

AMERICAN UNIVERSITY OF BEIRUT

DEEP LEARNING AND MIXED REALITY
FOR AUTOCOMPLETE TELEOPERATION

by

MOHAMMAD HUSSEIN KASSEM ZEIN

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Mechanical Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
January 2021

AMERICAN UNIVERSITY OF BEIRUT

Autocomplete Teleoperation

by

Approved by:

Dr. Daniel Asmar, Associate Professor Advisor

Mechanical Engineering

Dr. Imad Elhajj, Professor Co-Advisor

Electrical and Computer Engineering

Dr. Elie Shammas, Associate Professor Member of Committee

Mechanical Engineering

Date of thesis defense: January 20, 2021

MOHAMMAD HUSSEIN KASSEM ZEIN

DEEP LEARNING AND MIXED REALITY
FOR AUTOCOMPLETE TELEOPERATION

Imad
Pencil

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.
Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

KASSEM ZEIN MOHAMMAD HUSSEIN

February 4, 2021

Acknowledgements

I would like to express my special thanks of gratitude to my advisor Dr.
Daniel Asmar as well as my co-advisor Dr. Imad Elhajj who gave me the golden
opportunity to do this wonderful project, which also helped me in doing a lot of
research and I came to know about so many new things I am really thankful to
them.
Secondly, I would also like to thank my parents and friends who helped me a lot
in di�cult and critical times. Without their support, I would not have become
the person I am today.

v

An Abstract of the Thesis of

Mohammad Hussein Kassem Zein for Master of Engineering
Major: Mechanical Engineering

Title: Deep Learning and Mixed Reality for Autocomplete Teleoperation

Teleoperation of robots can be challenging, especially for novice users with
little to no experience at such tasks. The di�culty is largely due to the numerous
degrees of freedom users must control and their limited perception bandwidth.
Although humans can become skilled teleoperators, the amount of training time
required to acquire such skills is typically very high. To help mitigate these
challenges, this thesis proposes a solution (named Autocomplete) which relies on
artificial intelligence to understand user intended motion and then on mixed real-
ity to communicate the estimated trajectories to the users in an intuitive manner.
User intended motion is estimated using a deep learning network trained on a
dataset of motion primitives. During teleoperation, the estimated motions are
augmented onto a first-person live video feed from the robot. Finally, if a sug-
gested motion is accepted by the user, the robot is driven along that trajectory
in an autonomous manner. We validate our proposed mixed reality teleoperation
scheme with simulation experiments on a drone and demonstrate, through sub-
jective and objective evaluation, its advantages over other teleoperation methods.

vi

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

2 Literature Review 5
2.1 Collaborative Teleoperation . 5
2.2 Deep Learning in Teleoperation 6
2.3 Augmented Reality in Teleoperation 7

3 Autocomplete System Overview 9
3.1 Motion Classifier . 9
3.2 Motion Synthesis . 11

3.2.1 Line Motion . 11
3.2.2 Arc Motion . 11
3.2.3 3D Helix . 11
3.2.4 Sine Motion . 12

3.3 Design of the User Interface . 12
3.4 Autonomous Navigation . 14

4 Deep Learning and Mixed Reality for Autocomplete 15
4.1 Deep Learning Model . 15

4.1.1 Mixed Reality Interface . 18

5 Results and Experiments 20
5.1 Simulated UAV . 20
5.2 SVM Results . 20

5.2.1 Training . 20
5.2.2 Model-Evaluation . 21

5.3 Experiments with SVM Model . 21
5.3.1 3D Helix and Sine Motions 25
5.3.2 Motion around a gazebo 25
5.3.3 Motion around a track . 26

vii

5.4 Deep Learning Results . 27
5.4.1 Training . 27
5.4.2 Evaluation . 27

5.5 Experiments of MR Autocomplete 28
5.5.1 Experimental Procedure 28
5.5.2 Subjective Evaluation . 29
5.5.3 Objective Evaluation . 29

6 Conclusion and Future Work 32

A Abbreviations 33

List of Figures

1.1 Autocomplete teleoperation system supported by an MR user in-
terface. 2

1.2 Autocomplete System Motivation. 3

3.1 Flowchart diagram of Autocomplete framework. 9
3.2 Screen shots of the User Interface (UI). 13

4.1 Histograms of Primitive Sizes . 16
4.2 Deep Learning Model Architecture 17
4.3 Mixed Reality User Interface . 18

5.1 3D helix trajectory using manual steering (right); and autocom-
plete (left) . 22

5.2 Sine trajectory using manual steering (right); and autocomplete
(left) . 23

5.3 Trajectory around the gazebo using manual steering and Auto-
complete . 24

5.4 A simulated world of the track . 25
5.5 Trajectories of quadrotor around the simulated track 26
5.6 Training/Validation Loss . 27
5.7 Confusion Matrix . 28
5.8 NASA-TLX Survey Scores . 30
5.9 Trajectory taken by the UAV in the track experiments. 31

ix

List of Tables

5.1 Results of Motion around the Track using SVM 26
5.2 Results of Motion around the Track using MR Autocomplete . . . 29

xi

Chapter 1

Introduction

The wide spectrum of applications for Unmanned Aerial Vehicles (UAVs) has
led to the fast proliferation of these robotic systems in the fields of agriculture,
surveillance, damage assessment, and amusement/sports. Drone racing, for ex-
ample, has become a very popular event, where competitors perform challenging
maneuvers to navigate their copters through an obstacle course. Damage as-
sessment of bridges and electric poles is another relevant application, where a
drone performs a specified trajectory about the test object while scanning it for
damage.

In the field of Human Robot Interaction (HRI), teleoperation remains one of
the dominant modes of interaction between humans and machines. This fact is
especially true in applications which require a relatively high level of perception
[1][2]; or where the implications of making mistakes are too high, such as in
nuclear sources detection [3], or surgical robotics [4] [5]. Furthermore, it is not
expected that in the near future many teleoperation tasks will be completely
replaced by fully autonomous solutions [6].

The high dimensional, nonlinear, and under-actuated properties of drones
make teleoperation di�cult, and accidental crashes more frequent, even when
they are manned by expert operators. Experience has shown [7] that remote
controlling UAVs without any automated assistance (e.g., hover) is di�cult due
to the low perceptual bandwidth available at the remote end, as well as the
relatively low number of degrees of freedom that the operator can control.

Moreover, in spite of the advantages of teleoperation, it also faces many chal-
lenges: first, teleoperation is di�cult to perform well because of the required
mapping of a relatively high number of degrees of freedom of actuators on the
machine side to a lower number of input controls on the human side. This map-
ping from human interface to machine control is generally not intuitive and re-
quires significant training. Users acquire the needed skills after they internalize
how the controlled robot reacts dynamically to control commands sent using the
teleoperation device. Second, research has shown that the e↵ectiveness of remote
teleoperation is a↵ected by the bandwidth of sensory feedback of the user [8].

1

More specifically, research showed that poor perception impairs the situational
awareness of the operator and influences the overall e�ciency of required task.
Third, the ability of a human to plan a trajectory from a remote location is not
easy due to the requirement to convert high level objectives (driving the robot to
inspect a bridge) into a sequence of low-level control commands that the robot
understands [9]. Usually, operators follow a trial and error strategy until the tar-
get mission is executed successfully. Unfortunately, such an approach can a↵ect
the quality of the overall task on di↵erent levels including completion time, and
accuracy of the followed trajectory.

