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An Abstract of the Thesis of

Yasmine Hisham Hamdar for Master of Science
Major: Computer Science

Title: Machine Learning Outperforms EEFlux METRIC Model on Point Estimates

For a vast number of countries, especially in the Mediterranean area, water
shortage is among the most important agricultural and environmental hazards.
As water consumption rises, the situation worsens due to a deficient supply of
resources because of unnecessary exploitation, deforestation, unfair distribution,
water wars, and ill management. More than half of the water supply is used for
agricultural purposes and the goal was always to grow more crops to satisfy the
demands of a growing population. Not only does agriculture demand the highest
water supply, but it also has the highest potential for improving quality. Hence,
efficient and smart irrigation would be a necessary step for water preservation.

In this thesis, we developed a full fledged utility based regression module us-
ing point-wise, probabilistic, conformal, and quantile regression trained on data
gathered from flux towers across America and Europe. Our module aided in
predicting evapotranspiration, a metric which allows farmers to know how much
water to use for crop irrigation. Adding to that, we implemented a data over-
sampling module - SMOGN - which helped in up-sampling data in our regression
problem based on rare versus none rare values. Using our probabilistic models, we
were able to quantify the uncertainty in our predictions. We also performed sev-
eral feature selection techniques and studied model interpretability using SHAP
and LIME. We developed our research in a way to allow farmers and agricultural
experts to choose between a point-wise prediction, a probabilistic and certain
prediction, and a prediction interval. We were able to achieve best results using
our conformal model, yielding 81% coverage rate, meaning that 81% of the actual
data lie in its corresponding prediction interval.
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Chapter 1

Introduction

1.1 Background

Evapotranspiration (ET) is a metric that measures the degree of water lost from
the soil either by evaporation from the soil surface or by transpiration from the
plant’s leaves. Reliable estimation of ET is essential for water consumption and
irrigation water management to combat excessive water loss. Researchers have
developed several remote sensing techniques to accurately estimate ET, but its
calculation is considered a complex process in which several meteorological vari-
ables are associated. This has motivated researchers to use machine learning for
predicting ET due to their capability of tracking complex relationships between
dependent and independent variables. Traditionally, ET was estimated using
models such as those integrated with EEflux (the Landsat-based evapotranspi-
ration tool - Earth Engine Evapotranspiration Flux (EEflux)), an automated
calibration process based initially on METRIC, which uses an archive of Land-
sat imagery maintained on the Google Earth Engine (Allen, 2005) to estimate
EEFlux ET.

In this work, we explore the following research questions:

1. Are machine learning based predictive models more accurate than EEflux
models for predicting ET?

2. What machine learning frameworks can outperform classical statistical meth-
ods for predicting ET?

3. Can we minimize the bias between the real ET and the EEflux (METRIC)
ET?

To this end, we frame our problem as a regression problem capturing temporal
and spatial variations on ET across the United States and Europe and explore a
variety of predictive frameworks incorporating machine learning models at their
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base, including pointwise prediction, Auto Sklearn, probabilistic prediction, and
conformal quantile prediction. Our datasets comprise a collection of publicly
available remotely sensed data spanning 26 sites from 2000 to 2018 such as real
ET values (the response variable) obtained from the Ameriflux and Euroflux tow-
ers, as well as weather and remotely-sensed data (LST, NDVI, and ALBEDO)
obtained from EEflux. Our data processing incorporates elements for imbalanced
learning for regression through the utility-based regression technique, and in our
design, we target to improve the recall of our models to capture the utility of
identifying extreme values of ET on excessively hot weather and that are most
relevant to farmers. Our clustering of the data across various climates and sea-
sons allows for transfer learning from sites with higher air temperature to those
with lower air temperature. Our feature selection analysis allows us to further
reduce the dimensionality of our problem in such a way to require minimal input
whilst maintaining reasonable accuracy measures.

We have trained several point-wise prediction models on our dataset, proving
that Gradient Boost is the best model of them all. Gradient Boost yielded an
R2 score of 0.637, an RMSE of 1.359, and a recall of 0.917. An improvement
in scores is observed when the model is trained on wind speed clusters, yielding
an R2 score of 0.654, an RMSE of 1.355. Gradient Boost beats the base learner
Linear SVR in R2 by 32% - 33%, and in RMSE by 24% - 26%. Gradient Boost
also beats Auto-sklearn in R2 by 6%, and in RMSE by 4% - 45%. Gradient Boost
outperforms EEflux (METRIC) ET in R2 by a 100%, in accuracy by 17.144% -
24.408%, and in RMSE by 82%-100%. Nonetheless, Gradient Boost performs best
in minimizing the proportional bias, beating Linear SVR by a 100% in R2, and a
28%-60% in RMSE. Hypothesis testing was applied to validate these percentages.

We have also tested a range of probabilistic models. The best probabilistic per-
forming model is NGBoost. NGBoost is a more favorable learner since it has
a multitude of advantages including its ability to produce probability distribu-
tion predictions over an input data point rather than fixed point predictions.
Probabilistic prediction algorithms are more commendatory in real-life business
models since they allow room for predictive uncertainty estimations, unlike point-
wise models. NGBoost yielded an R2 score of 0.641, an RMSE of 1.368, and a
recall of 0.88 when trained on the whole dataset. The NGBoost model witnesses
a boost in scores when trained on wind speed clusters, achieving an R2 of 0.686,
an RMSE of 1.303, and a recall of 0.91. NGBoost beats MC Dropout in R2 by
2% to 12%, in accuracy by 1% to 2%, and in RMSE by 24% to 26%. NGBoost
also beats Auto-sklearn in R2 by 6%, and in RMSE by 29% to 41%. NGBoost
outperforms EEflux ET METRIC in R2 by a 100%, in accuracy by 20% - 23.5%,
and in RMSE by 82%-100%. Nonetheless, NGBoost performs best in minimizing
the proportional bias on the union of clusters, beating MC Dropout by a 16% -
in R2, an 11% in RMSE. Hypothesis testing was applied to validate these per-
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centages.

We also experimented with models producing prediction intervals (an interval
with a lower and upper bound for the predicted variable) rather than point or
probabilistic predictions. The best model with the highest prediction interval
coverage was conformalized quantile neural networks, yielding a coverage rate
(percentage of real ET falling in prediction interval) of almost 81%, and an aver-
age prediction interval length of 0.75 mm across the whole data set. Confromal
Quantile Neural Networks beat Conformal Random Forests by yielding a lower
average prediction interval length by 19%. Prediction intervals are very useful in
this business project since they yield a range for ET (mm) rather than an exact
quantified measure.

To interpret our best performing probabilistic and pointwise machine learning
models (NGBoost and Gradient Boost), we conclude with a SHAP analysis, where
it is seen that the top contributing features are air temperature and NDVI. SHAP
also showed that high values of air temperature, NDVI, and wind speed push the
models to predict high ET values across the pointwise and probabilistic best per-
forming models. SHAP showed, on the other hand, that low LST (land surface
temperature) and relative humidity values indicate high predicted ET values.
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1.2 Overview

Figure 1.1: Overview

4



Chapter 2

Literature Review

(Baier and Robertson, 1965) quantified Daily Latent Evaporation from basic me-
teorological measurements across six research areas in Canada. The data from
this research was collected over the years of 1953 to 1957 and meteorological
measurements were taken annually from May to October. To discover the effect
of several meteorological and astronomical variables, such as maximum temper-
ature, temperature range, wind speed, vapor pressure deficit, solar energy, day
length, total sky, solar energy on a horizontal surface, and the period of bright
sunlight on latent evaporation, simple and multiple linear correlation and regres-
sion were used. The simple correlation indicates that the latent evaporation was
more closely associated with solar energy and sunlight than with temperature
terms such as maximum and range. In addition, multiple regression analysis was
also used to study the significance of the factors involved in forming equations for
latent evapotranspiration computation. Results showed that with only the min-
imum and maximum temperature and extraterrestrial radiation, the correlation
coefficient was very significant with an R2 of 0.68. The correlation coefficient
varies from an R2 of 0.75 to an R2 of 0.81 upon the addition of one or more solar
energy variables, vapor pressure deficit, and wind speed. Results boosted to an
R2 of 0.84 for all six variables.

Furthermore, another research was performed by the authors (Granata, 2019)
to predict the actual ET on a Central Florida location. The data collected hap-
pened to be between 28 September 2000 and 28 September 2004. On three
different input combinations and on various models, multiple machine learning
algorithms (M5P Regression Tree, Bagging Random Forest, and Support Vector
Regression) were used. Sensitive-heat flux, net solar radiation, soil moisture con-
tent, wind speed, mean relative humidity, and mean temperature were included
in Model 1. Net solar radiation, wind speed, mean relative humidity and mean
temperature were included in Model 2. Net solar radiation, mean temperature
and mean relative humidity were present in Model 3. A 10-fold cross-validation
technique was employed where the data is randomly split into 10 subsets with
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one set allocated as the validation data. These statistical metrics were used to
test the performance of the studied models: Nash-Sutcliffe Model Efficiency Co-
efficient (NSE), Root Mean Squared Error (RMSE), and Relative Absolute Error
(RAE). This study showed that Model 1 provided the best forecast for all error
metrics in which an NSE of 0.987, 0.14 mm/day for MAE, 0.179 for RMSE, and
15.4 percent for RAE was obtained for the best-performing algorithm, Random
Forests. The results of Models 2 and 3 were very similar but less favorable than
Model 1. The proposed development would be to design a more efficient machine
learning model to predict real ET using mean temperature, relative humidity,
and net solar radiation with more sophisticated algorithms such as the Artificial
Neural Network (ANN) or the Extreme Learning Machine (ELM).

An analysis by (Huang et al., 2019) was also done to estimate the actual ET.
This paper estimates the daily ET with minimal meteorological data using the
CatBoost algorithm and the gradient-boosting decision tree. The product of this
algorithm is compared to Support Vector Machine (SVM) and Random Forests
(RF). The data used is a mixture of meteorological data that comprises both
complete and incomplete combinations of solar radiation, relative humidity, max-
imum and minimum temperature, and wind speed at multiple weather stations in
South China throughout the years 2001 and 2015. The assessment measures used
are Root Mean Squared Error (RMSE), Mean Bias Error (MBE), Mean Absolute
Percentage Deviation (MAPD), and R2 score. The study showed that CatBoost
reported the best accuracy when the full combination of inputs occurs, contrary
to the seven other stations with incomplete input variables. The SVM reported
the best accurate rating for RMSE (from 4.8 percent when using a portion of
the input variable to 37.4 percent when using all the input variables) and MAPE
(from 3.3 percent to 33.3 percent). In addition, regarding CatBoost, the memory
use and computational burden for data processing are far less, which enables it
to be a promising ET0 estimation algorithm.

Nevertheless, a report on estimating the daily ET with minimal meteorological
data from 1961-2010 from eight representative weather stations in different cli-
mates in China was published by the authors (Fan and Yue, 2019). To test their
effectiveness on ET estimation, four different input combinations were tested.
These combinations of inputs included minimum and maximum daily tempera-
tures, relative humidity, wind speed, global and extraterrestrial solar radiation,
respectively. With four tree-based machine learning models including Random
Forests (RF), M5 model tree (M5Tree), Gradient Boosting Decision Tree (GBDT)
and Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM),
and Extreme Learning Machine (ELM), a K-fold cross-validation approach was
used in which data was split into five folds. Using three statistical measures,
the efficiency of the studied models was evaluated: Coefficient of Determina-
tion (R2), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).
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This research revealed that when all the input variables were present, SVM and
ELM were the most effective and stable models with the least error. In addition,
XGBoost and GBDT showed similar results to Support Vector Machines (SVM)
and Extreme Learning Model (ELM) in which they exhibited reduced computa-
tional losses that made them an eligible alternative technique for predicting ET.
The results showed that global solar radiation was more significant than the other
variables in the tropical and subtropical zones of China. Yet more research would
entail model evaluation in areas other than China, and would also be based on
various geological timescales (hourly or monthly).

When forecasting real ET, (Kaneko et al., 2019) introduced the idea of trans-
fer learning from several regions, in which they researched maize fields in various
African countries by referring to remote sensing data accessible to the public.
A deep learning model, based on long short-term memory (LSTM), was used to
predict crop fields with a Gaussian Process Layer. The data was divided into
various segments: a random split and a sequential split. Both models achieved
high levels of accuracy when utilizing the random split, unlike a chronological
one based on data quality. In addition, the combined model trained on all coun-
tries showed comparable results with in-country models scoring an R2 of 0.63.
For countries with sparse data, this supports the concept of learning from out-
of-country features. Different algorithms such as a DNN model may be used in
further studies.

Since no machine learning models were used (Baier and Robertson, 1965), but
rather the association between many meteorological variables and latent evapo-
ration was studied, we were encouraged to use Machine Learning to predict real
ET. The work carried out by (Granata, 2019) has inspired us to experiment with
multiple deep learning models coupled with probabilistic and conformal quantile
models. We were also inspired to utilize data of different climatic conditions,
hence different air temperature, relative humidity, incoming shortwave radiation,
etc. . . Interestingly, (Granata, 2019) experimented with only one location with
a humid subtropical climate, ranging from June to September (a warm and wet
season) and from October to May (a moderate dry season). We assume that this
limitation would not help in model generalization for unseen climatic conditions,
and therefore it is important to consider multiple sites and climatic regions. We
were inspired by the studies of (Huang et al., 2019) to predict real ET from data
throughout a multitude of regions and not to be restricted to particular areas.
Hence, we conducted research on the prediction of daily ET for 26 stations ac-
cumulated from Ameriflux and Euroflux sites in various climate and vegetation
regions throughout the years 2000 and 2019. Our model is trained on various in-
put variables such as wind speed, relative humidity, air temperature, land surface
temperature, Albedo, vegetation index of normalized difference (NDVI), site id,
month, and vegetation. By including all stations, only Ameriflux stations, and
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only Euroflux stations, we vary the aforementioned input features and research
the influence of each. A set of point-wise, probabilistic, and conformal quantile
models were used. The data is split into training (60%), validation (20%), and
testing (20%) using a custom split by stations to guarantee the presence of each
station in all data splits. Several error metrics, correlation metrics, and utility-
based metrics have been used to measure the efficiency of our models including
Coefficient of Determination (R2), Root Mean Squared Error (RMSE), Mean
Absolute Error (MSE), Recall, Precision, and Accuracy. Our research focuses
on multiple regions as opposed to (Fan and Yue, 2019). We are also using more
complex regression models with fewer and different meteorological variables as
a result of filter-based feature selection techniques. Our findings show an 81%
coverage rate and a 0.75 mm prediction interval length when using Conformal-
ized Quantile regression models. We also note an R2 of 0.64, an accuracy of
68%, and an F2-measure of 0.9 when using the probabilistic NGBoost model.
We were indeed influenced by the work (Kaneko et al., 2019) that led us to ap-
ply various methods of clustering. Our data clustering enables learning to be
transferred from sites with particular climates and seasons to sites with different
ones. We were also very encouraged to compare the performance of our machine
learning model to that of a EEflux(METRIC) model. The EEflux(METRIC)
model compared horribly to real ET, with an R2 of -0.5, an accuracy of 48%,
and a negligible recall of 0.88. We succeeded in minimizing the bias between the
EEflux(METRIC) model and the predicted ET in which NGBoost scored an R2
of 0.74, and accuracy of 70%.
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Chapter 3

Systems and Hardware

3.1 Libraries and Frameworks

All the code for our modules is written in python and R. We have used the
following libraries and frameworks:

• TensorFlow: TensorFlow is an end-to-end open-source machine learning
framework. It has a robust, scalable ecosystem of tools, libraries, and com-
munity resources.

• Scikit-learn: Scikit-learn is an ML library containing various regression and
classification shallow models.

• UBL: Utility-based Learning package

• pyTorch: PyTorch is a machine learning library containing various deep
and shallow learning models.

• rpy2: rpy2 is a python interface to the R language.

• Numpy: Numpy is a python library that allows better control over big-sized
arrays.

• Pandas: Pandas is a python library that allows better control over datasets.

• Matplotlib: Matplotlib is a python plotting library.

• Seaborn: Seaborn is a python library for statistic data visualization.

3.2 Environments

We ran all our code modules on three different environments: Google Cloud
Platform, HPC Octopus Cluster, and Docker.
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3.2.1 Google Cloud Platform

We utilized the Google cloud platform since it offers great services like Auto-
ML and Auto-sklearn. It is also a very flexible and useful computing service
that enabled us to train machine learning models at a fast pace. It also offers
the option of specifying the OS type, and the number of master and slave nodes.
Furthermore, the cores needed, the RAM specifications, the memory for the GPU,
and the GPU model type can also be tweaked. The Google cloud platform also
offers interesting tools for machine learning model interpretation like What If
and Facets. The node we used has 8GB RAM along with a master and two slave
nodes.

3.2.2 HPC Octopus Cluster

AUB’s Octopus high-performance computing cluster helped us plenty since it
offers a strong computing power which enabled us to run our scripts in a shorter
amount of time. The HPC Octopus cluster also has a GPU, which we utilized
when using any TensorFlow model to shorten model training time. A node on
the Octopus cluster mimics a CentOS machine. Before running our scripts, we
can specify the cores needed, the RAM specifications, the memory for the GPU,
and the GPU model type. We then submit our job script and it will be added to
the queue of executable jobs. A matching node with the required specifications
will handle the submitted job. The machine we used is a CentOS with 16 GB
RAM.

3.2.3 Docker

Docker is a Google product that is referred to as the Next Big Thing in Cloud
Computing. Docker offers the ability to run an application in a completely iso-
lated environment which is referred to as a container. Containers are lightweight
since they don’t need the load of a hypervisor, thus they run directly within the
host machine’s kernel. Hence all the needed libraries are provided in the Docker
container we created. Docker invokes as many cores as the PC it is running on.
In our case, it is 6 cores. Now, any person could just install the docker container
that we developed and run our code with no prior library and setup configuration
needed. The machine we used is a Windows 10 which has 16 GB RAM and an
intel core i-7 processor. Please check the repository on Github.

3.3 Code and Data

All the code and data used for this thesis is found on Gitlab.
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Chapter 4

Study Area and Surveyed Sites

The data was accumulated from Ameriflux and Euroflux (Flux Towers) around
various climates and vegetation between the years 2000 and 2018. The corre-
sponding Landsat data was gathered from the Earth Engine Evapotranspiration
Flux (EEflux) website. The data is obtained from 26 different sites present on
Ameriflux and Euroflux in North America, South America, and Europe as shown
in Figure 4.1. Our goal was to collect data from sites with various types of
climates and terrestrial vegetation portrayed in Table 4.1 and Table 4.2 below.

Climate Type
Cfa Humid Subtropical - a mild climate with no dry seasons and a hot summer
Dsa Dry Continental - a climate with a hot summer
Csa Mediterranean - a mild climate with a dry and hot summer
Csb Mediterranean - a mild climate with a dry and warm summer
Cwa Humid Subtropical - a climate with a dry winter and a hot summer

Table 4.1: Climate Types

Vegetation Type
Grasslands (GRA) Lands with herbaceous covers
Crop Lands (CRO) Land covered by temporary crops followed

by harvesting,then bare soil
Closed Shrublands Lands with woody vegetation and less than

2 meters high with shrub canopy cover.
Evergreen Broadleaf Forests (EBF) Woody vegetation dominated land
Evergreen Needle Leaf Forests (ENF) Woody vegetation dominated land

Table 4.2: Vegetation Types
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Figure 4.1: Area of Study

4.1 AmeriFlux

AmeriFlux is a network of PI-managed sites monitoring CO2 habitats, water
and energy flow in North, Central, and South America. AmeriFlux is now one
of the most well-known and highly valued brands in climate and environmental
science at the DOE Office of Biological and Environmental Research (BER). The
AmeriFlux datasets and the understanding extracted from them provide critical
ties between terrestrial ecosystem processes and climate-relevant responses at a
landscape, regional and continental levels. Ameriflux, which offers evapotranspi-
ration fluxes for more than 50 sites, tracks the time frame, geographic location,
and other variables for all its sites (Ameriflux). As per the Ameriflux data for-
mat, data is accessible at half-hourly intervals. A sample is shown in Figure
4.2.

4.1.1 Sites

The sites pertaining to AmeriFlux are ’US-A32’, ’US-Wlr’, ’US-Snd’, ’US-Kon’,
’US-Goo’, ’US-SP2’, ’US-AR1’, ’US-Twt’, ’US-Ced’, ’US-A74’, ’US-AR2’, ’US-
Shd’,’US-SO2’, ’US-Skr’, ’US-Tw2’, and ’US-Bi2’.

4.2 EuroFlux

The European Fluxes Database Cluster (EuroFlux) is an initiative aimed at im-
proving standardization, convergence, and cooperation between the European
research projects’ databases. It was developed with the goal of hosting mea-
surements between ecosystems and the environment in a single infrastructure
and providing standard and high-quality resources for data processing and data
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sharing. The Euroflux Database Cluster maintains a variety of flux measure-
ments, including meteorological variables, ancillary data, and meta-information
from various locations in and around Europe.

4.2.1 Sites

The sites pertaining to EuroFlux are ’FI-Jok’, ’DE-Kli’, ’DE-Seh’, ’DK-Ris’, ’FR-
Gri’, ’IT-CA2’,’DE-RuS’, and ’DK-Fou’.

4.3 EEFlux

EEflux, Earth Engine Evapotranspiration Flux, is based on the METRIC model
(Allen, 2015) in the Google Earth Engine System. EEflux makes on-demand
ET forecasts for Landsat scenes (Landsat 5,7 or 8) in addition to processing
Landsat images in almost every land area of the globe at a resolution of 30 m.
From EEflux, we were able to retrieve actual ET, Albedo, normalized difference
vegetation index (NDVI), and land surface temperature (LST) data for the 26
sites obtained above across the years 2000-2018.
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Figure 4.2: Sample Sites Ameriflux
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Chapter 5

Quality Control

5.1 Data Cleaning

A set of data cleaning techniques were applied to the collected data from Amer-
iflux, Euroflux, and EEflux.

5.1.1 AmeriFlux and EuroFlux

First, We converted all “-9999” values to NaNs. We then removed all data in-
stances with missing Real ET values and instances with malformed dates. To
exclude outliers, we narrowed the ranges of real ET between 1 and 15 mm.

5.1.2 EEFlux

We imputed missing EEflux ET instances and replaced them with the mean of
EEflux ET. We have also carried out a series of experiments with a number of cut-
offs ranging from 0.1,0.2,0.3,0.4,0.5 to 1. We reported the percentage of EEflux
ET values below the specific cut-off. We found that less than 5% of the EEflux
data is less than 0.3, so we chose it as a lower bound cutoff. The reason we did
this study was to make sure there was no data tampering.

Duplicate rows that have the same values for all features but differ in EEflux
ET and cloud cover percentage are omitted. Only one row is corrected and re-
tained. We corrected EEflux ET values as follows:

• For rows with the same data (Site Id, Date, and Weather parameters) with
variations in EEflux ET values less than 0.3, the EEflux ET average of these
rows will be computed and the EEflux ET value will be replaced.

• For rows with the same data (Site Id, Date, and Weather parameters) with
variations in EEflux ET values greater than 0.3, the difference between the
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EEflux ET and the actual ET rows will be calculated, and the one with the
least variance is the row we hold.

5.2 Data Correction

Verifying the accuracy of hydro-meteorological measurements along with the tur-
bulent fluxes has always been a vital issue. This verification is important to
quantify any systematic errors or uncertainties which play a major role in irri-
gation management. The turbulent heat fluxes are somehow smaller than the
available energy. Thus, ET values should be corrected. We have applied two
different correction methods, one where we implemented Bowen’s Ratio (Mauder
et al., 2017) and one where we used the library fluxQAQC which applied Energy
Balanced Ratio (EBR) and a variant of Bowen’s Ratio.

5.2.1 Bowen’s Ratio

The correction method we utilized is Bowens Ratio(Mauder et al., 2017). The
Bowen ratio (H/LE) is utilized to estimate heat loss or gain in a substance.
Hence, it is the ratio of energy fluxes moving from one state to another: sensible
heat by latent heating.

C =

∑k
i=1Hi + LEi∑k
i=1Rn,i +Gi

(5.1)

Hc =
Hm

C
(5.2)

LEc =
LEm
C

(5.3)

We refer to this method as the manual Bowen’s Ratio method.

5.2.2 Bowen’s Ratio - FluxQAQC

The FluxQAQC library computes the Bowen’s ratio in a different manner than
the Bowen’s Ratio in (Mauder et al., 2017). The Bowen Ratio Energy Balance
closing approach is conducted on a regular basis by maintaining the Bowens Ratio
(H/LE). This adjustment closes the energy balance exactly when the balance is
measured on a daily time scale (i.e. daily amounts), but not when assessed on
flux data points (e.g., 30-minutes).

1. Compute the Bowens Ratio β

β =
H

LE
(5.4)
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2. Compute the corrected LE

LEcorr =
(Rn−G)

(1 + β)
(5.5)

3. Compute the corrected H

Hcorr = LEcorr × β (5.6)

We refer to this method as the library Bowen’s Ratio method.

5.2.3 Energy Balanced Ratio (EBR)

This method entails removing and gap-filling the extreme values of the daily time
series data. Then the inverse of this data is used for the initial latent energy LE
and sensible heat H time series flux data as a series of correction factors.

• Filter out poor quality data if quality control flags are provided with the
data set, for example a QC field for a gap filled LE.

• Calculate the energy balance ratio daily from the raw data.

EBR =
H + LE

Rn−G
(5.7)

• Filter out EBR values that are outside 1.5 times the inter-quartile range

• Use the filtered EBR time-series data to correct LE and H

EBCCF =
1

EBR
(5.8)

LEcorr = LE × EBCCF (5.9)

Hcorr = H × EBCCF (5.10)

We refer to this method as the library EBR method.

5.3 Data Generation

After applying necessary data cleaning techniques to AmeriFlux and EuroFlux
tower data, we corrected the ET in the three different methods: manual Bowen’s
Ratio, library Bowen’s Ratio, and library EBR. We then resampled our Amer-
iFlux and EuroFlux data from half-hourly to daily, followed by mapping each
instance to the corresponding Landsat EEflux data.
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5.3.1 Datasets

After collecting all the needed metrics and applying the correction, we end up
with the following datasets:

• Manual Bowen Daily Data set: A daily data set acquired by implementing
the manual Bowen correction method on the real ET.

• Library Bowen Daily Data set: A daily data set acquired by implementing
the library Bowen correction method on the real ET.

• Library EBR Daily Data set: A daily data set acquired by implementing
the library EBR correction method on the real ET.

• Manual Bowen Joint Data set: A weekly data set merged with the EEflux
data set acquired by implementing the manual Bowen correction method
on our daily data set and merging it with EEflux fields.

• Library Bowen Joint Data set: A weekly data set merged with EEflux data
set acquired by implementing the library Bowen correction method on our
daily data set and merging it with EEflux fields.

• Library EBR Joint Data set: A weekly data set merged with EEflux data
set acquired by implementing the library EBR correction method on our
daily data set and merging it with EEflux fields.

5.3.2 Data Legend

Each data set consists of all or some of the below fields:

• Date: The daily date at which the data was recorded at with the format
“MM/dd/YY

• SiteId: A unique identifier for each site

• Y ear: The year at which the data was recorded

• Month: The month at which the data was recorded

• Day: The day at which the data was recorded

• Elevation: The elevation in meters

• Latitude: The latitude

• Longitude: The longitude

• Climate: If available one of 5 values (Cfa, Csa, Csb, Dsa, Cwa) or Other
for sites coming from Euroflux
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• V egetation(IGBP ): Values are one of which (CRO, GRA, ENF, CSH,
EBF, DBF, WET, WSA)

• WS: Wind speed

• RH: Relative humidity

• TA: Air temperature

• NETRAD: Net radiation

• SW IN : Incoming Shortwave Solar Radiation

• G: Ground/Soil flux

• H: Sensible heat flux

• H ebr corr: The corrected sensible heat flux using EBR method

• H bowen corr: The corrected sensible heat flux using Bowen method

• LE: Latent energy flux

• LE ebr corr: The corrected Latent energy flux using EBR method

• RealET ) : ThecalibratedLE ebr corr

• LE bowen corr: The corrected Latent energy flux using EBR method

• LE bowen corr(mm): The calibrated LE bowen corr

• ET ebr: The evaportanspiration calculated from LE and TA using EBR
method

• ET ebr corr: The corrected evaportanspiration calculated from LE and TA
using EBR method

• ET ebr corr(mm): The calibrated ET ebr corr

• ET bowen: The evaportanspiration calculated from LE and TA using Bowen
method

• ET bowen corr: The corrected evaportanspiration calculated from LE and
TA using Bowen method

• ET bowen corr(mm): The calibrated ET bowen corr

• gridMET ETr: The gridMET alfalfa reference ET (nearest cell)

• ETr: The alfafa reference evaportanspiration
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• ETrF bowen: The fraction reference evaportanspiration for ET bowen corr,
i.e.ET bowen corr /ETr

• ETrF ebr: The fraction reference evaportanspiration for ET ebr corr, i.e.ET ebr corr
/ ETr

• ETo: The grass reference evaportanspiration

• EToF bowen: The fraction reference evaportanspiration for ET bowen corr,
i.e.ET bowen corr / ETo

• EToF ebr: The fraction reference evaportanspiration for ET ebr corr, i.e.ET ebr corr
/ ETo

• EEfluxET : ET from EEflux which initially has the value of ET, if ET is
empty it is populated from the mean of the 8 neighboring pixels

• EEfluxETo: The grass reference from the Climate Engine

• EEfluxETr: The grass reference from the Climate Engine

• EEfluxLST : Land Surface temperature from EEflux

• EEfluxNDV I: NDVI from EEflux

• EEfluxAlbedo: Albedo from EEflux

• column number: The site id, month, and vegetation columns are encoded
using binary encoding with a format of the column name followed by the
number of the encoding column, i.e SiteId 1

• column− number: This is a lag of the column name i.e RH − 1 is the first
lag of RH, RH − 2 is the second lag of RH

5.3.3 Daily-Joint Mapping

We have two types of datasets: Joint and Daily. Instances of the Daily dataset are
collected on a daily basis, meanwhile, instances of the Joint dataset are collected
on a weekly basis. The Joint dataset contains EEflux ET, a measurement of ET
collected on a weekly basis as well. The Daily dataset does not contain EEflux
ET, it only contains real ET (collected on a daily basis). We seek to create a
mapping between the Joint and Daily datasets on the following criteria:

• Site Id

• Date

• Real ET value
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Once we do that, we would have a subset of the Daily dataset but with extra
EEFlux ET values mapped from the Joint dataset.

5.3.4 Choice of Dataset

In order to decide which of the datasets we should proceed with (i.e train our
machine learning models on), we did preliminary experiments with all of the
available datasets and assessed the performance of each accordingly.

• Models trained on Library Bowen daily dataset gave better results than
models trained on Manual Bowen daily dataset shown by a 6.3% increase
in accuracy.

• Models trained on Library Bowen daily dataset gave better results than
models trained on Library EBR daily dataset shown by a 8.9% increase in
accuracy.

Thus, our chosen dataset is the Library Bowen Daily data set.

5.3.5 Final Dataset

The final data set is divided into input features and an output variable as shown
below. The Library data set consists of 5,123 rows.

• Input:

– Wind speed (WS)

– Air temperature (TA)

– Relative humidity (RH)

– Normalized Difference Vegetation Index (EEflux NDVI)

– EEflux Albedo

– Land Surface Temperature (EEflux LST)

– Vegetation (Categorical Variable Binary Encoded)

– Site Id (Categorical Variable Binary Encoded)

– Month (Categorical Variable Binary Encoded)

– EEflux ET: Modeled ET coming from EEflux

• Output:

– Real ET: The calibrated and corrected real ET
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5.4 Feature Engineering

The feature engineering process comprises exploratory data analysis coupled with
data transformation techniques, data encoding techniques, and a seasonality
study.

5.4.1 Time-Series Analysis

Our problem is a time series problem because it shows the date component. To
ensure our data is stationary and can be modeled further, we will perform time-
series analysis.

Stationary Study

A time series is stationary if it has no trend or seasonal effect. Summary statistics
must be compatible between observations to be predictable. There are many
approaches for checking whether or not a time-series is stationary, including some
that are as follows:

1. Summary Statistics: For example mean and variance, which should be con-
sistent over time

2. Statistical Tests: For example, the Augmented Dicky-Fuller test confirms
if the data is stationary according to several hypothesis tests.

The Augmented Dickey-Fuller (ADF) test is a statistical test. The main idea
behind this unit root test would be that it dictates how heavily a time series is
defined by a certain trend. It is utilized to recognize whether or not a time series
is stationary (Mushtaq, 2011). This test yields the following hypotheses:

1. H0 or Null Hypothesis: If it is not rejected, it means that the time series
has a root unit, so it is not stationary. It has a time-dependent structure.

2. H1 or Alternate Hypothesis: The null hypothesis is rejected, which means
that the time series does not have a root unit, so it is stationary. It doesn’t
have a time-dependent structure.

We have tried the ADF test on our data and got the results portrayed in Figure
5.2.

Figure 5.2 shows the value of the test statistics being -10.24, which means that
it is lower than all the critical values and the p-value ≤ 0.05, that also means
that we reject the null hypothesis (H0) and therefore the data is stationary.
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Figure 5.1: ADF Test Results

White Noise Study

White noise is believed to be a the crucial notion in time series forecasting. A
time series is a white noise if it’s dependent features are spread equally and
independently with a zero mean. If a series is white noise, it imitates a sequence
of random numbers and therefore cannot be predicted.

l jung box test is used to test whether or not there is white noise. This test
yields the following hypotheses:

1. H0: The data is distributed independently, which means that a zero corre-
lation between dependent variables is observed.

