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An Abstract of the Thesis of

IBRAHIM HAMZAH NOUR AL DEEN for Master of Physics
Major: Physics

Title: Measurement of Phonon Anharmonicity in Zinc Oxide Using Temperature-
Dependent Raman Spectroscopy

The aim of this thesis is to use temperature-dependent Raman spectroscopy
to study the effect of defects on the anharmonicity of optical phonons in Wurtzite
zinc oxide (ZnO) nanoparticles, which is unexplained by existing theories.

Due to its high piezoelectric properties and exciton binding energy, wurtzite
zinc oxide (ZnO) has long been regarded as a material of choice for piezoelec-
tric transducers and ultraviolet emitters at 300 K. Nevertheless, native defects
in ZnO often lead to undesirable defect levels in the electronic bandgap and
phonon bands, which hinder the commercial applications of ZnO. Therefore, the
origin of the native defects in ZnO has been the subject of much discussion, and
many conclusions about their nature and physical properties have been drawn.
Nevertheless, the effect of defects on phonon dynamics, which have a crucial
role in determining the efficiency of piezoelectricity and even the emission of the
material, is not yet understood. In this thesis, we tackle this issue by using
temperature-dependent Raman spectroscopy. Room temperature measurements
are used to determine first-order and second-order Raman modes. Temperature-
dependent Raman spectroscopy carried out on heated and cooled samples are
used to investigate the anharmonicity of optical phonon of the center of the Bril-
louin zone. Raman line-shape measured in the temperature range 300-1000 K is
fitted to a theoretical model derived on the basis of perturbation theory to re-
trieve the two-phonon density of states. The results show that upon heating, the
defect complexes change their configuration in an irreversible process, resulting
in a strong effect on the two-phonon density of states.
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Chapter 1

Introduction

Materials with special thermal properties are now a priority for scientists and
physicists developing a new generation of optoelectronic devices. As some prop-
erties of materials are temperature-dependent, a clear and wide study should be
done on the temperature-induced changes of the material. In order to understand
heat transport in random materials, we should build our knowledge on the heat
carriers. In our material, the heat carriers are the phonons. It is known that tem-
perature is considered as a perturbation on the harmonic part of the lattice po-
tential, and this temperature changes the population of the various levels for each
specific mode, motivating the change of the lattice parameters. To note here, any
change of a lattice parameter with temperature is referred to anharmonic parts
of the lattice potential. These anharmonic parts in the lattice potential appear
after expanding the potential in a Taylor series of displacement, and become more
active and alter the harmonic part when the temperature is present. The anhar-
monic parts in the potential are embodied by phonon interactions, as the picture
of non-interacting phonons breaks down. Thus, non-equilibrium phonon popu-
lations decay into lower energies, or combine and go to higher energy, inducing
energy shifts in the vibrational modes.

As an effect of the above-mentioned interactions, the phonons’ energy get
shifted from their original values; which is a shift in the frequency, and their
lifetime become shorter. Mainly, their are two ways to measure the frequency shift
and the change of the life-time of phonons. This can be done by Raman scattering,
or by inelastic neutron scattering. Inelastic neutron scattering happens when
an emitted neutron interacts with an atom, and as a consequence it exchanges
energy, so it can emit or absorb energy equal to ~ν which is the quantum of
phonon energy. In INS the neutron has different wave vectors before and after
the interaction, so a technique must be used to determine its wave vector, this
technique is called ”Three Axis Spectrometer” which is considered as the mother
of all crystal spectrometers. This was a brief explanation about INS. For our
measurement, the technique we use to determine the various vibrational modes
in a lattice is ”Raman Spectroscopy”. This method works when light is emitted
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on the sample, so it interacts with the atoms at their lattice sites, and upon this
interaction they exchange energy with the quantum of vibrational modes; the
phonons. The reflected photons are gathered and displayed using the appropriate
tools, so we can gather information related to phonons.

As there is no clear and adequate theory describing anharmonicity and its
effects, first-principle methods and equations where applied to justify some of the
obtained results. The expressions for the frequency and width as a function of
temperature are based on the anharmonic contribution from the Hamiltonian:

HA =
∑

~q1,~q2,~q3

∑
j1,j2,j3

V

(
~q1 ~q2 ~q3

j1 J2 j3

)
A(~q1, j1)A(~q2, j2)A(~q3, j3)

+
∑

~q1,~q2,~q3,~q4

∑
j1,j2,j3,j4

V

(
~q1 ~q2 ~q3 ~q4

j1 J2 j3 j4

)
A(~q1, j1)A(~q2, j2)A(~q3, j3)A(~q4, j4)

(1.1)

With A(~q, j) = a~q,j +a†−~q,j representing the phonon creation and annihilation op-
erators. The effect of the above Hamiltonian is to change the harmonic frequency,
w(0, j) to a damped one w(0, j;ω) as follows:

w2(~0, j;ω) = w2(~0, j) + 2w(~0, j)[∆(~0, j;ω) + iΓ(~0, j;ω)] (1.2)

The term in the brackets is the phonon self energy consisting of real and
imaginary parts. The real part stands for the shift in the peak position, which is
the frequency change, while the imaginary part describes the line-width change.

For material to maintain thermal equilibrium, one should explore the dis-
tribution of optical modes energies, and their associate decay channels alongside
with the decay processes. Raman spectroscopy is used to follow the temperature
dependent Raman shift and line-width of ZnO nanoparticles, and therefore en-
able us to gather more info about the behaviour of the associated optical modes
and their decay processes. In his paper, Cowley [6] discussed the frequency shift
and lifetime change by perturbation theory. In this dilemma, the effect of cubic
anharmonicity was calculated to the second order in perturbation theory, and
the quartic anharmonicity to first order. This helps us obtain the frequency shift
(real part of the phonon self energy), and the life-time change (imaginary part
of the phonon self energy). The effect of cubic anharmonicity on the phonon self
energy is as follows:

∆(qj,Ω) =
−18

~2

∑
q1q2j1j2

∣∣∣V (q q1 q2

j j1 j2

) ∣∣∣2[ n1 + n2 + 1

(w1 + w2 + Ω)p
+

n1 + n2 + 1

(w1 + w2 − Ω)p
+

n2 − n1

(w1 − w2 + Ω)p
+

n2 − n1

(w1 − w2 − Ω)p

]
+

12

~
∑
q1j1

V

(
q −q q1 −q1

j j j1 j1

)
(2n1 + 1) (1.3)
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Γ(qj,Ω) =
18π

~2

∑
q1q2j1j2

∣∣∣V (q q1 q2

j j1 j2

) ∣∣∣2(n1 + n2 + 1)[δ(w1 + w2 − Ω)− δ(w1 + w2 + Ω)]

+ (n2 − n1)[δ(w1 − w2 − Ω)− δ(w1 − w2 + Ω)] (1.4)

In our work, we intend to study the temperature induced changes on the
optical phonon modes of Zinc Oxide nano-particles, so we can fit the results and
analyse the anharmonic effects which are the phonon modes’ response to temper-
ature, and phonon-phonon interactions happening at elevated temperatures, and
the study cooling process of the target material.
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Chapter 2

Literature Review

The objective of this literature survey is to give a general overview of some
important concepts related to the thesis work. We start by giving an overview
about ZnO nano-particles, Raman spectroscopy, phonons as the quantum of the
vibrations in a lattice, origin of anharmonic parts and their effect on the material
and summary of some work done in this field.

2.1 ZnO Nanoparticles Study

2.1.1 Introduction to Nano-technology

The word ”Nano-Technology” has emerged widely in social life, to the stage
that nearly everyone; either concerned in the topic or not, have heard of it.
It was stated by the physicist Richard Feynmann in 1959, in a meeting held
up at California Institute of Technology, when he was delivering a talk entitled
”There is Plenty of Room in The Bottom”, that was directed to the American
Physical Society [7]. In his lecture, he discussed the chances of achieving nano-
sized products formed by atoms as building particles. Years passed and no one
approached the concept given by Feynmann. Until 1974, when the nomencla-
ture ”Nano-Technology.” first appeared by Norio Taniguchi, a professor in Tokyo
University of Science, who talked about this concept in the ”International Con-
ference on Production Engineering ”[8]. He was the inventor of the ”top-down.”
approach, which deals with sequential slicing of bulk material, for the aim of
deforming it to get nano-sized particles. After that, Kim Eric Drexler, who
is an American engineer, came with the ’bottom-up’ approach, a technique for
building nanostructures, which is creating material at the level of atoms ’atom-
by-atom’, then molecule by molecule. He represented his ideas and developments
for nano-technology techniques in his book: Engines of Creation: The Com-
ing Era of Nano-Technology.” Nowadays, the standard production approaches
for nano-particles are achieved through the ”top-down.” and ”bottom-up.” pro-
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cesses introduced by Prof. Noric Taniguchi and Eric Kim Draxler, respectively.
Materials consisting of nanoparticles are highly reactive with eminent physical
properties, this feature is attributed to the increased high surface/volume rate
caused by the formation of nanoparticles, which allows massive number of the
consisting atoms to be on the surface of the nanoparticle, thus the material being
more effective. Some specific materials consisting of nanoparticles tend to show
outstanding physical properties. Therefore a clear and artificial way for creating
this nanoparticles is needed. One of the critical issues in nanoparticles’ growth
is following the various numbers of techniques for the synthesis of these nanopar-
ticles to acquire it to have a uniform shape and size. Seeking simple methods
of synthesising is one important issue to be investigated in nanoparticle growth.
From the time when ”Nano-Technology” first appeared, scientists, engineers and
physicists were included in the research of finding the best routes in achieving
the required nanoparticle shape and size. This synthesis is possible through 3
states of matter: Solid, gaseous media, and liquid (chemical method) [9, 10]. The
favourable method of synthesis is the chemical method because it is of low-cost,
more reliable, and it leads us to good matches of the required nanoparticle mor-
phology. One concludes that, nanoparticles with high surface-to-volume ratio is
of high demand, but the accumulation of the residual small particles in solution
must be taken into account where there is no stabilizers. Regarding this issue,
the presence of stable colloids can help in stabilizing the solution. Furthermore,
the electric repulsion method is generally used in settling down nano-particles
due to the presence of polymer molecular, or any other organic stuff that is at-
tached to the surface of the particles. After listing some of the major advantages
of nanoparticles, we can specify types of nanoparticles, which can be created in
the following form. In the synthesis process, one can create polymer, metal, and
metal-oxide nanoparticles. Among the metal-oxide type, Zinc Oxide is of our
interest.

2.1.2 ZnO Structure

ZnO is a Wurtzite-type crystal; which is a crytsal of hexagonal shape, and it
belongs to C4

6v space group with two formula units in the primitive cell. The
unit cell of Wurtzite ZnO has a hexagonal shape, with two lattice parameters, a
and c. In figure (2.1) [11], we see the structure of ZnO. The two interpenetrating
hexagonal closed packed sublattices are the main components of this structure.
Each sublattice is formed of unique type of atom, either Zinc or Oxygen atoms,
and the sublattices are displaced along the three fold c-axis.
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Figure 2.1: The Wurtzite-structure of ZnO. The big white spheres are Oxygen
atoms, and the small brown spheres are Zn atoms

2.1.3 Synthesis Methods of ZnO NanoParticles

Now it is agreed among engineers, scientists, chemists and physicists that ZnO
nano-structures has wide contributions to many applications. One thinks of the
ways of updating and adjusting the synthesis processes of these nano-structures
to gain control of the various shapes and sizes required to be obtained, including:
Nanorods, nanowires, nanoparticles, and nanotubes [12, 13]....Our focus will be
on the synthesis of ZnO nanoparticles by two different methods:

1. Sol-gel Method. (Solution Method)

2. Hydrothermal Method.

As we research about nano-particle synthesis, we find that in many papers the so-
lution method is adopted to be the main procedure in cooking ZnO nano-particles.
This is because of its low cost, and it is eco-friendly. As I mentioned before, one of
the most important demands in the process is to achieve the required shape and
size. The paper published by Monge et al., reports the organometallic synthe-
sis of ZnO nanoparticles at ambient temperature using the first procedure listed
above. The basis of this procedure is the disintegration of the organometallic
precursor into oxidized materials in the air. It is found in a report [14], that the
formation of ZnO nanoparticles with a random shape and size is done by keeping
the compound solution [Zn(c−C6H11)2], named dicyclohexylzinc(II),in tetrahy-
drofuron (THF), at room temperature in the open air. This formation of ZnO
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is a repercussion of the evaporation of the solvent that leaves white residues at
the bottom, that is found to be agglomerated ZnO nanoparticles after checking
it using X-ray diffraction (XRD). This led Monge et al. to utilize a new exper-
imental condition to get well defined ZnO nanoparicles in shape and size, this
was done using hexadecylamine (HDA) under Argon atmosphere, and it showed
good results. From the study, it is found that the shape and size of the nanopar-
ticles are affected directly by several conditions. These conditions play a role
in defining the shape and growth rate of ZnO nanoparticles, and we found the
most prevailing conditions to be: The relative and the total concentration of the
ligand, the time taken of the evaporation process and its relative temperature,
the reaction time, the solvent, and the reaction temperature. Add to that the
open dry air effect on the reaction. When the reaction is done in the mentioned
medium, the nanoparticles are created with no specific shape and size. More
detailed results are available in figure (2.2). In figure (2.2(b)), we can see the for-
mation of homogeneous nanodisks of average size equal to 4.1 nm, this is a result
of slow evaporation in (THF), otherwise if we replace THF by toluene or heptane
we get istropic shapes with average size of 2.4 for heptane and 2.6 for toluene.
Figure (2.2(c,d)) shows the results of substituting HDA with dodecylamine (c)
or octylamine (d), the outcomes are nanodisks of mean diameters of 3 nm and 4
nm respectively.

After this work, the studies by Kahn et al. [15] shed the light on the impor-
tance of the solvent in deciding the shape of ZnO nano-structures. Furthermore,
Andelman [2] specified the dependence of the solvent type on the nano-structure’s
shape. He used three different types of solvents and obtained three different
shapes. The spherical nanoparticles shape is obtained by using 1-octadecene
(OA), whereas nanorods is a result of using trioctylamine (TOA), and the third
solvent which is 1-hexadecanol (HD) resulted in nanotriangles. The nanoparti-
cles’ size ranged from 12-14 nm.

Extending the work on the formation of ZnO nano-structures, Ayudhya et al.
[3] showed more effects of the solvent on ZnO products. The study introduces
four types of organic solvents :
1.Alcohols
2.Glycols
3.Alkanes
4.Aromatic

The synthesis relies on suspending the Zinc acetate in these different types of
solvents and then cooking them in an autoclave in a range of 250−300C◦. This is
a solvent dependent method. One concern in the formation of ZnO nanoparticles
emerges from the possibility of the decomposition of the Zinc acetate precursor
to form Zinc nuclei. This assumption has bee taken into account by studying the
stability of Zinc acetate through its interaction with the solvent [16, 17]. One
important note to be mentioned here is the dependence of the shape of ZnO
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Figure 2.2: TEM micrographs of ZnO nano-structures. (a) ZnO nanorods grown
under standard conditions. (b) The result of slow oxidation process (2 weeks) in
THF which gave ZnO nanodisks.(c) Standard condition reaction, but with using
DDA isntead of HDA, also for ZnO nanodisks.(d) Standard condition reaction by
using OA instead of HDA.[1]

nano-objects on the length of the alcohol molecules’ chain, with this feature is
not present for the other 3 solvents. The dielectric constant emerges into the
picture of synthesis, it is required by solvents having low-dielectric constants to
be cooked at high temperature , which is the case of n-alkanes and aromatics
compounds, whereas low temperature (250◦) is required for high dielectric con-
stant compounds as glycols and alcohols. The retard and delay of the growth
of the crystal is attributed to the adsorption of the negatively charged molecules
over the the positive ones represented by Zn, this process happens at the facet
(0001) of the crystal. A similar process occurs upon using glycols as solvent which
lead to the formation of ZnO nanoparticles instead of ZnO nanorods. See figure
(2.4). Also the use of long chain alcohols as solvents has given good quality of
ZnO nanoparticles in size and shape, this is a direct consequence of the unpo-
larized nature of alcohols used. This experiment gave much credit to the value
of the dielectric constant of the used solvent on deciding the morphology of ZnO
nanoparticles, but this is not enough, as more experiments are needed to be more
specific about the characterizations of the wanted nanoparticles. One of these
needed experiments is done by Kawano et al. [18], its study area was to discover
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Figure 2.3: XRD measurements of ZnO nano-structures. (a)Triangles, (b) Spher-
ical nanoparticles, (c) Nanorods. [2]

the effects of using basic and acidic solutions on the morphology of ZnO.

Figure 2.4: SEM micrographs of ZnO nanoparticles, synthesized by solvothermal
process.n (a) 1,3-propanediol, (b) 1,4-butanediol, (c) 1,5-pentanediol, and (d)
1,6-hexanediol.[3]
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2.1.4 Applications Of ZnO Nanoparticles

In general, nanoparticles have massive contributions to biomedical applications.
They possess unique physicochemical characteristics where this feature is com-
ing from their high surface-to-volume ratio, which gives them the upper hand
against bulk materials. The use of the name nanomedicine is attributed to the
utility of various materials of nanoparticles in curative and diagnostic strategies.
This comes from the advantage of their low scale dimensions; about (10−9m), so
this increases the possibility of them to interact with the cell membrane, nucleic
acids and proteins, that are of the same size. Scientists took charge of developing
and creating material nanoparticles, like Au NPs (gold nanoparticles), silver and
platinum nanoparticles. Also, they managed to synthesize metal-oxide nanopar-
ticles as (ZnO, TiO2, and CuO), never to forget the quantum dots and lanthanide
nanoparticles. Among these materials; and many others, ZnO nanoparticles are
the most used ones for their various biomedical applications. As it is obvious
in this chapter, we intend to focus on the use of ZnO nanoparticles in versatile
medicinal applications. The branches of medicinal applications are wide, ZnO
can contribute to wound healing, anticancer activity, drug delivery, bioimaging,
and antimicrobial activity [19].

