

AMERICAN UNIVERSITY OF BEIRUT

MANY-TASK LEARNING FOR
INDIVIDUALIZED CONSUMER POWER

PREDICTIONS

by

MARC GEORGE DJANDJI

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
Januray 2021

Rabih Jabr

Rabih Jabr

wassim
Pencil

Date of thesis defense: January, 22, 2021

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.
Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

DJANDJI MARC GEORGE

07/02/2021

Marc Djandji
Line

Marc Djandji
Line

Marc Djandji
Line

Marc Djandji
Line

Marc Djandji
Line

Marc Djandji
Line

Acknowledgements

I would like to express my gratitude to my supervisor Professor Hazem Hajj
for mentoring and accompanying me during the learning process of this
master thesis.

I would like to dearly thank the committee members for their invaluable
inputs throughout my thesis work.

I would like to thank my friends and colleagues at AUB MIND lab for their
support and collaboration during my masters journey.

I would like to thank the Lord and my loved ones, who have supported me
throughout the entire process, both by keeping me harmonious and helping
me putting the pieces together. I will be forever grateful for your love.

This work was made possible by NPRP11S-1202-170052 grant from Qatar
National Research Fund (a member of Qatar Foundation). The statements
made herein are solely the responsibility of the authors.

v

An Abstract of the Thesis of

Marc George Djandji for Master of Engineering
Major: Electrical and Computer Engineering

Title: Many-task Learning For Individualized Consumer Power Predictions

Short Term Load Forecasting (STLF) aims at predicting power consump-
tion in the hours, days, or weeks ahead. Accurate STLF is important for plant
scheduling, financial planning, system security, short-term maintenance, short-
term storage usage, and the application of demand response strategies, which
aim at rewarding reduced power consumption at peak hours. State of the art
work uses single task deep learning (STL) for its ability to model the uncertain-
ties in the individualized load. However, the approach can be improved further
by combining data from other smart meters. To advance STLF accuracy, this
thesis explores the use of transfer learning. Two new transfer learning models
are proposed: A hierarchical clustering with population STLF prediction models
(HC-P) and a hierarchical clustering with deep multitask learning (HC-MTL).
Each of the two hierarchical algorithms cluster similar smart meters into groups
based on smart meters’ data representation. The HC-P approach allows smart
meters in each group to learn a shared feature representation. The HC-MTL
approach uses hard parameter sharing (HPS) schemes for smart meters in the
same group and soft parameter sharing (SPS) for smart meters that are unique
and different from all other smart meters. The thesis’s additional contributions
include two studies for deeper insights into the limitations and opportunities of
using transfer learning for STLF. The first study examines the effect of available
data on STLF accuracy. The study shows that more smart meter training data
helps in improving STLF accuracy, but up to a certain saturation point beyond
which, limited performance gains can be obtained. This insight suggests that
transfer learning will only make a difference for STLF of smart meters that do
not have sufficient training data. To confirm the benefit of transfer learning, a
second study examined the effect of getting more data by way of adding data
from similar smart meters. Finally, to evaluate the proposed transfer learning
STLF approaches HC-P and HC-MTL, experiments were conducted on a dataset
consisting of 4225 residential smart-meters and 484 industrial smart meters. Sev-

vi

eral models were implemented for comparison, including: the state of art STL
model composed of 1D-Convolutional Neural Network (CNN) with Gated Re-
current Unit (CNN-GRU), a population prediction model without grouping, a
hierarchical random grouping with population prediction models, Autoregressive
Integrated Moving Average (ARIMA), and Seasonal ARIMA (SARIMA). The
results showed that the HC-P worked best for residential smart meters’ STLF
and HC-MTL worked best for industrial STLF. In fact, compared to prior state-
of-the-art, HC-P provided an accuracy improvement of 2% RMSE and MAE for
residential smart meters. For industrial smart meters, HC-MTL provided an
improvement of 2.78% and 4.97% in terms of RMSE and MAE, respectively

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

2 Background & Related Work 6

2.1 Related Work . 6

2.1.1 Single Task Learning (STL) 6

2.1.1.1 Statistical & Feature-Based Models 6

2.1.1.2 Deep Learning models 7

2.1.2 Population Models . 8

2.1.3 Multitask Task Learning (MTL) 9

2.1.3.1 Statistical Models 9

2.1.3.2 Deep Learning models 10

2.2 Background . 11

2.2.1 STLF Mathematical Formulation 12

2.2.2 Single Task Learning (STL) Mathematical Formulation . . 13

3 STLF Limitations & Opportunities 16

3.1 Study for Evaluation of Data Sufficiency for STL Smart Meter Data 16

3.2 Study for Evaluation of Transfer Learning from Similar Smart meters 17

3.3 Study for Evaluation of Transfer Learning from Dissimilar Smart
meters . 19

4 Similarity Methods 21

4.1 Similarity Method . 21

4.1.1 Clustering Tendency . 22

4.1.2 Clustering Algorithm . 23

4.1.2.1 Hierarchical Clustering 24

4.1.3 Clustering Validation . 26

viii

5 Methodology 32
5.1 Multitask Learning (MTL) . 32

5.1.1 Multitask Hard Parameter Sharing (MTL-HPS) 32
5.1.1.1 Model Architecture 32
5.1.1.2 Mathematical Formulation 33

5.1.2 Multitask Learning with Soft Parameter Sharing (MTL-SPS) 34
5.1.2.1 Model Architecture 34
5.1.2.2 Mathematical Formulation 34

5.1.3 Proposed Hierarchical Clustering with MTL (HC-MTL) . . 35
5.1.3.1 Agglomerative Hierarchical Clustering 36
5.1.3.2 Cluster-specific MTL model 36
5.1.3.2.1 Multitask with Hard Parameter Sharing (MTL-

HPS) . 36
5.1.3.2.2 Multitask with Soft Parameter Sharing (MTL-SPS) 37

5.2 Hierarchical Clustering with Population models (HC-P) 37
5.2.1 Agglomerative Hierarchical Clustering 37
5.2.2 Cluster-specific Population Model 38

6 Experiments & Results 39
6.1 Experimental Setup . 39
6.2 Dataset . 39

6.2.1 Dataset Description . 39
6.2.2 Data Exploration . 40

6.2.2.1 Industrial Smart Meters 40
6.2.2.2 Residential Smart Meters 41

6.3 Model Input Span Selection . 42
6.4 Tuning Parameters For The STL Model 44
6.5 Tuning Parameters For The MTL Model 45
6.6 Tuning Parameters For The Population Model 46
6.7 Tuning Parameters For The Baseline Statistical Models 46
6.8 Comparative Evaluation of Models 47
6.9 Discussion . 50

6.9.1 STLF Results for Industrial and Residential Smart Meters 50
6.9.2 Model Complexity and Real-Time Feasibility 51

7 Conclusion 53

List of Figures

2.1 Steps Involved in Model Identification for Aggregate Short-Term
Forecasting . 12

2.2 The input and output of the model proposed by Kim et al. [1] . . 14
2.3 Prior State-of-the-art [1] Detailed Architecture 15

3.1 The performance metrics averaged over 50 industrial smart meter
as the training data size increases. a) The average MAE. b) The
average RMSE. 17

3.2 The performance metrics averaged over 50 industrial smart meter
as the training data size increases. a) The average MAE. b) The
average RMSE. 17

3.3 The performance metrics for a residential smart meter as the train-
ing data size for its neighbors increases. a) The MAE. b) The RMSE. 18

3.4 The performance metrics for an industrial smart meter as the train-
ing data size for its neighbors increases. a) The MAE. b) The RMSE. 18

3.5 The performance metrics for a residential smart meter as the train-
ing data size for its dissimilar neighbors increases. a) The RMSE.
b) The MAE . 19

3.6 The performance metrics for an industrial smart meter as the train-
ing data size for its dissimilar neighbors increases. a) The RMSE.
b) The MAE . 20

4.1 Predicted vs. True half-hourly load for two residential smart me-
ters. a) Smart meter 1073. b) Smart meter 1243 28

4.2 Predicted vs. True half-hourly load for two industrial smart me-
ters. a) Smart meter 1356. b) Smart meter 1391 29

4.3 The dendrogram for the 50 residential smart meters with the black
horizontal line representing the threshold below which we consider
each line to be a cluster. 29

4.4 The distance matrix for the 50 residential smart meters. The colder
the smaller the distance. 30

4.5 The dendrogram for the 50 industrial smart meters with the black
horizontal line representing the threshold below which we consider
each line to be a cluster. 30

x

4.6 The distance matrix for the 50 industrial smart meters. The colder
the smaller the distance. 31

5.1 MTL Hard Parameter Sharing Architecture 33
5.2 MTL Soft-Parameter Sharing Architecture 35
5.3 Population Model Architecture and Data insertion Procedure . . . 38

6.1 Hourly boxplot for an industrial smart meter 40
6.2 The load of a Tuesday across two weeks for industrial smart meters 41
6.3 Hourly boxplot for a residential smart meter 41
6.4 The load of a Tuesday across two weeks for residential smart meters 42
6.5 The average individualized MAE and RMSE value for the different 44
6.6 P-values of the Welch t-test between the overall metrics of all meth-

ods. a) The p-values for the MAE. b) The p-values for the RMSE 48
6.7 The prediction of the different methods for residential smart meter

1035 on 15/10/2010 . 49
6.8 The prediction of the different methods for residential smart meter

1044 on 19/11/2010 . 49
6.9 The prediction of the different methods for residential smart meter

1073 on 18/10/2010 . 50
6.10 The prediction of the different methods for industrial smart meter

1146 on 30/07/2010 . 50
6.11 The prediction of the different methods for industrial smart meter

1181 on 26/07/2010 . 51

List of Tables

2.1 Summary of the previous works targeting load forecasting using
Smart Meter data. 7

3.1 Comparison between the performance of the STL model when
trained on the full smart meter’s data and the population model
when trained on a reduced size of the smart meter’s data with the
presence of similar smart meter’s data. 19

3.2 Comparison between the performance of the STL model when
trained on the full smart meter’s data and the population model
when trained on a reduced size of the smart meter’s data with the
presence of dissimilar smart meter’s data. 20

4.1 The Hopkins statistic value (H-value) for each group of smart me-
ters and each smart meter representation choice 23

4.2 The clustering parameters that provided the best RMSE and MAE
for each group of 50 residential and industrial smart meters 27

4.3 The average RMSE and MAE over 50 residential smart meters
for a population model with clustering, a population model with
random grouping, and an STL model 28

4.4 The average RMSE and MAE over 50 industrial smart meters for a
population model with clustering, a population model with random
grouping, and an STL model . 28

5.1 The clustering parameters that provided the best average RMSE
and MAE validation set results over a group of 50 residential and
industrial smart meters for the MTL-HPS model. 36

6.1 Number of smart meters per smart meter category after prepro-
cessing . 40

6.2 The RMSE and MAE average over all residential smart meters for
the different methods . 47

6.3 The RMSE and MAE average over all industrial smart meters for
the different methods . 48

6.4 The Training Time in Hours for the different approaches 52

xii

Chapter 1

Introduction

Smart grids have modernized the traditional electrical grids by leveraging infor-
mation technology advances, which allow the acquisition of the network compo-
nents’ data and it’s use to maximize the efficiency and reliability of the grid. The
Advanced Metering Infrastructure (AMI) technology was introduced to realize
the smart grid concept. The AMI consists of smart meters, communication net-
work components at every level of the infrastructure, Meter Data Management
System (MDMS), and tools to integrate the collected data into proper software
application platforms and interfaces [2]. The presence of smart meters in the
advanced metering infrastructure (AMI) makes the application of Demand Side
Response (DSR) easily applicable for domestic customers [3]. Demand Side Re-
sponse (DSR) programs are applied by the utility to incentivize customers to
reduce their consumption during peak hours with the goal of avoiding potential
blackouts or additional energy generation. The application of DSR programs
in the U.S. saved around 1.5 million MWh in 2019 [4] resulting in saving ap-
proximately 155850000 USD [5]. Various approaches for applying DSR can be
found in the literature [6, 7]. However, one crucial requirement for the applica-
tion of such approaches is the availability of accurate, individualized short-term
load forecasts [8]. Furthermore, short-term load forecasting is also required for
plant scheduling, fuel purchase plans, security capacity, short-term maintenance
as well as short-term storage usage. Although a plethora of works can be found
in the literature on aggregate load forecasting, the literature on individualized
load forecasting is still developing. The problem of individualized short-term load
forecasting (STLF) is challenging at fine temporal granularities, mainly due to
the high volatility and uncertainty in the time-series sequences [9]. Benchmarks
against prior state-of-the-art shallow neural network and statistical approaches
were performed in previous work for individualized STLF [10]. Testing mod-
els included Autoregressive Integrated Moving Average (ARIMA), shallow feed-
forward neural networks, and exponential smoothing state-space models. The
models were tested against a persistence approach (e.g., previous day equals to-
day), and it was found that these methods offer little to no improvements over a

1

naive persistence approach. Similar findings were reported in [11], where it was
found that Support Vector Regression (SVR) and Multilayer Perceptron (MLP)
did not outperform simple linear regression.