2. H1: The data is not independently distributed, which means that dependent
variables exhibit a non-zero correlation.

There are two conditions upon which we accept or reject the null hypothesis:

1. The p-value is ≤ 0.05: We reject the null hypothesis

2. The p-value is < 0.05: We reject the null hypothesis

We apply the white noise test on our data in Figure [7.2]. It is noted that all
p-values are less than 0.05, which implies that the time series doesn’t exhibit
white noise.

Figure 5.2: White Noise Test Results

Random Walk Study

A time series is identified as a Random Walk if one of the following is met:

1. A heavy temporal dependency that decays linearly or in a similar pattern
is seen in the time series.
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2. The time series is non-stationary and it reveals no learnable structure in
the data to make it stationary.

To research the relation between lags, we generate auto-correlation plots for each
input and output function in Section 5.4.3. The auto-correlation plots for the
weather variables show a substantial association between lagged observations,
implying that the time series does not show a random walk.

5.4.2 Exploratory Data Analysis

Exploratory data analysis refers to the vital method of conducting initial data
study to find trends, spot irregularities, and test theories. In this section, we
portray summary statistics, variations in sites, climates, and seasons, in addition
to the distribution of the input and the output variable. We have utilized the
tools pandas-profiling, facets, fitter, and matplotlib.

Statistics

In this section, we have used pandas-profiling and facets to extract the summary
statistics. We are using the Library dataset, which has the following characteris-
tics shown in Table 5.1.

Number of observations 5128
Total Missing (%) 0.0%

Total size in memory 4.8 MiB
Average record size in memory 984.0 B

Table 5.1: Number of Rows in Library Dataset

Our dataset is made up of 5,128 rows.
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Site Variation

In this section, we have used matplotlib to produce the visualizations.

In our dataset, each row pertains to a certain site with a specific site Id. We
aim to visualize how many sites in our data belong to either Euroflux or Ameri-
flux.

Figure 5.3: Site Distribution

As portrayed in Figure 5.3, it is noted that 21.3% of the sites are Euroflux sites,
and 78.7% of the sites are Ameriflux sites.

We now aim to see how many rows per site exist in our data.
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Figure 5.4: Number of Rows per Site

According to Figure 5.4, it is noted that the sites with the highest frequency in
our data are:

1. US-Snd, which pertains to Ameriflux, has 882 rows.

2. DE-Kli, which pertains to Euroflux, has 589 rows.

3. US-Goo, which pertains to Ameriflux, has 507 rows.

4. US-Kon, which pertains to Ameriflux, has 438 rows.

5. US-SP2, which pertains to Ameriflux, has 317 rows.

Climate Variation

In this section, we have used matplotlib to produce the visualizations.

In our dataset, each instance pertains to a specific climate, as shown in Table
4.1. We aim to visualize the frequency of each climate and its ET distribution.

According to Figure 5.5a, which represents the bar plot of each climate and
its frequency in the dataset, we note that the top three climates with the highest
frequencies are Cfa (1,852 rows), Csa (1,646 rows), and other (1,092 rows).

According to Figure 5.5b, which is a density plot for ET (mm) for each of
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(a) Climates Histogram (b) Climates Density Plots

Figure 5.5: Distribution of Climates

our climates, we note that climates Cfa and Cwa have a similar ET distribu-
tion ranging from 1 to 15mm including all rare but high values of ET. We also
note that climates Csa and Other have a very close ET distribution, with val-
ues ranging from 1 to 10mm. Climate Dsa is however unique, and has an ET
distribution between 1 and 7.5mm, not including most high and rare values of ET.

We note from Figure 5.4 that the top sites with the highest frequency are:

1. US-Snd which has a Csa climate (Midditerean: mild with dry, hot summer).

2. DE-Kli which has the climate Other.

3. US-Goo, Us-Kon, and US-SP2 which have a Cfa climate (Humid subtropi-
cal: mild with no dry season, hot summer).

Thus, we conclude that the top sites are represented by the top two climates (Cfa
and Csa).

Season Variation

In this section, we have used matplotlib to produce the visualizations.

In our dataset, each instance pertains to a specific season, as shown in Sec-
tion 5.4.5. We aim to visualize the ET distribution per season.

According to Figure 5.6, which is a density plot of ET (mm) per season, it
is prevalent that the summer season is unique because it covers all ET values
from 1 to 15mm (including rare and high ET values). The spring season also
offers good coverage of ET, where the range stretches between 1 and 10mm. The
winter season, however, has the lowest ET values, ranging from 1 to 7.5 mm, not
including rare and high ET values.
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Figure 5.6: Seasons Density Plot

Distribution of the Input Features

We have used the fitter tool to produce all the plots in this section. We now aim to
study the distribution of each input feature on US-Goo, one of the most represen-
tative sites in our dataset. The fitter package aids in identifying the distribution
of each feature by comparing its histogram to probability density functions of fa-
mous distributions like the normal distribution, exponential, Cauchy, etc... This
package returns a set of distributions ranked from best to worst fit according to
the distribution having the least sum of squares error.

According to Figure 5.7:

• TA has a distribution of powerlognorm

• RH has a distribution of norm

• WS has a distribution of lognorm

According to Figure 5.8:

• EEflux Albedo has a distribution of lognorm

• RH has a distribution of exponpow (exponential power)

• WS has a distribution of cauchy

Distribution of the Output Feature

In this section we have also used the fitter tool to produce this plot. According
to Figure 5.9, we note the distribution of our output variable ET is exponential
power, which is also referred to as the generalized normal distribution.
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(a) TA (b) RH

(c) WS

Figure 5.7: Distribution of TA, RH, and WS
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(a) EEflux Albedo (b) EEflux NDVI

(c) EEflux LST

Figure 5.8: Distribution of EEflux Albedo, EEflux NDVI, and EEflux LST

Figure 5.9: ET
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Seasonal Trends of TA and RH alongside ET

We have used the tool matplotlib to generate the plots in this section.

We aim to study how values of TA and RH relate to values of ET as a func-
tion of seasons across one Ameriflux site US-Goo and one Euroflux site DE-Kli.
In Figure 5.10, in the first row, the x-axis represents TA in degrees Celsius versus
ET in mm, and the y-axis represents the number of data points. In the second
row, the x-axis represents RH in (%) versus ET in mm and the y-axis represents
the number of data points. The first column shows the data for the winter season
and the second column shows the data for the summer season.

Figure 5.10: Ameriflux Site US-Goo

According to Figure 5.10, TA and ET are directly proportional in the summer
season, in which high TA implies high ET, and in the winter season in which
low TA implies low ET. This observation coordinates with the observations in
Chapter 7 and Chapter 14. RH and ET are inversely proportional in the summer
season, in which low RH implies high ET, and in the winter season in which high
RH implies low ET. This observation also coordinates with the observations in
Chapter 7 and Chapter 14. We now study one of the top representative sites
from Euroflux, DE-Kli. In Figure 5.11, the same observations are made as in
Figure 5.10.
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Figure 5.11: Euroflux Site DE-Kli

5.4.3 Data Transformations

A variety of data transformation techniques are applied to our data set. Since our
data set contains a date column that reflects a time structure, we have replaced
it by creating lags for several input columns. We conducted a series of auto-
correlation plots for each input variable to produce an adequate number of lags.

Auto-correlation

Correlation is a technique used to measure the intensity and form of a relation-
ship between an observation and its lag(s). This is often called auto-correlation
(Huitema and Laraway, 2006). The value of the correlation varies between -1
and 1. A value close to zero shows a weak correlation, while a value similar to
-1 or 1 shows a strong negative or a strong positive correlation. Using autocor-
relation graphs, we visually reflect this association in order to better understand
the correlation between an observation and its lag. The stronger the correlation
between the output variable and the particular lagged variable, the greater the
weight that the regression model will place on that variable while modeling. The
highest and most positive correlations with their lags are TA, EEflux LST, and
RH.

Deciding Number of Lags

Time series analysis implies the association between a current measurement and
its previous observation. Previous observations in time series are labeled as lags.
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An observation in the previous time step is marked as lag number 1, an observa-
tion in the two-step is marked as lag number 2, etc... The scatter plot is a useful
form of plot to examine the relationship between each observation and its lag.
For this study, we utilized Pandas’ lag plot. It plots the studied measurement
at time t on the x-axis and the measurement lag observation (at time t-1) on
the y-axis. If the data points pile from the bottom-left to the top-right of the
plot along the bisector, a positive correlation relationship is reflected. If the data
points pile from the top-left to the bottom-right along the bisector, a negative
correlation is reflected. We plot the scatter plots for our studied features:

Figure 5.12: Auto-correlation Scatter Plot for WS, RH, TA, amd LST

Figure 5.12 demonstrates a positive correlation between the element studied and
its first lag as the scatter plot begins to form a diagonal shape from the bottom
left to the top right, which is an indicator of a strong positive correlation.
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Figure 5.13: Auto-correlation Scatter Plot for NDVI and Albedo

We also note that NDVI and Albedo show no obvious correlation in Figure 5.13.

Auto-correlation Plots

Using autocorrelation plots, we also visually show this connection in order to
further explain the association between an observation and its lag. The stronger
the correlation between the output variable and a particular lagged variable, the
greater the weight that the regression model will place upon this variable when
modeling. TA, EEflux LST, and RH are the most significant characteristics that
display a high and positive correlation with their lag.
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Figure 5.14: TA Auto-correlation Plot

In Figure 5.14 , the x-axis shows the number of lags and the y-axis shows the
auto-correlation value ranging from -1 to 1. This figure portrays that upon in-
creasing the number of lags to a certain threshold, the correlation value will
decrease. The highest correlation value obtained was 0.25, hence choosing five
lags for TA.

Lag Generation

We have generated lags for the following columns in accordance to the auto-
correlation plots:

• “WS”: 2 lags

• “RH”: 3 lags

• “TA”: 5 lags

• “EEflux Albedo”: 2 lags

• “EEflux NDVI”: 2 lags

• “EEFlux LST”: 5 lags

Data Encoding

We have converted our categorical columns, which are Site Id, Month, Vegetation,
and Environment, to a numeric binary representation using a binary encoder.
We used binary encoding instead of one-hot encoding since it yields in fewer
dimensions. The number of encoded binary columns created for each categorical
function will vary depending on the specific number of available categories per
column. This binary encoder works in the following manner:

• An ordinal representation is given for each input feature

• The ordinal representation is changed to a binary representation
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• The resulting set of binary digits is sectioned into individual columns with
the value 0 or 1

• Each categorical column is renamed according to the binary encoding: “Site
Id”, “Site Id 0”, “Site Id 1, ...

5.4.4 Unsupervised Clustering Analysis

A multitude of clustering algorithms is utilized to analyze various trends of model
performance. Two key clustering methods are used: clustering by K means and
Dendrograms or clustering by subsetting centered on a selection of a category
pertaining to a specific input feature.

K Means

K Means is an unsupervised machine learning clustering algorithm that initially
sets random cluster centers (centroids) and then maps each data point to its
nearest cluster by calculating its distance from each centroid (Bano and Khan,
2018). The centroid will be updated and the process will be repeated until no
further cluster update is carried out. We specify the number of clusters using the
elbow method.

Dendrograms

Dendrograms is a clustering algorithm that works by assigning an individual
cluster to each point, merging the nearest cluster pair, and then repeating the
process until there is only one cluster left (Bano and Khan, 2018). This merge
approach is based on the calculation of the similarity between the data points by
measuring their distance to the centroids of those clusters. We perform several
clustering experiments by varying the input features we fed to our algorithm.

• Clustering on one weather column only at a time (WS, RH, TA) and we
apply that for k = 2 and k = 3

• Clustering on two columns (WS RH, WS TA, RH TA) and we apply that
for k = 2 and k = 3

• Clustering on all three columns (WS, RH, TA) and we apply that for k =
2 and k = 3

• Clustering on different climates encoded columns for k = 4

The choice of k was based on running the elbow method on K Means, finding the
best cut, and trying with different k values. The aim of clustering by Kmeans or
Dendrograms is to identify whether certain WS, TA, and RH values would yield
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better real ET predictions, rather than modeling on the whole dataset with all
ranges of WS, TA, and RH values.

Clustering by Subsetting on Climates

We split our data into five different data sets according to the five types of
climates available (Cfa, Csa, Cwa, Dsa, Csb). We then model on each climate
to analyze model trends. The aim of this study is to analyze model performance
across individual climates.

5.4.5 Seasonality Study

After performing several clustering techniques on several criteria, we were inter-
ested in studying data separability by the air temperature. In order to observe
our model performance across the three seasons (summer, winter, and spring), we
performed a seasonality study. We observed which clustering technique showed
clear separability in air temperature allowing us to generalize the climate it be-
longs to. We have noticed that clustering by air temperature (TA) using K means
k=3 showed a clear separability in TA, portraying clear seasonal representations
for each cluster. Cluster 0 represented winter, cluster 1 represented summer, and
cluster 2 represented spring. Hence, we performed modeling on these three clus-
ters to observe model performance. We observe the air temperature distribution
in the three clusters in Figure 5.15 and in Table 5.2 .

Figure 5.15: Distribution of TA across Clusters
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cluster 0: Winter cluster 1: Summer cluster 2: Spring
minimum TA -15.4 C 23.33 C 14.07 C
maximum TA 14.07 C 37.31 C 23.31 C
dataset size 1130 1538 2455

Table 5.2: TA Clusters Distribution

38



Chapter 6

Utility-Based Regression and
Minority Up-sampling

Our work is heavily inspired by (Ribeiro and Torgo, 2008). Cost-sensitive learn-
ing has become a vital approach when dealing with current machine learning
problems. Prior existing research has been very focused on classification prob-
lems rather than regression problems in matters of cost-sensitive analysis. The
majority of literature works tackling regression presume uniform costs and utilize
average error statistics, which is very erroneous in real-world problems. However,
(Ribeiro and Torgo, 2008) have developed the UBR framework which allows
evaluating regression models in a cost-sensitive manner. With utility-based re-
gression, we can transform our regression problem to a classification-like problem
by classifying our output variables as rare vs not rare. (Ribeiro and Torgo, 2008)
emphasize that models should be evaluated by their benefits and rewards rather
than cost. The UBR module estimates the utility of any regression model by
attaining a balance between cost and benefits from the obtained predictions.

6.1 Relevance Function

(Ribeiro and Torgo, 2008) assume that the benefits of the target variable values
are not uniform across the target variable domain. Hence, this information which
depends on the domain will be obtained by the relevance function. This relevance
function will map each target variable value to a spectrum of 0 to 1, 0 being not
relevant and 1 being very relevant. (Ribeiro and Torgo, 2008) also emphasize
that relevance is associated with rarity, hence the most relevant values are the
rares (which do not occur multiple times in the dataset). Thus, a function that
is inversely proportional to the probability density function of the target variable
values can be defined as a relevance function. The idea of the relevance of the
prediction for a certain test instance is portrayed by defining a bi-variate relevance
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function:

Φ(ŷ, y) = (1−m)φ(ŷ) +mφ(y) (6.1)

where:

• ŷ is ypredicted

• y is yactual

• m is a parameter (0≤m≤1) which differentiates between situations 1 (false
alarms) and 2 (opportunity costs). m is set to be 0.5 to have a balance
between the two scenarios.

The relevance function is simply the weighted average of the relevance for ŷ and
y. The relevance is high when both y and ŷ are highly relevant.

6.2 Defining Rarity

In our problem, the target variable is Real ET which ranges between 1 and 15mm.
In order to determine the range of rare vs not rare, we conducted the following
experiment:

• We separated the data by site Id.

• For each site Id, we calculated the percentage of data lying between the
following ranges: [1,15], [2,15], [3,15]...[14,15]. The distribution of the data
is shown in figure 6.1. The box plot and density plot for Real ET are also
shown in Figures 6.2 and 6.1 respectively , where it is clear that ET values
above 10 are outliers.

• We checked the ranges in which the majority of sites have only less than
10% data falling into them. A sample of this study is shown in Figure 6.3.

• We experimented with each range on a base model in order to choose which
gives the highest precision and recall. The best range with the best results
was [5,15].

• We defined all values of ET falling in the range [5,15] are considered rare,
with 15 being the rarest.
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Figure 6.1: Real ET Value Distribution

Figure 6.2: Real ET Values Box Plot

Figure 6.3: Snippet of Rare Study per Site
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6.3 Relevance Matrix and Relevance Threshold

(Ribeiro and Torgo, 2008) allowed the choice between two methods when defining
rare values: range and extremes. In extremes, an automated process decides the
range of rare values depending on the box plot of the target variable (real ET
in our case). It then allocates bigger importance to the least represented target
variable values. Here, the user does not have to supply any external data. In
range, the user has to define a set of reference points, called a relevance matrix,
in order to assess relevance. In this study, it is defined as follows:

Relevance Matrix =

 1 0 0
4 0 0
15 1 0

 (6.2)

With 1-4 being the most represented, and 5-15 is the least represented. The user
also has to define a relevance threshold. The threshold ranges between 0-1 (similar
to the relevance). The algorithm works in a way that it assigns a rare label to
the target variable value if the relevance of the target variable value is above
the relevance threshold. The relevance threshold is decided per experiment, in
which it is part of the cross-validation. The threshold giving the highest precision
and recall will be chosen. We plot the real ET values and their corresponding
relevance in Figure 6.4.

Figure 6.4: Relevance per ET Value

6.4 SMOGN

Precision and recall which are obtained from the UBR transformation serve more
than just measuring model accuracy. Precision implies the percentage of rele-
vant results. On the other hand, recall implies the percentage of relevant results
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correctly classified by the specified algorithm, i.e the percentage of rare but rele-
vant values accurately predicted by our machine learning model. In order to get
higher recall values, we applied the works of (Branco et al., 2017). SMOGN (a
combination of Gaussian noise and SmoteR) is a new method that tackles im-
balanced data in any regression problem. The most important variables are rare
cases that are poorly represented in our data. For example, high values of real
ET are poorly represented in our data, however, they are very relevant and the
farmer would be highly affected if these high ET values were wrongly predicted.
Hence, SMOGN generates more instances of these rare but relevant ET values in
order for the ML model to learn better, and thus predict better. This algorithm
consists of a random under-sampling technique and two over-sampling ones i.e
SmoteR and Gaussian Noise.

6.4.1 SMOTER and Gaussian Noise

SmoteR (Synthetic Minority Oversampling Technique for Regression) is devel-
oped by (Branco et al., 2013). The regular SMOTE algorithm targeted classi-
fication problems when there exists imbalanced class distribution. SMOTER,
a variant of SMOTE, aims at regression problems, where the concern is to ac-
curately predict rare extreme values. The original SMOTE algorithm creates
synthetic samples by randomly choosing a k-nearest neighbor for a minority data
point, and creates a new synthetic data point by interpolating the values of the
original and its neighbor. SMOTE is visually explained in Figure 6.4 below.

Since SMOTE is targeted at classification problems, the output variable inter-
sects. Thus, in SMOTER, three main points should be identified:

1. Defining rare versus non-rare ET values

• This point is already covered above, in which we decided the range of
ET between [5-15] to be rare, and the range of ET between [1-4] to be
non-rare.

2. Creating synthetic samples

• The same method for SMOTE is applied.

3. Generating logical output variables (real ET) for the synthetic test points

• This is a simple matter in the existing algorithm since all rare cases
have the same class (target minority class). The solution is not so
obvious in the case of regression. Although they have high relevance,
the cases that need to be over-sampled do not have the same target
variable value. This implies that they will not have the same target
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variable value when a pair of data points is used to create a new syn-
thetic case. (Branco et al., 2013) suggested using a weighted average
of the two examples’ target variable values. The weights for each of the
two seed examples are calculated as an inverse function of the distance
of the case generated.

Figure 6.5: SMOTE (Branco et al., 2013)

SMOGN will generate more synthetic data using SmoteR when the selected seed
and the K-nearest neighbors are close in distance and it introduces Gaussian
Noise when they are not. The main idea of the SMOGN algorithm is to incorpo-
rate both resources to gain synthetic examples with the objective of potentially
restricting the hazards that SmoteR will inflict by introducing the Gaussian Noise
strategy and facilitating the diversity of the data.

In the SMOGN module, we have the choice to down-sample the non-rare data
and oversample the rare data. In this paper, we decided not to do any down-
sampling and only apply the oversampling of rare values. The SMOGN module
also allows users to choose the oversampling percentage, the k for the k-nearest
neighbor, and the distance type (Manhattan, Euclidean, etc. . . ). We also note
that we are applying the SMOGN up-sampling technique on the training data
only, not on the validation and testing. SMOGN is also followed by repeated
K-Fold stratified cross-validation, to avoid data leakage.
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6.5 Utility-Based Regression and SMOGN Hyper-

parameters

There are a set of hyper-parameters that need tuning when implementing UBR
and SMOGN:

1. rel method: relevance method - range or extremes.

2. extr type: extreme type - high or low (meaning if rare values are high or
low)

3. rell: relevance matrix (specified in the study)

4. thr rel: threshold for relevance

5. k: K for K-nearest neighbor

6. epl: boolean value controlling the possibility of having a repetition of ex-
amples when performing under-sampling by selecting among the normal
examples.

7. dist: distance function used (Manhattan, Euclidean, etc..)

8. cperc: A list containing the percentage(s) of under-or/and over-sampling
to apply to each class.

9. p: A number indicating the value of p if the p-norm distance is chosen.

6.6 Repeated Stratified K-Fold Cross-Validation

The data set will be split first into 70% train and 30% test. The train data set is
then further split into 70% train and 30% validation. We implemented a special
split in which each site is equally represented in each split. We perform repeated
Stratified K-Fold cross-validation. K-Fold cross-validation on its own works by
splitting the data into K folds, where each fold represents training and validation
data. The model will be evaluated at each fold respectively, and the performance
of the model is assessed by averaging the scores across all folds. Stratified K-fold
ensures that the data is split into stratified folds, the folds are made by preserving
the percentage of samples for each class (rare vs not rare in the case of applying
UBR). The repeated stratified K-fold Cross-validation works on repeating the
stratified K-fold cross-validation by n repeats, in which each repeat, the data is
shuffled to produce various fold combinations. The model is thus assessed by
averaging the scores over all the repeats.
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Chapter 7

Feature Selection

Feature selection is a process of choosing an adequate number of input features,
which yields satisfactory model performance compared to all sets of features.
Since there are plenty of challenging input features to obtain, feature selection
must be done. In the feature selection process, we care to:

1. Reduce overfitting: Less redundant data means less opportunity for redun-
dant data/noise-based decision making.

2. Improve accuracy: Less inaccurate data implies that the accuracy of the
models improves.

3. Reduce training time: Less knowledge ensures that algorithms learn faster.

7.1 Methods

A supervised feature selection method is divided into three groups (Miao and
Niu, 2016):

• Intrinsic: It is a method that achieves automated selection of features during
the training phase.

• Filter: It uses statistical techniques to assess how a subset of input features
relates to the target variable.

• Wrapper: It is a method that picks a subset of input features based on
trying out different subsets of input features and monitoring all others which
perform best in predictive modeling.

We have tried two methods for feature selection, one is a filter-based method
based on mutual information and the other is a wrapper method based on feature
importance.
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7.1.1 Feature Importance

A wrapper method is a method which depends on the machine learning model
used. The assessment of importance for each feature is based on model perfor-
mance when that feature is included in training. The Feature Importance method
searches for well-performing subsets of features. Using our best models, we ob-
tain the analysis in Figure 7.1.

Figure 7.1: Feature Importance

Figure 7.1 shows the input features on the x-axis and the scores on the y-axis.
The score is always positive and has a bounded value between 0 and 1. The
higher the score, the better contribution an input feature has on its target. As it
is noticed, the top contributing features are TA, NDVI, and LST.

7.1.2 Mutual Information Feature Selection

A filter-based feature selection method is independent of the model used. It
chooses the top contributing features based on a correlation metric (here we
chose mutual information) between the input features and the target feature. We
chose this method as our final feature selection method since it is model agnostic.
We obtained the results in Figure 9.1.
We note that the top contributing features are TA, NDVI, LST, Albedo, WS,
and RH.
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Figure 7.2: Feature Selection based on NMI

7.2 Scenarios

The feature selection process starts by ranking all input variables by Mutual
Information Score using a filter-based FS algorithm (SelectKBest according to
Mutual Information). Then, our model will be fed the input features one by one
in order of highest Mutual Information Score. The feature selection process is
quite important for finding which scenario best fits the business requirements.
We also use feature selection techniques to reduce the complexity of our problem
to make a compromise between the number of input features and accuracy, and
training speed resulting in the following scenarios:

7.2.1 Scenario A

No feature selection methods are applied. The model is fed the total number of
input features. The columns for this scenario are Site Encoded, Month Encoded,
Vegetation Encoded, TA + 5 Lags, NDVI +5 lags, LST + 5 lags, Albedo + 5
lags, WS+ 5 lags, and RH + 5 lags.

7.2.2 Scenario B

The model with satisfactory performance but the least training time and econom-
ically inexpensive. What is meant by economically inexpensive is that it should
require input features not hard to collect, i.e input features that are frequently
available. The columns for this scenario are Site Encoded, Month Encoded, Veg-
etation Encoded, TA and 5 of its lags.
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7.2.3 Scenario C

The model performs in a comparable manner when fed a number of features less
than the total, as opposed to a model that is fed all the number of input features.
The columns for this scenario70 are Month Encoded, Site Encoded, TA + 5 Lags,
NDVI + 2 lags, LST + 5 lags,Albedo + 2 lags, WS+ 2 lags, and RH + 3 lags.

7.2.4 Scenario D

The model is fed top contributing input features extracted from SHAP, which
are RH, TA, EEflux LST, and their corresponding lags.

The final the scenarios are illustrated in Table 7.1.

Name Input Combinations
Scenario A All Columns
Scenario B TA(5 lags)
Scenario C TA(5 lags) WS(2 lags)

RH(3 lags)
EEflux LST(5 lags)
EEflux NDVI(2 lags)
EEflux Albedo(2 lags)

Scenario D TA(5 lags) RH(3 lags)
EEflux LST(5 lags)

Table 7.1: Feature Selection Scenarios
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Chapter 8

Model Assessment

8.1 Evaluation Metrics

In order to evaluate our models, we have used regression, correlation and agree-
ment, utility-based regression, and probabilistic model selection metrics. .

8.1.1 Regression Metrics

All error metrics definition are derived from scikit-learn.

• Mean Squared Error(MSE): A metric that is mostly used for regression
problems. It measures the average of the squared difference between the
target variable and its predicted value. Having the squared behavior plays a
role in over-estimating how bad the model behaves and is often a preferable
metric given the fact that it is differentiable which helps in optimizing it
more.

MSE =
1

n

∑
(y − ŷ)2 (8.1)

where:
n = number of observations
y = array of the target variable values

• Root-Mean-Squared-Error(RMSE): It is the square root of the MSE metric.
It is preferable in cases where large errors are undesired since it first squares
the error before applying the average.

RMSE =

√
1

n

∑
(y − ŷ)2 (8.2)

• Mean-Absolute-Error(MAE): A linear score metric that measures the ab-
solute difference between the target variable and its predicted value. It is
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often more robust to outliers and doesn’t penalize errors as MSE.

MAE =
1

n

∑
|y − ŷ| (8.3)

• Mean-Absolute-Percentage-Error(MAPE): A metric that measures the per-
centage of how bad the model performs. It is the percentage of MAE. The
least desirable value is 100% and the most desirable is 0%.

MAPE =
100

n

∑ |y − ŷ|
|y|

(8.4)

• Accuracy: A metric that measures the percentage of how well a model
performs. It is quite the opposite of MAPE. A high value close to 100
indicates a well-performing model. The least desirable value is 0% and the
most desirable is 100%.

Accuracy = 1−MAPE (8.5)

• Coefficient of Determination(R2): A metric that helps in comparing our
model’s performance to a base-line model, which is the mean of the data,
to indicate how well our model behaves in a scale-free matter scaling up to
1. A value close to 1 indicates that the model is performing well.

R2 = 1− MSE(model)

MSE(baseline)
(8.6)

• Adjusted R2: A metric that is similar to R2, it is often always less than R2

since it only detects improvements when there is a real increasing predictor
rather than improving on increasing terms while the model is not really
improving.

R2
a = 1− [

n− 1

n− k − 1
)× (1−R2)] (8.7)

where:
n = number of observations
k = number of independent variables
R2

a = Adjusted R2

8.1.2 Correlation Metrics and Agreement Metrics

All error metrics definition are derived from scikit-learn.

51

https://scikit-learn.org/stable/


• Pearson Correlation Coefficient: It is used to quantify the strength of the
linear correlation between two entities x and y, where the value correlation
= 1 means a positive correlation and the value correlation = -1 means a
negative correlation. The least desirable value is a 0 and the most desirable
is a 1.

Pearson =

∑
(x− |x|)× (y − |y|)√∑

(x− |x|)2
√∑

(y − |y|)2
(8.8)

• Spearman Correlation Coefficient: Similar to Pearson but does not measure
the linear correlation, it measures the monotonic correlation between two
entities. Monotonicity is “less restrictive” than that of a linear relationship.
The least desirable value is a 0 and the most desirable is a 1.

Spearman = 1− 6
∑
d2

n3 − n
(8.9)

where:
n = data size
d = difference between ranks

• Spatial Correlation Distance: It is the correlation distance between two
entities u and v. The least desirable value is a 0 and the most desirable is
a 1.

Distance = 1− (u− u)× (v − v)

||u− u||2||v − v||2
(8.10)

• Normalized Mutual Information (NMI): A metric used to study the agree-
ment between two independent labels when the real ground truth is un-
known. It ranges between 0 (no mutual information) and 1 (perfect corre-
lation).

NMI(Y,C) =
2× I(Y,C)

[H(Y ) +H(C)]
(8.11)

where:
Y = class labels
C = cluster labels
H() = entropy
I(Y, C) = mutual information between Y and C

8.1.3 Probabilistic Model Selection Metrics

All error metrics definition are derived from (Kuha, 2004).
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• Akaike Information Criterion (AIC): A model selection metric that quanti-
fies the quality of a model with respect to other models. A low AIC is an
indication of a better model. It is often prone to over-fitting when adding
more parameters which increase the model fitness this is why a penalty
term is added for the number of parameters in the model.

AIC = n× logMSE + 2× num params (8.12)

where:
n = number of observations in the training data set
num params = number of trainable models which is model dependent

• Bayesian Information Criterion (BIC): It is a metric for model selection,
similar to AIC, and can be applied on a finite number of models. Its basis
is on the likelihood function but adds a higher penalty.

BIC = n× logMSE + num params× log(n) (8.13)

8.1.4 Utility-Based Regression Metrics

After applying the UBR module to our data, we are now able to obtain cost-
sensitive error metrics from our regression problem. Our regression problem is
governed by rare but relevant events (extreme values not abundantly present in
our dataset but are however relevant). Usually, in classification problems, pre-
dictions driven by rare/not rare values are measured by precision and recall. The
general primacy of precision and recall is that they capture model performance
upon encountering rare values and not on the general accuracy of not rare pre-
dictions (Torgo and Ribeiro, 2009).

• Precision: In regression, Precision is a calculated metric that appraises the
rare/not rare predictions. The least desirable value is a 0 and the most
desirable is a 1 (Torgo and Ribeiro, 2009).

Precision =

∑
φ(ŷi)≥tE α(ŷi, yi)φ(ŷi)∑

φ(ŷi)≥tE φ(ŷi)
(8.14)

where:

– ŷi is ypredicted

– yi is yactual

– φ is the relevance function

– tE is the relevance threshold
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– α is a function which defines the accuracy of the prediction, where
α(ŷi, yi) = I(L0/1(ŷi, yi)

– I() is the indicator function given 1 if its argument is true and 0
otherwise

– L0/1 is a standard 0/1 loss function

• Recall: In regression, Recall computes the portion of events happening in
the domain that are caught by the regression model. Recall is a calculated
metric that appraises the number of true rare predictions yielded from all
rare predictions that should have been made. The least desirable value is
a 0 and the most desirable is a 1 (Torgo and Ribeiro, 2009).

Recall =

∑
φ(yi)≥tE α(ŷi, yi)φ(ŷi)∑

φ(yi)≥tE φ(ŷi)
(8.15)

• F1: It captures the balance between the precision and the recall. The least
desirable value is a 0 and the most desirable is a 1.

F1 = 2× precision× recall
precision+ recall

(8.16)

• F2: The F2 score is used as well, in which twice the weight is given to recall
as opposed to the weight given to precision. The least desirable value is a
0 and the most desirable is a 1.

F2 = 5× precision× recall
4× precision+ recall

(8.17)

• F0.5: F 0.5 score is used also in which we give twice as much weight to
precision than recall. The least desirable value is a 0 and the most desirable
is a 1.

F0.5 = 1.25× precision× recall
0.25× precision+ recall

(8.18)

8.2 Negative Accuracy and R2 Score

There exist special cases in which negative R2 scores and accuracy measures are
exhibited.