Anti-Cancer Drug Delivery

One important advantage of using nano-particles in drug delivery is to reduce
the overall amount of drugs, thus minimizing size effects. ZnO nano-particles are
favorable to this mission due to their low toxicity and biodegradable character-
istics. In this anti-cancer treatment, various types of drugs such as paclitaxel,
curcumin and doxorubicin are loaded onto Zinc Oxide nano particles to enhance
the solubility, toxicity and effective delivery to cancer cells.

Anti-Bacterial Activity

As mentioned before, ZnO nano-particles has high specific surface area, and
they are active to prevent large amount of pathogenic agents. Their antibacte-
rial activity causes death to the bacterial cells, this is because of the ability of
ZnO nano-particles to accumulate in the outer membrane or cytoplasm of the
targeted cells, and by triggering large amount of Zn+ that affects the bacte-
rial cell[20].Tests are done on Gram-negative Escherichia coli and Gram-positive
Staphylococcus; which are bacteria, to assess the effect of ZnO on the bacterial
cells.

ZnO Used In Bio-Imaging

ZnO nano-particles contribution to bio-imaging field comes from oxygen vacan-
cies. This vacancies causes the nano-particle to have green or yellow luminescence
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and efficient blue emission. Xiong et al. prepared ZnO polymer core-shell nano-
particles or the first time. The feature of his new invention is the high quantum
yield and very stable broad photoluminescence of the ZnO nano-particles in aque-
ous solutions [20]. The ZnO-1 has size of 3nm, green luminescence and is derived

Figure 2.5: The first image is the high-resolution transmission electron mi-
croscopy (HRTEM) image of the ZnO polymer core-shell nano-particles. The
second image is the aqueous solution of ZnO-1 and ZnO-2 under UV light. the
middle part is the DIC picture and the fluorescent image of the human hepatoma
cells labeled by ZnO-1; and the lower part is the DIC picture and the fluores-
cent image of the hepatoma cells labeled by ZnO-2. Copyright 2008 American
Chemical Society.

from LiOH. While ZnO-2 is of 4nm , has yellow luminescence and is derived from
NaOH. What is important to mention here, is that these two ZnO polymers did
not cause any damage to human hepatoma cells when their concentrations were
less than 0.2mg/mL. The cell kept functioning around 45 minutes with very sta-
ble luminescence. From here we can say that ZnO polymer has presented itself
as a cheap and safe luminescent label, also they can be used as fluorescent probes
for cell imaging in vitro [21].
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2.2 Raman Spectroscopy

2.2.1 The Basics

The technique is named after the Indian physicist Chandrashekhara Ventaka
Raman, the man who started his work concerning light scattering back in 1922
when he published his paper ”Molecular Diffraction of Light”. After some seri-
ous work by him and his collaborators, and in 1928, he discovered the inelastic
scattering of light with matter and its effects, leading him to win the Nobel Prize
in Physics in 1930.

One of its features is to determine the vibrational modes of materials, that
are illuminated by a laser beam of some power [22]. The laser beam which is an
electromagnetic radiation strikes in a molecule, and interacts with the electrons
distributed on the electronic clouds outside the nucleus. The interactions with
electrons change the electronic property of the material, and it distort/polarize
it, thus the electrons form an unstable and transient virtual energy state.

During the light-matter interaction, a very small amount of the photons
heading from the photon cannon which is the laser, reach and collide deeply
with the nucleus of the material, which could be in the ground state or in an
excited vibrational state. Hence an exchange of energy between the photon and
the molecule occur, causing an energy and frequency shift of the scattered light.
The photons of the laser beam (~k ≈ 0) interact inelastically with phonons (~ki)
causing a shift in their energy, which is a shift in the frequency. From momentum
conservation rule we see

i=n∑
i=1

~ki = ~kscattered − ~kincident ≈ 0 (2.1)

Therefore only optical phonons with ~k ≈ 0, which are located in the center of the
Brillouin zone, are allowed to interact with the incoming photons. Then these
photons are accumulated to the camera, that displays the data in our computer
where the data is observed. When the scattering happens, molecules are excited
to an intermidate state called the virtual state, these molecules can relax back to
3 possible vibrational states (see figure 2.6) [23])

1. Their initial state.

2. A higher vibrational state.

3. A lower vibrational state.

The first possibility is called Rayleigh scattering. It occurs when an elastic col-
lision happens, and we are not interested in this type of scattering since no fre-
quency shift occurs, also it causes fluorescence. The second possibility is known
as the ”Stoke’s frequency shift” when the molecule decays to a higher vibrational
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Figure 2.6: Vibrational States of Molecule Excitation

state than the one it was excited from (which is the lowest state). This possi-
bility is of interest since it shows a frequency shift. The third possibility called
the ”Anti-Stoke’s frequency shift” also shows the frequency shift needed and it
reduces fluorescence, but the price we pay is in the intensity.

This paragraph is to discuss fluorescence mentioned before, that is a diver-
gence from Raman spectroscopy. Fluorescence is the noisy light that appears and
disrupt our figure of the proper inelastic scattering. The cause of it, is when a
molecule gets excited to a new energy level; not to an intermediate virtual state
as mentioned before, but to an excited electronic energy state, and upon this
excitation; by nature, it gets back to the electronic ground state (see Figure 2.2).
When the molecule gets back to the ground state from the excited state it emits
a Rayleigh photon and this photon causes the fluorescence. The molecule gets
excited to the higher vibrational energy state in the excited electronic state be-
cause of Frank-Condon principle[24], then it rolls down through the vibrational
states to emit a photon and relaxes back to the ground electronic state. The
critical point here is the efficiency, which can be very high compared to Raman
photons. If the molecule has an energy level that can absorb the photon, it will
preferentially do that and cause fluorescence, and this means that this efficiency
is so high and a lot of photons are inefficient for Raman. One way to get rid of
fluorescence is to burn the electronic levels by emitting photons to bleach it, this
is called photobleaching, but it comes with a risk of damaging the molecule, so we
will look for another technique to reduce fluorescence. One can notice that the
photon gets back to the higher vibrational state of the ground electronic state,
which means that it is lower in energy than the energy that excited the molecule
just like Stoke’s, where anti-Stoke’s is on the other side. One piece is missing
that is the Boltzmann distribution, the anti-Stoke’s intensity has the form of
exponential decay, it is because for it the energy difference of the levels become
bigger and bigger which is less likely for the molecule to occupy higher states.
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Figure 2.7: Fluorescence

2.2.2 Theoretical Basis

In this section, we intend to discuss the theoretical basis of what causes a
molecule to scatter a Raman light. A molecule; which we assume to be diatomic,
can undergo what is called ring breathing when the atom-atom bonds all stretch
at once and the molecule just breaths. If we think back to Infrared, the fun-
damental rule of IR is that there must be a change in the dipole moment ~µ.
Mathematically the intensity of this is proportional to

Iα

∫
ψ∗ ~µψdτ

Where ψ∗ is the excited wavefunction and ψ is the ground wavefunction. If the
dipole moment change is zero, then all of the above is zero and we do not see the IR
spectrum. In Raman, we are not looking at the dipole moment. Instead, we look
at the polarizability. Polarizability is the ability to polarize, which is the ability
of an incident electric field to generate a dipole in the molecule, this property
is material dependent, in which the molecular structure and the corresponding
bonds defines the polarizability of the material. Imagine when the molecule ring
stretches it becomes a bigger molecule, the electronic cloud associated with it
moves out, now that is a polarizability change, and the way it is written

~µInd = ~α. ~E (2.2)
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Where α is the polarizability tensor and E is the strength of the electric field
from the incident electromagnetic wave. When we illuminate an elecromagnetic
field on the matter, the orbits on which the electrons are moving are perturbed
periodically with the same frequency as the incident electric field[25]. Now the
separation of the charges is caused by the oscillation of the perturbed electronic
cloud. The oscillating dipole moment is pronounced for the source of electromag-
netic radiation that scatters light. A massive amount of light is scattered with
the same frequency of the incident one; that what we called Rayleigh scattering,
and another small amount scatter with different frequency that is Raman active.
So the point here is that we are not dealing with dipoles but with induced dipoles
caused by polarisability change.

We can write the polarisability tensor as function of normal coordinates Q,
where

Q = Q0cos(2πνvibt) (2.3)

So that the polarisability is written as (using Taylor expansion) [26]:

αij = α0
ij +

(∂αij
∂Q

)
Q=Q0

.Q (2.4)

The polarisation is as follows:

P = ~α× ~E0cos(2πνlast) (2.5)

Pi =
∑
j

αij × Ej =
∑
j

[α0
ijE0jcos(2πνlast) +

E0jQ0

2

(∂αij
∂Q

)
Q=Q0

× [cos(2π(νlas − νvib)t) + cos(2π(νlas + νvib)t)] + ... (2.6)

We can see from equation (2.6) the elastic(ν = νlas) and inelastic parts (ν =
νlas + / − νvib) of light scattering . The first part is responsible for Rayleigh

scattering, and the second parts happens when
(
∂αij

∂Q
6= 0

)
, which is when vi-

brations change polarisability, therefore the intensity proportionality for Raman
scattering is different from zero [27].

From the electromagnetic theory of radiation from an oscillating dipole mo-
ment, we conclude that Raman lines has Lorentzian shape according to the fol-
lowing formula of the intensity and frequency :

I(ν̃) = I0 ×
∫
BZ

d3~k

[ν̃ − ν̃(~k)]2 +
(

Γ0

2

)2 (2.7)

Where ν̃(~k), is the dispersion branch for the selected mode, and Γ0 is the intrinsic

full width at half maximum. Also the term d3~k is an adjustable term to the
shape of the material. We can see the contributions from electrical term (the
polarisability αij), and the mechanical term (νvib); from I0, which explains here
the sensitivity of Raman spectroscopy to these additional contributions, such as:
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1. Electrical terms: Charge transfer (band structure, and ion-covalency .....)
will change as an aspect of the vibration induced charge variation.

2. Mechanical terms: Material geometry, atomic mass, and bond strength will
identify the peak positions.

2.2.3 Building The Raman System: Lasers

Since in fluorescence,we were talking about excited Energy levels and how to
avoid the excitation of the molecule to these levels, then we should consider the
cause of this excitation which is the laser. When building the Raman setup,
the laser plays a massive role in terms of the quality of the data collected. So,
choosing the laser should get under a proper level of understanding the effect
of the laser beam in the interaction with the molecules. As mentioned before,
fluorescence is caused by the photon emission from the excited electronic level due
to the excitation of the molecule to this level. The first idea to avoid fluorescence
is obvious, that is to use a laser that does not have enough energy to get the
molecule to the excited state. If the laser is low in energy such that the molecule
will end up in the intermediate virtual state rather than the real excited electronic
state, then the molecule will not fluoresce, which is no need for it to emit a photon.
From here we consider using a green laser of less energy power which is higher in
the wavelength , so will come up short in the fluorescence level, and now we are
in the virtual state (see figure 2.8 [28]), and we will end up in Raman scattering.

Figure 2.8: (a) Energy level diagram for Raman scattering and fluorescence emis-
sion; (b) temporal variation of excitation, Raman scattering and fluorescence
emission.

Merchants offer laser of wavelength 785nm that are low in energy, this sounds
really good, but why we don’t use the 785nm laser and get the job done? First
rule in spectroscopy: You never get something for nothing. Here relies one of
many compromises that have to be made in Raman spectroscopy. The efficiency
is proportional to the inverse of the fourth power of the wavelength.
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Efficiency =
1

λ4

So as the laser wavelength gets larger, the Raman efficiency plummets, here we
see the trade off. With fluorescence we want the long wavelength so the material
will not fluoresce, but for efficiency; the Raman scattering efficiency that actually
gets to the detector, becomes low, depending on the molecule. As a user one has
to know how to balance these two issues, which is to know what laser to use.

2.2.4 Raman Sensitivity to Polarization

There is also one subtlety in Raman spectroscopy which we will explore now;
it is polarization. Let us just not confuse this with what we have said before,
polarisability. Polarisability has to do with the ability to cause change in the
electronic cloud, while polarization has to do with the polarization of the light
being vertical or horizontal. What we will talk about here is how the Raman can
be sensitive to the polarization of the light or polarization of the scatter.

One way that a molecule can move is by what we call the normal mode; this
normal modes are represented mathematically by ”q” in the literature. They de-
fine the linear independent ways that a molecule can vibrate. For instance, let us
take a molecule with atoms forming bonds with other atoms, for a specific struc-
ture of this molecule and specific normal mode, this molecule can go symmetry
stretching. Now that does not change the dipole, if we look to the IR spectrum,
we will see nothing there, but it does generate a sizeable Raman peak. The other
interesting thing is when we stretch these bonds; weather they are stretching or
compressing; either way, it does not change the symmetry. The molecule has to
be mathematically correct about it to have some type of symmetry, and when it
is stretched it maintains its shape. Because of this, when we look at the Raman
scattering from the molecule if we use a laser that is polarized (Ivv or Ivh); let us
say polarized vertically, and the detector channel is also polarized vertically ( that
is called Ivv, where the first index stands for light polarization and the second
for the detector) so we have four different combinations of polarization. Now in
case of vv, if we look at the mentioned type of normal mode that maintains the
molecule’s shape, we see a large peak for Raman signal, but for vh we see almost
nothing, and that is the key: The polarization of Raman scattering is sensitive
to this symmetry of the molecule. Polarization is also sensitive to the alignment
of molecules if the molecules are aligned on the surface and we hit them with
vertically polarized light that lines up with the molecules, we will see a strong
Raman scattering. If we rotate the laser’s polarization we will not see a strong
Raman scattering. The idea of polarization is that if the symmetry is maintained,
we get a polarized peak, while if it is broken, we get a depolarized ratio. In my
research I used non-polarized laser light, where for this all the spectrum; which
is the vibrational modes, appear on the screen.
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2.2.5 Raman Instrumentation

Laser

Let us just look at Raman instrumentation from a classical point of view (see
figure 2.9). First of all, we need a photon cannon which is the laser. Earlier, they
used Mercury lambs or Xenon lambs to have the work of a photon source, but why
now we choose lasers? The key is, in order for the Raman peaks to come out with
natural line shape, we need to have a source that is very narrow energetically.
If that source has broadness (like a white light), then the emission will have a
broad shape, so instead of having sharp peaks, we will see peaks that are shaped
like the source. The advantage of the laser is two-fold: One, it has the narrow
linewidth (like a spike almost). Second, it has lots of photons. The massive
number of photons have their advantage in a way by dealing with the efficiency
of Raman scattering. As we discussed before, we saw that Rayleigh scattering
and fluorescence are more efficient than Raman scattering, so the added amount
of photons enhances the chance for a photon to get inelastic scattering so that
these photons can accumulate and show a Raman peak at some frequency.

Figure 2.9: Raman Instrumentation

Polarizer

We should have a polarizer that polarizes the beam coming in. The light is
then collected by some lense and focused on the entrance slit, but we should have
one added thing here, that is the analyzer. The analyzer (which is the second
polarizing element) that allows us to go through the different combinations of
polarization.
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Rayleigh Filter

The other thing that we will be putting here, and it is frequently put just right
in front of the entrance slit of the spectrometer is the filter. We have to have the
filter to eliminate the Rayleigh light because if we do not eliminate this light, it
will get into the detector and burn it up.

Grating

The next thing is that light enters to some sort of diffraction element, the sim-
plest is the grating. This diffraction grating spreads the light out over its spectral
range, so now we have light all coming together, then spread out. We get the red
light coming at some angle, the green light coming at a different angle, and the
violet light coming at a different angle also, now they are spread out.

.

Detectors

Charge couple device (CCD) detectors are commonly used in Raman machines
and so this detector has its duty in our setup. It is an array detector of silicon
based multichannel array which are sensitive to light, and it allows multichannel
operations giving a chance for detecting the spectrum at once. The light is
diffracted from the grating toward the arrays of the CCD, noting that the spectral
range depends on the length of the array and focal length of the spectrograph.

2.2.6 Raman Opto-thermal Technique

One other use of Raman spectroscopy is to determine the thermal conductivity,
this was attributed to the successful work of Balandin and co-workers. Thermal
conductivity is defined by Fourier heat law q = κ.δT , where q is the heat flux
density, δT is the temperature gradient along some region, and κ is the ther-
mal conductivity. Thermal conductivity varies with temperature, also for it is
direction-dependent. As we know, thermal conductivity describes how well heat
is conducted through different materials. From here, we should engage heat car-
riers which are responsible for heat conduction. Heat carriers can be the free
electrons or the phonons ( The vibrational modes in a lattice), which means that
both can contribute to the thermal conductivity of the material. The methods
of measuring thermal conductivity can be divided into two groups:
i) The Transient Method
ii) The Steady-State Method

The transient way is a time-dependent technique, where the ”laser flash” and
the ”3w” methods are an example of this process. Balandin and co-workers in-
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troduced this technique for measuring the thermal conductivity for single layer
graphene [29]. Raman technique analyzes photons coming to the detector after
interacting with the lattice vibrational modes demonstrated by phonons; after
this inelastic scattering, we observe the energy exchange. The Raman laser is a
photon cannon that acts as a temperature source by its power ability. To conduct
thermal conductivity exploiting this technique, two steps should be done. At first
we modify the laser power and observe the Raman active peak shift. Secondly, to
correlate the Raman peak shift to the temperature of the laser beam, we follow
this shift by means of an external heat source after lowering the power of the laser
to a minimum value which ensures that no heat is induced by the laser. Now
we can obtain the slope ξ, that relates the temperature change with the power
change δT = δw/ξ. This parameters are used to extract thermal conductivity
upon solving the heat diffusion equation. One more parameter is needed which
is the absorption power of the material. This technique is not restricted to the
dimensions of the material, it can be examined on 2 dimenional, Bulk and 1D
materials.