Completely automated trajectory planning has previously been proposed [10],
such as in the agricultural sector [11]. However, the programmed trajectories
are dependent on the shape and size of the intended site, and need to be re-
programmed each time a new site is visited.

Figure 1.1: Autocomplete teleoperation supported by a Mixed Reality user in-
terface.

We are proposing to mitigate the aforementioned challenges in teleoperation
with the aid of Artificial Intelligence (AI) and Mixed Reality (MR) to address
the needs for better perception and better control (Fig. 1.1). More specifically,
we are proposing a system that (1) monitors user input, recognizes intended
trajectories, and (2) suggests to the user through a Mixed Reality (MR) visual

2

manual

autocomplete

manual

auto-

complete

manual

auto-
complete

m
an

ua
l

au
to

co
m

pl
et

e

t1

t2

t3

t4

Figure 1.2: Autocomplete first classifies human intended motions, then synthe-
sizes a proposed trajectory that the user can accept or not. If accepted, the
automated system drives the vehicle along the synthesized path. For example,
the system predicts a straight line between t1 and t2, prompts the user for a
straight line, takes over and directs the UAV from t2 to t3 until the user changes
the trajectory to a curve between t3 and t4.

interface a trajectory to follow, and (3) when instructed, autonomously executes
(autocompletes) these trajectories for as long as the user desires.

The long-term objective of our work is to enhance the performance of human
operators during machine teleoperation. While our current application is that
of a UAV, our method is applicable to any type of land, aerial, or underwater
robot. As a first step, this thesis presents a method for both classification and
synthesis of motion primitives, thereafter leading in the future the application of
the method to more complex compounded maneuvers. In this thesis, we present a
solution (named Autocomplete) that exploits the advances of autonomous naviga-
tion while keeping the human as the master controller (Fig. 1.2). Autocomplete
is adaptive in nature, capable of automatically detecting and completing intended
user motions on robots. The system is collaborative in nature, taking inputs from
humans, and then driving a robot the remainder of the intended motion in an
automated manner. Autocomplete leverages the advantage of autonomous navi-
gation while keeping the operator in-the-loop as the essential decision maker (Fig.
1.2). A Support Vector Machine (SVM) was trained using operator’s input com-

3

mands to classify intended trajectories in the form of a motion primitive (arc, 3D
helix). However, the accuracy of the classical SVM model in terms of F1� score
was 79%. This relatively low accuracy a↵ected the confidence of the operator
in the predicted intended motion and thus influenced the overall teleportation
performance. Hence, at a later stage (Fig. 3.1) the system is substantially im-
proved. First, the SVM model is replaced with a Deep Learning Neural Network,
which contributed to an increase in accuracy of approximately 10%. Second,
we develop a User Interface (UI) using Mixed Reality that aims at boosting the
perceptive awareness of the operator while driving the robot. Finally, we val-
idate the system through human-subject experiments in simulation on a UAV
and demonstrate that the objective and subjective evaluations are improved over
previous teleoperation methods.

The contributions of this thesis include:

• A system to detect intended human motions from control commands, based
on a Deep Learning model.

• A mixed reality interface which allows the operator to visualize predicted
motions augmented to the scene through an MR headset, rather than on a
screen.

• Instead of always relying on the operator to drive the UAV, we propose a
generalized task-independent system for automatically completing a desired
motion.

4

Chapter 2

Literature Review

This section reviews the state-of-the-art in collaborative teleoperation frame-
works, AI-based teleoperation, and in AR-supported human machine interfaces.

2.1 Collaborative Teleoperation

The idea of assisted teleoperation is not new [12], with prior work existing in
assistive tele-manipulation [13] [14] and mobile robotics [15, 16, 17, 18, 19]. In
these applications, the intent is to decrease the workload of the operators, while
keeping them in the control loop to leverage their perceptual skills.

Gao et al. [16] propose a method for vehicle steer assistance, applied during
the performance of specific tasks, such as object inspection, or door crossing.
Their method is based on a Gaussian Mixture Regression model and a Recursive
Bayesian Filter to first recognize the intended task of the user. Then, after
inference is complete, an arbitration function blends the inputs from the user on
one hand, and from the automated system on the other, to yield high quality
steering control. The disadvantage of this approach is that it is task-centered,
requiring unique data for each task, such as object shape and size in the case of
object inspection. For each di↵erent task, di↵erent data is collected and the AI
system needs to be re-trained. Our proposed approach is di↵erent in that it is
user-centered rather task-centered; it recognizes intended user motion primitives
regardless of the task, and accordingly guides the robot along the remaining
synthesized path.

Battilani et al. [20] use bilateral shared control to estimate the 3D pose of
a target goal during teleoperation. After the system recognizes the object of
interest, and with the aid of haptic force feedback, the user is guided towards the
optimal direction of actuation. The bilateral control architecture is also extended
in Masone et al. [21], where the path is regulated to ensure robust convergence
to the target goal. For tasks that do not involve targeting a goal, such as flights
around a race track, these methods are ine↵ective due to the absence of the used

5

features.
Yang et al. [22] propose task-independent adaptive teleoperation, where, in-

stead of mapping velocity inputs to a desired motion using traditional methods,
the action space is represented as a Motion Primitive Library (MPL), and a
selector function is used to choose a specific motion primitive. User intent is
modeled as a probabilistic distribution, and a set of available actions are adapted
accordingly. Although their system produced promising results, it is completely
dependent on the user. In contrast, our proposed system is collaborative and
reduces workload on the operator when Autocomplete is activated.

Dynamic Motion Primitives (DMPs) [23] represent another approach for tra-
jectory generation, where complex maneuvers are segmented into motion primi-
tives that are learned using machine learning. Then, these learned primitives are
presented to the dynamic system in the form of well-defined non-linear functions
that guide the robot on a specific trajectory. Mueller et al. [24] represent the mo-
tion primitives of quadcopters by a combination of their initial state, the desired
motion duration, and any combination of position, velocity, and acceleration at
the motion’s end. DMPs trajectory planning techniques are also employed in the
tele-manipulation of robotic systems. Stulp et al. [25] apply model-free reinforce-
ment learning to learn motion primitives for a task in manipulation. The system
is able to learn shape and goal parameters of motion primitives that are robust
to object pose uncertainty. The disadvantage of DMPs is the need to carefully
choose the end point of the movement, which makes it di�cult for the learned
policies to generalize well to new situations.