The main challenge with STLF is the modeling of the uncertainties in the load
time-series (TS). Recent works have shown that Deep Learning models consisting
of Recurrent Neural Network such as Gated Recurrent Unit (GRU) and Long-
short term memory (LSTM) are well suited for learning the uncertainties in the
individualized load TS. For example, [12] has shown that LSTM outperforms pre-
vious methods such as ARIMA, SVR, Conditional Restricted Boltzmann Machine
(CRBM), and Factored Conditional Restricted Boltzmann Machine (FCRBM)
for STLF. However, the LSTM suffers from degradation in performance as the
length of the TS input increases or multiple modalities are included (i.e., weather
TS) [13, 14]. Further improvements were achieved by [1], where it was shown
that a Convolutional Neural Network (CNN) and LSTM combination outper-
forms LSTM, GRU, Bi-directional LSTM, and attention LSTM.

Although deep learning approaches tend to excel with the existence of large
amounts of historical data, in the real world, however, individualized historical
load TS data is limited, which results in degraded individualized model perfor-
mance and overfitting [12]. Previous work in the literature addresses the accu-
racy challenge by proposing a transfer learning strategy that groups data from
different smart meters and develops a single model per group in what is called
a population model, which allows the model to leverage more data from group
smart-meters and improve generalizability as was shown in [12]. Nevertheless,
population models tend to overgeneralize by learning only a shared representa-
tion among the group smart-meters, which results in inaccurate individualized
forecasts. Furthermore, the previous work suggests a random grouping of the
smart meters which may not lead to learning a meaningful shared representa-
tion. Due to the limitations of STL and population models, a hybrid of both
approaches emerged under what is called Multitask Learning (MTL). Multitask
Learning enables the model to leverage data from multiple smart meters to learn
the shared and task-specific representations resulting in better generalization and
individualized accuracy. Recent literature in power prediction started proposing
MTL as a method to address generalizability and accuracy. However, the pro-
posed methods either extend statistical models such as Gaussian Process [15] or
are unscalable, target larger prediction granularity, and long term load forecasting
such as [16].

In this thesis we propose two new transfer learning models to improve STLF
accuracy: A hierarchical clustering with population models (HC-P) and a hi-
erarchical clustering with deep multitask learning (HC-MTL). Each of the two
hierarchical algorithms clusters smart meters into groups based on the similarity
in their load behavior. The HC-P approach allows smart meters in each group to
learn a shared feature representation. Whereas the HC-MTL allows the learning
of both a shared and smart meter specific feature representations. Furthermore,

2

the HC-MTL approach uses hard parameter sharing (HPS) schemes for smart
meters in the same group and soft parameter sharing (SPS) for smart meters
that are unique and different from all other smart meters. The thesis’s addi-
tional contributions include two studies for deeper insights into the limitations
and opportunities of using transfer learning for STLF. The first study examines
the effect of available data on STLF accuracy. The study shows that more smart
meter training data helps in improving STLF accuracy, but up to a certain sat-
uration point beyond which, limited performance gains can be obtained. This
insight suggests that transfer learning will only make a difference for STLF of
smart meters that do not have sufficient training data. To confirm the benefit
of transfer learning, a second study examined the effect of getting more data by
way of adding data from similar smart meters. To evaluate the proposed transfer
learning STLF approaches HC-P and HC-MTL, experiments were conducted on a
dataset consisting of 4225 residential smart-meters and 484 industrial smart me-
ters. Several models were implemented for comparison, including: the state of art
STL model composed of 1D-Convolutional Neural Network (CNN) with Gated
Recurrent Unit (CNN-GRU), a population prediction model without grouping, a
hierarchical random grouping with population prediction models, Autoregressive
Integrated Moving Average (ARIMA), and Seasonal ARIMA (SARIMA). The re-
sults showed that the HC-P worked best for residential smart meters’ STLF and
HC-MTL worked best for industrial STLF. In fact, compared to prior stateof-the-
art, HC-P provided an accuracy improvement of 2% Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) for residential smart meters. For in-
dustrial smart meters, HC-MTL provided an improvement of 2.78% and 4.97%
in terms of RMSE and MAE, respectively.

The contributions of this thesis can be summarized as follows:

1. Evaluation of Data Sufficiency for STL Smart Meter Data:

(a) The study on 100 residential and industrial smart meters showed that
adding more data from each smart meter indeed helps learning, but
up to a certain saturation point beyond which, limited performance
gains can be obtained.

(b) We used a deep learning STL model for the experiment. The STL
model, previously state of the art, consisted of a 1D Convolutional
Neural Network and Gated Recurrent Unit (CNN-GRU) [1]

(c) For the study data, the observation was more obvious for residential
than industrial smart meters. But both showed the trend toward sat-
urated improvement with more data.

2. Evaluation of STLF Learning from Similar Smart meters:

(a) The study showed that for meters that needed more data, using data
from similar smart meters improved performance.

3

(b) This observation suggests and supports claims that approaches other
than STL, such as population and Multi-task Learning (MTL) meth-
ods, should improve performance for those meters.

(c) It is worth noting that this observation of benefiting from approaches
other than STL is only applicable for smart meters that do not have
sufficient data.

3. A New Hierarchical Clustering with Population models (HC-P) approach
for residential STLF

(a) The method groups smart meters into clusters based on the similarity
in their behavior as quantified using the distance metric. The formed
distance matrix is then used as input to an agglomerative hierarchical
clustering algorithm to produce the clusters

4. A New Hierarchical Clustering with Deep Multitask Learning (HC-MTL)
for industrial STLF

(a) We propose an MTL Hard parameter sharing (HPS) extension for
the smart meters that belong to the same cluster. The MTL-HPS
modifies the CNN-GRU [1] model by keeping the CNN layers and
adding a task-specific GRU and fully connected layer per task. For
smart meters that were found to be unique and different from all other
smart meters, as identified by the clustering, we propose an MTL with
a soft-parameter sharing (SPS) scheme. The MTL-SPS consists of a
separate CNN-GRU model per task. A regularization term is added
to the loss function of each model, which constrains the weights of the
layers to be similar by the degree of similarity between the two tasks.
Therefore, enabling the tasks to learn the amount of information to
share at each layer.

5. Study for Choice of Similarity Metric for Smart Meters

(a) The study showed that the choice of similarity metric depends on the
learning method.

(b) The experiments showed that cosine similarity on embeddings, ex-
tracted within the deep learning MTL STLF model, worked best for
HC-MTL. On the other hand, the Euclidean distance of raw smart
meter data worked best for the HC-P STLF model.

6. Comparative Analysis of Performances for STLF Models

(a) Compared Models:

4

i. Base Models: STL Deep Learning [1], Hierarchical Random
Grouping with Population (HR-P) [12], ARIMA, SARIMA, Pop-
ulation model without grouping

ii. New Models: HC-P, HC-MTL

(b) Experiments were conducted on a dataset consisting of 4225 residential
smart-meters and 484 industrial smart meters. The dataset contains
measurements with half-hourly granularity starting from July 14, 2009,
until December 31, 2010 (536 days)

(c) Tests supported with tests of confidence.

(d) Hierarchical Clustering performed best for residential smart meters.
STL was next. Hierarchical Clustering was better by 2% in RMSE
and MAE. MTL performed worse than STL by 0.6%.

(e) MTL performed best for industrial smart meters. STL was next. MTL
was better by 2.78% in RMSE and 4.97% in MAE. Hierarchical Clus-
tering performed worse than STL by 1.5% RMSE and 8% MAE.

The rest of the thesis is organized as follows: Chapter 2 provides an overview
on the related work on single-task, population and multitask approaches for time-
series data. In chapter 3, we investigate data sufficiency for STLF and the effects
of adding data from similar and dissimilar smart meters. Chapter 4, discusses the
smart meter similarity method and provides validation of the clustering approach.
Chapter 5, contains the proposed models. Chapter 6 provides the results and a
discussion of the conducted experiments. A conclusion of the work is presented
in chapter 7

5

Chapter 2

Background & Related Work

2.1 Related Work

We first present an overview of the single task learning approaches for individual
load forecasting using both Deep Learning and statistical techniques. Second, we
present a review of population approaches. Third, we present a review of multi-
task approaches using Deep Learning architectures and statistical techniques.

2.1.1 Single Task Learning (STL)

Single task learning models represent the traditional way in which any model is
trained that is when the model is trained to minimize a single loss function [17].
Furthermore, STL models can be further divided into two categories based on
the underlying model architecture: 1) Statistical and Feature-based models, 2)
Deep Learning models.

2.1.1.1 Statistical & Feature-Based Models

Few works in the literature studied the problem of individualized STLF using
statistical and feature-based approaches. [18] compared different previous state-
of-the-art aggregate load forecasting approaches for the problem of individualized
day ahead load forecasting. Tests were conducted for a population of 90 and 230
smart meters. Shallow feed forward neural network (FFNN), shallow wavelet
neural network (WNN), ARIMA, AMRA and Fuzzy logic WNN, were compared
and it was found that ARIMA modelling provided the best results in terms of
Normalized Root Mean Squared Error (NRMSE). In [11], a comparison between
Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Linear Re-
gression was presented for next-day individualized and aggregate hourly predic-
tion. The input for individualized prediction was the energy consumption for
the same hour of the previous seven days in addition to hour-of-day and day-
of-week features, where it was found that linear regression outperformed MLP

6

Table 2.1: Summary of the previous works targeting load forecasting using Smart
Meter data.

Paper Features Prediction Span # of Smart Meters Best Model

[18] Last week’s load
Day-ahead with

hourly granularity
230 ARIMA

[11]
The energy consumption for same
hour of the previous seven days,

hour-of-day and day-of-week

Day-ahead with
hourly granularity

782 linear regression

[19] Previous 60 hours Sixty hours ahead 1 LSTM Seq-to-Seq
[20] Previous 12 half-hours Half-hour ahead 69 LSTM

[21]
Previous 60 hours and

calendar features
Sixty hours ahead 1 CNN

[1]
Previous 60 hours, hour-of-day,

day-of-week, month-of-year
Sixty hours ahead 1 CNN-LSTM

[12]
Load for the previous 7 days
with half-hourly granularity

Day-ahead with
half-hourly granularity

920 LSTM

[22]

Load for the previous year,
calendar features:

time-of-day, day-of-year,
day-of-week.

Half-year ahead
with 3 hours granulatiy

6433
Multitask Output
Kernel Learning

and SVR. In [10], a comparison between ARIMA, shallow FFNN, exponential
smoothing models, and a naive persistence approach (i.e., previous day equals
today) was performed. It was reported that the previous methods offer little to
no improvements over the naive persistence approach. All these findings suggest
that modelling short-term time-series data need more complex models that can
accurately model the uncertainties in the load time-series data.

2.1.1.2 Deep Learning models

Because the statistical modelling approaches are limited to capturing station-
ary information and modeling the linear relationships in the time-series data,
researchers have shifted their attention to using data driven approaches that
overcome the deficiencies of statistical modelling. For example, in [19], a Long
Short-Term Memory (LSTM) was proposed for the task of predicting the individ-
ual consumer load for next 60 hours and the next minute given the consumption
of the last 60 hours and the last minute, respectively. Furthermore, it was found
that LSTM sequence to sequence model provided better results than the stan-
dard LSTM. In [20], the authors extended the experiments of running an LSTM
model to include tests on 69 residential consumers for predicting the load for
the next half hour given an hour, 3 hours and 6 hours of previous consumption.
Moreover, it was found that the LSTM model outperforms k-nearest neighbors
and Extreme Learning Machine models. They have confirmed that LSTMs can
capture the subtle changes in the individual load data. However, the individual
forecasts had an approximate 44% average mean absolute percentage error show-
ing that the individual load forecasting remained a challenging problem. In [21],
the use of Convolutional Neural Networks (CNN) for STLF of a single home was

7

explored. It was found that CNN’s outperform feature-based models such as SVR
and perform similarly to LSTMs. LSTMs were shown suffer from degradation in
performance when multiple modalities are included (e.i., weather TS in addition
to load TS) ([13, 14]), Kim et. al [1] suggested a CNN-LSTM combination for
predicting the next 60 minutes given previous multimodel time-series data. It was
shown that CNN-LSTM outperforms Linear Regression, Decision Tree, Random
Forest, LSTM, GRU, Bi-directional LSTM, and attention LSTM.