2.2.7 Raman Study of ZnO Crystal

ZnO has presented itself as a considerable competitor in UV optoelectronic
devices and in the electronics domain. Its wide-bandgap semiconductor (3.4 ev)
and large exciton binding energy (60 ev) made ZnO have some fundamental
advantages over GaN[30]. ZnO is a Wurtzite-type crystal, and it belongs to
C4

6v space group with two formula units in the primitive cell. Since Raman
spectroscopy works on q=0 phonons, we investigate the zone centre optical phonos
and find them to have the following irreducible representation: Γopt = A1 +E1 +
2E2 + 2B1. The B1 mode has no appearance neither in Raman nor in infrared
setups, A1 and E1 modes are polar and both Raman and infrared active, while
E2 modes are non-polar and Raman active only.

The study of the vibrational properties and the dynamics of heat carriers
movements in a material boosts our knowledge on the criteria governing heat con-
ductance. To get deep in the vibrational properties of the materials, we should
realize its phonon population of different levels, which has a direct effect on the
efficiency of high-speed optoelectronic devices [31]. Raman inelastic scattering
measurement is a fast, non-destructive and a perfect technique in assessing the
quality of a wide-bandgap semiconductor, it studies the phonons lifetime and
it investigates specific aspects of lattice dynamics. Raman introduced itself as
a perfect temperature probing technique for materials during device operations.
The discovery of the different mechanisms of light-material scattering interactions
ignited researchers to study these effects for various materials utilizing Raman
spectroscopy. Damen et al started ZnO Raman measurement back in 1965 [32].
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Continued by Arguello et al [33] who sought different geometries of ZnO and re-
ported on Raman peaks, he obtained all Raman active mode frequencies using
selection rules.Few years passed, and Calleja and Cardona [4] presented the reso-
nant behaviour of the high frequency E2(high), A1(TO) and E1(TO,LO) modes.
Lately, an ab−initio density functional theory (DFT) was published, that helped
more in understanding the available data possible.

2.2.8 First-Order Raman Spectrum of ZnO

In the following sections we intend to discuss the first and second order Raman
spectrum of ZnO crystal, and their associated symmetries. The E2 high mode
frequency shows an asymmetry in its corresponding line shape. This asymmetry
is justified by the sharpness of the edge of the two phonon density of states near
the E2 high frequency. The Raman spectroscopy line-shape; thus full width at
half maximum value, could be observed with some uncertainty. The instrumental
broadening correction is calculated by using this formula:

∆L = ∆− ∆2
G

∆
(2.8)

Where in this equation ∆ is the full width at half maximum measured on the
Raman spectrum, and ∆L is the intrinsic FWHM. In the paper ”Temperature
Dependence of Raman scattering in ZnO”, Cusco et al. [34] found the instrumen-
tal width to be less than 1 percent of the measured one. In this paper, the first
part of the author’s work is to report the Raman peaks of ZnO with their asso-
ciated symmetries using polarized Raman scattering measurements in different
configurations. The results of the associated Raman active modes are displayed
in table (2.1). Their associated Raman tensors are:

Scattering geometry E2 A1(LO) A1(TO) E1(LO) E1(TO)
z(xx)z̄ A A
z(xy)z̄ A
x(yy)x̄ A A
x(zy)x̄ A
x(zy)y A A

Table 2.1: Raman Active Modes
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E
(1)
2 =

d 0 0
0 −d 0
0 0 0

 E
(2)
2 =

0 d 0
d 0 0
0 0 0


E1(x) =

0 0 c
0 0 0
c 0 0

 E1(y) =

0 0 0
0 0 c
0 c 0


A1(z) =

a 0 0
0 a 0
0 0 b

 (2.9)

Where the coordinate in parenthesis represents the polarization type of the asso-
ciated phonon. The E1(LO) mode is the only mode missing in the backscattering
geometry, unlike the other modes, from which all are derived from the Raman
tensors. The cause of the absence of the E1(LO) mode is due to the change of the
phonon polarization and the polarizability components involving z components
in the vibration, which makes this mode untraceable. On the other hand, the
observation of this mode is achieved by the scattering configuration of symmtery
x(zy)y, in which the components here are non-vanishing. Figure (2.10) aids this
discussion, also it shows polarized first order Raman spectra.

As observed from figure (2.10), in the back-scattering configuration z(xx)z̄,
the dominant modes are the E2 low and E2 high modes, belonging to the (E2 + A1

symmetry). The E2 low mode, attributed to the Zn motion, is observed at 99cm−1

and it shows very narrow line-width. The second observed peak is for E2 high
vibrational mode and it is detected at 482 cm−1, it shows a clear asymmtery in
the direction of low frequency region. Although the work of Calleja and Cardona
[4] denied the observation of the A1(LO) mode for excitation wavelength greater
that 406.7nm, where here in this work the excitation wavelength is 514.5nm
corresponding to Ar+ laser, and the A1(LO) peak is observed at 574cm−1. An
additional peak is observed at 333cm−1 which is a second-order Raman peak and
will be discussed later. In the second configuration geometry x(yy)x̄ (E2 + A1

symmetry), the E2 modes appear with high intensity, but an extra peak appears
at 378−1 which corresponds to A1(TO) mode. An extra peak exists having a
frequency 410cm−1 in the x(zy)x̄ spectrum (E1 symmetry), which is attributed
to E1(TO) mode. Finally for the last configuration, the E1(LO) mode is observed
at 590−1 in the x(zy)y spectrum. This last observed mode (E1(LO)) marks the
mode with the highest frequency in the first-order Raman spectrum of ZnO, which
appears to have a frequency greater than of (A1(LO)), of value 16cm−1. This
is unnoticed in DFT calculations, in a way that this calculation has predicted
that E1(LO) mode to be lower from A1(TO) mode by 4cm−1. A scarce intensity
corresponding to the E2 mode appears in both configurations x(zy)x̄ and z(zy)y,
this could be due to the contribution of some x components in the z polariation
direction caused by misalignment of the sample.
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Figure 2.10: First order Raman study of the A1 +E2 +E1 scattering geometries
at room temperature.

2.2.9 Second Order Raman Spectrum of ZnO

The first order Raman scattering results from the interaction of the incoming
electromagnetic wave represented by its quanta; the photon particle, with the
zone-center optical phonons of q = 0. The scattered photons in the second-order
Raman scattering have had interacted with phonons from the entire Brillouin
zone. This spectrum is determined by the phonon density of state (DOS), and
by using the selection rules of two-phonon scattering. The selection rules are
reported by Seigle et al. [35], on the other hand the DOS were determined by
DFT calculations by J. Serrano [36]. All first order and second order Raman
peaks of ZnO are shown in figure (2.11) the results are reported by Cusco et al.
and compared with the results from [4].

The DOS calculated using DFT calculation shows a frequency gap be-
tween acoustic and optical phonon frequencies. The gap starts from 270cm−1

to 410cm−1. Therefore, we can divide the second order spectra into 3 regions.

1. Region One: Dominated by acoustic phonons overtones, and it is in the
frequency region from 160-540cm−1.

2. Region Two: It is a high frequency region where the optical phonons over-
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Figure 2.11: First and second order Raman spectra of ZnO and their symmetries,
compared to ref [4], the symmetries in parenthesis represents lower intensities of
the dominant symmetry configuration.

tones prevail on other branches and this region extends from 820-1120cm−1.

3. Region Three: This region is the intermediate region in the frequency
range 540-820cm−1, and it contains both branches, the optical and acoustic
phonons.

As mentioned before, the identification of the second-order Raman spectra is
obtained by using phonon dispersion and selection rules for two-phonon Raman
scattering. Figure (2.12) shows the temperature dependence of the second-order
Raman peaks of ZnO in the z(xx)z̄ polarization. It shows an eminent peaks
corresponding LO overtones, and other combinations of this branch, noting that
this branch is in the high frequency region. Another wide peak of high intensity
at 1158cm−1 includes contributions from 2E1(LO) and 2A1(LO) modes, and it
is situated at the Γ point in the first Brillouin zone. One other possibility of the
origin of this peak comes from the scattering of 2LO by mixed modes from the
flat bands along A−L−M line. Directly below this frequency, a peak is observed
at 1105cm−1 at the H and K points which refers to 2LO. In the first section
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we mentioned that a mismatch between DFT calculations and measured spectra
has been observed for sequence of E1 and A1 (LO) modes, in a manner that
measured spectrum shows that E1(LO) mode exceeds A1(LO) mode by 16cm−1,
whereas calculations show that E1(LO) comes before A1(LO) by 4cm−1. Add to
this ambiguity, DFT calculation despises LO frequencies in general, which implies
that the calculated Raman peaks in this region are lower than the measured ones.
In high frequency region, two shoulders of the prominent peak at 1158cm−1 exist
at 1044 and 1072 cm−1, specially at low temperature. The firt peak at 1044cm−1

is assigned to TO+LO combination in the points A and H in the Brillouin zone.
The second peak at 1072cm−1 also is attributed to TO + LO combinations but
it is located in points M and L in the Brillouin zone. A weak band appears at
980cm−1 which is from TO overtones, one thing we realize here is that LO modes’
scattering efficiency is greater than the processes of TO modes.

Figure 2.12: Temperature dependence of second order Raman peaks in ZnO.

Having finished the analysis of the peaks in the high frequency region, we
move to the low-intermediate frequency region, where multiplicity of structures
appear there. To get familiar with their symmetries, figure (2.13) shows the peaks
in this region with their associated symmetries. The most eminent peak is at
333cm−1, which was thought to be TA overtone at point M in the Brillouin zone.
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However in figure (2.12), we observe the temperature dependence of this peak and
it appears to show a difference mode. The 333cm−1 frequency happens to be the
difference between E2 high and E2 low modes. According to the notation in [35]
the difference mode contains symmetry Γ6⊗Γ6 ⊃ A1. Figure (2.11) gives further
justification of this peak, when it shows peaks corresponding to their symmetry, it
indicates that the symmetry of the 333cm−1 mode is dominated by A1 symmetry,
and small contribution appear from E2 symmetry, and even smaller peaks emerge
from E1 symmetry. DFT calculations show that this peak could also belong to
some contributions from [TO − TA]A,L,H differences. On the other hand, the
contributions from the theoretically justified symmetry has to make this peak
of higher frequency and to have E1 symmetry. In order to explain the origin of
this peak, figure(2.13) shows the Raman intensity of this peak renormalized to
its room temperature intensity, and we compare it with 2 calculations: First, the
statistical occupation factor of the Ehigh

2 − Elow
2 mode. Secondly, the statistical

occupation factor for TA overtones. For the first calculation we use

ρ(T ) = [1 + n(Ehigh
2 )]n(Elow

2 ) (2.10)

Where n(E) displays Bose-Einstein distribution. The statistical occupation num-
ber for the second calculation, which represents TA phonon is, ~wTA = 160cm−1.
This calculations are represented in figure (2.14). The graph shows that the sta-

Figure 2.13: Second order peak of ZnO obtained for different scattering geome-
tries. From botton to top, x(zy)x̄, z(xy)z̄, x(zz)x̄, and z(xx)z̄.

tistical occupation factor of Ehigh
2 –Elow

2 difference mode best fits the experimental
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data, therefore the assumption of the 333cm−1 mode to have A1 symmetry is cor-
rect. A weak peak appears at 284cm−1 which is temperature dependent peak,
because at room temperature it appears with weak intensity, but its presence
disappears at lower temperature, this suggests the possibility that this peak is a
difference mode peak. We look at figure (2.13) to define the symmetry of this
peak, it shows A1 symmetry. Many difference modes give the value of the asso-
ciated frequency of this peak, but not all of them show same symmetry. This
suggests that this peak can only be attributed to the Bhigh

1 −Blow
1 difference mode.

The two peaks at 483 and 536cm−1 show A1 symmetry, and are attributed to LA
overtones alone M −K and L−M −H.

Figure 2.14: Intensity of the second order peak at 33cm−1 normalized to its value
at room temperature. The dashed line represents the calculation for the difference
mode Ehigh

2 − Elow
2 , while the dotted line is for TA overtones around point M

In the intermediate region, we find combinations from acoustic and optical
phonons. In this region, one observes a peak at 618cm−1 that is TA + TO at
H and M points. Also, this combination gives birth to a doublet observed at
657-666cm−1, which have E1 and E2 symmetry for the first at 657cm−1 and A1

symmetry for the second. As in intermediate region we have peaks attributed
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to combinations from both acoustic and optical phonons, this peaks are of low
intensity and are shown at 700, 723, 745, 773, and 812cm−1. This peaks are
common for having A1 symmetry, whereas the peak at 700cm−1 is caused by
LA + TO combinations at point M , on the other hand, the last peak in this
region is from LO + LA combinations at L and M points.

2.3 Anharmonicity

2.3.1 Introduction

We analyze a crystal with N atoms to have 3N degrees of freedom, each demon-
strating a normal mode. As we describe the photon to be the quantum of the
electromagnetic wave, we treat the phonon to be the quantum of energy for
the normal mode of vibration, although it is a quasi-particle, we associate to
it a quasi-momentum ~q. The term quasi-particle is in its place here since the
phonon’s momentum is coded in the q wave vector, which cannot increase indef-
initely. When the phonon holds energy equals to ~G (where G is the reciprocal
lattice vector), Brag reflection takes place, and ~G momentum is transferred to
the whole lattice. As in the previous treatment for the crystal, it was approx-
imated to have non-interacting phonons, where only nearest neighbours of an
atom are allowed to exchange energy with it, linked by the force constants be-
tween them. The real picture differs from this one, as in this approximation, only
the harmonic part of the lattice potential is active, and most of the results are
derived from it, but there exists the anharmonic part upon expanding the lattice
potential in Taylor series in powers of displacement. When the anharmonic terms
appear, the temperature of the lattice increases and the anharmonic terms act as
a perturbation on the harmonic part of the lattice potential, hence altering the
lattice parameters, and changing the lattice constants. We intend now to dis-
cuss the lattice Hamiltonian of a 3D lattice, taking into consideration the lowest
anharmonic terms in the potential and following the phonon-phonon interaction
caused by the anharmonic terms.

2.3.2 Model of Vibrational Diatomic Lattice

We consider linear chain of two types of atoms of masses M1 and M2.
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Figure 2.15: Diatomic Linear Chain

Where ′n′ labels the index of each atom and ′a′ is the separation between
atoms. To obtain the frequencies of vibration we solve the equations of motions
of this system. We treat this system by writing two equations of motion for each
atom (one of mass M1 and the other of mass M2). Therefore we obtain:

M1
d2un
dt2

= −C(2un − un+1 − un−1)

M2
d2un+1

dt2
= −C(2un+1 − un+2 − un) (2.11)

The letter ”C” here stands for the force constant between the atoms (assuming
same force constant between different atoms). Also u is the displacement of each
atom from its equilibrium position, where every atom is labeled by the index n,
so that n + 1 is the next atom. To solve these equations, we look at a solution
for the displacement of the form :

un = A1 expi(qna−wt)

un+1 = A2 expi(q(n+1)a−wt) (2.12)

Where here A is the maximum displacement, q is the wave vector and w is the
frequency. Now we come to the substitution of this suggested solutions to the
equations of motion and solve this system. Therefore, to ease our work of solving
the two system of equations obtained, we do it in the matrix form:[

2C −M1w
2 −2Ccos(qa)

−2Ccos(qa) 2C −M2w
2

] [
A1

A2

]
= 0

What we need now is to solve the determinant of the above matrix to be zero, in
other words:

(2C −M1w
2)(2C −M2w

2)− 4C2cos2(qa) = 0 (2.13)

We solve this equation to get the dispersion relation:

w2 = C(
1

M1

+
1

M2

)±

√
(

1

M1

+
1

M2

)2 − 4sin2(qa)

M1M2

(2.14)
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We observe from the above solution, the existence of two different solutions de-
pending on the sign, therefore obtaining two different dispersion curves.

Figure 2.16: Dispersion Curve

A frequency gap is obvious in the vibrational spectrum of phonons, as there
exist modes that can’t be attained by the phonons. Therefore, the phonons are
grouped into acoustic branch and optical branch. Where in the optical branch,
vibrational modes exists at q = 0, which is at the center of the Brillouin zone,
where we see a non-zero value of frequency. This zone-center phonon interacts
with light that matches its wave vector k = 0, therefore this branch is responsible
for light-matter interactions. As q → 0, the acoustical branch frequency w → 0,
and so from the above dispersion relation we find that A1 = A2, concluding that
the two atoms in the cell have the same amplitude and the phase dispersion
is linear for small q. On the other hand, for the optical branch when q → 0,

w =
√

2C( 1
M1

+ 1
M2

), arriving to M1A1 + M2A2 = 0, so that the center of mass
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of the atoms remains fixed. The two atoms move out of phase. The optical
branch gives more freedom for the phonon to vibrate. If there are p atoms in
the primitive cell, there are 3p branches to the dispersion relation: 3 acoustical
branches and 3p-3 optical branches. Each phonon has 3 degrees of freedom in
each branch ( two transverse and one longitudinal), as transverse motion means
that the phonons are vibrating perpendicularly to the wave’s direction, and there
exist two behaviours of perpendicular motion of phonons with respect to the
wave’s direction in 3D systems. The longitudinal motion is when the phonon is
moving in the same direction or parallel to the wave’s direction. In what follows
we label a phonon branch by the index j.

