling.
LIME uses a base linear regression model. We further define a LIME tabular
explainer, which takes in the following as input:

e The training data
e A random testing data point

e The numerical columns: Wind Speed, Relative Humidity, Air Temperature,
EEflux LST, EEflux Albedo, and EEflux NDVI

The categorical columns: Site, Month, and Vegetation

The number of top contributing features to portray: 10

17.2.1 LIME on an Inaccurate Data Point

We interpret the results for an inaccurate randomly selected test point (RMSE >
2) at a local level in Figure [17.1]. It is noted that the Predicted ET value for
this specific input data point is 0.6 mm. The following observations are noted:

Predicted value negative positive
0.00 < Month_1 <= 1.00 Feature Value
020 @] 9% 075
(min) 066 (max) Vegetation_1 > 0.00) Month_1
0.64/ .
Site Id_4 <= 0.00| Vegetation_

041
Site Id_1 <= 0.00)
038

Site Id_4

Site Id_1
Vegetation_2 <= 0.00)
0301

Vegetation_2

EEflux NDVI <= 0.44
o EEflux NDVI

0.00 < Site Id_?) <=1.00, Site Id_5

62.76 <RH <= 7147 RH 65.00

Figure 17.1: LIME plot for an inaccurate point

e TA values between 18.79 C and 23.07 C are highly positively correlated
with the output variable Real ET.

e EEflux NDVI values less than 0.44 are highly negatively correlated with
the output variable Real ET.

e RH values between 62.76 and 71.47 are highly negatively correlated with
the output variable Real ET.
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17.2.2 LIME on an Two Accurate Data Points

We aim to portray how LIME’s locality is useful by analyzing the interpretation
across two accurate test predictions.

We interpret the results for the first accurate randomly selected test point (RMSE
< 1) at a local level in Figure [17.2]. Tt is noted that the Predicted ET value for
this specific input data point is 1.05 mm. The following observations are noted:

Predicted value negative positive
Month_1 <=0.00 Feature Value
.00 0] 895 [ O 7

(min) 1.05 (max) RH <= 52.74

1342 < TA <= 18.79

‘Vegetation_1
Site Id_1 <= 0.00
0.39 Site Id_1

ite Id_4 <= 0.00
Site 144 <200 Site 1d_4

EEflux ND\gIl 8<= 0.44 EEflux NDVI
0.00 < Site Id_5 <= 1.00
028

Vegetalionj‘ <=0.00]
0

Site Id_5

‘Vegetation_2

[EEflux LST-1 <= 292.62
023

Figure 17.2: LIME plot for an accurate point

e TA values between 13.42 C and 18.79 C are highly negatively correlated
with the output variable Real ET.

e EEflux NDVI values less than 0.44 are highly negatively correlated with
the output variable Real ET.

e RH values less than 52.74 are highly positively correlated with the output
variable Real ET.

We further analyze the results for another accurate selected test point at a local
level as well in Figure [17.3]. It is noted that the Predicted ET value for this
specific input data point is 1.69 mm. The following observations are noted:

e TA values < 13.43 C are highly negatively correlated with the output vari-
able Real ET.

e EEflux LST values < 292 are highly negatively correlated with the output
variable Real ET.

e RH values > 71.35 are highly negatively correlated with the output variable
Real ET.
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Figure 17.3: LIME plot for another accurate point

It is noticed that even when the chosen local points are accurate points and
fall within the same range of ET, they do not yield the same interpretation for all
our features. They do much in the analysis for TA for instance when TA where
values < 13.43 C are highly negatively correlated with ET. This highlights the
importance of locality in LIME where we can zoom in into each test point instead
of generalizing across all the data points.

17.2.3 Comparison between LIME on Accurate and Inac-
curate Data Points

We note that for the first two observations, the numerical results of course differ
but the trend if somehow similar:

e For inaccurate predictions, TA values between 13.42 C and 18.79 C have a
negative correlation with the output Real ET, however, for accurate predic-
tions, TA values between 18.79 C and 23.07 C have a positive correlation
with the output Real ET

e For accurate and inaccurate predictions, NDVI values greater than 0.44
have a positive correlation with the output Real ET.

However, both Figure [17.1] and Figure [17.2] show only local interpreta-
tions, the values may change if we select different data points. Thus, we cannot
generalize based on these two points only.

17.3 Comparison between LIME and SHAP

e Both are model agnostic and are surrogate models in the sense that they
use the black-box machine learning models and tweak the input slightly by
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creating permutations of the data set to test the effect of this change on
the prediction. For instance, if we have a sentence as an input, we create a
new sentence by removing or adding a word. This becomes a new permuted
sentence.

e LIME is faster than SHAP since it perturbs the data around a single predic-
tion to build a model whereas, SHAP has to compute all the permutations
globally.

e SHAP does not have an optimized module to support all types of algo-
rithms; however, LIME allows so.

e SHAP offers global and local interpretability, unlike LIME which allows
only local interpretability.

17.4 Comparison between SHAP, LIME and Fea-
ture Selection

It is vital to differentiate between feature selection methods and inter- portability
methods. Feature selection is a method that uses statistical techniques to deter-
mine how a subset of input features contributes to the target variable, thereby
improving the precision of the predicted variable values. Interpretability tech-
niques, however, describe the values that led to changing the value of the target
variable (be it a good change towards higher accuracy or a bad change towards
lower accuracy). Interpretability tools allow the user to uncover the mystery
behind the predictions of a black-box model, whereas the feature selection meth-
ods simply highlight the set of input features that show more accurate results.
Nevertheless, both approaches shed light on the most critical input features to
be used in the training of a machine learning model. In our experiments, both
interpretability methods (SHAP and LIME) and feature selection show that the
top contributing features are TA, LST, RH, and NDVI.
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Chapter 18

Deployment

After treating our problem as a regression problem and experimenting with differ-
ent machine learning models, we further aim into building trust with our models
using different interpretability tools i.e (SHAP and LIME). Finally, we’ll have to
deploy our models somewhere (cloud solution) to perform real-time predictions
and feed our machine learning with more data with time.

