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An Abstract of the Thesis of

Mariam Imad Khaldieh for Master of Science
Major: Physics

Title: Non-Singular Black Hole in Asymptotically Free Mimetic Gravity

In General Relativity the works of Hawking and Penrose have shown that sin-
gular solutions are in-avoidable. The most famous of which are the Schwarzschild
and Kerr black hole solutions and Friedman Cosmological solution. In 2013,
Chamseddine and Mukhanov have proposed a theory of gravity, with minimal
modification where the scale factor is exchanged with a constrained scalar mode
that plays the role of time coordinate. The modification is minimal in the sense
that the new theory has only additional half degree of freedom corresponding to
the presence of dark matter in the form of dust, and thus the name “mimetic
gravity”. And in recent work, Chamseddine, Mukhanov and Russ, have obtained
exact non-singular black hole (NSBH) and cosmological solutions, and this thesis
addresses the Schwarzschild-like NSBH solution.

In this work, we study in detail the properties of the Schwarzschild-like so-
lution near time t=0 showing how the singularity is avoided. In addition, and
more importantly we study motion near the horizon, where particles curiously
oscillate in and out of the horizon. The study also explores the whole spectrum
of dynamics for massive and massless particles alike, and new results arise in
contrast to the regular Schwarzschild solution. We find a new class of bound
orbits for such particles with non-zero angular momentum, orbiting across the
internal and external regions of the non-singular black hole, all the while avoiding
any physical contradictions. A particularly interesting result obtained was stable
photon orbits in the inner region of space-time metric. And even though it was
found that black hole evaporation yields a stable black hole remnant of minimal
mass, this work studies dynamics in the limit where the mass is less than that
of a minimal black hole remnant. And while this limit is not prohibited in the
theory, it has a prominent feature: the absence of horizons, implying that any
additional dynamical features are potentially observed.
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Chapter 1

Introduction

It is not an exaggeration to say that the major scientific triumph during this
past year was establishing that black holes can form within the theory of general
relativity, through the discovery of a supermassive compact object at the center
of our galaxy, compatible with a black hole, which was awarded the Nobel Prize
in Physics [3]. What is involved is not just the discovery of yet another extremely
remarkable astrophysical object, but a test of the correctness of our understand-
ing of the properties of space and time in extremely strong gravitational fields.
It is even more remarkable to think that such a discovery could hold in itself, not
only a major test to the theory of general relativity as we know it, but also the
limit to which it is applicable, and provide the window through which we explore
what lays beyond the general theory of relativity.

The idea that a dark object, with an escape velocity larger than the speed of
light, exists, dates back to 1700s, when English astronomerJohn Michell (1783)
calculated that a star with the same density as the Sun, but a radius 500 times
as large, would have a gravitational pull so strong that light would not be able to
escape. In 1796, Laplace independently made a similar suggestion in his Expo-
sition du Système du Monde. These objects that were contemplated by Michell
and Laplace would now be classified as supermassive black holes, with a mass
comparable to that of the compact object at the center of our galaxy.

Over-a-hundred years later, 13 January 1916 would go down in history as the day
the first solution to Einstein’s equation was found, by the German astronomer
Karl Schwarzschild. His solution describes the curved space-time around a spher-
ically symmetric non-rotating mass, with a metric of the form

ds2 =
(

1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2θ dφ2)

For years to come, the intriguing features of the metric at positions r = 0 and
r = 2GM

c2
were a subject of confusion in terms of interpreting the metric. It was
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only later when researches determined that r = 0 is a true ’singularity’, while
r = 2GM

c2
point was only an artifact caused by the choice of coordinates.

Later in 1965, Penrose proceeded to prove that collapsing matter with positive
energy density forms a trapped surface, beyond which it is impossible to prevent
further collapse, leading to an inevitable ’singularity’. This result, regarded as the
first important post-Einsteinian result in general relativity, triggered a new era
in physics and astronomy. Later, Penrose together with Stephen Hawking, went
further to show that similar results applied to cosmological singularities [4]. Their
proof that space-times describing such as, for instance, Friedmann and Kasner
universes and black holes, are geodesically incomplete carried a rather physically
unappealing interpreration. The requirement of causal geodesic completeness is
simply that every timelike and null geodesic can be extended to arbitrarily large
affine parameter value, both into the future and into the past. In crude terms
we could interpret this condition as saying: ‘photons and freely moving particles
cannot just appear or disappear off the edge of the universe’ [4]. A complete-
ness condition of this kind is sometimes used as virtually a definition of what is
meant by a non-singular space-time [cf. Geroch 1968a]. This opens the discus-
sion on ’resolving singularities ’, where regular solutions for Einsteins equations
are sought-that are geodesically complete.

Later on, profound links were found between black hole theory and such seem-
ingly very distant fields as thermodynamics, information theory, and quantum
theory. It became well known that when the curvature approaches the Planckian
value quantum effects become extremely important and Einstein theory must be
modified, and such a modification to the theory of gravity as we know it, was
sought in a unification between quantum and gravity theory on Planckian scales.
However, the progress along this line of research has been relatively modest in
spite of the enormous efforts devoted to the problem, and therefore the “quantum
resolution” of singularities remains rather obscure.

There are, of course, different “non-quantum” approach to resolving the singular-
ities. Creative efforts in that direction yielded interesting speculations. One can
imagine that, at high curvatures, classical General Relativity is modified to incor-
porate the idea of limiting curvature as to avoid divergence at r = 0 [5]. Another
attempt to resolve singularities was by implementing the idea of an asymptotic
disappearance of gravitational interactions of matter [6]. An attempt, which in-
corporates both ideas, was discussed in recent work of Chamseddine, Mukhanov
and Russ [2], whose resulting non-singular solution is the main focus of this work.
While their work will occupy a fair part of the literature, the thesis is structured
in the following way: The second chapter studies, in depth, the problem of singu-
larity specific to the Schwarzschild black hole, which will set the ground for the
analysis to be done later on the non-singular Schwarzschild-like solution obtained
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in [2]. The third chapter will discuss the derivation of the non-singular solution
obtained in the framework of Chamseddine and Mukhanov’s mimetic gravity
theory, reaching the metric solution of the non-singular black hole. The fourth
chapter will study, in detail, the solution obtained, and a discussion along the one
carried in the Schwarzschild case will be presented (Sec.4.1), first showing how
the singularity is avoided in such a space-time (Sec.4.4), then highlighting inter-
esting features of motion near the horizon (Sec.4.5), and giving a semi-qualitative
treatment of particle motion in the non-singular geometry (Sec.4.6), taking the
different mass limits presented in the theory (Sec.4.7 and 4.8).
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Chapter 2

The Singularity Problem

While ’singularities’ can be broadly divided into three classes: past-spacelike
(like in white holes or the big bang), timelike (naked singularities), and future-
spacelike singularities (black holes), we will focus in the first sections on the
Schwarzschild black hole, to lay out its features in details, then move into a more
general framework on singularity theorems and ways to resolve them.

2.1 The Schwarzschild Metric

That the Schwarzschild geometry is relevant to gravitational collapse follows from
Birkhoff’s (1923) theorem which states [1]:

Let the geometry of a given region of space-time (1) be spherically symmetric,
and (2) be a solution to the Einstein field equations in vacuum. Then that geom-
etry is necessarily a piece of Schwarzschild geometry.

The external field of any electrically neutral, spherical star satisfies the condi-
tions of Birkhoff’s theorem, whether the star is static, vibrating, or collapsing.
Therefore the external field must be a piece of the Schwarzschild geometry.

Birkhoff’s theorem is also easy to prove. Condsidering a spherical region of
space-time, where on can introduce Schwarzschild coordinates:

ds2 = −e2Φdt2 + e2Λdr2 + r2(dθ2 + sin2θ dφ2) (2.1)

where

Φ = Φ(t, r), and Λ = Λ(t, r)

By imposing Einstein’s vacuum field equations on the metric (2.1), components
of the Einstein tensor can be given by
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Gtt = r−2(1− e−2Λ) + 2(Λ,r/r)e
−2Λ = 0, (2.2)

Gtr = Grt = 2(Λ,t/r)e
−Λ+Φ = 0, (2.3)

Grr = r−2(e−2Λ − 1) + 2(Φ,r/r)e
−2Λ = 0, (2.4)

Gθθ = Gφφ = (Φ,rr + Φ2
,r − Φ,rΛ,r + Φ,r/r − Λ,r/r)e

−2Λ − (Λ,tt + Λ2
,t − Λ,tΦ,t)e

−2Φ = 0

(2.5)

Solutions to Λ and Φ following from the above equations are hence given by

Λ = −1

2
ln|1− 2M/r| (2.6)

and

Φ =
1

2
ln|1− 2M/r|+ f(t) (2.7)

where f(t) is an arbitrary function, from which the time coordinate can be rede-
fined as

tnew =

∫
ef(t)dt,

and thereby obtain the Schwarzschild line element of the form

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2θ dφ2) (2.8)

Now that the Schwarzschild Line element was derived from spherical symme-
try arguments, we will proceed to derive the Lagrangian for this line element
in the follwing section, from which we will conduct the analysis of massive and
light-like particle geodesic motion, which will set, with foresight, the ground for
a comparative study to be done in the newly obtained non-singular metric. After
the discussion on geodesics is carried, the last sections in this chapter will discuss
aspects related to the singularity theorem in a general space-time metric with
certain features (not specific to the Schwarzschild solution), and from there lead
the discussion into nothing else but resolving these singularities.
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2.2 Geodesic Motion

The equations governing the geodesics in space-time with the line element [7]

ds2 = gij dx
idxj (2.9)

Can be derived from the Lagrangian

2L = gij
dxi

dτ

dxj

dτ
(2.10)

where τ is some affine parameter along the geodesic. For time-like geodesics, τ
may be identified with the proper time, s, of the particle describing the geodesic.