8.2.1 R2 Score

The equation of R2 score as defined by scikit-learn is :

R2score = 1− residual sum of squares

total sum of squares (proportional to the variance of the data)
(8.19)
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Where:

Residual Sum of Squares (SSres) =
∑
i

(yi − fi)2 (8.20)

Total Sum of Squares (SStot) =
∑
i

(yi − ȳ)2 (8.21)

yi is the actual target variable
fi is the predicted target variable by the model
ȳ is the mean target variable

Since the R2 score is defined as the proportion of variance explained by the fit,
R-square is negative if the fit is actually worse than just fitting a horizontal line.
The R2 score is calculated on the premise that the target variable’s average line
has to be the worst fit a model can have. The square difference between this av-
erage line and original data points is SStot (total number of squares). Likewise,
the square difference between the expected data points (by the model plane) and
initial data points is SSres (residual sum of squares). SSres/SStot includes a
ratio of how much worse SSres is than SStot. If our model is capable of building
a plane that is reasonably good than the worst, then SSres ≤ SStot in most
cases. Ultimately, it makes the R2 score positive. And what if SSres ≥ SStot?
This implies that our plane of regression is even worse than the mean line (SStot).
The R2 score in this case is going to be negative.

N.B: The SSres is the regression plane because in its calculation the predicted y
from the regression model is utilized. The SStot represents the mean line because
in its calculation the mean y is subtracted from the y actual.

8.2.2 MAPE

The equation of MAPE (Mean Absolute Percentage Error) is as follows:

1

n

n∑
i=1

∣∣∣∣ yi − ŷyi

∣∣∣∣× 100 (8.22)

A MAPE 100% means that the errors are much greater than the actual values.
For example, if the actual target variable is a 1, and we predict a 3, the MAPE
is 200%. Hence, the accuracy, which is 100-MAPE will be negative.
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Chapter 9

Uncertainty Quantification

Machine learning models demand uncertainty measurement. In any machine
learning task, there exist several sources of uncertainty, namely variations in par-
ticular data points, data samples obtained, and the flawed design of any model
built from this type of data. The measurement of uncertainty prevalent in ma-
chine learning is accomplished by probability methods and techniques which are
explicitly developed to deal with uncertainty. It is ultimately necessary and tech-
nically more significant to measure and quantify uncertainty in a transductive
manner, customizing it for particular cases, rather than measuring generic error
metrics or accuracy. In particular, uncertainty is defined as what is not clearly
known but can be quantified differently, by taking into account its causes or
effects as well. Therefore, there are different methodologies of uncertainty defini-
tions that include various thoughts and implementations (aleatoric and epistemic,
irreducible, and reducible) in addition to their forms of inference (systematic or
statistical). In this section, we measure uncertainty using our best probabilistic
model, NGBoost (which has its architecture and mode of action explained in
Section 12.1).

9.1 Uncertainty Types

The concept of uncertainty is of great significance and is a core element in ma-
chine learning. Uncertainty has traditionally been viewed as nearly interchange-
able with generic probability and probabilistic forecasts. However, because of
the growing importance of machine learning for real-world applications, machine
learning researchers have recently identified fresh difficulties, yet these issues may
require new technical innovations (Hüllermeier and Waegeman, 2019). This in-
cludes the importance of quantifying uncertainty and differentiating between two
forms of uncertainty: the aleatoric (irreducible) and epistemic (reducible). Fig-
ure 9.1 illustrates an overview of the types of uncertainties to be discussed in
Sections 9.1.1 and 9.1.2
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Figure 9.1: Uncertainty Types

9.1.1 Aleotoric Uncertainty

As (Hüllermeier and Waegeman, 2019) explain, aleatoric uncertainty - which
is based on a statistical inference - supports the concept of randomness, i.e.
the variance due to necessarily random effects of the results of an experiment.
For example, rolling dice is a basic example of aleatoric uncertainty in which
the outcome data cannot be changed given any additional outside information.
Aleatoric uncertainty signifies the irreducible uncertainty because it is based on
the stochastic connection between input variables x and output variable y, which
is expressed as the conditional probability. This uncertainty is irreducible (can-
not be decreased) even when additional data or model information is supplied to
the machine learning model. In modern regression models, aleatoric uncertainty
is mainly calculated as follows: (Hüllermeier and Waegeman, 2019)

aleoteric uncertainty = σ2
RMSE (9.1)

where σ2
RMSE is the variance of an error term (here we chose RMSE - Root Mean

Squared Error). When quantifying uncertainty, each test data point should have
an uncertainty measure. To measure epistemic uncertainty, we should get the
variance of the probability distribution per point. This is achievable in NGBoost
because NGBoost outputs the mean and standard deviation of the distribution
per test data point, so we calculate the variance from the obtained standard
deviation. However, in order to calculate the aleatoric uncertainty, we need the
variance of the RMSE per point. Hence, each test data point should have a list
of RMSEs in order to calculate the variance per data point. This is achievable
in neural networks because of their layered property, where we can play around
and achieve multiple RMSEs per point. For example, the deep ensemble neural
network architecture consists of an ensemble of neural networks. Each neural
network of this ensemble is tested on the testing data. Therefore, per data point,
we have an array of RMSEs, each RMSE pertaining to a neural network model
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in this ensemble. Hence, we can calculate the variance of the RMSE per point.
However, this is not achievable in NGBoost because it is a tree structure, where
each test data point has 1 RMSE, not a list of RMSEs, not allowing us to calculate
the variance of the RMSE like in deep ensembles.

Figure 9.2: Aleotoric Uncertainty - 1 (Why Uncertainty Matters)

Figure 9.2 represents a sample depiction of a set of their observations coupled
with their ground truth. We note that noisy measurements of an underlying
process can be the reason behind high Aleatoric uncertainty.

Figure 9.3: Aleotoric Uncertainty - 2 (Why Uncertainty Matters)

Figure 9.4 represents a sample depiction of a set of their observations but cou-
pled with error-less ground truth. We also observe a noisy underlying process
that lead to high Aleatoric uncertainty even with accurate observations, hence
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comes the term irreducible to describe this uncertainty (unaffected or minimized
by additional data information).

The unit for Aleatoric uncertainty is mm2.

9.1.2 Epistemic Uncertainty

Epistemic uncertainty - which is based on a systematic inference - corresponds
to an uncertainty created by insufficient information. Epistemic uncertainty re-
lates to the confusion of the machine learning model. Hence, unlike the aleatoric
uncertainty which was based on the occurrence of any random event, the epis-
temic uncertainty is based on the status of the machine learning model and its
knowledge (Hüllermeier and Waegeman, 2019). This type of epistemic uncer-
tainty can be minimized upon introducing additional knowledge to the machine
learning model, unlike aleatoric uncertainty. Epistemic uncertainty is the re-
ducible uncertainty, which can be reduced upon introducing extra model/data
information. Epistemic uncertainty is calculated as follows: (Hüllermeier and
Waegeman, 2019)

epistemic uncertainty = σ2
PDF (9.2)

Where σ2
PDF is the variance of the probability density function pertaining to the

probability distribution predicted by the probabilistic model. In other words,
σ2
PDF is the variance of the posterior distribution or probability density function

pertaining to the probability distribution predicted by the probabilistic model.

Figure 9.4: Epistemic Uncertainty (Why Uncertainty Matters)
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Epistemic uncertainty is high when there is not enough training data, and hence
the σ2

PDF is high, as portrayed in Figure 9.4. In fact, the concept of epistemic
uncertainty is actually built upon Bayesian inference which is based on Bayes’s
theorem (Gustafson, 2014). Baye’s theorem computes the probability of a cer-
tain event from prior knowledge or data. Let us consider a random unknown
quantity θ. Baye’s theorem places an initial guess about θ’s distribution, naming
it the prior distribution. This prior distribution is hence updated upon gaining
more knowledge on θ (same as how the epistemic uncertainty is reduced upon
introducing additional data or model information). Baye’s theorem is defined as
follows:

P (θ|D) =
P (D|θ)× P (θ)

P (D)
(9.3)

where:

•••1. D is the prior knowledge or data

2. θ is a given event

3. P (θ) is the prior distribution representing our initial guess for the distribu-
tion of θ

4. P (D|θ) is the likelihood distribution. The likelihood distribution is depen-
dent on the P(D) given that the likelihood is true, and then multiplied by
a constant.

5. P (D) is the marginal distribution - sometimes referred to as the evidence.
Its calculation is a complex process. It is usually a normalizing constant.

6. P (θ|D) is the famous posterior distribution. It represents the probability
distribution of θ after receiving and observing all the additional data/model
information.

The Bayesian inference is further explained in Figure 12.3 below, where it is
shown that the prior distribution lies between the posterior and likelihood distri-
butions.
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Figure 9.5: Bayesian Inference (Gustafson, 2014)
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Chapter 10

Experimental Variations

10.1 Experiment A

Real ET versus ET (predicted or obtained by EEflux METRIC). We denote this
experiment by Experiment A. Error metrics are calculated between Variable 1
and Variable 2:

• Variable 1: Real ET

• Variable 2: Predicted ET or EEflux METRIC ET

High R2 (close to 1) and low error metrics indicate that our model is able to
predict real ET well.

Research Question: Which model best estimates real ET?

10.2 Experiment B

The proportional residual between real ET and predicted ET is computed by
getting the error metrics corresponding between two entities:

• Variable 1: EEflux ET / Real ET

• Variable 2: EEflux ET / Predicted ET

We denote this experiment by Experiment C.

Research Question: Which model best minimizes the proportional bias be-
tween the real ET and the EEFlux ET?
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10.3 Experiment C

The absolute residual between real ET and predicted ET is computed by getting
error metrics and other accuracy measures corresponding between two variables:

• Variable 1 = EEflux ET - Real ET

• Variable 2 = EEflux ET - Predicted ET

We denote this experiment by Experiment B.

Research Question: Which model best minimizes the absolute bias between
the real ET and the EEFlux ET?

10.4 Experiment D

A combination between the multiplicative and the absolute residual. The com-
bination residual between real ET and predicted ET is computed by getting the
error metrics corresponding between two entities:

• Variable 1: (EEflux ET - Real ET)/Real ET

• Variable 2: (EEflux ET - Predicted ET)/Predicted ET

We denote this experiment by Experiment D.

Research Question: Which model best minimizes the combined bias between
the real ET and the EEFlux ET?
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Chapter 11

Point-wise Modeling

Point-wise models generate point predictions - i.e one predicted value per one
input test point. We first started with a basic support vector regressor as our base
model, which was coupled with 10 folds 10 repeated stratified cross-validation.
SMOGN up-sampling was also applied. Upon observing unsatisfactory results for
our base model which is Linear SVR, we explored the performance of Gradient
Boost, Extra Trees, Random Forests, Ensemble Bagging, Ada Boost, CatBoost,
and XGBoost.

11.1 Models

The description of all the models is adapted from scikit-learn.

1. Linear Support Vector Regression: The objective function of Linear
SVR is to minimize the coefficients, specifically the coefficient vector l2
norm. Thus in the option of penalties and loss functions, it has more
versatility and can scale to large numbers of samples better.

2. Gradient Boost: Gradient Boosting is a machine learning technique that
produces a prediction model in the form of an ensemble of weak prediction
models. Like other boosting techniques, it constructs the model in a phase-
wise fashion and generalizes them by allowing an arbitrary differentiable
loss function to be optimized.

3. Extra Trees: Extra Trees is an algorithm for ensemble machine learning
that incorporates the predictions from multiple decision trees.

4. Random Forests: A Random Forest is a meta estimator that suits a vari-
ety of decision-making trees on different data subsets and utilizes averaging
to enhance accuracy and reduce over-fitting.
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5. Ensemble Bagging: Ensemble learning is a form of machine learning
where several models are trained to solve the same problem and are later
combined to produce better results. Ensemble Bagging often regards ho-
mogeneous poor learners, learns them in parallel independently from each
other, and combines them according to a form of deterministic averaging
method.

6. AdaBoost: An AdaBoost regressor is a meta-estimator that starts by
fitting a regressor on the whole dataset and later fits copies of this regressor
on the same dataset but with altered weights of instances in accordance to
the current prediction error. Subsequent regressors will hence concentrate
more on challenging test points.

7. XGBoost: XGBoost is an optimized library for distributed gradient boost-
ing, engineered to be extremely powerful, scalable, and compact. Under the
Gradient Boosting paradigm, XGBoost offers a parallel tree boost that eas-
ily and reliably addresses several regression problems.

8. Auto-Sklearn: Auto-sklearn is an automated machine learning tool that
replaces any scikit-learn estimator. It gives users an opportunity for su-
pervised machine learning. Auto-sklearn automatically looks for the best
learning algorithm for the given dataset and optimizes the hyperparame-
ters. Thus, it frees the machine learning practitioner from these tedious
tasks and allows him/her to focus on the real problem. Auto-sklearn does
not include deep learning models.

11.2 Choosing the Best Model

We have performed Experiment A on all point-wise models which were trained
on all the input features. We would also like to note that the percentage of
improvement in the following sections is calculated as:

percentage of improvement =
metricvariable1 −metricvariable2

metricvariable1
(11.1)

Where the metric is any error metric we are comparing between the two variables
(Accuracy, RMSE, MAE, etc...).

The results are observed in Tables 11.1 and 11.2. We note that the top two
performing models were Gradient Boost and Extra trees, with the first scoring
an R2 of 0.633, an accuracy of 65.7%, an MAE of 1.056, and an F2 measure of
0.929, whereas the second scoring an R2 of 0.62, an accuracy of 65.9%, an MAE
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Metrics Experiment A

Models Average ET 3.87926

Linear SVR Data sets Validation Testing
F2 0.725781 +- 0.363565 0.848155
R2 0.196681 +- 0.27087 -0.15421
RMSE 1.973392 +- 0.34798 2.486121
MAE 1.56825 +- 0.330283 1.991371
Accuracy 45.31988 +- 13.34844 45.51837
NMI 0.999571 +- 0.000211 0.997618
Training Time (s) NA 0.992755
Testing Time (s) NA 0.006835

Gradient Boost F2 0.914566 +- 0.008088 0.929839
R2 0.595749 +- 0.04218 0.63341
RMSE 1.456111 +- 0.073924 1.311459
MAE 1.056378 +- 0.036625 0.990982
Accuracy 64.75955 +- 2.217643 65.68292
NMI 0.999175 +- 0.000614 0.997899
Training Time (s) NA 0.177992
Testing Time (s) NA 0.002279

Extra Trees F2 0.428902 +- 0.354878 0.79511
R2 0.476546 +- 0.114703 0.620088
RMSE 1.535501 +- 0.34275 1.406279
MAE 1.148595 +- 0.230346 1.029289
Accuracy 61.4985 +- 9.157579 65.86307
NMI 0.270833 +- 0.078712 0.212276
Training Time (s) NA 3.083522
Testing Time (s) NA 0.02574

Table 11.1: Point-wise Models Results part 1
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Metrics Experiment A

Models Average ET 3.87926

Data sets Validation Testing
Random Forests F2 0.486061113 +- 0.323221702 0.786444689

R2 0.450883926 +- 0.111755125 0.593321667
RMSE 1.574282052 +- 0.338207369 1.454974596
MAE 1.187299606 +- 0.211431136 1.091651016
Accuracy 61.23807793+- 7.868750036 62.55916559
NMI 0.993161631 +- 0.001871528 0.992597673
Training Time (s) NA 5.749958992
Testing Time (s) NA 0.018198729

Ensemble Bagging F2 0.488634 +- 0.324995 0.782509
R2 0.443691 +- 0.11528 0.58665
RMSE 1.585172 +- 0.11528 1.46686
MAE 1.196087 +- 0.218719 1.103313
Accuracy 60.79691 +- 7.92898 61.8822
NMI 0.993162 +- 0.001872 0.992598
Training Time (s) NA 7.811507
Testing Time (s) NA 0.030581

Ada Boost F2 0.276052 +- 0.339753 5.00E-05
R2 0.296989 +- 0.148171 0.432491
RMSE 1.793102 +- 0.429293 1.718764
MAE 1.354429 +- 0.273296 1.310485
Accuracy 54.96582 +- 11.57557 53.19274
NMI 0.603475 +- 0.037421 0.608152
Training Time (s) NA 0.154175
Testing Time (s) NA 0.00277

XGBoost F2 0.583904393 +- 0.339753 0.79519714
R2 0.437403573 +- 0.148171 0.580627208
RMSE 1.589694449 +- 0.429293 1.477508603
MAE 1.196082017 +- 0.273296 1.082356466
Accuracy 60.74221564 +- 11.57557 65.61014119
NMI 0.993161631 +- 0.037421 0.992597673
Training Time (s) NA 0.174965382
Testing Time (s) NA 0.003976583

Table 11.2: Point-wise Models Results part 2
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of 1.148, and an F2 measure of 0.79. However, it is quite noticeable that Gradient
Boost beat Extra trees by 15% in F2 measure and by 7.3% in RMSE. We would
also like to highlight that Gradient Boost is not over-fitting, unlike Extra Trees
which has validation scores much lower than the testing scores. We also like to
add that Gradient Boost is one of the fastest models, with a training time of
fewer than 0.2 seconds.

11.3 Utility-Based Learning and SMOGN up-

sampling

We have applied SMOGN up-sampling to all our pointwise machine learning
models. However, we would like to shed light on the results of our best (Gradi-
ent Boost) and base (Linear SVR) models. The details for the SMOGN hyper-
parameters for both models are found in Sections 11.6.1 and 11.6.2. We portray
the results of both models when trained on the full dataset before and after
SMOGN in Table 11.3 (before and after SMOGN scores for all other models are
found in the appendix):

Metrics Before SMOGN After SMOGN

Models Average ET 3.879262 3.879262

Gradient Boost Train Size 3576 3576
Test Size 1547 1547
Data sets Validation Testing Validation Testing
Recall 0.9 +-0.0101 0.892 0.915 +- 0.008 0.93
F2 0.918 +- 0.008 0.910 0.915 +- 0.008 0.930
R2 0.6 +-0.018 0.586 0.596 +- 0.042 0.633
RMSE 1.417 +-0.037 1.470 1.456 +- 0.074 1.311
MAE 1.04 +-0.023 1.076 1.056 +- 0.037 0.991
Accuracy 65.049 +-1.856 63.824 64.760 +- 2.218 65.683
NMI 0.999 +-0.0003 0.998 0.999 +- 0.001 0.998
Training (s) NA 0.199 NA 0.178
Testing (s) NA 0.002524 NA 0.002

Linear SVR Recall 0.86 +- 0.0465 0.825 0.868 +- 0.066 0.912
F2 0.8 +-0.268 0.866 0.554 +- 0.452 0.920
R2 0.046 +- 0.600 0.130 -0.06 +- 0.507 0.253
RMSE 2.125 +- 0.599 2.115 2.252 +- 0.548 1.986
MAE 1.697 +- 0.623 1.629 1.85 +- 0.541 1.591
Accuracy 43 +- 31.073 55.031 36.898 +- 17.934 35.916
NMI 0.999 +- 0.0003 0.998 0.999 +- 0.0003 0.998
Training (s) NA 1.339 NA 1.025
Testing (s) NA 0.007 NA 0.002

Table 11.3: SMOGN Comparison
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We note that after applying SMOGN, all error metrics changed for the better. In
Gradient Boost, the Recall boosted from 0.892 to 0.93, the F2 measure boosted
from 0.910 to 0.930, the R2 from 0.586 to 0.633, the RMSE from 1.470 to 1.311,
the MAE from 1.076 to 0.991, the accuracy from a 64% to a 66%. The same case
applies for Linear SVR, where the Recall increased from a 0.25 to a 0.912, the
F2 measure increased from a 0.866 to a 0.920, the R2 from a 0.130 to a 0.253,
the RMSE decreased from a 2.115 to a 1.986, the MAE from a 1.629 to a 1.591.

Takeaway Message

SMOGN has left a positive impact on our best model Gradient boost, increasing
the Recall by 4.2%, the F2 measure by a 2.1%, the R2 score by 8%, and the
accuracy by a 2%.

11.4 Base Model

Our base model was Linear Support Vector Regressor. Linear SVR was the first
model we experimented on, which was coupled with 10 folds 10 repeated stratified
cross-validation, and SMOGN up-sampling.

11.4.1 Architecture

Linear SVR gives us the ability to define how much error is acceptable in our
model (Awad and Khann, 2015). It will find a suitable higher dimensional hy-
perplane to fit the data. The objective function of SVR minimizes the coefficients,
more specifically the coefficient vector l2-norm, not the squared error. The error
term is handled in the constraints, where the absolute error is set to less than or
equal to a given margin, which is referred to as the maximum error, ε (epsilon).
The objective function and the constraints are as follows:

Minimize : MIN
1

2
‖w‖2 (11.2)

Constraints : ‖yi − wixi‖ ≤ ε (11.3)

where:

• w is the coefficient vector

• xi and yi are our input and output test data points respectively at a given
point i.
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11.4.2 Hyper-parameters

The hyper-parameters we tuned for Linear SVR are as follows:

1. C: regularization parameter

2. loss: type of loss - either epsilon insensitive or squared epsilon insensitive

3. max iter: the maximum number of iterations needed before converging

4. tol: the tolerance for the stopping criteria

11.5 Best Model

Boosting is a way for weak learners to be transformed into good learners. Each
new tree is fit on a different version of the original data set during boosting.
Gradient Boosting is a machine learning technique that produces a prediction
model in the form of an ensemble of weak prediction models, usually decision
trees, for regression and classification problems. As other boosting techniques do,
it constructs the model in a phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be optimized. Gradient Boost gave
the best results across all point-wise models, which was coupled with 10 folds 10
repeated stratified cross-validation, and SMOGN up-sampling.

11.5.1 Architecture

Gradient Boosting is a form of boosting for machine learning. It is based upon
the belief that when paired with previous models, the next best possible model
minimizes the cumulative prediction error. In order to alleviate the error, the
main concept is to set the main goal for this next model. The logic in which the
subsequent predictors learn from the errors of the previous predictors are used
in this method. (Natekin and Knoll, 2013) Therefore in subsequent models, the
results have an unequal likelihood of occurring and those with the highest error
appear more. Decision Trees are the predictor we are using here. Because new
predictors learn from mistakes made by previous predictors, it takes less time
and error to achieve high accuracy. The Gradient Boost algorithm is shown in
Figure 11.1 below.

The idea, therefore, is to repeatedly exploit the residual patterns to reinforce and
enhance a model with poor predictions. We can stop modeling residuals until we
reach a point where residuals do not have any pattern that can be modeled (or
the model would hence over-fit). Algorithmically, our loss function is reduced, so
that the test loss reaches its minimum. A model’s fit to a data point is determined
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Figure 11.1: Gradient Boosting

by its residual value, identified as the difference between the dependent variable’s
actual value and the model’s expected value.

residual = yactual − ypredicted (11.4)

In Gradient Boosting, we aim to minimize the least squares error loss function
(the sum S of the squared residuals):

S =
n∑
i=1

residual2 (11.5)

11.5.2 Hyper-parameters

The hyper-parameters we tuned for Gradient Boost is as follows:

1. Number of estimators: Represents the number of trees used in the model

2. Min Sample Split: Represents the minimum number of samples required in
a node before it is split

3. Min Sample Leaf: Represents the minimum samples required in a leaf.

4. Max Features: Represents the number of features considered when search-
ing for the best split.

5. Max depth: Represents the maximum depth of a tree.

6. Learning Rate: Represents the impact of each tree on the final outcome.
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7. Subsample: Represents the fraction of observations to be selected for each
tree. Selection is done by random sampling

11.6 Implementation

For both Gradient Boost and Linear SVR, we have used the generic Scikit-learn
library’s implementation. However, the generic Scikit-learn learn library outputs
a predicted and true output variable only. We have developed a point-wise models
code module that implements stratified repeated K-Fold cross-validation, utility-
based learning, SMOGN up-sampling, dynamic variable scaling, and dynamic
model selection. This module outputs validation scores, standard deviation vali-
dation scores, test scores, in addition to all necessary plots, figures, and datasets
needed.

11.6.1 Linear SVR Model

We have utilized Scikit-learn’s implementation of Linear SVR which is embedded
in our point-wise prediction module. We tuned the Linear SVR parameters by
utilizing the stratified 10 repeated 10 folds cross-validation and SMOGN up-
sampling. Each range of values for each hyper-parameter is chosen based on
what is accepted in the literature:

• C: [0.1, 0.001, 0.0001, 0.01, 0.2, 0.002, 0.0002, 0.02]

• loss: epsilon insensitive, squared epsilon insensitive

• max iter: [100, 200, 300, 500, 1000, 1200, 1100, 1500]

• tol: [1e-4, 1e-3, 1e-2, 1e-5]

The best hyper-parameter combination giving the highest accuracy and lowest
error metrics is:

• C: [0.1]

• loss: epsilon insensitive

• max iter: [1000]

• tol: [1e-4]

The best UBR and SMOGN parameters are:

• rel method=range

• extr type=high
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• coef=1.5

• relevance pts = np.array([[1, 0 , 0],[4, 0 , 0],[15, 1 , 0],])

• thr rel=0.2

• Cperc=np.array([1,1.2])

• m=5

• repl=False

• dist=Manhattan

• p=2

• pert=0.1

11.6.2 Gradient Boost

We have utilized Scikit-learn’s implementation of Gradient Boost whcih is em-
bedded in our point-wise prediction module. We tuned the hyper-parameters of
Gradient Boost where we tried a set of over 300 hyper-parameters using stratified
10 repeated 10 folds cross validation and SMOGN up-sampling. The range of val-
ues for each hyper-parameter is chosen according to what is deemed acceptable
in the literature:

• n estimators: [30,35,40,45, 50, 60, 70, 80]

• min samples split: [50,60,70,80,90]

• min samples leaf: [50,60,70,80,90]

• max features: [0.5,0.6,0.7.0.8]

• max depth: [4, 5, 6, 7, 8, 9, 10, 11 , 12, 14]

• learning rate: [0.1, 0.001, 0.002, 0.01, 0.02]

The best hyper-parameter combination giving the highest accuracy and lowest
error metrics is:

• n estimators: [35]

• min samples split: [90]

• min samples leaf: [60]

• max features: [0.5]
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• max depth: [4]

• learning rate: [0.1]

The best UBR and SMOGN parameters are:

• rel method=range

• extr type=high

• coef=1.5

• relevance pts = np.array([[1, 0 , 0],[4, 0 , 0],[15, 1 , 0],])

• thr rel=0.2

• Cperc=np.array([1,1.2])

• m=5

• repl=False

• dist=Manhattan

• p=2

• pert=0.1

11.7 Results

11.7.1 Across Weather Clusters and Union of Clusters

We have conducted Experiment A across Gradient Boost, Linear SVR, EEflux
METRIC, Auto-Sklearn, and Stat on all the data (union of clusters). We have
also conducted this experiment on the latter mentioned models but on all avail-
able cluster combinations mentioned in Section 5.4.4 on all weather parameters
using k-means and dendrograms. The best performing cluster giving the best
accuracy, recall, and the least error metrics was clustering by Wind Speed (WS)
using k-means, with k=2. WS cluster one has wind speed values ranging from
3.647 to 12.518 meters per second. WS cluster two has wind speed values ranging
from 0.0516 to 4.129 meters per second.

We have also conducted Experiment A on the latter mentioned models and on
the best clusters across all feature selection scenarios (scenario B, scenario C, and
scenario D). The best feature selection scenario giving the best accuracy, recall,
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and the least error metrics was scenario C.

We portray the experimental results for scenario C in Table 11.4. All other ex-
periments for scenarios (A, B, and D) are present in the appendix. The columns
in our table represent:

• WS Cluster 0: The model is being trained on data clustered by WS using
k-means, k = 2 on the first cluster.

• Union: The model is being trained on the union of clusters.

• WS Cluster 1: The model is being trained on data clustered by WS using
k-means, k = 2 on the second cluster.
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Metrics WS Cluster 0 Union of Clusters WS Cluster 1
Models Average ET 3.745098 3.879262 3.951248
EEflux Train Size 1202 3576 2361

Test Size 530 1547 1025
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.839 NA 0.880 NA 0.787
F2 NA 0.850 NA 0.894 NA 0.000
R2 NA -0.489 NA -0.540 NA -0.577
RMSE NA 3.519 NA 2.479 NA 2.907
MAE NA 2.558 NA 1.939 NA 2.237
Accuracy NA 29.346 NA 47.612 NA 42.426
NMI NA 0.813 NA 0.892 NA 0.865
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

Gradient Boost Recall 0.872 +- 0.039 0.875 0.895 +- 0.016 0.917 0.911 +- 0.015 0.909
F2 0.895 +- 0.035 0.898 0.912 +- 0.014 0.930 0.925 +- 0.012 0.924
R2 0.444 +- 0.094 0.519 0.591 +- 0.043 0.637 0.639 +- 0.046 0.654
RMSE 1.621 +- 0.227 1.527 1.44 +- 0.112 1.359 1.354 +- 0.090 1.355
MAE 1.173 +- 0.110 1.101 1.053 +- 0.061 1.019 1.013 +- 0.051 0.996
Accuracy 59.413 +- 6.336 59.377 64.85 +- 2.638 64.756 66.765 +- 1.817 66.834
NMI 0.999 +- 0.001 0.998 0.999 +- 0.000 0.998 0.999 +- 0.000 0.999
Training (s) NA 0.083 NA 0.151 NA 0.095
Testing (s) NA 0.001 NA 0.002 NA 0.002

Linear SVR Recall 0.799 +- 0.076 0.858 0.862 +- 0.063 0.886 0.857 +- 0.051 0.884
F2 0.183 +- 0.366 0.894 0.637 +- 0.417 0.907 0.722 +- 0.362 0.908
R2 -0.121 +- 0.376 0.236 -0.101 +- 0.557 0.429 0.167 +- 0.403 0.445
RMSE 2.398 +- 0.520 1.761 2.309 +- 0.530 1.681 2.007 +- 0.395 1.711
MAE 1.869 +- 0.477 1.353 1.893 +- 0.548 1.302 1.583 +- 0.369 1.298
Accuracy 44.352 +- 18.018 58.945 34.123 +- 23.415 52.778 49.048 +- 11.210 56.926
NMI 0.999 +- 0.001 0.997 0.999 +- 0.000 0.998 1 +- 0.000 0.998
Training (s) NA 0.194 NA 0.663 NA 0.421
Testing (s) NA 0.001 NA 0.010 NA 0.001

Stat Recall
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Auto Sklearn Recall
F2 NA 0.879 NA 0.906 NA 0.888
R2 NA -0.047 NA 0.601 NA 0.613
RMSE NA 1.917 NA 1.972 NA 1.401
MAE NA 1.373 NA 1.101 NA 0.863
Accuracy NA 58.152 NA 64.981 NA 71.72
NMI NA 0.372 NA 0.993 NA 0.794
Training (s) NA 1200 NA 1200 NA 1200
Testing (s) NA 80 NA 80 NA 80

Table 11.4: Experimental Results for Point-wise Models
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Table 11.4 shows the experimental results across different wind speed clusters
(by Kmeans) and across the union of clusters. We compare the performance of
our four models: EEflux (METRIC) model , Linear SVR (base model), Gradient
Boost (best model), and AutoSklearn. We note that Gradient Boost outperforms
all others in predicting real ET across the union of clusters, producing an R2 score
of 0.637, an MAE of 1.019, an accuracy of 64.756 %, a recall of 0.917, and an F2
measure of 0.930. Transfer learning is also highlighted when training the model
on the union of clusters. All the five models poorly performed on WS cluster 0,
but excellently on WS cluster 1. This implies that the models have learned from
WS cluster 1 yielding more accurate predictions for the union of clusters. The
clusters are ordered from worst to best in terms of their results.

N.B: Auto Sklearn validation scores are not available for us to extract.

Figure 11.2: Scatter plot for Point-wise Models

Figure 11.2 illustrates the real ET (x-axis) versus the predicted ET (y-axis)
across the four models: EEFlux (METRIC), Linear SVR, AutoSklearn, and Gra-
dient Boost. It is noted that the Gradient Boost model shows a better diagonal fit
than the EEFlux (METRIC) model across the union of clusters and WS cluster
1. The points in the EEflux model were scattered and not centered around the
bisector. Gradient Boost trained on WS Cluster 1 yielded a better concentration
around the bisector in comparison to the union of clusters. Gradient Boost and
Auto-Sklearn showed a comparable performance. Figure 11.2 also confirms our
quantitative observations present in Table 11.4.

Table 11.5 shows the residual analysis experiments (B,C, and D) across the
union of clusters and across the best performing cluster WS cluster 1 on both
models Gradient Boost and Linear SVR. It is quite clear that Gradient Boost
beats Linear SVR in all residual analysis experiments. However, we note that
the residual analysis experiment yielding the best result is experiment B, the
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proportional residual. Gradient Boost scored on Experiment B an R2 of 0.722
- 0.82, an RMSE of 0.27-0.4, and an accuracy of 71%-76% across the union of
clusters and WS cluster 1.

Clusters Union of Clusters WS Cluster 1
Models Average outcome 0.749859357 -1.08945795 -0.2501406 0.678275 -1.466979 -0.3217

Gradient Boost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
Recall 0.000 0.941 0.000 0.00 0.95 0.00
F2 0.000 0.953 0.000 0.00 0.97 0.00
R2 0.722 0.715 0.722 0.82 0.73 0.82
RMSE 0.400 1.535 0.400 0.27 1.15 0.27
MAE 0.220 1.159 0.220 0.16 0.89 0.16
Accuracy 70.980 -149.421 -112.499 76.00 -46.15 -4.94
NMI 1.000 1.000 1.000 1 1 1
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Linear SVR Recall 0.000 0.000 0.000 0.000 0.924 0.000
F2 0.000 0.000 0.000 0.000 0.000 0.000
R2 -1.893 0.517 -1.893 -0.118 0.647 -0.118
RMSE 1.002 1.424 1.002 0.679 1.430 0.679
MAE 0.289 1.034 0.289 0.245 1.105 0.245
Accuracy 67.368 -53.905 -56.470 15.447 -141.222 -76.301
NMI 1.000 1.000 1.000 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 11.5: Residual Analysis for Point-wise Models

Figure 11.3: Residual Analysis Scatter Plot for Gradient Boost
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Figure 11.3 illustrates the actual residual (x-axis) versus the predicted residual
(y-axis) across the three residual analysis experiments (B,C,and D) upon using
the Gradient Boost model. We note that there is a high resemblance between
experiment B and D showing high concentration around the bottom left part of
the bisector. Experiment C, however, show a more scattered distribution around
the middle of the bisector. Hence, experiment B and D are the best performing
according to this scatter plot. However, Table 11.5 confirms that indeed the best
residual analysis experiment is B.