2.3.3 Hamiltonian Of 3d Crystal

We build our model for a general 3D crystal. To make our model simple, we
associate a position vector l for a unit cell in the crystal, and atomic position b
for an atom in the unit cell. For this purpose, and in this section, we follow what
Srivastava did in his book (The Physics of Phonons [37]). In this model and for
the harmonic approximation, we consider the motion of the atoms to resemble
the harmonic oscillators, where only nearest neighbours are allowed to exchange
energy. From here, we need to know the displacement of each atom from its
equilibrium position, which happens to be :

u(lb) = x(lb)− (l + b) (2.15)

Where x(lb) is the actual coordinate of the bth atom. As we mentioned before, in
this treatment we intend to expand the potential in a Taylor series in powers of
the displacement in order to analyze the contribution of the anharmonic terms:

V = V0 +
∑
l,b,α

∂V

∂uα(lb)

|0 +
1

2

∑
l,b,l′,b′

∑
α,β

∂2V

∂uα(lb)∂uβ(l′b′)
|0 uα(lb)uβ(l′b′)

+
1

3!

∑
l,b,l′,b′,l′′,b′′

∑
α,β,γ

∂3V

∂uα(lb)∂uβ(l′b′)∂uγ(l′′b′′)
|0 uα(lb)uβ(l′b′)uγ(l′′b′′) + .....

= V0 + V1 + V2 + V3 + ...... (2.16)

The term V0 which stands for the zero potential can be set to be zero, also the
term in V1 ( ∂V

∂x(lb)
|0=0), which describes the force on the equilibrium state to have

minimal energy. Then equation (3.2) transforms to:

V =
1

2

∑
l,b,l′,b′

∑
α,β

φα,β(lb, l′b′)uα(lb)uβ(l′b′)

+
1

3!

∑
l,b,l′,b′,l′′,b′′

∑
α,β,γ

ψα,β,γ(lb, l
′b′, l′′b′′)uα(lb)uβ(l′b′)uγ(l

′′b′′) (2.17)
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Where both φ and ψ are matrices (cartesian tensors of second and third rank
with 9 and 27 elements respectively) defined as :

φα,β(lb, l′b′) =
∂2V

∂uα(lb)∂uβ(l′b′)
|0 (2.18)

ψα,β,γ(lb, l
′b′, l′′b′′) =

∂3V

∂uα(lb)∂uβ(l′b′)∂uγ(l′′b′′)
|0 (2.19)

Moving to the crystal Hamiltonian we define the momentum operator p(lb)
to be the atom momentum operator located at l + b with mass mb. Now we can
write:

H =
∑
l,b

p(lb)p(lb)

2m
+

1

2

∑
l,b,l′,b′

∑
α,β

φα,β(lb, l′b′)uα(lb)uβ(l′b′)

+
1

3!

∑
l,b,l′,b′,l′′,b′′

∑
α,β,γ

ψα,β,γ(lb, l
′b′, l′′b′′)uα(lb)uβ(l′b′)uγ(l

′′b′′) (2.20)

When needed we can impose the cyclic boundary condition on the displacement
for a D lattice, which happens to be :

ub(l) = ub(l +N1a1) = ub(l +N2a2) = ub(l +N3a3) (2.21)

We can see that from the Hamiltonian in equation (2.20) is somehow complicated
and needs to be renormalized. One way of simplification is by adjusting the
coordinates. The goal of simplifying this Hamiltonian is to acheive a diagonal
representation of it. We start by making Fourier analysis for both the coordinates
(u) and momentum (p) such that:

u(lb) =
1√
N0Ω

∑
q

X(q, b)eiql (2.22)

p(lb) =
1√
N0Ω

∑
q

P (q, p)e−iql (2.23)

Where N0Ω is the volume of the crystal and N0 is the total number of unit cells
upon multiplying the number of unit cells of each dimension together. We know
that u and p both are hermitian, then for X and P we must have:

X†(q, b) = X(−q, b) =
1√
N0Ω

∑
l

u(lb)eiql (2.24)

P †(q, b) = P (−q, b) =
1√
N0Ω

∑
l

p(lb)e−iql (2.25)
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Which implies that the new coordinates are non-hermitian and satisfy the fol-
lowing commutation relation:

[X(q, b), P (q′, b′)] =
1

N0Ω

∑
l,l′

e−i(q.l−q
′.l′)[u(lb), p(l′b′)]

=
1

N0Ω

∑
l,l′

e−i(q.l−q
′.l′)Îi~δl,l′δb,b′

= Îi~δq,q′δb,b′ (2.26)

We conclude that if the new normal coordinates does not correspond to the same
wave vector or basis vector, then they are independent variables, otherwise they
are dependent and non-commuting. Now after the coordinate transformation we
substitute equation (2.22) and (2.23) into equation (2.20):

H =
1

N0Ω

∑
q,q′,l,b

P (q, b)P (q′, b)

2mb

e−i(q+q
′).l

+
1

2

1

N0Ω

∑
q,q′,l,b,l′,b′

∑
α,β

φαβ(lb, l′b′)Xα(q, b)Xβ(q′, b′) ei(q.l+q
′.l′)

+
1

3!

1

(N0Ω)
3
2

∑
q,q′,q′′

lb,l′b′,l′′b′′

∑
α,β,γ

ψα,β,γ(lb, l
′b′, l′′b′′)Xα(q, b)Xβ(q′, b′)Xγ(q

′′, b′′) ei(q.l+q
′.l′+q′′.l′′)

(2.27)

Further simplification is done by performing summation on l, in the first term of
the previous equation:

First term =
∑
q,q′,b

P (q, b).P (q′, b)

2mb

1

NoΩ

∑
l

e−i.(q+q
′).l

=
∑
q,q′,b

P (q, b)P (q′, b)

2mb

δq+q′,0

=
∑
q,b

P (q, b).P †(q, b)

2mb

(2.28)

Tracking the simplification of the second term, we use the lattice transformation
symmetry, which allows us to write the force constant matrix as follows:

φα,β(lb, l′b′) = φα,β(0b, (l′ − l)b′) (2.29)

Upon introducing h = l′ − l and defining:

φα,β(bb′|q) =
√
mbm′bDα,β(bb′| − q)

=
∑
h

φα,β(0b, hb′) e−iq.h (2.30)
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we can write the second term in equation (2.13) as:

Second term =
1

2

∑
q,b,b′,α,β

φα,β(bb′|q)Xα(q, b)X†β(q, b′) (2.31)

This result is obtained by doing the summation on l of the second term in equation
(2.27) and upon introducing (2.30). For the third term in (2.27), we follow he
same method of simplification, thus we define h′ = l′ − l and h′′ = l′′ − l. Then:

V3 =
1

3!

1

(N0Ω)
3
2

∑
qb,q′b′,q′′b′′

∑
α,β,γ

∑
l

ei(q+q
′+q′′).lψα,β,γ(qb, q

′b′, q′′b′′)Xα(q, b)Xβ(q′, b′)Xγ(q
′′, b′′)

(2.32)
Where

ψα,β,γ(qb, q
′b′, q′′b′′) =

∑
h′,h′′

ψα,β,γ(0b, h
′b′, h′′b′′) eiq

′h′ eiq
′′h′′ (2.33)

now doing the summation over l we get:

V3 =
1

3!

1√
N0Ω

∑
qb,q′b′,q′′b′′

δG,q+q′+q′′
∑
α,β,γ

ψα,β,γ(qb, q
′b′, q′′b′′)Xα(q, b)Xβ(q′, b′)Xγ(q

′′, b′′)

(2.34)

Where G is the reciprocal lattice vector. Now after all theses simplifications
we look back to the previous Hamiltonian and introduce these terms in it, we
get:

H =
∑
qp

P (q, b)P †(q, b)

2mb

+
1

2

∑
q,b,b′,α,β

φα,β(bb′|q)Xα(qb)X†β(q, b′)

+
1

3!

1√
N0Ω

∑
qb,q′b′,q′′b′′

α,β,γ

δG,q+q′+q′′ .ψα,β,γ(qb, q
′b′, q′′b′′)Xα(q, b)Xβ(q′, b′)Xγ(q

′′, b′′)

(2.35)

The crystal Hamiltonian is viewed in terms of the new coordinates X(q, b) and
P (q, b), and the harmonic and anharmonic force constants φ(bb′|q) and ψ(qb, q′b′, q′′b′′).
After the transformation to q, we intend to find the eigenstates of the Hamilto-
nian. This discussion can be completed by introducing the eigenstates of the sys-
tem. For this purpose we introduce the polarisation vector e(b|qs) that describes
the magnitude and the direction of vibration of the atom (b) in the vibrational
mode (qs). Here s can be transverse (T ) or longitudinal (L) polarisation branch.
One property of this eigenvector is:∑

b

e∗(b|qs).e(b|qs′) = δss′ (2.36)
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Now we make further normal coordinate transformation as follow:

X(qs) =
∑
b

√
mbe

∗(b|qs)X(qb) (2.37)

P (qs) =
∑
b

1

mb

e(b|qs)P (qb) (2.38)

When doing the previous normal coordinate transformation as in equations (2.37)
and (2.38) we extend out crystal Hamiltonian simplification and do another set
of transformations:

aqs =
1√

2~w(q, s)
P (qs)− i

√
w(qs)

2~
X†(qs) (2.39)

a†qs =
1√

2~w(qs)
P †(qs) + i

√
w(qs)

2π
X(qs) (2.40)

Where the new operators a(qs) and a†(qs) are known to be the phonon annihi-
lation and creation operators respectively. These operators obey the following
relation:

[a(qs), q†(q′s′)] = δq,q′δs,s′ .Î (2.41)

From equations (2.39) and (2.40) we get:

X(qs) = −i

√
~

2w(qs)
(a†qs − a−qs) (2.42)

P (qs) =

√
~w(qs)

2
(aqs + a†−qs) (2.43)

Where w(−qs) = w(qs), X†(qs) = X(−qs), and P †(qs) = P (−qs). Now, from
equations (2.37), (2.38), (2.42), and (2.43) we obtain :

X(qb) =
1
√
mb

∑
s

e(b|qs)X(qs)

= −i
∑
s

√
~

2mbw(qs)
e(b|qs)(a†qs − a−qs) (2.44)

P (qb) =
√
mb

∑
s

e ∗ (b|qs)P (qs)

=
∑
s

√
mb~w(qs)

2
e ∗ (b|qs)(aqs + a†−qs) (2.45)
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These new transformations allow us to express the coordinate and momentum
vectors in terms of the phonon creation and annihilation operators and the polar-
isation vectors which are the eigenstates of the Hamiltonian. We try to substitute
equations (2.44) and (2.45) in the last obtained form of the Hamiltonian:

First term =
1

2

∑
qb

1

mb

P (qb).P †(qb)

=
1

4

∑
qs

~w(qs)(aqs + a†−qs)(a
†
qs + a−qs) (2.46)

Where we use equation (2.36).

Second term =
1

2

∑
q,b,b′,α,β

φαβ(bb′|q)Xα(qb)X†β(qb′)

=
1

2

∑
q,b,b′,s,α,β

φαβ(bb′|q) ~
2w(qs)

1√
mbm′b

eα(b|qs)e∗β(b′|qs).(a†qs − a−qs)(aqs − a
†
−qs)

=
1

4

∑
q,b,sα

~w(qs)eα(b|qs)e∗α(b|qs)(a†qs − a−qs)(aqs − a
†
−qs)

=
1

4

∑
qs

~w(qs)(a†qs − a−qs)(aqs − a
†
−qs) (2.47)

We now add the 2 terms to get :

Hharm = term 1 + term 2

=
1

4

∑
qs

~w(qs)[(aqs + a†−qs)(a
†
qs + a−qs) + (a†qs − a−qs)(aqs − a

†
−qs)]

=
1

4

∑
qs

~w(qs)(aqsa
†
qs + a†qsaqs + a−qsa

†
−qs + a†−qsa−qs)

=
1

2

∑
qs

~w(qs)(aqsa
†
qs + a†qsaqs) (2.48)

Upon obtaining this result we obeyed the fact that a summation over the allowed
values of -q duplicates that of q. Further simplification of the above result, when
using the commutation relation in equation (2.27) we get for the Hamiltonian in
the harmonic approximation to be :

Hharm =
∑
qs

~w(qs)(a†qsaqs +
1

2
) (2.49)

As we pointed at the beginning, our goal was to achieve a Hamiltonian at its
simplest form, which is to get the diagonal form from the Hamiltonian. In the last
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equation we obtained this result after making two-step coordinate transformation.
The first step was about changing the normal coordinate and momentum from the
particle picture described by vectors l and b to the wave picture described be the
wave vector q and the polarisation vector s. In the second step of transformation
we presented the annihilation and creation operators (aqs and a†qs). To appreciate
what we get, we try to calculate the crystal eigenvalues. First let us see the effect
of the annihilation and creation operators on the phonon state |nqs >, for this we
apply it and get the following:

a†qs|nqs >=
√
nqs + 1|nqs + 1 >

aqs|nqs >=
√
nqs|nqs − 1 >

a†qsaqs|nqs >= nqs|nqs > (2.50)

We see that while aqs is responsible to annihilate a phonon from a phonon state
and a†qs to create a phonon, combined a†qsaqs is the phonon number operator.
Then by applying the Hamiltonian of the phonon eigenstates we get:

Hharm|nqs >=
∑
qs

~w(qs)(nqs +
1

2
)|nqs >

=
∑
qs

εqs|nqs > (2.51)

We see that the eigenvalue of a 3D simple harmonic oscillator with the previous
Hamiltonian is :

εqs = ~w(qs)(nqs +
1

2
) (2.52)

And the average energy of a phonon in mode (qs) is :

εqs = ~w(qs)nqs (2.53)

Where nqs is the average Bose-Einstein distribution function. After analyzing the
harmonic part of the crystal Hamiltonian, we now proceed to the cubic anhar-
monic part V3. Using equations (2.44 and 2.45), we write the anharmonic term
in equation (2.35) as follows:

V3 =
1

3!

1√
N0

(i)
∑

qb,q′b′,q′′b′′

ss′,αβγ

(
~3

8mbm′bm
′′
bw(qs)w(q′s′)w(q′′s′′)

)
1
2 .δG,q+q′+q′′ .

eα(b|qs)eβ(b′|q′s′)eγ(b′′|q′′s′′)ψα,β,γ(qb, q′b′, q′′b′′).(a†qs − a−qs)(a
†
q′s′ − aq′s′)(a

†
q′′s′′ − a−q′′s′′)

=
1

3!

∑
qs,q′s′,q′′s′′

δG,q+q′+q′′ ψ(qs, q′s′, q′′s′′).(a†qs − a−qs)(a
†
q′s′ − aq′s′)(a

†
q′′s′′ − a−q′′s′′)

(2.54)
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where

ψ(qs, q′s′, q′′s′′) =
i√
N0Ω

∑
bb′b′′αβγ

(
~3

8mbm′bm
′′
bw(qs)w(q′s′)w(q′′s′′)

)
1
2 .

eα(b|qs)eβ(b′|q′s′)eγ(b′′|q′′s′′).ψαβγ(qb, q′b′, q′′b′′) (2.55)

Similarly for four phonon process:

V
(4)
λ,λ1,λ2,λ3

=
∑

0b,bl1,bl2,bl3

∑
α,α1,α2,α3

Φα,α1,α2,α3

0b,bl1,bl2,bl3
.
eλαbe

λ1
α1b1

eλ2α2b2
eλ3α3b3√

mbmb1mb2mb3

×

ei.k1.rl1 .ei.k2.rl2 .ei.k3.rl3 (2.56)

Where λ describes the phonon mode. We should note here that the factor
ψ(qs,q′s′,q′′s′′) is proportional to the the average of the Fourier transformed ten-
sor ψ(qb,q′b′,q′′b′′) that is projected on the directions of the various polarisation
vectors e(b|qs), e(b′|q′s′) and e(b′′|q′′s′′).

Now we have completed the picture of the transformation of both the har-
monic and anharmonic part in the crystal Hamiltonian using the second quan-
tisation scheme for coordinate transformation. Note here, in this representation
the harmonic part is diagonal, while the anharmonic part is not. This rises the
possibility of interacting phonons that is missed in the harmonic part and ignored
for a crystal with no perturbations or external forces or temperature acting on
it.

2.3.4 Effects Of Anharmonicity On Phonon States

As we can see from equation (2.51), the harmonic part of the Hamiltonian
introduces the picture of non-interacting phonons. We mentioned before our
interest in the anharmonic part of the crystal Hamiltonian that was obtained
after expanding the crystal potential in a Taylor series for the displacement. This
anharmonic part acts as a perturbation on the harmonic one at finite temperature,
that explains the existence of the anharmonic lattice forces in the crystal. This
fact was born out from the appearance of the phonon peaks in neutron scattering,
which ignited the assumption that anharmonicity can be viewed as a perturbation
on the non-interacting phonon states. As we saw before that anharmonicity works
with the the picture of interacting phonons. As seen from the cubic part in the
potential V3 explored before, in the first order this term causes three phonon
interaction process, while it is responsible for four phonon interaction process in
the second-order.

We intend to study now the V3 term and how it can change the phonon states.
We will discover the types of three phonon processes and their conservation rules.
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As known, and due to the translational invariance in the crystal potential energy,
the phonon wave vectors are under the restriction of the following equation:

q + q′ + q′′ = G (2.57)

Where G is the reciprocal lattice vector, which can be zero. So that q, q’ and q”
are restricted to the first Brillouin zone. When G=0, the phonon-phonon inter-
action process is called the normal or N − process and it conserves momentum.
While when G is different from zero, the process is called Umklapp process or
U − process and it does not conserve momentum.