2.2 Deep Learning in Teleoperation

A considerable amount of works in the literature have explored intention recogni-
tion systems in various domains, such as the teleoperation of robotic hands [26],
driving wheelchairs [27], and in teleoperation of mobile robots [28]. However,
only a few of these systems utilized Deep Learning in their approach. Laskey
et al. [29] compared Human-Centric (HC) sampling and Robot-Centric (RC)
sampling when dealing with deep learning in teleoperation. The comparison was
done using a grid world environment and a physical robot object singulation
task. Their simulation results showed that for linear SVMs, policies learned with
RC outperformed those learned with HC but that when using highly expressive
learning models (Deep Models) this advantage disappears. In another work, like
TeachNet [30], an end-to-end teacher-student deep Convolutional Neural Network
(CNN) was used for the vision-based teleoperation of dexterous robotic hands.
Their network learns the kinematic mappings between the depth images of a hu-
man hand and the robot’s joint angles. The results satisfied the high-precision
condition, and imitation experiments teleoperated by novice users showed that
TeachNet was faster and more reliable than the state of the art vision-based

6

teleoperation methods. In a similar study, Zhang et al. [31] described how to
make use of consumer-grade VR devices for the teleoperation of a PR2 robot.
RGB and depth images are concatenated and fed into a single deep CNN archi-
tecture augmented with auxiliary prediction connections and then used to train
deep visuomotor policies that directly map from pixels to actions using behav-
ioral cloning, a method of imitation learning. Results showed that, for each task,
less than 30 minutes of demonstration data was su�cient to learn a successful
policy using the same hyper-parameters and model architecture across all tasks.
Unlike the previously mentioned studies which captured the spatial features of
their data through CNNs, we intend to capture both the spatial and temporal
features of our data in order to produce a more robust model.

In this work, we aim to replace Autocomplete’s intention recognition system
[32] with a new Deep Learning model capable of achieving a more reliable perfor-
mance. To make this attainable, a large dataset [33] was carefully collected and
analyzed by following a well-documented procedure. This allowed us to create
and deploy a Deep Learning model which learns to filter information by auto-
matically extracting its own features from the input data rather than explicitly
being told what features to use. These relevant features are then used to learn
the long-term dependencies of the data thus allowing the model to capture the
complete essence of our data.

2.3 Augmented Reality in Teleoperation

The features that Augmented Reality (AR) can add to a user interface (UI), such
as the ability to overlay virtual objects to the real world, has shown potential
improvements in di↵erent research areas [34, 35, 36]. Specifically, new AR inter-
faces are suggested to improve the teleoperation paradigm. Hedayati et al. [37]
proposed an AR interface in the form of visual feedback to enhance quad-copter
teleoperation. They created three AR designs that aim at supporting the user’s
perspective on how to convey information from the on-board camera. This sup-
port is in the form of augmentation to the robot, the environment, or to the user
interface. They proved through subjective and objective evaluation that their
system enhances the performance of teleoperation over traditional methods. In
other works, such as in [38], they leverage the advancements of AR to create
an e↵ective teleoperation scheme that allows operators to better control aerial
robots while reducing stress. They propose a system that prompts a virtual
robot surrogate for the user to control instead of controlling the actual physical
robot. Their ultimate goal is to provide the operator with a prediction of what
might happen in the near future when a control action is taken. Lee et al. [39]
proposed an intuitive method for telerobotic manipulation through virtual fix-
tures that are augmented in the scene. They hypothesize that this generation of
virtual fixtures aims at improving operator’s perception in complex environments

7

and thus enables a precise teleoperation of dexterous manipulation in dynamic
environments.

The problem with the previously mentioned AR interfaces is that they only
focus on improving the perspective of the user while assuming that the robot is
always in the field of view (FOV) of the operator. This assumption may render the
proposed interfaces inapplicable in case of remote tasks where the robot is far from
the control station. In our proposed visual interface, we leverage the advantages
of MR to display for the user intended trajectories augmented inside the task
scene. These candidate trajectories are generated using an intelligent agent and
are meant to dynamically guide the user during teleoperation. Moreover, our
interface is based on first-person view, where the users visualize video stream
from the robot’s on-board camera through a MR headset. This renders a more
intuitive interface that aims at improving the perception of the operator in both
remote and stationary tasks.

8

Chapter 3

Autocomplete System Overview

The proposed system is presented in Fig. 3.1. Joystick inputs are fed to the SVM
model at a constant time interval (T = 1s); consequently, the predicted motion
is classified from our library of motion primitives. Once identified, the system
prompts the primitive through the UI. If the predicted motion is acknowledged by
the user, it will be executed by the auto-pilot. All the elements of the proposed
framework are discussed below in detail.

Monocular SLAM EKF PID

SVM Classifier

User Interface

Motion Primitives
(arc, line,..)

Auto
Complete?Synthesized motion Manual driveTrue False

Autocomplete System

Autonomous Navigation Control

Figure 3.1: Flowchart diagram of the proposed Autocomplete framework.

3.1 Motion Classifier

User intention is predicted by training a Support Vector Machine with our own
dataset of user motions. A key advantage of using this type of classifier lies in

9

its ability to train quickly on collected data and provide accurate results for dif-
ferent classification problems [40]. During the training phase, the main objective
of an SVM is to find an optimal hyper-plane which separates the data points
corresponding to two di↵erent classes [41]. However, if more than two classes are
to be recognized, the “one-against-one” implementation developed by Kner et al.
[42] is used for multi-class classification. In the case of linearly inseparable data,
the “kernel” method is used to obtain a highly non-linear separation margin with
little additional computational cost to the linear separation method. Essentially,
a kernel �(x).�(y) = K(x, y) is used to map the vectors to a higher dimensional
space where linear classification is more feasible. In our case, the kernel is defined
as follow:

K(xi, xj) = �(xi)
T .�(yj) (3.1)

For training, the feature vector is defined x by concatenating roll and pitch ro-
tational speed commands x = (�̄1, ..., �̄n, ...⇥̄1, ...⇥̄n), where n = 100, and each
sample training vector corresponds to a label class y (line, curve, sine motion,
etc.). Although most of the motions primitives are 2D in nature, we further
classify 3D helical motions when both arc and vertical directions are detected.

794 were used as training examples to train an SVM, which is represented by
the following function:

f(x) =
nX

i=1

↵iyiK(xxx, xi) + b, (3.2)

where xi and yi are training samples and ↵i are the Lagrange multipliers. The
parameters {↵1...↵n} are estimated by the following optimization function:

max
↵

L = max
↵

(
nX

i=1

↵i �
1

2

nX

i,j=1

↵i↵jyiyjK(xi, xj)),

s.t. ↵i � 0, i = 1..., n and
nX

i=1

↵iyi = 0

(3.3)

and the parameter b is calculated as:

b = �1

2
(max
j,yj=�1

nX

i=1

↵iyiK(xi, xj)+

min
l,yl=1

nX

i=1

↵iyiK(xi, xl))

(3.4)

Since the system is task independent, as mentioned before, we do not use any
visual information from the scene and we rely only on the joystick data as input
to the SVM.

10

3.2 Motion Synthesis

Suggested paths for Autocomplete are generated by regressing to either a portion
of a line, curve, or sine motion.

3.2.1 Line Motion

When the estimated path is that of a straight line, the collected data points are
used to regress to a line yt = xt ⇤ slope + b. Thereafter, future desired positions
are calculated by setting the look-ahead abscissa xt to a large number (xt = 100)
and calculating the corresponding ordinate.

3.2.2 Arc Motion

Nonlinear regression can be solved either algebraically, or iteratively using a ge-
ometric fit by solving an optimization problem. Although, the latter approach
produced more accurate results [43], the added accuracy comes at an additional
computational cost. However, it is noteworthy that geometric solutions are usu-
ally initiated by an algebraic fit to place the solution closer to the global minimum.
In this thesis, we rely on Levenberg-Marquard (LM) for the optimization solution,
coupled with Taubin’s [44] method to obtain a first estimate for the parameters
of the desired curve.