In summary, the STL approaches proposed solutions that are limited to a
single household or a small number of residential smart meters. Furthermore,
for the previous deep learning approaches to outperform statistical and feature-
based methods they require the availability of large amounts of historical data. In
the real world, however, individualized historical load TS data is limited, which
results in degraded individualized model performance and overfitting [12].

2.1.2 Population Models

A population approach refers to the idea of developing single model per group
of smart meters or entire population of smart-meters in the grid. Recent work
have shown that grouping allows the model to leverage data from customers
of similar behavior, reaction to weather changes, and appliances to compensate
for the lack of insufficient individualized historical data and results in better
generalization. For example, in [12], 920 smart meters were split randomly into
10 groups of 92 and for each group a single LSTM model was developed and
predictions for the next day with hourly granularity were targeted. The previous
work have shown that grouping smart-meters to train an LSTM model provided
improved performance in comparison to individualized (LSTM, SVR, RNN and
ARIMA) models. Humeau et al. [11], proposed to group customers by clustering
rather than randomly. It was found that extracting the average daily load profile
feature and using it for clustering smart-meters using k-means, improves load
forecasting if a population model was developed per cluster. They used an SVR
and shallow MLP models. In [23], although authors targeted the problem of
accurate aggregate load forecasting for the next day in hourly granularity, they
confirmed that clustering smart meters using K-means and developing a model
per cluster improved aggregate forecasting in comparison to developing a single
model for all smart-meters.

Although population models improve deep learning model’s generalizability,
they tend to also make models overgeneralize by learning only a shared represen-
tation among the group smart-meters, which results in inaccurate individualized
forecasts.

8

2.1.3 Multitask Task Learning (MTL)

Multi-task learning (MTL) is introduced as a learning paradigm that enables
machine learning models to transfer the important learned information between
related tasks in what is called inductive transfer of knowledge under the assump-
tion that commonalities exist between the learned tasks. Furthermore, the main
advantages of MTL is that it reduces the requirements for large amounts of la-
beled data, improves the performance of a task with less data by leveraging the
common information from the related tasks with more data, and enables the
model to be robust to missing observations for some tasks [24,25].

2.1.3.1 Statistical Models

Recently, more works propose multitask learning approaches for load forecasting.
For example, in the work of [26], a multitask Gaussian Process model was pro-
posed for the short-term aggregate load prediction of 3 different cities. Although
the proposed MTL model decreased the prediction error by a significant mar-
gin in comparison to other models, the model targets aggregate load prediction
rather than individualized. In addition, only a small number of tasks where mod-
elled, therefore, the scalability issues associated with modelling a large number
of tasks were not addressed. In [22], the authors tried to address the scalabil-
ity challenges of short-term load forecasting of (6433) households. The dataset
contained meters categorized into (Residential, Small or Medium enterprise, and
Others) and the authors proposed an MTL model for the residential and others
categories and a separate model for the enterprise smart meters. Furthermore, a
multitask low rank output kernel learning approach was applied in order to learn
the similarities between the different smart meters within each category, where
the complexity of the model was controlled by the size of the similarity matrix
between the different meters within a group. Finally, the kernel-based multitask
models were specifically optimized to capture the seasonal effects that are present
in electricity load data outperforming other statistical single task methods such
as kernel-based ridge regression. The main disadvantages of the proposed method
in [22] is that it targets year ahead prediction with 3 hours granularity and does
not scale to STLF with half-hourly granularity. Furthermore, the method is
highly dependent on the kernel choice requiring domain knowledge and does not
allow the learning of the shared and task-specific information.

In summary, the provided statistical MTL approaches proved to be superior to
statistical single-task learning models. However, the proposed methods inherent
the deficiencies of statistical approaches and cannot model the complex non-linear
relationships within the short-term time-series data. Furthermore, they do not
scale for half-hourly granularity predictions.

9

2.1.3.2 Deep Learning models

No previous work has attempted the extension of deep learning models with MTL
for short-term load forecasting. Therefore, we will include in this section some
of the previous Multitask deep learning works that were designed for sequence
and time-series data modelling in general. Two main MTL design schemes can
be found in the literature:

1. MTL with a Hard-parameter sharing scheme (MTL-HPS)

2. MTL with a Soft-parameter sharing scheme (MTL-SPS)

MTL with Hard-parameter Sharing (MTL-HPS) MTL using hard pa-
rameter sharing mainly involves having the model divided into two parts. The
First part is a shared layer which gets trained by all the tasks’ data to extract a
general feature representation from all the tasks. The second part of the model
involves using task-specific layers which get trained only by the task-specific data
in order to capture the task-specific characteristics [24].

For example, In [27], an MTL Deep Learning model was proposed for solv-
ing multiple Natural Language Understanding (NLU) regression and classifica-
tion tasks such as question answering, predicting the semantic similarity between
different sentences and assessing the sentence grammatical plausibility. Further-
more, the proposed model implements MTL in a hard-parameter sharing scheme
and provides state-of-the art results in comparison to previous methods. In [28],
a hierarchical network composed of a shared feature extraction convolutional neu-
ral network (CNN) followed by separate task-specific Conditional Random Field
(CRF) models was proposed to learn linguistic sequence tagging tasks together
in a unified model. Their work showcases the effectiveness of using a shared CNN
feature encoder followed by a task-specific sequential part to capture temporal
dependencies. MTL-HPS models were also extended to spatio-temporal data
modelling. For example, in [29], the authors targeted the problem of predict-
ing the minimum, maximum and average mobile network traffic load in the next
hour given the traffic data in the previous hour for 1503 locations within a city.
Different MTL-HPS models were proposed where each location was considered
to be a task. The different models were fed with a sequence of grids across time,
where each grid-cell represented the mobile traffic-load in each location within
the city and the sequence of grids represented how the mobile traffic is changing
over time. It was found that among the three proposed multitask deep learn-
ing models (Long-Short Term Memory (LSTM) Model, 3D-Convolutional Neural
Networks (3D-CNN) Model, and CNN-LSTM Model), the CNN-LSTM Model
achieved the best results due to its ability to extract both spatial information
(i.e., relationship between the adjacent locations) and temporal dependencies
within the grid sequences. Other works have also leveraged the use of MTL-HPS

10

for time-series data modelling. In [30], pain estimation based on individual phys-
iological and behavioral pain response was targeted and MTL augmentation of
FFNN provided optimal performance in comparison to previous work. In [31],
the problem of estimating the number of vehicles in a road or station during
short-term time intervals (5-30 minutes) and found that MTL augmentation of
deep learning models provided 5% over prior state-of-the-art methods.

MTL using hard-parameter sharing has the main advantage of enabling the
model to learn a shared and task specific representation. Furthermore, MTL-
HPS provides a scalable solution in terms of memory footprint as it requires
the addition of a small number of parameters per task while having the same
number of the shared part parameters. However, MTL-HPS requires the tasks
to be highly related e.g., are drawn from similar distributions, and does not
incorporate sharing partial information between the task specific layers in case
some tasks exhibit some level of similarity on a very low level.

MTL with Soft-parameter Sharing (MTL-SPS) MTL with a soft-parameter
sharing setting requires that each task has its own model with its separate param-
eters. Furthermore, the parameters of the different tasks’ models get regularized
in order to learn both what parameters should be shared between the different
tasks and how much of each layer should be shared [17], therefore, enabling the
model to extract how the different tasks interact with each other. For example,
in [32], a generalization of hard-parameter sharing and block-sparse regulariza-
tion approaches for deep learning was proposed in order to learn which layers and
parameters should be shared, as well as at which layers the network has learned
the best representations of the input sequences. Furthermore, the number of pa-
rameters of the proposed model increases linearly with the number of layers and
quadratically with the number of tasks making it computationally prohibitive for
a large number of tasks.

In spite of the fact that soft-parameter sharing schemes enable the model to
learn exactly what to share, which improves the model’s performance in case the
tasks that are being learned are not strongly related, this learning paradigm re-
quires learning additional parameters for each task and layer making the training
process more complex and computationally expensive.

2.2 Background

In this section we provide a background obout STLF and provide the mathemat-
ical formulation of the problem using an STL model.

11

2.2.1 STLF Mathematical Formulation

Short Term Load Forecasting (STLF) is usually affected by the following factors
[33]:

• Hour-of-day, on a specific day of week

• Weather information: Temperature, wind, humidity, and cloud cover.

• Utility hour-of-day pricing strategy

• Special events such as strikes, TV programs, or major political conventions.

• Random unknown factors

Traditionally for aggregate STLF, which refers to the STLF of the sum of the
loads in the grid, these different factors are modeled separately, and the output
of their models is then combined to form the total real load:

PL(t) = B(t) +W (t) + S(t) + v(t) (2.1)

Where: PL: Total load at time t; Wt: Weather-sensitive load component at
time t; Bt: Base (normal) load at time t; St: Load increment due to special events
t; v(t): Random load component.

The time t is measured periodically, e.g., every hour, minute, 10 minutes etc.,
depending on the type of application. The historical data from the immediate
past (i.e., last five weeks of hourly load and weather data) are used to identify
the overall model in Eq. 2.1 and the following steps are performed:

• Smooth out the unexplained loads due to special events since they do not
represent normal behavior

• Identify the parameters of the weather-sensitive part W (t) and subtract it
from PL (t) to obtain an estimate of the base load B(t)

• B(t) is then modeled using a sequential time-series model such as Auto
Regressive Integrated Moving Average (ARIMA) model

• Combine the predictions from steps 2 and 3 to provide the predicted load.

Figure 2.1: Steps Involved in Model Identification for Aggregate Short-Term
Forecasting

12

For individualized STLF, which is STLF for each smart meter in the grid, the
previous state-of-the-art approach in [1] proposed a single deep learning model
that directly models all the previous components of the load to produce the pre-
diction. Kim et al. [1] assumed that the relationship between the different pre-
dictive components and the predicted load is non-linear and thus can be modeled
using a deep learning model. Furthermore, the weather and the special events’
effects can be accounted for by adding weather and calendar features as input to
the model, respectively, in addition to the historical load for the previous days.

2.2.2 Single Task Learning (STL) Mathematical Formu-
lation

Kim et al. [1] addressed the problem of predicting the next 60 hours given histori-
cal data for the past 60 hours. They proposed a deep learning model consisting of
a 1D-Convolutional Neural Network (CNN) for extracting shift and scale invari-
ant features from the input signals which are then passed to a Long Short-Term
Memory (LSTM) layer to extract sequential information from the features. Fur-
thermore, the proposed method was applied to a dataset containing a single house
in France. The dataset contains 7 different signals constituting the historical load
for the house, which are 1) Global active power (GAP). 2) Global reactive power
(GRP). 3) Voltage. 4) Global intensity (GI). 5) Three sub meter’s signals in
watts-per-hour. In addition, calendar features were added to the input such as
day of month, day of week, month of year, and hour of day.

Suppose the dataset contains (N) total data-points for a smart meter (SM)
(t), the training data contains nt examples (xti, y

t
i), where i ∈ 1, 2, . . . , nt. The

input xti is an input instance in RWin×C for SM (t), where (Win) is the window
length or prediction span (e.g., 60 hours) and C is the number of input feature-
vectors. The input to the model xti consists of the concatenation of multiple
feature vectors consisting of:

1. Global active power EGAP ∈ RWin.

2. Global reactive power EGRP ∈ RWin

3. Voltage V ∈ RWin

4. Global intensity EGI ∈ RWin

5. Three sub meter’s signals in watts-per-hour ES1, ES2, ES3 ∈ RWin.

6. Calendar numerical features for the input window:

• Hour of day Hr = {0, 1, . . . 23} ∈ RWin

• Day of week of day Wk = {1, 2, . . . 7} ∈ RWin×d

13

• Month M = {1, 2, . . . 12} ∈ RWin×d

• Day of monthMd = {1, 2, . . . (28, 30, 31)} ∈ RWin

xti = [EGAP , EGRP , EGI , ES1, ES2, ES3, Hr,Wk,M,Md] (2.2)

As it is intended to predict the power consumption the task here is a regression
problem.

