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An Abstract of the Thesis of

Obeida Amer ElJundi for Master of Engineering
Major: Electrical and Computer Engineering

Title: Automating Human’s Cognitive Psychology for Opinion Mining Models

This thesis focuses on the evaluation of automated reading comprehension
of sentiment in text, which is also considered an opinion mining classification
task. Previous work for opinion mining uses feature engineering machine learning
(ML) or deep learning (DL) without consideration for the method’s adaptation
to the human’s cognitive process. The aim of this thesis is to determine whether
machines can learn better by following the human cognitive reading process or
rather follow a machine-specific representation. The main difference lies in the
intermediate representation of the data before classification.

On the human side, and based on recent psychological studies, it has been
determined that reading comprehension is not the result of one single process as
was thought before 1970s. Instead, psychologists realized that a combination of
several complex cognitive processes are involved. Based on Cognitive Psychology,
comprehension heavily depends on inference and background knowledge to con-
struct a Situation model, which is a mental representation of the text. In other
words, humans develop an image of the context in their minds before concluding
its meaning. To emulate the Human Mental Intermediate (HMI) representa-
tion, we propose a Text-to-Image-to-Task (T2I2T) model comprehension by first
mapping the input text to an image which provides a semantic representation
equivalent to the mental representation of the text being analyzed.

From the machine’s learning perspective, we conjecture that machines may
not need to learn human-specific representations. Instead, we propose to ex-
plore the machine’s ability in developing its own Machine Intermediate Internal
(MII) representations through direct end-to-end (E2E) models. To emulate the
machine’s cognitive process, MII, we propose the use of Transformer-based Lan-
guage Models (LM) and show that pre-training acts as a suitable means for the
machine to acquire background knowledge comparable to the cognitive psycho-
logical Situation model.
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To compare the performances of HMI and MII E2E model, we conducted
experiments with applications to sentiment analysis. We developed our own
data set with text-image-sentiment annotations by augmenting an exiting image
captioning dataset with automated sentiment annotations. Several base models
were developed for comparison including Bidirectional LSTMs with word embed-
dings and state of the art pre-trained LMs, such as BERT and ULMFit. The
results showed that the machine’s E2E cognitive approach, MII, outperforms
both LSTMs with word embeddings models and the human’s cognitive T2I2T
approach, HMI, by 6% and 26% respectively.

The thesis also explored models to represent HMI and MII for Arabic. In
particular, we developed models for HMI Image Captioning in Arabic and an
Arabic MII universal language model, called hULMunA. In Arabic Image Cap-
tioning (AIC), we developed the first Arabic dataset and encoder-decoder end-
to-end models to show that it is necessary to build language specific datasets and
end-to-end models rather that translating English captions. In hULMunA, we
developed the first Arabic specific Language Model and fine-tune it to achieve
state-of-the-art results on four Arabic Sentiment Analysis datasets.
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Chapter 1

Introduction

Reading comprehension is one of the most essential skills we need in our daily
life. Although there have been tremendous achievements in the field of NLP in
the last decade, most work did not account for the human reading (cognitive)
processes. We study Cognitive Psychology, a sub-field of psychology concerned
with human mental process, to grasp the fundamentals of reading comprehension.
Cognitive psychologists believe that the output of reading comprehension is a
mental representation of the text being read. The resultant mental representation
is not the product of a single cognitive process. Rather, it involves many separate
cognitive mechanisms [3] [4]. As a result of these various processes, three levels of
representation are constructed during reading [3]. Introduced by Kintsch and van
Dijk [5], the construction of the third and final representation level, the Situation
model, depends heavily on inference and reader’s background knowledge to go
beyond what is explicitly stated in the text. Most recent reading comprehension
theories can be traced to this seminal work of Kintsch and van Dijk.

Artificial Intelligence (AI) aims at mimicking human abilities to achieve tasks
that requires human intelligence. Convolutional Neural Networks (CNN), for
example, is inspired by some of the early findings about the human’s visual sys-
tem, particularly, the receptive fields in our visual cortex [6]. Motivated by our
memory, Long Short-Term Memory (LSTMs) improved the performance of Re-
current Neural Networks (RNN) by introducing 1. memory gates to remember
important and long dependencies and 2. and forget gates for unnecessary details
[7]. Attention mechanisms mimic our ability of attending to the most salient
parts of an image or text to achieve state-of-the-art results in both Computer
Vision (CV) and Natural Language Processing (NLP). Several early psycholog-
ical reading comprehension models [8, 9, 10, 11, 12, 13, 14, 15, 16] and recent
NLP methods, including RNNs, cover only the first two cognitive representation
levels but render the final and the most significant level, the Situation model,
unaccounted for.