For a general spherically symmetric space-time, with g00 = (g11)−1 = g(r), which
is relevant to our problem , the Lagrangian is

L =
1

2

[
g(r)ṫ2 − ṙ2

g(r)
− r2θ̇2 − (r2sin2θ)φ̇2

]
(2.11)

where the dot denotes differentiation with respect to τ . The corresponding canon-
ical momenta are

pt =
∂L
∂ṫ

= g(r)ṫ, pφ = −∂L
∂φ̇

= (r2sin2θ)φ̇

pr = −∂L
∂ṙ

= (g(r))−1ṙ, pθ = −∂L
∂θ̇

= r2θ̇

The resulting Hamiltonian is

H = ptṫ− (prṙ + pθθ̇ + pφφ̇)− L = L (2.12)

The equality of the Hamiltonian and the Lagrangian signifies that there is no
‘potential energy’ in the problem: the energy is derived solely from the ‘kinetic
energy’ as is, indeed, manifest from the expression (2.10) for the Lagrangian. The
constancy of the Hamiltonian and the Lagrangian follow from this fact:

H = L = constant. (2.13)

By rescaling the affine parameter τ , we can arrange that 2L has the value +1 for
time-like geodesics, and zero for null geodesics.
Further integrals of motion follow from the equations

∂pt
∂τ

=
∂L
∂t

= 0 and
∂pφ
∂τ

=
∂L
∂φ

= 0 (2.14)
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Thus

pt =

(
1− 2M

r

)
dt

dτ
= constant = E (2.15)

and

pφ = r2sin2(θ)
∂φ

∂τ
= constant

Moreover, if we choose to asign the value π/2 to θ when θ̇ is zero, then the geodesic
will be described in n invariant plane which we may distinguish by θ = π/2. Then
for pφ we get

pφ = r2∂φ

∂τ
= constant = L (2.16)

where L denotes the angular momentum about an axis normal to the invariant
plane. With ṫ and φ̇ given by equations (2.15) and (2.16), the constancy of the
Lagrangian gives

E2

g(r)
− ṙ2

g(r)
− L2

r2
= 2L = +1 or 0 (2.17)

depending on whether we are considering time-like or null geodesics.

2.2.1 Falling into the Black Hole

Radial Time-like Geodesics

To study the motion of a massive particle on time-like geodesics, equation (2.17)
is rewritten in the form (

dr

dτ

)2

+ g(r)

(
1 +

L2

r2

)
= E2 (2.18)

The radial geodesics of zero angular momentum will further illustrate essential
features of the space-time in question. Setting L = 0, equation (2.18) becomes(

dr

dτ

)2

+ g(r) = E2 (2.19)

for a general metric function g(r).
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For the Schwarzschild metric function given by g(r) = 1 − 2M/r, we get the
known expression (

dr

dτ

)2

+
(

1− 2M

r

)
= E2 (2.20)

Isolating −2M/r as the effective potential (VSchw) in the problem, the graph for
V (r) for the energy expression (2.20) (displayed for later comparative purposes)
can be shown below.

Figure 2.1: Effective potential V (r) vs r for in-falling particle in Schwarzschild
space-time

Plunging into the blackhole

Consider a particle plunging into the black hole, with a negative initial velocity-
indicating this inward motion, starting from r >> 2M , and a total energy slightly
greater than the potential at that point. The particle will simply build up speed
as it moves toward the r = 0 point, then it reaches the r = 0 point in finite
proper-time, which we can get if we integrate (2.20), and consequently get

τ = −
√

2

3
√
M

(
r3/2 − r3/2

0

)
(2.21)

with the minus sign indicating positive proper-time as r decreases from the start-
ing point r0 to r = 0. Thus, an in-falling particle reaches the center of the black
hole at r = 0 in finite proper time.
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Radial Null Geodesics

To primarily probe the space-time of the Schwarzschild geometry, we look at
radial light-geodesics, where the relevant equations are Eq.(2.17) and (2.15)(

dr

dτ

)
= ±E and

(
1− 2M

r

)
dt

dτ
= E (2.22)

Accordingly,

dr

dt
= ±

(
1− 2M

r

)
(2.23)

which, when integrated, gives the radial light geodesics given by

t = ±r ± 2Mln

(
r

2M
− 1

)
+ constant (2.24)

Equations (2.22) and (2.24) shows that, while the radial geodesic crosses the
horizon in its own proper time without even noticing it, which we see from
r = ±Eτ + constant if we integrate (2.22), it takes an infinite time-coordinate
to arrive at the horizon. This is made manifest in Fig.2.2, where light cones
are indicated as well. The important conclusion from this diagram is that inside
the horizon region, the light cones are tilted towards the singularity at r = 0,
indicating the inevitability of the singularity for any geodesic having crossed the
horizon at r = 2M .

Figure 2.2: Ingoing and outgoing radial null-geodesics in the Schwarzschild coor-
dinates
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2.2.2 Motion in Schwarzschild Geometry

Particle Orbits

The time-like geodesics are once again given by Eq.(2.18)(
dr

dτ

)2

+ V (r) = E2 (2.25)

where the effective potential (shown in Fig.2.3) for the Schwarzschild metric is
given by

V (r) :=
(

1− 2M

r

)(
1 +

L2

r2

)
(2.26)

Figure 2.3: Schwarzschild Effective Potential diagram with various L [1]
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The main conclusions about qualitative features of particle orbits are summarized
below [1]:

1. Orbits with periastron at r �M are Keplarian in form.

2. Orbits with periastron at r < 10M differ markedly from Keplarian orbits.

3. For L/M ≤ 2
√

3, any incoming particle is necessarily pulled into r = 2M .

4. For 2
√

3 < L/M < 4 there are bound orbits; but any particle coming in
from r =∞ (unbound; E2 ≥ 1) necessarily gets pulled into r = 2M.

5. For L/M > 4, there are bound orbits; particles coming in from r =∞ with

E2 < V 2
max (2.27)

reach periastrons and then return to r =∞; but particles from r =∞ with
E2 > V 2

max get pulled into r = 2M.

6. There are stable circular orbits at the minimum of the effective potential;
the minimum moves inward from r =∞ for L =∞ to r = 6M for L/M =
2
√

3.

7. There are unstable circular orbits at the maximum of the effective potential;
the maximum moves outward from r = 3M for L = ∞ to r = 6M for
L/M − 2

√
3. A particle in such a circular orbit, if perturbed inward, will

spiral into r = 2M.

Photon Orbits

In the previous section, a detail was omitted for simplicity, but will become
important in the discussion of orbits of zero rest-mass. The original expression
of the Lagrangian given by Eq.(2.10)

2L = gij
dxi

dτ

dxj

dτ

assumed that the rest mass of the particle is given in natural units (µ2 = 1),
but now we will keep the rest mass µ2 in the equation of the magnitude of the
4-vector of energy momentum, such that it is given by

gij
dxi

dτ

dxj

dτ
= µ2 (2.28)
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and hence the Energy expression, in analogy with Eq.(2.18), can be rewritten as(
dr

dλ

)2

+ g(r)

(
1 +

L̃2

r2

)
= Ẽ2 (2.29)

where λ is an affine parameter, and E and L are given ’per unit mass’ as

Ẽ =
E

µ
(2.30)

L̃ =
L

µ
(2.31)

In the limit µ→ 0, these quantities infividually go to infinity, but their ratio goes
to a finite value, which defines the impact parameter b

lim
µ→0

L̃

Ẽ
= b (2.32)

In this limit, Eq.(2.29) reduces to the simple form(
dr

dλ

)2

+B−2(r) = b−2 (2.33)

where B−2(r) defines an ’effective potential for a photon’ [1]

B−2(r) = g(r) · r−2 (2.34)

and the impact parameter has the the following interpretation: A ray, in order
to reach the point r, must have an impact parameter

b ≤ B(r)

The effective potential B−2(r) can now be used to study qualitative features of
photon orbits. For the Schwarzachild metric g(r) = 1 − 2M/r, the diagram is
given below

12



Figure 2.4: Effective Potential for a Photon in Schwarzschild Geometry

As can be deduced from the effective-potential diagram, there are three cases
that can be studied [1]:

1. An in-falling photon from r = ∞ with b > 3
√

3M , is ”reflected off the
potential barrier, and returns to infinity.

(a) For b� 3
√

3M , the orbit is a straight line except for a slight deflection.

(b) For 0 < b − 3
√

3M � M , the photon circles the star many times on
an unstable circular orbit at r = 3M before flying back to r =∞

2. A photon eith b < 3
√

3M , falling from r =∞, falls into r = 2M .

3. A photon emitted near r = 2M , escapes to infinity only if it has b < 3
√

3M ,
otherwise it reaches the barrier and falls back into r = 2M .

13



2.3 Causal Structure of Schwarzschild Space-time

To further study asymptotic properties of the Schwarzschild space-time, recall
the line element given by Eq.(2.8)

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2θ dφ2)

where
t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ [0, π], φ ∈ [0, 2π) (2.35)

The metric is singular at r = 0 and at r = 2M . To show that only r = 0 is
a real singularity, or that any odd-ly behaving point in a metric has a real phys-
ical significance, we look at curvature invariants for this purpose, and see how
they behave in different limits.

Kretschmann scalar

Because the Ricci scalar is null-valued in empty space, we will look at the Kretch-
mann scalar for the Schwarzschild metric,

RβγδR
βγδ =

48M2

r6
(2.36)

which shows that the singularity at r = 0 is the only real singularity, because the
space-time invariant does not diverge at r = 2M , implying it is just a coordinate
singularity. This singularity indicated that the Schwarzschild coordinates (2.35)
do not cover the whole space-time manifold, where there are two separated regions
r ∈ (0, 2M) and r ∈ (2M,+∞). This will require the use of a different set of
coordinates, through which will be able to study the causal structure of the
Schwarzschild space-time.

Space-time Causal Structure

We can present the Schwarzschild metric in a form which is not singular at
r = 2M using different coordinates, through which we can extend the exterior
Schwarzschild manifold r ∈ (2M,+∞) beyond the Schwarzschild sphere r = 2M .
A maximal time symmetric extension is given by the known Kruskal-Szekeres
coordinates,

u ∈ (−∞,∞), v ∈ (−∞,∞), θ ∈ [0, π], φ ∈ [0, 2π) (2.37)
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where for r > 2M

u = ±
( r

2M
− 1
)1/2

er/4Mcosh
( t

4M

)
(2.38)

v = ±
( r

2M
− 1
)1/2

er/4Msinh
( t

4M

)
(2.39)

and for r < 2M

u = ±
(

1− r

2M

)1/2

er/4Msinh
( t

4M

)
(2.40)

v = ±
(

1− r

2M

)1/2

er/4Mcosh
( t

4M

)
(2.41)

The Schwarzschild metric in these coordinates becomes

ds2 = −32M3

r
e−r/2M(−dv2 + du2) + r2(dθ2 + sin2θ dφ2) (2.42)

where r := r(u, v) is defined by(
r

2M
− 1

)
er/2M = u2 − v2 (2.43)

Now we can see that the metric is regular at r = 2M , and the singularity at r = 0
is now given by v2 − u2 = 1 in the Kruskal-Szekeres coordinates.