There are several areas that one needs to consider that are related to the decision-
making process of the deployment procedure.

e Storing and retrieving data: Data could be stored either on-site, in dis-
tributed storage (cloud solution), or a blend of the two. It bodes well to
store the data where the model training takes place and the outcomes/predictions
will be delivered. Henceforth, on-site model training and maintenance will
be more suited for on-site data, especially if the information is critical,
while cloud-based data stored in distributed storage frameworks, for ex-
ample, GCS, AWS S3, or Azure should be accompanied by cloud model
training.

e Frameworks and tools: Our models won’t train, operate, and dispatch on
their own. We need the right frameworks and tools combined with the
relevant software and hardware that would assist us with deploying our ML
models safely. For training our models, the frameworks we utilized are, for
example, PyTorch, tensor-flow, Keras, and scikit-learn. These frameworks
offer the three significant aspects in deployment: popularity, efficiency, and
support.

e Feedback and iteration: It is essential to get feedback from a model that is
under development. In case of model output deterioration, bias creep, or
even data skew, actively following and controlling model status will notify
us regarding any issue. This would ensure that before the end-client notices,
such concerns are effortlessly settled. A new model to be deployed should
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be checked appropriately and on a regular interval basis. In addition to
that, continuous integration should be employed for it continuously tests
and deploy new models without interrupting the current model processes.

There are many more factors that often affect the deployment process. We how-
ever chose to focus on the three most essential ones, and our choice of a framework
varies depending on our business problem since often there is a trade-off between
these three.
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Chapter 19

Conclusion and Future Work

We have built a robust meta-learning reptile module that predicted ET (mm)
successfully with an R2 of 0.79 - 0.88, an Accuracy of 76% - 90%, and F2 of 0.96
- 0.98 across different climates and union of climates. MLP-Reptile has proven
to best the best point-wise model for it beat the MLP model as well as EEflux
(METRIC) model. Moreover, we also experimented with different probabilistic
and uncertainty models such as MC Dropout and Deep Ensemble. Deep En-
semble was the best probabilistic model that achieved an R2 of 0.66 - 0.69, an
Accuracy of 74.5% to 75.5%, and an F2 of 0.93 - 0.94 across different climates and
union of climates. We resorted to interpretability techniques using SHAP and
LIME for us to explore the inner workings of our models. We also applied differ-
ent feature selection techniques to identify the most important input features in
obtaining the fastest training and the least economically expensive model, along
with the best performing model. Both have shown analogous results for having
TA, LST, and RH to be the top contributing. That is being said, as per our
study we have offered two solutions to our users. One yielding a point prediction
estimation for Real ET (mm) achieving an Accuracy of 76% and minimizing the
proportional bias between Real ET and EEflux (METRIC) ET with an Accu-
racy of 81.32%. However, sometimes a point prediction is often restrictive and
we want the user to have access to a valid range or probabilistic interval, thus the
other solution yields a probabilistic prediction for Real ET (mm) achieving an
Accuracy of 75.5% and minimizing the proportional bias between Real ET and
EEflux (METRIC) ET with an Accuracy of 79.21%.

Future work would be to evolve and tune our models more and also incorporate
uncertainty into our meta-learning reptile module for it being our best-performing
model. This will help in measuring our model in terms of how much we are cer-
tain not just in terms of accuracy and other error metrics. We will also want
to incorporate our best-performing models into a robust and real-time mobile
application that would be user-friendly for agricultural specialists, or farmers to
use especially for seasons requiring more irrigation i.e (summer, or spring).
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Appendix A

Point-wise Experiments

This chapter includes all of the experimental results that were done but not
mentioned in the original report. We have performed our experiments on all of
our base (MLP) and best (MLP-Reptile) point-wise models across all the feature
selection Scenarios (A,B,C, and D) mentioned in Table [15.2]. This chapter
includes the following:

1. Experiments performed using MLP model on all the data set and the clus-
ters in Section [A.1]

2. Experiments performed using MLP-Reptile model on all the data set and
the clusters in Section [A.2]
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A.1 MLP Point-wise Results

A.1.1 Scenario A

Error Metrics Csb Testing | Csb Validation | Dsa Testing | Dsa Validation | Cwa Testing | Cwa Validation
Mean Target 2.28 - 2.41 - 4.53 -
F1 0.00002 - 0.00002 - 0.00002 -
F2 0.00005 - 0.00005 - 0.00005 -
F05 0.0000125 - 0.0000125 - 0.0000125 -
Precision 0.00001 - 0.00001 - 0.00001 -
Recall 0.85 - 0.88 - 0.95 -
R2 0.35 - 0.42 - 0.60 -
Adjusted R2 0.11 - 0.27 - 0.47 -
RMSE 0.73 - 1.08 - 0.84 -
MSE 0.54 0.48 1.16 1.31 0.70 0.83
MAE 0.52 0.52 0.77 0.88 0.67 0.66
MAPE 26.21 23.93 35.07 40.37 17.15 16.74
Accuracy 73.79 76.07 64.93 59.63 82.85 83.26
Pearson C.C. 0.60 - 0.65 - 0.80 -
Spearman C.C. 0.67 - 0.60 - 0.80 -
Spatial Distance 0.40 - 0.35 - 0.20 -
NMI 1.00 - 1.00 - 1.00 -
AIC 23183.07 - 23333.60 - 23226.60 -
BIC 60633.86 - 63976.23 - 61764.61 -
Data Size 184 - 242 - 202 -
Training (s) 376.60 376.60 178.19 178.19 686.48 686.48
Testing (s) 0.88 0.88 1.72 1.72 0.77 0.77

Table A.1: Scenario A of Sampling By Climate - Part 1

Error Metrics Union of Clusters Testing | Union of Clusters Validation | Cfa Testing | Cfa Validation
Mean Target 3.73 - 4.00 -
F1 0.95 - 0.96 -
F2 0.94 - 0.94 -
F05 0.96 - 0.98 -
Precision 0.97 - 1.00 -
Recall 0.94 - 0.93 -
R2 0.67 - 0.69 -
Adjusted R2 0.66 - 0.67 -
RMSE 1.12 - 1.16 -
MSE 1.25 1.40 1.34 1.41
MAE 0.82 0.83 0.82 0.81
MAPE 26.64 26.38 25.05 24.67
Accuracy 73.36 73.62 74.95 75.33
Pearson C.C. 0.82 - 0.83 -
Spearman C.C. 0.82 - 0.85 -
Spatial Distance 0.18 - 0.17 -
NMI 1.00 - 1.00 -
AIC 24028.60 - 23619.99 -
BIC 95011.35 - 81826.33 -
Data Size 3273 - 1093 -
Training (s) 280.67 280.67 209.59 209.59
Testing (s) 0.22 0.22 0.14 0.14