To mimic the human’s cognitive Situation model, we propose two represen-
tation approaches. First, we develop the Human Mental Intermediate (HMI)
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representation approach. HMI is inspired by the way the human mind devel-
ops an image that represents the context or situation of the text being read. The
HMI model involves a Text-to-Image-to-Task (T2I2T) model by first mapping the
input text to an image which provides an extended semantic representation equiv-
alent to the mental Situation representation of the text being analyzed. In this
thesis, we only focus on modeling the image to task. For the second approach, we
propose to explore machine’s ability in developing its own Machine Intermediate
Internal (MII) representations through direct end-to-end (E2E) models. Particu-
larly, we utilize pre-trained Transformer-based Language Models (LM). We then
compare both approaches to conclude the superior method of construing the best
text representation that is equivalent to the cognitive Situation model. We eval-
uate the effectiveness of HMI strategy versus MII strategy with Opinion Mining
as a case study.

Opinion Mining, also known as Sentiment Analysis, refers to the task of au-
tomatically extracting people’s opinions from digital text. Sentiment Analysis
started gaining remarkable attention with the exponential growth of the online
subjective data generated by users in form of text [17]. Sentiment analysis appli-
cations spread across multiple domains, including business and politics, providing
insights into public opinion regarding policies, trends, or products [18].

In addition to the comparative case study, we explore the applications of
HMI and MII models to Arabic. In particular we develop HMI Arabic models
for Arabic captioning of images and MII Arabic universal Language model called
hULMonA.

The thesis contributions can be listed as follows:

• First, we study reading comprehension in Cognitive Psychology to identify
gaps in recent NLP methods.

• Second, we emulate the Human Mental Intermediate (HMI) representation
by proposing mapping text to images to provide an extended semantic
representation (Text-to-Image-to-Task (T2I2T)).

• Third, we explore machine’s ability to develop its own Machine Intermediate
Internal (MII) representations through direct end-to-end (E2E) models.

• Forth, we develop a text-image-sentiment dataset to conduct a comparative
analysis of HMI versus MII.

• Finally, we explore the applications of HMI and MII models to Arabic by
developing Arabic Image Captioning (AIC) models and pre-training Arabic-
specific Language Models.

This thesis is organized as follows. Chapter 2 reviews the literature of theoret-
ical and computational models of reading comprehension in the field of Cognitive
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Psychology. In chapter 3, we explain reading comprehension in Cognitive Psy-
chology and lay the foundation of the situation model. We then propose our
approaches of emulating the Situation model in chapter 4. We talk about our de-
veloped dataset and show our proposed methods results in chapter 5. Finally, we
show some of our other applications related to the cognitive approach in chapter
6 and 7, and we conclude our thesis in chapter 8.
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Chapter 2

Literature Review

Cognitive psychologists proposed many theories to explain the cognitive processes
involved in reading comprehension. Moreover, computational implementations
are developed to simulate some of the proposed theories. Both theoretical and
computational models of discourse comprehension are reviewed here.

2.1 Cognitive Models for Reading Comprehen-

sion

There is a consensus in the cognitive psychology research community that the out-
come of the reading comprehension processes is a mental representation of the
text [19]. Nevertheless, the approach of constructing the resulting comprehen-
sion mental representation is still debatable. Over the last four decades, several
reading comprehension models have been proposed by cognitive psychologists to
conceptualize the construction process of the mental representation during and
after reading. The cognitive reading process typically involves multiple steps
of understanding, including: word level, sentence level, and complete document
level.

Most proposed models describe only one aspect of the cognitive reading pro-
cess. For word level, Interactive-Activation [8], Multiple-Levels [9], Dual Route
Cascaded [10], and Bayesian Reader [11] models account only for word identifi-
cation. For sentence level processing and syntactic parsing, Ferreira and Clifton
[12] and Frazier [13] [14] proposed Garden-path model, and Jurafsky [15] and
MacDonald et al [16] introduced the constraint-based model. At the document
level, discourse processing models connects individual sentences into more global
representation, named situation model, which reflects the overall comprehension
of the text. Examples include the Construction-Integration (CI) model [20] [21]
and the Event-Indexing model [22].

There has been attempts to cover multiple aspects of the reading compre-
hension process. For instance, models proposed by Just and Carpenter [23] and
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Rayner and Pollatsek [24] accounted for both processing text at multiple levels
(e.g., words and clauses) and eye movements during reading.

The first systematic analysis of reading comprehension was the top-down pro-
cessing approach [25]. The most cited reading model proposed by Goodman [25]
characterizes reading as a guessing game where readers develop various expecta-
tions about the text to be read then sample enough information from the text
to either confirm or reject their expectations. To accomplish this sampling effi-
ciently, the reader skips part of the text and directs the eyes to the most likely
places in the text to find useful information. Another perspective of the reading
process is the bottom-up approach [26] [27]. In this view, readers comprehend
text hierarchically, starting from the perception of single phonemes to words,
clauses, sentences and finally the whole piece of discourse. Unlike the top-down
model, none of the text is skipped during reading. The interactive reading model
[28] attempts to combine the valid insights of bottom-up and top-down models.