In practice, after obtaining the center coordinates (a, b) and the radius R of
the circle, a collection of target points {xt, yt} are sampled by discretizing the
circumference of the circle into N points. Where each target point represents
the parameters of a command that makes the drone fly to a target position with
respect to the current reference point. After that, N commands are queued and
executed one after another to achieve an arc motion. Note that we chose N
empirically to be big enough (N = 64) to ensure the smoothness of the executed
arc trajectory. The pseudo-code of constructing queued commands is shown in
Algorithm 1.

Moreover, to render a convenient autonomous motion for arc trajectories,
we maintain the yaw angle by always pointing the roll axis of the drone in the
direction of the tangent to the arc being executed.

3.2.3 3D Helix

3D helical motion is implemented in the same way as the arc motion but with
the addition of an increment in the z-axis direction.

11

Algorithm 1: Construction of the Queued Commands for the Arc/Full-
Circle Motion
Input: Circle Radius R, Center coordinates (a, b)
Output: Commands Queue

1 begin
2 Initialize Ap to angle from circle center, N = 64,

angleIncrement=⇡/N ;
3 if counter-clockwise then
4 angleIncrement = -angleIncrement;
5 end
6 for i=1 to N do
7 xt = a+R ⇤ cos(Ap);
8 yt = b+R ⇤ sin(Ap);
9 cmd = goto(xt, yt);

10 CmdQueue.push(cmd);
11 Ap = Ap+ angleIncrement;
12 end
13 return CmdQueue;
14 end

3.2.4 Sine Motion

Fitting a sine function should be done according to a reference frame, which
we take as the global reference frame of the initialized map. In general, after
estimating the parameters of the sine motion, like the arc motion, a collection of
target points are sampled. However, in the case where the sine wave is determined
not to be aligned with the normal direction of the general coordinate frame the
following transformations are required:

• First, the major axis of the robot’s motion is found using Principle Com-
ponent Analysis (PCA).

• Next, the angle ↵ from the global x-axis to the major axis is computed and
all points are rotated counterclockwise by ↵.

• Sine function parameters are estimated using LM, then target points are
calculated and rotated again clockwise by ↵.

3.3 Design of the User Interface

To render teleoperation more intuitive, we designed a User Interface (UI), in
which we augment the motions that are being estimated by the system on the

12

Figure 3.2: Screen shots of the User Interface (UI) with predicted motion primi-
tives: (a)forward arc to the left clockwise, (b) backward arc to the right clockwise,
(c) forward arc to the right counter-clockwise, (d) diagonal to the left backward,
(e) forward, (f) diagonal to the left forward.

13

live video stream of the drone’s camera. The predicted geometric motion prim-
itives are represented in the form of a straight, curved, sine-shaped, and 3D
helical-shaped arrows (see Fig.4.3). Since predictions are done every one second,
augmenting the exact predicted angle of the line motion would be confusing to
the operator. To solve this, we discretize the range of angles into four, includ-
ing 0°, 45°, 90°, and 135°, so the user can perceive the general direction of the
predicted line motion. As for the curved, sine-shaped, and 3D helical-shaped
motions, we render the shapes without taking the corresponding parameters into
consideration. Our goal here is to show the user the predicted motion not the
exact trajectory.

3.4 Autonomous Navigation

To direct the UAV along a pre-set path, its actual motion needs to be estimated
and control inputs need to be sent to it. Motion estimation is achieved using the
Visual Simultaneous and Localization and Mapping (SLAM) proposed by Engel
[45]. Once the pose of the robot is estimated, the robot is controlled along its
path using a separate PID controller for each motion direction (in the xy-plane,
along the z-axis, and yaw angle). Figure 3.1 shows the interaction between these
components and how they are employed in Autocomplete.

It is worth noting that using Model Predictive Control (MPC) was investi-
gated as an alternative to the PIDs for motion planning; however, the results we
achieved were not superior and the PIDs were much simpler to implement.

14

Chapter 4

Deep Learning and Mixed
Reality for Autocomplete

In this section, we summarize the Deep Learning model and Mixed Reality in-
terface with implementation details.

4.1 Deep Learning Model

We first introduce the data collection procedure and then describe the implemen-
tation details of the chosen neural network architecture.

Data

Four motion primitives were examined in this study, including that of a straight
line, an arc, a sinusoid, and a helicoid. The training data was collected in the
Gazebo virtual environment [46] using the “tum simulator” package to simulate
the operation of an AR.Drone 2.0. along with the “joy node” and “ardrone joystick”
packages which were used to control the drone via a PS3 joystick. Collected data
included the joystick’s velocity commands measured from the movement of its
analog sticks along with their corresponding timestamps. The motion primitives
of interest only make use of the drone’s pitch, roll, and thrust, which correspond
to movements along the x, y, and z axes. This data was retrieved by parsing all
the echoed messages being published to the joy topic.
To begin the data acquisition process, a series of several primitives were per-
formed using a stop indicator button, one for each primitive, to signify the end
of that primitive. In order to ensure a diverse and complete dataset, directions
were varied for each primitive as much as possible, i.e., clockwise, anticlockwise,
forwards, backwards, downwards, upwards, etc.
For the second stage of the acquisition, each sequence of a motion primitive’s ve-
locity commands had to be grouped separately. Since each primitive had a stop
indicator, each new sequence is separated by this indicator. Each of the vx, vy,

15

and vz values corresponding to the same message were stored in a list as [vx, vy,
vz] and will be referred to as a sample. Meaning that each primitive is structured
as a list of these samples, [[vx1, vy1, vz1], [vx2, vy2, vz2], . . . , [vxN , vyN , vzN]] where
N represents the sequence size. It can be seen that the data is represented as a
three-channel sequence, where each channel represents the sequence of velocity
commands corresponding to movements along a certain axis. To determine the
required length, i.e. input size, this data was analyzed by examining the number
of samples N in every sequence.
When collecting the data we aimed to have each primitive last for at least 2s,

Figure 4.1: Histograms of Primitive Sizes

therefore any primitive found to last less than 1s was considered as an anomaly
and discarded. The sampling rate was measured and found to be around 45 Hz,
therefore any primitive with a sequence size less than 45 was discarded. The few
primitives with a sequence size larger than 400 were attributed to missed stop
indicators and also discarded as seen in Fig. 4.1. It is important to note that
sinusoidal primitives can be seen as two arcs, thus it is important that our data
capture the sinusoids’ inflections points in order to make this distinction. The
sinusoids have a mean size of 229 and a maximum size of 375, therefore 200 sam-
ples is su�cient to capture the inflection point. Finally, all the data was padded

16

because each sequence is of a variable length and truncating this data any further
so that they are all of equal sizes would cause a loss of essential information. The
resulting data is padded sequences of size 200. The final dataset is made available
online at the IEEEDataPort [33] and it consists of 2399 primitives with 597 Line,
716 Arc, 617 Sinusoid, and 469 Helicoid. This data was split into 80% training,
with 20% of the training data used for validation, and 20% testing.

Model Architecture

In order to account for the class imbalance in the obtained dataset, class weights
were incorporated into the learning objectives as it is a good strategy to account
for class imbalance. Since the obtained dataset was structured to be made up
of sequences, we propose a combination of 1D-CNNs and Gated Recurrent Units
(GRUs). These two state of the art techniques are known to be very e�cient when
dealing with sequential data [47]. The model made use of the Adam optimizer,
categorical cross-entropy loss function, and LeakyReLU activation functions in
order to avoid exploding/vanishing gradients.