Takeaway Message: Gradient Boost was the best point-wise model to predict
ET. Gradient Boost beats Linear SVR in R2 by 32% to 33%, in accuracy by 10%
to 12%, and in RMSE by 24% to 26%. Gradient Boost also beats Auto-sklearn in
R2 by 6%, and in RMSE by 4% to 45%. Gradient Boost outperforms EEflux ET
METRIC in R2 by a 100%, in accuracy by 17.144% - 24.408%, and in RMSE by
82%-100%. Nonetheless, Gradient Boost performs best in minimizing the propor-
tional bias, beating Linear SVR by a 100% in R2, a 4%-61% in accuracy, and a
28%-60% in RMSE. Hypothesis testing was applied to validate these percentages.

We also like to highlight the effect of SMOGN on our best model Gradient Boost
in Scenario C on the union of clusters. Before SMOGN, the F2 measure was a
0.92 in comparison to a 0.930, the R2 score was a 0.613 in comparison to a 0.637.
The full table is found in the appendix.
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11.7.2 Across Different Climates

We have previously done Experiment A on our point-wise models across the whole
dataset. We now aim at conducting this experiment on our models but on each
climate separately with scenario C. The types of climates and their meaning are
mentioned in Chapter 4, Table 4.1 . We portray the experimental results of
scenario C in Tables 11.6 and 11.7 where the columns in our table represent:

• Cwa: The model is being trained on data of climate Cwa.

• Dsa: The model is being trained on data of climate Dsa.

• Cfa: The model is being trained on data of climate Cfa.

• Csa: The model is being trained on data of climate Csa.

• Union: The model is being trained on the union of climates.

Tables 11.6 and 11.7 show the experimental results across different climates
and across the union of climates (we note that the tables are split for visual
reasons). We compare the performance of our four models: EEflux (METRIC)
model , Linear SVR (base model), and Gradient Boost (best model). We note
that Gradient Boost outperforms all others in predicting real ET across the union
of climates and on each climate separately. We do realize that the Gradient Boost
model does not perform well on the climates Cwa, Dsa, and Other which is due to
the little data available for these two climates (training data of 137, 228, and 761
rows respectively). However, Gradient Boost performs in a comparable manner
to the union of climates on climates Cfa and Csa, with Csa being the best in
terms of giving the best error metrics and accuracy. Gradient Boost scores an R2
of 0.624, an MAE of 0.806, an accuracy of 72%, and a recall of 0.935 on climate
Csa. Transfer learning is highlighted when training the model on the union of
climates, where the model learned from each climate to perform better on their
union.
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Metrics Cwa Dsa Other
Models Average ET 5.199416872 2.190195719 2.717362
EEflux Train Size 137 228 761

Test Size 59 99 331
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.898 NA 0.000 NA 0.000
F2 NA 0.000 NA 0.000 NA 0.000
R2 NA -4016.791 NA -3.611 NA 0.767
RMSE NA 4.685 NA 1.620 NA 0.314
MAE NA 3.848 NA 1.443 NA 0.213
Accuracy NA 43.771 NA 16.103 NA 68.730
NMI NA 1.000 NA 0.637 NA 1.000
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

Gradient Boost Recall 0.866 +- 0.041 0.897 0 +- 0.000 0.892 0.387 +- 0.54 0.859
F2 0 +- 0.000 5.00E-05 0 +-0.000 0.000 0.0 +- 0.0 0.000
R2 -0.006 +- 0.007 -0.012 0.28 +-0.072 0.250 0.146 +- 0.389 0.351
RMSE 2.166 +- 0.293 1.983 0.917 +-0.159 1.100 0.271 +- 1.053 1.080
MAE 1.826 +-0.310 1.687 0.7303 +-0.119 0.811 0.093 +- 0.763 0.785
Accuracy 55.5 +-8.596 57.459 62.122 +-4.408 62.552 3.525 +- 67.251 65.975
NMI 0 +-0.000 0.000 0.996 +-0.007 0.985 0.001 +- 0.999 0.998
Training (s) NA 0.042 NA 0.013 0.013 2.079
Testing (s) NA 0.001 NA 0.001 0.001 2.342

Linear SVR Recall 0.931 +- 0.041 0.954 0.178 +- 0.357 0.000 0.397 +- 0.586 0.725
F2 0.94 +- 0.028 0.962 0 +- 0.000 0.000 0.0 +- 0.0 0.000
R2 0.335 +- 0.540 0.676 -0.368 +- 0.982 -0.682 0.393 +- -0.408 -0.009
RMSE 1.528 +- 0.523 1.248 1.274 +- 0.320 1.464 0.271 +- 1.572 1.368
MAE 1.238 +- 0.503 0.992 1.012 +- 0.322 1.164 0.198 +- 1.248 1.121
Accuracy 71.29 +- 13.980 75.535 47.162 +- 24.342 50.355 18.678 +- 42.089 42.102
NMI 1 +- 0.000 0.997 0.998 +- 0.004 0.997 0.0 +- 1.0 0.999
Training (s) NA 0.022 NA 0.044 - 2.079
Testing (s) NA 0.001 NA 0.001 - 2.342

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Table 11.6: Experimental Variations Point-wise Models part 1
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Metrics Cfa Csa Union
Models Average ET 4.979814 3.588537 3.879262
EEflux Train Size 1288 1147 3576

Test Size 559 494 1547
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.830 NA 0.856 NA 0.880
F2 NA 0.848 NA 0.864 NA 0.894
R2 NA -1.140 NA -1.054 NA -0.540
RMSE NA 3.184 NA 2.922 NA 2.479
MAE NA 2.571 NA 2.047 NA 1.939
Accuracy NA 39.694 NA 47.683 NA 47.612
NMI NA 0.893 NA 0.888 NA 0.892
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

Gradient Boost Recall 0.901 +-0.012 0.913 0.928 +-0.022 0.935 0.895 +- 0.016 0.917
F2 0.918 +-0.011 0.926 0.944 +- 0.016 0.951 0.912 +- 0.014 0.930
R2 0.546 +-0.081 0.578 0.586 +- 0.082 0.624 0.591 +- 0.043 0.637
RMSE 1.762 +-0.169 1.683 1.098 +- 0.113 1.041 1.44 +- 0.112 1.359
MAE 1.301 +-0.100 1.247 0.821 +- 0.068 0.806 1.053 +- 0.061 1.019
Accuracy 64.616 +-4.045 64.845 71.39 +- 2.635 72.413 64.85 +- 2.638 64.756
NMI 0.999 +-0.001 0.998 0.999 +- 0.001 0.996 0.999 +- 0.000 0.998
Training (s) NA 0.050 NA 0.042 NA 0.151
Testing (s) NA 0.002 NA 0.001 NA 0.002

Linear SVR Recall 0.841 +- 0.048 0.951 0.885 +- 0.059 0.846 0.862 +- 0.063 0.886
F2 0.702 +- 0.352 0.930 0.28 +- 0.427 0.000 0.637 +- 0.417 0.907
R2 0.0946 +- 0.390 -0.142 -1.083 +- 2.261 0.006 -0.101 +- 0.557 0.429
RMSE 2.393 +- 0.498 2.884 2.24 +- 1.155 1.743 2.309 +- 0.530 1.681
MAE 1.906 +- 0.434 2.417 1.924 +- 1.164 1.290 1.893 +- 0.548 1.302
Accuracy 56.345 +- 8.650 14.523 30.638 +- 2.635 66.860 34.123 +- 23.415 52.778
NMI 0.999 +- 0.001 0.998 0.998 +- 0.001 0.997 0.999 +- 0.000 0.998
Training (s) NA 0.221 NA 0.177 NA 0.663
Testing (s) NA 0.001 NA 0.001 NA 0.010

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Table 11.7: Experimental Variations for Point-wise Models part 2
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Figure 11.4: Density Plot for ET across all Climates for Point-wise Models

In Figure 11.4, the x-axis represents ET(mm) and the y-axis represents the den-
sity. The color blue represents the real ET(mm) and the orange color represents
the predicted ET(mm). We plot the real vs the predicted ET(mm) across all
the available climates (Cfa, Csa, Cwa, Dsa, and other) upon using the Gradient
Boost model. We note that climate Csa, which is proven to be the best per-
forming in Table 11.7, offers the best trace for real versus predicted ET (mm).
Climate Cfa also show a comparable performance, unlike Dsa, Cwa, and Other.

Table 11.8 shows the residual analysis experiments across the union of climates
and across the best performing climate Csa on both models Gradient Boost and
Linear SVR. It is obvious that Gradient Boost beats Linear SVR in all residual
analysis experiments as seen previously. We note that the residual analysis exper-
iment yielding the best result is also experiment B in this case, the proportional
residual. Gradient Boost scored an R2 of 0.722 - 0.74, an RMSE of 0.29-0.4, and
an accuracy of 71%-72% across the union of climates and climate Csa.
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Clusters Union of Climates Csa
Models Average outcome 0.749859357 -1.08945795 -0.2501406 0.74643 -1.14597705 -0.253569671

Gradient Boost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
F2 0.000 0.941 0.000 0.00 0.00 0.00
Recall 0.000 0.953 0.000 0.00 0.00 0.00
R2 0.722 0.715 0.722 0.74 0.78 0.74
RMSE 0.400 1.535 0.400 0.29 1.26 0.29
MAE 0.220 1.159 0.220 0.21 1.09 0.21
Accuracy 70.980 -149.421 -112.499 71.64 -128.43 -78.78
NMI 1.000 1.000 1.000 1 1 1
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Linear SVR F2 0.000 0.000 0.000 0.000 0.000 0.000
Recall 0.000 0.000 0.000 0.000 0.000 0.000
R2 -1.893 0.517 -1.893 -107.309 -0.131 -107.309
RMSE 1.002 1.424 1.002 4.456 2.247 4.456
MAE 0.289 1.034 0.289 1.456 1.906 1.456
Accuracy 67.368 -53.905 -56.470 -72.522 -373.025 -3189.497
NMI 1.000 1.000 1.000 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 11.8: Residual Analysis for Point-wise Models

Takeaway message: Gradient Boost performs fairly well on separate climates
if the training data on each climate is sufficient. Nevertheless, Gradient Boost
performed the best on climate Csa (Mediterranean - a mild climate with a dry
and hot summer), which is most suitable since farmers would need to know how
much to irrigate (through predicted ET values) the most in this dry and hot
season, rather than the cold and moist seasons. In fact, the Gradient Boost
model trained on climate Csa beat the one trained on the union of climates
in accuracy by 7.648%, in MAE by 27.3%, and in recall by 2%. Furthermore,
Gradient Boost on climate Csa performs better than on the union of climates
in minimizing the proportional bias, scoring a 2.5% higher R2, and a 37% lower
RMSE.
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11.7.3 Across Different Seasons

After observing model performance on weather clusters and climates, we now aim
to study model performance across different seasons. We identify three seasons:
Summer, Spring, and Winter. We note that clustering by TA using kmeans,
where k = 3 was the most successful in showing distinct seasons per clusters
(more details are explained in Section 5.4.5. We compare the performance of
our four models: EEflux (METRIC) model , Linear SVR (base model), and
Gradient Boost (best model) on three clusters by TA on scenario C. We portray
the experimental results of scenario C in Table 11.9 and Table 11.10 where the
columns in our table represent:

• TA cluster 0: The model is being trained on data clustered by TA using
k-means, k = 3 on the first cluster.

• TA cluster 1 : The model is being trained on data clustered by TA using
k-means, k = 3 on the second cluster.

• TA cluster 2 : The model is being trained on data clustered by TA using
k-means, k = 3 on the third cluster.

• Union : The model is being trained on the union of clusters.

Table 11.9 and Table 11.10 show the experimental results across different seasons
and across the union of seasons (the tables are split for better visuals). We
compare the performance of our four models: EEflux (METRIC) model, Linear
SVR (base model), and Gradient Boost (best model). We note that Gradient
Boost outperforms all others in predicting real ET across the union of seasons
and on each season separately. We do realize that the Gradient Boost model
does not perform well in the winter season (TA cluster 0), which is due to the
little data available for this season (training data of 774 row). However, Gradient
Boost performs in a comparable manner to the union of seasons, with summer
being the best in terms of giving the best error metrics. Gradient Boost scores
an R2 of 0.578, an MAE of 1.267, an accuracy of 65%, and a recall of 0.923 in
the summer season.
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Metrics TA Cluster 0 TA Cluster 1

Models Average ET 2.401 5.415

EEflux Train Size 774.000 1063.000
Test Size 351.000 470.000
Data sets Validation Testing Validation Testing
Recall NA 0.000 NA 0.831
F2 NA 0.000 NA 0.854
R2 NA -0.771 NA -1.344
RMSE NA 1.491 NA 3.636
MAE NA 1.162 NA 2.807
Accuracy NA 49.566 NA 46.462
NMI NA 0.872 NA 0.872
Training (s) NA NA NA NA
Testing (s) NA NA NA NA

Gradient Boost Recall 0.311 +-0.388 0.910 0.904 +- 0.013 0.923
F2 0 +-0.000 0.000 0.92 +-0.011 0.934
R2 0.234 +-0.064 0.274 0.509 +-0.076 0.578
RMSE 1.048 +-0.303 0.894 1.824 +-0.149 1.677
MAE 0.767 +-0.092 0.693 1.381 +-0.093 1.267
Accuracy 63.504 +-2.839 66.799 65.565 +-3.399 65.016
NMI 1 +-0.000 0.998 1 +-0.001 0.999
Training (s) NA 0.028 NA 0.042
Testing (s) NA 0.001 NA 0.001

Linear SVR Recall 0.457 +-0.404 0.838 0.917 +- 0.039 0.785
F2 0 +-0.000 0.000 0.899 +-0.023 0.833
R2 -1.627 +-3.757 -2.034 -0.914 +-1.103 -0.591
RMSE 1.66 +-0.814 1.943 3.48 +-1.048 3.245
MAE 1.305 +-0.842 1.743 2.972 +-1.058 2.578
Accuracy 43.662 +-47.419 -1.668 5.859 +-35.502 54.017
NMI 1 +-0.001 1.000 0.999 +-0.001 0.998
Training (s) NA 0.114 NA 0.192
Testing (s) NA 0.003 NA 0.001

Stat Recall - - - -
F2 - - - -
R2 - - - -
RMSE - - - -
MAE - - - -
Accuracy - - - -
NMI - - - -
Training (s) - - - -
Testing (s) - - - -

Table 11.9: Experimental Variations for Point-wise Models part 1
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Metrics TA Cluster 2 Union of Clusters

Models Average ET 3.592 3.879262

12*EEflux Train Size 1705.000 3576
Test Size 745.000 1547
Data sets Validation Testing Validation Testing
Recall NA 0.939 NA 0.880
F2 NA 0.925 NA 0.894
R2 NA -1.179 NA -0.540
RMSE NA 2.175 NA 2.479
MAE NA 1.750 NA 1.939
Accuracy NA 50.331 NA 47.612
NMI NA 0.905 NA 0.892
Training (s) NA NA NA NA
Testing (s) NA NA NA NA

Gradient Boost Recall 0.889 +-0.028 0.911 0.895 +- 0.016 0.917
F2 0.915 +-0.022 0.925 0.912 +- 0.014 0.930
R2 0.459 +-0.068 0.502 0.591 +- 0.043 0.637
RMSE 1.3 +-0.073 1.224 1.44 +- 0.112 1.359
MAE 0.949 +-0.044 0.922 1.053 +- 0.061 1.019
Accuracy 66.925 +-2.853 67.827 64.85 +- 2.638 64.756
NMI 0.999 +-0.001 0.997 0.999 +- 0.000 0.998
Training (s) NA 0.078 NA 0.151
Testing (s) NA 0.002 NA 0.002

Linear SVR Recall 0.849 +- 0.023 0.803 0.862 +- 0.063 0.886
F2 0 +-0.000 0.000 0.637 +- 0.417 0.907
R2 -0.101 +- 0.246 -1.431 -0.101 +- 0.557 0.429
RMSE 1.852 +- 0.211 2.720 2.309 +- 0.530 1.681
MAE 1.447 +- 0.233 2.275 1.893 +- 0.548 1.302
Accuracy 50.572 +- 15.901 40.364 34.123 +- 23.415 52.778
NMI 0.999 +- 0.001 0.997 0.999 +- 0.000 0.998
Training (s) NA 0.289 NA 0.663
Testing (s) NA 0.002 NA 0.010

Stat Recall - - - -
F2 - - - -
R2 - - - -
RMSE - - - -
MAE - - - -
Accuracy - - - -
NMI - - - -
Training (s) - - - -
Testing (s) - - - -

Table 11.10: Experimental Variations for Point-wise Models part 2
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Figure 11.5: Density Plot for ET across all Seasons for Point-wise Models

In Figure 11.5, the x-axis represents ET(mm) and the y − axis represents the
density. The color blue represents the real ET(mm) and the orange color repre-
sents the predicted ET(mm). We plot the real vs the predicted ET(mm) across
all the seasons (Spring, Summer, Winter) upon using the Gradient Boost model.
We note that the summer season, which is proven to be the best performing in
Table 11.10, offers the best trace for real versus predicted ET (mm). The spring
season also show a comparable performance. The model trained on the winter
season, however, produces predicted ET fat from the actual ET, shown in the
figure through different peaks.

Table 11.11 shows the residual analysis experiments across the union of sea-
sons and the best performing season (summer - TA cluster 1) on both models
Gradient Boost and Linear SVR. Gradient Boost beats Linear SVR in all residual
analysis experiments as seen previously. We note that the residual analysis exper-
iment yielding the best result is also experiment B in this case, the proportional
residual. Gradient Boost scored an R2 of 0.722 - 0.75, an RMSE of 0.32-0.4, and
an accuracy of 71%-76% across the union of seasons and the summer season.
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Clusters Union of Clusters TA cluster 1
Models Average outcome 0.749859357 -1.08945795 -0.2501406 0.632584 -2.44181237 -0.367415

Gradient Boost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
F2 0.000 0.941 0.000 0.00 0.93 0.00
Recall 0.000 0.953 0.000 0.00 0.95 0.00
R2 0.722 0.715 0.722 0.75 0.70 0.75
RMSE 0.400 1.535 0.400 0.32 1.87 0.32
MAE 0.220 1.159 0.220 0.18 1.44 0.18
Accuracy 70.980 -149.421 -112.499 75.68 -80.83 -71.97
NMI 1.000 1.000 1.000 1 1 1
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Linear SVR F2 0.000 0.000 0.000 0.000 0.000 0.000
Recall 0.000 0.000 0.000 0.000 0.000 0.000
R2 -1.893 0.517 -1.893 -4.047 -0.599 -4.047
RMSE 1.002 1.424 1.002 1.054 3.345 1.054
MAE 0.289 1.034 0.289 0.552 2.586 0.552
Accuracy 67.368 -53.905 -56.470 -7.279 -455.554 -1919.182
NMI 1.000 1.000 1.000 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 11.11: Residual Analysis for Point-wise Models

Takeaway message: Gradient Boost performs well in the spring and summer
season, which is what is desirable by farmers since in these seasons ET values
are a necessity to predict to know how much to irrigate and to preserve water.
Unlike the winter season, in which there is rain hence the necessity of accurately
predicting ET is lessened. In the summer season, Gradient Boost beat Linear
SVR by a 100% in R2 score, by 23% in RMSE, and by 11.978% in accuracy.
Furthermore, Gradient Boost performs best in minimizing the proportional bias
on the summer season, yielding an R2 higher by 4% and accuracy higher by 5%
than the union of seasons.

11.8 Models’ Stability and Performance

For each of the conducted experiments, we have performed 10-folds, 10-repeats
stratified cross-validation to validate the stability of our results. We will compare
our models according to different criteria: the most accurate, the most precise,
and the one with the best training time.

Most Accurate Model

In terms of the highest accuracy, we note that Gradient Boost is the best point-
wise model with an accuracy of 65% as opposed to the Linear SVR which gave
an accuracy of 53%.
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Most Precise Model

In terms of the highest utility-based scores, we note that Gradient Boost is the
best point-wise model with a recall of 0.917, and an F2 score of 0.930. Linear
SVR, however, yielded in a recall of 0.886 and an F2 score of 0.907, which is lower
than Gradient Boost.

11.8.1 The Model with the Least Training Time

When comparing training times, we do note that Gradient Boost has the least
training time of 0.151 seconds as opposed to Linear SVR which has a training
time of 0.663 seconds.

11.8.2 Learning Experience

We have computed validation scores, validation standard deviation scores, and
evaluated our model on a shuffled testing data set for each fold. In addition to
that, we have produced a learning curve which represents the mean squared error
versus the number of training samples across the validation and test sets. The
learning curve for our best model Gradient Boost is observed in Figure 11.6. We
note that as the number of training samples increases, the validation and test
MSE decrease until they track each other when trained on all the samples. This
implies that the model is learning and not over-fitting, yielding in low bias and
low variance.

Figure 11.6: Gradient Boost Learning Curve
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Chapter 12

Probabilistic Modeling

Basic regression point-wise models are designed to output point predictions on
every set of input variables. However, in some business models, point estimates
are not a good choice since they are prone to be erroneous. Hence, probability
estimations were introduced. Probabilistic regression models output instead of a
point prediction a probability distribution over the output space, which is con-
ditional on covariates (Duan et al., 2020). Probabilistic modeling has recently
become a pillar in machine learning modeling due to its ability to quantify uncer-
tainty in our predictions, as mentioned in Chapter 9. Nevertheless, a machine
learning model with accurate predictions and high error metrics is of no use if
the model is uncertain. In this chapter, we first experimented with a well known
probabilistic model - MC dropout - as our base model, which was coupled with
10 folds 10 repeated stratified cross-validation. SMOGN up-sampling was also
applied, and uncertainty calculation was added. Seeking better results, we also
tested on other models such as NGBoost and deep ensembles to reveal that NG-
Boost was the best probabilistic model.

12.1 NGBoost

NGBoost (Duan et al., 2020) offers Gradient Boosting with statistical uncertainty
estimation. In matters of predictive power over standardized or tabulated inputs,
Gradient Boosting techniques have traditionally been one of the top performers.
NGBoost allows estimation of predictive uncertainty by probabilistic predictions
with Gradient Boosting, by solving the practical challenges with the use of nat-
ural gradients of the probabilistic prediction. NGBoost is a supervised learning
technique for probabilistic predictions that utilizes boosting to pick the param-
eters pertaining to the conditional probability distribution. This model is quite
flexible and can be used with any sklearn regressor as the base learner, specified
with the Base argument.
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12.1.1 Architecture

NGBoost aims to predict a probabilistic distribution Pθ(y|x) of a certain paramet-
ric form and having parameters θ over each input point x. To do such predictions,
we need a learning objective. In standard point prediction problems, the loss is
calculated by contrasting the actual and predicted output data points. However,
in the case of NGBoost, we would need a scoring rule which compares the output
probability distribution to the actual test data point. The scoring rule we would
be using would take as input the predicted probability distribution Pθ(y|x) and
the real observation y and calculates the score (Gneiting et al., 2007). The most
popular scoring rule suitable is negative log-likelihood, which is defined as:

L(θ, y) = −logPθ(y) (12.1)

Where:

• θ is the parameters of the distribution

• Pθ is the predicted probability distribution

• y is the real outcome

The use of natural gradients rather than gradients in the boosting algorithm is
the primary breakthrough in NGBoost. This method models a complete dis-
tribution of probability over the output space, dependent on the covariates, by
following this probabilistic path. Natural gradients do not limit the movement of
the parameters in the parameter space, but rather detain the output probability
distribution at each input point.

The recipe for the NGBoost model is the following:

1. A base learner f

2. A probability distribution Pθ

3. A scoring rule S

A prediction of y|x on a certain input value x is obtained as a form of a probability
distribution of parameters θ. The latter parameters are obtained by adding the
outputs ofM base learners f which belong to theM stages of the generic Gradient
Boosting algorithm. We also note the the parameters θ are completely dependent
on the chosen probability distribution Pθ, and they are key for determining the
output prediction. In order to output the predicted distribution parameter θ =
(µ, log σ ) for input value x, two base learners fµ and fσ are fit on input x and
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the output of these learners are scaled with a scaling factor p and a learning rate
n, such as (Duan et al., 2020):

Pθ(x) = θinitial − n
M∑
m=1

pm.fm(x) (12.2)

where:

• θinitial is the initial predicted parameter

• n is the learning rate

• p is a scaling factor at iteration m

• fm is the base learner at iteration m

The mechanism of NGBoost is further explained in the flow diagram of Figure
12.1.

Figure 12.1: Natural Gradient Boosting (Duan et al., 2020)

12.1.2 Hyper-parameters

Our selection of hyper-parameters was initially based on the paper’s implemen-
tation in addition to our research for each hyper-parameter (what does it mean,
how does it affect the model, what are the acceptable ranges). We have used
a grid search to select the best hyperparameters and by referring to what is
deemed acceptable in the literature. We tuned the following hyper-parameters
for NGBoost:

1. Base learner: Choice of any sklearn regressor to be the base learner(decision
trees, SVR)

2. Distribution: The distribution of the output variable, either exponential,
normal, or log normal.

3. Score: Either NLL or CRPS

4. Number of estimators: The number of estimators you want to build before
taking the maximum voting or averages of predictions.
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5. Learning Rate: A tuning parameter that determines the step size at each
iteration while moving toward a minimum of a loss function

6. Mini batch fraction: The fraction of training data that is split into small
batches.

12.1.3 Implementation

We have utilized the implementation of NGBoost used in the paper of (Duan
et al., 2020). However, we have embedded this model in a probabilistic forecast-
ing module that implements stratified repeated K-Fold cross-validation, utility-
based learning, SMOGN up-sampling, dynamic variable scaling, and dynamic
model selection. This module outputs validation scores, standard deviation vali-
dation scores, test scores, uncertainty, in addition to all necessary plots, figures,
and datasets needed.

To choose the parametric distribution we desire, we plotted the distribution of
the output variable ET in Figure 12.2:

Figure 12.2: ET Distribution

We clarify that the only supported distributions in NGBoost are normal, log nor-
mal, and exponential. We do note that the distribution of ET is closest to the
burr distribution, and to the exponential power distribution (which is also known
as the generalized normal distribution). Hence, we chose to tune the distribution
parameter according to this plot, choosing between exponential and normal dis-
tribution.
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We tuned the hyper-parameters of NGBoost where we tried a set of over 300
hyper-parameters using stratified 10 repeated 10 folds cross validation and SMOGN
up-sampling:

• Distribution: [Exponential, Normal]

• Number of estimators: [500, 600, 700, 800, 1000, 1200, 1300, 1500],

• Base: [DecisionTreeRegressor(criterion=’friedman mse’, max depth=2), De-
cisionTreeRegressor(criterion=’friedman mse’, max depth=3), DecisionTreeRe-
gressor(criterion=’friedman mse’, max depth=4)

• Learning rate: [0.0001, 0.001, 0.002, 0.01, 0.1, 0.2, ]

• Minibatch fraction: [0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0]

• Scoring: NLL

The best set of hyper-parameters turned out to be:

• Distribution: [Normal]

• Number of estimators: [500]

• Base: [ DecisionTreeRegressor(criterion=’friedman mse’, max depth=2)

• Learning rate: [0.1]

• Minibatch fraction: [1]

The best UBR and SMOGN parameters are:

• rel method=range

• extr type=high

• coef=1.5

• rell = np.array([[1, 0 , 0],[4, 0 , 0],[15, 1 , 0]])

• relevance pts=rell

• thr rel=0.2

• Cperc=np.array([1,1.2])

• m=5

• repl=False

• dist=Manhattan

• p=2

• pert=0.1
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12.2 MC Dropout

Monte Carlo Dropout (Gal and Ghahramani, 2016), is a smart idea that em-
phasizes that it is possible to view the use of normal dropout as a Bayesian
approximation of a popular probabilistic model such as the Gaussian method.
The MC dropout model is based on (Gal and Ghahramani, 2016). Modeling
uncertainty with Monte Carlo dropout works by running multiple forward passes
through the model with a different dropout mask every time.

12.2.1 Architecture

We have discussed the notion of dropout in detail in Section 13.5.2. Dropout
corresponds to the randomly selected ignorance of a neural network’s neurons dur-
ing the training process. By disregarding some neurons, hence during a specific
forward or backward pass, Monte-Carlo Dropout (MC Dropout) applies dropout
during predictions (not just during training). It is obvious that the latter tech-
nique lowers overall model performance, but it is supposed to make the model
more uncertain when it should. For example, this is useful when the input data
is far away from the data it was trained on.

12.2.2 Hyper-parameters

We tuned the following hyper-parameters for MC Dropout:

1. Number of hidden layers in the neural network

2. Number of epochs: The number of epochs is a hyper-parameter that defines
the number of times that the learning algorithm will work through the entire
training dataset.

3. Tau: tau value used for regularization

4. Dropout rate: ”The term “dropout” refers to dropping out units (both
hidden and visible) in a neural network. Simply put, dropout refers to
ignoring units (i.e. neurons) during the training phase of a certain set of
neurons which is chosen at random.”

5. T: The number of predictions made for each observation

12.2.3 Implementation

We used the MC dropout model implementation by (Gal and Ghahramani, 2016).
We have embedded this model in a probabilistic forecasting module that imple-
ments stratified repeated K-Fold cross-validation, utility-based learning, SMOGN
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up-sampling, dynamic variable scaling, and dynamic model selection. This mod-
ule outputs validation scores, standard deviation validation scores, test scores,
uncertainty, in addition to all necessary plots, figures, and datasets needed.

We tuned the following set of hyperparameters according what is deemed ac-
ceptable in the literature:

• Number of epochs: [4, 5, 10, 15, 20, 30, 50, 80, 100]

• Number of hidden layers : [4,5,6,7,8,9,10]

• Normalize: [False, True]

• Tau : [0.1, 0.15, 0.2]

• Dropout rate: [0.005, 0.01, 0.05, 0.1]

• T: [100, 1000, 1500]

The best hyper-parameter set turned out to be:

• Number of epochs: [4]

• Number of hidden layers : [4]

• Normalize: [True]

• Tau : [0.1]

• Dropout rate: [0.001]

• T: [100]

The best UBR and SMOGN parameters are:

• rel method=range

• extr type=high

• coef=1.5

• rell = np.array([[1, 0 , 0],[4, 0 , 0],[15, 1 , 0]])

• relevance pts=rell

• thr rel=0.2

• Cperc=np.array([1,1.2])

• m=5
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• repl=False

• dist=Manhattan

• p=2

• pert=0.1

12.3 Deep Ensembles

12.3.1 Architecture

Deep Ensemble is a group of neural network models used to predict uncertainty.
This algorithm is an implementation of (Lakshminarayanan et al., 2017). The
deep learning ensemble model utilizes the entire training dataset to train each
network. A random subsample of data can be used instead, however, deep neural
networks typically perform better with more data. The authors found that ran-
dom initialization of the parameters of the neural network, along with random
shuffling of the data points, was sufficient to obtain good performance in practice.

12.3.2 Hyper-parameters

We tuned the following hyper-parameters for deep ensembles:

1. Learning rate: learning rate is a tuning parameter that determines the step
size at each iteration while moving toward a minimum of a loss function

2. Number of iterations: similar to epochs

3. Batch size: The size of training data that is split into small batches

12.3.3 Implementation

We utilized the implementation of deep ensembles by (Lakshminarayanan et al.,
2017). We have tuned the parameters of the model as follows:

• Learning rate: [0.0001, 0.0002, 0.002, 0.02, 0.001, 0.01, 0.1, 0.2]

• Batch size : [32, 64, 256, 512]

• Number of iterations: [100, 300, 400, 500, 600]

The best hyper-parameter combination turned out to be:

• Learning rate: [0.0001]

• Batch size : [64]

• Number of iterations: [500]
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12.4 Choosing the Best Model

We have performed Experiment A on all probabilistic models which were trained
on all the input features. In order to evaluate which model is the best, it is not fair
to compare the error metrics (R2, Accuracy, etc..) which are calculated on the
mean of the probability distribution. It is only fair to compare the probabilistic
models in accordance with the negative log-likelihood, which is the loss function
each of our probabilistic models utilize and found in Equation 12.1. The results
are observed in Table 12.1. We would also like to note that the percentage of
improvement in the following sections is calculated as:

percentage of improvement =
metricvariable1 −metricvariable2

metricvariable1
(12.3)

Where the metric is any error metric we are comparing.

NGBoost MC Dropout Deep Ensemble
Probabilistic NLL 1.861220308 2.016 6.4983

Table 12.1: Best Probabilistic Model

We note that the best performing model here is NGBoost, with an NLL of 1.86,
in comparison to MC Dropout and Deep Ensemble with NLL of 2.016 and 6.4983
respectively. Hence, we choose NGBoost to be our best model, where NGBoost
beat MC dropout by 8.3% in NLL and Deep Ensemble by 249% in NLL.