From the last equation for the cubic anharmonic term of the crystal potential,
we see that the part acting on the phonon states is summed in the term :

(a†qs − a−qs)(a
†
q′s′ − a−q′s′)(a

†
q′′s′′ − a−q′′s′′) (2.58)

Expanding this term yields to:

a†qsa
†
q′s′a

†
q′′s′′ − a

†
qsa
†
q′s′a−q′′s′′ − a

†
qsa−q′s′a

†
q′′s′′

+a†qsa−q′s′a−q′′s′′ − a−qsa†q′s′a†q′′s′′ + a−qsa
†
q′s′a−q′′s′′

+a−qsa−q′s′a
†
q′′s′′ − a−qsa−q′s′a−q′′s′′ (2.59)

The three phonon states includes the phonon density of states and it is:

|nqsnq′s′nq′′s′′ > (2.60)

This three phonon state is acted on by the above operators mentioned in equa-
tion (2.59), governed by the rules in equation (2.50). So for the first term of
equation (2.59) its effect is to increase by one each of the phonons in the states
represented by qs, q′s′ and q′′s′′ respectively, and so on for the rest of the terms
as the operator a† creates a phonon in some wave vector mode and polarisation
mode, and a operator annihilates a phonon. An important conclusion is extracted
from equation (2.59) which distinguishes between 4 different basic processes of
three-phonon interactions, we list them :

1. Annihilation of two phonon and creation of a third one (class 1 events).

2. Creation of two phonons and annihilation of one (class 2 events).

3. Simultaneous creation of three phonons.

4. Simultaneous annihilation of 3 phonons.
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However only the first two possibilities are achievable as they conserve energy,
while the second two possibilities violates energy conservation rules, which are
marked to be possible as virtual three-phonon processes considering higher order
anharmonic processes.

Let us track energy and momentum conservation law for class 1 and class 2
events for annihilation or creation a phonon in mode qs.
Class 1 events:

w(qs) + w(q′s′) = w(q′′s′′)

q + q′ = q′′ +G (2.61)

Class 2 events:

w(qs) = w(q′s′) + w(q′′s′′)

q +G = q′ + q′′ (2.62)

In class 1 events, 2 phonons with modes qs and q′s′ respectively interact, as
a result of this interaction, these 2 phonons get annihilated and a third phonon
is created in the mode q′′s′′. There are 2 possible ways for this interaction to
be done, arising from the summation of q + q′. The first possibility is when the
summation lies in the first Brillouin zone, therefore the momentum is conserved
and this is what we call N − process, and it conserves momentum. The second
possibility is when the summation q+ q′ extends to escape the boundaries of the
first Brillouin zone, so it needs to be flipped back inside it, and this is done by an
appropriate reciprocal lattice vector G that returns the resultant vector from the
summation of the first 2 vector into the first Brillouin zone. This process does not
conserve momentum and its called U − process. We see here that the resultant
wave vector q′′ is opposite in direction to q + q′ because of the intervention of
the reciprocal lattice vector G that returns it to the first Brillouin zone, this
intervention changes the direction of q′′, and hence it creates a resistance to the
heat flow by phonons. See figure (2.17). The interaction in the second class event
has the same interpretation as this one.
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Figure 2.17: (a) N-Process (b) U-process.[5]

2.3.5 Anharmonicity effetcs on Phonon Self Energy, Re-
sponsible For The Frequency and Lifetime Change

One might think that the extra parts in the Hamiltonian of the atom only serve
for the purpose of having high precision in calculations. This is wrong. Two new
physical properties appear when introducing the extra terms in the Hamiltonian.
The first appearing phenomena is under the category of equilibrium properties
and it is the the thermal expansion effect. The second one is a transport property,
which destroys the idea of infinite thermal conductivity of the lattice in the picture
of non-interacting phonons, and introduces new phonon interaction mechanisms.
In his paper, Cowley [38] recognised the effect of the anharmonic part of the
phonon Hamiltonian on the parts of the phonon self energy, and deduced that
this part of the Hamiltonian changes the phonon’s self energy components with
respect to frequency and temperature, therefore they are dependent on this two
parameters. The change with respect to frequency is related to the position of
the mode’s frequency with respect to the two-phonon density of states. This
is a renormalisation of the bare harmonic frequency with respect to frequency.
The other change is related to the temperature change, and it effects both parts
of the phonon self energy, which are the real and imaginary parts. The first is
responsible for the frequency change, and the second describes lifetime change.
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The anharmonic part of the Hamiltonian is :

HA =
∑

~q1,~q2,~q3

∑
j1,j2,j3

V

(
~q1 ~q2 ~q3

j1 J2 j3

)
A(~q1, j1)A(~q2, j2)A(~q3, j3)

+
∑

~q1,~q2,~q3,~q4

∑
j1,j2,j3,j4

V

(
~q1 ~q2 ~q3 ~q4

j1 J2 j3 j4

)
A(~q1, j1)A(~q2, j2)A(~q3, j3)A(~q4, j4)

(2.63)

With A(~q, j) = a~q,j + a†−~q,j representing the phonon creation and annihilation
operators. The change of the frequency as an effect of the anharmonic interactions
is as follows :

w2(~0, j; Ω) = w2(~0, j) + 2w(~0, j)[∆(~0, j; Ω) + iΓ(~0, j; Ω)] (2.64)

For small real and imaginary parts of phonon self energy; compared to the fre-
quency w(~0, j), the above equation transforms to :

w(~0, j; Ω) = w(~0, j) + ∆(~0, j; Ω) + iΓ(~0, j; Ω) (2.65)

The effect of the anharmonic Hamiltonian on the real and imaginary parts of the
phonon self energy is as follows, the three lowest order contribution to the real
part is :

∆(0, j; Ω) = ∆(0) +
12

~
∑
~a,j′

V

(
~0 ~0 q −q
j J j′ j′

)
[2n(~q, j′) + 1]

− 18π

~2

∑
~q,j1,j2

∣∣∣V (~0 ~q −~q
j j1 j2

) ∣∣∣2[n(~q, j1) + n(−~q, j2) + 1]
[ 1

w(~q, j1) + w(~q, j2)− Ω

]
P

(2.66)

The first order term (∆(0)) is the thermal expansion contribution, which we will
address later. This term and the second order term of the above equation are
Ω independent. Whereas, for the third term, it is Ω and T dependent, and it
contributes directly to the three phonon process interactions. For the line-shape,
which is accounted by the imaginary part of the phonon self energy, the effect of
the anharmonic Hamiltonian on it is as follows :

Γ(~0, j; Ω) = −18π

~2

∑
~q,j1,j2

∣∣∣V (~0 ~q −~q
j j1 j2

) ∣∣∣2[n(~q, j1) + n(−~q, j2) + 1]δ(w(~q, j1) + w(−~q, j2)− Ω)

(2.67)

The above equation is a manifest of an optical phonon decay to two phonons
of energies w(~q, j1) and w(−~q, j2), reserving energy conservation by summing up
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to the frequency Ω. In the beginning I’ve mentioned that both parts of the
phonon self energy are frequency dependent, this is obvious when we take the
matrix elements in the imaginary part of the phonon self energy to be constant,
therefore:

Γ(Ω) ∝ 1

V

∑
~q,j1,j2

δ(w(~q, j1) + w(−~q, j2)− Ω) ≡ ρ2(Ω) (2.68)

Otherwise, the matrix elements determing the width are:

V

(
~0 ~q −~q
j j1 j2

)
=

1

6

[ ~3

8NM3w0w(q, j1)w(−q, j2)

] 1
2

+
∑
l′,l′′

∑
k,k′,k′′

∑
α,β,γ

φαβγ

(
0 l′ l′′

k k′ k′′

)
eα(k|~0, j)eβ(k′|~q, j1)eγ(k

′′| − ~q, j2)ei~q.[
~R(l′)−~R(l′′)]

(2.69)

Where φαβγ multiplied by the matrix following it, is the third order derivative
of the inter-atomic potential, along the directions of the atoms. The index l
represents the position of the primitive cell, while the index k points tho the
position of the atom inside the cell. The eigenvectors of the problem are e(k|~q, j).
N is the number of cells in the crystal and M is the atomic mass [39]. The cubic
anharmonicity effect on the imaginary part of the phonon self energy to the
second order in perturbation theory is :

Γ(w0, T ) =
18π

~2

∑
qj1j2

|V3(qj1,−qj2)|2[(n1 + n2 + 1)δ(w1 + w2 − w)

+ (n2 − n1)δ(w1 − w2 − w)] (2.70)

Here V3(qj1,−qj2) is the third order coefficient in the expansion of the lattice
potential in normal coordinates. One should note here that the real and imaginary
parts of the phonon self energy are related by Kramers-Kronig relation :

∆(w) = − 2

π
P

∫ ∞
0

w′

w′2 − w2
Γ(w′)dw′ (2.71)

Where ∆(w) is the real part in the phonon self energy and it is responsible for
the frequency shift, and Γ(w) is the imaginary part in the phonon self energy and
is responsible for the width change.
Another form of the frequency shift and lifetime equations that can be obtained
from expanding the phonon self energy components to the three lowest order are
:

Γ(w0, T ) = Γ(w0) + A[1 +
1

e
~w1
kT − 1

+
1

e
~w2
kT − 1

]

+B[1 +
1

e
~w1
kT − 1

+
1

e
~w2
kT − 1

+
1

e
~w3
kT − 1

] (2.72)
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w(w0, T ) = w0 + ∆(0) + A[1 +
1

e
~w1
kT − 1

+
1

e
~w2
kT − 1

]

+B[1 +
1

e
~w1
kT − 1

+
1

e
~w2
kT − 1

+
1

e
~w3
kT − 1

] (2.73)

Where here, it is clearly obvious that this equations are missing the contribution
of the interaction of the modes frequency with the combinations of phonon in
the two phonon density of states, whereas in the above constructed model, this
interaction is immense. One would be curious to ask now how the width is
related to the phonon lifetime of optical phonons, or in other words, how the
rate of scattering is proportional to the line-width of the phonon peaks present in
the Raman spectrum. The answer to this question is addressed in the following
section where we have used Fermi golden rule to calculate the transition proba-
bilities of three and four phonon process, to use them in calculating the phonon
distribution decay rate using the single mode relaxation time approximation.

2.3.6 Fermi Golden Rule of Three and Four Phonon Pro-
cesses

For the quantum calculation of the three and four phonon processes scattering
rates, we apply the Fermi golden rule, of the interacting Hamiltonian of the men-
tioned processes on the initial and final phonon populations.

We consider a three phonon process where a phonon can decay to two
phonons or vice versa, in other words:

λ→ λ1 + λ2 (2.74)

Or

λ← λ1 + λ2 (2.75)

We take the initial state to be |i >= |nλ + 1, nλ1 , nλ2 >, and the final state
|f >= |nλ, nλ1 + 1, nλ2 + 1 >. To figure out the transition probability between
this two states we utilize the Fermi golden rule in the following way [40]:

2π

~
| < f |Ĥ3|i > |2δ(Ei − Ef )

∼ |
√
nλ
√

1 + nλ1
√

1 + nλ2|2|Ĥ
(3)
λλ1λ2
|2

∼ nλ(1 + nλ1)(1 + nλ2)|Ĥ
(3)
λλ1λ2
|2 (2.76)
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In the same manner we do it for λ← λ1 + λ2:

2π

~
< i|Ĥ3|f > |2δ(Ei − Ef )

∼ |
√

1 + nλ
√
nλ1
√
nλ2|2|Ĥ

(3)
λλ1λ2
|2

∼ (1 + nλ)nλ1nλ2|Ĥ
(3)
λλ1λ2
|2 (2.77)

We move forward to the rate of change of the occupation number of the phonon
modes due to the three and four phonon processes :

∂nλ
∂t
|s =−

∑
λ1λ2

(1

2
[nλ(1 + nλ1)(1 + nλ2)− (1 + nλ)nλ1nλ2 ]L−

+ [nλnλ1(1 + nλ2)− (1 + nλ)(1 + nλ1)nλ2 ]L+

)
−
∑
λ1λ2λ3

(1

6
[nλ(1 + nλ1)(1 + nλ2)(1 + nλ3)− (1 + nλ)nλ1nλ2nλ3 ]L−−

+
1

2
[nλnλ1(1 + nλ2)(1 + nλ3)− (1 + nλ)(1 + nλ1)nλ2nλ3 ]L+−

+
1

2
[nλnλ1nλ2(1 + nλ3)− (1 + nλ)(1 + nλ1)(1 + nλ2)nλ3 ]L++

)
(2.78)

This transition rate is divided into two main parts. The first one concerns three
phonon processes and the scond one is related to the four phonon processes. On
the other hand, the first part has 2 parts: The first one describes the splitting
process λ → λ1 + λ2, and the second part describes the combination process
λ + λ1 → λ2. Furthermore, the first part in the first term describes the decay
rate of nλ due to splitting process, where it shows the difference between the
transition rates λ → λ1 + λ2 and λ ← λ1 + λ2.The term L± codes the required
selection rules in energy and momentum for the interaction to occur. For the
interaction to happen the energy conservation requires wλ ± wλ1 − wλ2 = 0, and
momentum conservation, k ± k1 + k2 = R. Normal processes put R = 0, while
Umklapp processes has R 6= 0.

The second summation term stands for four phonon processes, where it
contains 3 main terms describing the following transitions. First, the decay of a
single phonon into three phonon: λ → λ1 + λ2 + λ3. Second, the combination
of two phonons to give another two phonons: λ + λ1 → λ2 + λ3. Third, the
combination of three phonons to give birth to one phonon: λ + λ1 + λ3 → λ3.
Similarly the terms L±± codes the transition probabilities of the four phonon
process to occur. The conservation laws of energy and momentum restricts the
frequency wλ±wλ1±wλ2−wλ3 = 0, and the momentum k±k1±k2−k3 = R. The
terms L± and L±± for the three and four phonon processes are the transitions
probabilities calculated from the Fermi golden rule, and they have the following
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formulas:

L± = 18× 2× 2π

~
|Ĥ(3)

λλ1λ2
|2δ(Ei − Ef )

=
π~
4N
|V (3)
± |2∆±

δ(wλ ± wλ1 − wλ2)
wλwλ1wλ2

(2.79)

And

L±± = 96× 2× 2π

~
|Ĥ(4)

λλ1λ2λ3
|2δ(Ei − Ef )

=
π~
4N

~
2N
|V (4)
±±|2∆±±

δ(wλ ± wλ1 ± wλ2 − wλ3)
wλwλ1wλ2wλ3

(2.80)

To simplify equation (2.78) we adopt the single mode relaxation time approxi-
mation (SMRTA). This approximation states that only the phonon mode we are
dealing with is at non-equilibrium ; in other words it deviates from equilibrium,
and all other modes are at equilibrium. For the phonon mode λ, the occupation
number is :

nλ = n
(0)
λ + n

′

λ (2.81)

On the other hand, the rest modes stay at equilibrium:

nλ1 = n0
λ1

nλ2 = n0
λ2

nλ3 = n0
λ3

(2.82)

Also we use the following facts:

λ→ λ1 + λ2 : n0
λ(1 + n0

λ1
)(1 + n0

λ2
)− (1 + n0

λ)n
0
λ1
n0
λ2

= 0

λ+ λ1 → λ2 : n0
λn

0
λ1

(1 + n0
λ2

)− (1 + n0
λ)(1 + n0

λ1
)n0

λ2
= 0

λ→ λ1 + λ2 + λ3 : n0
λ(1 + n0

λ1
)(1 + n0

λ2
)(1 + n0

λ3
)− (1 + n0

λ)n
0
λ1
n0
λ2
n0
λ3

= 0

λ+ λ1 → λ2 + λ3 : n0
λn

0
λ1

(1 + n0
λ2

)(1 + n0
λ3

)− (1 + n0
λ)(1 + n0

λ1
)n0

λ2
n0
λ3

= 0

λ+ λ1 + λ2 → λ3 : n0
λn

0
λ1
n0
λ2

(1 + n0
λ3

)− (1 + n0
λ)(1 + n0

λ1
)(1 + n0

λ2
)n0

λ3
= 0
(2.83)
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Also the facts

λ→ λ1 + λ2 : (1 + n0
λ1

)(1 + n0
λ2

)− n0
λ1
n0
λ2

=
n0
λ1
n0
λ2

n0
λ

= 1 + n0
λ1

+ n0
λ2

λ+ λ1 → λ2 : n0
λ1

(1 + n0
λ2

)− (1 + n0
λ1

)n0
λ2

=
(1 + n0

λ1
)n0

λ2

n0
λ

= n0
λ1
− n0

λ2

λ→ λ1 + λ2 + λ3 : (1 + n0
λ1

)(1 + n0
λ2

)(1 + n0
λ3

)− n0
λ1
n0
λ2
n0
λ3

=
n0
λ1
n0
λ2
n0
λ3

n0
λ

λ+ λ1 → λ2λ3 : n0
λ1

(1 + n0
λ2

)(1 + n0
λ3

)− (1 + n0
λ1

)n0
λ2
n0
λ3

=
(1 + n0

λ1
)n0

λ2
n0
λ3

n0
λ

λ+ λ1 + λ2 → λ3 : n0
λ1
n0
λ2

(1 + n0
λ3

)− (1 + n0
λ1

)(1 + n0
λ2

)n0
λ3

=
(1 + n0

λ1
)(1 + n0

λ2
)n0

λ3

n0
λ

(2.84)

Therefore equation (2.78) becomes:

∂n
′

λ

∂t
|s = n

′

λ

∑
λ1λ2

(1

2

(
1 + n0

λ1
+ n0

λ2
)L− + (n0

λ1
− n0

λ2
)L+

)
− n′λ

∑
λ1λ2λ3

(1

6

n0
λ1
n0
λ2
n0
λ3

n0
λ

L−− +
1

2

(1 + n0
λ1

)n0
λ2
n0
λ3

n0
λ

L+−

1

2

(1 + n0
λ1

)(1 + n0
λ2

)n0
λ3

n0
λ

L++

)
= n

′

λ(τ
−1
3,λ + τ−1

4,λ) (2.85)

Therefore the scattering rate referring to SMRTA is :

τ−1 = τ−1
3,λ + τ−1

4,λ (2.86)

Where we have used and defined the relaxation time to be :

τ−1 =
1

n

∂N

∂t
(2.87)

From here we see that the phonon lifetime (τ) is inversely proportional to the
phonon width, or the phonon scattering rate is proportional to the phonon width.
Where upon simplifying τ−1

3,λ in the Klemens approximation, the second term in
parenthesis is zero since n1 = n2, and in the first term n1 +n2 = 2n, and therefore
we can relate phonon width to the phonon lifetime.