Conv1D

Conv1D Max-Pool

Conv1D

Conv1D Max-Pool

3@1x200

64@1x200 64@1x200
64@1x100

128@1x100 128@1x100
128@1x1

2015

+ SM

GRUs

+ DO

+ BN

+ BN

+ BN

+ BN

DO

Figure 4.2: Deep Learning Model Architecture

The 1D-CNN layers are able to capture local/short-term dependencies and po-
sitional relations between neighboring samples. These low level feature outputs
of the convolutional layers are then fed into the GRU layers which are able to
learn global/long-term dependencies and outputs the high-level features of the
sequences which are then used for classification. To construct this model, first
only one convolutional layer combined with one GRU layer was tested. After
obtaining the results, more combinations convolutional layers and GRUs were
added, but limiting the number of GRU layers to less than three, until finally
converging to the network architecture seen in Fig. 4.2 which consists of four 1D-
CNN layers followed by two GRUs and finally the Softmax (SM) output. Two
Dropout (DO) layers were used to minimize overfitting and Batch Normalization
(BN) was used for standardizing the inputs to the network and to provide some
regularization.

17

4.1.1 Mixed Reality Interface

Initially, the idea was to augment predicted trajectories, provided after motion
synthesis, onto the live video stream from the drone’s on-board camera. This
augmentation was represented by the geometric shape that corresponds to each
primitive: a straight, sine-shaped, curved, and 3D helical-shaped arrow. Since our
main goal was to show the user the general motion, and not the exact trajectory,
the range of the line motion’s angles were discretized into 0�, 45�, 90�, and 135�.
As for the other motions, their shapes were displayed without taking their exact
variables into consideration[32].

In this new upgrade of the proposed Autocomplete system, we focused on
enhancing the UI, as mentioned in the introduction, it highly impacts the per-
formance of the operator.

To give the predicted motions a 3D texture and render a better intuitive dis-
play for the user, we augment the mentioned geometric shapes inside the opera-
tion scene using Unity software with Vuforia Engine SDK, rather than coloring
the pixel values of the stream image. Moreover, we replace the simple arrow
representing the primitive by a set of consecutive arrows that fades toward the
vanishing line of eyesight as shown in Fig. 4.3 (right). This is demonstrated
to give the user a better insight of where the drone would end up in the near
future. Finally, we display the augmented video stream from the drone to the
user through an Oculus Rift headset. So, instead of looking at the PC screen,
the user will be wearing a headset during teleoperation and as a result the user is
isolated from his surrounding. We hypothesize that this isolation will boost the
cognition awareness of the user and result in increased focus on task execution.
Fig. 4.3 shows the implementation details and flow of data for the UI system.

=HUR04�3XEOLVKHU

$5B1RGH

0RWLRQ�6\QWKHVLV

0RWLRQB1RGH

=HUR04�6XEVFULEHU

5HFYB1RGH

0DJLF�&DP�
6FUHHQ�5HFRUGHU

8QLW\�8,

'521(�
)5$0(6

526�%5,'*(

$XJPHQWHG�9LGHR�6WUHDP

Figure 4.3: Mixed Reality User Interface

In general, augmenting an object inside the real world using Unity needs an AR
CameraObject which can be added only if a physical camera is connected to the
host PC. In our case, since the video feed is coming from a simulated drone cam-
era inside Gazebo, we mimic a physical camera using ZeroMQ (ZMQ) network
protocol and Magic Camera software. Frames from the simulated camera are sent
from the ZMQ publisher on the ROS PC to the ZMQ subscriber which opens a

18

video stream window using openCV on the Unity host PC. Then, this stream is
captured in real time using Magic Camera screen recorder in which it turns the
video feed into a Virtual Webcam detected by Unity. In addition to that, the
motion primitives that should be augmented in the scene are sent directly from
the motion synthesis node to Unity using ROS bridge.

19

Chapter 5

Results and Experiments

This section presents the experiments we performed to validate the e�ciency of
our proposed system. We first describe the hardware we used, then delve into
the details of our experiments.

5.1 Simulated UAV

For the tests, we used a simulated model of a Parrot AR.Drone 2.0, which in-
cludes all the needed sensors for implementing a robust autonomous navigation
system. The UAV measures 53cm x 52cm and weighs 420g; it is equipped with
an HD camera (720p 30fps) for video recording with a field of view of 73.5°x
58.5°, and a vertical QVGA camera (60 fps) to estimate the ground speed. It
is also endowed with a 3-axis gyroscope, accelerometer, magnetometer, and an
ultrasound altimeter working at 25 Hz.

In the simulation environment running over ROS, all data from the virtual
onboard sensors are used to control the vertical velocity ż of the quad, along
with its roll, pitch, and yaw rotational velocities (�, ⇥, ̇). More specifically,
teleoperation of the quadcopter is done using a standard six-axis PS3 joystick.
The operator issues control commands u=(�̄, ⇥̄, ¯̇ , ¯̇z) 2 [�1, 1]4 using the dual
analog sticks of the joystick (the left one for the roll and pitch commands and the
right one for the yaw and vertical velocity commands); This command represents
the reference value for the drone’s next maneuver.

5.2 SVM Results

5.2.1 Training

Training the SVM model was done using scikit-learn library on Python [48]. The
data-set we used is composed of 794 feature vectors with 217 samples for the

20

line motion, 315 samples for the arc motion and 262 samples for the sine motion.
This data is split into 80% for training and 20% for testing the model.

5.2.2 Model-Evaluation

As mentioned before, we chose the kernel trick method for building the SVM
model and the available kernel functions for this purpose are: Radial Basis Func-
tion (RBF), polynomial function (Poly), and Linear function (Linear). Since our
data is not perfectly balanced, we selected more than one performance measure
to properly single out the best kernel function for our SVM model. The adopted
evaluation metrics include Precision (PR), Recall (RC), F1 Score, and Accuracy
(AC). Note that the F1 score is calculated using PR and RC according to the
following equation:

F1 =
PR ⇤RC

PR +RC
, (5.1)

We performed a grid search to find the optimal kernel and hyper-parameters.
The RBF kernel with C = 100 and � = 0.001 was chosen empirically since it
achieved the highest accuracy (82.25%) and F1 score (79.64%).

5.3 Experiments with SVM Model

For testing and validating our proposed method, we used the Gazebo simulation
environment implemented on ROS [46]. The entire system runs on a MacBook
Pro 2.3GHz octa-core Intel Core i7 processor and 16 GB of memory.

We evaluate our framework using hindsight bases and we compare the results
of two methods of teleoperation: using manual steering and using Autocomplete.
Specifically, We use the following metrics:

• Total Distance (d) covered by the UAV to approximately identify the devi-
ation from the actual track.

• Time (t) taken to finish the track, this is a significant e�ciency metric for
most navigation tasks (e.g. racing).

• Trajectory Similarity between the actual flight trajectory and the ideal one.
We are using Hausdorf Distance (HD) [49], a well known metric to evaluate
the spatial similarity between di↵erent trajectories. The lower the HD
value, the more similar are the trajectories.