Table A.2: Scenario A of Sampling By Climate - Part 2
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A.1.2 Scenario B

Error Metrics Dsa Testing | Dsa Validation | Csb Testing | Csb Validation | Cwa Testing | Cwa Validation
Mean Target 2.55 - 2.24 - 4.65 -
F1 0.00002 - 0.00002 - 0.00002 -
F2 0.00005 - 0.00005 - 0.00005 -
F05 0.0000125 - 0.0000125 - 0.0000125 -
Precision 0.00001 - 0.00001 - 0.00001 -
Recall 0.89 - 0.85 - 0.94 -
R2 0.23 - 0.31 - 0.53 -
Adjusted R2 0.16 - 0.23 - 0.48 -
RMSE 1.30 - 0.77 - 0.96 -
MSE 1.70 2.09 0.59 0.57 0.92 1.14
MAE 0.99 1.07 0.58 0.57 0.75 0.83
MAPE 43.31 45.45 30.06 27.19 18.23 24.75
Accuracy 56.69 54.55 69.94 72.81 81.77 75.25
Pearson C.C. 0.49 - 0.57 - 0.77 -
Spearman C.C. 0.48 - 0.68 - 0.73 -
Spatial Distance 0.51 - 0.43 - 0.23 -
NMI 1.00 - 1.00 - 1.00 -
AIC 19586.74 - 19362.17 - 19440.36 -
BIC 53530.62 - 50640.28 - 51626.50 -
Data Size 242 - 184 - 202 -
Training (s) 132.77 132.77 342.66 342.66 418.28 418.28
Testing (s) 0.66 0.66 0.72 0.72 1.23 1.23

Table A.3: Scenario B of Sampling By Climate - Part 1

Error Metrics Csa Testing Csa Validation Union of Clusters Testing Union of Clusters Validation Cfa Testing Cfa Validation
Mean Target 4.02 - 3.75 - 4.05 -
F1 0.95 - 0.95 - 0.95 -
F2 0.94 - 0.93 - 0.93 -
F05 0.96 - 0.98 - 0.97 -
Precision 0.96 - 0.99 - 0.98 -
Recall 0.93 - 0.91 - 0.92 -
R2 0.54 - 0.60 - 0.64 -
Adjusted R2 0.54 - 0.59 - 0.63 -
RMSE 1.31 - 1.27 - 1.32 -
MSE 1.71 1.89 1.61 1.71 1.75 1.61
MAE 0.96 0.96 0.92 0.93 0.93 0.90
MAPE 29.48 29.59 30.40 31.09 28.83 29.40
Accuracy 70.52 70.41 69.60 68.91 71.17 70.60
Pearson C.C. 0.74 - 0.77 - 0.80 -
Spearman C.C. 0.75 - 0.78 - 0.83 -
Spatial Distance 0.26 - 0.23 - 0.20 -
NMI 1.00 - 1.00 - 1.00 -
AIC 20019.91 - 21009.27 - 20068.14 -
BIC 68269.90 - 80292.56 - 68680.86 -
Data Size 1053 - 3273 - 1093 -
Training (s) 195.09 195.09 291.65 291.65 205.51 205.51
Testing (s) 0.71 0.71 2.51 2.51 0.70 0.70

Table A.4: Scenario B of Sampling By Climate - Part 2
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A.1.3 Scenario C

Error Metrics Dsa Testing Dsa Validation Csb Testing Csb Validation Cwa Testing Cwa Validation Csa Testing Csa Validation
Mean Target 2.49 - 2.27 - 4.35 - 4.05 -
F1 0.00002 - 0.00001 - 0.00002 - 0.94 -
F2 0.00005 - 0.00001 - 0.00005 - 0.93 -
F05 0.0000125 - 0.00001 - 0.0000125 - 0.96 -
Precision 0.00001 - 0.00001 - 0.00001 - 0.96 -
Recall 0.90 - 0.00 - 0.95 - 0.93 -
R2 0.41 - 0.51 - 0.56 - 0.60 -
Adjusted R2 0.30 - 0.38 - 0.45 - 0.59 -
RMSE 1.15 - 0.66 - 0.98 - 1.22 -
MSE 1.31 1.50 0.43 0.55 0.96 0.75 1.50 1.55
MAE 0.84 0.88 0.52 0.54 0.76 0.67 0.88 0.89
MAPE 36.51 36.03 25.59 25.89 23.31 19.33 25.65 26.93
Accuracy 63.49 63.97 74.41 74.11 76.69 80.67 74.35 73.07
Pearson C.C. 0.67 - 0.74 - 0.78 - 0.78 -
Spearman C.C. 0.57 - 0.76 - 0.80 - 0.79 -
Spatial Distance 0.33 - 0.26 - 0.22 - 0.22 -
NMI 1.00 - 1.00 - 1.00 - 1.00 -
AIC 21955.87 - 21734.72 - 21882.76 - 22315.10 -
BIC 60142.29 - 56922.19 - 58091.75 - 76595.72 -
Data Size 242 - 184 - 202 - 1053 -
Training (s) 168.30 168.30 285.46 285.46 425.94 425.94 156.61 156.61
Testing (s) 0.96 0.96 1.28 1.28 0.69 0.69 0.56 0.56

Table A.5: Scenario C of Sampling By Climate - Part 1

Error Metrics Union of Clusters Testing Union of Clusters Validation Cfa Testing Cfa Validation Other Testing Other Validation
Mean Target 3.80 - 4.00 - 3.51 -
F1 0.96 - 0.96 - 0.95 -
F2 0.94 - 0.94 - 0.91 -
F05 0.98 - 0.97 - 0.99 -
Precision 0.99 - 0.99 - 1.02 -
Recall 0.93 - 0.93 - 0.89 -
R2 0.65 - 0.68 - 0.51 -
Adjusted R2 0.65 - 0.67 - 0.47 -
RMSE 1.17 - 1.20 - 1.41 -
MSE 1.38 1.37 1.43 1.25 1.98 2.02
MAE 0.82 0.82 0.82 0.81 1.01 1.03
MAPE 25.67 26.66 25.42 24.09 36.47 35.79
Accuracy 74.33 73.34 74.58 75.91 63.53 64.21
Pearson C.C. 0.81 - 0.83 - 0.72 -
Spearman C.C. 0.82 - 0.85 - 0.70 -
Spatial Distance 0.19 - 0.17 - 0.28 -
NMI 1.00 - 1.00 - 1.00 -
AIC 22939.00 - 22281.02 - 22231.00 -
BIC 89631.95 - 76969.70 - 68337.98 -
Data Size 3273.00 - 1093.00 - 499.00 -
Training (s) 260.79 260.79 244.82 244.82 131.95 131.95
Testing (s) 1.18 1.18 1.19 1.19 0.16 0.16