2.3.7 Thermal Expansion Effect

As mentioned before, in the picture of non-interacting phonons in a perfect
harmonic crystal, the equilibrium size is out of the picture. Therefore, the normal
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modes of vibration are independent on the thermal expansion of the crystal. One
can see this from the harmonic part of the crystal potential [41]:

Uhar = U equ +
1

2

∑
R,R′

u(R)D(R−R′)u(R′) (2.88)

Where :

D(n)
µ1...µn

(R1...Rn) =
∂nU

∂uµ1(R1)...∂uµn(Rn)

∣∣∣
u=0

(2.89)

So applying a change in the displacement ( u(R) = εR + ū(R̄), with r(R) =
R̄ + ū(R̄), and R̄ = (1 + ε)R) , and inserting this change into the expansion of
the potential energy around the new equilibrium position, we get:

U eq +
1

2
ε2
∑
R,R′

RD(R−R′)R′ + 1

2

∑
R,R′

ū(R)D(R−R′)ū(R′) (2.90)

Which leaves the potential unchanged after substituting ū(R) with its equivalent.
From here we can see that the potential is unchanged with changing the volume,
which mean that the normal mode frequencies are the same with volume change.
The thermal expansion term first appeared in equation (2.66) upon applying the
anharmonic term to the first three lowest orders of the real part of the phonon
self energy, and this term is evaluated to be:

∆(0) = w0 ∗ e−γ
∫∞
0 [3α]dT (2.91)

Where γ is the Gruneisen parameter of the selected optical mode. By definition,
the Gruneisen parameter is a dimensionless parameter that describes the effect
of changing the volume of the material on its vibrational modes. Also, α is the
linear thermal expansion coefficient. From here, we can obtain the full design of
the fitting equations of the frequency and linewidth needed to analyse our peaks
from the Raman spectra of ZnO nanoparticles.

2.3.8 Life-time of Optical Phonons

In Klemens’ thoughts to gain more information about anharmonicity, he dis-
cussed the three-phonon interaction process and compared his theoretical results
to the present experimental results on Si done by J. H. Parker and D. W. Feldman
[42]. In our work, we track the effects of the cubic part of the lattice potential,
which is non-linear in the force. Therefore, there is anharmonicity in the lattice
forces, that lead an optical mode to decay into other modes, thereby interchanging
energy and maintaining thermal equilibrium. In this aspect, the optical phonon
resembles the acoustic phonon. As we know that an optical phonon contributes
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with a negligible amount to heat conduction (mainly because of their short life-
times and small group velocities, as can be seen from the slope of the curve of
(w vs k), the relaxation time of optical phonon does contribute to thermal con-
ductivity, especially in low dimensional materials. Therefore, a clear conceptual
insight into the laws and models governing and affecting the relaxation time of
the optical phonons must be done. In his approach, Klemens used the perturba-
tive calculation in the Hamiltonian. He calculated the lifetime of optical phonon
at zero temperature, and developed his equation to calculate the lifetime at any
temperature T. For this he relates the width of the phonon peak to the lifetime
of the optical phonon.

The Perturbation Calculation

We consider an optical phonon at the center of the Brillouin zone with k = 0,
and intrinsic frequency w0. This optical phonon interacts via anharmonic three-
phonon process with two acoustical phonons with opposite momentum, but same
magnitude. We ensure on momentum conservation by:

k = k′ + k′′ = 0 (2.92)

And on energy conservation:
w0 = w′ + w′′ (2.93)

When writing the perturbation Hamiltonian, we include a strength term for the
cubic anharmonic process as follows:

H ′ =
∑

k,k′,k′′,x

1

G
ei(k−k

′−k′′)×c(k, k′, k′′)× a(k)× a†(k′)× a†(k′′) (2.94)

Where x = ~w
kT

and c(k, k′, k′′) is related to cubic anharmonicity, where also a†

and a are the phonon creation and annihilation operators respectively, and G is
the number of atoms.

As a result of this decay channel, the phonon N population of a specific
mode is changed:

t
dN

dt
=
∑
j′,j′′,k′

c2~3

M3ww′w′′
1− cos(∆wt)

~2∆w2

× [(N + 1)N ′N”−N(N ′ + 1)(N” + 1)] (2.95)

Here (j′, j′′) are the polarizations of the modes (k′, k′′) which are longitudinal or
transverse, also ∆w = w0−w′−w′′. The terms in brackets comes from the Fermi
golden rule of three phonon process (See section ”Fermi Golden Rule of Three
and Four Phonon Processes”). Taking N = N0 +n the second term in the above
equation; at zero temperature, reduces to −n. The term :∫

1− cos(∆wt)
∆w2

d(∆w) = πt (2.96)
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Snatches contributions from ∆w = 0. Also

∆w = w − (1 + α)vk′ (2.97)

Where αv is the velocity of k′′ and v is the velocity of k′. When both vectors
belong to the same polarization branch (α = 1), we can consider (w′ > w′′),
and we shall adopt it. Back to the summation on the various types of polar-
ization (

∑
j′,j′′) of the modes (k′, k′′), we find that there are 6 types of different

combinations of polarization (knowing that the transverse type is double degen-
erate) for the 2 modes. Not all these combinations obey energy conservation, it
is (
∑

j′,j′′ = J) where J is a number between 1 and 6.

The relaxation time τ is defined to be :

1

τ
=
−1

n

dN

dt
(2.98)

In the expression of (dN
dt

), we have (
∑

k′) which can be transformed to an integral:∑
k′

=
V

(2π)3

∫
d3k′ =

Ga3

(2π)3
4π

∫
(k′)2dk′ (2.99)

Here V is the total volume of the crystal, while a3 is the volume per atom. We
do some changes that eases our work in the integral such that, (d∆w

dk′
= −2v), and

(w′ = w′′ = w0/2), using this simplifications we obtain :

1

τ
=

J

32π
~w0

g2G

M3

a3w2
0

v3
w0 (2.100)

The new parameter g contains the anharmonic cubic term c(k, k′, k′′) such that
c(k, k′, k′′) = gww′w′′. This result serves zero temperature value. One piece is
still missing, which is the value of the the cubic anharmonic term c(k, k′, k′′), or
the term g. We can use one of the available results, in terms of the Gruneisen’s
parameter γ (this parameter measure the effect of changing the volume of a
crystal, on its vibrational properties):

c(k, k′, k′′) = − i√
G
γ

2M√
3

1

v
ww′w′′ (2.101)

Therefore the equation of the inverse of the life-time of the optical phonon changes
to :

1

τ
= w0

J

24π
γ2 ~w0

Mv2

a3w3
0

v3
(2.102)

Further simplification can be done, we can take the Debye frequency of the
monatomic lattice, which is only an approximation,

a3w3
0

v3
= a3k3

D =
3

4π
(2π)3 ≈ 60 (2.103)
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kD is the Debye wave number, also by taking γ=2 and the polarization type J=1,
we get:

1

τ
=

60× 4

24π
w0

~w0

Mv2
= 3w0

~w0

Mv2
(2.104)

After submitting some parameters with their actual values we get:

1

τ
= 0.06w0 (2.105)

Unfortunately the above equation failed to predict the line-width of the Raman
peak of Si from the work done by Parker and Feldman [43]. The equation showed
broader lines from what obtained from the experiment.

The Interaction Hamiltonian

The problem is in the cubic anharmonic term, and therefore we must reconsider
our choice of the interaction Hamiltonian, and derive it again. The unperturbed
Hamiltonian is:

H0 =
1

G

∑
x,k,k′

Mww′ei(k−k
′)xa(k)a†(k′) (2.106)

Which is functional for k = k′. Note that an expansion can change w to w(1−γ∆),
or if it is space dependent, it can be taken into account in the summation of the
Hamiltonian among x, such that :

H ′ =
1

G

∑
k,k′

2Mww′a(k)a†(k′)
∑
×

∆(x)ei(k−k
′).× (2.107)

The previous treatment for deriving the term c(k, k′, k′′) is for some specific fea-
tures of the wave vector k and its strain, where k must be long, so that its strain
varies slowly, whereas the wave vectors k, k′ are somehow equal. In the other
hand, equation (2.98) was used in the region where the strain is not varying
slowly, therefore it is no longer valid.

In our case the strain of the optical phonon is (w/v)a(k), which has the sign
of the first wave k in (w/v), and we note here that the 2 vectors; although they
have the same frequency, but they move in opposite directions, therefore the use
of uniform strain theory is not valid.

In the current derivation, we consider the energy,

M(w′)2a†(k′)a(k′) (2.108)

Which is as obvious from the creation and annihilation operators, is related to
the mode k′. After that, we force a static strain correlated to the first wave mode
k, the optical mode. This change happens to change the energy by the following
amount:

2Mw′δw′a†(k′)a(k′) (2.109)
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We now equate this change to the cubic anharmonic term multiplied by a(k =
0)a(−k′)a(k′), therefore:

c(k, k′,−k′)a(k) = 2Mw′δw′ (2.110)

The term δw′ can be derived for the same strain as the first wave.
In his model to calculate δw′, Klemens thought of alternating force constants

to link a linear chain of atoms. Because of anharmonicity of the optical mode,
the force constants are perturbed, and this perturbation changes the sign from
linkage to linkage.In this calculation we consider w′ = w0/2. For the mentioned
linear chain, the frequency of the lattice wave of wave vector k is :

w2 =
α + β

M
±
[(α + β)2

M2
− 4αβ

M2
sin2(ka)

] 1
2

(2.111)

Where all has the same mass, with constant distance between each other, and
harmonic force constants α and β. When we use the wave vector of the optical
mode (k = 0) we get:

w2
0 = 2

α + β

M
(2.112)

For the branch where k is small, the acoustical branch:

2αβ

(α + β)M
sin2(ka) (2.113)

While when sin(ka) = 1:

w2 = 2α/m or2β/M (2.114)

Upon choosing the different direction of the strain ε of the two types of links α
and β we get:

α = α0(1 + 2γε)

β = β0(1− 2γε) (2.115)

Now substituting what we obtained in (2.111), and using the frequency (2.112)
for the optical phonon, we can find the energy change that empowers us to obtain
the c or g terms, considering the changes is the lattice forces α and β we find δw′

to be :
δ(w′)2

w′2
=

4

3

α + β

α− β
.γε (2.116)

The values of the life times calculated before are reduced by the square of the
factor :

2√
3

α− β
α + β

(2.117)

After some simplifications, the lifetime for silicon, like in conditions used to de-
termine it as before (T − 0), we obtain :

1

τ
= 0.007w0 (2.118)
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Temperature Dependence of Phonon Rates

To generalize this relaxation rate, to be used for temperature T , the rate at T = 0
is multiplied by the factor :

1 +
2

e
~w0
2kT − 1

(2.119)

Now, and by adopting Klemen’s model for three phonon decay mechanisms,
we can reach the final form of the equations governing the frequency and width
change of phonons due to anharmonicity:

w(w0, T ) =w0 + ∆(0) + A[1 +
2

e ~w0

2kT
− 1

]

+B[1 +
3

e ~w0

3kT
− 1

+
3

(e ~w0

3kT
− 1)2

] (2.120)

Γ(w0, T ) =Γ0 + A[1 +
2

e ~w0

2kT
− 1

]

+B[1 +
3

e ~w0

3kT
− 1

+
3

(e ~w0

3kT
− 1)2

] (2.121)

These are the famous fitting equations used in many experiments and paper to
fit experimental data, whether by combining the occupation number of phonon
when using Kleme’s mode, or by splitting them.

2.3.9 Temperature Dependence of The Ehigh
2 Mode

The study of the temperature dependence of the EHigh
2 mode was done in the

temperature range 80-750K, according to [34], and is compared to theory using
the above-mentioned derivation of the frequency shift and width change, when
cubic anharmonicites were applied to the second order in perturbation theory to
the imaginary part of the phonon self energy . As temperature increases, the
intensity of the E2 peak decreases, with an increase in its line-width and decrease
in the frequency. The below figure shows the dependence of the frequency and
FWHM on temperature.
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Figure 2.18: . Temperature dependence of the linewidth (squares), left axis and
frequency (triangles), right axis of the E2 high mode. The dashed line is a fit
of the model discussed in the text to the linewidth data. The dot-dashed line
corresponds to the temperature dependence of the frequency given by the model
for the same set of parameters.

[34]

2.3.10 Temperature Dependence of A1(LO) and E1(LO)
Modes Using The Ridley channel model

A simpler model can be used to analyze the temperature dependence of this
two modes, where their frequencies lies in a region of high density of states in
the two phonon DOS. Therefore, the contributions from the self energy terms
can be neglected. From the dispersion relations, its found that the generalized
Ridley channel suits the phonon decay of these modes, where a longitudinal
optical phonon decays into transverse acoustic branches and transverse optical
branch. The suggested decay channel for A1(LO) mode is to 455cm−1 branch in
the TO region and into 120cm−1 in the TA region at the L−M points. For the
E1(LO) mode, we assume the decay of phonon to 490cm−1 from the TO branch
and 100cm−1 from the TA branch. For the fitting graphs of the FWHM and
frequency change, the following equations were used:

Γ(T ) = Γ0 + A[1 + n1(w1, T ) + n2(w2, T )] (2.122)

w(T ) = w0 + ∆0(T ) +B[1 + n1(w1, T ) + n2(w2, T )] (2.123)
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In the first equation, Γ0 represents the intrinsic FWHM from the impurity and/or
defect scattering, n(w, T ) are the Bose-Einstein distribution functions. In the sec-
ond equation, w0 is the intrinsic frequency of the mode, and ∆0(T ) is the thermal
expansion shift. We observe mode softening of A1(LO), with increase in FWHM
as temperature increases. The fitting parameters give Γ0 = 1.3cm−1, A=3.7cm−1,
B=−2.1cm−1 and w0 = 581.4cm−1. A similar behaviour in the frequency shift
and FWHM increase is shown by the E1(LO) mode, where the fitting parameters
are: Γ0 = 2.8cm−1, A=3.3cm−1, B=−1.7cm−1 and w0 = 595cm−1.

2.4 Phonon Confinement Model In Raman Spec-

troscopy For Nano-Materials

One extra feature that can be determined by Raman spectroscopy is to observe
phonon confinement in small nano-particles (below 6nm). It is known that in
1981; a group of physicists, which are H. Richter, Z.P. Wang , and L. Ley, intro-
duced a kind of a model that accounts for the red shift and broadening of the one
phonon Raman spectrum of nano-structured silicon films [44]. The core of their
model was the relaxation in the conservation of q-vector, which allowed phonons
other than zone center ones to contribute to Raman spectrum.

Back in 1979, Morhange et al. studied Raman spectrum for Si wafers pro-
duced previously by ion bombardment, and observed a frequency shift of magni-
tude 7cm−1 (from 522cm−1 to 515cm−1), and total full width at half maximum
(FWHM) of magnitude 8cm−1 [45]. Extended by the work of Tsu et al., who ob-
served Raman lines for Si films in the range from 512cm−1 to 476cm−1, and con-
cluded line-width increase accompanied with a red-shift [46]. They thought that
their results were the first signs of crystallization of the Si films, their thoughts
were aided by the work of Iqbal et al., which obtained similar spectrum for poly-
crystalline Si [47].

To account for the Raman line-position and line-width changes, the model
considers that the phonons are confined in the nano-structure and only in it. For
this let us consider an infinite crystal having a phonon of wave vector q0, therefore
the wave function of the phonon is :

φ(~q0, ~r) = u(~q0, ~r)e
−i ~q0.~r (2.124)

Where here u(~q0, ~r) hold the periodicity of the lattice. With the assumption of
the localization of the phonon in the crystallite, which is a sphere with diameter
L, this imposes to introduce a new wave function for the phonon restricting it to
the sphere :

ψ(~q0, ~r) = A exp
−r2/2

(L/2)2
φ(~q0, ~r)

= ψ′(~q0, ~r)u(~q0, ~r) (2.125)
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With

|ψ|2 = A2 exp
−r2

(L/2)2
(2.126)

and

ψ′(~q0, ~r) = Aexp
−r2/2

(L/2)2
e−i ~q0~r (2.127)

This Guassian distribution localizes the new phonon wave function ψ to a radius
|r| ≤ L and width

√
ln2L. For us to calculate the Raman spectrum, we need to

expand ψ′ in a Fourier series:

ψ′(~q0, ~r) =

∫
d3qC(~q0, ~q)e

i~q~r (2.128)

Where C(~q0, ~q) is a Fourier coefficient given in the form:

C(~q0, ~q) =
1

(2π)3

∫
d3rψ′(~q0, ~r)e

−i~q~r (2.129)

Inserting equation (2.127) to C(~q0, ~q) in the above equation we get :

C(~q0, ~q) =
AL

(2π)
3
2

exp(
−1

2

L

2

2

(~q − ~q0)2) (2.130)

Therefore we have abandoned the old representation φ(q0, r) of phonons, and
created the new phonon wave functions ψ and ψ′, to be the superposition of wave
functions having wave vector q in the region |~q0 − ~q| ≤ 1

2L
centered at q0.