In order to properly assess the e�ciency of the system, experiments of 20
trials for 3 di↵erent scenarios using each method (manual and autocomplete) as
described in the next 3 subsections.

21

0
2

1

4

2

0 3

3

2

4

-2 1
0

-4 -1

z [m]

y [m]
x [m]

0

4

1

2

2 6

3

4

4

0 2

5

0-2
-2

-4 -4

z [m]

y [m]

x [m]

0.5

0

1

5

1.5

-2
4

2

3

2.5

-4 2

1
-6 0

z [m]

y [m]
x [m]

0.5

0

1

1.5

5

2

-2

2.5

4

3

3

3.5

-4 2

1
-6 0

z [m]

y [m]
x [m]

0

2

0.5

1

4
0

1.5

3

2

2

2.5

-2 1

0
-4 -1

z [m]

y [m]

x [m]

0

2

1

2

4
0

3

3

4

2

5

-2 1

0
-4 -1

z [m]

y [m]

x [m]

0

4

1

2

4
2

3

3

4

2

5

0 1

0
-2 -1

z [m]

y [m]

x [m]

0

4

2

4

4

2
3

6

2

8

0 1

0
-2 -1

z [m]

y [m]

x [m]

0

2

1

1 3

2

2

3

0

4

1
-1

0

-2 -1

z [m]

y [m]

x [m]

0

2

2

4

1 2

6

8

0 1

10

12

-1 0

-2 -1

z [m]

y [m]

x [m]

Figure 5.1: 3D helix trajectory using manual steering (right); and autocomplete
(left)

22

0 5 10 15 20 25

-30

-25

-20

-15

-10

-5

0

y [m]

x [m]
0 5 10 15 20 25

-30

-25

-20

-15

-10

-5

0

y [m]

x [m]

-2 0 2 4 6 8 10 12 14 16

-25

-20

-15

-10

-5

0

y [m]

x [m]
0 2 4 6 8 10 12 14 16 18

-25

-20

-15

-10

-5

0

y [m]

x [m]

0 2 4 6 8 10 12 14 16

-30

-25

-20

-15

-10

-5

0

y [m]

x [m]
0 2 4 6 8 10 12 14 16

-30

-25

-20

-15

-10

-5

0

y [m]

x [m]

6 8 10 12 14 16 18 20 22 24 26

-30

-25

-20

-15

-10

-5

y [m]

x [m]
5 10 15 20 25

-30

-25

-20

-15

-10

-5

y [m]

x [m]

0 5 10 15 20 25

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

y [m]

x [m]
0 5 10 15 20 25

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

y [m]

x [m]

Figure 5.2: Sine trajectory using manual steering (right); and autocomplete (left)

23

-2 0 2 4 6 8 10 12

-12

-10

-8

-6

-4

-2

0

2

y [m]

x [m]

0 2 4 6 8 10 12

-10

-8

-6

-4

-2

0

2

y [m]

x [m]

Figure 5.3: A simulated world of a gazebo (top); trajectory around the gazebo
using manual steering (left); and autocomplete (right)

24

Figure 5.4: A simulated world of the track

5.3.1 3D Helix and Sine Motions

3D Helix type of motion is typical in the inspection of electric pole or wind tur-
bine while Sine type of motion is commonly found in the agricultural applications
such as seeding or pesticide spraying . Fig. 5.1 and Fig. 5.2 show the results of
5 di↵erent sets of simulations for each type of motion. For each set, the oper-
ator was asked first to start with the intended motion and allow Autocomplete
(upper figures), then try to mimic the same trajectory manually (lower figures).
Results show that manual control could not lead to the intended motions, while
Autocomplete feature helped in achieving smoother trajectories regardless of the
radius, pitch, amplitude, and total distance of the trajectory.

5.3.2 Motion around a gazebo

In this experiment, the operator was asked to fly the drone around a simulated
gazebo model. The best run using manual steering reported d = 33.11 meters
with t = 50.27 seconds, whereas the best run when flying using autocomplete
reported d = 30.15 meters with t = 39 seconds, see Fig. 5.3. Furthermore, the

25

-20 -15 -10 -5 0 5 10 15

x(m)

-5

0

5

10

15
y(

m
)

Trajectory using our system

Trajectory using conventional method

Ideal Trajectory

Track

Figure 5.5: Trajectories taken by the quadrotor around the simulated track

average distance traveled while using Autocomplete was 31.005 meters which is
less by 9.96% than that of the manual steering. As for the flight time, manual
steering recorded an average of 60.53 seconds compared to 40.14 seconds for the
flights with Autocomplete enabled.

Table 5.1: Results of Motion around the Track using SVM
Autocomplete Conventional

Average Distance [m] 58.27916 68.458
Average Time [sec] 56.418 67.5006
Average HD 1.154 1.251

5.3.3 Motion around a track

In this scenario, the operator was asked to execute a flight inside a track. Fig.
5.5 shows the ideal trajectory(the path equidistant from both boundaries of the
track), in addition to both trajectories obtained from the best run during manual
and Autocomplete modes. Results presented in Table 5.1 show that our system
enhances teleoperation in terms of time and distance of flight. Furthermore, the

26

obtained average HD value indicates that trajectories executed using Autocom-
plete are closer to the optimal trajectory.

5.4 Deep Learning Results

5.4.1 Training

First, the training and validation data were used in order to tune the necessary
parameters (DO, number of filters, and filter sizes). Early stopping was used
to monitor the validation loss and halt the model’s training before it begins to
overfit. It can be seen from Fig. 5.6 that the model does not overfit and converges
to a training/validation accuracy of 88/87%.

Figure 5.6: Training/Validation Loss

5.4.2 Evaluation

Next, using the same tuned parameters, the validation data was added to the
training data for the final evaluation of the model. Since the dataset is unbal-
anced, the weighted average F1� score was used as the metric for evaluating our
model. The final model achieved an 89% F1�score and its results can be seen in
Fig. 5.7. It is apparent from the confusion matrix that the main source of error
is from the misclassification of sinusoids and arcs, this misclassification is due to
the two primitives being very similar as mentioned earlier.

Although Deep Learning models tend to be bulky and computationally de-
manding, our model’s inference time was measured and found to be around 20ms

27

which is generally considered to be very fast. This model also surpassed the
SVM’s [32] F1 � score by about 10%.

Figure 5.7: Confusion Matrix

5.5 Experiments of MR Autocomplete

We validate the proposed MR Autocomplete framework using human subject
testing to evaluate its e�ciency over both the no MR interface with the SVM
model, and traditional teleoperation methods. For this purpose, 9 operators (5
males vs 4 females) were recruited for the experiments after getting approval from
the university’s Institutional Review Board (IRB). All operators reported that
they have little experience driving a drone, and have previously tried Oculus VR
headset.

5.5.1 Experimental Procedure

Testing was done using two scenarios: Around a predefined track and a free-hand
3D helix around a simulated building. For each scenario, the operator was given
two trials for each of the three teleoperation methods.
For consistency, the same protocol is adopted in all experiments: (1) The operator

28

is briefed about the tasks and is given 10 minutes to familiarize him/herself with
the system, (2) a shu✏e of the tasks is done to choose which method with which
task is to be tested next, (3) after the experimentation is done, the operator
is asked to fill a survey for each method. We present below the objective and
subjective results along with the criteria used in the evaluation process.