To demonstrate the full causal structure of the Schwarzschild space-time, we map
the space-time given by Eq.(2.42) and (2.37) into the corresponding conformal
diagram, by applying the appropriate conformal transformation given by

u+ v = tan

(
T +R

2

)
, v − u = tan

(
T −R

2

)
(2.44)

The resulting diagram is shown in Fig.2.5, and it demonstrates causal connections
between the different regions, horizons, and also the infinities and singularities of
the Schwarzschild space-time.
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Figure 2.5: Penrose-Carter Conformal Diagram for the Schwarzschild Space-time

In obtaining the Penrose diagram, his classical definitions were used:

i− is past time-like infinity corresponding to t→ −∞ and finite r,

i+ is past time-like infinity corresponding to t→ +∞ and finite r,

i0 is past time-like infinity corresponding to r → +∞ and finite t,

J − is past time-like infinity corresponding to t− r → −∞ and finite t+ r,

J + is past time-like infinity corresponding to t+ r → +∞ and finite t− r

Regions I and III — are asymptotically flat. They represent two identical uni-
verses, nonetheless distinct. These universes are causally disconnected.
Region II — is the Schwarzschild black hole interior. It represents an anisotropic
collapsing universe of infinite spatial volume. The radial coordinate r becomes
time-like in this region. So, the propagation in the black hole interior towards the
singularity can be thought of as time-evolution. Particles moving along causal
lines and entering the black hole interior can never escape to the outside, as they
cannot move backward in time.
Region IV — is region II with the reversed direction of time. This region rep-
resents the interior of the white hole. It is an expanding anisotropic universe,
which cannot be reached from the outside by causal particles. Particles moving
inside of the region escape with the flow of time, inevitably. Thus, all particles
in region IV in fact came out from the singularity that exists in their past.
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2.4 Singularity Theorem and ”The Issue of The

Final State”

Now that the previous sections gave a taste of the overall techniques, attention
in this discussion, which is partly borrowed from Gravitation [1], will focus on
a qualitative description of the results: How does gravitational collapse end? Is
the singularity at the end point of spherical collapse typical or can asymmetries
remove it? That singularities are very general phenomena, and cannot be wished
away, has been known since 1965, thanks to the theorems on singularities proved
by Penrose, Hawking and Geroch.

Before examining the theorems on singularities, one must make precise the con-
cept of a singularity. It is not easy, as Geroch (1968) pointed out in a long
treatise on the great variety of pathologies that can arise in space-time mani-
folds. However, after vigorous efforts by many, Schmidt (1970) finally produced
a definition that appears satisfactory. In heuristic terms, Schmidt’s highly tech-
nical definition goes something like this. In a space-time manifold, consider all
spacelike geodesics (”tachyon” paths), all null geodesics (photon paths), all time-
like geodesics (free falling observer paths), and all timelike curves with bounded
acceleration (paths along which obervers are able to move in principle). Suppose
the one of these curves terminates after the lapse of finite proper length (or finite
affine parameter in the null geodesic case). Suppose further that it is impossible
to extend the space-time manifold beyond this termination point, for example
because of the infinite curvature. The this termination point, with all adjacent
termination points, is called a ”singularity” (What could be more singular than
the cessation of existence for the poor tachyon, photon or observer that moves
along terminated curve?).

Penrose Singularity Theorem

Another concept needed in singularity theorems is that of a trapped surface.
The concept, devised by Penrose (1965b), is motivated by a careful examina-
tion of two-dimensional spherical surfaces (r, t) = cst inside the horizon of the
Schwarzschild geometry. These surfaces signal the proximity of a singularity (r
= 0) by this property: the light rays emitted by one of these surfaces in the
direction perpendicular to the outside (that is to say the outgoing, orthogonal
null ) converge towards each other as they propagate; and the inward light rays
perpendicular to the surface 2 also converge. Penrose gives the name of ”trapped
surface” to any surface closed to 2 surfaces, spherical or not, which has this prop-
erty. In Schwarzschild space-time, the convergence of light rays, both outgoing
and incoming, can be attributed to ”the intense pull of gravity”, which sucks
photons into the singularity. This might also be true in asymmetric space-times
is suggested by the Hawking-Penrose Theorem (1969):
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A spacetime M necessarily contains incomplete, inextendable timelike or null
geodesics (and is thus singular in the Schmidt sense) if, in addition to Einstein’s
equations, the following four conditions hold: (1) M contains no closed timelike
curves (reason- able causality condition); (2) at each event in M and for each unit
timelike vector ~u, the stress-energy tensor satisfies(

Tαβ −
1

2
gαβT

)
yαuβ ≥ 0 (2.45)

(reasonable energy condition); (3) the manifold is ”general” (ie., not too highly
symmetric) in the sense that every timelike or null geodesic with unit tangent ~u
passes through at least one event where the curvature is not lined up with it in
a specific way:

u[αRβ]γδ[εuρ]u
γuδ 6= 0 at some point on the geodesic (2.46)

(4) the manifold contains a trapped surface.

All these conditions, except the trapped surface, seem eminently reasonable for
any physically realistic space-time, if one is not considering a modification of the
gravitational theory at all! Note, especially, that the energy condition can be
violated only if, as measured by some local observer in his proper frame, the
total energy density E is negative or the principal pressures (eigenvalues of stress
tensor) Pi, are so negative that ∑

i

Pi < −E (2.47)

”The issue of the final state”

If, as one suspects today, the singularities are of a very physical, infinite-curvature
type, then one must face up to John Wheeler’s (1964a) ”issue of the final state”
in its most raw and disturbing form. Wheeler, when faced with this issue, ar-
gues that infinite-curvature singularities signal a breakdown in classical general
relativity–a breakdown forced by the onset of quantum gravitational phenomena.
Whether quantization of gravity will actually save space-time from such singular-
ities one cannot know until the ”fiery marriage of general relativity with quantum
physics has been consummated.
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An intro to ”classically resolving singularities”

The last passage ended with an optimistic note on a way to resolve the diverging
properties of singularities through a suggested merger of gravity and quantum
physics. As mentioned earlier, the progress along this line of research has been
relatively modest inspite of the enormous efforts devoted to the problem, and
while the “quantum resolution” of singularities remains rather obscure, the work
that will be discussed in the following chapter will present a classical way to
resolve such singularities, by introducing a modification to Einstein’s gravity
theory at very high curvatures, all the while protecting the results obtained for
a gravitational field of a massive body from Einstein’s theory which celebrated
many observational triumphs, at the limit within reach.
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Chapter 3

Non-Singular Solution in
Mimetic Gravity

3.1 Mimetic Gravity

Metric with scalar field

Einstein’s gravity is distinguished by the fact that it has equations which are
only second order. Without altering this property, “mimetic gravity” which was
introduced in a paper in 2013 by Chamseddine and Mukhanov [8], proposed a
way to modify gravity theory by the reshuffling of the degrees of freedom of the
metric itself. Starting by re-parametrizing the physical metric gµν in the form:

gµν = hµν h
αβϕ,αϕ,β (3.1)

in terms of the auxiliary metric hµν and a scalar field ϕ, called the mimetic
field. The physical metric is invariant under Weyl transformations of hµν , and
the mimetic field represents the conformal degree of freedom of gravity, where ϕ
by definition satisfies

gµν ϕ,µ ϕ,ν = 1 (3.2)

and the nature of the mimetic field can be introduced by adding the above condi-
tion on ϕ as a constraint to the gravity action, which in turn takes the following
general form

S =
1

16π

∫
d4x
√
−g (−L [gµν , ϕ] + λ (gµν∂µϕ ∂νϕ− 1)) (3.3)

where λ is a Lagrange multiplier. The constraint (3.2) could also be obtained as
a consequence of 3D volume quantization in noncommutative geometry [9], [10].
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3.2 Theory with Asymptotic Freedom

General Lagrangian

By inserting the Einstein-Hilbert Lagrangian L = R[gµν ], the authors were able
to reproduce just the standard GR with an additional contribution of mimetic
matter in [8],[11]. However, in the work from which this study will follow [2],
the authors used the mimetic field to implement in a covariant way the idea of a
running gravitational and cosmological constant by introducing into the action a
Lagrangian given by

L = f [ϕ]R [gµν ] + 2Λ [ϕ] (3.4)

where f is the “inverse gravitational constant” and Λ is the “cosmological con-
stant”, and they will depend on φ and its derivatives in a way to be determined.

Extrinsic curvature measure

Considering a synchronous coordinate system

ds2 = dt2 − γij
(
t, xi

)
dxidxj (3.5)

where t = φ can be used as the time-coordinate, it can be seen that including a
simple ϕ dependence of f and Λ would resemble the presence of a time-dependent
background.

As will be seen, the second covariant derivatives of φ, will represent measures
of the curvature related to the conformal degree of freedom of the gravitational
field. Evaluating the second covariant derivative of φ

−φ;ab = κab =
1

2

∂

∂t
γab

gives the extrinsic curvature of the slices of constant φ, where φ;0α = 0. In this
synchronous slicing given by φ, the Ricci scalar can be expanded as

−R = 2κ̇+ κ2 + κabκ
b
a + 3R, (3.6)

where dot denotes t-derivatives, κab = γacκcb,
3R is the 3-curvature of the spatial

slices and

κ := γabκab = gαβφ;αβ = 2φ

is the trace of extrinsic curvature.