Figure 2.2: The input and output of the model proposed by Kim et al. [1]

The goal is to train a model to predict the power consumption for a smart me-
ter Y t ∈ RWin given the previous hours’ load and calendar features X t ∈ RWin×C .
Let Γ denote the CNN-LSTM layers and Wt ∈ RH×Win the parameters of the
output fully connected layer, where H is the dimensionality of the output vector
from the LSTM and Win is the output window size. The Mean Squared Error
(MSE) denoted as L is the loss function that the model is trained to minimize:

L
(
f
(
xti; Γ,Wt

)
, yti
)

= L
(
f
(
g
(
xti; Γ

)
;Wt

)
, yti
)

(2.3)

pti =
(

(Wt)
> g
(
xti; Γ

))
(2.4)

L
(
f
(
g
(
xti; Γ

)
;Wt

)
, yti
)

=
1

nt

nt∑
i=1

(
pti − yti

)2
(2.5)

Where g(.) : RWin×C → RH represents a function applied by the CNN-LSTM
feature extraction model-part on the input to obtain an embedding representation
of the input. f(.) is a function applied by the fully connected layers to obtain
the prediction. pti is the predicted value of power consumption for input example
i and smart meter t. Eq. 2.5 shows the Mean Squared Error (MSE) loss that is
calculated for the inputs of smart meter t.

The STL objective function can be given as follows:

14

Figure 2.3: Prior State-of-the-art [1] Detailed Architecture

min
W,Γ

1

nt

nt∑
i=1

L
(
f
(
xti; Γ,Wt

)
, yti
)

(2.6)

Figure 2.3 shows the detailed prior state-of-the-art CNN-LSTM model [1].
The letter description are as follows: C(F, K, S) : ′C ′ represents a convolution
layer with ′F ′ filters, ′K ′ kernel size and ′S ′ strides. M(K, S) : ′M ′ represents
a Max Pooling layer with ′K ′ kernel size and ′S ′ strides. The model processes
the data by first applying a series of 1D-convolutions. For example, the filter
in the first convolution layer strides over the input signals and in each step the
data and the filter, which are of size 2×11, are flattened to become a vector
of dimensionality 22. Then the two vectors are convolved to produce a single
feature. Since the first layer has 64 filters, each stride generates 64 features. The
convolution process is then repeated until the filter reaches the last row of the
valid data. The convolution procedure extracts both the relationship between the
different features and the evolution of each feature over a small window of time.
The Max Pooling layers then reduce the dimensionality of the extracted features
while retaining only the important features. The cascade of the convolution
and Max Pooling layers creates a hierarchy of abstract features that capture
both the small temporal changes and the relationship between the different input
features. The resulting feature matrix is then fed into the GRU layer to extract
the temporal dependencies across the different features. The final embedding is
then fed to fully connected layers to perform the inference.

In our experiments, we use the same architecture proposed in [1] with the main
difference being in replacing the LSTM layer with a Gated Recurrent Unit (GRU)
layer, because GRUs provide good performance while being more computational
efficient than LSTMs [34].

15

Chapter 3

STLF Limitations &
Opportunities

During our experiments we found that transfer learning approaches such as Mul-
titask Learning and Population modelling did not initially help improve the mod-
els accuracy as was claimed in [12]. Therefore, in this section, we investigate the
transfer learning possibility for smart meter data. We first explore the data suf-
ficiency for STL models. We then explore the effect of adding data from smart
meters of similar data and the effects of adding data from dissimilar smart meters.

3.1 Study for Evaluation of Data Sufficiency for

STL Smart Meter Data

To validate the hypothesis of limited accuracy due to limited training data, we
sample 50 smart meters from each type of smart meters in our dataset e.g. res-
idential and industrial smart meters. We then reduce the training data size for
each smart meter to 5% of its original size and then start increasing the training
data size by 5%. For each training data size we fit an STL model per smart meter
and collect the test set Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) then we average the RMSE and MAE over the 50 smart meters
within each group as shown in Fig 3.1 3.2 .

From Figures 3.1 and 3.2 we can see that the average MAE and RMSE is de-
creasing as the training data size increases. The same behavior can be noticed for
both residential and industrial smart meters. However, the performance gains,
caused by the training data size, saturates at a certain training data size. In sum-
mary, we validate that indeed more training data results in improved performance
but up to certain threshold after which performance gains are limited.

16

(a) (b)

Figure 3.1: The performance metrics averaged over 50 industrial smart meter as
the training data size increases. a) The average MAE. b) The average RMSE.

(a) (b)

Figure 3.2: The performance metrics averaged over 50 industrial smart meter as
the training data size increases. a) The average MAE. b) The average RMSE.

3.2 Study for Evaluation of Transfer Learning

from Similar Smart meters

In this section we attempt to validate that adding more data from neighboring
smart meters improves the accuracy of the smart meter with little training data.
We build our experiment by first choosing 50 smart meters from each type of
smart meters e.g., residential, and industrial smart meters. We then choose at
random one smart meter from each group and reduce its training data size to 20%
of its original size. We then identify the smart meters that are most similar to
the one we have chosen earlier by first calculating the average Euclidean distance
between its daily half-hourly load and the daily half-hourly load of all 50 smart
meters within the same smart meter type. We use the resulting distance matrix
as input to an agglomerative clustering algorithm to identify the cluster to which
the smart meter belongs. After identifying the cluster for each smart meter, we
reduce the training data size of the neighboring smart meters to 5% of its original
value and then increase their training data size to 100% by steps of 5%. For each
training data size, we fit a population model for and record the RMSE and MAE
performance of the smart meter with the reduced training data size on the test
set. Fig. 3.3-3.4 shows the RMSE and MAE for the residential smart meter with
ID 1052 as the training data size of its neighbors increases. We can see that both
the RMSE and MAE are decreasing as the training data size of the neighboring
smart meters increases from 5% to a 100% of its size. The final recorded RMSE
and MAE for smart meter 1052 is 0.50 and 0.293, respectively. We compare these

17

values to the metric values obtained by training a separate STL model for smart
meter 1052 on its full training data as shown in Table 3.1. We can see that the
performance improved by 13.8% and 8% in terms MAE and RMSE, respectively.
We repeated the same experiment for an industrial smart meter with ID 1525
and obtained an improvement of 55% and 51% in terms of RMSE and MAE,
respectively.

(a) (b)

Figure 3.3: The performance metrics for a residential smart meter as the training
data size for its neighbors increases. a) The MAE. b) The RMSE.

(a) (b)

Figure 3.4: The performance metrics for an industrial smart meter as the training
data size for its neighbors increases. a) The MAE. b) The RMSE.

In summary, we can conclude that adding more data from similar smart meters
improves the performance of the smart meter with little data in comparison to
an STL model trained on the full-sized training data of the same smart meter.

18

Table 3.1: Comparison between the performance of the STL model when trained
on the full smart meter’s data and the population model when trained on a
reduced size of the smart meter’s data with the presence of similar smart meter’s
data.

Population for
Residential SM

STL for
Residential SM

Population for
Industrial SM

STL for
Industrial SM

RMSE 0.50 0.63 1.18 1.40
MAE 0.293 0.34 0.52 0.67

3.3 Study for Evaluation of Transfer Learning

from Dissimilar Smart meters

In this section we attempt to validate that adding more data from dissimilar smart
meters degrades or limits the accuracy of the smart meter with little training
data. We build our experiment similar to the previous section by first choosing
50 smart meters from each type of smart meters e.g., residential, and industrial
smart meters. We then choose at random one smart meter from each group and
reduce its training data size to 20% of its original size. We then identify the
smart meters that are most dissimilar to the one we have chosen earlier by first
calculating the average Euclidean distance between its daily half-hourly load and
the daily half-hourly load of all 50 smart meters within the same smart meter
type. We use the resulting distance matrix as input to an agglomerative clustering
algorithm to identify the cluster that is most distant to the smart meter with little
data. After identifying the cluster for each smart meter, we reduce the training
data size of the neighboring smart meters to 5% of its original value and then
increase their training data size to 100% by steps of 5%. For each training data
size, we fit a population model and record the RMSE and MAE performance of
the smart meter with the reduced training data size on the test set.

(a) (b)

Figure 3.5: The performance metrics for a residential smart meter as the training
data size for its dissimilar neighbors increases. a) The RMSE. b) The MAE

Figures 3.5 shows the RMSE and MAE for the residential smart meter with

19

(a) (b)

Figure 3.6: The performance metrics for an industrial smart meter as the training
data size for its dissimilar neighbors increases. a) The RMSE. b) The MAE

Table 3.2: Comparison between the performance of the STL model when trained
on the full smart meter’s data and the population model when trained on a
reduced size of the smart meter’s data with the presence of dissimilar smart
meter’s data.

Population for
Residential SM

STL for
Residential SM

Population for
Industrial SM

STL for
Industrial SM

RMSE 0.89 0.63 2.37 1.40
MAE 0.57 0.34 2.05 0.67

ID 1052 as the training data size of its dissimilar neighbors increases. We can
see that both the RMSE and MAE are increasing as the training data size of
the neighboring smart meters increases from 5% to a 100% of its size. The final
recorded RMSE and MAE for smart meter 1052 is 0.89 and 0.57, respectively.
We compare these values to the metric values obtained by training a separate
STL model for smart meter 1052 on its full training data as shown in Table 3.2.
We can see that the performance dropped by 41.26% and 67.64% in terms RMSE
and MAE, respectively. We repeated the same experiment for an industrial smart
meter with ID 1525 and obtained a degradation in performance of 69.28% and
205% in terms of RMSE and MAE, respectively.

In summary, we can conclude that adding more data from dissimilar smart
meters degrades the performance of the smart meter with little data in comparison
to an STL model trained on the full-sized training data of the same smart meter.

20

Chapter 4

Similarity Methods

4.1 Similarity Method

Recent work has shown that grouping smart meters and training a model for each
group allows the model to leverage data from customers of similar behavior, reac-
tion to weather changes, and appliances to compensate for the lack of insufficient
individualized historical data resulting in better generalization. For example,
in [12], 920 smart meters were split randomly into 10 groups of 92 and for each
group a single LSTM model was developed and predictions for the next day with
hourly granularity were targeted. The previous work has shown that grouping
smart-meters to train an LSTM model provided improved performance in com-
parison to individualized (LSTM, SVR, RNN and ARIMA) models. Humeau
et al. [11], proposed to group customers by clustering rather than randomly. It
was found that extracting the average daily load profile feature and using it for
clustering smart-meters using K-means, improves load forecasting if a population
model was developed per cluster. They used an SVR and shallow MLP mod-
els. In [23], although authors targeted the problem of accurate aggregate load
forecasting for the next day in hourly granularity, they confirmed that clustering
smart meters using K-means and developing a model per cluster improved aggre-
gate forecasting in comparison to developing a single model for all smart-meters.
Given the findings in the literature, we hypothesize that clustering smart meters
provides a better performance as oppose to random grouping as suggested in [12].
To validate our hypothesis, we first need to validate that there is a clustering ten-
dency in our dataset. In other words, we need to validate that the dataset has a
non-random structure thus clustering can lead to meaningful clusters. We then
explain our choice of clustering algorithm. And finally, we compare between the
performance of a population model trained on a cluster of smart meters and the
performance of a population model trained on a group of smart meters picked at
random.

21

4.1.1 Clustering Tendency

Clustering tendency analysis is used to validate whether a given dataset has a
non-random structure, which may lead to the discovery of meaningful clusters.
For example, if a dataset mostly consists of random structures, such as a set
of uniformly distributed points, then clustering that dataset may return some
clusters but those clusters will be random and are meaningless [35]. We perform
the clustering tendency assessment by calculating the Hopkins Statistic, which
is a spatial statistic that tests the spatial randomness of variables as distributed
in a space [35]. The Hopkins Statistic informs us of how likely it is for a dataset
to follow a uniform distribution in the data space by calculating an H value
over the datapoints that are to be clustered. The null hypothesis is that the
dataset is uniformly distributed and thus contains no meaningful clusters. If
H < 0.5 then we reject the null hypothesis and assume that we have statistically
significant clustering structure in our dataset. We calculate the H value over the
four different representations of our dataset points:

1. Daily Load: After splitting the dataset into train, test, and validation
set, we take the training data’s daily load over 48 half-hours for each smart
meter. And we use these vectors as input to the hypothesis test.

2. Average Daily Load: After splitting the dataset into train, test, and
validation sets, we represent each smart meter by the average daily load
over 48 half-hours similar to what was suggested in [9]. And we use these
vectors as input to the hypothesis test.

3. Predicted Daily Load Embedding: After splitting the dataset into
train, test, and validation sets, we train a separate STL model for each
smart meter and collect the embedding representation for the prediction of
each input example from the dense layer prior to one before the last layer.
We include trained models’ embeddings in our analysis, in addition, to the
raw data in points 1 and 2, because we hypothesize that trained model
embeddings would allow the measurement of distance in the deep learning
feature space as oppose to Euclidean space, which might result in a more
accurate quantification of the distance between the models of the different
smart meters.