5.5.2 Subjective Evaluation

Since the main goal of the presented system is to reduce the workload on the user
during teleoperation tasks, we subjectively assessed the three systems using the
widely used NASA Task Load Index (NASA-TLX) [50]. More conveniently,
the NASA-TLX software developed by Cao et. al [51] was utilized and operators
were asked to report the workload demanded from them for each system based
on six sub-scales that represent the mental demand, physical demand, temporal
demand, performance, e↵ort, and frustration level during task execution. Fig.
5.8 shows the average scores of the NASA-TLX questionnaire and demonstrates
that the proposed Mixed Reality based Autocomplete is superior to the other
systems in terms of reducing all the demands of the aforementioned subscales
while maintaining a high performance level. This is due to the fact that the
proposed Deep Model predicts human intended trajectories with high fidelity and
most of the task can be handed to the autopilot, thus reducing operator’s overall
e↵ort. In addition to that the MR interface o↵ers a more reliable perception for
the user allowing him/her to focus on task execution, and as such producing a
good performance level during teleoperation.

5.5.3 Objective Evaluation

We compare the average distance covered by the drone and time taken to finish
the task. The mentioned criteria were considered since, for instance, the distance
is an indicator of how much the operator diverges from the track, and the time
is crucial for the e�ciency of most teleoperation missions. As shown in table
5.2, the Mixed Reality autocomplete framework outperforms both methods in
terms of average distance covered: 6% and 19% less average distance covered
in all runs. Moreover, it is clear that the results of the covered distance have a
direct impact on the time aspect. As such, average time taken to cover the track

Table 5.2: Results of Motion around the Track using MR Autocomplete
Average Distance [m] Average Time [sec]

MR Autocomplete 106.37± 2.03 95.44± 3.67
Autocomplete 113.21± 4.34 108.35± 3.20
Conventional 127.39± 2.35 117.67± 1.97

using the proposed method is less than average time taken using autocomplete

29

�D� �E�

�F� �G�

�H� �I�

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� ��H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

S�� �����H���

Figure 5.8: NASA-TLX Survey Scores

and conventional method by 19% and 22% respectively. We also note that,
in all cases, the standard deviation is small which indicates the consistency of
the results reported. Moreover, the calculated p-value which is <<< 0.005 in all
cases, indicates a strong evidence in favor of the null hypothesis. Finally, Fig. 5.9
shows position data of the drone around the track recorded for the best 3 runs and
it obviously demonstrates that trajectories executed using our framework (Fig.
5.9a) are superior in terms of smoothness and closeness to optimal trajectory.

30

0L[HG�5HDOLW\�$XWRFRPSOHWH

$XWRFRPSOHWH

�D�

�E��

7UDGLWLRQDO�0HWKRG

�F�

Figure 5.9: Trajectory taken by the UAV in the track experiments. Results
represent the best three runs performed by some of the operators using (a) MR
Autocomplete, (b) Autocomplete, (c) Traditional Method.

31

Chapter 6

Conclusion and Future Work

In this thesis, a new framework of teleoperation that aims to assist operators
during teleoperation of robots was developed. Our method leveraged the ad-
vantages of mixed reality, deep learning, and autonomous navigation to reduce
the workload on the user during task execution, while producing optimal tra-
jectories. Machine learning was successfully applied to recognize human intents
and then suggest autocompleted trajectories, hence leveraging the advantages
of autonomous navigation while keeping the user as the main decision maker.
The proposed system aims at reducing workload on humans during the remote
control of UAVs and can be potentially implemented on other robots (e.g. Un-
manned Ground Vehicles). Human subject experiments of manning a simulated
drone proved that our method outperformed the other methods in terms of user
experience and in providing better trajectories. Moreover, it demonstrated the
e↵ectiveness of our method at improving speed, distance traveled, and smooth-
ness of trajectories. Future work includes developing a hierarchical model to
better distinguish between the arc and sinusoidal primitives and increasing the
number of motion primitives to include more complex trajectories that could be
autocompleted.

32

Appendix A

Abbreviations

UAV Unmanned Aerial Vehicle
MR Mixed Reality
VR Virtual Reality
SLAM Simultaneous Localization and Mapping

33

Bibliography

[1] P. Ramon-Soria, M. Perez-Jimenez, B. Arrue, and A. Ollero, “Planning sys-
tem for integrated autonomous infrastructure inspection using uavs,” in 2019
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 313–
320, IEEE, 2019.

[2] F. Perez-Grau, R. Ragel, F. Caballero, A. Viguria, and A. Ollero, “Semi-
autonomous teleoperation of uavs in search and rescue scenarios,” in 2017 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), pp. 1066–
1074, IEEE, 2017.

[3] J. Aleotti, G. Micconi, S. Caselli, G. Benassi, N. Zambelli, M. Bettelli, and
A. Zappettini, “Detection of nuclear sources by uav teleoperation using a
visuo-haptic augmented reality interface,” Sensors, vol. 17, no. 10, p. 2234,
2017.

[4] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, “Medical
robotics and computer-integrated surgery,” in Springer handbook of robotics,
pp. 1657–1684, Springer, 2016.

[5] A. M. Okamura, “Methods for haptic feedback in teleoperated robot-assisted
surgery,” Industrial Robot: An International Journal, 2004.

[6] D. Szafir, B. Mutlu, and T. Fong, “Designing planning and control interfaces
to support user collaboration with flying robots,” The International Journal
of Robotics Research, vol. 36, no. 5-7, pp. 514–542, 2017.

[7] T. Fong, C. Thorpe, and C. Baur, Collaborative control: A robot-centric
model for vehicle teleoperation. Pittsburgh: Carnegie Mellon University,
The Robotics Institute, 2001.

[8] J. Y. Chen, E. C. Haas, and M. J. Barnes, “Human performance issues
and user interface design for teleoperated robots,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37,
no. 6, pp. 1231–1245, 2007.

34

[9] C. Abras, D. Maloney-Krichmar, J. Preece, et al., “User-centered design,”
Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand
Oaks: Sage Publications, vol. 37, no. 4, pp. 445–456, 2004.

[10] T. B. Bodin, “Behavior flexibility for autonomous unmanned aerial systems,”
2018.

[11] P. Tripicchio, M. Satler, G. Dabisias, E. Ru↵aldi, and C. A. Avizzano, “To-
wards smart farming and sustainable agriculture with drones,” in 2015 Inter-
national Conference on Intelligent Environments, pp. 140–143, IEEE, 2015.

[12] D. Aarno, S. Ekvall, and D. Kragic, “Adaptive virtual fixtures for machine-
assisted teleoperation tasks,” in Robotics and Automation (ICRA), IEEE
International Conference on, 2005.

[13] P. Aigner and B. McCarragher, “Human integration into robot control util-
ising potential fields,” in Robotics and Automation (ICRA), IEEE Interna-
tional Conference on, 1997.

[14] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot
manipulator using a vision-based human-robot interface,” Transactions on
Industrial electronics, 2005.

[15] E. Demeester, A. Hüntemann, D. Vanhooydonck, G. Vanacker, H. Van Brus-
sel, and M. Nuttin, “User-adapted plan recognition and user-adapted shared
control: A bayesian approach to semi-autonomous wheelchair driving,” Au-
tonomous Robots, 2008.