These aforementioned models did not address the gap of understanding the
multifaceted nature of reading. For example, unconscious inference during read-
ing must be taken into consideration. To address this gap, several psychologists
[5] explained that the comprehension process involves not only a mental repre-
sentation of the text itself, but also concepts that go beyond what is explicitly
stated in the text. This reflection of the comprehension process is known as
the situation model, and there has been several theories to describe it. The
construction-Integration (CI) model proposed by Kintsch [20] [21] is considered
to be the most complete and well-formulated model of text comprehension. Dur-
ing the construction phase, a dumb (automatic, bottom-up) process activates
all related knowledge, including both relevant and irrelevant knowledge. In the
following stage, called the integration phase, readers engage inference and back-
ground knowledge to prime (deactivate) irrelevant activated information. An-
other prominent situation model in the Event-Indexing model [22]. It states that
as we perceive narratives, we segment text into events. Events can be split into
five indexes, or dimensions, namely, time, space, protagonist, causality, and in-
tentionality. Events that share at least one index are connected in the reader’s
brain. The more the shared indexes, the stronger the connection.

Despite the availability of many comprehension models, the literature still
lacks a complete model that accounts for all of the different components of reading
[1].

2.2 Computational Models for Reading Com-

prehension

Computational models of psychological text comprehension play significant role in
understanding psychological complexities of text comprehension and facilitating
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communication among researchers within and across research areas [29].
Miller and Kintsch [30] computational model, which is based on Kintsch and

van Dijk [5] model, consisted of two components: a chunking program that iden-
tified propositions and a coherence program that was concerned with local coher-
ence. Kintsch [20] [21] computationally modeled his CI theory as a connectionist
network of nodes and links between them. Nodes indicate propositions, where
links indicate activations that are built during the construction phase and up-
dated during the integration phase. Several computational models were built on
top of the CI model such that each makes different assumptions about one or
more of the components or parameters of the computational processing model.
The Capacity-Constraint Construction Integration (3CI) model [31] [32], for ex-
ample, examined an alternative conception of working memory processes. Other
CI variations, such as the Landscape model [33] [34], may alter the learning algo-
rithm or the basis of establishing connections among nodes in the connectionist
network.

Although most of the aforementioned models, including CI and Event-Indexing,
are concerned with narrative text, which is objective in nature, Wang et al., [35]
extended the Event indexing model to capture the subjective dynamics of social
media text. Indexter [36] is another computational model built on top of the
Event-Indexing model. Indexter is concerned about not only the simple story
structure, but also how the experiencer receives the narrative.

To simulate concept activations in the memory, Latent Semantic Analysis
(LSA) [37] [38] [39] is one of the most prominent algorithms used in several
computational models, including Kintsch CI model and another implementation
of the CI model [40]. Given a huge corpus, LSA provides semantic representations
for any word in an unsupervised manner.
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Chapter 3

Background: Discourse
Comprehension in Cognitive
Psychology

Reading comprehension is one of the most essential skills we need in our daily life.
Till this day, the brain processes of reading comprehension are not completely
unraveled. However, psychologists believe that the outcome of the reading com-
prehension processes is a mental representation of the text [19]. This mental
representation is the result of many separate cognitive mechanisms, rather than
a single cognitive process [3] [4]. As a result of these various processes, three levels
of representation are constructed during reading [3]. Surface level is concerned
with the exact meaning of particular words being read. While reading a sequence
of words, we separately extract the literal meaning of every word by retrieving
its mental representation from our vocabulary bank. The second representation
level, Textbase, also known as propositional representation, connects the previ-
ous mental representations of separate words to construct idea units explicitly
stated in the text. These two levels are enough to comprehend what is explicitly
stated in the text. In fact, as figure 3.1 shows, several early theories were based
only on these two levels to explain comprehension [8] [9] [10] [11] [12] [13] [14]
[15] [16]. However, to completely comprehend a discourse, readers have to con-
nect the Textbase representation of the currently read text to their background
knowledge to process out of context ideas and resolve ambiguities [41]. Hence,
Kintsch and van Dijk [5] introduced the Situation model that goes beyond what
is explicitly stated in text. In fact, most discourse comprehension theories can
be traced to this seminal work of Kintsch and van Dijk.

The construction of the Situation model depends heavily on inference and
reader’s background knowledge. There are three main types of inferences in the
context of discourse comprehension: logical, bridging, and elaborative [42]. When
we read the word “widow”, we can immediately infer that the text is talking about
a woman. This type of inference that depends only on the meaning of the word
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Figure 3.1: Models of the reading process. [1]

is called logical inference. Bridging inference, also known as backward inference,
connects information in current environment (e.g., current sentence) with infor-
mation previously stated. In elaborative inference, readers engage background
knowledge to fill gaps in coherence and infer details not explicitly stated in text.