21



Theory free of high-order derivatives

From expression for Ricci scalar in Eq.(3.6), it becomes clear why the Einstein
equation is second-order: the second derivatives of the metric appear linearly in
R and hence contribute as total-derivatives to the action only. So to introduce a
curvature-dependence into the gravitational constant and protect this property
is through f [φ] = f(2φ). In this case, the full Ricci scalar term with the running
gravitational constant can be expanded in relevant quantities as

−f(2φ)R = 2Ḟ (κ) + f(κ)
(
κ2 + κabκ

b
a + 3R

)
(3.7)

where f(κ) = F ′(κ) ≡ ∂F/∂κ. Up to a total derivative, this Lagrangian still
contains only first time-derivatives of the metric, and it can be expected that the
modified Einstein equation of such a theory to be second-order in time. While it
is not allowed to use 2φ = κ and impose gauge conditions in the action before
variation, this statement can be explicitly verified. The theory defined by

L = f(2φ)R + 2Λ(2φ) (3.8)

which was studied in [12], it was shown to be free of higher time-derivatives in
the synchronous frame. However, in the general case where spatial flatness is not
guaranteed, higher spatial and mixed derivatives will appear. These terms can
be traced back to the presence of f(2φ) in front of 3R in Eq.(3.7), we can use φ
to expand this term in a covariantly as

R̃ = 2φ,µφ,νGµν − (2φ)2 + φ;µνφ;µν
·

= 3R,

where Gµν is the Einstein tensor and the last equality holds under the condition
that the constraint in Eq.(3.2) is satisfied. So, by subtracting the term which
was involuntarily added, the theory defined by

L = f(2φ)R + (f(2φ)− 1)R̃ + 2Λ(2φ)

will be free of higher derivatives. Hence the second summand was added on the
same basis which made Einstein gravity unique.

In the context of a theory defined by the Lagrangian in Eq.(3.8), it is natu-
ral to realize the concept of limiting curvature (as in [5],[13],[14]) by limiting
the measure of curvature provided by 2φ. Motivated by the analysis of the
anisotropic sector made in [12], the concept of “asymptotic freedom” of gravity is
especially important in relation to modifications where such a limiting-curvature
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is implemented by a vanishing of the gravitational constant at some limiting value
2φ = κ0, which is a free parameter of the theory and can be chosen well below
the Planckian curvature.

3.3 Action and equations of motion

This section with further show developments of the theory in [2] defined by the
action

S =
1

16π

∫
d4x
√
−g (−L+ λ (gµνφ,µφ,ν − 1)) , (3.9)

with the general extended Lagrangian

L = f(2φ)R + (f(2φ)− 1)R̃ + 2Λ(2φ) + h(R̃) (3.10)

and
R̃ = 2φ,µφ,νGµν − (2φ)2 + φ;µνφ;µν . (3.11)

Once again, the action contains two free functions f and Λ of 2φ, representing
the inverse running gravitational constant G(2φ)−1 and cosmological constant

Λ̄(2φ), respectively. The spatial-curvature dependent potential h(R̃) was in-
cluded for generality in the derivation, but won’t be needed in a spatially-flat
case that the authors solve for later. In the following, Planck units will be used
such that G is set to be G (2φ = 0) = G0 = 1, such that f (2φ = 0) = 1.

The modified Einstein Equations are hence obtained below, by the variation of
the action with respect to the metric gµν

(1− h′)Rµν −
(

1
2
L+ (Z̃φ,α);α + 2h′

)
gµν +

(
φ,µφ,ν f̃

,α − φ;µν f̃φ
,α
)

;α

+ 2f̃φ,αφ(,µRν)α + 2φ(,µZ̃,ν) + h′;µν = (λ+ f̃R)φ,µφ,ν + 8πT (m)
µν , (3.12)

where

f̃ := f − 1 + h′, Z := 1
2
f ′
(
(2φ)2 + φ;µνφ;µν

)
− Λ′, Z̃ := Z − φ,αh′,α,

f ′ := df/d2φ, Λ′ := dΛ/d2φ, h′ := dh/dR̃ and T
(m)
µν = 2√

−g
δSm

δgµν is the matter
energy momentum tensor.
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The evolution of the mimetic field is already completely determined by the con-
straint (3.2), which we obtain from variation with respect to the Lagrange mul-
tiplier. The equation obtained by varying (3.9) with respect to φ hence can only
return the favor and provide a condition to determine λ. Conveniently written
in terms of the quantity

Ξ := λ+ f̃ (R−Rµνφ
,µφ,ν)−2f − φ,µZ,µ − φ,µh′,µ2φ, (3.13)

this “equation of motion” of φ reads

(Ξφ,ν);ν =

[
(f − h′),µφ;ν

µ + Z ,ν − φ,νφ,µZ,µ + 2φ
(
h′,ν − φ,νφ,µh′,µ

)
+ f̃

(
Rµνφ,µ −Rαβφ,αφ,βφ

,ν
)]

;ν

. (3.14)

In the synchronous frame the right hand side turns out to be just the 3-divergence
of a 3-vector (denoted by Xa

|a) and we find the solution

Ξ = 1√
γ

∫
dt
√
γ
(
κabf

,b + Z ,a + f̃Ra
0 + κh′,a − κabh′,b

)
|a
. (3.15)

Einstein Equations in the synchronous frame

Temporal-components — The modified Einstein equation in Eq.(3.12) take a sim-
ple form when evaluated in the synchronous frame t = φ, and the 0−0 component
of the modified Einstein equation becomes

1

3
(f − 2κf ′)κ2−Λ + κΛ′− 1

2
(f + κf ′) κ̃ab κ̃

b
a =

1

2

(
h− 3R

)
+ Ξ + 8πT

(m)
00 , (3.16)

where κ̃ab := κab − 1
3
κδab is the traceless part of the extrinsic curvature.

Dynamical conformal dof — Inserting the solution (3.15) for Ξ, and by taking
another time-derivative of the temporal-modified Eintein Equaiton (3.16), a dif-
ferential equation containing second time derivatives of the metric is obtained.
This shows that in mimetic gravity the conformal degree of freedom of the grav-
itational field becomes dynamical.

24



Spatial-components — The spatial components of the modified Einstein equation
in (3.12) with one raised index read

− 1
√
γ
∂t (
√
γ (fκab + Zδab ))− 1

2
L δab = Sab + 8πT

(m)a
b , (3.17)

where
Sab := (1− h′)3Ra

b + h′
|a
b −∆h′δab (3.18)

contains spatial curvature terms. Subtracting one third of the (spatial) trace of
this equation, the following is obtained

− 1
√
γ
∂t (
√
γ f κ̃ab ) = S̃ab + 8πT̃

(m)a
b (3.19)

where the right hand side consists of the traceless parts of Sab and T
(m)a

b . Hence,
the spatial-components of the modified Einstein equation are second-order in
time.

Mixed-components — The mixed-components of the modified Einstein equation
(3.12) hence are

fR0a + Z,a + κbaf,b = 8πT
(m)
0a . (3.20)

Just like in standard General Relativity, these equations contain only first time-
derivatives of the metric and can be thought of as a constraint that needs to be
satisfied on an initial hypersurface φ = φi and then continues to hold by virtue of
validity of the other components of the modified Einstein equation. Nonetheless,
h does not appear in the mixed equations. Moreover, the mixed components
equation (3.20) can simplify (3.15) to

Ξ = 1√
γ

∫
dt
√
γ
(
T

(m)a
0 − (1− h′)Ra

0 + κh′,a − κabh′,b
)
|a
. (3.21)

Now, requiring

f = 1 +O
(
κ2
)
, Λ = O

(
κ4
)
, h = O

(
R̃2
)
,

then, in the limit of low curvatures, the equations for the components of the
modified Einstein equation (3.16), (3.17) and (3.20) are just the components of
the usual Einstein equation with a contribution of mimetic matter, given by the
constant of integration in Ξ.
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3.4 Modified Black Hole

3.4.1 Black hole in synchronous coordinates

In GR the metric of a non-rotating, eternal black hole in the synchronous Lemâıtre
coordinates [15] is given by

ds2 = dT 2 − (x/x+)−2/3 dR2 − (x/x+)4/3 r2
g dΩ2, (3.22)

where x = R− T , and rg = 2M . These coordinates are regular at the horizon

x = x+ :=
4

3
M,

and the region x > 0 covers both interior and exterior of the Schwarzschild black
hole. For comoving observers with R, ϑ, ϕ = const., T represents ’proper time’. In
the Schwarzschild radial coordinate r = rg (x/x+)2/3 the paths followed by these
synchronous observers correspond to radially infalling geodesics. They start from
rest at r →∞ at proper time T → −∞ and reach the singularity at r = 0 at the
finite proper time T = R.

Spatial flatness in synchronous frame — To see the way in which the BH metric
in Eq.(3.22) is modified in the theory with the action in Eq.(3.9), the following
ansatz is considered in the synchronous coordinates (3.5) provided by T = φ

ds2 = dT 2 − a2 (x) dR2 − b2 (x) dΩ2, (3.23)

where the functions a and b still depend only on x = R− T . The transformation
to Schwarzschild coordinates t and r is given by

t = T −
∫

dx
a2

1− a2
, r = b(R− T ), (3.24)

which brings the metric to the form

ds2 = (1− a2)dt2 − a2

b′ 2(1− a2)
dr2 − r2dΩ2. (3.25)

The dependence of a and b′ on r has to be found by inverting

r = b(x) (3.26)

The spatial metric determinant of ansatz in Eq.(3.23) is

γ = a2b4 sin2 ϑ =: u2(x) sin2 ϑ,

and the non-vanishing components of the extrinsic curvature are the following

κRR =
ȧ

a
= −a

′

a
, κϑϑ = κϕϕ =

ḃ

b
= −b

′

b
,

where the prime denotes x-derivatives.
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The spatial Ricci curvature components for the class of metrics (3.23) are
given by

3RR
R = RR

T = 2
(
γRR

(
κϑϑ
)2 − γϑϑ + 3Rϑ

ϑ

)
, (3.27)

3Rϑ
ϑ = 3Rϕ

ϕ =
1

2κϑϑ

(
γRR

(
κϑϑ
)2 − γϑϑ

)′
− 2

(
γRR

(
κϑϑ
)2 − γϑϑ

)
. (3.28)

The condition for spatial flatness hence amounts to the following equation

γRR
(
κϑϑ
)2 − γϑϑ = 0 ⇔ a2 = b′ 2. (3.29)

In this case, the metric in Schwarzschild coordinates takes the form

ds2 = (1− a2)dt2 − dr2

(1− a2)
− r2dΩ2, (3.30)

and it can be seen that the Schwarzschild metric (3.22) is spatially flat in Lemâıtre
coordinates.

Killing Vector Field — In the direction of the vector field

kµ
∂

∂xµ
:=

∂

∂R
+

∂

∂T
=

∂

∂t
(3.31)

the Lie derivative of (3.23) vanishes. So kµ is a Killing vector field its norm given
by

kµkµ = 1− a2(x).