[16] M. Gao, J. Oberländer, T. Schamm, and J. M. Zöllner, “Contextual task-
aware shared autonomy for assistive mobile robot teleoperation,” in Intelli-
gent Robots and Systems (IROS), IEEE International Conference on, 2014.

[17] W. Yu, R. Alqasemi, R. Dubey, and N. Pernalete, “Telemanipulation assis-
tance based on motion intention recognition,” in Robotics and Automation
(ICRA), IEEE International Conference on, 2005.

[18] K. Hauser, “Recognition, prediction, and planning for assisted teleoperation
of freeform tasks,” Autonomous Robots, 2013.

[19] T. Carlson and Y. Demiris, “Human-wheelchair collaboration through pre-
diction of intention and adaptive assistance,” in Robotics and Automation
(ICRA), IEEE International Conference on, 2008.

[20] N. Battilani, P. R. Giordano, and C. Secchi, “An assisted bilateral control
strategy for 3d pose estimation of visual features,” in Intelligent Robots and
Systems (IROS), IEEE International Conference on, 2017.

35

[21] C. Masone, P. R. Giordano, H. H. Bültho↵, and A. Franchi, “Semi-
autonomous trajectory generation for mobile robots with integral haptic
shared control,” in Robotics and Automation (ICRA), IEEE International
Conference on, 2014.

[22] X. Yang, K. Sreenath, and N. Michael, “A framework for e�cient teleop-
eration via online adaptation,” in Robotics and Automation (ICRA), IEEE
International Conference on, 2017.

[23] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with non-
linear dynamical systems in humanoid robots,” in Robotics and Automation
(ICRA), IEEE International Conference on, 2002.

[24] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally e�cient
motion primitive for quadrocopter trajectory generation,” Transactions on
Robotics, 2015.

[25] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, and
S. Schaal, “Learning motion primitive goals for robust manipulation,” in
Intelligent Robots and Systems (IROS), IEEE International Conference on,
2011.

[26] K. Khokar, R. Alqasemi, S. Sarkar, K. Reed, and R. Dubey, “A novel teler-
obotic method for human-in-the-loop assisted grasping based on intention
recognition,” in 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4762–4769, IEEE, 2014.

[27] T. Carlson and Y. Demiris, “Human-wheelchair collaboration through pre-
diction of intention and adaptive assistance,” in 2008 IEEE International
Conference on Robotics and Automation, pp. 3926–3931, IEEE, 2008.

[28] M. Gao, J. Oberländer, T. Schamm, and J. M. Zöllner, “Contextual task-
aware shared autonomy for assistive mobile robot teleoperation,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3311–3318, IEEE, 2014.

[29] M. Laskey, C. Chuck, J. Lee, J. Mahler, S. Krishnan, K. Jamieson, A. Dra-
gan, and K. Goldberg, “Comparing human-centric and robot-centric sam-
pling for robot deep learning from demonstrations,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 358–365, IEEE,
2017.

[30] S. Li, X. Ma, H. Liang, M. Görner, P. Ruppel, B. Fang, F. Sun, and J. Zhang,
“Vision-based teleoperation of shadow dexterous hand using end-to-end deep
neural network,” in 2019 International Conference on Robotics and Automa-
tion (ICRA), pp. 416–422, IEEE, 2019.

36

[31] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–8, IEEE, 2018.

[32] M. K. Zein, A. Sidaoui, D. Asmar, and I. H. Elhajj, “Enhanced teleoperation
using autocomplete,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9178–9184, IEEE, 2020.

[33] J. Elhalabi, M. Al Aawar, M. Kassem Zein, I. H. Elhajj, and D. Asmar,
“Drone motion primitive dataset,” 2020.

[34] S. A. Green, M. Billinghurst, X. Chen, and J. G. Chase, “Human-robot col-
laboration: A literature review and augmented reality approach in design,”
International journal of advanced robotic systems, vol. 5, no. 1, p. 1, 2008.

[35] S. A. Green, J. G. Chase, X. Chen, and M. Billinghurst, “Evaluating the
augmented reality human-robot collaboration system,” International journal
of intelligent systems technologies and applications, vol. 8, no. 1-4, pp. 130–
143, 2010.

[36] E. Ru↵aldi, F. Brizzi, F. Tecchia, and S. Bacinelli, “Third point of view
augmented reality for robot intentions visualization,” in International Con-
ference on Augmented Reality, Virtual Reality and Computer Graphics,
pp. 471–478, Springer, 2016.

[37] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot tele-
operation with augmented reality,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 78–86, 2018.

[38] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with aug-
mented reality virtual surrogates,” in 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pp. 202–210, IEEE, 2019.

[39] D. Lee and Y. S. Park, “Implementation of augmented teleoperation system
based on robot operating system (ros),” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5497–5502, IEEE,
2018.

[40] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local
svm approach,” in Proceedings of the Pattern Recognition, 17th International
Conference on (ICPR’04) Volume 3-Volume 03, pp. 32–36, IEEE Computer
Society, 2004.

[41] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

37

[42] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a
stepwise procedure for building and training a neural network,” in Neuro-
computing, pp. 41–50, Springer, 1990.

[43] N. Chernov and C. Lesort, “Least squares fitting of circles,” Journal of
Mathematical Imaging and Vision, vol. 23, no. 3, pp. 239–252, 2005.

[44] G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and range
image segmentation,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 11, pp. 1115–1138, 1991.

[45] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost
quadrocopter,” in Intelligent Robots and Systems (IROS), IEEE Interna-
tional Conference on, 2012.

[46] H. Huang and J. Sturms, “tumsimulator.”

[47] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn:
Machine learning in python,” Journal of machine learning research, vol. 12,
no. Oct, pp. 2825–2830, 2011.

[49] S. Atev, G. Miller, and N. P. Papanikolopoulos, “Clustering of vehicle tra-
jectories,” IEEE transactions on intelligent transportation systems, vol. 11,
no. 3, pp. 647–657, 2010.

[50] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index):
Results of empirical and theoretical research,” in Advances in psychology,
vol. 52, pp. 139–183, Elsevier, 1988.

[51] A. Cao, K. K. Chintamani, A. K. Pandya, and R. D. Ellis, “Nasa tlx: Soft-
ware for assessing subjective mental workload,” Behavior research methods,
vol. 41, no. 1, pp. 113–117, 2009.

38

	5dda3b53d7861a577b2db206ca1476627da7ad6fb8e1201bc839921b8f552c1b.pdf
	e99ef3030c927d9195b3889ac23374c1accabe2ded91bf26dc82302efdcf9678.pdf
	5dda3b53d7861a577b2db206ca1476627da7ad6fb8e1201bc839921b8f552c1b.pdf
	e99ef3030c927d9195b3889ac23374c1accabe2ded91bf26dc82302efdcf9678.pdf
	5dda3b53d7861a577b2db206ca1476627da7ad6fb8e1201bc839921b8f552c1b.pdf
	f633020a365d9876b38d16d2ee6789a0129006c58483adab54c7e7da5d1d2c6c.pdf
	d87f763b61f8b81fbe3d58d5ab2b29829954b97d5dff28b161d37c4a5cf11c49.pdf

	blank595x841