Consider this sentence as an example: “the frog ate the bug”. As figure 3.2
illustrates, after reading each word, we access the meaning from our semantic
memory. This represents the Surface level representation. Then, we create rela-
tions between the words and create the first and only proposition in this example;
EAT(FROG,BUG). This is known as the Textbase representation. Finally, the
Situation representation helps us imaging the frog shape and its long tongue
grabbing the bug; something similar to figure 3.3.
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Figure 3.2: Mental representation levels of discourse comprehension. [2]

Figure 3.3: The Situation model helps readers to infer additional information that
is not explicitly stated in the text, such as the frog shape and its long tongue
grabbing the bug.

9



Chapter 4

Machine Intermediate
Representation for Situational
Model with Application to
Sentiment Analysis

Any computational model for discourse comprehension must account for the three
representation levels agreed on by the psychology community; the surface level
representation, the textbase representation, and the situation model. Traditional
deep learning approaches for text analysis involves Recurrent Neural Networks
(RNN) [43] or one of its improved variations such as Long Short-term Memory
(LSTM) [7]. Such models fall under the connectionist framework. As shown in
figure 3.1, one limitation of such models is accounting only for surface level and
textbase level processing. The most significant factor in discourse comprehension,
the situation model, is often barely considered. Understanding cannot go beyond
what is explicitly stated in the text for inference and background knowledge are
taken for granted.

Situation model describes what the text is about. While reading, we tend to
draw a picture in our head for the situation of the text being read. For instance,
as shown in the example in figure 3.2, when we read “the frog ate the bug”,
we end up imagining a frog trying to catch a flying bug with its long tongue.
To account for the situation model, we propose to emulate the Human Mental
Intermediate (HMI) representation by mapping text to an image that can be
used to provide a new expanded semantic representation of the text. We then
analyze the images using the state-of-the-art vision models (e.g., CNN) to infer
sentiment. In section 4.1, we show three ways of inferring sentiment out of an
image. We call this particular HMI approach of mapping text to image then to
sentiment a Text-to-Image-to-Task (T2I2T).

Instead of forcing machines to use images as a middle representation, we also
propose to explore machines ability in developing their own internal “cognitive”
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representations through direct end to end (E2E) models. We call this Machine
Intermediate Internal (MII) approach.

We’ll first talk about our three ways of HMI, then we’ll explicate MII.

4.1 Human Mental Intermediate (HMI) repre-

sentation

In this section, we propose three different approached of inferring sentiment out
of an image.

4.1.1 HMI: Image to Sentiment

Studying the effect of images on humans, particularly concerning the evoked emo-
tions, is a recent research area known as Visual Sentiment Analysis [44]. People
recently tend to use images and visual content, besides the textual medium, on
social media platforms to express their emotions; making Visual Sentiment Anal-
ysis an emerging field of study. Visual Sentiment Analysis can be formulated as
image classification using deep learning methods such as Convolutional Neural
Networks (CNN) [45, 46, 47]. CNN can process raw images as input to auto-
matically extract relevant features for the purpose of classifying the sentiment
expressed in the image (e.g., positive or negative). In fact, most of the state-of-
the-art Visual Sentiment Analysis systems utilize transfer learning by fine-tuning
a CNN pre-trained on a large, general dataset [48, 49, 50, 51].

Inspired by the previous work, we treat the task of classifying the sentiment
expressed in our images as image classification task. Moreover, due to the rela-
tively small size of our dataset, we utilize transfer learning to overcome overfitting.
Namely, we fine-tune a pre-trained Residual network; one of the state-of-the-art
models on ImageNet. ImageNet [52] is one of the largest and most widely used
datasets in the field of Computer Vision. It contains more than 14 millions images
with around 21 thousand groups or classes. We believe that pre-training a deep
learning model on such dataset with large images and classes (e.g., objects) can
be considered as a background knowledge for any other task, which is essential
for constructing the situation model as described in chapter 3. Pre-trained on
ImageNet, we fine-tune ResNet 101 [53]. ResNets utilize skip connections to pre-
vent the problem of vanishing/exploding gradients in very deep neural networks.
A high level overview of our Visual Sentiment Analysis system is shown in figure
4.1.

4.1.2 HMI: Image to Labels to Sentiment

Sentiment Analysis originally developed for the purpose of textual analysis [54];
hence, unlike Visual Sentiment Analysis, the field of textual Sentiment Analysis
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Figure 4.1: Visual Sentiment Analysis by fine-tuning a ResNet pre-trained on
ImageNet.

has witnessed a significant improvement in the last decade [55] [56]. Therefore, we
propose to map the image back to text, hoping to extract additional information
from the image, and use a state-of-the-art system for textual Sentiment Analysis.

In the work of [57], authors claim that although some social media images
are accompanied with text (e.g., title, description, and tags), this text cannot be
exploited to extract the user’s sentiment. Authors demonstrated that the text
accompanying an image is usually noisy and misleading as it contains camera re-
lated information (e.g., Nikon, D200), geographical information (e.g., Seattle), or
objects that are not necessarily in the image. Moreover, the text might be subjec-
tive in a way that serves the user’s purposes, intentions, or agendas. Therefore,
authors proposed to automatically extract objective text from an image using
four different deep learning models. Two of the four models are object recogni-
tion models aiming at identifying objects in images.