12.5 Utility-Based Learning and SMOGN Up-

sampling

We have implemented SMOGN up-sampling on the top two performing proba-
bilistic machine learning models. We portray the results of our best NGBoost
model and our base MC Dropout models. The SMOGN hyper-parameters for
both models are found in Sections 12.1.3 and 12.2.3 respectively. We show the
results of both models when trained on the full dataset before and after SMOGN
in Table 12.2.
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Metrics Before SmoGn After SmoGn
Models Average ET 3.879262 3.879262

NGBoost Train Size 3576 3576
Test Size 1547 1547
Data sets Validation Testing Validation Testing
Recall 0.905 +- 0.064 0.893 0.904 +- 0.048 0.895
F2 0.92 +- 0.052 0.906 0.708 +- 0.041 0.908
R2 0.649 +- 0.22 0.629 0.668 +- 0.084 0.667
RMSE 1.245 +- 0.555 1.405 1.066 +- 0.142 1.318
MAE 0.926 +- 0.329 1.013 0.84 +- 0.109 0.940
Accuracy 70.56 +- 5.594 65.737 71.83 +- 4.799 68.906
NMI 0.995 +- 0.001 0.998 0.996 +- 0.001 0.998
Training (s) NA 31.559 NA 25.306
Testing (s) NA 2.189 NA 1.928

MC Dropout Recall 0.776 +- 0.076 0.889 0.848 +- 0.015 0.891
F2 0.629 +- 0.364 0.902 0.862 +- 0.011 0.901
R2 0.101 +- 0.262 0.544 0.371 +- 0.079 0.597
RMSE 1.991 +- 0.365 1.496 1.705 +- 0.176 1.430
MAE 1.524 +- 0.273 1.133 1.301 +- 0.166 1.071
Accuracy 49.545 +- 9.406 59.346 56.977 +- 8.646 63.552
NMI 0.976 +- 0.022 0.978 0.984 +- 0.016 0.987
Training (s) - 2.374 NA 3.260
Testing (s) - 6.282 NA 3.785

Table 12.2: SMOGN Comparison
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We observe that the majority of the error metrics showed an improvement after
applying SMOGN up-sampling. In NGBoost, the Recall boosted from 0.892 to
0.93, the F2 measure boosted from 0.906 to 0.908, the R2 from 0.629 to 0.667, the
RMSE decreased from 1.405 to 1.318, the MAE from 1.013 to 0.940, the accuracy
increased from a 66% to a 69%. The same case applies for MC Dropout, where
the Recall increased from a 0.889 to a 0.891, the R2 from a 0.544 to a 0.597, the
RMSE decreased from a 1.496 to a 1.430, the MAE from a 1.133 to a 1.071, and
the accuracy increased from a 59% to 64%.

Takeaway Message

SMOGN has left a good impact on our best model NGBoost, decreasing the
RMSE by 6.6% and increasing the accuracy by 3%. Hence, SMOGN will be
applied to both NGBoost and MC Dropout when training on any data subset or
clustering because it aims at boosting the results.

12.6 Quantifying Uncertainty

We have performed four sets of experiments, each pertaining to a feature selection
method, utilizing our best probabilistic model NGBoost. We have experimented
with different feature selection methods as mentioned in Table 12.3. We demon-
strate the experimental results in Table 12.4.

Combinations Model Name Input Combinations
1 NGBoost1 Scenario A
2 NGBoost2 Scenario B TA(5 lags)
3 NGBoost3 Scenario C TA(5 lags) WS(2 lags)

RH(3 lags)
EEflux LST(5 lags)
EEflux NDVI(2 lags)
EEflux Albedo(2 lags)

4 NGBoost4 Scenario D TA(5 lags) RH(3 lags)
EEflux LST(5 lags)

Table 12.3: Feature Selection Scenarios
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Models Metrics Validation Scores Validation Scores Std Testing Scores

NGBoost1 Recall 0.904 0.048 0.895
F2 0.708 0.041 0.908
R2 0.668 0.084 0.667
RMSE 1.066 0.142 1.318
Accuracy 71.830 4.799 68.906
Training Time (seconds) - - 25.306
Testing Time (seconds) - - 1.928

NGBoost2 Recall 0.847 0.073 0.862
F2 0.680 0.039 0.878
R2 0.557 0.036 0.542
RMSE 1.643 0.522 1.546
Accuracy 60.688 8.135 61.614
Training Time (seconds) - - 10.239
Testing Time (seconds) - - 1.225

NGBoost3 Recall 0.893 0.062 0.880
F2 0.909 0.057 0.897
R2 0.646 0.083 0.641
RMSE 1.237 0.234 1.368
Accuracy 69.274 4.624 67.776
Training Time (seconds) - - 20.336
Testing Time (seconds) - - 1.663

NGBoost4 Recall 0.879 0.040 0.842
F2 0.894 0.042 0.858
R2 0.508 0.169 0.417
RMSE 1.482 0.359 1.743
Accuracy 62.415 5.718 56.110
Training Time (seconds) - - 14.196
Testing Time (seconds) - - 12.497

Table 12.4: Experimental Results for Probabilistic Models
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When comparing different error and accuracy measures, it is noted that NG-
Boost1 was the best performing model across all, scoring an R2 of 0.67, Accuracy
of 69% and a Recall of 0.91. Our best feature selection giving comparable scores
with lower runtime is NGBoost3, scoring an R2 of 0.641, Accuracy of 67.7% and
a Recall of 0.88 . We aim to quantity the epistemic uncertainty for all the feature
selection methods used, and decide which model is the most certain.
Figure 12.3 represents the epistemic uncertainty for 100 data points of the test-
ing data set. The x-axis represents the number of data points and the y-axis
represents the epistemic uncertainty in mm which is of the same unit as our
output variable ET. As highlighted in Figure 12.3, we note the following:

1. NGBoost3 is the least uncertain.

2. NGBoost1 is the second least uncertain.

3. NGBoost2 is the most uncertain.

4. NGBoost4 is the second most uncertain.

According to Table 12.4, NGBoost2 and NGBoost4 are the worst performing.
They are also the least certain as proven in Figure 12.3) by having high epistemic
uncertainty for both. However, NGBoost1 and NGBoost3 are the most certain
because they have the lowest epistemic uncertainty (as shown by the green and
blue line plots of Figure 12.3). We do note that NGBoost3 is the least uncertain
compared to NGBoost1. This is explained by the fact that the complexity of NG-
Boost1 (having more input features than NGBoost3) could boost its uncertainty.
Hence, NGBoost3, which offers comparable experimental results to NGBoost1, is
the least uncertain.

Figure 12.3: Epistemic Uncertainty for all Scenarios

Let us zoom in further to NGBoost3 in Figure 12.4. We do note that the epis-
temic uncertainty ranges between 0 and 1.2 mm2. We note that as the number
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of data points increases, the uncertainty decreases. This is a property of the epis-
temic uncertainty, which is reducible and hence decreases upon the introduction
of more data points.

Figure 12.4: Epistemic Uncertainty for NGBoost3

104



12.7 Results

12.7.1 Across Weather Clusters and Union of Clusters

Experiment A was performed on all the data (union of clusters) for NGBoost,
MC Dropout, EEflux METRIC, Auto-Sklearn, and Stat. We have indeed per-
formed this experiment on the above listed models but on all available cluster
combinations identified in Section 5.4.4 on all weather parameters utilizing k-
means and dendrograms. Clustering by Wind Speed (WS) using k-means, with
k=2, was the best performing cluster offering the best precision, recall, and least
error metrics. WS cluster one has wind speed values ranging from 3.647 to 12.518
meters per second. WS cluster two has wind speed values ranging from 0.0516
to 4.129 meters per seconds.

We also carried out Experiment A on the above models and on the best clus-
ters in all feature selection scenarios (scenario B, scenario C, and scenario D).
Scenario C was the best feature selection scenario that offered the least uncertain
model as specified in Chapter 9.

In Table 12.5, we present the experimental results for scenario C. In the ap-
pendix, all other experiments for scenarios (A, B, and D) are present. In our
table, the columns represent:

• WS Cluster 0: The model is being trained on data clustered by WS using
k-means, k = 2 on the first cluster.

• Union: The model is being trained on the union of clusters.

• WS Cluster 1: The model is being trained on data clustered by WS using
k-means, k = 2 on the second cluster.
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Metrics WS Cluster 0 Union of Clusters WS Cluster 1
Models Average ET 3.745098 3.879262 3.951248
EEflux Train Size 1202 3576 2361

Test Size 530 1547 1025
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.839 0.880 0.787
F2 NA 0.850 NA 0.894 NA 0.000
R2 NA -0.489 NA -0.540 NA -0.577
RMSE NA 3.519 NA 2.479 NA 2.907
MAE NA 2.558 NA 1.939 NA 2.237
Accuracy NA 29.346 NA 47.612 NA 42.426
NMI NA 0.813 NA 0.892 NA 0.865
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

NGBoost Recall 0.765 +- 0.383 0.851 0.893 +- 0.062 0.880 0.937 +- 0.014 0.910
F2 0.772 +- 0.386 0.876 0.909 +- 0.057 0.897 0.942 +- 0.025 0.919
R2 0.683 +- 0.31 0.539 0.646 +- 0.083 0.641 0.624 +- 0.174 0.686
RMSE 0.76 +- 0.148 1.586 1.237 +- 0.234 1.368 1.12 +- 0.202 1.303
MAE 0.595 +- 0.122 1.056 0.92 +- 0.028 0.988 0.719 +- 0.156 0.981
Accuracy 79.198 +- 5.95 63.833 69.274 +- 4.624 67.776 66.466 +- 2.122 65.965
NMI 0.994 +- 0.002 0.996 0.996 +- 0.001 0.998 0.997 +- 0.0 0.998
Training (s) NA 7.982 NA 20.336 NA 14.121
Testing (s) NA 1.162 NA 1.663 NA 1.441

MC Dropout Recall 0.638 +- 0.33 0.854 0.811 +- 0.074 0.888 0.806 +- 0.065 0.903
F2 0.493 +- 0.407 0.874 0.521 +- 0.426 0.903 0.684 +- 0.343 0.913
R2 0.009 +- 0.113 0.420 0.214 +- 0.035 0.627 0.192 +- 0.324 0.612
RMSE 2.008 +- 0.652 1.681 1.83 +- 0.456 1.408 1.873 +- 0.134 1.415
MAE 1.558 +- 0.504 1.248 1.376 +- 0.314 1.018 1.438 +- 0.077 1.072
Accuracy 47.053 +- 19.199 53.448 56.617 +- 5.676 66.528 53.463 +- 11.458 63.999
NMI 0.932 +- 0.063 0.880 0.906 +- 0.082 0.944 0.982 +- 0.025 0.982
Training (s) - 1.850 - 2.995 - 2.962
Testing (s) - 1.946 - 3.581 - 3.518

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Auto Sklearn Recall
F2 NA 0.879 NA 0.906 NA 0.888
R2 NA -0.047 NA 0.601 NA 0.613
RMSE NA 1.917 NA 1.972 NA 1.401
MAE NA 1.373 NA 1.101 NA 0.863
Accuracy NA 58.152 NA 64.981 NA 71.72
NMI NA 0.372 NA 0.993 NA 0.794
Training (s) NA 1200 NA 1200 NA 1200
Testing (s) NA 80 NA 80 NA 80

Table 12.5: Experimental Variations for Probabilistic Models
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Table 12.5 portrays the experimental results across different wind speed clusters
(by Kmeans) and across the union of clusters. We contrast the performance of
our four models: EEflux (METRIC) model, MC Dropout (base model), NGBoost
(best model), and AutoSklearn. We note that NGBoost outperforms all others in
predicting real ET across the union of clusters, producing an R2 score of 0.641,
an MAE of 0.988, an accuracy of 68 %, a recall of 0.880, and an F2 measure of
0.897. When training the model on the union of clusters, transfer learning is also
emphasized. All five models on WS cluster 0 performed badly, but on WS cluster
1 performed well. This means that the models trained on WS cluster 1 have
learned to make more precise predictions on the union of clusters. The clusters
are ordered from worst to best in terms of their results.

N.B: Auto Sklearn validation scores are not available for us to extract.

Figure 12.5: Scatter plot for Probabilistic Models

Figure 12.5 illustrates the real ET (x-axis) versus the predicted ET (y-axis)
across the four models: EEFlux (METRIC), MC Dropout, AutoSklearn, and
NGBoost. It is noted that the NGBoost model shows a better diagonal fit than
the EEFlux (METRIC) model, the Auto-Sklearn model, and the MC Dropout
model across the union of clusters and WS cluster 1. The points in the EEflux
model, the MC Dropout model, and the Auto-Sklearn model were scattered and
not centered around the bisector. NGBoost trained on the union of clusters
yielded a better concentration around the bisector in comparison to WS cluster
1. Figure 12.5 also confirms our quantitative observations present in Table 12.5.
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Figure 12.6: Line plot for a set of sites for NGBoost

Figure 12.6 shows Real ET versus Predicted ET for a set of sites pertaining to
our testing data upon using the NGBoost model. The x-axis represents the date
in years and the y-axis represents the Real ET versus the Predicted ET in (mm)
for each site. As shown in Figure 12.6, Predicted ET by the NGBoost model
tracks the Real ET in an excellent manner in almost all of the years for all the
chosen sites. We now zoom further into one of the sites US-Kon.
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Figure 12.7: Line plot for US-Kon for Probabilistic Models

In Figure 12.7, we plot the real versus the predicted ET of NGBoost and MC
Dropout on a sample site (US-KON) across the years. We note how the predicted
ET by MC Dropout does not seem to track the real ET at all, however the
predicted ET of NGBoost tracks the real ET in a good manner, successfully
capturing rare values (ET values above 5mm).

Table 12.6 shows the residual analysis experiments (B,C, and D) across the union
of clusters and across the best performing cluster WS cluster 1 on both models
NGBoost and MC Dropout. It is noticed that NGBoost beats MC Dropout in
all residual analysis experiments. However, we note that the residual analysis
experiment yielding the best result is experiment B, the proportional residual.
NGBoost scored on Experiment B an R2 of 0.726 - 0.738, an RMSE of 0.412-
0.406, and accuracy of 70%-75% across the union of clusters and WS cluster 1.

Figure 12.8 illustrates the actual residual (x-axis) versus the predicted resid-
ual (y-axis) across the three residual analysis experiments (B,C,and D) upon
using the NGBoost model. We note that there is a high resemblance between
experiment B and D showing high concentration around the bottom left part of
the bisector. Experiment C, however, show a more scattered distribution around
the middle of the bisector. Hence, experiment B and D are the best performing
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Clusters Union of Clusters WS Cluster 1
Models Average outcome 0.8063705957 -1.160801815 -0.1936294043 0.7400011073 -1.689967037 -0.2599988927

NGBoost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
Recall 0.000 0.937 0.000 0.000 0.964 0.000
F2 0.000 0.948 0.000 0.000 0.967 0.000
R2 0.738 0.794 0.738 0.726 0.855 0.726
RMSE 0.406 1.390 0.406 0.412 1.162 0.412
MAE 0.222 1.044 0.222 0.215 0.922 0.215
Accuracy 70.083 -25.215 1.500 74.837 -68.813 -26.778
NMI 1.000 1.000 1.000 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

MC Dropout Recall 0.000 0.927 0.000 0.000 0.996 0.000
F2 0.000 0.929 0.000 0.000 0.993 0.000
R2 0.633 0.751 0.633 0.778 0.808 0.778
RMSE 0.453 1.341 0.453 0.309 1.112 0.309
MAE 0.226 0.998 0.226 0.175 0.865 0.175
Accuracy 71.696 -74.944 -55.068 73.816 -85.428 -60.108
NMI 0.986 0.986 0.986 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 12.6: Residual Analysis for Probabilistic Models

Figure 12.8: Residual Analysis Scatter Plot for NGBoost
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according to this scatter plot. However, Table 12.6 confirms that indeed the best
residual analysis experiment is B.

Takeaway Message: NGBoost was the best probabilistic model to predict ET.
NGBoost beats MC Dropout in R2 by 2% to 12%, in accuracy by 1% to 2%,
and in RMSE by 24% to 26%. NGBoost also beats Auto-sklearn in R2 by 6%,
and in RMSE by 29% to 41%. NGBoost outperforms EEflux ET METRIC in R2
by a 100%, in accuracy by 20% - 23.5%, and in RMSE by 82%-100%. Nonethe-
less, NGBoost performs best in minimizing the proportional bias on the union of
clusters, beating MC Dropout by a 16% - in R2, an 11% in RMSE. Hypothesis
testing was applied to validate these percentages.

To affirm that SMOGN was of benefit to NGBoost across Scenario C, as dis-
cussed in Section 12.5, we have trained NGBoost on two datasets: the original
dataset and the dataset up-sampled by SMOGN. The experiments confirm our
affirmation, since before SMOGN, the R2 score was 0.625 and after SMOGN the
R2 score boosted to a 0.641 and the RMSE decreased from 1.395 to 1.368. Hence,
SMOGN on Scenario C will be used when studying climates and seasonality. The
full table is found in the appendix.

12.7.2 Across Different Climates

We have previously conducted Experiment A through the entire dataset on our
point-wise models. We are now aiming at performing this experiment with sce-
nario C on our models but on each climate separately. Chapter 4, Table 4.1,
lists the types of climates and their significance. We show the experimental results
of scenario C in Table 12.7 and 12.8 where the columns in our table represent:

• Cwa: The model is being trained on data of climate Cwa.

• Dsa: The model is being trained on data of climate Dsa.

• Cfa: The model is being trained on data of climate Cfa.

• Csa: The model is being trained on data of climate Csa.

• Other: The model is being trained on data of undefined climates labeled as
Other.

• Union: The model is being trained on the union of climates.
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Metrics Other Dsa Cwa
Models Average ET 2.717362 2.190195719 5.199416872
EEflux Train Size 761 228 137

Test Size 331 99 59
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.000 NA 0.000 NA 0.898
F2 NA 0.000 NA 0.000 NA 0.000
R2 NA 0.767 NA -3.611 NA -4016.791
RMSE NA 0.314 NA 1.620 NA 4.685
MAE NA 0.213 NA 1.443 NA 3.848
Accuracy NA 68.730 NA 16.103 NA 43.771
NMI NA 1.000 NA 0.637 NA 1.000
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

NGBoost Recall 0.74 +- 0.37 0.724 0.0 +- 0.0 0.000 0.979 +- 0.033 0.925
F2 0.567 +- 0.463 0.71 0.0 +- 0.0 0.00E+00 0.978 +- 0.036 0.927
R2 0.824 +- 0.155 0.345 0.867 +- 0.202 0.376 0.619 +- 0.032 0.606
RMSE 0.522 +- 0.201 1.061 0.341 +- 0.299 0.968 1.287 +- 0.385 1.351
MAE 0.401 +- 0.161 0.774 0.253 +- 0.228 0.702 1.034 +- 0.431 1.044
Accuracy 82.614 +- 7.003 66.285 86.875 +- 11.214 67.049 92.111 +- 15.127 74.11
NMI 0.998 +- 0.001 0.999 0.998 +- 0.002 0.995 0.999 +- 0.003 1
Training (s) - 8.358 NA 5.502 NA 5.623
Testing (s) - 1.317 NA 0.796 NA 0.72

MC Dropout Recall 0.139 +- 0.278 0.633 0.0 +- 0.0 0.000 0.855 +- 0.033 0.874
F2 0.0 +- 0.0 0 0.0 +- 0.0 0.000 0.357 +- 0.437 0.866
R2 0.162 +- 0.079 0.096 -0.249 +- 0.673 -1.248 0.2 +- 0.164 0.027
RMSE 1.112 +- 0.047 1.514 1.14 +- 0.109 1.864 1.927 +- 0.08 1.772
MAE 0.898 +- 0.039 0.987 0.918 +- 0.061 1.161 1.54 +- 0.097 1.563
Accuracy 59.22 +- 2.822 62.877 51.152 +- 10.633 41.098 63.528 +- 10.751 64.613
NMI 0.981 +- 0.021 0.989 0.977 +- 0.021 0.971 0.966 +- 0.057 0.984
Training (s) NA 2.079 NA 0.809 NA 0.825
Testing (s) NA 2.342 NA 0.722 NA 0.704

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Table 12.7: Experimental Variations for Probabilistic Models part 1
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Metrics Cfa Union Csa
Models Average ET 4.979814 3.879262 3.588537
EEflux Train Size 1288 3576 1147

Test Size 559 1547 494
Data sets Validation Testing Validation Testing Validation Testing
Recall NA 0.830 NA 0.880 NA 0.856
F2 NA 0.848 NA 0.894 NA 0.864
R2 NA -1.140 NA -0.540 NA -1.054
RMSE NA 3.184 NA 2.479 NA 2.922
MAE NA 2.571 NA 1.939 NA 2.047
Accuracy NA 39.694 NA 47.612 NA 47.683
NMI NA 0.893 NA 0.892 NA 0.888
Training (s) NA NA NA NA NA NA
Testing (s) NA NA NA NA NA NA

NGBoost Recall 0.948 +- 0.013 0.905 0.893 +- 0.062 0.880 0.704 +- 0.37 0.962
F2 0.954 +- 0.012 0.916 0.909 +- 0.057 0.897 0.716 +- 0.373 0.965
R2 0.637 +- 0.091 0.628 0.646 +- 0.083 0.641 0.656 +- 0.103 0.681
RMSE 0.944 +- 0.256 1.608 1.237 +- 0.234 1.368 0.723 +- 0.193 0.940
MAE 0.948 +- 0.2 1.182 0.92 +- 0.028 0.988 0.665 +- 0.12 0.719
Accuracy 69.782 +- 4.771 68.600 69.274 +- 4.624 67.776 76.302 +- 4.405 73.308
NMI 0.995 +- 0.002 0.998 0.996 +- 0.001 0.998 0.995 +- 0.002 0.997
Training (s) NA 8.541 NA 20.336 NA 8.052
Testing (s) NA 1.133 NA 1.663 NA 1.086

MC Dropout Recall 0.837 +- 0.075 0.858 0.811 +- 0.074 0.888 0.771 +- 0.122 0.804
F2 0.849 +- 0.063 0.874 0.521 +- 0.426 0.903 0.0 +- 0.0 0.000
R2 0.306 +- 0.116 0.285 0.214 +- 0.035 0.627 0.29 +- 0.076 0.131
RMSE 2.136 +- 0.293 2.243 1.83 +- 0.456 1.408 1.291 +- 0.288 1.693
MAE 1.632 +- 0.159 1.808 1.376 +- 0.314 1.018 1.021 +- 0.27 1.279
Accuracy 55.039 +- 4.226 41.324 56.617 +- 5.676 66.528 63.258 +- 11.016 59.481
NMI 0.974 +- 0.025 0.887 0.906 +- 0.082 0.944 0.962 +- 0.042 0.893
Training (s) NA 1.945 NA 2.995 NA 1.364
Testing (s) NA 2.009 NA 3.581 NA 1.162

Stat Recall - - - - - -
F2 - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training (s) - - - - - -
Testing (s) - - - - - -

Table 12.8: Experimental Variations for Probabilistic Models part 2
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Table 12.7 and 12.8 portray the experimental results across different climates and
across the union of climates (we note that the tables are split for visual reasons).
We compare the performance of our four models: EEflux (METRIC) model,
MC Dropout (base model), and NGBoost (best model). We note that NGBoost
outperforms all others in predicting real ET across the union of climates and on
each climate separately. We also note that MC Dropout performs horribly in
almost all the climates. This is due to the fact that when we subset our data by
climate, the dataset size decreases drastically. MC Dropout is a complex neural
network model, which does not behave well on small portions of the data. We do
realize that the NGBoost model does not perform as well on the climates Other
and Dsa. However, NGBoost performs very well on climates Cwa, Cfa, and Csa,
with climate Csa giving better results in terms of giving the best error metrics
and accuracy than the union of climates. NGBoost scores an R2 of 0.641, an
MAE of 0.988, an accuracy of 68%, and a recall of 0.880 on the union of climates,
however, it scores an R2 of 0.681, an MAE of 0.719, an accuracy of 73.3%, and a
recall of 0.962 on climate Csa. Transfer learning is also highlighted when training
the model on the union of climates, where the model learned from each climate
to perform better on their union.

Figure 12.9: Density Plot for ET across all Climates for Probabilistic Models

In Figure 12.9, the x-axis represents ET(mm) and the y-axis represents the den-
sity. The color blue represents the real ET(mm) and the orange color represents
the predicted ET(mm). We plot the real vs the predicted ET(mm) across all
the available climates (Cfa, Csa, Cwa, Dsa, and other) upon using the NGBoost
model. We note that climate Csa, which is proven to be the best performing in
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Table 12.8, offers the best trace for real versus predicted ET (mm). Climate Cfa
also show a comparable performance, unlike Dsa, Cwa, and Other.

Clusters Union of Clusters Csa
Models Average outcome 0.8063705957 -1.160801815 -0.1936294043 0.646644 -1.3881749 -0.3533554409

NGBoost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
F2 0.000 0.937 0.000 0.00 0.00 0.00
Recall 0.000 0.948 0.000 0.00 0.00 0.00
R2 0.738 0.794 0.738 0.73 0.74 0.73
RMSE 0.406 1.390 0.406 0.26 1.08 0.26
MAE 0.222 1.044 0.222 0.17 0.79 0.17
Accuracy 70.083 -25.215 1.500 76.69 -38.08 -29.50
NMI 1.000 1.000 1.000 1 1 1
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

MC Dropout F2 0.00 0.93 0.00 0.000 0.000 0.000
Recall 0.00 0.93 0.00 0.000 0.000 0.000
R2 0.63 0.75 0.63 0.581 0.449 0.581
RMSE 0.45 1.34 0.45 0.324 1.857 0.324
MAE 0.23 1.00 0.23 0.227 1.458 0.227
Accuracy 71.70 -74.94 -55.07 60.830 -94.910 -117.613
NMI 0.985932284 0.985932284 0.985932284 0.963 0.963 0.963
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 12.9: Residual Analysis for Probabilistic Models

Table 12.9 shows the residual analysis experiments across the union of climates
and across the best performing climate Csa on both models NGBoost and MC
Dropout. It is clear that NGBoost beats MC Dropout in all residual analysis ex-
periments as seen in the previous section. We highlight that the residual analysis
experiment giving the best result is also experiment B in this case, the propor-
tional residual. NGBoost scored an R2 of 0.73 - 0.74, an RMSE of 0.26-0.4, and
an accuracy of 70%-77% across the union of climates and climate Csa.

Takeaway message: NGBoost performs very well on all climates except Dsa
and Other. Nevertheless, NGBoost performed the best on Csa (Mediterranean -
a moderate climate with a dry and hot summer) climate, which is most appropri-
ate because farmers will need to know how much to irrigate the most in this dry
and hot season (through expected ET values), rather than the cold and humid
seasons. The NGBoost model trained on climate Csa beat the one trained on
the union of climates in accuracy by 5.532%, in MAE by 19.3%, and in recall by
9.3%. Furthermore, NGBoost on climate Csa performs better than on the union
of climates in minimizing the proportional bias, scoring a 7% higher accuracy,
and a 56% lower RMSE.

12.7.3 Across Different Seasons

We now plan to examine model performance across various seasons after studying
model performance on weather clusters and climates. Three seasons are identified:
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summer, spring, and winter. We note that TA clustering using kmeans, where
k = 3 was the most efficient way to display different seasons per cluster (more
details are explained in Section 5.4.5). We show the experimental results of
scenario C in Table 12.10 and 12.11 where the columns in our table represent:

• TA cluster 0: The model is being trained on data clustered by TA using
k-means, k = 3 on the first cluster.

• TA cluster 1: The model is being trained on data clustered by TA using
k-means, k = 3 on the second cluster.

• TA cluster 2: The model is being trained on data clustered by TA using
k-means, k = 3 on the third cluster.

• Union: The model is being trained on the union of clusters.

Table 12.10 and 12.11 show the experimental results across different seasons and
across the union of seasons (the tables are split for better visuals). We compare
the performance of our four models: EEflux (METRIC) model, MC Dropout
(base model), and NGBoost (best model). We note that NGBoost outperforms
all others in predicting real ET across the union of seasons and on each season
separately. We note that the Gradient Boost model and the MC dropout model
does not perform well in the winter season (TA cluster 0), which is due to the
little data available for this season (training data of 774 row). However, NGBoost
performs in a comparable manner to the union of seasons, with summer being the
best in terms of giving the best error metrics. NGBoost scores an R2 of 0.516, an
MAE of 1.355, an accuracy of 65.5%, and a recall of 0.9 in the summer season.
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Metrics TA Cluster 0 TA Cluster 1

Models Average ET 2.401 5.415

EEflux Train Size 774.000 1063.000
Test Size 351.000 470.000
Data sets Validation Testing Validation Testing
Recall NA 0.000 0.831
F2 NA 0.000 NA 0.854
R2 NA -0.771 NA -1.344
RMSE NA 1.491 NA 3.636
MAE NA 1.162 NA 2.807
Accuracy NA 49.566 NA 46.462
NMI NA 0.872 NA 0.872
Training (s) NA NA NA NA
Testing (s) NA NA NA NA

NGBoost Recall 0.185 +- 0.369 0.000 0.956 +- 0.019 0.900
F2 0.188 +- 0.375 0.000 0.955 +- 0.029 0.907
R2 0.56 +- 0.534 0.248 0.527 +- 0.072 0.516
RMSE 0.591 +- 0.265 0.977 1.145 +- 0.676 1.793
MAE 0.455 +- 0.19 0.743 1.418 +- 0.056 1.355
Accuracy 78.523 +- 7.587 66.107 68.381 +- 2.378 65.551
NMI 0.997 +- 0.002 0.999 0.996 +- 0.002 0.999
Training (s) NA 6.752 NA 7.756
Testing (s) NA 0.996 NA 1.014

MC Dropout Recall 0.23 +- 0.285 0.000 0.81 +- 0.052 0.867
F2 0.0 +- 0.0 0.000 0.656 +- 0.332 0.883
R2 0.016 +- 0.031 0.041 -0.037 +- 0.235 0.468
RMSE 1.2 +- 0.138 1.045 2.492 +- 0.407 1.964
MAE 0.895 +- 0.05 0.837 1.981 +- 0.358 1.502
Accuracy 56.443 +- 3.375 59.448 48.287 +- 16.166 61.171
NMI 0.937 +- 0.059 0.821 0.915 +- 0.042 0.991
Training (s) NA 1.231 NA 1.319
Testing (s) NA 0.911 NA 1.095

Stat Recall - - - -
F2 - - - -
R2 - - - -
RMSE - - - -
MAE - - - -
Accuracy - - - -
NMI - - - -
Training (s) - - - -
Testing (s) - - - -

Table 12.10: Experimental Variations for Probabilistic Models part 1
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Metrics TA Cluster 2 Union of Clusters
Models Average ET 3.592 3.879262
EEflux Train Size 1705.000 3576

Test Size 745.000 1547
Data sets Validation Testing Validation Testing
Recall NA 0.939 0.880
F2 NA 0.925 NA 0.894
R2 NA -1.179 NA -0.540
RMSE NA 2.175 NA 2.479
MAE NA 1.750 NA 1.939
Accuracy NA 50.331 NA 47.612
NMI NA 0.905 NA 0.892
Training (s) NA NA NA NA
Testing (s) NA NA NA NA

NGBoost Recall 0.862 +- 0.113 0.877 0.893 +- 0.062 0.880
F2 0.575 +- 0.47 0.885 0.909 +- 0.057 0.897
R2 0.642 +- 0.022 0.502 0.646 +- 0.083 0.641
RMSE 1.434 +- 0.032 1.233 1.237 +- 0.234 1.368
MAE 0.711 +- 0.252 0.918 0.92 +- 0.028 0.988
Accuracy 66.819 +- 4.208 67.176 69.274 +- 4.624 67.776
NMI 0.994 +- 0.001 0.997 0.996 +- 0.001 0.998
Training (s) NA 10.360 NA 20.336
Testing (s) NA 1.192 NA 1.663

MC Dropout Recall 0.808 +- 0.077 0.896 0.811 +- 0.074 0.888
F2 0.471 +- 0.388 0.904 0.521 +- 0.426 0.903
R2 0.062 +- 0.198 0.450 0.214 +- 0.035 0.627
RMSE 1.581 +- 0.414 1.309 1.83 +- 0.456 1.408
MAE 1.214 +- 0.295 0.996 1.376 +- 0.314 1.018
Accuracy 59.983 +- 7.569 62.405 56.617 +- 5.676 66.528
NMI 0.957 +- 0.026 0.995 0.906 +- 0.082 0.944
Training (s) NA 1.655 NA 2.995
Testing (s) NA 2.029 NA 3.581

Stat Recall - - - -
F2 - - - -
R2 - - - -
RMSE - - - -
MAE - - - -
Accuracy - - - -
NMI - - - -
Training (s) - - - -
Testing (s) - - - -

Table 12.11: Experimental Variations for Probabilistic Models part 2
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Figure 12.10: Density Plot for ET across all Seasons for Probabilistic Models

In Figure 12.10, the x-axis represents ET(mm) and the y − axis represents
the density. The color blue represents the real ET(mm) and the orange color
represents the predicted ET(mm). We plot the real vs the predicted ET(mm)
across all the seasons (Spring, Summer, Winter) upon using the NGBoost model.
We note that the summer season, which is proven to be the best performing in
Table 12.11, offers the best trace for real versus predicted ET (mm). The spring
season also show a comparable performance. The model trained on the winter
season, however, produces predicted ET fat from the actual ET, shown in the
figure through varying peaks.
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Clusters Union of Clusters TA cluster 1
Models Average outcome 0.806 -1.161 -0.194 0.598 -1.853 -0.402

NGBoost Residuals Experiment B Experiment C Experiment D Experiment B Experiment C Experiment D
F2 0.000 0.937 0.000 0.00 0.94 0.00
Recall 0.000 0.948 0.000 0.00 0.96 0.00
R2 0.738 0.794 0.738 0.79 0.56 0.79
RMSE 0.406 1.390 0.406 0.28 1.98 0.28
MAE 0.222 1.044 0.222 0.17 1.44 0.17
Accuracy 70.083 -25.215 1.500 71.64 -104.18 -78.69
NMI 1.000 1.000 1.000 1 1 1
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

MC Dropout F2 0.00 0.93 0.00 0.000 0.977 0.000
Recall 0.00 0.93 0.00 0.000 0.000 0.000
R2 0.63 0.75 0.63 0.788 0.589 0.788
RMSE 0.45 1.34 0.45 0.288 2.060 0.288
MAE 0.23 1.00 0.23 0.191 1.527 0.191
Accuracy 71.70 -74.94 -55.07 71.818 -166.096 -70.723
NMI 0.986 0.986 0.986 1.000 1.000 1.000
Training Time (s) NA NA NA NA NA NA
Testing Time (s) NA NA NA NA NA NA

Stat F2 - - - - - -
Recall - - - - - -
R2 - - - - - -
RMSE - - - - - -
MAE - - - - - -
Accuracy - - - - - -
NMI - - - - - -
Training Time (s) - - - - - -
Testing Time (s) - - - - - -

Table 12.12: Residual Analysis for Probabilistic Models

Table 12.12 shows the residual analysis experiments across the union of seasons
and the best performing season (summer - TA cluster 1) on both models NG-
Boost and MC Dropout. NGBoost beats MC Dropout in all residual analysis
experiments as observed before. We note that the residual analysis experiment
yielding the best result is the proportional residual (experiment B) as well. NG-
Boost scored an R2 of 0.738 - 0.79, an RMSE of 0.28-0.406, and an accuracy of
70%-72% across the union of seasons and the summer season.