It follows that a Killing horizon occurs wherever a2(x) = 1. In analogy with
synchronous BH metric (3.22), denote the largest value of x where this happens,
i.e. the most exterior horizon, by x+. The surface gravity gs can be calculated,
for this Killing horizon, which is defined by the equation [16]

kν;µk
µ = gs k

ν , (3.32)

evaluated at the horizon. It can be hence shown that it is related to the extrinsic-
curvature of the synchronous-slices by

gs = κRR(x+) = −a′(x+). (3.33)

3.4.2 Modified Einstein equations

Considering for simplicity the theory where h = 0, in the following section, we
show how the authors derive the modified Einstein equation for the ansatz metric
of the form (3.23). By virtue of the fact that all relevant quantities depend on
R and T only through the quantity x = R − T , one can replace ∂T = −∂R and
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reduce partial differential-equations to ordinary differential-equations.
For example, for the vacuum case at hand (3.21) yields

Ξ = − 1√
γ

∫
dT ∂R

(√
γRR

T

)
= RR

T = 3RR
R,

where the constant of integration is set to zero to be consistent with the asymp-
totic exterior vacuum solution in Eq.(3.22). Hence the temporal modified Einstein
equation (3.16) becomes

1

3
(f − 2κf ′)κ2 − Λ + κΛ′ − 1

2
(f + κf ′) κ̃ab κ̃

b
a = γRR

(
κϑϑ
)2 − γϑϑ. (3.34)

The trace subtracted spatial equations (3.19) read

1

u
(ufκ̃ab )

′ = 3Ra
b −

1

3
3Rδab . (3.35)

By spherical symmetry and tracelessness they contribute only one independent
equation. Subtracting the ϑ−ϑ equation from the R−R equation and inserting
(3.27), (3.28) it can be written as

1

u

(
u f

(
b′

b
− a′

a

))′
=

1

2κϑϑ

(
γRR(κϑϑ)2 − γϑϑ

)′
. (3.36)

For the Schwarzschild solution (3.22) it holds that κ = −1/x. Hence, for large
mass black holes with

M � 1

κ0

(3.37)

the extrinsic curvature at the horizon x = x+ ≈ 4M/3 is much lower than the
limiting curvature scale κ0 and it can still be expected that the exterior solution
is given by (3.22) and modifications to restrict themselves to the interior region.
As it was shown before, the Schwarzschild solution (3.22) is spatially-flat in the
given slicing. If one assumes that the spatial-curvature will remain negligible also
for some range of x after the modification has taken over. In fact, it will be shown
that the linear contribution of spatial curvature is irrelevant for the region close
to the horizon even in the case M ∼ κ−1

0 . In this spatial flatness approximation,
Eq.(3.35) is easily integrated and yields

κ̃RR =
2M

fu
, κ̃ϑϑ = −M

fu
, (3.38)

where the constants of integration have been fixed to match the Schwarzschild
solution in the limit x → ∞. Accordingly, the simplified temporal modified
Einstein equation (3.34) becomes

κ2 (f − 2κf ′)− 3 (Λ− κΛ′)

f + κf ′
=

(
3M

fu

)2

, (3.39)
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Eq. (3.38) can be integrated again to obtain the solutions for a(x) and b(x) as

a = u1/3

(
2

3
κ0 e

H

)2/3

, b = u1/3

(
2

3
κ0 e

H

)−1/3

, (3.40)

where the pre-factors have been chosen for dimensionality and later convenience
and

H :=

∫
dT

3M

fu
. (3.41)

3.4.3 A Spatially Flat Exact (Implicit) Solution

Consider the asymptotically free modification given by

f (κ) =
1 + 3 (κ/κ0)2(

1 + (κ/κ0)2) (1− (κ/κ0)2)2 (3.42)

Λ (κ) = κ2

(
4
3

(κ/κ0)2(
1− (κ/κ0)2)2 −

1 + 2 (κ/κ0)2

1 + 4 (κ/κ0)2 + 3 (κ/κ0)4

)

− κ0

6
κ

(
arctan

κ

κ0

− 3
√

3 arctan

(√
3
κ

κ0

)
+ 2 arctanh

κ

κ0

)
(3.43)

With this choice, the temporal equation (3.39) becomes

κ2(
1− (κ/κ0)4)2 =

(
3M

u

)2

. (3.44)

Taking the time derivative of the logarithm of this equation one finds that

κ̇ = −κ2 1− (κ/κ0)4

1 + 3 (κ/κ0)4 , (3.45)

which has the implicit solution

−κ0 x =
κ0

κ
− 2 atanh

κ

κ0

+ 2 arctan
κ

κ0

. (3.46)

Evaluating (3.41) as an integral over κ yields

H(κ) = ln

(
− (κ/κ0)

1 + (κ/κ0)2

1 + 3 (κ/κ0)2

)
, (3.47)
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where the constant of integration was fixed to match the Schwarzschild solution.
It follows that

a

b
=

2

3
κ0e

H =
2

3

(
−κ 1 + (κ/κ0)2

1 + 3 (κ/κ0)2

)
= −1

3

(
κ− 3M

fu

)
=
∣∣κϑϑ∣∣ , (3.48)

which shows that this solution is spatially flat and hence an exact solution of the
full modified Einstein equation.

The implicit solutions for a and b are given by

a3(κ) =
4M

3
|κ|(1− (κ/κ0)4)

(
1 + (κ/κ0)2

1 + 3(κ/κ0)2

)2

(3.49)

b3(κ) =
9M

2κ2
(1− (κ/κ0)2)(1 + 3(κ/κ0)2) (3.50)

where a assumes its extremum value at κ = κ∗ = −κ0

√
5 , and the location of

this extremum in Schwarzschild r-coordinate is given by

r∗ = b (κ∗) = (144M/5κ2
0)1/3 (3.51)

Asymptotic limits in Schwarzschild coordinates

Transforming the metric into Schwarzschild coordinates, and by virtue of spatial
flatness, the metric takes the form

ds2 =
(
1− a2

)
dt2 − dr2

(1− a2)
− r2dΩ2 (3.52)

The asymptotic limits of the metric functions are discussed below.

Limit at r → ∞ — Far away from the black hole, in the limit r → ∞, where
(κ/κ0)2 � 1, the expansion takes the form

1− a2 = 1− 2M

r

[
1− 5

16

(r∗
r

)3

+O
((r∗

r

)6)]
(3.53)
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It follows that the location of the outer horizon of a large mass black hole is given
by

r+ = 2M

[
1− 729

6250

(
Mmin

M

)2

+O

((
Mmin

M

)4
)]

(3.54)

Limit at r → 0 — Close to the singularity, where limiting curvature κ2 → κ0
2 ,

the expansion is given by

1− a2 = 1− (ζr)2

[
1− 4

5

( r
r∗

)3

+O
(( r

r∗

)6)]
(3.55)

where ζ = κ0/3 and the inner horizon occurs at

r− = ζ−1

[
1− 27

√
5

1600

M

Mmin

+O

((
M

Mmin

)2
)]

(3.56)

Limit at r ∼ r∗ — While both asymptotes fail to describe the region between
the horizons, it can be found by expanding the solution around the maximum of
a at r∗

1− a2 = 1−
(

M

Mmin

) 2
3
(

1− 10

7
(1− r/r∗)2

)
(3.57)

For the minimal Black Hole M = Mmin , the inner and outer horizons coincide
at r∗ = r− = r+, and the metric close to this single horizon is given by

1− a2 ≈ 10

7
(1− r/r∗)2 (3.58)
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Chapter 4

The Non-Singular Black Hole: A
Study

4.1 Metric in Schwarzschild Coordinates

To aid our intuition, the plot of the metric function g(r) := (1−a2) in Schwarzschild
r-coordinate is provided in Fig 4.1 below.

Figure 4.1: Metric function plot for M > Mmin, M = Mmin, and M < Mmin
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On the lines of Numerical vs Analytic approach

While we don’t have an exact expression for the metric function in Schwarzschild
r-coordinate, it was impossible to find a concise analytic expression that serves
as a good fit at the horizons (when they exist) and the at the minimum, without
elongating the expression to a point where it will be difficult to handle such an
equation without expanding around certain points. As this just overrides the
purpose of obtaining an expression to be used later in computing geodesics, the
approach to studying the properties of this NSBH solution will be mixed between
using numerical methods to obtain exact graphs for quantities under study, and
working analytically through asymptotic limits provided in Sec.3.4.3, to give a
quantitative argument when needed.

This said, the plots in Fig.4.1 are obtained by first numerically reparametriz-
ing a(κ) in r-coordinate, aka plotting the expression of a(κ) vs b(κ) given in
Eq.(3.50), which is identified as the radial component in Schwarzschild coords in
Eq.(3.26), then a(r) is conveniently used to plot g(r) = 1− a2(r) now in r.

On the properties of the metric function g(r)

This metric function describes a Schwarzschild-de Sitter smooth transition that
captures the general behavior of our metric in study.

For a large blackhole with M > Mmin, the metric admits two coordinate sin-
gularities in Schwarzschild coordinates, a Schwzarzschild horizon at r+, and a
de Sitter horizon at r−. For a mininmal blackhole with M = Mmin, as men-
tioned earlier, these two horizons coincide at r = r+ = r−. The structure with
M < Mmin admits no horizons, and has a de Sitter core instead of a naked
singularity at its center.
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4.2 Penrose-Hawking Theorem

This is a brief section dedicated to mention the simple and obvious reason why
the Penrose and Hawking Theorem is not valid in the scenario we are considering,
and it is quoted below

Einstein’s equations do NOT hold as κ approaches its limiting value,
and they are hence modified as given by Eq.(3.12)

Hence, the non-singular solution given by expressions (3.49) and (3.50) that en-
ter the metric is does not hold any contradiction with the singularity theorem.
Proofs showing the regularity of the curvature invariants as we approach the
point of ’singularity’ namely r = 0, finite time needed to reach it, and geodesic
completeness of the space-time will be further discussed.

Geodesic Completeness

For completeness, in [2], the authors provide an argument with a sufficient (but
not necessary) condition for causal geodesic completeness of a metric of the form
(3.5).

4.3 Curvature Invariants

The first test to whether we obtain a regular behavior of the metric, and which
shows that problematic points in the metric, the zero points in the metric indicat-
ing the presence of horizons for instance, are nothing but a coordinate artifacts,
is to obtain an expression for curvature scalars and see how they behave, taking
different limits.