Table A.6: Scenario C of Sampling By Climate - Part 2

201



A.1.4 Scenario D

Error Metrics Csb Testing Csb Validation Dsa Testing Dsa Validation Csa Testing Csa Validation
Mean Target 2.24 - 2.52 - 4.05 -
F1 0.00001 - 0.00002 - 0.92 -
F2 0.00001 - 0.00005 - 0.89 -
F05 0.00001 - 0.00001 - 0.96 -
Precision 0.00001 - 0.00001 - 0.98 -
Recall 0.00001 - 0.88 - 0.87 -
R2 0.19 - 0.35 - 0.34 -
Adjusted R2 0.11 - 0.30 - 0.33 -
RMSE 0.83 - 1.21 - 1.65 -
MSE 0.69 0.76 1.48 1.40 2.71 2.32
MAE 0.66 0.71 0.96 0.88 1.24 1.20
MAPE 35.33 36.60 45.62 39.52 38.33 37.45
Accuracy 64.67 63.40 54.38 60.48 61.67 62.55
Pearson C.C. 0.45 - 0.60 - 0.58

Spearman C.C. 0.49 - 0.54 - 0.57

Spatial Distance 0.55 - 0.40 - 0.42

NMI 0.99 - 1.00 - 1.00

AIC 19132.96 - 19296.18 - 20252.48

BIC 49999.56 - 52793.47 - 67867.67

Data Size 184.00 - 242.00 - 1053.00 -
Training (s) 179.19 179.19 133.80 133.80 180.75 180.75
Testing (s) 0.49 0.49 0.52 0.52 0.33 0.33

Table A.7: Scenario D of Sampling By Climate - Part 1

Error Metrics Union of Clusters Testing Union of Clusters Validation Cwa Testing Cwa Validation Cfa Testing Cfa Validation
Mean Target 3.71 - 4.47 - 4.00 -
F1 0.93 - 0.00002 - 0.95 -
F2 0.90 - 0.00005 - 0.92 -
F05 0.96 - 0.00001 - 0.98 -
Precision 0.98 - 0.00001 - 1.00 -
Recall 0.88 - 0.94 - 0.90 -
R2 0.37 - 0.50 - 0.51 -
Adjusted R2 0.37 - 0.45 - 0.50 -
RMSE 1.56 - 1.08 - 1.48 -
MSE 2.43 2.43 1.16 1.07 2.18 2.57
MAE 1.18 1.17 0.82 0.80 1.10 1.18
MAPE 41.67 40.61 22.25 19.78 35.62 38.35
Accuracy 58.33 59.39 77.75 80.22 64.38 61.65
Pearson C.C. 0.61 - 0.75 - 0.72 -
Spearman C.C. 0.63 - 0.80 - 0.74 -
Spatial Distance 0.39 - 0.25 - 0.28 -
NMI 1.00 - 1.00 - 1.00 -
AIC 22112.93 - 19231.47 - 20055.95 -
BIC 80616.26 - 50994.15 - 68029.09 -
Data Size 3273.00 - 202.00 - 1093.00 -
Training (s) 336.06 336.06 630.42 630.42 173.30 173.30
Testing (s) 1.11 1.11 0.33 0.33 0.40 0.40

Table A.8: Scenario D of Sampling By Climate - Part 2
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A.2 MLP-Reptile Point-wise Results

A.2.1 Scenario A

Error Metrics Climate Csb Climate Dsa Climate Other Union of Climates Climate Csa Climate Cwa, Climate Cfa
Mean Target 2.31 2.58 3.51 3.75 3.98 4.50 3.97
F1 0.00002 0.00002 0.94 0.95 0.96 0.98 0.96
F2 0.00005 0.00005 0.96 0.96 0.96 0.98 0.97
FO05 0.0000125 0.0000125 0.92 0.94 0.97 0.98 0.96
Precision 0.00001 0.00001 0.91 0.93 0.97 0.98 0.96
Recall 0.86 0.90 0.97 0.97 0.96 0.98 0.97
R2 0.43 0.52 0.68 0.70 0.79 0.85 0.85
Adjusted R2 0.23 0.39 0.64 0.70 0.78 0.80 0.84
RMSE 0.74 0.98 1.08 1.08 0.91 0.59 0.82
MSE 0.55 0.96 1.16 1.16 0.83 0.35 0.67
MAE 0.54 0.71 0.85 0.81 0.69 0.44 0.60
MAPE 30.63 32.15 33.25 29.50 20.54 11.58 18.29
Accuracy 69.37 67.85 66.75 70.50 79.46 88.42 81.71
Pearson C.C. 0.75 0.73 0.88 0.87 0.89 0.92 0.92
Spearman C.C. 0.76 0.63 0.83 0.86 0.86 0.91 0.92
Spatial Distance 0.25 0.27 0.12 0.13 0.11 0.08 0.08
NMI 1.00 1.00 1.00 1.00 1.00 0.99 1.00
AIC -109.34 -7.03 75.36 499.07 -194.65 -211.65 -438.54
BIC -106.13 -3.54 79.57 505.17 -189.69 -208.34 -433.54
Data Size 184.00 242.00 498.00 3273.00 1052.00 202.00 1093.00
Training (s) 356.28 356.28 356.28 356.28 356.28 356.28 356.28
Testing (s) 102.49 103.27 102.98 91.94 104.72 163.13 116.37