4. Average Predicted Daily Load embedding: We generate the embed-
dings for the smart meters same as in 3. And then represent each smart
meter by the average embedding vector e.g. We will have one embedding
(vector) per smart meter.

Table 4.1 shows the H value for each group of smart meters and for each
smart meter representation choice. We can see from the table that the H value
for all the smart meter representation choices and all the smart meter groups

22

Table 4.1: The Hopkins statistic value (H-value) for each group of smart meters
and each smart meter representation choice

SM Representation
\SM Type

Daily Load Average Daily Load
Predicted Daily
Load Embedding

Average Predicted
Daily Load Embedding

Residential 0.054 0.050 0.014 0.261
Industrial 0.041 0.087 0.008 0.295

is significantly less than 0.5. Therefore, we can reject the null hypothesis and
validate that the dataset is not uniformly distributed thus containing meaningful
clusters.

4.1.2 Clustering Algorithm

One of the popular algorithm choices for clustering smart meter data is K-means,
as was suggested in [11, 23]. K-means is a simple clustering algorithm to iden-
tify spherically shaped clusters requiring the number of clusters as a main hy-
perparameter [10]. The number of clusters can be specified by three different
approaches:

1. Domain knowledge: Given some knowledge of the dataset and the prob-
lem provide a guess of the possible number of clusters.

2. Heuristics: such as the assumption that the number of clusters is
√

n
2

where n is the number of data points or the “elbow” method, which is
based on observing the reduction in the sum of within cluster variance as
the number of clusters increase and choosing the k value at the which the
sum of within cluster variance forms an elbow

3. Data Driven: Suggests varying the number of clusters and for each choice
fit the a model per cluster and collect the average performance on the
validation set. Then choose the number of clusters that provides the best
results as was suggested in [11,23].

In our case, we have no valid assumption about the possible number of clus-
ters that might be available in the dataset eliminating the possibility of using a
heuristic or domain knowledge. Furthermore, the data driven approach used in
[8-9] can be feasible only for the simple models the authors suggested such as
Linear Regression, Support Vector Machine (SVM), and Multilayer Perceptron.
However, for our deep learning models, performing the same steps would be im-
practical in the real world and very computationally expensive. In addition, using
K-means restricts the analysis to using only the Euclidean distance to measure
the distance between the examples, which can only allow the clustering algorithm
to identify spherically shaped clusters [35].

23

Given the limitations of K-means in terms of requiring the number of clusters
and the use of Euclidean distance. We suggest the use of an agglomerative hier-
archical clustering algorithm that would allow us to use different distance metrics
and alleviates the need for specifying the number of clusters.

4.1.2.1 Hierarchical Clustering

We explore the use of an agglomerative approach as opposed to a divisive ap-
proach for Hierarchical Clustering because a divisive approach faces the challenge
of partitioning the large cluster into several smaller ones e.g., there are 2n−1 − 1
possibilities to partition a set of n objects into two exclusive subsets. Given that
the exploration of all divisions’ possibilities becomes computationally prohibitive
as n grows, divisive approaches usually resort to heuristics that may result in
inaccurate clustering [35].

To implement the agglomerative clustering, we need to find the best value for
four different parameters:

• Choice of Smart Meter Representation: It is required to have a repre-
sentation for each smart meter upon which we measure the distance between
the different smart meters. As mentioned in section 4.1.1, there are four
approaches to represent a smart meter, which are the daily load, average
daily load, predicted daily load embedding, average predicted daily load
embedding. In our analysis we avoid the use of an average representative
load pattern because an average pattern might be skewed by outliers.

• Distance Metric: Different smart meter representations require the use of
different distance metrics. For example, we can use the Euclidean distance
to quantify the distance between the daily load representations, but for
quantifying the distance between the different embeddings we use the cosine
similarity or the Maximum Mean Discrepancy (MMD). The following are
the different distance metrics:

Euc
(
xt1 , xt2

)
=

√√√√ n∑
i=1

(
xt1i − x

t2
i

)2
(4.1)

MMD
(
Et1 , Et2

)
=

N∑
i=1

K
(
vt1i , v

t1
i

)
N2

− 2
N∑
i=1

K
(
vt1i , v

t2
i

)
N2

+
N∑
i=1

K
(
vt2i , v

t2
i

)
N2

(4.2)

K (vi, vj) =
∑
n

ωn exp

{
− 1

2σn

||vi − vj||2
}

(4.3)

24

Cos
(
vt1 , vt2

)
=

∑L
i=1 v

t1
i · v

t2
i√∑L

i=1

(
vt1i
)2
√∑L

i=1

(
vt2i
)2

(4.4)

Where xt: Daily loads vector for an example from task t; Et : Task t em-
beddings set Et = {vt1, vt2, . . . , vtN}; vti : Embedding for example i of task
t; N : Number of examples; L: Embedding length; n: Daily load vector
length; K(., .) : Is a positive semi-definite kernel function; σn is the standard
deviation; ωn is the weight for nth kernel. We use a weighted linear combi-
nation of RBF kernels that have different standard deviations as suggested
in [11] to ensure that the MMD is sufficiently high when the distributions
of the two smart meters are not similar. We explore the Maximum Mean
Discrepancy (MMD) distance since it measures the distance between the
mean of two datasets’ distribution given the feature vectors representing
the examples of these two datasets [36, 37]. The distance calculation steps
between two smart meters are as follows:

1. Align the examples in time such that we are comparing same calendar
days between the two smart meters. This is done to ensure that the
distance captures the difference in behavior between the two smart
meters

2. For the Cosine and Euclidean distances, we calculate the distance be-
tween each two examples for the smart meters and then take the av-
erage over all the examples’ distances to obtain the average distance
across the examples.

3. For the MMD, we take the resulting value directly as the distance.

• Linkage Method: The linkage method is the method used to calculate
the distance between each two clusters. The resulting distance is then used
by the agglomerative clustering algorithm to merge two clusters. There are
four main linkage methods:

1. Single Linkage: Merge clusters based on the minimum distance be-
tween their points.

distmin (CA, CB) = min
p∈CA,p′∈CB

{|p− p′|} (4.5)

2. Complete Linkage: Merge clusters based on the maximum distance
between their points.

distmax (CA, CB) = max
p∈CA,p′∈CB

{|p− p′|} (4.6)

25

3. Average Linkage: Merge clusters based on the average distance be-
tween their points.

distavg (CA, CB) =
1

ni, nj

∑
p∈CA,p′∈CB

|p− p′| (4.7)

4. Ward Linkage: Merge two clusters such that the variance within the
new cluster is minimized.

(4.8)

dist ward (CA, CB) =
∑

i∈CA∪CB

‖~xi − ~mCA∪CB
‖2

−
∑
i∈CA

‖~xi − ~mCA
‖2

−
∑
i∈CB

‖~xi − ~mCB
‖2

Where
∣∣p− p′∣∣: is the distance between two objects or points, p

and p
′
; ni is the number of objects in cluster C; mA: Center of

cluster A.

The single and complete linkages tend to be sensitive to noisy
data and outliers, whereas the average linkage provides a compro-
mise between the two extremes overcoming the outlier sensitivity
issue [35]. The ward linkage calculates the sum of squared inter-
cluster variances across all clusters and then chooses to merge
clusters that would minimize the loss [38]. We explore all four
linkage methods in our search for the best clustering parameters.

• Dendrogram Cutting Threshold: Given the merge history of the link-
age method, a dendrogram representing the hierarchical distance between
the different clusters is built. We then need to specify a distance thresh-
old below which we consider each line to be a cluster. We search over 5
values for the threshold ∈ {10%, 20%, 30%, 40%, 50%} and for each
percentage we multiply the threshold value by the maximum distance in
the dendrogram to obtain the actual threshold value.

4.1.3 Clustering Validation

To find the best combination of clustering parameters while being computation-
ally efficient, we sample 50 smart meters from each type of smart meters in our
dataset e.g., residential, and industrial smart meters. We split the data of each
smart meter into train, validation, and test sets. Then for each type of smart
meters, we iteratively perform the clustering on the training set using a combi-
nation of parameters. Moreover, we fit a population model and collect the model

26

performance on the validation set. The clustering parameter combination that
achieves the least MAE and RMSE is chosen as the combination for that type
of smart meters. The clustering parameters’ search space includes the following
sets:

• Smart Meter Representation ∈ {daily load, predicted daily load embedding}

• Distance Metric ∈ {Euclidean, Cosine, MMD}

• Linkage ∈ {Single, Complete, Ward, Average}

• Threshold ∈ {10%, 20%, 30%, 40%, 50%}

Table 4.2 shows the clustering parameter combination that provided the best
validation performance. To validate that the clustering improves the perfor-
mance, we fit a population model per cluster of smart meters and compare its
performance against fitting a separate population model per group of 10 smart
meters that were randomly chosen to be on the same group and also compare
against the performance of an STL model.

Table 4.2: The clustering parameters that provided the best RMSE and MAE
for each group of 50 residential and industrial smart meters

Parameter Choice Residential Industrial
Smart Meter Representation daily load daily load

Distance Metric Euclidean Euclidean
Linkage Ward Average

Threshold 30% 30%

Tables 4.3 and 4.4 show that indeed the performance of the population model
with clustering outperforms the STL model’s performance by 2.15% and 3.4%
in terms of RMSE and MAE for residential smart meters, respectively. And by
8.57% and 6.88% in terms of RMSE and MAE for industrial smart meters, re-
spectively. We can also observe that the performance of the population approach
with clustering provides more improvement over STL in comparison to random
grouping.

Figs. 4.1 and 4.2 show the predicted vs. true value for the STL model, and
the population model with and without clustering. From the figures we can see
that training a population model with clustering provides better predictions that
follows closely the actual load.

Figs. 4.3 and 4.4 show the dendrogram and distance matrix for 50 residen-
tial smart meters, respectively. The distance matrix is sorted according to the
dendrogram to reflect the presence of the clusters, which could be seen by dark
blue boxes along the diagonal. For example, we can see that we have three
main clusters and a smart meter that is very dissimilar to all 49 remaining smart
meters.

27

Table 4.3: The average RMSE and MAE over 50 residential smart meters for
a population model with clustering, a population model with random grouping,
and an STL model

Metric STL
Population

with clustering
Population with
random grouping

RMSE 0.571 0.562 0.558
MAE 0.353 0.341 0.355

RMSE improvement
% over STL

- 2.15 1.50

MAE improvement
% over STL

- 3.40 -0.715

Table 4.4: The average RMSE and MAE over 50 industrial smart meters for a
population model with clustering, a population model with random grouping,
and an STL model

Metric STL
Population

with clustering
Population with
random grouping

RMSE 1.342 1.227 1.281
MAE 0.868 0.808 0.852

RMSE improvement
% over STL

- 8.57 4.54

MAE improvement
% over STL

- 6.88 1.876

(a) (b)

Figure 4.1: Predicted vs. True half-hourly load for two residential smart meters.
a) Smart meter 1073. b) Smart meter 1243

28

(a) (b)

Figure 4.2: Predicted vs. True half-hourly load for two industrial smart meters.
a) Smart meter 1356. b) Smart meter 1391

Figure 4.3: The dendrogram for the 50 residential smart meters with the black
horizontal line representing the threshold below which we consider each line to
be a cluster.

29

Figure 4.4: The distance matrix for the 50 residential smart meters. The colder
the smaller the distance.

Figure 4.5: The dendrogram for the 50 industrial smart meters with the black
horizontal line representing the threshold below which we consider each line to
be a cluster.

30

Figure 4.6: The distance matrix for the 50 industrial smart meters. The colder
the smaller the distance.

31

Chapter 5

Methodology

5.1 Multitask Learning (MTL)

In this section we discuss the different MTL schemes that will be used in our
proposed method.

5.1.1 Multitask Hard Parameter Sharing (MTL-HPS)

5.1.1.1 Model Architecture

The Multitask Hard Parameter Sharing (MTL-HPS) extends the STL CNN-GRU
model by splitting the model into a shared part and a task specific part as shown
in Fig. 5.2:

• Shared Part: This part gets trained by all the tasks’ data. In other words,
the parameters of the shared parts get updated by the gradients of all the
tasks during backpropagation. The CNN layers represent the shared part.

• Task Specific Part: This part gets trained by the task-specific gradients
during backpropagation, therefore, extracting task-specific representations.
The GRU and dense layers represent the task-specific part.

In our MTL-HPS model we would have as many task-specific layers as there
are tasks but only one shared part per group model. Furthermore, we consider
each task to correspond to one smart-meter.