Takeaway message: In the spring and summer seasons, NGBoost performs
reasonably well, which is what farmers need, because ET values are a require-
ment to predict how much to irrigate and conserve water in these seasons. In
comparison to the winter season, in which rain is present, the need to accurately
forecast ET is therefore reduced. In the summer season, NGBoost beat MC
Dropout by 10% in R2 score, 13% in RMSE, and by 11% in MAE. Furthermore,
Gradient Boost performs best in minimizing the proportional bias on the summer
season, yielding a lower RMSE by 3%, and by 12% in MAE.

12.8 Models’ Stability and Performance

For each of the conducted experiments, we have performed 10-folds, 10-repeats
stratified cross-validation to validate the stability of our results. We will compare
our models according to different criteria: the most accurate, the most precise,
the most certain, and the one with the best training time.
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Most Accurate Model

In terms of the highest accuracy, we note that NGBoost is the best probabilistic
model with an accuracy of 68% as opposed to the MC Dropout which gave an
accuracy of 66%.

Most Precise Model

In terms of the highest utility-based scores, we note that NGBoost and MC
Dropout show a tie, in which both models produce a recall of 0.88. Hence, both
can accurately predict rare ET values.

12.8.1 The Model with the Least Training Time

When comparing training times, we do note that NGBoost has a training time
of 20 seconds, which is higher than MC Dropout (a training time of 3 seconds).
This is explained by the fact that MC Dropout is TensorFlow-based, which is
proven to be faster than other libraries used in NGBoost like scikit-learn.

12.8.2 Learning Experience

We have computed validation scores, validation standard deviation scores, and
evaluated our model on a shuffled testing data set for each fold. We compare the
validation and testing scores of NGBoost:

• NGBoost yields a validation accuracy of 71% and a test accuracy of 68%.

• NGBoost yields a validation RMSE of 1.23 and a test MSE of 1.36

We now do the same for MC Dropout:

• MC Dropout yields a validation accuracy of 57% and a test accuracy of
66%.

• MC Dropout yields a validation RMSE of 1.8 and a test MSE of 1.4

We observe that the testing and validation scores of both models track each other,
hence they do not overfit, showing low bias and low variance.
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Chapter 13

Conformal Quantile Modeling

13.1 Overview

There exist several models for producing prediction intervals, some of which are
quantile regression, conformal regression, and conformal quantile regression which
will be discussed in deep detail in the following sections.

13.1.1 Quantile Regression

When studying a regression problem, a regression model is designed to output a
numerical prediction to a problem, and the confidence of this numerical predic-
tion should be portrayed. (Meinshausen, 2006) further explained that quantile
regression quantifies the conditional median of the target rather than using the
least-squares method to quantify the conditional mean. We note that the condi-
tional distribution function is expressed as follows:

F (y|X = x) := P (Y ≤ y|X = x) (13.1)

However, in quantile regression, the quantile - which is the percentage - can
be calculated as well. Quantile regression works in a different way than other
regression models. Any chosen algorithm for quantile regression will be fit on
the specified quantiles (for example 5% and 95%) to estimate upper and lower
bounds for the interval. For the instance in which the data is heteroscedastic
(heteroscedasticity occurs when the standard deviation of a specific predicted
variable, tracked over specific values of input variables, is not constant), quantile
regression showed to perform very well. We also note that the quantile function
dependent on α is :

qα(x) := inf(y ∈ < : F (y|X = x) ≥ α) (13.2)

The upper and lower quantiles are fixed at αlow (α
2
) and αhigh (1−α

2
). We then fit

the quantile function q on both of the latter α giving the lower and upper bound
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qαlow and qαhigh respectively.
We obtain a conditional prediction interval on Y given X = x with a miscoverage
rate α:

C(x) = [qαlow
, qαhigh

] (13.3)

A miscoverage rate α is specified by the user, it signifies the margin of error or
miscoverage the model is allowed to have when generating the prediction interval.
For example, a miscoverage rate of 10% signifies that across the whole data,
90% of the target variable values fall in their corresponding prediction interval.
Hence, if I have 10 real target variable instances, the CQR model will produce
10 prediction intervals each for a single target variable. If I have 90% coverage,
this will imply that there is a guarantee that 9 of these target variable values will
be included in their corresponding prediction interval. Note that, depending on
the value of X, the length of the interval C(X) will vary greatly. In the length
of the interval, the uncertainty in the estimation of Y is naturally expressed. We
can not recognize this ideal prediction interval in practice, but we can try to
approximate it from the given data.

13.1.2 Conformal Prediction

(Romano et al., 2019) explains that to obtain a coverage guarantee that is
distribution-free and nonasymptotic, one must use conformal predictions. The
key concept is to fit a regression model on the training samples, and after that
utilize the residuals on a validation set which was extracted before the training,
to quantify the uncertainty in certain future predictions. Present and applied
conformal methods produce conformal intervals of mostly fixed lengths, this is
due to the fact of using the residuals when calculating the prediction interval,
rather than fitting two quantile functions like quantile regression (Vovk et al.,
2019). The recipe for any conformal method is to have a predictive model, a
calibration set (on which no training occurs), and a nonconformity measure.
The algorithm behind the split conformal method first splits the data frame into
a training (I1) and a calibration (I2) set. After that, the regression model of
choice (Z) will fit the training data

µ(x) = Z(Xi, Yi) i ∈ I1 (13.4)

Then, the residual are calculated on the calibration set (I2):

Ri = |Yi − µ(Xi)| i ∈ I2 (13.5)

The quantile of the empirical distribution of the absolute residuals for a given
level α is then calculated:

Q := (1− α)(1 + 1/|I2|)th empirical quantile of Ri i ∈ I2 (13.6)
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Hence, the final prediction at a new point X is obtained as follows:

C(X) = [µ(X)−Q, µ(X) +Q] (13.7)

13.1.3 Conformalized Quantile Regression

Conformalized Quantile Regression (CQR) is a method for obtaining prediction
intervals that yield valid coverage in finite samples. As mentioned in (Romano
et al., 2019), a prediction interval, which consists of a lower and upper bound for
the predicted variable, attains a higher probability of inclusion. (Romano et al.,
2019), combine conformal prediction with classical quantile regression, benefiting
from the advantages of both, yielding a model fully adaptable to heteroscedastic-
ity. Prediction intervals should provide coverage without distributional assump-
tions and be short in length. CQR works by first splitting the data into train
(I1) and calibration (I2) sets. We then use the quantile regressor Z to fit on our
training data.

qαlow
, qαhigh

= Z(Xi, Yi) i ∈ I1 (13.8)

CQR next computes the conformity scores which represents the error made by
the prediction interval qαow, qαhigh. The error is quantified as follows:

Errori := max(q(xi)− Yi, Yi − q(xi)) i ∈ I2 (13.9)

The prediction interval at a point X is then computed as follows:

C(X) = [qαlow
−Q, qαhigh

+Q] (13.10)

where Q is:

Q := (1− α)(1 + 1/|I2|)th empirical quantile of Errori i ∈ I2 (13.11)

The CQR algorithm is summarized as follows:
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Algorithm 1 Conformalized Quantile Regression
Input:

Data (Xi, Yi)
Miscoverage rate α
Quantile Regressor Z

Process:
Split data into training (I1) and calibration (I2) sets
Fit two quantile functions qαlow, qαhigh
Compute Errori
Compute Q

Output:
Compute prediction interval C(x)

13.2 Models

We have tested the following models:

1. Split Conformal Random Forests: The conventional Split conformal
method described in Section 13.1.2 using the Random Forest Regressor as
the base learner.

2. Local Conformal Random Forests: A variant of the locally weighted
split conformal technique built to create adaptive intervals. As in the typ-
ical conformal split, this approach fits the random forest regressor to the
conditional mean regression function to the correct training set. After that,
the locally weighted model fits another random forest regressor to the resid-
uals of the training set using a MAD estimator.

3. CQR Random Forests: The Conformal Quantile Regression technique
explained in Section 13.1.3 using Random Forests as the Quantile Regres-
sor.

4. CQR Neural Networks: The Conformal Quantile Regression technique
explained in Section 13.1.3 using a deep Neural Network as the Quantile
Regressor.

13.3 Base Model

Our base model is the conventional Split Conformal Regression using the Random
Forest Regressor.
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13.3.1 Architecture

We implemented the split conformal method. Specifically, we used the proper
training and calibration subsets. We train a random forest regressor on the first
set, and calibrated the intervals on the second set by computing the absolute
residual error, as mentioned in Section 13.1.2 on Conformal Prediction. We
note that the random forests regression estimates the conditional mean of Yi given
Xi = x. The Random Forest Regressor used has 2,000 estimators, a minimum
sample leaf of 1, and a maximum number of features being the square root of the
total feature. We split the data into training and testing according to our special
split, with 70% training and 20% testing.

13.3.2 Hyper-parameters

We tuned a set of hyper-parameters, either of the base learner itself or to the
conformal prediction.

Conformal Regression Hyper-parameters

• α: Miscoverage rate which ranges between 0 and 1

• test ratio: Ratio of testing data

• base learner: Random Forests (no other because it is the only supported
shallow model in the quantile regression module).

Base Regressor Hyper-parameters

• N estimators: Represents the number of trees used in the model

• Min Sample Leaf: Represents the minimum samples required in a leaf.

• Max features: Represents the number of features considered when searching
for the best split.

• Max depth: Represents the maximum depth of a tree.

13.4 Best Model

Our best scoring model giving the lowest average prediction interval is the confor-
malized quantile regression using deep neural networks as a base quantile learner.
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13.4.1 Architecture

The CQR Neural Network model follows the CQR architecture in Section 13.1.3.
We used a neural network as the underlying quantile regression method instead of
random forests to explore both available architectures in the CQR code module.
The neural network used is a PyTorch deep sequential neural network model. In
PyTorch, building a model in a sequential manner is the most convenient since
it allows the user to build the model layer by layer, including several options
for activation functions or dropout. There is an option that allows using the
default neural network model in PyTorch, which is not sequential and has a sim-
ple architecture (resembling a perceptron), however, it is a base model and is
weak, not fit to our problem. Hence, we chose to customize the model using
a sequential architecture. A deep neural network is capable of solving complex
problems along with producing accurate predictions, identifying as more success-
ful than the traditional artificial neural network. Deep neural networks are more
powerful because of their deep architecture consisting of several layers. Deep neu-
ral networks have witnessed many alterations across the literature like including
dropout methods and performing different gradient calculations. However, the
base idea behind the deep neural network is prominent, which consists of utiliz-
ing back-propagation and performing stochastic gradient descent to calculate the
gradients in a recursive manner minimizing the loss function by tuning the net-
work’s weights. The CQR deep neural network of choice consists of the following
layers:

• The input layer

• CELU() = the activation function

• Dropout() = dropout layer

• A hidden layer

• CELU()=the activation function

• Dropout() = dropout layer

• A hidden layer

• CELU() = the activation function

• Dropout() = dropout layer

• The output layer
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Figure 13.1: Neural Network Architecture (Musiol, 2016)

The architecture is illustrated in figure 13.1:
All layers, dropouts, and activation functions are explained thoroughly in Sec-
tion 13.5 .

13.4.2 Hyper-parameters

We tuned a set of hyper-parameters, either of the deep neural network itself or to
the CQR model. The CQR hyperparameters differ from the Conformal Random
Forests by having the cv qforest parameter, and the quantiles parameter.

CQR Hyper-parameters

• cv qforest: True or False - whether to use cross-validation to tune the quan-
tile levels

• α: Miscoverage rate which ranges between 0 and 1

• quantiles: The desired quantile levels. A range of 2 values between 0 and
1.

• test ratio: Ratio of testing data

• base learner: Sequential Neural Network

Neural Network Hyper-parameters

• epochs: The number of iterations the training data set is being shown to
the neural network model while training

• Lr: Learning rate, which is the step size at each iteration.

• batch size: A mini-batch size is the number of samples we give to our model
after the parameter update occurs.
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• hidden size: The size of the hidden layer

• dropout: A regularization technique that randomly drops neurons so that
their weights will not be updated. This improves generalization and de-
creases overfitting.

• weight decay: after each update, the weights are multiplied by a weight
decay which is slightly less than 1

• optimizer: Type of optimizer used

• hidden layer number: number of hidden layers

13.5 Implementation

We implemented both algorithms (CQR Neural Network and Split Conformal
Random Forest) using the Github code of (Romano et al., 2019) but with slight
alterations for each model, discussed in details in Sections 13.5.1 and 13.5.2.

13.5.1 Split Conformal Random Forests

This module was implemented by (Romano et al., 2019) for handling single col-
umn inputs. However, our input data is multi-columned, hence, we altered the
code to fit our problem. We also applied Grid Search to find the optimal hyper-
parameters for our random forest regressor:

• Number of estimators: [600, 700,800, 900, 1000,1500, 2000],

• Max depth: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50,None],

• Max features: [x train.shape[1], auto, sqrt, log2],

• Min samples leaf: [1, 2, 3,4,5]

The best hyper-parameter combination giving the least average prediction inter-
val length and the most coverage is:

• Number of estimators: [20]

• Max depth: [10]

• Max features: [sqrt]

• Min samples leaf: [1]
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In addition, we applied grid search to find the optimal Split Conformal hyper-
parameters. The best hyper-parameter combination giving the least average pre-
diction interval length and the most coverage is:

• α: [0.17, 0.22, 0.25]

• test ratio: 0.3

• base learner: Random Forests

13.5.2 CQR Neural Networks

This module was implemented by (Romano et al., 2019) with a vanilla Neural
Network model. We altered the code in which we applied several better deep
learning techniques from the book of Jason Brown Lee Better Deep Learning:

Enhanced learning through an understanding of optimization

The neural network model utilizes examples to understand how to assign par-
ticular sets of input variables to output variables. This should be achieved in a
way that this mapping fits very well for the training dataset, but it works well
enough on training instances not seen by the model throughout the training. This
ability to perform well on particular data and new data is referred to as model
generalization.

To minimize losses, optimizers are algorithms or methods used to adjust the
properties of your neural network, such as weights and learning rate. We tune a
set of five optimizers and chose the best performing:

1. Adagrad: Adagrad is a gradient-based optimization technique that adjusts
the learning rate to the parameters, executing minor updates for frequently
occurring parameters, and major updates for infrequently occurring feature-
related parameters.

2. Adam: Another approach that computes adaptive learning rates for each
parameter is Adaptive Moment Estimation (Adam). An exponentially de-
caying average of past square gradients is processed.

3. AdamW: Similar to Adam but fixes the weight decay.

4. RMSProp: RMSprop has been established arising from the need to address
Adagrad’s radically declining learning rates. The learning rate is also split
by an exponentially decaying squared gradient average by RMSprop.
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5. SGD: For each training example xi and label yi, Stochastic gradient descent
performs an update of parameters. SGD conducts regular high-variance
changes that trigger the objective function to change significantly.

The best performing optimizer turned out to be Adam.

Configured capability with various layers and nodes

The ability of a deep learning neural network model determines the variety of
mapping functions that can be trained. A model with less capacity cannot recog-
nize the training data set, which implies under-fitting, whereas a model with far
too much power will remember the training data set, which implies over-fitting.
The capacity of the neural network model is illustrated by setting the count of
nodes within the network in addition to the number of layers.

A layer’s number of nodes is referred to as the width. It was fairly straight-
forward to build large networks with one layer and several nodes. A network
with sufficient nodes in the single hidden layer can in theory, learn to estimate
any mapping function, even though we do not know in practice how many nodes
are necessary. In a model, the number of layers is known as its depth. Improving
the depth enhances the model’s ability. We have tuned the number of neurons
as follows:

• hidden size = [16,32,64,128]

The ideal number of nodes turned out to be 64.

We have also tuned the number of hidden layers:

• hidden layer number = [2,3,4,5,6,7,8,9,10]

The best number of hidden layers turned out to be 3.

Configured gradient precision with batch size

Using gradient descent, neural networks are trained in which the approximation
of the loss used for updating the weights is determined according to a subset of
the training dataset. The batch size is simply the number of training data points
used in the approximation of the error gradient and is a significant hyperparam-
eter that affects the learning algorithm dynamics. It determines the number of
observations to train the neural network before the internal parameters of the
model are updated. Over one or multiple data samples, a batch size iterates and
the model makes predictions accordingly. The predictions are then contrasted af-
ter the batch to the real output variables and an error is measured. The update
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algorithm is often utilized to boost the model performance, alleviating this error.

There are multiple types of batch sizes:

• The learning algorithm is defined as batch gradient descent, when all train-
ing samples are utilized to build one batch.

• The learning algorithm is defined as stochastic gradient descent, when the
batch size is of one sample.

• The learning algorithm is called mini-batch gradient descent, when the
batch size is even more than one sample but less than the size of the training
dataset.

In our problem, we have tuned multiple options for mini batch size:

• batch size: [16, 32, 64, 128]

The best batch size turned out to be 32.

Configured optimization techniques in loss functions

When developing and customizing a neural network, the training process is done
using stochastic gradient descent and demands the selection of a loss function.
There exist several loss functions out there but understanding which to choose
can be difficult. The method used to assess a candidate solution is pointed to as
the objective function in any optimization problem. It is hence sought to max-
imize or minimize the objective function, which implies looking for a solution
relative to the candidate with the highest or lowest score.

Generally, we try to mitigate the error with neural networks. Therefore, the
objective function is alluded to as a cost or loss function. We have tuned the loss
function types as follows:

• Mean Squared Error Loss

• Mean Squared Logarithmic Error Loss

• Mean Absolute Error Loss

The best loss function giving the best results is Mean Squared Error Loss.
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Configured learning speed with learning rate

It is difficult to determine the weight of a neural network using an empirical
tool. Alternatively, via an analytical optimization technique called stochastic
gradient descent, the weights must be determined. Stochastic gradient descent
used for neural networks is actually difficult to optimize, and the solution space
could constitute multiple good solutions referred to as global optima in contrast
to not-so-good solutions referred to as local optima. During each stage of this
search process, which is referred to as step size, the rate of change occurring to
the model is labeled as the learning rate. The learning rate is the most significant
hyperparameter to be tuned in any neural network in order to achieve optimal
results.

A high learning rate usually helps the model to learn quicker, at the expense
of settling at an almost optimized final weight collection. The model can learn a
more optimized or even globally optimized collection of weights with a reduced
learning rate, however, it can require a substantially longer time to practice. A
learning rate that is very high will manifest in weight updates that would be too
big and the model’s failure on the training dataset will prevail, hence overfitting
would occur. Choosing the correct learning rate is a sensitive process, hence we
tuned it the most. We chose the following values of learning rate to tune based
on existing literature:

• lr: [0.0005, 0.0025, 0.0001, 0.001, 0.025, 0.01, 0.005, 0.05, 0.25, 0.1, 0.5, 1]

The best learning rate for our problem is 0.005.

Resolved vanishing gradients utilizing various activation functions

The activation function in a neural network is capable of translating the aggregate
weighted input from the neuron into neuron activation or output for specific input.
We tuned several activation functions:

• RELU: The rectified linear unit activation function is indeed a linear func-
tion that outputs the input if the value is positive but outputs zero if the
input is negative. For several kinds of neural networks, RELU is the stan-
dard activation function since it achieves better results.

• CELU: Continuously differentiable exponential linear units are special since
its derivative is restricted with respect to x, includes both the linear transfer
function and the ReLU, and is identical in size with respect to the input
shape. CELU was recently developed by (Barron, 2017) and is exclusively
ready to use in PyTorch.
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• GELU: Gaussian error linear units is a new powerful activation function
(Hendrycks and Gimpel, 2016). The nonlinearity of GELU allows it to
weigh the neural network’s inputs by their value, instead of their sign as in
conventional ReLUs.

• Leaky RELU: The Leaky ReLU changes the RELU function so that small
negative values are output instead of zero when the input is less than zero.

• Tanh: The Tanh function stretched through a range of (-1,1). It maps
negative inputs to negative values, zero inputs to zero values, and positive
inputs to positive values. Tanh is also differentiable.

The best performing activation function in our problem is CELU.

Resolved overfitting with regularization

A challenging issue is training a deep neural network that has good generalization
power when faced with new data. A deep learning model can perform horribly
on new data, while another model with far too much capacity can learn very
well and over-fit the training dataset. A recent trend to mitigating generalization
error is by using a bigger capacity model that might need to use regularization,
which holds the model weights when training.
Weight decay is a technique used for regularization by applying a little penalty
to the loss function, generally the L2 norm of the weights.

loss = loss+ weight decay parameter × L2 norm of the weights (13.12)

where:

• weight decay parameter is a constant slightly less than 1, which is multiplied
by the weights after each update.

• L2 norm of the weights is defined as:

|w| =

√√√√ N∑
i=1

|wi|2 (13.13)

where:
w is the weights
N is the size of the train data

Hence, in our problem, we have tuned the weight decay parameter as follows:

• weight decay: [1e-4, 1e-3, 1e-2, 1e-6, 1e-5, 1e-7]

The best weight decay parameter turned out to be 1e-6.
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Separate layers with Dropout

Dropout corresponds to the randomly selected ignorance of a neural network’s
neurons during the training process. By disregarding some neurons, hence during
a specific forward or backward pass, these units are not considered as shown in
Figure 13.2.

Figure 13.2: Dropout (Wang and Manning, 2016)

Neurons are dropped (with a probability p) from the neural network at each
training stage or are kept (with a probability 1 − p). Hence, a reduced neural
network is obtained. Also, inbound and outbound edges are also extracted from
the dropped nodes. Also, inbound and outbound edges are also extracted from
the dropped nodes. Dropout is actually used to prevent over-fitting. Most of the
neural network models are occupied by a completely connected layer, so neurons
establish co-dependence with each other during training, which lowers the power
of each neuron, contributing to over-fitting training data. Hence, in our CQR
neural network model, we decoupled all our layers with dropout as shown in
Section 13.5.2. We have tuned several dropout rates:

• dropout rate: [0.1, 0.01, 0.001, 0.0001, 0.002, 0.0002, 0.2, 0.002]

The best dropout rate giving the best results is 0.1.
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13.6 Results

We care to compare the results of the CQR Neural Network default model, the
optimized CQR Neural Network model after applying better deep learning tech-
niques, and the Conformal Random Forests model. We chose the Conformal
Random Forests model to be our base model because it lacks the quantile aspect,
and hence follows a generic split conformal algorithm. We care to compare these
two models to observe the effects of quantile regression on conformal methods.
The following results are done on an alpha of 0.17 (choice of alpha is explained in
Section 13.6.2). We note here that the coverage rate is outputted by the model
according to the miscoverage rate α. The coverage rate should be around 1− α.
The results portrayed in the following tables show the α (miscoverage rate), the
coverage rate (around 1−α), and the average prediction interval length. We also
added a new metric (which was not included in the CQR module): the standard
deviation of the prediction interval lengths. We care to know if each predic-
tion interval length varies greatly in comparison to the other prediction interval
lengths to confirm if our model produces valid and consistent prediction interval
lengths. It is unfavorable to obtain very low prediction interval lengths at some
input data points and very high prediction interval lengths at others, making the
model inconsistent and inaccurate. In this section we measure the percentage of
improvement in the measured metrics between variable 1 and variable 2 by doing
the following:

percentage of improvement =
metricvariable1 −metricvariable2

metricvariable1
(13.14)

where the metric is anything we measure (average prediction interval length or
standard deviation prediction interval length).
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13.6.1 Optimized vs Non-Optimized CQR Neural Net-
work Model

Models α Coverage Rate Average Length Std Length
CQR NN 0.17 80.866193 0.872869 0.110452
Optimized CQR NN 0.17 80.672269 0.749394 0.213181
Conformal RF 0.17 81.965093 0.891318 0

Table 13.1: Experimental Results

We first train the CQR neural network model on all the data and all the columns,
with no feature selection applied. We perform a 70/30 train and test split plus
shuffle. We note in Table 13.1 that the average length of the prediction interval
before applying optimization techniques is 0.872mm when using the CQR neural
network model. This average prediction interval length decreased upon applying
optimization techniques to the CQR neural network model to reach 0.749mm.
The standard deviation in the Conformal Random Forests cannot be compared
to that of the CQR NN model, because conformal models which do not have the
quantile aspect integrated in them by nature do not produce varying prediction
interval lengths. The standard deviation of the prediction interval lengths of the
CQR NN model increased slightly from 0.11mm when not applying optimiza-
tion to 0.213mm when applying optimization techniques. We also note that the
conformal random forest model is the worst performing, giving the highest pre-
diction interval length of 0.891mm. The coverage rate is comparable across the
three models.

Takeaway Message

Applying optimization techniques caused a decrease by 14% in average prediction
interval length and an increase of 47% in the standard deviation of the prediction
interval length. However, this trade-off between standard deviation and average
prediction interval length is acceptable, since the standard deviation with the
optimized model is still acceptable (0.21 mm compared to an average of 3.87mm
of ET). Hence, we opt for the CQR model which we applied better deep learning
techniques since it offered a lower average prediction interval length.

13.6.2 Verifying the Choice of α

We now aim to verify our choice of α. We compare the base model (conformal
RF) and the best model (CQR NN) across higher miscoverage rate α to validate
our choice. We do note that the coverage rate and the average prediction interval
length are directly proportional - i.e if the coverage rate increased, the length of
the prediction interval increases. This is due to the fact that when choosing a
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lower miscoverage rate, we would be fitting the two quantiles on a lower αhigh
and a higher αlow, which would yield a larger prediction interval [ qαhigh

and
qαlow

]. We note that in Tables 13.3 and 13.4 , the average prediction interval
length decreased to 0.734mm when the coverage rate decreased to 74.66%, and
to 0.679mm when the coverage rate decreased to 72%. Across the three tables
(??,13.3, and 13.4), the average prediction interval length upon using CQR NN
is less than upon using Conformal RF. We also note that the optimized CQR
NN performed better than the non-optimized CQR NN, yielding a lower average
prediction interval length in both cases where α = 0.17 (0.75 mm vs 0872mm)
and α = 0.25 (0.68mm vs 0.69mm). We would also like to highlight that for α
= 0.22, the optimized CQR NN and the non-optimized gave comparable results
with regards to the average prediction interval length, however, the non-optimized
yielded a much higher standard deviation prediction interval length compared to
the optimized version (0.351mm vs 0.11mm).

Models α Coverage Rate Average Length Std Length
Conformal RF 0.17 81.965093 0.891318 0
CQR NN 0.17 80.866193 0.872869 0.110452
Optimized CQR NN 0.17 80.672269 0.749394 0.213181

Table 13.2: Experimental Results on Miscoverage Rate of 17%

Models α Coverage Rate Average Length Std Length
Conformal RF 0.22 75.9534 0.76766 0
CQR NN 0.22 76.664512 0.723591 0.351379
Optimized CQR NN 0.22 74.6606 0.73424 0.110452

Table 13.3: Experimental Results on Miscoverage Rate of 22%

Models α Coverage Rate Average Length Std Length
Conformal RF 0.25 73.10924 0.718653 0
CQR NN 0.25 73.497091 0.692032 0.352847
Optimized CQR NN 0.25 71.687136 0.679308 0.103954

Table 13.4: Experimental Results on Miscoverage Rate of 25%

Takeaway message

An increase in the miscoverage rate is not worth the trade-off of a decreased
average prediction interval length, since the best scenario caused a decrease of
9.3% in average prediction interval length but a decrease in 8.99% of coverage
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rate. Hence, we choose α = 0.17 as the optimal for giving a high coverage rate
and an acceptable average prediction interval length.

13.6.3 Effect of SMOGN

We have tried to up-sample our data using the SMOGN method we described
prior. We trained our two models, the optimized CQR NN and the Conformal
RF, on the new up-sampled data by SMOGN. The results are described in Tables
13.5 and 13.6

Models α Coverage Rate Average Length Std Length
Conformal RF 0.17 81.965093 0.891318 0
CQR NN 0.17 80.866193 0.872869 0.110452
Optimized CQR NN 0.17 80.672269 0.749394 0.213181

Table 13.5: Experimental Results without SMOGN

Models α Coverage Rate Average Length Std Length
Conformal RF 0.17 83.219512 0.89566 0
CQR NN 0.17 82.146341 0.854948 0.371933
Optimized CQR NN 0.17 81.268293 0.95891 0.429621

Table 13.6: Experimental Results with SMOGN

We note that the SMOGN up-sampling was not of benefit for both the optimized
CQR NN and the Conformal RF. For the case of the optimized CQR NN, the aver-
age prediction interval length increased from 0.749394mm to 0.95891mm. As for
Conformal RF, the average prediction interval length increased from 0.891318mm
to 0.89566mm. The coverage rate for both models remains comparable before and
after SMOGN. The non-optimized version of CQR NN however, benefited from
SMOGN up-sampling where the average prediction interval length decreased from
0.872mm to 0.855mm, however, the standard deviation prediction interval length
increased from 0.11mm to 0.372mm. Nonetheless, the results for the optimized
CQR NN without SMOGN remain the best, with an average prediction inter-
val length of 0.749 and a low standard deviation prediction interval length of
0.213mm.

Takeaway Message

Applying SMOGN for CQR NN and Conformal RF was not efficient, for it in-
creased the average prediction interval length instead of decreasing it. The av-
erage prediction interval length increased by 28% for CQR NN, and by a minor
0.45% for Conformal RF. SMOGN affected CQR NN negatively because the
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SMOGN up-sampling created noisy data, causing the model to lose some of its
performance power.
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13.6.4 Feature Selection and Clustering

We perform clustering on all various clustering combinations by weather param-
eters and by climate, using clustering by kmeans or dendrograms. The best
clustering combination is clustering by WS using kmeans (k=2), which yielded
the best coverage rate and the lowest prediction interval length. We perform a
70/30 train and test split plus shuffle, we also perform the experiments on the
best α = 0.17. The feature selection scenarios for CQR neural networks and
Conformal Random Forests (CRF) are all present in Table 13.7. The experi-
mental results across all models (best model CQR and base model CRF) on the
full dataset and dataset clustered by WS are found in Table 13.9.

Combinations Model Name Input Combinations
1 CQR/CRF 1 Scenario A All Columns
2 CQR/CRF 2 Scenario B TA(5 lags)
3 CQR/CRF 3 Scenario C TA(5 lags) WS(2 lags)

RH(3 lags)
EEflux LST(5 lags)
EEflux NDVI(2 lags)
EEflux Albedo(2 lags)

4 CQR/CRF4 Scenario D TA(5 lags) RH(3 lags)
EEflux LST(5 lags)

Table 13.7: Feature Selection Scenarios for CQR and CRF
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Models Dataset Coverage Rate Average Length Standard Deviation Length
CQR1 All 80.672269 0.749394 0.213181

WS0 80.907372 0.887651 0.179532
WS1 82.731707 0.853867 0.061886

CRF1 All 81.96509373 0.8913186162 1.22E-16
WS0 81.09640832 0.9560275584 2.38E-16
WS1 82.63414634 0.8926340163 2.63E-16

CQR2 All 81.318681 0.866168 0.211656
WS0 81.285444 0.870713 0.199262
WS1 82.243902 0.922748 0.228682

CRF2 All 82.93471235 0.9741039634 2.39E-16
WS0 80.52930057 0.9833938926 7.01E-17
WS1 80.97560976 0.9710434943 2.36E-16

CQR3 All 81.060116 0.817072 0.069729
WS0 85.471698 0.853635 0.106818
WS1 82.926829 0.875833 0.113304

CRF3 All 81.70652877 0.8633496523 2.40E-16
WS0 83.77358491 0.9803198099 1.15E-16
WS1 81.26829268 0.8587318957 6.55E-17

CQR4 All 82.611506 0.938787 0.244776
WS0 83.773585 1.005186 0.09444
WS1 83.707317 1.001759 0.123977

CRF4 All 82.15901745 1.036273715 1.88E-16
WS0 82.45283019 1.055340642 6.18E-17
WS1 79.70731707 1.007670705 7.14E-17

Table 13.8: Experimental Results for α = 0.17

We care to decide which FS scenario performed best on the CQR neural network
model on the full dataset. According to Table 13.9 we note that CQR1 was
the best performing in terms of the lowest average prediction interval length of
0.75mm and a standard deviation prediction interval length of 0.21 mm. The
second best performing was CQR3, offering a prediction interval length of 0.82
mm and a standard deviation prediction interval length of 0.07mm. We note that
applying FS scenario 2 increased the average prediction interval length by 8.5%,
decreased the standard deviation prediction interval length by 66.6%, where the
coverage rate remained comparable between CQR1 and CQR3.