Inspired by the previous work, we propose to map the image back to text
to utilize the emerging progress of textual Sentiment Analysis systems. Using
Google Vision API 1, which is relying on ResNets, we automatically extract in-
formation about entities in an image, called labels, identifying general objects,
locations, activities, animal species, products, and more. An example of labels
automatically extracted from an image using Google Vision API is shown in fig-
ure 4.2. Detecting labels, such as activities, can provide information more than
merely detecting object, which might be useful for sentiment analysis. For in-
stance, the extracted Play and Fun activities in figure 4.2 can be directly linked
to a positive sentiment. Such activity labels cannot be identified by an object
detection system. We then fine-tune a pre-trained language model, namely ULM-
FiT [58], using the extracted labels for the purpose of Sentiment Analysis. A high
level overview of this approach is illustrated in figure 4.3.

1https://cloud.google.com/vision
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Figure 4.2: Detecting labels from an image using Google Vision API.

Figure 4.3: Our approach of automatically extracting text labels from an image
(using Google Vision API), then mapping labels to sentiment.

4.1.3 HMI: Image Captioning Middle Representation

Identifying the relationships between the detected objects in an image can im-
prove the overall performance of image understanding, and hence Sentiment Anal-
ysis. Image Captioning (IC) is the art of generating a human-readable sentence
describing the content of an image. IC aims at not only detecting and recogniz-
ing objects in an image, but also understanding the interactions and relationships
between the detected objects [59]. We hypothesize that this extended medium
of understanding can improve the accuracy of any Computer Vision system, in-
cluding the task we have in hand; Visual Sentiment Analysis.

The majority of the latest IC systems follows an encoder-decoder architec-
ture. The encoder, usually a CNN, encodes the input image into a vector called
image features or representation. Taking the image features vector as input,
the decoder’s objective is to generate a syntactically plausible and semantically
meaningful sequence of words. Figure 4.4 demonstrates a general example of
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an encoder-decoder IC system. In order for the decoder to successfully gener-
ate the image description, the encoder output, the image features vector, should
embed all information about the detected objects and the relationships between
them. We believe that the informative image features vector can be utilized for
other tasks, such as Visual Sentiment Analysis, and can outperform extracting
sentiment just from detected objects as described in section 4.1.2.

Figure 4.4: A general overview of an encoder-decoder Image Captioning archi-
tecture.

Learning cross-modal representations is essential for numerous Vision-Language
(V+L) tasks, such as Image Captioning. Large-scale vision-language pre-training
(VLP) using massive image-text pairs is becoming a popular trend to learn cross-
modal representations for V+L tasks. Fine-tuning VLP models on downstream
tasks achieved state-of-the-art results on well-established V+L tasks [60, 61, 62,
63, 64]. Object-Semantics Aligned Pre-training (OSCAR) [64] is one of the latest
state-of-the-art methods for VLP. In addition to words sequence and image fea-
tures, OSCAR leverages objects automatically detected in images, using Faster
R-CNN [65], as anchor points to significantly ease the learning of image-text
alignments; achieving state-of-the-art results on six well-established V+L tasks,
including Image Captioning. To learn cross-modal contextualized representations,
the input triple (word tokens, detected objects, and detected image regions) is fed
to a multi-layer self-attention Transformer-based [66] encoder instead of a CNN.
For the purpose of Visual Sentiment Analysis, as shown in figure 4.5, we will add
a classification layer on top of OSCAR’s encoder, the pre-trained Transformer,
to map the features vector to sentiment.

4.2 Machine Intermediate Internal (MII) Rep-

resentation

In the previous section, we showed our approaches of adopting the situation
physiological model for discourse comprehension by employing an image reflect-
ing, and trying to go beyond, what is stated in the input text. We hope that an
image will provide an extended knowledge environment machines can utilize to
enhance natural language understanding. However, machines process images as
rows and columns of pixels, a 3D matrix to be specific. One can argue that forc-
ing machines to go through an image, that originally should be interpreted by the
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Figure 4.5: Visual Sentiment Analysis utilizing Image Captioning middle repre-
sentation using OSCAR.

human visual system rather than machines, might limit machines performance
and understanding.

For the last decade, it has been well-known that, using enough data, deep
neural networks can automatically extract relevant features that outperforms
the manually extracted features. Therefore, allowing machines to automatically
extract its own middle representations directly from text should theoretically
outperform the image middle representation approaches. This automatically ex-
tracted text middle representation can be thought of as the situation model for
discourse comprehension in cognitive psychology, if the background knowledge is
taken into consideration. As discussed in the introduction of chapter 4, the con-
nectionist framework, including RNNs, fails to account for the situation model.
One main reason is the lack of background knowledge and inference capabilities
since RNNs were trained from scratch on limited data; only on a downstream
dataset we have in hand.