Table A.9: Scenario A of Sampling Randomly

Error Metrics Climate Csb | Climate Cwa | Climate Dsa | Climate Other | Climate Csa | Climate Cfa
Mean Target 3.75 3.75 3.75 3.75 3.75 3.75
F1 0.00001 0.95 0.00002 0.95 0.96 0.94
F2 0.00001 0.95 0.00005 0.93 0.95 0.96
F05 0.00001 0.94 0.0000125 0.97 0.96 0.93
Precision 0.00001 0.94 0.00001 0.98 0.97 0.93
Recall 0.00001 0.96 0.94 0.92 0.95 0.96
R2 0.20 0.33 0.40 0.57 0.63 0.69
Adjusted R2 1.95 3.55 -1.52 0.48 0.62 0.68
RMSE 0.85 1.38 1.26 1.21 1.18 1.18
MSE 0.72 1.91 1.59 1.46 1.40 1.38
MAE 0.66 0.99 1.02 0.90 0.89 0.91
MAPE 29.13 32.69 51.86 35.67 29.55 33.07
Accuracy 70.87 67.31 48.14 64.33 70.45 66.93
Pearson C.C. 0.46 0.67 0.66 0.78 0.82 0.87
Spearman C.C. 0.53 0.70 0.48 0.75 0.81 0.87
Spatial Distance 0.54 0.33 0.34 0.22 0.18 0.13
NMI 1.00 1.00 1.00 0.99 1.00 1.00
AIC -7.02 27.29 31.53 98.55 384.40 398.88
BIC -5.72 28.95 33.69 102.09 389.44 404.00
Data Size 27.00 39.00 64.00 254.00 1141.00 1227.00
Training (s) 1740.67 1740.67 1740.67 1740.67 1740.67 1740.67
Testing (s) 3.21 3.28 3.10 3.72 3.61 3.45

Table A.10: Scenario A of Sampling By Climate
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A.2.2 Scenario B

Error Metrics Climate Dsa Climate Other Climate Csa Union of Climates Climate Cwa, Climate Csb Climate Cfa
Mean Target 2.57 3.49 3.99 3.74 4.51 2.28 4.00
F1 0.00002 0.92 0.95 0.95 0.97 0.00001 0.95
F2 0.00005 0.92 0.94 0.95 0.97 0.00001 0.95
FO05 0.0000125 0.92 0.96 0.95 0.97 0.00001 0.96
Precision 0.00001 0.92 0.97 0.95 0.97 0.00001 0.96
Recall 0.92 0.92 0.94 0.95 0.98 0.00 0.95
R2 0.32 0.54 0.61 0.65 0.65 0.69 0.72
Adjusted R2 0.27 0.52 0.60 0.65 0.62 0.66 0.72
RMSE 1.14 1.34 1.28 1.18 0.82 0.54 1.10
MSE 1.30 1.78 1.63 1.38 0.67 0.29 1.22
MAE 0.86 0.98 0.95 0.85 0.57 0.41 0.81
MAPE 44.43 37.60 31.29 30.15 14.92 20.42 27.74
Accuracy 55.57 62.40 68.71 69.85 85.08 79.58 72.26
Pearson C.C. 0.63 0.76 0.80 0.83 0.83 0.85 0.86
Spearman C.C. 0.62 0.75 0.79 0.83 0.80 0.86 0.87
Spatial Distance 0.37 0.24 0.20 0.17 0.17 0.15 0.14
NMI 0.98 1.00 0.99 0.99 1.00 0.97 0.98
AIC 64.87 289.85 514.18 1062.60 -78.66 -225.55 217.42
BIC 68.36 294.06 519.14 1068.69 -75.35 -222.34 222.42
Data Size 242.00 498.00 1052.00 3273.00 202.00 184.00 1093.00
Training (s) 382.68 382.68 382.68 382.68 382.68 382.68 382.68
Testing (s) 109.85 109.28 121.44 96.07 110.75 109.40 110.12

Table A.11: Scenario B of Sampling Randomly

Error Metrics Climate Csb | Climate Cwa | Climate Dsa | Climate Other | Climate Csa | Climate Cfa
Mean Target 3.75 3.75 3.75 3.75 3.75 3.75
F1 0.00001 0.95 0.00002 0.95 0.96 0.94
F2 0.00001 0.95 0.00005 0.93 0.95 0.96
F05 0.00001 0.94 0.0000125 0.97 0.96 0.93
Precision 0.00001 0.94 0.00001 0.98 0.97 0.93
Recall 0.00001 0.96 0.94 0.92 0.95 0.96
R2 0.20 0.33 0.40 0.57 0.63 0.69
Adjusted R2 1.95 3.55 -1.52 0.48 0.62 0.68
RMSE 0.85 1.38 1.26 1.21 1.18 1.18
MSE 0.72 1.91 1.59 1.46 1.40 1.38
MAE 0.66 0.99 1.02 0.90 0.89 0.91
MAPE 29.13 32.69 51.86 35.67 29.55 33.07
Accuracy 70.87 67.31 48.14 64.33 70.45 66.93
Pearson C.C. 0.46 0.67 0.66 0.78 0.82 0.87
Spearman C.C. 0.53 0.70 0.48 0.75 0.81 0.87
Spatial Distance 0.54 0.33 0.34 0.22 0.18 0.13
NMI 1.00 1.00 1.00 0.99 1.00 1.00
AIC -7.02 27.29 31.53 98.55 384.40 398.88
BIC -5.72 28.95 33.69 102.09 389.44 404.00
Data Size 27.00 39.00 64.00 254.00 1141.00 1227.00
Training (s) 1740.67 1740.67 1740.67 1740.67 1740.67 1740.67
Testing (s) 3.21 3.28 3.10 3.72 3.61 3.45

Table A.12: Scenario B of Sampling By Climate
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A.2.3 Scenario C

Error Metrics Climate Other Climate Csa Union of Climates Climate Dsa Climate Csb Climate Cfa Climate Cwa
Mean Target 3.51 4.01 3.75 2.57 2.28 4.01 4.52
F1 0.96 0.95 0.96 0.97 0.0001 0.97 0.98
F2 0.96 0.96 0.96 0.95 0.0001 0.97 0.98
FO05 0.96 0.95 0.97 0.99 0.0001 0.97 0.99
Precision 0.96 0.94 0.97 1.01 0.0001 0.97 0.99
Recall 0.96 0.97 0.96 0.94 0.0001 0.97 0.98
R2 0.72 0.74 0.79 0.63 0.52 0.86 0.88
Adjusted R2 0.70 0.73 0.79 0.57 0.40 0.85 0.85
RMSE 0.98 0.99 0.91 0.86 0.64 0.78 0.51
MSE 0.96 0.99 0.83 0.74 0.41 0.60 0.26
MAE 0.76 0.75 0.67 0.64 0.52 0.58 0.39
MAPE 29.94 25.16 23.38 29.51 26.77 19.09 9.60
Accuracy 70.06 74.84 76.62 70.49 73.23 80.91 90.40
Pearson C.C. 0.86 0.88 0.89 0.80 0.82 0.93 0.94
Spearman C.C. 0.83 0.86 0.89 0.67 0.81 0.93 0.94
Spatial Distance 0.14 0.12 0.11 0.20 0.18 0.07 0.06
NMI 0.99 0.99 1.00 1.00 1.00 1.00 1.00
AIC -20.67 -13.85 -623.90 -70.78 -161.91 -552.72 -272.38
BIC -16.46 -8.90 -617.80 -67.29 -158.70 -547.73 -269.07
Data Size 498.00 1052.00 3273.00 242.00 184.00 1093.00 202.00
Training (s) 600.86 1016.22 1665.25 401.54 373.97 950.78 486.32
Testing (s) 104.39 115.59 97.16 112.07 107.27 109.31 110.07