The MTL-HPS model is trained by a gradient descent algorithm with al-
ternate batch training. In other words, at each iteration, a batch of examples
for task t is forward propagated through the shared CNN layers and task t’s
GRU and dense layers to obtain a prediction. Then the loss for the examples
is calculated and the weights of task t’s GRU and dense layers and the shared
CNN layers’ weights are modified according to the calculated gradients during
backpropagation. The previous process is repeated iteratively while at each time

32

Figure 5.1: MTL Hard Parameter Sharing Architecture

taking a batch from a different task and modifying the weights of the shared and
task-specific parts according to the loss’s value.

5.1.1.2 Mathematical Formulation

Suppose we have (T) Smart Meters (SMs) in the dataset with (N) total data-
points. For an SM t ∈ {1, 2, 3, . . . T}, the MTL-HPS formulation modifies on the
Single Task formulation by: First, making Γ refer to the shared CNN Layers,
Second, introducing Φt as the task-specific GRU layer, and Wt ∈ RH×Win the
parameters of the output fully connected task-specific layer, where H is the di-
mensionality of the output vector from the GRU and Win is the output window
size. The Mean Squared Error (MSE) denoted as L is the loss function that the
model is trained to minimize:

L
(
f
(
xti; Γ,Wt

)
, yti
)

= L
(
f
(
g
(
xti; Γ

)
; Φt +Wt

)
, yti
)

(5.1)

33

pti =
(

(Φt +Wt)
> g
(
xti; Γ

))
(5.2)

L
(
f
(
g
(
xti; Γ

)
; Φt +Wt

)
, yti
)

=
T∑
t=1

1

nt

nt∑
i=1

(
pti − yti

)2
(5.3)

Where g (.) : RWin×C → Rh1×h2 represents a function applied by the CNN
feature extraction model-part on the input to obtain a shared embedding repre-
sentation of the input of shape (h1 × h2). f (.) : Rh1×h2 → RWin is a function
applied by the task specific GRU and fully connected layers to obtain the predic-
tion. pti is the predicted value of power consumption for input point i and smart
meter t. Eq. 5.3 shows the MSE loss that is calculated for the inputs of smart
meter t.

The objective function is as follows:

min
W,Φ,Γ

T∑
t=1

1

nt

nt∑
i=1

L
(
f
(
X t

i ,Γ,Φt,Wt, y
t
i

))
(5.4)

Although MTL-HPS has the main advantage of providing the most regular-
ization for the learned tasks and is computationally efficient [32], it requires the
tasks to be highly related e.g. are drawn from similar distributions. Otherwise,
negative transfer of knowledge occurs resulting in degraded performance for the
tasks.

5.1.2 Multitask Learning with Soft Parameter Sharing
(MTL-SPS)

5.1.2.1 Model Architecture

MTL with Soft Parameter Sharing requires that each task has its own model
with its separate parameters. Furthermore, the parameters of the different tasks’
models get regularized to learn both what parameters should be shared between
the different tasks and how much of each layer should be shared [32]. Therefore,
enabling the model to extract how the different tasks interact with each other
while reducing the effect of negative transfer of knowledge, since only the useful
information between the different tasks is transferred. However, this approach
tends to be more memory expensive than the MTL-HPS approach since each task
requires a separate model.

5.1.2.2 Mathematical Formulation

We use the MTL-SPS formulation proposed in [25] to extend the STL objective
in Eq. 2.6 into an MTL-SPS formulation. The MTL-SPS is achieved by adding

34

a regularization term to the objective function of each single task model. The
regularization term constrains the weights of each layer of the single task model
to be similar by the degree of similarity between the two tasks:

minW,ΓΩ
1
nt

∑nt

i=1 L (f (xti; Γt,Wt) , y
t
i) + λ

∑L
l=1 tr

(
WlΩ

−1
l W t

l

)
s.t. Ωl > 0; tr (Ωl) = 1

(5.5)

Where Wl is the weights matrix for layer l of all the tasks Wl ∈ Rd×T , T is
the number of tasks and d is the dimension of the flattened layer’s weights; Ωl:
is the similarity matrix between the layer l weights of all tasks Ωl ∈ RT×T ; tr(.)
is the trace of a matrix.

First, Ωl is initialized to the identity matrix normalized by the number of tasks(
1
T
IT
)
. Second, during each training batch Ωl is frozen and the loss is calculated,

and after modifying the weights of each single task model by backpropagation,
Ωl is updated using the following equation as was found in [39]:

Ωl =

(
W T

l Wl

)1/2

tr
(

(W T
l Wl)

1
2

) (5.6)

Figure 5.2: MTL Soft-Parameter Sharing Architecture

5.1.3 Proposed Hierarchical Clustering with MTL (HC-
MTL)

We propose a hierarchical clustering with deep multitask learning (MTL) ap-
proach for industrial smart meters since it enables the CNN-GRU model to learn

35

the shared and smart-meter specific representation resulting in improved perfor-
mance in terms of accuracy and generalizability. Our hierarchical MTL approach
consists of two main steps:

1. Agglomerative Hierarchical Clustering

2. Cluster-specific MTL model

5.1.3.1 Agglomerative Hierarchical Clustering

As mentioned in section 4.1.2 we propose the use of an agglomerative hierarchical
clustering approach since it does not require specifying the number of clusters
beforehand and allows more flexibility in quantifying the distance between the
different smart meters. We choose to search for the optimal clustering parameters
by sampling 50 smart meter from each group in our dataset e.g., residential and
industrial smart meters. For each group we perform the clustering according
to the given set of parameters and then fit an MTL-HPS model per cluster of
smart meters and record the validation set MAE and RMSE. We then choose the
set of parameters that would achieve the least MAE and RMSE. The clustering
parameters that achieved the best validation results are shown in Table 5.1.

Table 5.1: The clustering parameters that provided the best average RMSE and
MAE validation set results over a group of 50 residential and industrial smart
meters for the MTL-HPS model.

Metric Residential Industrial
Smart Meter

Representation
Predicted daily load embedding Predicted daily load embedding

Distance Metric Cosine Cosine
Linkage Ward Ward

Threshold 30% 30%

5.1.3.2 Cluster-specific MTL model

We explore two formulations to implement an MTL model per cluster, namely
MTL with hard parameter sharing and MTL with soft parameter sharing.

5.1.3.2.1 Multitask with Hard Parameter Sharing (MTL-HPS)

As shown in section 5.1.1, this formulation divides the model into a shared part
that gets optimized by all the tasks’ gradients and a task-specific part that gets
optimized by the tasks’ specific gradients. It has the main advantage of provid-
ing the most regularization for the learned tasks [32]. However, it requires the
tasks to be highly related e.g., are drawn from similar distributions otherwise

36

negative transfer of knowledge occurs resulting in degraded performance on the
tasks [32]. Furthermore, MTL-HPS does not incorporate sharing partial infor-
mation between the shared tasks’ layers.

Since the MTL-HPS provides the best performance when the trained tasks
are related, we use this model only for tasks that are clustered within the same
cluster to ensure that no negative transfer of knowledge occurs.

5.1.3.2.2 Multitask with Soft Parameter Sharing (MTL-SPS)

MTL in a soft parameter sharing setting requires that each task has its own
model with its separate parameters as shown in section 5.1.2. This formulation
allows partial information transfer between the different task’s layers and avoids
negative transfer between the tasks in case unrelated tasks were trained jointly.
However, this formulation is more computationally expensive during the training
as it requires the extraction of a similarity matrix between the weights of two
tasks’ layers and updating the similarity matrix for each layer at each training
batch.

We propose the use of this formulation for the smart meters that were identi-
fied not to belong to any cluster where we group each 20 smart meters and train
them jointly in a separate MTL-SPS model. We propose the MTL-SPS formu-
lation for the least similar smart meters because this formulation is capable of
learning the amount of information to share between the different smart meters’
models and at what layer the sharing should occur. Therefore, we hypothesize
that this formulation could allow the model to improve the generalization by
allowing the transfer of useful information only between the unrelated tasks.

5.2 Hierarchical Clustering with Population mod-

els (HC-P)

We propose a hierarchical clustering with population model per group (HC-P)
for residential smart meters. The hierarchical clustering groups smart meters
into groups of similar load behavior, which enables the population model to
leverage existing correlations between the different smart meter loads to improve
performance. The HC-P approach consists of two main steps:

1. Agglomerative Hierarchical Clustering

2. Cluster-specific population model

5.2.1 Agglomerative Hierarchical Clustering

As mentioned in section 4.1.2 we propose the use of an agglomerative hierarchical
clustering approach since it does not require specifying the number of clusters

37

beforehand and allows more flexibility in quantifying the distance between the
different smart meters. We choose the parameters in Table 4.2 for the residential
and industrial smart meters as mentioned in section 4.1.3 .

5.2.2 Cluster-specific Population Model

A population model refers to developing a single model per group of smart meters
or entire population of smart meters in the grid. We use the formulation proposed
in [12] to extend the STL CNN-GRU model to a population model. The data
for the population model is prepared by first assigning a one-hot encoded ID for
each smart meter within the group of smart meters. During the training, we
feed a batch of examples belonging to a certain smart meter within the group.
After the batch is passed through the CNN-GRU layers for feature extraction,
the resulting embedding is concatenated with the smart meter’s ID. This new
extended embedding is then fed to the fully connected layers to perform the
prediction and the procedure is repeated for all the smart meters and examples.
Fig. 5.3 illustrates the population model architecture and the mechanism to feed
the data.

Figure 5.3: Population Model Architecture and Data insertion Procedure

38

Chapter 6

Experiments & Results

In this work, we target the problem of predicting the day ahead individualized
energy consumption with half-hourly granularity. The model prediction is done
in a rolling window manner, where after the prediction is conducted and the
day passes, the input to the model is shifted one day ahead to include the new
readings. The prediction method’s output is useful in energy management system
applications, such as optimal demand-side response.

6.1 Experimental Setup

Our models were implemented using Google’s deep learning python library Ten-
sorFlow. All experiments were run on a PC equipped with an NVIDIA GTX
1080 GPU, an Intel Core i7-7700 (3.60 GHz) CPU and 32 GB of RAM.

6.2 Dataset

6.2.1 Dataset Description

For our experiments, we chose the dataset provided by the Irish Commission for
Energy Regulation (ICER) [40]. The dataset contains electric energy measure-
ments from 6435 smart meters with half-hourly granularity starting from July
14, 2009, until December 31, 2010 (536 days). We preprocess the data by first
identifying and removing faulty meters, which are meters that have more than
50 measurements per day for multiple days. We also account for Daylight Saving
Time (DST) changes by removing measurements that exceed 48 half-hours for
days on which DST starts and forward filling the half-hours on the days on which
there are only 46 measurements (DST ends) as was suggested in [19]. We Extract
categorical calendar features (day-of-week, day-of-month, hour-of-day, month-of-
year). The dataset also has the smart meters categorized into three groups as

39

shown in Table 8. In our experiments, we include only the residential and in-
dustrial smart meters that have measurements from 14/7/2009 to 31/12/2010,
which reduces the number of smart meters to 4708.

Table 6.1: Number of smart meters per smart meter category after preprocessing

Smart Meter Type Number of Smart Meters
Residential 4224
Industrial 484

Other 1641

6.2.2 Data Exploration

In this section we explore the characteristics of residential and industrial load.

6.2.2.1 Industrial Smart Meters

Figure 6.1: Hourly boxplot for an industrial smart meter

The individual industrial load can be characterized by regularity or even pe-
riodicity in comparison to individual residential loads. That is since a typical
business have regular working days and hours. Fig. 6.1 shows that the load
outside the working hours of smart meter 1028 is distributed within tight boxes
indicating consumption regularity, while during working hours the boxplots seem
to be more stretched depending on the workload but show little to no outliers.
Figures 6.2 (a)-(d) show the load of industrial smart meters across the same day

40

(Tuesday) over two weeks (August 3rd 2010 and July 27th 2010) whose IDs are
1056, 3088, 5132, 7195, respectively. The figures show that periodicity exists for
the same day across the weeks for industrial smart meters making the prediction
task easier than residential load. On the other hand, there is still some industrial
smart meters whose consumption is irregular as shown in Fig. 6.2 (d).