To acquire background knowledge, we propose to use a model pre-trained on
all available text (e.g., Wikipedia). We consider Language Modelling (LM) to be
the ideal task to pre-train a model to obtain general understanding of a particu-
lar language due to its ability of capturing many aspects of language relevant for
other downstream tasks, including sentiment orientation [67], hierarchical rela-
tions [68], and long-term dependencies [69]. We will use two of the state-of-the-art
language model architectures for pre-training; namely ULMFiT [58], which uses
AWD-LSTM [70], and BERT [71], which uses Transformer Encoders [66]. The
pre-trained LM models can be fine-tuned on the task and dataset we have in
hand by adding a classification layer on top of the pre-trained AWD-LSTM or
Transformer Encoder.
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Chapter 5

Evaluating Machine Intermediate
Representation: HMI versus MII
for Sentiment Analysis

In the chapter, we talk about how we built our own text-image-sentiment dataset,
and why it was necessary to build a dataset from scratch. After that, we talk
about a baseline model which our cognitive approaches, HMI and MII, will be
compared against. Finally, we show and discuss our results.

5.1 Dataset Preparation

Our proposed human’s cognitive approach is consisted of two tasks: 1. mapping
text to an image, and 2. inferring sentiment out of the image; also know as Visual
Sentiment Analysis. The first task is achievable either by utilizing a dataset that
already contains the text-image-sentiment triplet or by automatically generating
an image by an end-to-end deep learning model.

Text-image-sentiment datasets are scarce and suffer from several limitations.
In SentiCap [72], the authors developed a model that automatically generates im-
age captions with positive or negative sentiments. They also built a text-image-
sentiment dataset by assigning both positive and negative captions to every MS
COCO images. Sentiment is hence reflected in the text only and is challenging
to be extracted from images. Twitter for Sentiment Analysis (T4SA) [50] is an-
other text-image-sentiment dataset. Authors collected around 3 million tweets
containing both text and images and automatically predicted the sentiment po-
larity of the textual contents to train a visual sentiment classifier. We find that
some Twitter text-image data, including T4SA, is impractical due to the fol-
lowing reasons. Text is sometimes not directly related or complementary to the
accompanied image. Some images contain nudes and screenshots for games or
chatting conversations, which is considered noisy for deep learning models. Fi-
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nally, sentiment models developed for T4SA achieved low accuracy (51.3% on 3
classes) which reflects the poor quality of the dataset.

The second approach, on the other hand, is well-known in the literature as
text-to-image synthesis, which aims at automatically generating realistic images
from a text description. Most text-to-image synthesis relies heavily on Gener-
ative Adversarial Networks (GANs) [73]. Text-to-image synthesis is still one of
the most challenging tasks in Computer vision. In fact most work in this field
suffers from generalization and the limitation of generating images describing one
particular domain only, such as flowers [74, 75], birds [74, 75, 76], bedrooms [77],
etc. Therefore, relying on text-to-image synthesis to map texts to images is not
feasible for our approach.

To test our T2I2T approach, it is necessary to build our own dataset of texts,
their corresponding images, and sentiment. One simple way is to augment an
Image Captioning dataset with sentiment as images accurately reflect what the
text is talking about. We consider MS COCO [78]; a large scale, well-known, and
reliable Image Captioning dataset. It contains around 330k images of complex
everyday scenes containing common objects, 40k of which are considered for
validation. Most images have more than one caption. Only the first caption
is considered in our developed dataset. Sentiment was automatically assigned
to the 40k validation captions using Google Natural Language API1. The API
processes the text and returns a sentiment score between -1 and 1 for every
caption. Only sentiments with high confidence score are considered. To have a
balanced dataset of 682 positive and 682 negative samples, we consider captions
whose sentiment score is above 0.8 or below -0.69. Everything in between is
treated as neutral sentiment and is not considered for our experiments. We
believe that a total samples of 1364 are enough since we will be taking advantage
of Transfer Learning in almost all our experiments. Examples of our sentiment
COCO dataset are illustrated in figure 5.1.

5.2 Baseline

We compare our T2I2T and E2E approaches with Bidirectional LSTMs [79]; one
of the most traditional and popular approaches before the emerge of the pre-
trained LMs. We experiment with one layer of bidirectional LSTM with 256
neurons followed by a softmax layer of 2 neurons. Bidirectional LSTM inputs are
represented as embeddings of length 300.
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Figure 5.1: Examples of our sentiment augmented COCO dataset.

Proposed approach Accuracy | F1
Baseline: LSTM 91.6 | 91.1

HMI: image→sentiment 71.5 | 72.3
HMI: image→labels→sentiment 56.5 | 56.8

HMI: IC representation 71.8 | 72.8
MII: ULMFiT 97.3 | 97.3

MII: BERT 97.4 | 97.4

Table 5.1: Comparison of results (Accuracy | F1) of baseline, HMI, and MII.

5.3 Results

Table 5.1 shows the results in terms of accuracy and F1 score of the LSTM
baseline, our three HMI approaches, and two MII methods.