Table A.13: Scenario C of Sampling Randomly
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Error Metrics Climate Csb | Climate Cwa | Climate Dsa | Climate Other | Climate Csa | Climate Cfa
F1 0.00001 0.97 0.96 0.95 0.95 0.95
F2 0.00001 0.97 0.98 0.95 0.95 0.96
Fo05 0.00001 0.97 0.95 0.94 0.96 0.94
Precision 0.00001 0.96 0.93 0.93 0.96 0.93
Recall 0.00001 0.97 1.00 0.96 0.95 0.97
Average 3.75 3.75 3.75 3.75 3.75 3.75
R2 0.65 0.70 0.67 0.52 0.65 0.75
Adjusted R2 2.10 -0.87 -0.05 0.43 0.63 0.74
RMSE 0.52 0.81 0.79 1.28 1.18 1.04
MSE 0.27 0.66 0.62 1.64 1.40 1.09
MAE 0.42 0.62 0.66 0.97 0.86 0.81
MAPE 22.00 17.17 34.69 41.09 29.25 29.24
Accuracy 78.00 82.83 65.31 58.91 70.75 70.76
Pearson C.C. 0.85 0.84 0.88 0.78 0.83 0.90
Spearman C.C. 0.86 0.85 0.62 0.69 0.81 0.89
Spatial Distance 0.15 0.16 0.12 0.22 0.17 0.10
NMI 0.97 1.00 0.98 1.00 1.00 0.99
AIC -35.86 -16.45 -24.58 124.20 369.73 103.22
BIC -34.49 -14.64 -22.57 127.71 374.74 108.30
Training (s) 1786.57 1786.57 1786.57 1786.57 1786.57 1786.57
Testing (s) 3.15 3.88 3.31 3.91 3.65 3.30
Table A.14: Scenario C of Sampling By Climate




A.2.4 Scenario D

Error Metrics Climate Other Climate Csb Union of Climates Climate Csa Climate Cfa Climate Dsa Climate Cwa
Mean Target 3.58 2.30 3.74 3.99 4.01 2.47 4.48
F1 0.92 0.00002 0.92 0.92 0.95 0.97 0.98
F2 0.91 0.00001 0.90 0.91 0.91 0.96 0.97
FO05 0.93 0.00005 0.94 0.92 0.99 0.97 0.98
Precision 0.94 0.89 0.96 0.92 1.02 0.97 0.99
Recall 0.91 0.00001 0.89 0.91 0.89 0.96 0.97
R2 0.22 0.25 0.35 0.42 0.48 0.53 0.74
Adjusted R2 0.19 0.18 0.34 0.41 0.47 0.50 0.72
RMSE 1.56 0.80 1.61 1.50 1.49 1.06 0.80
MSE 2.42 0.63 2.59 2.26 2.22 1.13 0.63
MAE 1.23 0.65 1.26 1.18 1.09 0.84 0.64
MAPE 53.04 36.21 47.22 38.57 32.43 41.02 17.51
Accuracy 46.96 63.79 52.78 61.43 67.57 58.98 82.49
Pearson C.C. 0.55 0.67 0.61 0.67 0.70 0.76 0.88
Spearman C.C. 0.57 0.61 0.63 0.63 0.72 0.66 0.88
Spatial Distance 0.45 0.33 0.39 0.33 0.30 0.24 0.12
NMI 0.99 0.98 1.00 1.00 1.00 0.99 1.00
AIC 443.07 -82.20 3117.54 859.56 874.68 32.14 -90.63
BIC 447.28 -78.99 3123.63 864.52 879.68 35.63 -87.33
Data Size 498.00 184.00 3273.00 1052.00 1093.00 242.00 202.00
Training (s) 811.40 336.71 1623.79 932.81 789.63 363.74 369.92
Testing (s) 1391.07 104.53 117.04 123.48 116.12 104.42 110.97

Table A.15: Scenario D of Sampling Randomly

Error Metrics Climate Csb | Climate Dsa | Climate Other | Climate Csa | Climate Cwa | Climate Cfa
Mean Target 3.75 3.75 3.75 3.75 3.75 3.75
F1 0.00001 0.00001 0.88 0.91 0.96 0.95
F2 0.00001 0.00001 0.86 0.88 0.97 0.93
F05 0.00001 0.00001 0.91 0.93 0.95 0.97
Precision 0.00001 0.00001 0.92 0.95 0.94 0.99
Recall 0.00001 0.00001 0.84 0.87 0.98 0.91
R2 -0.64 -1.22 0.23 0.22 0.24 0.43
Adjusted R2 -3.01 -1.92 0.18 0.21 -0.17 0.42
RMSE 0.97 1.92 1.77 1.71 1.16 1.55
MSE 0.93 3.69 3.14 2.92 1.34 2.41
MAE 0.81 1.69 1.37 1.35 0.91 1.24
MAPE 43.38 103.21 56.67 43.41 27.29 46.89
Accuracy 56.62 NA 43.33 56.59 72.71 53.11
Pearson C.C. 0.48 0.59 0.48 0.47 0.75 0.70
Spearman C.C. 0.37 0.58 0.50 0.46 0.74 0.72
Spatial Distance 0.52 0.41 0.52 0.53 0.25 0.30
NMI 1.00 1.00 1.00 1.00 1.00 1.00
AIC 0.09 90.85 298.48 1228.51 15.60 1056.73
BIC 1.42 93.07 302.04 1233.55 17.45 1061.82
Data Size 28.00 68.00 259.00 1145.00 47.00 1200.00
Training (s) 1780.98 1788.26 1668.84 1788.26 1668.84 1788.26
Testing (s) 2.69 2.80 2.45 2.55 2.44 3.10
Table A.16: Scenario D of Sampling By Climate
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Appendix B