We also note that CQR1 performed better than CRF1, yielding in a decrease
of 15.7% in terms of average prediction interval length. We cannot compare the
standard deviation of the prediction interval length between the two models be-
cause CRF models have a property of non-varying prediction interval lengths.
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We also point out that in CQR1, experiments on the WS clusters did not cause a
decrease in the average prediction interval length, however, it caused an increase
of 2.06% in the coverage rate for WS1, and a 0.23% in WS0 (in which both
are minimal), and a decrease of 70.4% in standard deviation prediction interval
length for WS1, and 16.2% for WS0. Hence, we conclude that clustering did not
aid in decreasing average prediction interval length, but however decreased the
standard deviation prediction interval length.

Takeaway Message

We conclude that CQR1 is the best model if we are seeking the lowest average
prediction interval length, and CQR2 is the best model if we are seeking compa-
rable average prediction interval length to that of CQR1 but with a much lower
standard deviation prediction interval length.
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13.6.5 Varying Climates

We now aim to study model performance across all available climates. We demon-
strate the results in Table 13.9. We note that the CQR1 model performed best on
the climate Csa, giving the lowest average prediction interval length of 0.82mm,
a coverage rate of 83.23%, and a standard deviation prediction interval length of
0.159 mm. However, we do note that CRF1 performed better than CQR1, which
is quite justified. CQR is neural network-based, a complex model of three layers,
dropout, and activation functions. This CQR model requires a big amount of
data to generalize and perform well, which is not provided when subsetting the
data by climate. Unlike CRF, which is a shallow model based on random forests,
not requiring big amounts of data. CRF beat CQR by 2% in average prediction
interval length, and by 2.62% coverage rate.

Takeaway message

In terms of prediction interval lengths, the CQR model performed best on Csa,
followed by Cfa, Cwa, and Dsa. Similar to CRF, which performed best on Csa,
followed by Cwa, Cfa, and Dsa. The best model to use when predicting on data
climate subsets is CRF, due to its non-complex architecture.

Models Climate Coverage Rate Average Length Standard Deviation Length
CQR1 Cfa 87.678571 0.957683 0.140732

Csa 83.232323 0.822785 0.158969
Cwa 95.081967 1.120691 0.047453
Dsa 84 1.160634 0.17885

CRF1 Cfa 86.78571429 0.9877247612 6.62E-17
Csa 85.85858586 0.8033096313 1.30E-16
Cwa 85.24590164 0.8239228278 6.36E-17
Dsa 84 1.108557326 2.30E-16

Table 13.9: Experimental Results on Various Climates for α = 0.17

13.6.6 Varying Seasons

We now study model performance across all seasons based on the seasonality
study we did prior in Section 5.4.5. We portray the results in Table 13.10.
We note that the CQR1 model performed best in the spring season, giving the
lowest average prediction interval length of 0.90mm, a coverage rate of 84%, and
a standard deviation prediction interval length of 0.196 mm. However, we do
note that CRF1 performed better than CQR1 on the summer season, which is
quite justified as said prior in the climate study. CQR is a complex model that
requires a big amount of data to generalize and perform well, which is not given
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Models Dataset Coverage Rate Average Length Standard Deviation Length
CQR1 TA Cluster 0 83.381089 1.11627 0.283659

TA Cluster 1 83.974359 0.94573 0.316395
TA Cluster 2 84.005376 0.89829 0.19615

CRF1 TA Cluster 0 83.95415473 1.058267593 2.66E-17
TA Cluster 1 82.05128205 0.877425158 4.45E-16
TA Cluster 2 83.60215054 0.9536486477 2.37E-16

Table 13.10: Experimental Results on Various Seasons for α = 0.17

when clustering the data by seasons. Unlike CRF, which is a shallow model based
on random forests, not requiring big amounts of data. CRF beat CQR by 7.7%
in average prediction interval length.

Takeaway message

In terms of prediction interval lengths, the CQR model performed best in the
spring season, followed by the summer season, and finally the winter season.
CRF, however, performed best in the summer season, followed by the spring
season, then the winter season. The best model to use when predicting data
from the summer season is CRF, due to its non-complex architecture.
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Chapter 14

SHAP

Interpretability is the extent to which the origin of a decision can be compre-
hended by a person. The greater a machine learning model’s interpretability,
the easier it is for anyone to understand why certain predictions have been done.
Usually, models are thought of as black boxes, in which their mode of action is
mysterious. Knowing the reason behind why a certain machine learning model
took a certain decision is quite vital, to analyze its inner workings. A multitude
of interpretability techniques are present, two of which we will be using are SHAP
and LIME.

The aim of using SHAP lies in interpreting a predicted value by calculating
the contribution of every input feature used in the prediction (Lundberg, 2017).
Each input variable is given a Shapely value to point to its significance. SHAPely
value is explained to be the average of the marginal contributions across all per-
mutations (Parsa and Movahedi, 2020). The SHAPely value has three benefits:

• Global interpretability: the cumulative SHAPely values will explain how
much each input variable contributes to the target variable, either positively
or negatively. SHAP can display a positive or negative relationship with the
output target variable. In the case of regression, SHAP shows if a low or
high value of an input variable contributes to increasing or decreasing the
value of an output variable. In the case of classification, SHAP shows if a
low or high value of an input variable contributes to increasing or decreasing
the probability of the output variable belonging to a certain class.

• Local interpretability: Each observation gets its own set of values from
SHAP. This improves accountability greatly. Traditional input variable
importance algorithms only display the results for the whole population,
but not for each variable. Local interpretability helps us define and contrast
the effects of the input variables on the target variable. This is important
because SHAP allows us to study each instance of any input variable, and
analyze its effects on our model prediction.
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• Flexibility: SHAPely values can be calculated for any tree-based model
in SHAP, while other methods used for model interpretation (like ELI5,
Skater) use linear regression or logistic regression models.

14.0.1 Dealing with Categorical Data

In our data, we have three encoded columns: Site, Month, and Vegetation. The
importance of these encoded columns cannot be represented by one column -
say Month 1 because this column may contain 0/1 and it showing in the feature
importance will be questionable or unreasonable. Our way of dealing with cate-
gorical data is adapted from the creator of the SHAP package, Lundberg. Hence,
to represent the encoded columns as 1 column, with its contribution to the pre-
diction rather than the contribution of its encoded parts, we did the following:

• We fit our best probabilistic and point-wise models, which are the NGBoost
and Gradient Boost respectively.

• We calculate the SHAPely value array for each data point in our data frame.

• In the array of SHAPely values, we sum up the SHAPely values corre-
sponding to the encoded parts of each column (Sum up SHAPely values
for Month 1, Month 2, Month 3). Thus, each encoded column, for exam-
ple, Month, has 1 column of SHAPely values rather than 3 columns for
Month 1, Month 2, Month 3. This will depict the importance of the col-
umn as a whole not as its encoded parts.

• We OR the encoded column parts to produce 1 column for each encoded
column. Now we have 1 column which has the SUM of Shapley values to
depict the power of all encoded columns rather than its parts (Lundberg et
al, 2017).

14.1 Point-wise SHAP

We perform SHAP analysis on our best point-wise model Gradient Boost.

14.1.1 SHAP Summary Bar Plot

In Figure 14.1, the y-axis represents the input variables and the x-axis represents
the mean SHAPely value for each variable. This plot only shows us how much
a certain input variable contributed to shifting the output variable (ET) by a
certain value. It does not show us if this shift is a positive or a negative, or if
this shift caused the predicted ET to be closer to the actual. As noticed, TA
is the largest contributor which shifted the output variable by an average of 0.7
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mm. Following TA is NDVI, which contributed to shifting the output variable
by an average of 0.4 mm. Month comes in third, shifting the output variable by
an average of 0.25 mm.

Figure 14.1: SHAP summary bar plot
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14.1.2 SHAP Summary Plot

The biggest difference of this plot from the regular variable importance plot Fig-
ure 14.1 is that it shows the positive and negative relationships of the predictors
with the target variable. It looks dotty because it is made of all the dots in the
training data. The plot’s main features are:

• Feature importance: The variables are ranked in descending order.

• Impact: The horizontal location shows whether the effect of that value is
associated with a higher or lower value for prediction.

• Original value: The color shows whether the input variable value is high
(in red) or low (in blue) for that observation. A mix of blue and red shows
that the input variable value is around the average.

From Figure 14.2, we analyze that TA is the highest contributing feature for
our model. When TA has high values, the SHAPely values are high (hence the
model output value increased). NDVI values, for example, yield higher SHAPely
values when they are high and lower SHAPely values when they are low. Month
and site, since they are encoded variables, cannot be measured by their value. It
can only be mentioned that they rank second and third in terms of contribution
respectively.

Figure 14.2: SHAP summary plot
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14.1.3 SHAP Decision Plot for All Predictions

• The x-axis represents the model’s output.

• The y-axis lists the model’s features. By default, the features are ordered
by descending importance.

• The importance is calculated over the observations plotted. For local de-
cision plots (made on single instances of the dataset), the importance is
different from the importance ordering for the entire dataset.

• Each observation’s prediction is represented by a colored line.

• The model base value is the value that would be predicted if the model was
not exposed to the top contributing features. At the top of the plot, each
line strikes the x-axis at its corresponding observation’s predicted value.
This value determines the color of the line on a spectrum. Moving from the
bottom of the plot to the top, SHAPely values for each feature are added
to the model’s base value. This shows how each feature contributes to the
overall prediction.

Figure 14.3 represents the decision plot on a global level (for all predictions). The
top and bottom vertical bands represent the model output value (real ET). The
y-axis represents the input variables. As noticed, the model output value before
introducing the major contributing input variables was restricted between 3.5 and
4.5 mm. This range witnessed a big shift upon introducing Month, Site, EEflux
NDVI, and TA. The red color represents a high-value influence (introduction of
a variable yielded in a higher value real ET), and the blue color represents a low-
value influence (introduction of a variable yielded in a lower value real ET). For
example, TA has a negative effect on ET values from 0 to 4, causing a decrease
in the predicted ET value. However, TA has a positive effect on ET values which
are greater than 4, causing a decrease in the predicted ET value.
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Figure 14.3: SHAP decision plot

14.2 Probabilistic SHAP

We perform SHAP analysis on our best probabilistic model NGBoost.

14.2.1 SHAP Summary Bar Plot

In Figure 14.4, the y-axis represents the input variables and the xaxis represents
the mean SHAPely value for each variable. The SHAPely value will determine
the impact of each variable on our predictions (how much does the input vari-
able contribute to increasing or decreasing the value of the output variable). As
noticed, TA is the largest contributor which shifted the output variable by an
average of 0.2 mm. Following TA is Month, which contributed to shifting the
output variable by an average of 0.1 mm. Site comes in third, shifting the output
variable by an average of 0.08 mm.

14.2.2 SHAP Summary Plot

From Figure 14.5, we analyze that TA is the highest contributing feature for
our model. When TA has high values, the SHAPely values are high (hence the
model output value increased). NDVI values, for example, yield higher SHAPely
values when they are high and lower SHAPely values when they are low. Month
and site, since they are encoded variables, cannot be measured by their value, it
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Figure 14.4: SHAP summary bar plot

can only be mentioned that they rank second and third in terms of contribution
respectively.

Figure 14.5: SHAP summary plot
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14.2.3 SHAP Decision Plot for All Predictions

Figure 14.6 represents the decision plot on a global level (for all predictions).
The top and bottom vertical bands represent the model output value (real ET).
The y-axis represents the input variables. As it is noticed, the model output
value before introducing the major contributing input variables was restricted
between 0.75 and 1.5. This range witnessed a big shift upon introducing RH,
EEflux NDVI, Site, Month, Vegetation, and TA. The red color represents a high-
value influence (introduction of a variable yielded in a higher value real ET), and
the blue color represents a low-value influence (introduction of a variable yielded
in a lower value real ET). For example, TA has a negative effect on ET values
from 0 to 1.5, causing a decrease in the predicted ET value. However, TA has a
positive effect on ET values which are greater than 1.5, causing a decrease in the
predicted ET value.

Figure 14.6: SHAP decision plot

14.3 Comparison between Point-wise and Prob-

abilistic SHAP

The results of SHAP probabilistic and SHAP point-wise are quite identical. We
notice that both exhibit the same trends, in which high values of EEflux NDVI
implies high values of predicted ET, low values of RH implies high values of
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predicted ET, high values of WS implies high values of predicted ET. Also, they
both show that the most contributing features are TA, NDVI, Site, and Month.

14.4 Common Observations

The following summarizes our findings from the SHAP plots we implemented
across probabilistic and point-wise models:

• High values of TA imply high values of predicted ET

• High values of EEflux NDVI imply high values of predicted ET

• Low values of EEflux LST imply high values of predicted ET

• Low values of RH imply high values of predicted ET

• Albedo does not impact the predicted ET

• High values of WS imply high values of predicted ET

• TA, NDVI, and LST are the top contributing features

All these observations seem to be in agreement with what irrigation experts
consider to be true. We would also like to highlight that for both models, the
interpretability did not change when we tested SHAP on the most accurate or
rare predictions.
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Chapter 15

LIME

LIME stands for local interpretable model-agnostic explanations. This inter-
pretability tool helps us understand why a certain black-box machine learning
model outputs a specific prediction (Ribeiro et al., 2017). LIME is based on
implementing a local surrogate model, which is trained on individual data points
and tries to approximate predictions of the black-box model. LIME does not offer
a global interpretation, but rather a local one. Local interpretability is important
since it shows us how each instance of our data is affected by the set of input
features. The creators of LIME argued that locality is what makes LIME special,
for no two input data points have the same interpretability, thus it is important
to study each input test point rather than make a generalization. When using
LIME, the machine learning model is thought of as an unknown entity that cannot
be analyzed, hence it is the job of LIME to check how the model will react upon
being exposed to new data. LIME creates a new dataset made of permutations
of the original data and produces the corresponding predictions. LIME trains a
linear regression model on the permuted (newly generated) data set. LIME then
calculates the distance (using euclidean distance) between the generated samples
of the permuted dataset and the chosen test point the user wants to analyze
(this point is referred to as the point of interest). LIME aims to create a good
local learner, not a global one, which would be able to approximate the prediction.

The steps taken to train a local surrogate model are:

1. We choose a test point we want to interpret.

2. LIME creates a dataset of permutations belonging to the instance of inter-
est.

3. LIME weighs the created samples according to their distance to the instance
of interest.

4. A weighted base model is trained on the permuted dataset, and thus we
interpret the instance of interest according to our local surrogate model.
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We use surrogate models if a model is too complex to test. Hence, the
surrogate model is a basic model that imitates complex model mechanisms.
Surrogate models are usually a linear regression or decision tree trained on
a complex model’s original inputs and predictions.

15.1 Observatiions

We applied LIME after we split our data by 70/30 ratio and performed shuffling.
LIME uses a base linear regression model. We further define a LIME tabular
explainer, which takes in as input:

1. The training data

2. One random testing data point

3. The categorical columns: Site, Month, and Vegetation

4. The numerical columns: Wind Speed, Relative Humidity, Air Temperature,
EEflux LST, EEflux Albedo, and EEflux NDVI

5. The number of top contributing features to portray: 10

15.1.1 LIME on Two Accurate Data Point

Now we aim to portray how LIME’s locality is useful by observing the interpre-
tation across two accurate predictions.

We analyze the results for the first accurate test point (RMSE ≤ 1) at a lo-
cal level in Figure 15.1. We note that the predicted ET value for this specific
input data point is 1.74 mm.

Figure 15.1: LIME plot
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We note the following observations:

• TA values greater than 24.61 C are highly positively correlated with the
output variable ET.

• EEflux NDVI values less than 0.44 are highly negatively correlated with
the output variable ET.

• EEflux LST values greater than 303.91 are highly negatively correlated with
the output variable ET.

We analyze the results for the second accurate test point (RMSE ≤ 1) at a local
level as well in Figure 15.2. We note that the predicted ET value for this specific
input data point is 1.83 mm.

Figure 15.2: LIME plot

We note the following observations:

• TA values between 14.77 and 19.65 C are highly negatively correlated with
the output variable ET.

• EEflux NDVI values less than 0.44 are highly negatively correlated with
the output variable ET.

• EEflux Albedo values greater than 0.18 are highly positively correlated with
the output variable ET.
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We note that even these two local points are accurate and fall within the same
range of ET values, they do not have the same exact interpretation for all feature
values. The two points match in interpretation for only EEFlux NDVI, where
values above 0.44 are highly negatively correlated with ET. This highlights the
importance of locality in LIME where we can zoom in into each test point rather
then issue a generalization across all the data.

15.1.2 Lime on an Inaccurate Data Point

We analyze the results for an inaccurate test point (RMSE ≥ 2) at a local level
in Figure 15.3. We note that the predicted ET value for this specific input data
point is 3.56 mm.

Figure 15.3: LIME plot

We note the following observations:

• TA values between 15.04 C and 19.76 C are highly negatively correlated
with the output variable ET.

• EEflux NDVI values greater than 0.71 are highly positively correlated with
the output variable ET.

• RH values greater than 70.21% are highly negatively correlated with the
output variable ET.

15.1.3 Comparison between LIME on Accurate and Inac-
curate Data Points

We note that for the first two observations, the numerical results of course differ
but the trend is somehow similar:
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• For accurate and inaccurate predictions, TA values greater than 24.61 C
have a positive correlation with output ET. This implies that high values
of TA imply high values of ET, aligning with the claims of agricultural
experts.

• For accurate and inaccurate predictions, NDVI values greater than 0.71
have a positive correlation with output ET.

However, both these examples are local interpretations, the values may change if
we change the point we are studying. We cannot add a generalization based on
two points.

15.2 Comparison between SHAP and LIME

• Both are model agnostic and are surrogate models in the sense that they
use the black-box machine learning models and tweak the input slightly by
creating permutations of the data set to test the effect of this change on
the prediction. For instance, if we have a sentence as an input, we create a
new sentence by removing or adding a word. This becomes a new permuted
sentence.

• LIME is faster than SHAP since it perturbs the data around a single predic-
tion to build a model whereas, SHAP has to compute all the permutations
globally.

• SHAP does not have an optimized module to support all types of algo-
rithms, however, LIME allows so.

• SHAP offers global and local interpretability, unlike LIME which allows
only local interpretability.

15.3 Comparison between SHAP, LIME, and Fea-

ture Selection

It is important to differentiate between feature selection methods and inter-
pretability methods. Feature selection is a process that uses statistical techniques
to assess how a subset of input features relates to the target variable, hence in-
creases the accuracy of the predicted variable values. However, interpretability
methods, identify which values contributed to changing the value of the target
variable (be it a good change towards higher accuracy or a bad change towards
lower accuracy). Interpretability methods allow the user to unravel the mystery
behind black-box model predictions, whereas feature selection simply highlights
which set of input variables reveal more accurate results. However, both feature
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selection and interpretability techniques shed light on the most contributing i.e
the most important input variables to be included when training a machine learn-
ing model. In our experiments, both interpretability methods (SHAP and LIME)
and feature selection show that the top contributing features are TA, LST, RH,
and NDVI. Thus, SHAP, LIME, and feature selection highlight the same notions.
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Chapter 16

Deployment

The purpose of creating a machine learning model is to address a problem, and
this model only does so when it is in development and regularly used by cus-
tomers. Therefore, the deployment of models is as critical as model construction.

Before undertaking any machine learning projects, there are three main areas
that we need to consider:

• Storing and retrieving data: It is possible to store data on-site, in cloud
storage, or in a combination of the two. It makes sense to store the data
where the model training will take place and the outcomes will be delivered.
Hence, on-site model training and maintenance will be better suited for on-
site data, particularly if the data is significant, whereas cloud-based data
stored in cloud storage systems such as GCS, AWS S3, or Azure storage
should be accompanied with cloud model training.

• Frameworks and tools: Our model won’t train, operate, and launch on
its own. We need systems and tools coupled with necessary software and
hardware that would help us deploy ML models securely. For training our
models, the frameworks we used are well known such as PyTorch, Tensor-
Flow, and scikit-learn. These tools offer the three important aspects in
deployment: efficiency, popularity, and support.

• Feedback and iteration: It’s critical to get input from a model in develop-
ment. In cases of model output depreciation/decay, bias creep, or even data
skew and drift, actively tracking and controlling model status will inform
you of any issue. This would guarantee that before the end-user notices,
such concerns are easily resolved. A new model to be deployed should be
checked properly. Continuous integration is the process where continuous
testing and deploying new models without interrupting the current model
processes is done.
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There are many factors affecting deployment. We however chose to mention the
three most important ones, and it is our goal to find a trade-off between these
three.
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Chapter 17

Conclusion and Future Work

We have constructed a flexible and robust probabilistic NGBoost model that suc-
cessfully predicts ET (mm) with an R2 of 0.64-0.69 and an accuracy of 66% -
68% across the whole dataset and across the wind speed clusters. This model
was also successful in minimizing the proportional bias between real ET and
EEFlux ET, yielding an R2 of 0.73-074 across the wind speed cluster and the
union of clusters. NGBoost proved to be an adequate model for this problem,
for it beat the EEflux model and the base MC Dropout model. We have also
experimented with conformal quantile regression, in which the CQR Neural Net-
work produced competitive results, giving a coverage rate of 81% and an average
prediction interval of 0.75 mm for ET (mm). Both CQR Neural Network and
NGBoost proved to be favorable algorithms for this business model, since they
produce prediction intervals and probability distributions respectively, providing
more inclusion for predicted ET (mm), unlike point-wise models. To explore the
inner workings of our probabilistic and point-wise models, we resorted to inter-
pretability techniques using SHAP, where it was shown that TA and NDVI were
the top contributing features. To identify the most important input features
for obtaining the fastest training and the least economically expensive model,
along with the best-performing model, we applied different filter-based feature
selection techniques based on normalized mutual information. Feature selection
techniques also matched the analysis of SHAP, for both NGBoost and Gradient
Boost. Hence, our study offers a solution for each client. If the client wants accu-
rate ET point predictions, Gradient Boost models have shown to be effective in
predicting real ET with 67% accuracy and minimizing the bias between real and
EEflux (METRIC) ET with an accuracy of 76%. If the client wishes to obtain ET
predictions that are certain, then NGBoost is the answer, giving the option for a
probabilistic ET prediction, with an accuracy of 68%. NGBoost is also successful
in minimizing the proportional bias between EEFlux ET and real ET with an
accuracy of 75%. However, the client has an option to also receive a range of
ET predictions, not just point predictions. This can be achieved using the CQR
model, which guarantees an 81% coverage rate, i.e guaranteeing that 81% of the
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given data points will fit in its corresponding prediction interval. Our future work
would be to continue to develop our models, include more recent technologies that
would improve our predictions. We would also want to find more resources to
scrape more data, to expose our models to new data, especially data in which
ET is higher than 5 (mm), since it is considered to be rare. We would also want
to integrate our models in an easy-to-use tool, which agricultural engineers and
farmers can use on the fly to obtain ET predictions, especially across the summer
and spring seasons.
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Chapter 18

Appendix

This chapter includes all of the experimental results that were done but not
mentioned in the original report. We have performed our experiments on all of
our best and base probabilistic and point-wise models across all feature selection
Scenarios (A,B,C, and D) mentioned in Table 7.1 . This chapter includes the
following:

1. Experiments done using Gradient Boost on all feature selection scenarios,
on all the dataset and the clusters in Section 18.1.1

2. Experiments done using Linear SVR model on all feature selection scenar-
ios, on all the dataset and the clusters in Section 18.1.2

3. Experiments done using NGBoost model on all feature selection scenarios,
on all the dataset and the clusters in Section 18.2.1

4. Experiments done using MC Dropout model on all the dataset and the
clusters in Section 18.2.2
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18.1 Point-wise Models

18.1.1 Gradient Boost

Scenario A

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.009579 0.943483 0.953806
F2 0.008088 0.914566 0.929839
F05 0.012953 0.974334 0.979041
Precision 0.015996 0.996077 0.996619
Recall 0.008241 0.896273 0.91452
R2 0.04218 0.595749 0.63341
Adjusted R2 0.049125 0.529818 0.621157
RMSE 0.073924 1.456111 1.311459
MSE 0.219019 2.125724 1.719925
MAE 0.036625 1.056378 0.990982
MAPE 2.217643 35.24045 34.31708
Accuracy 2.217643 64.75955 65.68292
Pearson C.C. 0.03113 0.77911 0.799876
Spearman C.C. 0.018561 0.776672 0.770248
Spatial Distance 0.03113 0.22089 0.200124
NMI 0.000614 0.999175 0.997899
AIC 35.82274 267.8505 838.9086
BIC 35.82274 267.8505 838.9086
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.177992
Testing Time (seconds) - - 0.002279

Table 18.1: Experimental Results on all the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.027374 0.92685 0.926386
F2 0.029049 0.892478 0.883619
F05 0.02957 0.964239 0.973504
Precision 0.033772 0.991058 1.007672
Recall 0.031392 0.871052 0.857235
R2 0.073106 0.453037 0.490665
Adjusted R2 0.12456 0.056828 0.437387
RMSE 0.165422 1.593956 1.646461
MSE 0.531677 2.568059 2.710833
MAE 0.086563 1.152431 1.152606
MAPE 4.736033 40.24127 39.25267
Accuracy 4.736033 59.75873 60.74733
Pearson C.C. 0.063836 0.687078 0.711975
Spearman C.C. 0.052277 0.651669 0.660099
Spatial Distance 0.063836 0.312922 0.288025
NMI 0.001366 0.998913 0.99686
AIC 24.66698 110.5425 527.5483
BIC 24.66698 110.5425 527.5483
Data Size train - - 1200
Data Size test - - 529
Training Time (seconds) - - 0.06011
Testing Time (seconds) - - 0.001536

Table 18.2: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248052 3.951248052 3.951248052
F1 0.008925529 0.948749306 0.949443914
F2 0.010073752 0.924248653 0.929717553
F05 0.00976581 0.97462682 0.970025512
Precision 0.011559441 0.992703714 0.984249577
Recall 0.011462156 0.908625057 0.917015813
R2 0.043204055 0.642880051 0.650203029
Adjusted R2 0.055221609 0.546372499 0.632246306
RMSE 0.083376642 1.35169146 1.350347051
MSE 0.226121578 1.834021469 1.823437159
MAE 0.050981173 1.01344096 0.994269837
MAPE 2.267045228 33.01500184 33.46165559
Accuracy 2.267045228 66.98499816 66.53834441
Pearson C.C. 0.029266572 0.805897195 0.808527856
Spearman C.C. 0.022133 0.802358182 0.808881446
Spatial Distance 0.029266572 0.194102805 0.191472144
NMI 0.000358038 0.999676541 0.998046176
AIC 28.85423953 141.3310263 615.7413504
BIC 28.85423953 141.3310263 615.7413504
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.118891001
Testing Time (seconds) - - 0.002454996

Table 18.3: Experimental Results on WS Cluster 1
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Scenario B

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.009983 0.937118 0.93851
F2 0.009047 0.903913 0.909813
F05 0.018899 0.973101 0.969077
Precision 0.026778 0.998822 0.990586
Recall 0.012745 0.883156 0.891636
R2 0.045591 0.485414 0.469934
Adjusted R2 0.048334 0.454835 0.462986
RMSE 0.078028 1.62882 1.603379
MSE 0.257189 2.659143 2.570825
MAE 0.059527 1.222788 1.220784
MAPE 2.181658 42.66504 43.68547
Accuracy 2.181658 57.33496 56.31453
Pearson C.C. 0.039972 0.706166 0.68779
Spearman C.C. 0.030284 0.66237 0.654584
Spatial Distance 0.039972 0.293834 0.31221
NMI 0.000999 0.998654 0.995385
AIC 33.9182 348.1034 1460.719
BIC 33.9182 348.1034 1460.719
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.071038
Testing Time (seconds) - - 0.001942

Table 18.4: Experimental Results on All the Data

WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.015986 0.926492 0.935222
F2 0.028138 0.893956 0.906321
F05 0.0171 0.962215 0.966026
Precision 0.027981 0.988068 0.987715
Recall 0.036912 0.873812 0.888027
R2 0.121612 0.433398 0.394698
Adjusted R2 0.146847 0.318816 0.370867
RMSE 0.121885 1.665946 1.629318
MSE 0.405218 2.790233 2.654676
MAE 0.064715 1.207201 1.184502
MAPE 7.23526 42.83931 46.68585
Accuracy 7.23526 57.16069 53.31415
Pearson C.C. 0.085993 0.67971 0.634766
Spearman C.C. 0.083903 0.609475 0.533012
Spatial Distance 0.085993 0.32029 0.365234
NMI 0.002023 0.997043 0.990598
AIC 18.15833 121.9175 516.4747
BIC 18.15833 121.9175 516.4747
Data Size train - - 1200
Data Size test - - 529
Training Time (seconds) - - 0.028335
Testing Time (seconds) - - 0.001271

Table 18.5: Experimental Results on WS Cluster 0
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WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.011806 0.94046 0.937408
F2 0.014612 0.910867 0.907567
F05 0.011821 0.972137 0.969278
Precision 0.014126 0.994528 0.991757
Recall 0.017051 0.892192 0.888706
R2 0.041836 0.514393 0.486552
Adjusted R2 0.045738 0.469238 0.476324
RMSE 0.069092 1.569785 1.651558
MSE 0.212712 2.468998 2.727642
MAE 0.050245 1.214891 1.247809
MAPE 3.153278 41.71088 44.38431
Accuracy 3.153278 58.28912 55.61569
Pearson C.C. 0.032779 0.724482 0.701336
Spearman C.C. 0.04299 0.699381 0.687139
Spatial Distance 0.032779 0.275518 0.298664
NMI 0.001014 0.998742 0.996242
AIC 21.09805 212.4425 1028.524
BIC 21.09805 212.4425 1028.524
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.051571
Testing Time (seconds) - - 0.00172

Table 18.6: Experimental Results on WS Cluster 1

Scenario C

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879 3.879262 3.879262
F1 0.011 0.93982 0.951174
F2 0.014 0.912242 0.930333
F05 0.012 0.969217 0.972971
Precision 0.015 0.989921 0.988066
Recall 0.016 0.894782 0.916938
R2 0.043 0.591334 0.636632
Adjusted R2 0.048 0.541156 0.627229
RMSE 0.112 1.439562 1.359309
MSE 0.323 2.084929 1.847722
MAE 0.061 1.053202 1.018594
MAPE 2.638 35.1504 35.24429
Accuracy 2.638 64.8496 64.75571
Pearson C.C. 0.030 0.776217 0.803192
Spearman C.C. 0.029 0.768927 0.794576
Spatial Distance 0.030 0.223783 0.196808
NMI 0.000 0.999439 0.997715
AIC 56.299 258.4658 949.786
BIC 56.299 258.4658 949.786
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.151055
Testing Time (seconds) - - 0.002236

Table 18.7: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.743 3.742533 3.742533
F1 0.029 0.931506 0.9346
F2 0.035 0.894514 0.897781
F05 0.029 0.972184 0.974569
Precision 0.034 1.001659 1.00317
Recall 0.039 0.871645 0.874805
R2 0.094 0.444383 0.518532
Adjusted R2 0.141 0.173885 0.480211
RMSE 0.227 1.621497 1.526884
MSE 0.758 2.680561 2.331375
MAE 0.110 1.172807 1.101012
MAPE 6.336 40.58652 40.6233
Accuracy 6.336 59.41348 59.3767
Pearson C.C. 0.074 0.681918 0.731576
Spearman C.C. 0.073 0.639615 0.685008
Spatial Distance 0.074 0.318082 0.268424
NMI 0.001 0.999158 0.997913
AIC 33.483 113.9953 448.6229
BIC 33.483 113.9953 448.6229
Data Size train - - 1202
Data Size test - - 530
Training Time (seconds) - - 0.044682
Testing Time (seconds) - - 0.001285

Table 18.8: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951 3.951248 3.951248
F1 0.009 0.948772 0.947193
F2 0.012 0.925458 0.924108
F05 0.009 0.973388 0.971461
Precision 0.012 0.990582 0.988342
Recall 0.015 0.910584 0.909334
R2 0.046 0.639139 0.653936
Adjusted R2 0.055 0.567357 0.640234
RMSE 0.090 1.353668 1.355415
MSE 0.248 1.84059 1.83715
MAE 0.051 1.013431 0.9963
MAPE 1.817 33.23469 33.16562
Accuracy 1.817 66.76531 66.83438
Pearson C.C. 0.031 0.803365 0.812382
Spearman C.C. 0.032 0.803988 0.815532
Spatial Distance 0.031 0.196635 0.187618
NMI 0.000 0.999409 0.998829
AIC 31.184 141.8995 623.4207
BIC 31.184 141.8995 623.4207
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.095191
Testing Time (seconds) - - 0.001811

Table 18.9: Experimental Results on WS Cluster 1
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Scenario D