For this particular choice of localization, where we weighted the eigen-
funcions by C(q0, q), as we said before, the illuminating idea of this model is
created because of the relaxation of ∆q, so that the phonon is localized in the
small spherical nano-particle, therefore the phonon transition matrix has non-
vanishing terms also for values of q 6= 0, and:

| < ~q0|Ô|~q > |2 = | < ~q0|Ô|~q0 > |2.C(~q0, ~q)
2 (2.131)

Here Ô is the photon-phonon interaction operator. Therefore, and upon han-
dling the excitation of the zone-center optical phonons (q = 0), we allowed the
contribution from phonons having wave vector q 6= 0, this has a direct impact on
the energies and frequencies of the Raman spectrum, because it allows phonons
rather than the zone-center ones to exchange energy with the photons. The new
energies are determined by the dispersion w(q). Furthermore, away from zone-
center, the optical phonon dispersion is degenerate, and this degeneracy is because
of the two polarization branches; the transverse and longitudinal branches, and
both have negative dispersion. In a nutshell, because of this added transitions
from q 6= 0, it is clear now the causes of the broadening in line-width (Γ1) and
the frequency shift (∆w) in the Raman spectrum. The new changes among the
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Figure 2.19: Relation between the frequency shift and line-width in Raman line

frequency and line-width are connected via w(q); the dispersion relation, and the
coefficient C(~q0, 0) in equation (2.130) see Figure (2.19).

Where in this graph, Γ is the summation of the intrinsic line-width Γ0 and
the added one due to phonon confinement Γ1 (from the contribution of q 6= 0
phonons). The right-side ordinate have information about the crystallite size in
Angstrom, this parameter is of major importance due to its appearance in the
equation (2.130), thus it is a crucial element in calculating the coefficient C(~q0, ~q).
As mentioned be Richter et al., this numerical values are model dependent and
therefore they are consistent with the longitudinal optical phonon branch in the
direction Γ-X. Also figure (2.19) shows experimental data conducted from the
work of Iqbal et al. of films prepared by plasma transport method. The exper-
imental points are consistent with the graph linking the relationship between Γ
and ∆w upon taking advantage of an uncertainty ±0.5 on both the frequency
shift and line-width.

The Raman lines for micro-crystalline samples shows a sort of asymmetry
manifested by the tailing toward lower frequencies as shown in figure (2.20), which
is well accounted for in this model. The accumulated intensity and asymmetry
is caused by the amorphous type of the material. We know that in Crystalline
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Figure 2.20: Measured and calculated Raman line for µc-Si sample. The solid
line is calculated Raman intensity, while the dotted line is for measured intensity

materials, the zone-center optical phonons abide to the wave vector conserva-
tion rule. As we discussed above in the previous section ” Life-Time of Optical
Phonons”, Klemens stated that the favorable decay channel for zone-center op-
tical phonons is the creation of two acoustical phonons of equal and opposite
wave vectors, so that their sum is equal to zero. The transition probability of the
above-mentioned decay is:

Γ0(w0) ∝ |M |2.N(w′).N(w′′) (2.132)

Where w′ = w′′ = w0/2, N(w) is the density of states of the acoustical phonons,
and M is the transition matrix element. Upon working in micro-crystal structure,
the model suggests the relaxation of the wave vector conservation law. Therefore
equation (2.132) is adjusted to:

Γ0(w0) ∝ |M |2
∫
F (~q−, ~q+)N(w0/2− w′).N(w0/2 + w′)dw′ (2.133)

This integral is bounded for a range of w′, which is done through the weighing
function F (~q−, ~q+) = F (|~q(w0/2 − w′ − ~q(w0/2 + w′)|), that is the weighting
function is Guassian centered around q(w0/2), and has width ∆q. One thing to
note here is the intrinsic line-width (Γ0), it is expected to increase whenever the
averaged two-phonon density of states applied in equation (2.133) is greater than
the actual two-phonon density of states. Therefore we describe this temperature
dependence in Γ0 as follows:

Γ2(T ) = Γ2
0(1 +

2

e× − 1
)2 + Γ2

1 (2.134)

Where Γ1 is temperature independent term, and it has to deal with the size of
the micro-crystal, and x=~w0/kT .
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In accordance to this, measurements were done on 4 samples annealed at
different temperatures, in which four of them were micro-crystal Silicon and one is
actual crystal Silicon. After that, a fit was done to obtain the intrinsic line-width
(Γ0) and (Γ1). See Figure (2.21) and table (2.22).

Figure 2.21: Raman line-width versus temperature of 3 µc-Si samples and 1 c-Si
sample. The solid lines are the fitted results

Figure 2.22: The obtained line-width from fitting the temperature dependence
line-width of 4 Si samples

In the table we have listed the values od Γ0 and Γ1, where the Γ0 was
determined from the slope of the graph in figure (2.19) for large T part, and
the latter is determined by taking the temperature T → 0 in equation (2.134).
As can be seen from the table, the values for Γ0 increases with decreasing the
crystallite’s size, which is in good agreement with the phonon dispersion in Si.
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Finally, we observe good agreement between the theoretical model concluded by
Richter, and the experimental work on µc-Si. This lead us to conclude the effect
caused by imposing relaxation on the wave vector selection rule which happens
to be crucial in micro-crystalline Si.

Extending the work of Richter et al., I.H. Campbell and P.M. Fauchet [48]
wrote a paper discussing 2 new features of confinement. The first feature was
established when they look after the form of confinement of Richter and found
no physical reason for choosing the Gaussian weighting function. In their paper,
they introduced new forms of weighting functions and compared the theoretical
results with the measurements done be Iqbal et al [49]. The second feature was
taken to test the frequency shift and line-width change for different shapes of the
micro-crystalline to the best fit weighting function from feature 1. They started
the paper with the same work of Richter et al. by expressing the wave function
of a phonon in an infinite crystal material with the weighting function, that they
named it W (r, L). So for an infinite crystal, the phonon wave function is :

φ(~q0, ~r) = u(~q0, ~r) e
−i ~q0~r (2.135)

When introducing the weighting function, the above equation transforms to:

ψ(q0, r) = W (r, L)φ(q0, r) = ψ′(q0, r)u(q0, r) (2.136)

Richter et al. [44], choose a Guassian distribution of W (r, L) with with phonon
magnitude 1/e at the boundary. So that expanding ψ′ in Fourier series we get:

ψ′(q0, r) =

∫
d3qC(q, q0)eiqr (2.137)

with the Fourier coefficient C(q, q0):

C(q, q0) =
1

(2π)3

∫
d3ψ′(q0, r)e

−iqr (2.138)

Therefore as it was concluded before, the new wave function is superposition of
wave functions of wave vector q 6= 0 centered at q0 = 0. The Fourier coefficient
was in the paper by Richter:

|C(0, q)|2 = e
−q2L2

4 (2.139)

Where we assumed q0 = 0. The first order Raman scattering is:

I(w) '
∫

d3q|C(0, q)|2

(w − w(q))2 + (Γ0/2)2
(2.140)

Where in this equation, Γ0 is the intrinsic line-width, and w(q) is the phonon
dispersion relation. We take the limits of integration to cover a spherical Brillouin
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zone, with the dispersion being independent on direction. Richter’s model was
consistent with the measured crystals that were spherical, but it was mistaken
in predicting the micro-crystal size, which appears that his calculations were
consistently low to 20 Angstroms from the measured values. Tiong et al. [48]
tried to fit his results of his samples ”Ion Implanted GaAs” through this model.
To get good fitting results, one must change the amplitude at the boundary from
1/e to exp(−4π2) . Also to get a consistent theory for both Si and GaAs, this
paper tried to test 3 different confinement models with different values at the
boundary. The adjustment was played at the level of the weighting function.
The three new used weighting functions are:

1. sin(αr)/(αr)

2. exp (-α r)

3. exp (-αr2/L2)

The three weighting functions were choosen to make analogy with: The ground
state of an electron in a hard sphere for the first function. Second, wave in a lossy
medium, which is a medium that an electro-magnetic wave would lose energy in
it as it propagates . Third, to account for all the distribution of micro-crystals.
For the sinc function the value at the boundary was taken α = 2π/L, so that
it has zero value at the boundary. For the other two functions, the value is
calculated once, because it changes the crystallite size. The data of Iqbal et al.
[49] were used to compare the results obtained from these functions. The Fourier
coefficients are as follow:

|C(0, q)|2 ' sin2(qL/2)

(4π2 − q2L2)2
W (r, L) =

sin(2πr/L)

2πr/L

|C(0, q)|2 ' 1

(16π4 − q2L2)4
W (r, L) = e−4π2r/L

|C(0, q)|2 ' e−q
2L2/16π2

W (r, L) = e−8π2r2/L2

(2.141)

We can see the comparison between the calculated results and the work done by
Iqbal in the below figure. The left-ordinate of the figure shows the frequency shift
(∆w) with respect to the intrinsic frequency of a crystal sample. The horizontal-
ordinate is the line-width (FWHM), and the right-ordinate is the calculated
length L of the micro-crystal. As shown from the results, the rapprochement
between measured values and theoretical weighting functions is clearly seen for
the Gaussian weighting function with the value of exp(−4π2) at the boundary
of the crystallite. Add to that, this choice of weighting function and its cor-
responding value at the boundary are in agreement with the measurements of
Tiong et al. [50] for ion implementation in GaAs. From the value of exp(−4π2),
we can say that this type of confinement is rigid so the amplitude of the phonon
at the boundary 6= 0.
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Figure 2.23: The calculated frequency shift and broadening for the micro-crystal
structures using I. exponential II. Sinc III. Gaussian. The dots are from the work
of Iqbal et al, the (X) are from the work of Richter et al, and the hollow rhombus
is from the authors’ work

After finishing this fitting criteria among the three different confinement
functions, we selected the Gaussian weighting function with its corresponding
value at the boundary to be used in the following feature of the phonon confine-
ment model. Now we seek results from the Raman spectrum of various micro-
crystal shapes, and their accordance to the confinement model with our specific
choice of confinement function. The different shapes of the micro-crystals enters
the calculations by adjusting the confinement function to take account of the
magnitude and direction of the shape. The three shapes we will be dealing with
are :

1. Sphere

2. Column shaped crystal

3. Thin film

See figure (2.24) for the shapes of micro-crystals.
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Figure 2.24: The three micro-crystals shapes. Length L2 of the column is con-
sidered to be infinite.

The Fourier coefficients for the corresponding shapes are:

|C(0, q1, q2)|2 ' e(−q21L2
1)/(16π2)e(−q22L2

2)/(16π2)
∣∣∣1− erf(

q2L2√
32π

)
∣∣∣2 For Column

|C(0, q2
1)|2 ' e(−q21L2

1)/(16π2)
∣∣∣1− erf(

q1L1√
32π

)
∣∣∣2 For Thin Film

(2.142)

Now it is the time to observe the comparison between these 3 different shapes,
knowing that this comparison empowers us to distinguish between the three, two
and one dimensional effect on the Raman spectrum, see figure (2.25). The scales
for the line-width and the frequency shift are the same for the three shapes,
but the scale for the dimensions on the right-side ordinate differs from shape to
shape, noting that for the column shape, only L1 is displayed since L2 is infinite.
In addition to the experimental points in figure (??), the work from Murphy et al.
on thin Silicon films samples prepared by thermal oxidation [51], is added. Note
here that there is no experimental data for columns.

It can be concluded that this figure shows frequency shift and line-width
increase for the measure and calculated Raman lines. The strength of the Ra-
man lines goes in ascending order from thin film shaped micro-crystals, then
column, and finally the strongest Raman lines are for the spheres. This is a
direct cause from the sensitivity of Raman line to number of ordinates in micro-
crystals, so that it is affected by crystallographic orientation of the different films.
The confinement in thin films occur only in the Z direction, on the other hand,
for column shaped micro-crystals the confinement is along X and Y directions,
while for spheres, the confinement is in three directions X,Y, and Z. This distinc-
tion is made between Raman lines of thin films and for those of sphere shaped
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Figure 2.25: This graph displays the relation between the calculated frequency
shift, broadening and crystal size of the three various shapes: I.Sphere II. Column
III. Thin film. The experimental points are the same as figure (2.23) with the
addition from the measurements of Murphy et al. displayed by hollow circles.

micro-crystals. Figure (2.26) shows the comparison between experimental and
theoretical data from the work of Murphy et al. on Silicon thin films on sap-
phire (SOS). The length was of 40 Angstroms and the samples were made by
thermal oxidation. The graph shows good agreement between the line-width and
symmetry of the calculated and the experimental work.

Figure 2.26: Experimental and theoretical spectra of 40 Angstroms thin film.

Lately, and in 2010, a paper proposed by Rodeenko et al. titled ”Modified
Phonon Confinement Model for Raman Spectroscopy of Nanostructured Mate-
rials” [52], looked after the details of the original ”PCM” model, and improved
some of its features. At first, it shed the light on the parameters in the Gaus-
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sian weighting function, and showed the discrepancies in the weighting function
proposed by Richter et al. Secondly, in the Richter-Campell-Fauchet model, the
medium was taken be to isotropic and the dispersion relation was of linear mode,
this assumption was made because they considered that only a small region of the
Brillouin zone contributed to the scattering process. Rodeenko’s model insisted
to deal with the anistropy of the material, thus adjusting the phonon dispersion
relation, because it showed that for low dimensional materials, the broadening is
strongly affected by the anistropy.

65



Chapter 3

Results and Discussion

In this chapter, we intend to use the model developed by Menedez and Kle-
mens, to gain more information about the decaying processes and channels of
zone-center optical phonon in ZnO, and thus to determine the intrinsic frequency
and lifetime.
The peaks or as we know them, the vibrational modes of ZnO nano-particles
were measured using Raman spectroscopy described in section 2 in the literature
review. Then a heater was connected to do further measurements at high tem-
perature and to track the various ZnO phonons’ response to temperature. After
that, a fitting is done using the fitting equations discussed in the literature review,
this helped us to extract the intrinsic frequency and lifetime of the phonons, and
gave us more information about their respective decaying processes.

3.1 Experiment

In our experiment we started by growing Zinc-Oxide nanoparticles using the
following process. The synthesis of zinc oxide nanoparticles was carried out as
follows: In the beginning a solution of zinc nitrate hexahydrate was prepared
by dissolving 0.2 g of this compound in 10 mL of double distilled water heated
at 80 degrees celsius. In a second step, the solution was kept under reflux for
1 hour at 80 degrees Celsius under continuous stirring (400 rpm). In this tima,
KOH solution (C=0.2 M) was made by dissolving 0.11 g of potassium . After
reflux, KOH was added to the mixture drop by drop using a burette with constant
stirring. Lastly, the obtained solution was centrifuged at 4000 rpm for 10 minutes
and the precipitate was washed 3 times with double distilled water. The final
solution was kept for 24 hours under freeze dryer to obtain the nanoparticles in
form of powder.
The Raman line spectra were excited using Cobolt Samba laser of 532nm in
wavelength. The scattered light was analyzed by the means of Acton SpectraPro
(2500i) coupled to a charged -coupled device (CCD) detector. Finally, the heater
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from HeatWave Labs (Model 101303 temperature controller) was connected to
the sample holder.

3.2 First Order Raman Spectrum

As discussed in Section 2, ZnO has four main optical phonon modes with the
following irreducible representation:

Γoptical = A1 + E1 + 2E2 + 2B2 (3.1)

In our work, we used unpolarized Raman spectrum, so that all the phonon modes
with various symmetries can appear, this is because we are using unpolarized light
source. The observed peak at 437cm−1 is attributed to the z(xx)z̄ spectrum of (E2

+ A1) symmetry. This mode; named the Ehigh
2 mode, shows a clear asymmetry

toward lower frequencies as shown from the below spectrum. This asymmetry is
understood from the anharmonic interactions concerned to this mode, discussed
in details in the following section.

Figure 3.1: Raman Spectrum of Ehigh
2 mode

One more peak can be seen at 410cm−1 that corresponds to E1(TO) mode of
spectrum x(zy)y. An additional peak is detected at 387cm−1, which is assigned
to A1(TO) mode.

67



Figure 3.2: Raman Spectrum of E1(TO) mode

Figure 3.3: Raman Spectrum of A1(TO) mode
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Furthermore, additional 2 peaks in the first order Raman spectrum are seen
at 570cm−1 and 582cm−1. This two peaks are assigned to z(xx)z̄ and x(zy)y
spectra and meant to be the A1(LO) and E1(LO) modes respectively.

Figure 3.4: Raman Spectrum of A1(LO) and E1(LO) modes

To sum up this section, 5 First order Raman peaks of ZnO nano-particles
were found at 383,410,437,570,582 cm−1.

3.3 Second order Raman Spectrum

The phonons involved in the first order Raman scattering are restricted to ~k = 0
conservation rule. Whereas in the second order Raman spectrum, phonons from
the entire Brillouin zone contribute to the spectrum. This is an outcome from the
relaxation of the momentum conservation rule, due to very small nano-particles
size (around 5nm) presented in the sample.

In the second order spectrum of ZnO phonons, we find a peak at 1160cm−1

that contains perturbation from to 2E1(LO) and 2A1(LO), and it is found be-
tween the doubled frequency of E1(LO) and A1(LO). The peak just under it
at 1102cm−1, is attributed to 2LO mode at H − K. The mode at 1060cm−1
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is assigned to TO + LO combinations at M − L points. This three peaks are
combined into one big peak as can be seen from the following figure:

Figure 3.5: Raman Spectrum of 1060,1102 and 1160 cm−1 peaks

The peak at 333cm was previously assigned to TA overtone scattering occur-
ring at M point, but from the paper ”Temperature dependence of ZnO”, they
found that this mode is clearly a difference mode taking into account its behaviour
with temperature. They compared its Raman intensity normalized to the inten-
sity at room temperature versus temperature to the statistical occupation factor
of E2low − E2high modes, and found an agreement.
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Figure 3.6: Raman Spectrum of 333cm−1

A peak appears at 277 and is assigned to a difference mode (B1high −B1low),
one more peak is seen at 197cm−1, which has A1, (E2) symmetry.