Probabilistic and Uncertainty
Experiments

This chapter includes all of the experimental results that were done but not
mentioned in the original report. We have performed our experiments on all of
our base (MC Dropout) and best (Deep Ensemble) probabilistic and uncertainty
models across all the feature selection Scenarios (A,B,C, and D) mentioned in
Table [15.2]. This chapter includes the following:

1. Experiments performed using MC Dropout model on all the data set and
the clusters in Section [B.1]

2. Experiments performed using Deep Ensemble model on all the data set and
the clusters in Section [B.2]

B.1 MCDropout Probabilistic Results

B.1.1 Scenario C
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Error Metrics Validation Union of Clusters Validation Std Testing Union of Clusters Validation Cfa Validation Std Testing Cfa
Mean Target 3.75 - 3.75 3.99 - 3.99
F1 0.95 0.0010 0.96 0.95 0.005 0.95
F2 0.93 0.0010 0.93 0.91 0.01 0.94
F05 0.98 0.0015 0.98 0.99 0.01 0.96
Precision 1.00 0.0020 1.00 1.03 0.01 0.97
Recall 0.91 0.0013 0.92 0.88 0.01 0.93
R2 0.62 0.01 0.66 0.64 0.01 0.68
Adjusted R2 0.62 0.01 0.65 0.32 0.03 0.67
RMSE 1.24 0.01 1.17 1.52 0.03 1.17
MSE 1.54 0.02 1.37 2.31 0.09 1.36
MAE 0.86 0.01 0.83 0.95 0.03 0.83
MAPE 27.75 0.19 27.27 33.07 0.70 25.07
Accuracy 72.25 0.19 72.73 66.93 0.70 74.93
Pearson C.C. 0.79 0.00 0.82 0.81 0.01 0.83
Spearman C.C. 0.81 0.00 0.83 0.84 0.01 0.84
Spatial Distance 0.21 0.00 0.18 0.19 0.01 0.17
NMI 1.00 0.00 1.00 1.00 0.00 1.00
AIC 945.07 - 688.44 69.08 - 337.11
BIC 950.76 - 694.13 71.46 - 342.11
Data Size 10911 - 10911 3642 - 3642
Training (s) - 0.00 6751.83 - 6751.83
Testing (s) 0.77 - 0.67 0.05 - 0.37

Table B.1: Scenario C of Clustering By Climate - Part 1

Error Metrics Testing Csa Validation Csa Validation Std Validation Cwa Validation Std Testing Cwa
Mean Target 4.00 4.00 - 4.49 - 4.49
F1 0.95 0.95 0.01 0.00002 0.47 0.96
F2 0.93 0.90 0.01 0.00005 0.47 0.96
F05 0.98 1.02 0.01 0.00001 0.46 0.96
Precision 1.00 1.07 0.02 0.00001 0.46 0.96
Recall 0.91 0.86 0.01 0.96 0.01 0.96
R2 0.61 0.57 0.04 0.83 0.03 0.54
Adjusted R2 0.60 0.12 0.08 1.09 0.02 0.44
RMSE 1.26 1.39 0.06 0.65 0.06 0.95
MSE 1.58 1.94 0.16 0.42 0.08 0.89
MAE 0.87 0.92 0.03 0.51 0.03 0.66
MAPE 24.67 23.06 0.87 11.86 0.96 16.52
Accuracy 75.33 76.94 0.87 88.14 0.96 83.48
Pearson C.C. 0.79 0.80 0.03 0.92 0.02 0.74
Spearman C.C. 0.81 0.83 0.02 0.86 0.03 0.75
Spatial Distance 0.21 0.20 0.03 0.08 0.02 0.26
NMI 1.00 1.00 0.00 1.00 0.00 1.00
AIC 484.90 50.33 - -10.08 - -20.47
BIC 489.86 52.62 - -9.44 - -17.16
Data Size 3509 3509 - 674 - 674
Training (s) 0.00 - - 0.00
Testing (s) 0.32 0.03 - 0.01 - 0.15

Table B.2: Scenario C of Clustering By Climate - Part 2

Error Metrics Validation Dsa Validation Std Testing Dsa Validation Csb Validation Std Testing Csb
Mean Target 2.53 - 2.53 2.30 - 2.30
F1 0.00001 0 0.00002 0.00001 0 0.00001
F2 0.00001 0 0.00005 0.00001 0 0.00001
F05 0.00001 0 0.00001 0.00001 0 0.00001
Precision 0.00001 0 0.00001 0.00001 0 0.00001
Recall 0.00001 0 0.89 0.00001 0 0.00001
R2 -0.21 0.23 0.45 0.61 0.10 0.53
Adjusted R2 2.03 0.20 0.35 1.21 0.05 0.42
RMSE 0.76 0.07 1.14 0.59 0.07 0.64
MSE 0.58 0.11 1.29 0.34 0.09 0.41
MAE 0.60 0.06 0.78 0.44 0.07 0.49
MAPE 29.84 2.73 30.86 20.52 3.01 23.41
Accuracy 70.16 2.73 69.14 79.48 3.01 76.59
Pearson C.C. 0.56 0.06 0.70 0.79 0.06 0.74
Spearman C.C. 0.59 0.06 0.64 0.68 0.07 0.75
Spatial Distance 0.44 0.06 0.30 0.21 0.06 0.26
NMI 1.00 0.00 1.00 1.00 0.00 1.00
AIC -7.90 - 64.15 -12.93 - -162.32
BIC -7.01 - 67.63 -12.29 - -159.11
Data Size 807 - 807 614 - 614
Training (s) 155.18 - 155.18 136.40 - 136.40
Testing (s) 0.01 - 0.15 0.01 - 0.05

Table B.3: Scenario
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B.2.1 Scenario A

B.2 Deep Ensemble Probabilistic Results

Error Metrics

Union of Climates Validation

Union of Climates Validation Std

Union of Climate Testing

Mean Target 3.75 - 3.75
F1 0.94 0.003 0.95
F2 0.92 0.01 0.93
F05 0.97 0.01 0.96
Precision 0.99 0.01 0.98
Recall 0.90 0.01 0.92
R2 0.67 0.02 0.66
Adjusted R2 0.59 0.02 0.65
RMSE 1.28 0.03 1.18
MSE 1.65 0.08 1.39
MAE 0.86 0.01 0.82
MAPE 29.09 1.00 25.87
Accuracy 70.91 1.00 74.13
Pearson C.C. 0.83 0.01 0.81
Spearman C.C. 0.85 0.01 0.83
Spatial Distance 0.17 0.01 0.19
NMI 1.00 0.00 1.00
AIC 119.40 - 1069.42
BIC 122.86 - 1075.51
Data Size 10911.00 - 10911.00
Training (s) 505.57 - 505.57
Testing (s) 0.08 - 1.03