HMI. Using text labels (objects, activities, etc) as a middle representation
deteriorates the performance of our model. In fact, going through text labels re-
sulted in the lowest score. This suggests that converting an image to text leads to
information and semantic loss. Going from image directly to sentiment achieved
similar results as using IC middle representation. Apparently, both of their final
representation looks the same, which means just like Image Captioning, image
classification has the ability to extract not only objects in an image, but also the
relationships between them. Nevertheless, 71.8% accuracy score is considered
low on two classes classification task, and HMI performance is poor compared to
the non-cognitive baseline (91.6% accuracy). This suggests that forcing machine
to use images as a middle representation is not an efficient cognitive approach.

1https://cloud.google.com/natural-language
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One possible explanation is that images represent an informative environment for
humans only since images are meant to be interpreted by our visual system. In
brief, for humans, “a picture is worth a thousand words,” [80], but for a machine,
an image is nothing but a 3D matrix of numbers. Another explanation can be
concluded by studying the model’s interpretability. Figure 5.2 shows the model’s
most salient regions of an incorrectly classified image. Instead of focusing on
the two persons who most probably seem poor, sad, and depressed, the model
attended to insignificant details such as the furniture and the background.

Figure 5.2: Interpretability of our VSA system. Model attended to details in-
significant for sentiment (e.g., background). This explains the poor performance
for HMI.

MII. Scoring almost the same results, both MII approaches, ULMFiT and
BERT outperformed the baseline and the best HMI approach by around 6% and
26% respectively. Allowing machines to automatically utilize their own cognitive
representations achieved better results than forcing a particular human represen-
tation.
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Chapter 6

Applications and Evaluation of
HMI with Arabic Image
Captioning

In this chapter, we talk about one of our other applications related to MRI in
Arabic. Particularly, we talk about Image Captioning in Arabic, which relates to
MRI and going from image to text.

In our paper titled Resources and End-to-End Neural Network Models for
Arabic Image Captioning [81], we answer the following question: to generate im-
age captions in different languages, is it necessary to develop language-specific
end-to-end models, or is it sufficient to translate English generated captions to
destination language? We developed the first Arabic Image Captioning (AIC)
end-to-end system. To evaluate its performance, we compared AIC with trans-
lating the captions of an English Image Captioning (EIC) system as shown in
figure 6.1.

Figure 6.1: AIC against translated EIC.

As illustrated in figure 6.2, our AIC system follows the sequence-to-sequence
encoder-decoder framework. For the encoder, we used CNN to encode the input
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image to a fixed-length image vector. Instead of initializing our encoder CNN
weights randomly and train from scratch, we will use the weights of a pre-trained
CNN. This is known as transfer learning, which refers to the situation where what
has been learned in one setting (task) is exploited to learn another setting (task).
Transfer learning is used a lot in the literature to improve model generalization
and speed up training. For our CNN, we use VGG16 [82], one of the previous
state-of-the-art models for object detection. VGG16 contains thirteen convolu-
tion layers and three fully connected layers, and is able to detect approximately
one thousand different objects.

For the decoder, we use RNN to decode the image vector into Arabic to-
kens. Particularly, we utilize LSTMs to overcome RNNs main issue of gradi-
ent vanishing during training due to its inability to handle long-term dependen-
cies. LSTM inputs at different time stamps are represented by word embed-
dings, which are vectors of numbers that reflect semantics. Words with similar
meaning have close embeddings. The embedding for each word is calculated as
xt = WeSt for t = 0, ..., N , where We is a 300X|V | word embedding matrix,
meaning each word will be represented by a vector of length 300. |V | denotes the
vocabulary length, which is the number of unique words in our dataset. St is a
|V |X1 one hot vector representing word i. Each hidden state of the LSTM emits
a prediction for the next word in the sentence, denoted by pt+1LSTM(xt).

Given any input image and its corresponding Arabic caption, the Arabic im-
age captioning encoder-decoder model maximizes the following loss function:
arg maxθ

∑
(I,y)

log p(y|I; θ), where I is the input image, θ are parameters to be

learned, and y = y1, ..., yt is the corresponding Arabic caption.

Figure 6.2: Sequence-to-Sequence Encoder-Decoder framework for Arabic Image
Captioning.

To demonstrate the necessity of our end-to-end AIC system, we develop and
train an English Image Captioning (EIC) system similar to our AIC using the
original Flicker8K dataset. We then translate the generated English captions to
Arabic using a pre-trained NMT model, namely Google Translate. The translated
Arabic captions are evaluated and compared with our end-to-end AIC output. A
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high level comparison of AIC against translated EIC is illustrated in Figure 6.1.
Due to the scarcity of AIC resources, we built, and made available for public,

the first AIC dataset by translating a popular EIC dataset, namely Flickr8K [83],
using Google Translate API1. Flickr8K contains 8,000 images; each image has 5
captions and mainly showing humans and animals performing particular activity.
Manual validation and editing for translated captions was done if necessary by
professional Arabic translator to account for any incoherent translations.