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.012778 0.92437 0.919354
F2 0.013115 0.894404 0.888078
F05 0.015137 0.956496 0.952913
Precision 0.018142 0.979235 0.976681
Recall 0.01442 0.87552 0.868383
R2 0.048915 0.418474 0.415533
Adjusted R2 0.051349 0.389365 0.409035
RMSE 0.085611 1.715746 1.726605
MSE 0.299801 2.951114 2.981166
MAE 0.043926 1.311657 1.301229
MAPE 1.754164 44.5794 44.85336
Accuracy 1.754164 55.4206 55.14664
Pearson C.C. 0.038922 0.650062 0.645619
Spearman C.C. 0.03992 0.625122 0.633939
Spatial Distance 0.038922 0.349938 0.354381
NMI 0.000506 0.999407 0.998144
AIC 35.67534 385.2812 1689.81
BIC 35.67534 385.2812 1689.81
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.090217
Testing Time (seconds) - - 0.001952

Table 18.10: Experimental Results on All the Data

WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.742533 3.742533 3.742533
F1 0.041911 0.910124 0.888677
F2 0.040164 0.861927 0.855941
F05 0.051389 0.964801 0.924017
Precision 0.062935 1.00561 0.94918
Recall 0.041715 0.832803 0.835425
R2 0.085376 0.243521 0.307434
Adjusted R2 0.099709 0.117661 0.284438
RMSE 0.220222 1.874767 1.914317
MSE 0.851076 3.563249 3.664609
MAE 0.126429 1.381494 1.419603
MAPE 5.893981 48.30195 50.7289
Accuracy 5.893981 51.69805 49.2711
Pearson C.C. 0.08399 0.507843 0.566834
Spearman C.C. 0.058549 0.481305 0.509288
Spatial Distance 0.08399 0.492157 0.433166
NMI 0.00154 0.99843 0.996029
AIC 28.34436 149.6035 688.3224
BIC 28.34436 149.6035 688.3224
Data Size train - - 1202
Data Size test - - 530
Training Time (seconds) - - 0.030599
Testing Time (seconds) - - 0.001153

Table 18.11: Experimental Results on WS Cluster 0

171



WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.007859 0.937015 0.935843
F2 0.009543 0.91118 0.909044
F05 0.012401 0.964489 0.964271
Precision 0.017417 0.9838 0.984202
Recall 0.012704 0.894793 0.892014
R2 0.03445 0.498096 0.504465
Adjusted R2 0.037111 0.458975 0.4961
RMSE 0.103809 1.604592 1.602702
MSE 0.337029 2.585492 2.568655
MAE 0.081706 1.25124 1.241833
MAPE 1.565223 42.41261 42.25334
Accuracy 1.565223 57.58739 57.74666
Pearson C.C. 0.023652 0.709745 0.711744
Spearman C.C. 0.024637 0.678111 0.70639
Spatial Distance 0.023652 0.290255 0.288256
NMI 0.000526 0.99957 0.998144
AIC 30.89788 222.3827 966.967
BIC 30.89788 222.3827 966.967
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.059912
Testing Time (seconds) - - 0.001719

Table 18.12: Experimental Results on WS Cluster 1

18.1.2 Linear SVR

Scenario A

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.376086 0.752046 0.929881
F2 0.363565 0.725781 0.848155
F05 0.391585 0.781488 1.029037
Precision 0.404004 0.803207 1.107787
Recall 0.052771 0.867746 0.80121
R2 0.27087 0.196681 -0.15421
Adjusted R2 0.315254 0.06561 -0.19278
RMSE 0.34798 1.973392 2.486121
MSE 1.474799 4.015365 6.180795
MAE 0.330283 1.56825 1.991371
MAPE 13.34844 54.68012 54.48163
Accuracy 13.34844 45.31988 45.51837
Pearson C.C. 0.024177 0.672447 0.688844
Spearman C.C. 0.027197 0.674354 0.70171
Spatial Distance 0.024177 0.327553 0.311156
NMI 0.000211 0.999571 0.997618
AIC 119.6544 475.6014 2817.778
BIC 119.6544 475.6014 2817.778
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.992755
Testing Time (seconds) - - 0.006835

Table 18.13: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.450751 0.450476 0.924358
F2 0.435117 0.434516 0.889356
F05 0.469426 0.468614 0.962228
Precision 0.484068 0.482186 0.989247
Recall 0.043862 0.832222 0.867458
R2 1.131227 -0.13919 0.334503
Adjusted R2 1.936735 -0.96088 0.26489
RMSE 0.77314 2.146732 1.802069
MSE 4.632016 5.206204 3.247454
MAE 0.795949 1.660204 1.347861
MAPE 23.22621 53.40591 49.03033
Accuracy 23.22621 46.59409 50.96967
Pearson C.C. 0.06202 0.574373 0.581932
Spearman C.C. 0.082147 0.529495 0.543894
Spatial Distance 0.06202 0.425627 0.418068
NMI 0.000804 0.9994 0.995812
AIC 69.32889 172.1702 623.0939
BIC 69.32889 172.1702 623.0939
Data Size train - - 1200
Data Size test - - 529
Training Time (seconds) - - 0.280065
Testing Time (seconds) - - 0.010685

Table 18.14: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.279933 0.833756 0.913042
F2 0.275003 0.823533 0.942047
F05 0.28979 0.846945 0.885771
Precision 0.298993 0.857444 0.868477
Recall 0.043831 0.899431 0.962429
R2 1.004383 -0.11725 -0.56287
Adjusted R2 1.277514 -0.41946 -0.6431
RMSE 0.870662 2.265968 2.823497
MSE 5.344671 5.892666 7.972133
MAE 0.894505 1.898259 2.466694
MAPE 40.23148 70.54216 102.9951
Accuracy 40.23148 29.45784 -2.99507
Pearson C.C. 0.026368 0.696863 0.686307
Spearman C.C. 0.040037 0.691162 0.682317
Spatial Distance 0.026368 0.303137 0.313693
NMI 0.000542 0.999623 0.99834
AIC 148.1202 359.5049 2127.851
BIC 148.1202 359.5049 2127.851
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.612407
Testing Time (seconds) - - 0.001326

Table 18.15: Experimental Results on WS Cluster 1
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Scenario B

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.013428 0.92848 0.917308
F2 0.008049 0.887247 0.883889
F05 0.026028 0.974086 0.953354
Precision 0.036586 1.007305 0.979
Recall 0.010961 0.861871 0.86293
R2 0.047011 0.361246 0.353204
Adjusted R2 0.049817 0.323292 0.344727
RMSE 0.047607 1.792615 1.827637
MSE 0.170187 3.215735 3.340256
MAE 0.051404 1.354387 1.358255
MAPE 5.001448 45.74227 45.68759
Accuracy 5.001448 54.25773 54.31241
Pearson C.C. 0.040821 0.613159 0.598858
Spearman C.C. 0.039761 0.593332 0.597106
Spatial Distance 0.040821 0.386841 0.401142
NMI 0.000559 0.999374 0.998168
AIC 19.25119 417.1992 1865.755
BIC 19.25119 417.1992 1865.755
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.220173
Testing Time (seconds) - - 0.004298

Table 18.16: Experimental Results on All the Data

WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.033781 0.92238 0.917312
F2 0.03951 0.885272 0.879682
F05 0.037485 0.963562 0.958305
Precision 0.046688 0.993674 0.987732
Recall 0.045552 0.862478 0.856265
R2 0.078437 0.354144 0.354556
Adjusted R2 0.094796 0.223599 0.329145
RMSE 0.244279 1.751876 1.803064
MSE 0.84672 3.128743 3.25104
MAE 0.14843 1.294705 1.289544
MAPE 4.811758 44.85172 42.39868
Accuracy 4.811758 55.14828 57.60132
Pearson C.C. 0.066796 0.60928 0.603655
Spearman C.C. 0.071444 0.539931 0.573292
Spatial Distance 0.066796 0.39072 0.396345
NMI 0.000721 0.999034 0.996022
AIC 34.38011 132.1092 623.6777
BIC 34.38011 132.1092 623.6777
Data Size train - - 1200
Data Size test - - 529
Training Time (seconds) - - 0.055442
Testing Time (seconds) - - 0.001145

Table 18.17: Experimental Results on WS Cluster 0
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WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.010073 0.937629 0.927885
F2 0.011911 0.89911 0.892656
F05 0.013621 0.979735 0.96601
Precision 0.018623 1.010064 0.993216
Recall 0.014579 0.875197 0.870619
R2 0.042391 0.403103 0.420972
Adjusted R2 0.046232 0.347609 0.409437
RMSE 0.093375 1.725456 1.784378
MSE 0.32157 2.985916 3.184005
MAE 0.075631 1.319576 1.328748
MAPE 2.079728 44.14905 45.90649
Accuracy 2.079728 55.85095 54.09351
Pearson C.C. 0.028431 0.645159 0.648882
Spearman C.C. 0.020204 0.63524 0.653431
Spatial Distance 0.028431 0.354841 0.351118
NMI 0.000686 0.999249 0.998829
AIC 26.00364 256.9193 1187.093
BIC 26.00364 256.9193 1187.093
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.114308
Testing Time (seconds) - - 0.001235

Table 18.18: Experimental Results on WS Cluster 1

Scenario C

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879 3.879262 3.879262
F1 0.427 0.651983 0.939456
F2 0.417 0.636832 0.906565
F05 0.439 0.6692 0.974824
Precision 0.449 0.681982 0.999921
Recall 0.063 0.861566 0.885887
R2 0.557 -0.10144 0.429446
Adjusted R2 0.625 -0.2368 0.41468
RMSE 0.530 2.308936 1.681168
MSE 2.570 5.611792 2.826325
MAE 0.548 1.893484 1.302145
MAPE 23.415 65.87749 47.22217
Accuracy 23.415 34.12251 52.77783
Pearson C.C. 0.022 0.660125 0.663295
Spearman C.C. 0.035 0.658716 0.657714
Spatial Distance 0.022 0.339875 0.336705
NMI 0.000 0.999341 0.998412
AIC 160.700 579.7561 1607.298
BIC 160.700 579.7561 1607.298
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.663098
Testing Time (seconds) - - 0.009784

Table 18.19: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.743 3.742533 3.742533
F1 0.372 0.186123 0.953058
F2 0.366 0.183107 0.893904
F05 0.379 0.18945 1.020596
Precision 0.384 0.191849 1.071202
Recall 0.076 0.798603 0.858386
R2 0.376 -0.12115 0.235607
Adjusted R2 0.557 -0.66582 0.174768
RMSE 0.520 2.398265 1.760862
MSE 2.763 6.022501 3.100636
MAE 0.477 1.869095 1.353061
MAPE 18.018 55.64788 41.0553
Accuracy 18.018 44.35212 58.9447
Pearson C.C. 0.051 0.591143 0.608675
Spearman C.C. 0.066 0.529432 0.566081
Spatial Distance 0.051 0.408857 0.391325
NMI 0.001 0.999158 0.996659
AIC 50.057 205.061 599.7519
BIC 50.057 205.061 599.7519
Data Size train - - 1202
Data Size test - - 530
Training Time (seconds) - - 0.193547
Testing Time (seconds) - - 0.001209

Table 18.20: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951 3.951248 3.951248
F1 0.378 0.756506 0.946722
F2 0.362 0.721801 0.907853
F05 0.399 0.796168 0.989068
Precision 0.416 0.825974 1.019468
Recall 0.051 0.857352 0.883667
R2 0.403 0.166838 0.44526
Adjusted R2 0.484 0.001131 0.423296
RMSE 0.395 2.007105 1.711336
MSE 1.821 4.184121 2.928671
MAE 0.369 1.583015 1.297803
MAPE 11.210 50.95168 43.0744
Accuracy 11.210 49.04832 56.9256
Pearson C.C. 0.038 0.687688 0.672179
Spearman C.C. 0.041 0.672073 0.673846
Spatial Distance 0.038 0.312312 0.327821
NMI 0.000 0.999678 0.998047
AIC 83.795 321.0541 1101.412
BIC 83.795 321.0541 1101.412
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.421322
Testing Time (seconds) - - 0.001234

Table 18.21: Experimental Results on WS Cluster 1
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Scenario D

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.455363 0.455365 0.924219
F2 0.449877 0.449776 0.90779
F05 0.461765 0.461503 0.941254
Precision 0.466608 0.465924 0.952963
Recall 0.057675 0.843621 0.897158
R2 0.372364 -0.1429 0.132478
Adjusted R2 0.391083 -0.20014 0.122833
RMSE 0.339344 2.384827 2.060176
MSE 1.66952 5.802555 4.244326
MAE 0.335897 1.905829 1.686862
MAPE 22.45371 66.31816 67.88931
Accuracy 22.45371 33.68184 32.11069
Pearson C.C. 0.042703 0.515201 0.544858
Spearman C.C. 0.045639 0.516537 0.528606
Spatial Distance 0.042703 0.484799 0.455142
NMI 0.000331 0.999572 0.998023
AIC 99.4637 614.4546 2236.317
BIC 99.4637 614.4546 2236.317
Data Size train - - 3576
Data Size test - - 1547
Training Time (seconds) - - 0.43862
Testing Time (seconds) - - 0.001134

Table 18.22: Experimental Results on All the Data

WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.742533 3.742533 3.742533
F1 0.44669 0.364697 0.895085
F2 0.4367 0.356343 0.871428
F05 0.457767 0.37375 0.920062
Precision 0.465859 0.380219 0.937502
Recall 0.04984 0.834837 0.85634
R2 0.197306 -0.05384 -0.00967
Adjusted R2 0.230264 -0.22914 -0.04319
RMSE 0.24042 2.196971 2.299013
MSE 1.067503 4.884482 5.285463
MAE 0.218867 1.695446 1.862656
MAPE 15.53585 56.54511 78.62848
Accuracy 15.53585 43.45489 21.37152
Pearson C.C. 0.073617 0.451065 0.46255
Spearman C.C. 0.085267 0.41704 0.438631
Spatial Distance 0.073617 0.548935 0.53745
NMI 0.001084 0.999157 0.996868
AIC 25.46671 187.6405 882.4289
BIC 25.46671 187.6405 882.4289
Data Size train - - 1202
Data Size test - - 530
Training Time (seconds) - - 0.12864
Testing Time (seconds) - - 0.000865

Table 18.23: Experimental Results on WS Cluster 0
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WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.275823 0.824989 0.924301
F2 0.271839 0.813431 0.887687
F05 0.285019 0.839564 0.964065
Precision 0.294013 0.851054 0.992532
Recall 0.057725 0.88347 0.864848
R2 0.919232 -0.31472 0.304173
Adjusted R2 0.991165 -0.41728 0.292426
RMSE 0.756409 2.43851 1.952354
MSE 4.2412 6.518483 3.811687
MAE 0.754087 2.040769 1.521631
MAPE 34.74502 75.5865 54.2853
Accuracy 34.74502 24.4135 45.7147
Pearson C.C. 0.030796 0.563952 0.556454
Spearman C.C. 0.035725 0.564253 0.548866
Spatial Distance 0.030796 0.436048 0.443546
NMI 0.000322 0.99957 0.999122
AIC 132.8759 400.7501 1371.524
BIC 132.8759 400.7501 1371.524
Data Size train - - 2361
Data Size test - - 1025
Training Time (seconds) - - 0.288966
Testing Time (seconds) - - 0.001152

Table 18.24: Experimental Results on WS Cluster 1

18.2 Probabilistic Models
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18.2.1 NGBoost

Scenario A

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.724166 0.0418159 0.929449
F2 0.708234 0.040897 0.908376
F05 0.724166 0.0418159 0.951522
Precision 0.752533 0.0434667 0.96683
Recall 0.903851 0.047759 0.89485
R2 0.668199 0.084339 0.666639
Adjusted R2 0.648947 0.12908 0.655728
RMSE 1.066462 0.1416 1.318048
MSE 1.157392 0.299238 1.737252
MAE 0.839573 0.109329 0.940261
MAPE 28.16987 4.798842 31.09375
Accuracy 71.83013 4.798842 68.90625
Pearson C.C. 0.825286 0.138659 0.816791
Spearman C.C. 0.796484 0.126366 0.79908
Spatial Distance 0.174714 0.138659 0.183209
NMI 0.996052 0.000961 0.998107
AIC 99.10395 242.3847 854.4149
BIC 99.10395 242.3847 854.4149
Probabilistic RMSE 1.066462 0.1416 1.318048
Probabilistic NLL 2.143754 0.883526 1.86122
Data Size train - - (3576)
Data Size test - - (1547)
Training Time (seconds) - - 25.30618
Testing Time (seconds) - - 1.928314

Table 18.25: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.730998 0.422054 0.904888
F2 0.722283 0.417039 0.875386
F05 0.730998 0.422054 0.936447
Precision 0.746417 0.431405 0.958738
Recall 0.71668 0.413923 0.856765
R2 0.651276 0.396647 0.557297
Adjusted R2 0.582926 0.47439 0.51201
RMSE 0.817753 0.122582 1.48576
MSE 0.683747 0.198014 2.207483
MAE 0.637171 0.093584 1.042673
MAPE 21.48958 2.263248 35.35601
Accuracy 78.51042 2.263248 64.64399
Pearson C.C. 0.809548 0.239649 0.746751
Spearman C.C. 0.790719 0.221651 0.710765
Spatial Distance 0.190452 0.239649 0.253249
NMI 0.993315 0.002649 0.997489
AIC -127.685 92.18078 418.8903
BIC -127.685 92.18078 418.8903
Probabilistic RMSE 0.817753 0.122582 1.48576
Probabilistic NLL 3.005719 1.543737 3.269164
Data Size train - - (1200)
Data Size test - - (529)
Training Time (seconds) - - 9.521585
Testing Time (seconds) - - 1.070178

Table 18.26: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.966278 0.015427 0.933627
F2 0.947994 0.017635 0.911369
F05 0.966278 0.015427 0.956999
Precision 0.998569 0.017222 0.973242
Recall 0.936225 0.019854 0.89711
R2 0.612488 0.135856 0.677077
Adjusted R2 0.600677 0.148152 0.660848
RMSE 0.935304 0.258666 1.319989
MSE 1.141702 0.543863 1.74237
MAE 0.728649 0.203623 0.932915
MAPE 26.26328 4.08352 29.99295
Accuracy 73.73672 4.08352 70.00705
Pearson C.C. 0.891604 0.078624 0.822881
Spearman C.C. 0.871276 0.071272 0.82477
Spatial Distance 0.108396 0.078624 0.177119
NMI 0.996726 0.001068 0.997778
AIC -119.259 301.3352 569.1273
BIC -119.259 301.3352 569.1273
Probabilistic RMSE 0.935304 0.258666 1.319989
Probabilistic NLL 3.014142 2.701514 2.75348
Data Size train - - (2361)
Data Size test - - (1025)
Training Time (seconds) - - 19.05093
Testing Time (seconds) - - 1.649082

Table 18.27: Experimental Results on WS Cluster 1
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Scenario B

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.877716 3.877716 3.877716
F1 0.699679 0.404022 0.90521
F2 0.679639 0.0392425 0.87847
F05 0.699679 0.0404022 0.933628
Precision 0.736007 0.0425196 0.953587
Recall 0.847271 0.073136 0.861504
R2 0.556864 0.0357662 0.541646
Adjusted R2 0.142873 0.0365432 0.535939
RMSE 1.642611 0.521867 1.546019
MSE 2.970516 1.849325 2.390175
MAE 1.254276 0.403901 1.145323
MAPE 39.31158 8.134683 38.3856
Accuracy 60.68842 8.134683 61.6144
Pearson C.C. 0.632961 0.204151 0.736801
Spearman C.C. 0.59377 0.160571 0.724057
Spatial Distance 0.367039 0.204151 0.263199
NMI 0.995914 0.001255 0.998167
AIC 799.3161 554.4 1347.133
BIC 799.3161 554.4 1347.133
Probabilistic RMSE 1.642611 0.521867 1.546019
Probabilistic NLL 2.578338 0.853732 1.913148
Data Size train - - (3572)
Data Size test - - (1546)
Training Time (seconds) - - 10.23882
Testing Time (seconds) - - 1.22531

Table 18.28: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.726043 0.041933 0.908864
F2 0.714957 0.041299 0.892829
F05 0.726043 0.041933 0.925486
Precision 0.745529 0.043072 0.936909
Recall 0.7078 0.040896 0.882449
R2 0.415772 0.068857 0.489946
Adjusted R2 0.376226 0.07351 0.470906
RMSE 1.033579 0.258146 1.527509
MSE 1.183493 0.558112 2.333285
MAE 0.984798 0.170842 1.123633
MAPE 39.98961 2.535843 41.09596
Accuracy 60.01039 2.535843 58.90404
Pearson C.C. 0.688641 0.379931 0.702704
Spearman C.C. 0.681177 0.318357 0.610496
Spatial Distance 0.311359 0.379931 0.297296
NMI 0.993558 0.001674 0.995092
AIC 1.686969 148.1499 448.2096
BIC 1.686969 148.1499 448.2096
Probabilistic RMSE 1.033579 0.258146 1.527509
Probabilistic NLL 2.311552 0.732691 2.376173
Data Size train - - (1200)
Data Size test - - (529)
Training Time (seconds) - - 5.911447
Testing Time (seconds) - - 0.952274

Table 18.29: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.931389 0.023406 0.901511
F2 0.901918 0.022751 0.883925
F05 0.931389 0.023406 0.919812
Precision 0.986344 0.043709 0.932431
Recall 0.883529 0.026876 0.872577
R2 0.580989 0.177524 0.53082
Adjusted R2 0.567034 0.183423 0.52195
RMSE 1.347557 0.185174 1.559247
MSE 1.850199 0.506727 2.431252
MAE 1.054399 0.157958 1.179834
MAPE 35.30507 7.028695 40.43974
Accuracy 64.69493 7.028695 59.56026
Pearson C.C. 0.788068 0.114323 0.729129
Spearman C.C. 0.781062 0.120158 0.732186
Spatial Distance 0.211932 0.114323 0.270871
NMI 0.996432 0.000537 0.998633
AIC 341.2263 162.3952 910.6163
BIC 341.2263 162.3952 910.6163
Probabilistic RMSE 1.347557 0.185174 1.559247
Probabilistic NLL 1.882414 0.196875 1.943804
Data Size train - - (2361)
Data Size test - - (1025)
Training Time (seconds) - - 6.437168
Testing Time (seconds) - - 1.043871

Table 18.30: Experimental Results on WS Cluster 1
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Scenario C

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.877716 3.877716 3.877716
F1 0.932506 0.050719 0.923358
F2 0.908507 0.057097 0.89668
F05 0.932506 0.050719 0.951671
Precision 0.976311 0.044086 0.971532
Recall 0.893353 0.06175 0.879736
R2 0.646066 0.0825319 0.641321
Adjusted R2 0.626159 0.097979 0.632277
RMSE 1.236892 0.233575 1.367626
MSE 1.717889 0.839411 1.870402
MAE 0.920493 0.0275959 0.988437
MAPE 28.72644 4.624189 32.224
Accuracy 69.27356 4.624189 67.776
Pearson C.C. 0.805882 0.142698 0.801498
Spearman C.C. 0.783191 0.099193 0.796945
Spatial Distance 0.194118 0.142698 0.198502
NMI 0.99603 0.001125 0.998167
AIC 222.7236 474.9225 968.033
BIC 222.7236 474.9225 968.033
Probabilistic RMSE 1.236892 0.433575 1.367626
Probabilistic NLL 2.761647 2.191618 1.939267
Data Size train - - (3572)
Data Size test - - (1546)
Training Time (seconds) - - 20.33592
Testing Time (seconds) - - 1.663427

Table 18.31: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745097566 3.745097566
F1 0.781827 0.391150461 0.916023277
F2 0.771666 0.385828729 0.875750012
F05 0.781827 0.391150461 0.960179201
Precision 0.800256 0.401850207 0.992059997
Recall 0.765241 0.382713405 0.850812511
R2 0.6833 0.309982533 0.53876824
Adjusted R2 0.623588 0.368264968 0.502999246
RMSE 0.760319 0.147650955 1.58580334
MSE 0.599885 0.208144214 2.514772232
MAE 0.594864 0.122147627 1.056406012
MAPE 20.8016 5.950201602 36.1668165
Accuracy 79.1984 5.950201602 63.8331835
Pearson C.C. 0.821617 0.202296887 0.73413987
Spearman C.C. 0.794355 0.219453241 0.704202928
Spatial Distance 0.178383 0.202296887 0.26586013
NMI 0.993999 0.001658974 0.996441589
AIC -141.707 102.9747948 487.8344026
BIC -141.707 102.9747948 487.8344026
Probabilistic RMSE 0.760319 0.147650955 1.58580334
Probabilistic NLL 2.39659 1.603067515 4.887243338
Data Size train - - (1200)
Data Size test - - (529)
Training Time (seconds) - - 7.98205924
Testing Time (seconds) - - 1.162084103

Table 18.32: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.950331 0.041371 0.933013
F2 0.942027 0.024559 0.919277
F05 0.950331 0.041371 0.947164
Precision 0.965985 0.06985 0.95684
Recall 0.936935 0.014124 0.910343
R2 0.623965 0.173807 0.685718
Adjusted R2 0.704152 0.189015 0.673606
RMSE 1.119916 0.201656 1.303171
MSE 1.486911 0.373672 1.698255
MAE 0.718722 0.156307 0.980868
MAPE 33.53428 2.121963 34.03512
Accuracy 66.46572 2.121963 65.96488
Pearson C.C. 0.903294 0.059215 0.828698
Spearman C.C. 0.887376 0.049892 0.821375
Spatial Distance 0.096706 0.059215 0.171302
NMI 0.997021 0.000492 0.99834
AIC -102.164 212.2345 542.8416
BIC -102.164 212.2345 542.8416
Probabilistic RMSE 0.919916 0.201656 1.303171
Probabilistic NLL 1.900941 0.865156 1.885645
Data Size train - - (2361)
Data Size test - - (1025)
Training Time (seconds) - - 14.12122
Testing Time (seconds) - - 1.44062

Table 18.33: Experimental Results on WS Cluster 1
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Scenario D

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.877716 3.877716 3.877716
F1 0.917845 0.048449 0.882991
F2 0.89385 0.041673 0.85807
F05 0.917845 0.048449 0.909402
Precision 0.962264 0.069755 0.927905
Recall 0.878818 0.040099 0.842224
R2 0.507581 0.169156 0.417306
Adjusted R2 0.495562 0.17328 0.410824
RMSE 1.482023 0.358699 1.743149
MSE 2.325058 1.07122 3.038569
MAE 1.149096 0.26715 1.305928
MAPE 37.58484 5.717834 43.89047
Accuracy 62.41516 5.717834 56.10953
Pearson C.C. 0.745924 0.114074 0.646549
Spearman C.C. 0.698192 0.070662 0.632445
Spatial Distance 0.254076 0.114074 0.353451
NMI 0.99603 0.001125 0.998167
AIC 518.76 356.1511 1718.204
BIC 518.76 356.1511 1718.204
Probabilistic RMSE 1.482023 0.358699 1.743149
Probabilistic NLL 1.874287 0.394493 2.126849
Data Size train - - (3572)
Data Size test - - (1546)
Training Time (seconds) - - 14.19564
Testing Time (seconds) - - 12.49658

Table 18.34: Experimental Results on All the Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.719146 0.367424 0.857525
F2 0.715869 0.363987 0.841837
F05 0.719146 0.367424 0.873808
Precision 0.725961 0.375287 0.885012
Recall 0.714008 0.362204 0.831693
R2 0.374969 0.348967 0.272161
Adjusted R2 0.327179 0.37551 0.247947
RMSE 1.549303 0.911256 1.806996
MSE 3.230727 3.876021 3.265236
MAE 1.207339 0.668016 1.328028
MAPE 41.70573 21.25074 47.14865
Accuracy 58.29427 21.25074 52.85135
Pearson C.C. 0.647848 0.262856 0.536214
Spearman C.C. 0.624136 0.211173 0.512434
Spatial Distance 0.352152 0.262856 0.463786
NMI 0.993972 0.001562 0.996232
AIC 143.6706 240.2746 625.9826
BIC 143.6706 240.2746 625.9826
Probabilistic RMSE 1.549303 0.911256 1.806996
Probabilistic NLL 9.734956 13.8211 3.328815
Data Size train - - (1200)
Data Size test - - (529)
Training Time (seconds) - - 8.093079
Testing Time (seconds) - - 9.339847

Table 18.35: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.959114 0.021326 0.903909
F2 0.93647 0.019055 0.884025
F05 0.959114 0.021326 0.924708
Precision 0.999995 0.03508 0.939114
Recall 0.922078 0.020437 0.871248
R2 0.593986 0.157713 0.489503
Adjusted R2 0.578793 0.163609 0.480885
RMSE 1.226962 0.293718 1.666607
MSE 1.591707 0.751723 2.777578
MAE 0.969458 0.231547 1.26592
MAPE 31.87408 6.553955 42.57768
Accuracy 68.12592 6.553955 57.42232
Pearson C.C. 0.783874 0.092699 0.70124
Spearman C.C. 0.759636 0.099854 0.686534
Spatial Distance 0.216126 0.092699 0.29876
NMI 0.996446 0.001169 0.998731
AIC 167.0556 221.769 1047.119
BIC 167.0556 221.769 1047.119
Probabilistic RMSE 1.226962 0.293718 1.666607
Probabilistic NLL 17.65674 31.78998 2.592213
Data Size train - - (2361)
Data Size test - - (1025)
Training Time (seconds) - - 11.63386
Testing Time (seconds) - - 10.7755

Table 18.36: Experimental Results on WS Cluster 1
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18.2.2 MC Dropout

Scenario C

All
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.879262 3.879262 3.879262
F1 0.530466 0.433227 0.926988
F2 0.520666 0.425613 0.903416
F05 0.530466 0.433227 0.951824
Precision 0.552903 0.456169 0.969134
Recall 0.811006 0.07384 0.888356
R2 0.213774 0.034763 0.626824
Adjusted R2 0.169592 0.036695 0.61742
RMSE 1.829911 0.455682 1.407828
MSE 3.556222 1.648407 1.98198
MAE 1.37579 0.31433 1.018445
MAPE 43.38254 5.676344 33.47211
Accuracy 56.61746 5.676344 66.52789
Pearson C.C. 0.562839 0.080806 0.792495
Spearman C.C. 0.560932 0.09248 0.756005
Spatial Distance 0.437161 0.080806 0.207505
NMI 0.906134 0.08233 0.944391
AIC 815.5856 382.9518 1058.297
BIC 815.5856 382.9518 1058.297
Probabilistic RMSE 1.796417 0 1.382826
Probabilistic NLL 2.12759 0 2.015097
Data Size train - - (3576)
Data Size test - - (1547)
Training Time (seconds) - - 2.995007
Testing Time (seconds) - - 3.58109

Table 18.37: Experimental Results on All Data
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WS C0
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.745098 3.745098 3.745098
F1 0.499931 0.408827 0.906327
F2 0.492841 0.40663 0.874174
F05 0.499931 0.408827 0.940935
Precision 0.521084 0.428289 0.965514
Recall 0.637813 0.330231 0.853977
R2 0.008672 0.112621 0.419566
Adjusted R2 -0.18464 0.134582 0.373273
RMSE 2.007751 0.651581 1.681331
MSE 4.455623 2.334936 2.826874
MAE 1.558244 0.504041 1.247949
MAPE 52.94683 19.19914 46.55204
Accuracy 47.05317 19.19914 53.44796
Pearson C.C. 0.403251 0.15349 0.651439
Spearman C.C. 0.357276 0.158237 0.464943
Spatial Distance 0.596749 0.15349 0.348561
NMI 0.932252 0.063249 0.879956
AIC 301.0325 192.7612 549.7218
BIC 301.0325 192.7612 549.7218
Probabilistic RMSE 2.000466 0 1.685034
Probabilistic NLL 2.201245 0 2.081765
Data Size train - - (1200)
Data Size test - - (529)
Training Time (seconds) - - 1.850291
Testing Time (seconds) - - 1.945739

Table 18.38: Experimental Results on WS Cluster 0

WS C1
Error Metrics Validation Scores standard deviation Validation Scores Testing Scores
mean target 3.951248 3.951248 3.951248
F1 0.709167 0.357154 0.928957
F2 0.683581 0.343389 0.912914
F05 0.709167 0.357154 0.945573
Precision 0.757161 0.384214 0.956985
Recall 0.805535 0.064747 0.902523
R2 0.192074 0.324008 0.611519
Adjusted R2 0.119112 0.35341 0.596138
RMSE 1.873377 0.13361 1.41453
MSE 3.527392 0.51376 2.000896
MAE 1.438444 0.076933 1.071778
MAPE 46.53662 11.45806 36.00088
Accuracy 53.46338 11.45806 63.99912
Pearson C.C. 0.580384 0.158671 0.783206
Spearman C.C. 0.627603 0.121583 0.74978
Spatial Distance 0.419616 0.158671 0.216794
NMI 0.981691 0.024931 0.982266
AIC 590.4033 64.91045 710.9349
BIC 590.4033 64.91045 710.9349
Probabilistic RMSE 1.84109 0 1.385292
Probabilistic NLL 2.126309 0 2.015869
Data Size train - - (2361)
Data Size test - - (1025)
Training Time (seconds) - - 2.962275
Testing Time (seconds) - - 3.517832

Table 18.39: Experimental Results on WS Cluster 1
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Chapter 19

Abbreviations

ET Evapotranspiration
TA Air Temperature
NDVI Normalized Difference Vegetation Index
LST Land Surface Temperature
WS Wind Speed
RH Relative Humidity
SMOTE Synthetic Minority Oversampling Technique
SMOGN SMOTE and Gaussian Noise
UBR Utility Based Regression
CQR Conformal Quantile Regression
CRF Conformal Random Forests
SVR Support Vector Regressor
MC Monte Carlo
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