(a) (b)

(c) (d)

Figure 6.2: The load of a Tuesday across two weeks for industrial smart meters

6.2.2.2 Residential Smart Meters

Figure 6.3: Hourly boxplot for a residential smart meter

41

Residential load at the individual level is characterized by high irregularity
and heavy dependence on user behavior. Fig. 6.3 shows that during sleep hours
the consumption tends to follow a tight range of values. However, over the day’s
hour, we can see that the load values have more outliers than the industrial
load boxplot in Fig. 6.3 reflecting the irregularity in the residential load. Fig.
6.4 (a)-(d) shows residential load patterns for meters whose IDs are 1065, 1178,
1067, 1058, respectively. Fig. 6.4 (a) shows high peaks around 8:00-11:00, 16:00-
20:00pm, 21:30-22:30 which can be due to breakfast and dinner preparations
and an evening bath. Although the load pattern is relatively similar amongst
the different days, differences in behavior still exist, which can also be seen in
Fig. 6.4 (b). In addition, the residential load patterns can vary across different
households or even the same households at different days. Fig. 6.4 (c) shows
significant differences in the load pattern for the same day across two weeks.
Fig. 6.4 (d) shows an overall low electricity consumption, which can be due
to some appliances such as a fridge while the house residents are absent. In
summary, individual residential loads are highly irregular and dependent on the
user’s lifestyle. Therefore, forecasting such pattern accurately at the individual
level is very challenging given only historical load data.

(a) (b)

(c) (d)

Figure 6.4: The load of a Tuesday across two weeks for residential smart meters

6.3 Model Input Span Selection

To find the optimal input span, we first adopted the architecture proposed in [1]
while replacing the LSTM with a GRU as shown in Figure 2.3. The initial STL
model consisted of the following hyperparameters:

• Each 1D CNN layer has 64 filters of size [2*1] and a stride of 1 with ReLU
activation functions

42

• Each max-pooling filter has a size of [2*1] with a stride of 2

• The GRU layer has 64 cells with the default gate activations as in [2]

• The first dense layer has 32 neurons with no activation functions

• The last dense layer has 48 neurons with no activation functions

The network was trained for 75 epochs with a batch size of 32 and optimized
using Adam optimizer [41] with a starting learning rate of 0.001. Given the
previous model, we conducted an experiment to find the optimal input span.
Where we varied the input span among the following choices:

• Previous [4, 5, 6] same days i.e., to predict a Monday the input is the
previous X Mondays loads

• Previous [1, 2, 3] weeks

For each choice, the following calendar features were chosen:

• Hour of the day [1->48]

• Day of the week [1->7]

• The month of the year [1->12]

• Day of the month [1-> (31,30,28)]

The data was split sequentially into 70% of the days as training set, and 30%
as test set. Then the last 20% of the training set days were used for validation.
The dataset was normalized into values between 0 and 1 for each input feature
using a Minmax scaler:

xnormalized =
x−min(x)

max(x)−min(x)
(6.1)

Where x is the feature vector. Note that the minimum and the maximum
feature values were recorded on the training set and then were used to normalize
the validation and test sets. For each input choice our single task model was
trained and tested for all smart meters and the average individualized Root Mean
Square Error (RMSE) and Mean-Absolute Error (MAE) were recorded as can be
seen in Figure 6.5. We can see from the Figure 6.5 that the average RMSE
and MAE values for the different input spans fluctuate around the same values.
Because increasing the input size beyond 4 days increases complexity while not
providing any significant improvements, we chose the input span of our models
to be 4 days.

43

Figure 6.5: The average individualized MAE and RMSE value for the different

6.4 Tuning Parameters For The STL Model

To find the best model parameters for our dataset, 10 smart meters were chosen
at random from each smart-meter category. For each of these 20 smart meters,
a CNN-GRU model with the input span of 4 days was developed. Sixteen model
architectures were explored for all 20 smart meters and the mean individualized
RMSE and MAE were recorded for the validation set. Different combinations of
the following parameters were explored:

• CNN layers ∈ [1, 2, 3]

• CNN kernel number ∈ [32, 64, 128]

• GRU layers ∈ [1, 2]

• GRU number of neurons ∈ [32, 64, 128]

• Number of Neurons for the 1st Dense layer ∈ [32, 64]

We chose the combination that provided the best average performance in
terms of RMSE and MAE on the validation set while being the least computa-
tionally expensive. The following are the model parameters: 2 CNN layers, 1

44

GRU layer, the 1st CNN has 32 filters, 2nd CNN has 16 filters, the GRU has 32
cells and the 1st dense layer has 32 neurons.

After finding the best architecture hyperparameters, the number of epochs,
learning rate and batch size were chosen by grid search over the following ranges
of values:

• batch size ∈ [32, 64, 128]

• epochs ∈ [20, 30, 40, 50, 60, 70, 80]

• learning rate ∈ [0.0001, 0.0005, 0.001, 0.01, 0.02, 0.1]

The combination that achieved the best validation set average RMSE and
MAE across all 20 smart meters was chosen as the model’s training hyperparam-
eters, which is: 60 epochs, 0.001 learning rate, batch size of 64

6.5 Tuning Parameters For The MTL Model

Fifty smart meters were chosen from each group of smart meters and for each
group we tune the MTL model’s hyperparameters along with the clustering hy-
perparameters and then pick the hyperparameters that would achieve the best
performance on the validation set. We tune for the batch size, number of epochs,
learning rate for both MTL-HPS and MTL-SPS approaches. For the MTL-HPS,
we also search for the point at which the model layers are split into shared and
task specific layers. For the MTL-SPS, we search for the value of the regulariza-
tion parameter λ. The following are the ranges of searched parameters that were
found by grid search:

• Batch size ∈ [16, 32, 64, 128]

• Epochs ∈ [20, 30, 40, 50, 60, 70, 80]

• Learning rate ∈ [0.0001, 0.0005, 0.001, 0.01, 0.02, 0.1]

• MTL-HPS model split-point ∈ :

1. Splitting after the first Max Pooling layer

2. Splitting after the 2nd Max Pooling layer

3. Splitting after the GRU layer

• MTL-SPS λ ∈ [0.00001, 0.0001, 0.001, 0.01]

The combination that achieved the best validation set average RMSE and
MAE across both groups of 50 smart meters was chosen as the model’s train-
ing hyperparameters, which is: 60 epochs, 0.001 learning rate, batch size of 16,
splitting after the GRU layer, and λ of value 0.0001

45

6.6 Tuning Parameters For The Population Model

Fifty smart meters were chosen from each group of smart meters and for each
group we tune the population model’s hyperparameters along with the clustering
hyperparameters and then pick the hyperparameters that would achieve the best
performance on the validation set. We tune for the batch size, number of epochs,
learning rate. The following are the ranges of searched parameters that were
found by grid search:

• Batch size ∈ [16, 32, 64, 128]

• Epochs ∈ [20, 30, 40, 50, 60, 70, 80]

• Learning rate ∈ [0.0001, 0.0005, 0.001, 0.01, 0.02, 0.1]

The combination that achieved the best validation set average RMSE and
MAE across both groups of 50 smart meters was chosen as the model’s training
hyperparameters, which is: 60 epochs, 0.001 learning rate, batch size of 64.

6.7 Tuning Parameters For The Baseline Statis-

tical Models

We also compare against Auto Regressive Integrated Moving Average (ARIMA)
and Seasonal ARIMA (SARIMA). We choose the input to the ARIMA and
SARIMA model to be the previous 4 same days’ load concatenated from old
to new to form a vector of length (n = 192) similar to [18]. The ARIMA and
SARIMA parameters for each test-set example were estimated using a grid-search
over the following parameters:

• Order of the autoregressive model: p ∈ [1, 2, . . . ,40]

• Order of the moving average model: q ∈ [1, 2, . . . ,40]

• Order of Differencing (d) is increased by increments of one such that the
stationarity is met according to the Augmented Dickey–Fuller test

• Order of the autoregressive portion of the seasonal model: pseasonal ∈ [1, 2,
. . . ,40]

• Order of the moving average portion of the seasonal model: qseasonal ∈ [1,
2, . . . ,40]

• Order of Differencing (dseasonal) increased by one such that the stationarity
is met according to the Augmented Dickey–Fuller test

46

We perform a grid search over the previous parameter values per test-set
example. The parameters that achieve the best Akaike Information Criterion
(AIC) per example are chosen to fit the ARIMA/SARIMA model and produce a
prediction for the next 48 half-hours.

6.8 Comparative Evaluation of Models

In this section we compare our proposed HC-MTL and HC-P models to the pre-
vious approahces includeing: state-of-the art STL model proposed in [1], hierar-
chical random clustering with population model as proposed in [12], a population
model without grouping e.g., one model per all smart meters, baseline statistical
models such as Auto Regressive Integrated Moving Average (ARIMA) and Sea-
sonal ARIMA (SARIMA). The different approaches are assessed using the Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE) as shown in
equations 6.2 and 6.3, respectively.

MAE =
1

n

n∑
i=1

|yi − ŷı| (6.2)

RMSE =

√√√√ 1

N

n∑
i=1

(yi − ŷi)2 (6.3)

Where yi is the actual value and ŷi is the forecasted value. The RMSE penal-
izes large errors, thus large values of RMSE indicate large errors. Whereas MAE
measures the error on average. Ideally, we would like our approach to avoid large
errors (RMSE) while providing low errors on average (MAE).

Table 6.2: The RMSE and MAE average over all residential smart meters for the
different methods

Metric STL [2] HR-P [3] HC-P Population-All HC-MTL ARIMA SARIMA
RMSE 0.535 ± 0.11 0.529 ± 0.106 0.523 ± 0.108 0.532 ± 0.105 0.538 ± 0.11 0.647 ± 0.65 0.654 ± 0.72
MAE 0.328 ± 0.075 0.329 ±0.074 0.320 ±0.075 0.326 ± 0.074 0.330 ± 0.076 0.403 ± 0.10 0.407 ± 0.11

RMSE improvement
Vs. STL

0 1.12 % 2.24% 0.56% -0.56% -31.72 -33.711

MAE improvement
Vs. STL

0 -0.30% 2.43% 0.60% -0.60% -22.86% -24.08%

We can see from Table 6.2 that the proposed Hierarchical MTL method pro-
vides similar performance in terms of both metrics in comparison to an STL
approach for residential smart meters. Whereas the HR-P provides minimal im-
provement over the STL model in terms of RMSE but provides no improvement in
terms of MAE. Although random grouping improves the generalization of popu-
lation model resulting in reduced RMSE, it does not provide any improvement on
the average error (MAE). The HC-P, on the other hand, improved the population
model’s performance in terms of both RMSE and MAE by 2%.

47

Table 6.3: The RMSE and MAE average over all industrial smart meters for the
different methods

Metric STL [2] HR-P [3] HC-P Population-All HC-MTL ARIMA SARIMA
RMSE 1.184± 0.29 1.259± 0.26 1.202± 0.26 1.25 ± 0.26 1.151± 0.26 2.48 ± 3.61 2.52±3.61
MAE 0.724±0.19 0.817±0.17 0.782± 0.17 0.812 ± 0.17 0.688±0.16 1.293±0.46 1.30±0.45

RMSE improvement
Vs. STL

0 -6.33% -1.52% -5.57% 2.78% -109.45% -113.26%

MAE improvement
Vs. STL

0 -12.84% -8.01% -12.15% 4.97% -78.59% -79.55%

From Table 6.3, we can see that our proposed Hierarchical MTL approach
provides an improvement of 2.78% in terms of RMSE and 5% in terms of MAE for
industrial smart meters. Although the HC-P leveraged the clustering to improve
the performance of population model’s performance over random grouping, both
methods tend to significantly provides worse performance than the STL model.

We also perform the Welch t-test [42] between each pair of models, for both
the RMSE and MAE of all smart meters. Fig. 26 (a) and (b) show the p-values for
each pair of models for both RMSE and MAE, respectively. By using a threshold
of α = 10−2 , most of the models are statistically different from each other.

(a) (b)

Figure 6.6: P-values of the Welch t-test between the overall metrics of all methods.
a) The p-values for the MAE. b) The p-values for the RMSE

Figures 6.7, 6.8 and 6.9 show the prediction of the different methods for
random days of three different residential smart meters. All figures show that
the HR-P model with clustering tends to perform best in predicting the base
load. In addition, all methods tend to miss predicting the sudden peaks in the
load or mispredict it with a small shift in time.

From figure 6.9 we can see the amount of sudden peaks that characterize the
residential behavior. Figures 6.10 and 6.11, show the predictions of the different
methods for random days of two different industrial smart meters. Both figures
demonstrate the effectiveness of the HC-MTL approach in predicting the daily
load pattern. In addition, having the consumption occurring during the working
hours demonstrates the regularity in the industrial load.