The Kretschmann Scalar

Just like before, we will see how RαβγδRαβγδ behaves at different limits, and it will
give us a pretty good indication of how well a curvature scalar in our space-time
behaves.

Here we can use the asymptotic expression of the metric given by equations
(3.55),(3.57), and (3.53), and see in sections their separate behavior, keeping in
mind the limit near r = 0 is the relevant expression.
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The Riemann squared expressions for the three regions are hence

for r →∞

RαβγδRαβγδ =
3M2

16r12

(
256r6 − 800r3r3

∗ + 975r6
∗
)

(4.1)

for r ∼ r∗

RαβγδRαβγδ = 4

(
M

Mmin

)4/3

·

(
600r4 − 1200r3r∗ + 860r2r∗ − 120rr3

∗ + 9r4
∗

)
49r4r4

∗

(4.2)

for r → 0

RαβγδRαβγδ =
24c4

25r6
∗

(
336r6 − 140r3r3

∗ + 25r6
∗

)
(4.3)

We immediately see from expression (4.3) that as r → 0, RαβγδRαβγδ approaches
a limiting value 24c4, where c = κ0/3 , and κ is the free parameter which is the
limiting curvature in the theory. Therefore we don’t have any diverging curvature
near the singularity. To confirm the regularity of the curvature invariant for all r,
we can look at the graphical plot of the Riemann squared that is obtained numer-
ically for the metric function g(r) = 1 − a2(r), which is originally parametrized
in κ.

The graph for RαβγδRαβγδ obtained numerically is shown below in Fig.4.2. The
plot confirms the regularity of the curvature invariant for all r.

Figure 4.2: RαβγδRαβγδ plot in Schwarzschild r − coordinate
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4.4 Avoiding The Singularity

4.4.1 Null Geodesics

As mentioned previously in Chapter 2, the Lagrangian in Eq.(2.17) must be
equated to zero for the null geodesics. This equation becomes

E2

g(r)
− ṙ2

g(r)
− L2

r2
= 0 (4.4)

or alternatively for null radial geodesics,(dr
dτ

)2

= E2 or
dr

dτ
= ±E (4.5)

Together with

g(r)
dt

dτ
= E (4.6)

we get
dr

dt
= ±g(r) (4.7)

Near the singularity region

To illustrate the in-going and outgoing radial null geodesic near the singularity
region and near the inner horizon at r−, we integrate Eq.(4.7), with g(r) given
by the expansion in Eq.(3.55), we obtain the illustration in Fig 4.3, indicating
the null cones as well.
We notice that near r = 0, the geometry is almost Minkowskian, just like the
metric expansion in Eq.(3.55) (quoted below) suggests, if we take the lim r → 0

1− a2 = 1− (ζr)2

[
1− 4

5

( r
r∗

)3

+O
(( r

r∗

)6)]

What is notable in this result is the non-inevitability of the the r = 0 point, or
what was the ’singularity’ in the Schwarzschild metric. As will become apparent
in the following section, this ’singularity’ will be possibly, but not necessarily
reached for a given initial energy.
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Figure 4.3: Causal Structure of the near singularity region (0 < r < r−)
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4.4.2 Time-like Geodesics

From the spatially flat metric given by Eq.(3.52), we set g(r) = 1−a2(r), where a
is given in Eq.(3.49) in its implicit form. Inserting g(r) and isolating the constants
to the RHS to redefine the effective total energy, Ẽ, Eq.(2.19) becomes(

dr

dτ

)2

− a2(r) = Ẽ2 (4.8)

Identifying −a2(r) as an effective potential (V ) in the energy expression above,
the radial motion is further studied with the plots of V (r) and the resulting phase
portrait shown below.

(a) (b)

Figure 4.4: (a) Effective potential V(r). (b) Phase Portrait for Ẽ2 Equation(4.8)

The plots are again obtained by first numerically re-parametrizing a(κ) in r-
coordinate, aka plotting it vs b(κ) given in Eq.(3.50), which is identified as the
radial component in Schwarzschild coordinates[reference section], then a(r) is
conveniently used in further analysis.

Fixed point at κ∗

As shown before in Eq.(3.51), a(κ) admits an extremum at κ∗, or r∗ in Schwarzschild
coordinates, which is also an extremum for V (r). We can further say that V (r)
admits a fixed point at r∗. Using the expansion around r∗ provided by the au-
thors in Eq.(3.57), we get that V ′′ > 0 in the region between horizons, implying
we can have stable oscillatory motion around r∗.

We get that for different starting energies Ẽ2 we observe different types of motion
that do not necessarily lead towards the singularity.
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For Ẽ2 = 0

With foresight, from the phase portrait of Fig 4.4b, we expect the integrated
trajectory of this energy to be nothing else but the separatrix. But integrating
anyway Eq.(4.8), for Ẽ2 = 0, and in the vicinity of r = 0 with metric expansion
provided by Eq.(3.55), we obtain

τ = ∓ 2

3c
tanh−1

[√
1− 4

5
(r/r∗)3

]
(4.9)

indicating that it will take the particle infinite proper time to reach the center
of the NSBH at r = 0, if we take the negative sign in the solution indicating
in-falling motion. This case doesnt demonstrate, yet, how a particle escapes the
’singularity’(or where it originally was present) at r = 0, but it will become
apparent in the cases below.

For Ẽ2 < 0

We get a trajectory that starts from some starting point r0 and always meets
two turning points, r0 := rout and rin, say, where ṙ vanishes identically. Again,
integrating anyway Eq.(4.8), for Ẽ2 < 0, and in the vicinity of r = 0 with metric
expansion in Eq.(3.55), we obtain

τ = ∓1

c
ln
(
c · r +

√
(c · r)2 − |Ẽ2|

)
(4.10)

From this expression, we see that the particle reaches its turning point in finite
time with τ given by solution with a negative sign, and reflects back with its
motion described with the same expression above now with a positive sign indi-
cating ’outward’ motion, away from the center of the NSBH, thus avoiding the
singularity!

For Ẽ2 > 0

We get unbound orbits reaching r = 0. The particle will simply get reflected off
the r = 0 point with a switch in velocity sign indicating change of direction. The
radial geodesic for Ẽ2 > 0 near the ’singularity’ is obtained like in the previous
case, given by

τ = ∓1

c
ln
(
c · r +

√
(c · r)2 + Ẽ2

)
(4.11)

So, the particle that arrives from infinity will be ’reflected’ near the center of the
NSBH,in finite time, and shot out into r → ∞, thus avoiding the singularity,
again!
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4.5 Motion Near the Horizon

From the fixed point obtained at r∗, we concluded that an oscillatory motion
in r direction is possible, without giving it further regard. Physically, it sounds
pretty odd to obtain such a result in which a particle can cross the horizon back
from where it entered the first time, and it doesn’t seem immediately believable
to see such an astronomical structure with particles coming in and out as seen
by an observer near the horizon, or worse, particle being shot energetically out
of blackholes . Indeed, such a picture of motion near the horizon is incomplete,
and is only resolved when we consider the Confromal Diagram specific to our
problem.

Extended Conformal diagram of a massive black hole

From [2], the conformal diagram of the family of solutions found in the previous
chapter was be obtained by standard methods by gluing the diagrams of the
individual regions separated by horizons [17], and is shown below in Fig.(4.5). A
detailed form of the extended diagram is given in Fig.(4.6), and will be used for
our analysis.

Figure 4.5: Extended Black Hole Conformal Diagram [2]
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Description of motion near the horizon

For Ẽ2 < 0

In a manifold with horizons, a particle moving between two turning points along
its radial time-like geodesic, is in fact moving towards future regions in the Con-
formal Diagram, as illustrated by the trajectory in red. A particle falling from
rout ∈ region I, will arrive to rin ∈ region IIa in finite time, therefore passing
through the Black-Hole. Now, at the next turning point rin,the particle will move
’back’ and towards increasing r, but ’forward’ in the increasing time direction,
now passing the White-Hole region IV′. Again, as the particle moves, it reaches
the turning point rout in region I, and then starts falling towards decreasing r, to
get into the next Black-hole II′, continuing this motion ad infinitum. Formally,
this motion upward in the Conformal diagram is nothing but the oscillation of
the particle between rout and rin in its bound orbit. And every time the particle
crosses the outer Horizon r+ to meet its turning point rout, it is reaching a region
of asymptotically flat space, identical to region I, but with its own future infinity,
and causally disconnected from previous regions I, therefore as if it had crossed
into a ’new Universe’ !

For Ẽ2 > 0

Similarly, a particle which starts at r = ∞ (J −), crosses the outer and inner
horizons, reaches r = 0 in finite time, and crosses the inner and outer horizon
again, now present in the future time direction on the conformal diagram, and
travels along its trajectory shown in blue in Fig.4.5, to r =∞ laying in its future
(J +) in the asymptotically flat universe I′.

In the two previous cases, this information of crossing particles lies in the ab-
solute future of external observers and remains forever inaccessible for them.
Hence, their degeneracy should not lead to any paradoxes in calculating physical
processes observed by external observers.

For Ẽ2 = 0

Even though we don’t encounter any contradictions while looking at the physical
scenario for a particle with Ẽ2 = 0, we can still relate it’s motion to the conformal
diagram, for a complete picture of all our possible scenarios. A particle that starts
at i−, will pass outer and inner horizon and after infinite proper time it will reach
ĩ+ (T =∞, r = 0).
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Figure 4.6: Extended Black Hole Conformal Diagram
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4.6 Non-Radial Motion

To give a complete picture of particle motion (both massive and mass-less) in
the field of our non-singular black hole, in contrast to the classical picture in a
Schwarzschild scenario, a semi-quantitative analysis of non-radial geodesics will
be provided below-which is again, due to the absence of an analytic expression
for the metric function.

4.6.1 Time-like Geodesics

Time-like geodesics can be analyzed by considering ṙ2 in Eq.(2.17) as the kinetic-
energy term, and consequently, we got the energy expression given by Eq.(2.18)

(
dr

dτ

)2

+ g(r)

(
1 +

L2

r2

)
= E2

where the potential V (r) is given by

g(r)

(
1 +

L2

r2

)
(4.12)

and the condition for allowed motion is specified by E2 ≥ V (r).