Table B.4: Scenario A of Union of Climates

B.2.2 Scenario B

Error Metrics

Union of Climates Validation

Union of Climates Validation Std

Union of Climate Testing

Mean Target 3.75 - 3.75
F1 0.95 0.004 0.95
F2 0.91 0.01 0.92
F05 0.99 0.004 0.97
Precision 1.02 0.005 0.98
Recall 0.89 0.01 0.91
R2 0.62 0.01 0.59
Adjusted R2 0.59 0.01 0.58
RMSE 1.38 0.02 1.29
MSE 1.90 0.06 1.66
MAE 0.91 0.01 0.90
MAPE 30.41 0.93 28.80
Accuracy 69.59 0.93 71.20
Pearson C.C. 0.80 0.01 0.77
Spearman C.C. 0.82 0.00 0.79
Spatial Distance 0.20 0.01 0.23
NMI 1.00 0.00 1.00
AIC 152.23 - 1666.63
BIC 155.69 - 1672.72
Data Size 10911.00 - 10911.00
Training (s) 470.68 - 470.68
Testing (s) 1.14 - 1.14

Table B.5: Scenario B of Union of Climates
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B.2.3 Scenario C

Error Metrics

Union of Climates Validation

Union of Climates Validation Std

Union of Climate Testing

Mean Target 3.75 3.75 -
F1 0.95 0.95 0.002
F2 0.93 0.92 0.01
F05 0.97 0.99 0.01
Precision 0.98 1.02 0.01
Recall 0.92 0.90 0.01
R2 0.67 0.69 0.02
Adjusted R2 0.67 0.63 0.02
RMSE 1.15 1.26 0.03
MSE 1.33 1.58 0.08
MAE 0.80 0.82 0.02
MAPE 25.49 27.40 1.09
Accuracy 74.51 72.60 1.09
Pearson C.C. 0.82 0.84 0.01
Spearman C.C. 0.84 0.86 0.01
Spatial Distance 0.18 0.16 0.01
NMI 1.00 1.00 0.00
AIC 931.57 109.84 -
BIC 937.66 113.30 -
Data Size 10911.00 10911.00 -
Training (s) 511.57 - 511.57
Testing (s) 1.01 - 1.01

Table B.6: Scenario C of Union of Climates

Error Metrics Validation Cfa Testing Cfa__| Validation Csa| Testing Csa Validation Csb Testing Csb Validation Cwa | Testing Cwa | Validation Dsa Testing Dsa Validation Other Testing Other
Mean Target R .99 4.00 .00 . 30 4.4 4.49 3 .53 .5 B

1 .95 . .0000 )0 .00 .96 )0 0000 . X

2 .94 . .0000 )0 . .97 .00 .0000: .S .

05 .00 .0000 )0 K .96 .00 .0000 .S .
recision . K .0000 )0 03 .95 .00 .0000 . .99

ecall .88 .89 .0000 .000 .9 .97 .00 .9/ .94 .88
R2 .67 .6 .67 X3 .62 .6 8. . .44 .4 .65 .50
Adjusted R2 .38 .68 .33 .64 121 5 0 .5 .22 .3 13 .46
RMSE 1.45 116 21 20 0.58 .5 .6 8¢ .83 L1 33 1.42
MSE 2.11 134 1.47 1.44 034 .35 .42 .8 .69 122 1.76 2.03
MAE 0.89 0.82 0.78 0.82 0.39 045 0.52 0.61 0.70 0.80 1.02 1.02
MAPE 29.28 24.50 2059 2381 18.63 2115 12.51 15.71 35.03 33.83 40.15 35.65
Accuracy 70.72 75.50 79.41 76.19 81.37 78.85 87.49 84.29 64.97 66.17 59.85 64.35
Pearson C.C. .83 .84 .8 .7 .91 .78 .61 .7 .81 .7
Spearman C.C. .86 .87 X .7 .87 .77 .64 .6 .76 .7
Sglial Distance .17 .16 . .21 . X 2. .39 .3 .19 .3
NMI .00 K 00 .00 0 .00 0C .00 .00 0 00 .
AIC 61.70 325.17 30.28 383.97 -13.04 -190.15 -10.13 -43.72 -4.76 50.07 2234 355.20
BIC 64.09 330.16 32.57 388.93 -12.41 -186.93 -9.49 -40.42 -3.87 53.56 2392 359.41
Data Size 3642.00 3642.00 3509.00 3509.00 614.00 614.00 674.00 674.00 807.00 807.00 1665.00 1665.00
Training (s) 223.90 223.90 223.16 223.16 113.26 113.26 117.56 117.56 113.26 113.26 154.14 154.14
Testing (s) 0.03 0.35 0.04 0.30 0.01 0.06 0.01 0.05 0.01 0.07 0.04 0.15

Figure B.1: Scenario C of Clustering By Climate

B.2.4 Scenario D
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Error Metrics Union of Climates Validation Union of Climates Validation Std Union of Climate Testing
Mean Target 3.75 - 3.75
F1 0.92 0.01 0.93
F2 0.87 0.01 0.90
F05 0.97 0.01 0.97
Precision 1.01 0.02 0.99
Recall 0.84 0.01 0.88
R2 0.26 0.01 0.34
Adjusted R2 0.20 0.01 0.34
RMSE 1.93 0.01 1.63
MSE 3.74 0.06 2.66
MAE 1.41 0.01 1.24
MAPE 49.37 1.51 43.27
Accuracy 50.63 1.51 56.73
Pearson C.C. 0.51 0.01 0.58
Spearman C.C. 0.50 0.01 0.60
Spatial Distance 0.49 0.01 0.42
NMI 1.00 0.00 1.00
AIC 312.21 - 3197.24
BIC 315.67 - 3203.33
Data Size 10911.00 - 10911.00
Training (s) 511.57 - 511.57
Testing (s) 0.99 - 0.99

Table B.7: Scenario D of Union of Climates
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