48

Figure 6.7: The prediction of the different methods for residential smart meter
1035 on 15/10/2010

Figure 6.8: The prediction of the different methods for residential smart meter
1044 on 19/11/2010

49

Figure 6.9: The prediction of the different methods for residential smart meter
1073 on 18/10/2010

Figure 6.10: The prediction of the different methods for industrial smart meter
1146 on 30/07/2010

6.9 Discussion

6.9.1 STLF Results for Industrial and Residential Smart
Meters

While examining the different models’ performances on the residential smart
meters, we can see that limited improvements are obtained from clustering ap-

50

Figure 6.11: The prediction of the different methods for industrial smart meter
1181 on 26/07/2010

proaches. This is expected since the residential loads are highly irregular and
dependent on the person’s life-style. Furthermore, the residential behavior at
a half hourly granularity shows more peaks as seen in Fig 6.9. and the time
at which these peaks occur can drastically change from one week to another as
shown in Fig 6.4 (a-c) making the forecasting process very challenging since a
small change in the user behavior can cause the models to mispredict the peak
by one time-step. MTL provides the best performance when a good balance be-
tween shared and task-specific information is present between the learned tasks.
Otherwise negative transfer of knowledge occurs resulting in no improvement or
even degraded performance [3].

Industrial loads, on the other hand, share more information in their behavior
namely in working hours, days, but have unique patterns regarding the appliances
they use. Therefore, the MTL approach was capable of capturing both shared
and specific aspects resulting in improved model performance as seen in Table
6.3, whereas HC-P was incapable of learning the individualized load patterns.

6.9.2 Model Complexity and Real-Time Feasibility

Given that the STLF model is designed to be used in real life, it is required that
it delivers predictions or be retrained if need be within 24 hours. We therefore
report in Table 6.4 the sequential training time for the different methods on an
Nvidia GTX 1080 GPU.

We see from Table 6.4 that the training time for the STL and HC-P is close
whereas the HC-MTL approach requires the most training time and is 3x more

51

Table 6.4: The Training Time in Hours for the different approaches

STL HC-P HC-MTL
Training Time

in Hours
5.68 8.08 18.5

than the STL training time. Although the proposed approaches require more
training time in comparison to STL, they both are within the 24 hours limit,
making them applicable in real life. It is also important to note that the per
smart meter or cluster of smart meters model, is being run sequentially on one
GPU, in practice however, it is possible to re-train these models on multiple GPUs
in parallel to further reduce the training time to meet the business demand.

52

Chapter 7

Conclusion

Accurate short-term load forecasting has always been a fundamental requirement
for the application of demand response policies. Prior State-of-the-art deep learn-
ing approaches’ accuracy can be improved by combining data from similar smart
meters. In this thesis, we provide two studies exploring the data sufficiency and
transfer learning capabilities of prior work. Our data sufficiency study validated
that adding more training data from the same smart meters improved the accu-
racy up to a certain saturation point after which limited performance gains were
obtained. The transfer learning feasibility study showed that adding more data
from similar smart meters improves the performance for the smart meters with
insufficient training data. Both experiments have shown that industrial smart
meters benefit more from additional training data in comparison to residential
smart meters. We then propose two novel transfer learning approaches for im-
proving STLF accuracy:

• Hierarchical Clustering with Population models (HC-P): Based on numeri-
cal testing, we found HC-P to be most suitable for residential smart meters.

• Hierarchical Clustering with deep Multitask Learning (HC-MTL): Based
on numerical testing, we found HC-MTL to be most suitable for industrial
smart meters.

Since residential loads are user-specific and more irregular, limited perfor-
mance gains were obtained from jointly training them. Industrial loads, on the
other hand, are more regular and share similar general behavior while retaining
individualized differences related to the appliances they use. The industrial load’s
characteristics allow for more benefit from transfer learning using HC-MTL. The
HC-P approach improves the RMSE and MAE over prior state of the art by 2%
on average for 4224 residential smart meters. The HC-MTL provides an average
improvement of 2.78% and 4.97% in terms of RMSE and MAE, respectively, over
484 industrial smart meters.

53

Although our work provides insights and a proof of the benefit of transfer
learning for STLF accuracy using deep learning models. Few questions remain
unexplored in this work including:

• How to determine smart meters with insufficient training data? In this
work we showed that smart meters with insufficient training data tend to
benefit from more data from similar smart meters. However, no metric or
method was provided to detect such smart meters.

• How to detect the training data size beyond which limited performance
gains are obtained per smart meter? In this work we discovered that adding
more data from the same smart meter improves the performance up to
a certain saturation point beyond which no significant improvements are
gained. However, we don’t provide a metric or method to quantify the
training data sufficiency for a smart meter.

• What is the best clustering strategy for accurate STLF? In this work we
found that hierarchical clustering with an appropriate distance metric pro-
vides improvements for STLF. However, we did not compare our proposed
clustering to other possible clustering algorithms such as: K-means or DB
Scan.

The previous questions remain as possible directions to explore for future
work.

54

Bibliography

[1] T.-Y. Kim and S.-B. Cho, “Predicting residential energy consumption using
cnn-lstm neural networks,” Energy, vol. 182, pp. 72–81, 2019.

[2] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey
on advanced metering infrastructure,” International Journal of Electrical
Power & Energy Systems, vol. 63, pp. 473–484, 2014.

[3] P. Warren, “A review of demand-side management policy in the uk,” Re-
newable and Sustainable Energy Reviews, vol. 29, pp. 941–951, 2014.

[4] U. E. I. Administration, “U.s. energy information administration - eia -
independent statistics and analysis,” Oct 2020.

[5]

[6] A. Garulli, S. Paoletti, and A. Vicino, “Models and techniques for electric
load forecasting in the presence of demand response,” IEEE Transactions
on Control Systems Technology, vol. 23, no. 3, pp. 1087–1097, 2014.

[7] P. Samadi, H. Mohsenian-Rad, R. Schober, and V. W. Wong, “Advanced
demand side management for the future smart grid using mechanism design,”
IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1170–1180, 2012.

[8] S. Aman, M. Frincu, C. Chelmis, M. Noor, Y. Simmhan, and V. K. Prasanna,
“Prediction models for dynamic demand response: Requirements, challenges,
and insights,” in 2015 IEEE International Conference on Smart Grid Com-
munications (SmartGridComm), pp. 338–343, IEEE, 2015.

[9] M. Chaouch, “Clustering-based improvement of nonparametric functional
time series forecasting: Application to intra-day household-level load
curves,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 411–419, 2013.

[10] A. Veit, C. Goebel, R. Tidke, C. Doblander, and H.-A. Jacobsen, “Household
electricity demand forecasting: benchmarking state-of-the-art methods,” in
Proceedings of the 5th international conference on Future energy systems,
pp. 233–234, 2014.

55

[11] S. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer, “Electricity load
forecasting for residential customers: Exploiting aggregation and correlation
between households,” in 2013 Sustainable Internet and ICT for Sustainabil-
ity (SustainIT), pp. 1–6, IEEE, 2013.

[12] H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting—a
novel pooling deep rnn,” IEEE Transactions on Smart Grid, vol. 9, no. 5,
pp. 5271–5280, 2017.

[13] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term
temporal patterns with deep neural networks,” in The 41st International
ACM SIGIR Conference on Research & Development in Information Re-
trieval, pp. 95–104, 2018.

[14] L. Han, Y. Peng, Y. Li, B. Yong, Q. Zhou, and L. Shu, “Enhanced deep
networks for short-term and medium-term load forecasting,” IEEE Access,
vol. 7, pp. 4045–4055, 2018.

[15] M. Gilanifar, H. Wang, L. M. K. Sriram, E. E. Ozguven, and R. Arghandeh,
“Multi-task bayesian spatiotemporal gaussian processes for short-term load
forecasting,” IEEE Transactions on Industrial Electronics, 2019.

[16] J.-B. Fiot and F. Dinuzzo, “Electricity demand forecasting by multi-task
learning,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 544–551,
2016.

[17] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[18] A. Marinescu, C. Harris, I. Dusparic, S. Clarke, and V. Cahill, “Residential
electrical demand forecasting in very small scale: An evaluation of forecast-
ing methods,” in 2013 2nd International Workshop on Software Engineering
Challenges for the Smart Grid (SE4SG), pp. 25–32, IEEE, 2013.

[19] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load fore-
casting using deep neural networks,” in IECON 2016-42nd Annual Confer-
ence of the IEEE Industrial Electronics Society, pp. 7046–7051, IEEE, 2016.

[20] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,” IEEE
Transactions on Smart Grid, 2017.

[21] K. Amarasinghe, D. L. Marino, and M. Manic, “Deep neural networks for
energy load forecasting,” in 2017 IEEE 26th International Symposium on
Industrial Electronics (ISIE), pp. 1483–1488, IEEE, 2017.

56

[22] J.-B. Fiot and F. Dinuzzo, “Electricity demand forecasting by multi-task
learning,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 544–551,
2018.

[23] F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados,
“Using smart meter data to improve the accuracy of intraday load forecasting
considering customer behavior similarities,” IEEE Transactions on Smart
Grid, vol. 6, no. 2, pp. 911–918, 2014.

[24] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–
75, 1997.

[25] M. Qiu, P. Zhao, K. Zhang, J. Huang, X. Shi, X. Wang, and W. Chu, “A
short-term rainfall prediction model using multi-task convolutional neural
networks,” in 2017 IEEE International Conference on Data Mining (ICDM),
pp. 395–404, IEEE, 2017.

[26] Y. Zhang, G. Luo, and F. Pu, “Power load forecasting based on multi-task
gaussian process,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3651–3656,
2014.

[27] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks for
natural language understanding,” arXiv preprint arXiv:1901.11504, 2019.

[28] Z. Yang, R. Salakhutdinov, and W. W. Cohen, “Transfer learning for
sequence tagging with hierarchical recurrent networks,” arXiv preprint
arXiv:1703.06345, 2017.

[29] C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks
on mobile traffic forecasting,” in 2017 IEEE 28th Annual International Sym-
posium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
pp. 1–6, IEEE, 2017.

[30] D. Lopez-Martinez, O. Rudovic, and R. Picard, “Physiological and behav-
ioral profiling for nociceptive pain estimation using personalized multitask
learning,” arXiv preprint arXiv:1711.04036, 2017.

[31] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic flow
prediction: deep belief networks with multitask learning,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2191–2201,
2014.

[32] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Learning what to share
between loosely related tasks,” arXiv preprint arXiv:1705.08142, 2017.

[33] A. S. Debs, Modern power systems control and operation. Springer Science
& Business Media, 2012.

57

[34] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[35] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[36] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” arXiv preprint arXiv:1608.06019, 2016.

[37] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying
mmd gans,” arXiv preprint arXiv:1801.01401, 2018.

[38] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, “Hierarchical clustering,”
Cluster analysis, vol. 5, pp. 71–110, 2011.

[39] Y. Zhang and D.-Y. Yeung, “A convex formulation for learning task rela-
tionships in multi-task learning,” arXiv preprint arXiv:1203.3536, 2012.

[40] “Home, irish social science data archive.”

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] B. L. Welch, “The generalization ofstudent’s’ problem when several different
population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35,
1947.

58

	Acknowledgements
	Abstract
	Introduction
	Background & Related Work
	Related Work
	Single Task Learning (STL)
	Statistical & Feature-Based Models
	Deep Learning models

	Population Models
	Multitask Task Learning (MTL)
	Statistical Models
	Deep Learning models

	Background
	STLF Mathematical Formulation
	Single Task Learning (STL) Mathematical Formulation

	STLF Limitations & Opportunities
	Study for Evaluation of Data Sufficiency for STL Smart Meter Data
	Study for Evaluation of Transfer Learning from Similar Smart meters
	Study for Evaluation of Transfer Learning from Dissimilar Smart meters

	Similarity Methods
	Similarity Method
	Clustering Tendency
	Clustering Algorithm
	Hierarchical Clustering

	Clustering Validation

	Methodology
	Multitask Learning (MTL)
	Multitask Hard Parameter Sharing (MTL-HPS)
	Model Architecture
	Mathematical Formulation

	Multitask Learning with Soft Parameter Sharing (MTL-SPS)
	Model Architecture
	Mathematical Formulation

	Proposed Hierarchical Clustering with MTL (HC-MTL)
	Agglomerative Hierarchical Clustering
	Cluster-specific MTL model
	Multitask with Hard Parameter Sharing (MTL-HPS)
	Multitask with Soft Parameter Sharing (MTL-SPS)

	Hierarchical Clustering with Population models (HC-P)
	Agglomerative Hierarchical Clustering
	Cluster-specific Population Model

	Experiments & Results
	Experimental Setup
	Dataset
	Dataset Description
	Data Exploration
	Industrial Smart Meters
	Residential Smart Meters

	Model Input Span Selection
	Tuning Parameters For The STL Model
	Tuning Parameters For The MTL Model
	Tuning Parameters For The Population Model
	Tuning Parameters For The Baseline Statistical Models
	Comparative Evaluation of Models
	Discussion
	STLF Results for Industrial and Residential Smart Meters
	Model Complexity and Real-Time Feasibility

	Conclusion