Extrema of the potential where V ′(r) = 0 determine the circular orbits, and
satisfy

g′(r)

(
1 +

L2

r2

)
+ g(r)

(
− 2

L2

r3

)
= 0

or

g′(r)
(
r3 + r · L2

)
− 2g(r) · L2 = 0 (4.13)

The plot for the general shape of such a potential is given in Fig.(4.7), it is plotted
for a M > Mmin and L >

√
12M . The plot is out of scale to be able to show

its features which can’t be captured at the same scale, and instead are shown in
separate figures scaled appropriately in Fig.(4.8), taking different L/M values.
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Potential Characteristics

The first thing we notice is the positive asymptote as r → 0 which creates an
extra well in the potential.

For this massive black hole case (M > Mmin), the potential curve V (r) has
two extrema for r > r+ and are very similar to those in the regular Schwarzschild
geometry where the shape of the potential does not depend on the black hole
mass [7].

Figure 4.7: General Metric Form for effective potential V (r) for M > Mmin

The fixed points and orbits obtained in Schwarzschild-de Sitter geometry will be
discussed below.

Effective Potential Regions in Fig.4.9 and Fig.4.8

As mentioned earlier, given the different scales on which certain potential char-
acteristics appear in the numerical plot where the exact metric function is used,
the potential was appropriately split into 3-regions which capture the essential
features.
Region r > r+ showing a stable point — shown in marked region in Fig.4.8c, and
the exact numerical plots for that region are shown in Fig.4.9c.
Region r > r+ showing unstable point — shown in marked region in Fig.4.8b,
and the exact numerical plots for that region are shown in Fig.4.9b.
Region r− < r < r+ showing a stable point — shown in marked region in Fig.4.8a,
and the exact numerical plots for that region are shown in Fig.4.9a.
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Classical Schwarzschild Orbits

We obtain the same set of solutions in the Schwarzschild region of our solution
(r > r+), namely two fixed points (a stable and an undstable one), for which we
obtain the usual stable orbits for L >

√
12M around the stable fixed point given

by V ′(r) = 0, V ′′(r) > 0, as shown in Figs. 4.8c and 4.9c, for an appropriate
energy condition. These fixed points similarly merge for L =

√
12M as can be

seen in Fig.4.9b and beyond which any incoming particle is necessarily pulled
into r = r+ and undergoes a similar motion to that described in Sec.4.4.2.

New Class of Bound Orbits

We can immediately see from Eq.(4.13) that in the de Sitter region, for r < r−,
g′(r) < 0 and g(r) > 0, and therefore bound orbits cannot exist in this region
of space-time beyond the internal horizon (IIa). However, we do obtain a sta-
ble point in the region r− < r < r+, which exists for all L, as shown in 4.9a,
implying a new class of bound orbits obtained in our peculiar non-singular metric.

The new-type geodesic oscillates between some point, say, r1 in region IIa where
0 < r1 < r−, and r2 in region I (r2 > r+). We classify this geodesic as a bound
orbit of the type that climbs the coformal diagram space-time ladder as do bound
radial trajectories discussed earlier. A particle starting from the point r = r2 ∈ I
crosses the NSBH event horizon r+, the horizon r− and meets a turning point
r1 ∈ IIa. Then the particle moves through the white hole region IV′ to the next
region I′. Formally, this is a bound orbit, r1 ≤ r ≤ r2, but in fact, the par-
ticle travels upwards the conformal diagram, towards future asymptotically flat
regions.

A general consequence of regularity of the center of our Non-Singular BH so-
lution is the existence of innermost stable orbits for particles, and not only for
massive particles, as we will show in the next Section.
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(a) (b) (c)

Figure 4.8: Plots specifying focus regions expanded for V (r) in Fig.4.9

(a) (b) (c)

Figure 4.9: (a) ’Pit in the potential’ for r− < r < r+. (b) Last stable orbit for
r > r+ occurring right before L =

√
12M . (c) Schwarzschild-like ’potential well’

for r > r+.
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4.6.2 Photon Orbits

Recall that the Energy expression for a photon is given by
Eq.(2.33) (

dr

dλ

)2

+B−2(r) = b−2 (4.14)

where the effective potential for photons is

B−2(r) = g(r) · r−2 (4.15)

The diagram for B−2(r), obtained numerically, is shown in Fig.4.10

Figure 4.10: Effective Potential Diagram for a Photon

According to Eq.(4.15), the typical behavior of the potential V (r) := B−2(r) is
determined by the generic behavior of the metric function g(r). The potential
V (r) → ∞ as r → 0 where g(r) → 1. It is evident that the generic behavior of
the potential at r → 0 leads to that its first extremum is the minimum.

Just like in the effective potentials studied earlier, beyond the outer horizon
at = r+, where the solution is asymptotically Schwarzschild, we expect to see
an overlap in the description of motion in its effective potential. And in this
as well, the photon effective potential matches the description of that in the
Schwarzschild case, where we have an unstable maximum in the potential oc-
curring where b−2 = B−2(runstable extremum) := B−2

crit at r := rcrit ≈ 3M [1]; this
etxremum occurs in region I.
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For b−2 < B−2
crit in Region I

The type of motion for a photon with b−2 < B−2
crit, or b > 3

√
3M , was discussed

in Sec.2.2.2.

For b−2 > B−2
crit

For b−2 > B−2
crit, there’s an unbound orbit with a turning point r ∈ region IIa.

An orbit starting at infinity crosses both horizons, then the photon ’reflects of
the potential barrier’ in IIa and travels further up in the conformal diagram to
the asymptotically flat region I.

For b−2 < B−2
crit in Regions I ∪ II ∪ IIa

For and an orbit at which the null geodesic oscillates between its turning points
r(γ)1 and r(γ)2, the photons travels upward the conformal diagram.

Once again, the de Sitter-Schwarzschild solution admits interesting extra features,
and in this case stable photon orbits !
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4.7 Blackhole Remnants

We know from Sec.(3.4.3) that for M = Mmin, the metric shown in Fig.4.1
transforms further, where the outer horizon r+ and inner horizon r− merge at
r∗ = r− = r+. This minimal blackhole mass was shown in [18] to be the final
product of black hole evaporation, and is a stable minimal remnant with M =
Mmin and vanishing Hawking temperature.

Prelude on Black Hole Thermodynamics

The Hawking temperature TH is determined by the surface gravity at the exterior
horizon x+. It was found that [18]

TH =
gs
2π

=
κ0

6π
|κ̃+|

1− 5κ̃2
+

1 + 3κ̃2
+

, (4.16)

where κ̃+ = κ̃ (x+) ∈ (−1/
√

5, 0). Since a (κ̃+) = 1, and M can be expressed also
through κ̃+ as

M =
3

4κ0 |κ̃+| (1− κ̃4
+)

(
1 + 3κ̃2

+

1 + κ̃2
+

)2

. (4.17)

The formulae (4.16) and (4.17) implicitly define the relation TH (M). In partic-
ular, at large mass we reproduce in leading order the familiar Hawking formula

TH =
1

8πM

[
1 +O

((
Mmin

M

)2
)]

. (4.18)

Instead of diverging as M → 0, the temperature reaches its maximum value
Tmax ∼ 10−2κ0 at |κ̃+| ≈ 0.23 which corresponds to M = Mc ≈ 1.32Mmin. At
this point the negative heat capacity diverges and becomes positive for M < Mc.
Close to the minimal mass the temperature decreases as

TH ∝
√
M −Mmin. (4.19)

According to the Stefan-Boltzmann law, the rate of energy loss of a radiating
body is determined by dM

dt
∝ −T 4

HA where A = 4πr2
+ is the horizon area. For

an evaporating black hole close to minimal mass A ∼ M2
min, and hence it will

eventually approach Mmin according to M(t) −Mmin ∝ t−1. That is, the final
product of black hole evaporation is a stable minimal remnant with M = Mmin

and vanishing Hawking temperature.
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Conformal Diagram

The conformal diagram for the remnant with M = Mmin given in [2], is shown
below. The space-time structure is now composed of an asymptotically flat region
I and a de Sitter core IIa only. A black hole-like region II and a white hole-like
region are completely absent in this space-time.

Figure 4.11: Minimal Black Hole Conformal Diagram [2]

EXtended CD for a minimal NSBH

However, we shall deduce the structure of the extended conformal diagram of a
NSBH remnant by taking the limit r− = r+ in the extended diagram provided in
Fig.(4.6). The resultant diagram is shown in Fig.(4.12). We obtain an extended
structure to match the bound motion in r which will be obtained analogously to
the results in Sec.(4.4.2).
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Figure 4.12: Minimal Black Hole Extended Conformal Diagram
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Radial Motion

The radial time-like geodesics can be thus obtained from Eq.(4.8), quoted below(
dr

dτ

)2

− a2(r) = Ẽ2

The shape of the effective potential is just like the one shown in Fig.(4.4a), be-
cause as the equation above suggests, the effective potential V (r) in the problem
has the shape of the metric function (a2(r)). The only difference in the radially
in-falling motion in the field of this minimal NSBH case than that of a massive
NSBH discussed earlier in Sec.(4.5), is that the fixed point coincides with the
horizon at r = r∗. The radial oscillation is thus limited to the only two regions
now present in the causal diagram of the BH remnant (regions I and IIa).

Just like before, a particle with Ẽ2 < 0 starts its motion from an r = rout in
region I of its space-time (Fig.(4.12)), crosses the horizon at r = r∗ and reaches
its turning point r = rin in region IIa, and moves further up the conformal
diagram, crossing the horizon again, now present in the future direction, and
reaches its turning point rout in the asymptotically flat region I, and continues
this bound motion, climbing further up on the diagram.

(a) (b) (c)

Figure 4.13: (a) Additional ’Pit in the potential’ with a minimum at r∗. (b) Last
stable orbit vanishing for L =

√
12M . (c) Schwarzschild-like potential well for

r > r+.
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Non-Radial Motion

For completeness, the different characteristic regions of the effective potential V(r)
for non radial motion, discussed in Sec.(4.6) given by Eq.(4.12) quoted below, are
shown in Fig.(4.13).

V (r) = g(r)

(
1 +

L2

r2

)

Here, the new fixed point is at r = r∗, which means any new bound orbits ob-
tained will be of the bound type oscillating between different space time regions,
and again in this case these are regions I and IIa.