Figure 3.7: Raman Spectrum of 197cm−1 and 277cm−1 modes

A peak is seen at 478cm−1 that exhibits A1 symmetry and is assigned to LA
overtones along M −K, which is seen from the figure (3.4). The peak at 530 has
A1 symmetry and is attributed to LA overtones along L −M − H, and can be
seen from the figure (3.4). The TA+LO combinations arise the doublet observed
at 654-666. The 654 peak has E2 +E1 symmetry, while the symmetry of the 666
peak is A1 at M point.
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Figure 3.8: Raman Spectrum of 654,666cm−1

Low intensity modes are detected at 704cm−1 and 732cm−1 having A1 sym-
metry and are attributed to acoustic and longitudinal combinations. We summed
up our results of second order Raman peaks in the following table:

Frequency Symmetry Brillouin zone points

197 A1, (E2) L,M,H;Γ
277 A1 Γ
333 A1(E2, E1) Γ
478 A1 M-K
530 A1 Γ;L,M,H
654 E1, E2 L,H
666 A1 M
704 A1 M
732 A1 L,M
1060 A1 M-L
1102 A1 H-K
1160 2A1(LO), 2E1(LO); 2LO Γ;A− L−M

Table 3.1: Second order Raman peaks, and their associated symmetry and posi-
tion in the Brillouin zone.
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3.4 Asymmetry of Ehigh
2 Mode

The Ehigh
2 phonon mode shows a clear asymmetry toward lower frequencies.

This asymmetry is a direct consequence of the anharmonicity effects, that is the
renormalization of the bare harmonic frequency of this mode, that manipulates
the components of its phonon self energy. The effect of the cubic anharmonicity
to the second order in perturbation theory on the imaginary part of the phonon
self energy is :

Γ(w) =
18π

~2

∑
q,j1,j2

|V3(qj1,−qj2)|2[(n1 + n2 + 1)δ(w1 + w2 − w) + (n2 − n1)δ(w1 − w2 − w)]

(3.2)

The expansion of the lattice potential to third order gives the V3(qj1,−qj2) term .
The phonon occupation number of the modes w(q, j1) and w(−q, j2) is represented
by n1 and n2 respectively, where q is the phonon wave vector and j is the phonon
branch. For simplification, an assumption was taken here that considers a slowly
varying Bose-Einstein factors and V3 in a small energy range. From the above we
found :

Γ(w) = |V +
3 |2(1 + n1 + n2)ρ+(w) + |V −3 |2(n2 − n1)ρ−(w) (3.3)

The above equation has new components. We observe the split of the third order
lattice potential coefficient into anharmonic constants describing the decay into
phonon sums and differences. Also there are the two-phonon DOS, where ρ+(w)
is the two-phonon sum DOS, and ρ−(w) is the two phonon difference DOS. The
triumph here is in the two-phonon sum and difference DOS. We get the real
part of the phonon self energy from Kramers-Kronig relation that relates the
imaginary part with the real part:

∆(w) = − 2

π
P

∫ ∞
0

w′

w′2 − w2
Γ(w′)dw′ (3.4)

Now we can see the frequency dependent renormalization in the phonon self-
energy of the intrinsic frequency. Another player in the mode softening and
the asymmetric shape of the Ehigh

2 mode is the frequency shift due to thermal
expansion of the lattice. Its effect can be taken to be :

∆0 = −w0γ

∫ T

0

[αc(T
′) + 2αa(T

′)]dT ′ (3.5)

Where αc and αa are the thermal expansion coefficients along parallel and per-
pendicular directions of the lattice. Here γ is the Gruneisen parameter which is
taken to be 2.02. This parameter relates the thermal expansion of the lattice to
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its vibrational modes. The values of the thermal expansion coefficients and the
Gruneisen parameter were taken from [53],and they were found to be increasing
with temperature:

Figure 3.9: Thermal expansion coefficients along parallel (black squares) and
perpendicular (red circles) directions of the lattice axis.

Finally the lineshape of the Raman peak is :

I(w) ∝ Γ(w)

[w0 + ∆0 + ∆(w)− w]2 + Γ2(w)
(3.6)

The tendency of the peak to deviate from the Lorentzian shape is the fre-
quency dependence of its phonon self energy components, where the real part that
accounts for the frequency shift, is also frequency dependent. The two phonon
sum DOS was calculated by us, and it was shifted by -10cm−1 to compensate for
isotopic effects of the constituent materials. Whereas the two phonon difference
DOS was taken to be equal ρ−(w) ≈ 0.25states/cm−1, this is because its nearly
flat around the frequency of the Ehigh

2 . We can see that the Ehigh
2 mode frequency

lies on a ridge like shape of the two-phonon sum DOS from the following figure:
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Figure 3.10: Two phonon sum DOS

The frequency term in the phonon occupation number in the imaginary and
real part of phonon self energy, stands for the phonon decay channels. From
the phonon dispersion relation of ZnO, we can suggest a decay channel into a
sum of two acoustic phonons of frequencies 190cm−1 and 250cm−1, and into a
difference between 550cm−1 and 110cm−1. Now we can calculate the lineshape
of the E2high mode, taking into account the two adjustable parameters |V +

3 |2 and
|V −3 |2. The fit between the theoretical and experimental work is shown in the
following graph: Very good agreement is obtained between the developed model
and the experimental results. The above figure shows the asymmetric shape of
the Ehigh

2 mode toward lower frequencies. The origin of this asymmetry is the
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Figure 3.11: The spectrum of Ehigh
2 mode of ZnO at room temperature. The

noisy black line represents our experimental results, where the solid red line is
calculated using equation 3.6.

strong frequency dependence of the imaginary part of the phonon self energy ,
which is plotted in Fig 3.10 (dashed-dotted line) against the left axis over the
frequency region where the Ehigh

2 mode occurs.

3.5 Temperature dependence of the Ehigh
2 mode

After conducting the above results at room temperature. Now, we track phonon’s
mode response with respect to temperature , in order to collect more information
about the mechanisms governing phonons interactions. For this purpose, a heater
is connected to hold the sample, so that heat is transferred directly to the surface
of our thin sample. Furthermore, a cooling process has been done, and the data
of the Raman spectra were collected. The Raman spectra of the Ehigh

2 mode in
the temperature range 300-1000K in the heating and the cooling processes is as
follows:
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Figure 3.12: This figure shows the spectrum of Ehigh
2 mode of ZnO at various

temperatures. The left side shows the heating process, while the right side illus-
trates the cooling process. On both sides, the noisy lines with different colors
represent our measurement of the Raman spectra of the Ehigh

2 mode at different
temperatures. The solid black lines are the fitted theoretical lines from the fitting
intensity equation (3.6) concluded from the model mentioned above. The dashed
line follows the position of the defect (dip-like shape) as temperature increases,
also the arrow points at another doublet defect at the heating process, before its
transformation to a singlet during the cooling process

The above figure is a rich medium of information concerning many phonon
interaction mechanisms occurring at different temperatures. To kick off this dis-
cussion, we start by dividing the two figures to three stages. The first stage is
in the heating process from temperature (300→800K). The second stage is com-
bined between the heating and cooling processes, and it ranges in both of them
from 800 to 1000K. The third stage is in the cooling process and it deals with the
Raman lines below 800K. In a general overview of the above figure, we see in the
heating process an increase in the intensity of the Raman lines of the Ehigh

2 mode
as temperature increases. Also, a change of the Raman-line position toward lower
frequencies is observed and caused by the three phonon interaction processes done
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by the sample in order to maintain thermal equilibrium (This was discussed in
the literature review, with the equations governing the frequency change as a
function of temperature). The asymmetry of this mode toward lower frequencies
is also obvious at room temperature, and it decreases as temperature increases.
The asymmetry was discussed in the previous section, when we insisted that an-
harmonic phonon interactions with the two phonon density of states, creates a
distortion in the expected Lorentzian Raman line of the Ehigh

2 mode, as shown
from its shape. We can clearly see a dip-like shape in the Raman lines, where
this dip is a defect found in the sample, and the cause of its existence in the
Raman line is justified because it absorbs the incoming photons and it resonates
with them. An arrow, points to a doublet, that illustrates another defect, and
transforms into a singlet at the end of the cooling process.

Defects occur in the synthesis process and they interact with phonons, also
they form their own states in the lattice. That’s why a phonon lifetime is di-
rectly affected by the defect density. In this figure, its obvious that when tem-
perature increases, the location of the defect changes (its location in terms of
the wavenumber). In the first stage of the heating process (300-800K), the de-
fect moves toward lower frequencies, this move in site, changes the interaction
mechanism with phonons, therefore it manipulates the shape of the two phonon
sum DOS. As we saw before, the line-shape of a Raman-line and its asymmetry
is directly relevant to the position of the mode’s frequency with respect to the
two phonon sum DOS. The change of the two phonon sum DOS (caused by the
change of the defect site), moves the Ehigh

2 mode from the ridge like shape in
the two sum phonon DOS, and therefore we see its shape changes as tempera-
ture increases, and becomes less asymmetric (The Raman line-width is directly
proportional to the two phonon DOS).

In the second stage, which is combined between 800-1000K in the heating
process, and from 965-800K in the cooling process, we observe that the defect site
is not changing between a temperature in the heating and its value in the cooling.
In other words, the defect is in the same position in 800K during heating and
800K during cooling. Furthermore, it is in the same position for 900K in both
processes. Also, this is true for 1000K at heating and 965K in cooling. This is
observed from the resemblance of the Raman lines of each temperature between
the 2 processes. Where the Raman line at 800K in heating looks like the one
at 800K in cooling, same thing applies for 900K and 1000K temperatures. From
here we concluded that the process in this stage is reversible. Note here that the
defect site is changing during heating from 800K-1000K, and among cooling from
965K-800K, which causes the change in the Raman line-shape under the same
discussion of stage 1.

The turn point here is in the third stage (below 800K in the cooling process),
when the defect site is not reversible as temperature decreases. In this stage, the
defect disappears totally from the Raman-line. This disappearance may be caused
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by the high temperatures attained by the sample. There exists a treatment
process (know by physicists and chemists) known as annealing treatment that
reduces the defect density in the sample. This disappearance changes the shape
of the two phonon DOS more and more, and this is translated to the Raman line-
shape of the Ehigh

2 mode. It is observed that below 800K the line-shape becomes
somehow symmetric with very little asymmetricity toward lower frequencies. The
Ehigh

2 mode frequency is no longer on a ridge-like shape on the two phonon sum
DOS, but it is now near a flat region of it.

To aid the discussion mentioned above, we follow the fitting parameters
used to fit the FWHM (full width at half maximum) of each peak at different
temperatures. The equation is mentioned above, but let me remind you of it :

Γ(w) = |V +
3 |2(1 + n1 + n2)ρ+(w) + |V −3 |2(n2 − n1)ρ−(w) (3.7)

Where |V +
3 |2 and |V −3 |2 are the effective third order anharmonic constants of

the phonon sums and differences, and ρ+ and ρ− are the two phonon DOS sums
and differences respectively.For the fiting equations, we used frequencies 190cm−1

and 250cm−1 for n1 and n2 in the first term of the equation. For the difference
scattering channel, frequencies of values 550cm−1 and 110cm−1 were applied to
the phonon occupation number. Now, let us obtain the parameters |V +

3 |2 and
|V −3 |2:
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Figure 3.13: The first figure shows the strength of the third anharmonic coefficient
of the phonon sum as a function of temperature during the heating and the
cooling process. While in its inset, we see the graph of the two phonon sum DOS
as function to the wavenumber. The second figure shows the |V −3 |2 as a function
of temperature. In both figures, the red circles are associated to the heating
process, while the blue circles demonstrates the cooling process.

Also we divide these graphs into 3 stages. In the first stage (Temperature
range 300→600-700K) in the heating process, we see a wide value change of
|V +

3 |2 (red circles), which is concluded by the change of the shape of the two
phonon sum DOS caused by the defect site change in this temperature range. Its
obvious that its value starts to decrease here, so that the Ehigh

2 mode frequency
is moving from the ridge-like shape in the two phonon sum DOS and therefore
its impact becomes less on it. On the other hand, the change of the |V −3 |2 on
this range is averaged to constant (The Ehigh

2 mode frequency is in a flat region
in the two phonon difference DOS). The tremendous work here, is that we are
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able to construct the shape of the two phonon sum DOS from the graph of the
effective third-order anharmonic constants for decay into phonon sums versus
temperature (See the first graph in figure (3.13) and its inset) . This is because
the |V +

3 |2 demonstrates the interactions with the two phonon sum DOS.

The second stage shows constant values of |V +
3 |2 coefficient till the end of

the heating process. That is, the Ehigh
2 mode now is not influenced with the two

phonon sum DOS, and temperature is affecting its Raman line-width position.
Also this is observed in the cooling process till 600-700K, which indicates here
that the process is reversible. This is a previous conclusion from the previous
figure. Also, same justification and same behaviour applies to |V −3 |2 coefficient,
where it shows a reversible process in this stage.

The turn point here is in the third stage of the cooling process (temperature
below 600K). We saw before the disappearance of the defect from the Raman
lines in this stage, so that the two phonon sum DOS has changed and the Ehigh

2

frequency is no longer on a ridge-like shape on it. This can be concluded from
the constant value of the |V +

3 |2 in this region, and the rise of the |V −3 |2 values at
the same time.

3.6 Temperature dependence of the A1 mode at

333cm−1 and E1(LO) mode at 582cm−1

An interesting behaviour was found from the temperature dependence of the
width for the two A1 and E1(LO) polarized modes. The first mode is an axial
mode, and the second mode is in-plane mode due to the motion in the unit cell.
Where upon fitting our experimental data to the theory, we used the following
model. which is a simpler model rather than the one used above:

Γ(T ) = Γ0 + A[1 + n(w1, T ) + n(w2, T )] (3.8)

Where Γ0 is the intrinsic FWHM due to scattering by defects and it is temperature
independent, and the second term is the three phonon interaction term and it
is temperature dependent, where A is the parameter showing the strength of
this interaction. From the dispersion relations, we find the decaying channels of
the A1 mode to be for w1 between 92-152cm−1, and w2 between 182-242cm−1.
For E1 mode, the decay channel for the phonons are w1 = 88 − 105cm−1, and
w2 = 475− 492cm−1. Their line-width with respect to temperature shows:
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Figure 3.14: The first figure shows the temperature dependence of the line-width
of the A1 symmetry mode at 333cm−1, while the second figure shows the tem-
perature dependence of the E1(LO) mode at 586cm−1. For both graphs, the red
circles are the values of the width during the heating process, while the blue cir-
cles are the values of the width during the cooling process. The black solid line
represents the fitted line from the theoretical equation (3.8)

This figure shows the temperature dependence of the width of A1 and E1
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modes in the heating process (red circles), and the cooling process (blue circles).
The black solid straight line is the theoretical equation used to fit our results.
We see that a temperature increases, the Raman line width of both modes in-
creases also,which is expected from decays through three phonon process inter-
actions, and its strength is represented by the parameter A in the equation. Also
it is observed that the width decreases in the cooling process. A deep look into
the first part of this figure, we notice a reversible behaviour between the increase
and decrease process of the width, which leaves us to conclude that the defect is
not interacting with this mode.
While for E1 mode, the increase of the width shows a change in behaviour at
temperature 700K, when the red circles do not abide the theoretical fitting line.
This is understood from the interaction of this phonon mode with defects that are
changing their sight here. At the same time, Γ0 in the equation has changed from
0 to 18 (reminding you that this parameter accounts for width change upon inter-
actions with defects only and it is temperature independent). At the beginning
of the heating process from 300→700K, the scattering was due to cubic anhar-
monic phonon interactions, but after 700K, a change in the increasing behaviour
occurred due to the change of the defect site. Also we observe that the cooling
process maintains the same behaviour attained by the last points of the heating
process, so that we conclude that now the defect is not changing its position upon
temperature changes.

3.7 Conclusion

This work is dedicated to understand the role of anharmonic processes on the
phonon interactions, and to study the effect of defects on the anharmonicity of
optical phonons in wurtzite zinc oxide (ZnO) nanoparticles. Also we explained
the source of the asymmetrical shape of Raman lines of the Ehigh

2 mode, alongside
the change of the phonon lifetimes with temperature change. We found that at
constant temperature, when a phonon mode is near a ridge-like shape of the 2
phonon DOS, an expected asymmetrical peak is to be observed as in the intensity
equation, the denominator is frequency dependent, resulting for the frequency de-
pendence from components of the phonon self energy.

When temperature increases, it is crucial to track the defect’s site because it
is of major importance in terms of the interaction with phonons. Any change of
the defect site means a change in the shape of the two phonon DOS, and this is
translated to the Raman line-shape of the targeted mode. Also, we deduced the
graph of the 2 phonon DOS to have the same shape of the effective third order
harmonic constant decay of phonon sums with respect to temperature, because
these interactions are manifest of phonon interactions with the two phonon sum
DOS, therefore the graph of the strength of these interactions with respect to
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temperature is the mirror of the two phonon density of state. This is the first
time that one can expect the shape of the 2 phonon DOS from the temperature
dependence of |V +

3 |2. We saw a total irreversible process between the heating and
the cooling process of the Line-shape of the Ehigh

2 mode, except for the second
stage of the two processes (800K to 1000K), where the defect is localized at these
temperatures, therefore we observed a reversible process at these temperatures,
and the behaviour of the |V +

3 |2 and |V −3 |2 at these values of temperature aided
this conclusion.

One major conclusion from this thesis is that the defect location didn’t
affect the Raman line-width of the A1 symmetry mode which is an axial mode,
unlike its effect on the E1 mode that is an in-plane mode. For this mode, we
observed a change in the behaviour of the increasing line-width values after 600k
temperature, and the behaviour of the cooling process matched the last behaviour
of the heating process, and this was justified by the change of the Γ0 term in the
fitting equation, which is the term responsible for the scattering due to defects.

84



Appendix A

Abbreviations

IR Infrared
INS Inelastic Neutron Scattering
PMT Photomultiplier
CCD Charged Coupled Device Detector
FWHM Full Width at Half Maximum
DOS Density of State
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