Similarly to the non-radial time-like motion discussed in Sec.4.6, the last stable
orbit orbit in the region r > r+ vanishes at L =

√
12M , just like in the classical

Schwarzschild problem, as shown in Fig.4.13b.

Photon Orbits

Following the same analysis done in Sec.4.6.2, and looking at the effective po-
tential for the BH remnant with M = Mmin presented in Fig.4.14, the general
characteristics of the photon orbits will be the same as for the massive NSBH,
with one difference which is that the stable extremum in the potential occurs
exactly at the horizon (r∗) of this minimal mass NSBH.

Figure 4.14: Effective Potential for a Photon in the field of a BH Remnant
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4.8 Gravitating Solitons

The case with M < Mmin presents especially interesting results, even though
there is no realized mechanism in which this mass limit can be attained, since as
discussed in the previous section, the black hole evaporation yielded a remnant
with minimal mass Mmin which is stable, but in fact the theory does not pro-
hibits the existence of lower mass limits M < Mmin. Regardless, we will study
interesting properties of this solution in the same formalism in which other mass
limits were studied in previous Sections.

Confromal Diagram

The major difference between the conformal diagram [2] for the M < Mmin mass
limit is that it does not admit any horizon and the causal structure is just like
Minkowski spacetime. Close to r = 0 the solution approaches a static de Sitter
metric replacing the singularity.. The immediate result is that any non-typical
motion occurring in the field of this gravitating mass will be possibly observable.
The conformal diagram is shown in Fig.4.15.

Radial Motion

In contrast to the previously discussed radial time-like motion in NSBHs in Sec.4.5
and Sec.4.7, the radially bound motion around the fixed point r∗, and any other
motion, is fully contained in region I which is fully accessible to external observers.

Figure 4.15: Minimal Black Hole Conformal Diagram [2]
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Non-Radial Moion

There are two mass limits featuring different behavior in their full potentials
within M < Mmin limit itself. We turn to the effective potential as given by
Eq.(4.12), shown in Fig.4.16, but now for different mass limits, while keeping
L fixed at a value L >

√
12M in order to study the additional bound orbits

obtain in earlier sections, while keeping the regular ones obtained in a classical
Schwarzschild effedctive-potential present.
We see that for a mass M < Mcrit < Mmin, the ’additional’ pit in the potential
vanishes, but for a range of masses Mcrit < M < Mmin, it is still present, indicat-
ing that the new class of bound stable orbits obtained idenitically in NSBHs with
M ≥ Mmin is present in this gravitating low-mass structure, and is in pronciple
observable!
To identify Mcrit, we can in principle look at the plots of the position of r∗,r+,
and r−, where r+ and r− don’t hold any real meaning in this scenario without
horizons, but they will serve as the critical parameter which defines Mcrit. The
figure showing r∗,r+, and r− plotted against M/Mmin is shown in Fig.4.16c. We
notice that as M/Mmin decreases, r+ and r− become closer and eventually con-
verge at one point, and then diverge as M → 0 . The point at which r+ and r−
converge defines a critical mass Mcrit beyond which no additional stable orbits are
present. For M < Mcrit, the potential admits only one stable fixed point shown in
Fig.4.16b, where the unstable point that is similar to the one in a Schwarzschild
potential vanishes too. This pit in the potential doesn’t vanish for any L, and
in fact, as L → 0, the effective potential takes the shape of that of a radially
in-falling point and formally has the form of the metric function g(r) shown in
Fig.4.1.

Photon Orbits

As we have already established, the low-mass gravitating structure has a critical
mass limit which is also apparent in the signature of the ’effective potential of
photons’. As can be seen in Fig.4.16d, there is a pit in the potential, similar to
ones obtained for M ≥ Mmin limits, for Mcrit < M < Mmin. Beyond that, for
M < Mcrit, this pit in the potential vanishes, and with it the extremum which is
reminiscent from the Schwarzschild case.

This is a notable feature which is obtained in this gravitating sturcture without
horizons: the existence of stable bound photon orbits in the space-time region
accessible for external observers!
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(a) (b)

(c)
(d)

Figure 4.16: (a)Mass-dependent potential for the Gravitating Soliton. (b) Poten-
tial for M < Mcrit. (c) Plot of positions of r∗,r+, and r− varying with M/Mmin.
(d) Effective Potential for photons for different low-mass limits.
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Chapter 5

Conclusion and Future Work

The introduction of the mimetic field φ by the authors in [2] allowed them to find
a remarkably simple high-curvature modification of GR, where a scale depen-
dence of gravitational and cosmological constant was implemented covariantly.
2φ turned out to be a unique measure of curvature on which the gravitational
constant can depend such that the resulting modified Einstein equation is still
second order in time. In application to non-rotating black holes, a particularly
interesting solution was obtained, which preserves the Schwarzschild limit outside
the event horizon, but replaces the singularity with a regular de Sitter core.

This modification allowed us to study the whole spectrum of possible dynamics
for massive and massless particles alike, and we obtained rather curious addi-
tional fearures in these dynamics. For start, we analyzed the motion of radially
in-falling particles, and showed how these particles arrive near the center of the
NSBH in finite time (Sec.4.4.2), where the space-time was shown to be asymptot-
ically Minkowskian towards r = 0 (Sec.4.4.1), and then were ’reflected’ towards
upper regions in the conformal diagram (Sec.4.5) , lying outside the causal reach
of external observers. For the NSBH with M ≥ Mmin. We found interesting be-
havior for massive particles near the event horizon (Sec.4.5), which was the result
of the ’pit in the potential’, where particles oscillate in and out of the horizon,
but the oscillation is occurring forward in time on the conformal diagram, and
hence is out of the reach of an external observer. We also found bound orbits for
such particles with non zero angular momentum (Sec.4.6), that exhibit the same
type of oscillation near the horizon, but move up the conformal diagram thus
avoiding any physical contradictions. A particularly interesting result obtained
was stable photon orbits in the inner region of the space-time metric (Sec.4.6.2).
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Even though it was found that this modification of GR generically leads to a lower
bound on the black hole mass [18], where minimal black holes have vanishing
Hawking temperature and the final product of black hole evaporation is hence a
stable remnant of minimal mass, this work studied possible dynamics in the limit
M < Mmin (Sec.4.8). This mass limit is not prohibited in the theory, regardless
of the fact that the mechanism which leads to a low-mass Gravitating structure
is not understood yet. The prominent feature of such a gravitating structure
was its space-time with no horizons. This means that the additional features
which the metric exhibits on different potentials studied, yielding new dynamics,
are potentially observed. The most remarkable result is the presence of stable
photon orbits.

A Run Down in History

The idea of resolving the singularity of a black hole through replacing it by a de
Sitter core dates back to mid-60s, when Sakharov first suggested that the equation
of state at extremely high densities can become p = −ε [19]. Around a year later,
Gliner suggested that the final state of a gravitational collapse can be described
by a vacuum stress energy tensor which he identified as Tµν = Λgµν [20]. Later
Zel’dovich understood that de Sitter geometry, hence the cosmological constant
is generated by vacuum with energy density ε ∝ Λ [21]. The picture comes
together even more with Markov, suggesting that the scale of replacing a black
hole singularity by a de Sitter-like core can be of Planckian scale [22]. One of the
immediate applications of this sequence of ideas was in a paper written by Frolov,
Markov and Mukhanov (FMM) in 1990, where they constructed the de Sitter-
Schwarzschild metric by direct matching of the the outside Schwarzschild solution
to the de Sitter solutoin inside through a joint layer, using a thin shell approach
[23]. In their paper, FMM used a mass function m(r) in the metric, where it is
proportional to m for r → ∞, and for r → 0, m(r) ∼ r3/2l2; later they suggest
that this mass function can be equally mimicked by a vanishing gravitational
constant. This realization, together with the discussed asymptotically free theory
on which this thesis is based on, will be relevant once one last work is mentioned
in the historic chain of the problem. In a paper in 1992 [24], Dymnikova used
an analytic expression for a density function which returns the mass of the black
hole at r →∞, and the energy density of vacuum at the center of the black hole,
and was able to obtain the explicit metric for a non-singular black hole solution
which is a smooth transition from de Sitter to Schwarzschild at the appropriate
limits, in contrast to the implicit solution obtained in [2].
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Projection into Future Work

Since part of the analysis on orbits was done semi-quantitatively due to the lim-
iting fact that the metric provided by [2] is an implicit function in κ, and the
discussion was based on numeric plots of needed functions, a more rigorous nu-
meric study is needed to study the orbits obtained and their features. However,
there is a similar numeric analysis of orbits done in the work by [25], for a non-
singular metric function similar to the one which on this work is built. And while
the non-singular solution in [24], as mentioned earlier, was obtained by assuming
a certain analytical expression for mass distribution inside a black hole, it would
also be interesting to investigate a possibly exact non-implicit solution that can
be obtained by assuming a mass distribution for the mimetic dark matter, in
Chamseddine and Mukhanov’s theory, which is left out as an integration factor
in [8], without having to assume anything about the state of matter at high den-
sities [19].

Indeed, if we plot the function of the running Gravitational constant that the
authors introduce into their modified Lagrangian (3.4) through its inverse, we
can see a good match between that and a theorized mass function for mimetic
dark matter, similar to that in [24], given by a general function M(r) = 1 −
e−(r/a)3 ,where a is a constant that fitted appropriately. This plot is shown in
Fig.5.1.

While the vanishing mass distribution, or the gravitational constant alike, are
not enough to obtain a de Sitter core replacing the singularity-which requires
the addition of a cosmological like term like in Eq.(3.4), or by including vacuum
density appearing asymptotically in the mass function as in [24], if we want to get
a de Sitter core from mimetic dark matter, we need to alter its properties. It is
readily seen from [8] that the equation of state of the mimetic dark matter in the
theory has p = 0, which came as a consequence of isolating the scalar field in the
physical metric, so in principle it cannot be simply modified. However, in another
work by the authors in 2014 [26], a cosmological constant term was introduced
as a Lagrange multiplier constraining a potential depending on φ. While such
a φ-dependent potential turned out to be problematic later on, turning back to
this approach is not the simplest, but the least can be thought of as a starting
point to thinking about how to obtain a dS-Schw solution purely from mimetic
dark matter, without altering properties of the gravitational constant, or matter
itself in that respect.
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Figure 5.1: A general Mass function M(r) fitted to running Gravitational con-
stant from [2]
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