Datasets contain raw text, which may include useless textual information.
It is crucial to clean and preprocess our data before feeding it to any model
because ‘garbage in, garbage out’. We followed Arabic preprocessing techniques
recommended by [84]: Diacritics were removed, the ‘hamza’ on characters was
normalized, in addition to normalizing some word ending characters such as the
‘t marbouta’ and ‘ya’ maqsoura’. Moreover, we got rid of punctuation as well
as non Arabic letters. Finally, a special start and end token were added at the
beginning and the end of each caption to mark the starting and the ending point
of each caption. Short captions were padded with a special padding token to
ensure having captions of the same length.

For the image model, a pre-trained VGG16, excluding the last later, was used
to map images to embeddings, a vector of length 4096. The image embeddings
vector was then mapped to a vector of 256 by a fully connected layer with tanh
activation function to force the output values to be between -1 and 1. For the
language model, a single hidden LSTM layer with 256 memory units was defined.
The initial state of the LSTM was set to be the image embeddings, in order to
ensure generating captions related to a specific image. The loss function was
Softmax Cross Entropy. The optimization was done with mini batch Gradient
Descent with Adam optimizer and batch size of 1024. The total number of epochs
was 5. We consider an epoch as a single pass of the complete training dataset
through the training process. Each epoch took around 25 seconds.

Following previous works, the model was evaluated on the BLEU-1,2,3,4 [85],
which assesses a candidate sentence by measuring the fraction of n-grams that
appear in a set of references. BLEU scores for our E2E AIC system versus
translating EIC results are illustrated in figure 6.3. An end-to-end approach
of directly generating Arabic captions outperformed translating English gener-
ated captions. One possible explanation is that using a deep learning model
for English captioning followed by a second deep learning model for English-to-
Arabic translation may accumulate both models errors and uncertainties. Fig-
ure 6.4 shows some examples of captions generated by our end-to-end AIC sys-
tem. Dataset and code are available for public: https://github.com/aub-mind/
Arabic-Image-Captioning

1https://cloud.google.com/translate
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Figure 6.3: BLEU scores of end-to-end AIC vs translating English captions.

Figure 6.4: Accurate results generated by our AIC model.
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Chapter 7

Applications and Evaluation of
MII with Arabic End-to-End
Language Model

In this chapter, we talk about one of our other applications related to MII in
Arabic. Particularly, we show our work of pre-training the first Arabic-specific
Language Model, which strongly correlates with MII.

Transfer Learning using Universal Language Models (ULMs), such as ULM-
FiT [58] and BERT [71], have achieved state-of-the-art results in various NLP
tasks in English. In the field of Arabic NLP, the use of Transfer Learning in
Arabic has been mainly focused on word embedding models [86, 87]. In our work

titled hULMonA ( A
	
J Ò Ê g): The Universal Language Model in Arabic [88], we

hypothesize and prove that similar success can be achieved for Arabic. We de-

veloped the first Universal Language Model in Arabic (hULMonA - A
	
JÒÊg meaning

our dream), demonstrating its use for any Arabic classifications task.

Among the recently developed ULM models, BERT [71] built a multilingual
language version using 104 languages including Arabic. One advantage of the
multi-lingual BERT (mBERT) is that it can be used for many languages. How-
ever, one important limitation is that it was constrained to parallel multi-lingual
corpora and did not take advantage of much larger corpora set available for Ara-
bic, making its intrinsic representation limited for Arabic. As a result, there is
an opportunity to further improve the potential for ULM success by developing
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an Arabic specific ULM.
As figure 7.1 shows, hULMonA requires three steps. First, we pre-trained

one of the state-of-the-art Language Models, namely AWD-LSTM, on the whole
Arabic Wikipedia text (600K artickles) to acquire general knowledge about the
Arabic language. Although Wikipedia text is mainly in MSA, the resultant pre-
trained model can be fine-tuned later on different text genres (e.g., tweets) and
Arabic dialects to outperform training from scratch. Due to the huge amount
of text and model parameters, especially at the last softmax layer which has
as many neurons as the vocabulary size, the pre-training stage consumes much
time and computational power. Fortunately, pre-training is done once, and the
resultant model is made available to the community.

Second, to adapt to the new textual properties of the new (target) dataset,
we fine-tuned our LM on the target dataset. This is crucial because although the
general-domain LM is trained on MSA, most Arabic datasets and social media
platforms contains dialects. Unlike MSA, dialects have no standard or codified
form and are influenced by region specific slang. During fine-tuning, we use dif-
ferent learning rates for different layers, which is referred to as discriminative
fine-tuning. This is crucial since different layers capture different types of infor-
mation [89]. Discriminative fine-tuning updates the model parameters as follows:

θlt = θlt−1 − ηl · ∇θlJ(θ)

where θl is the model parameters of layer l, and ηl is the learning rate of layer l.
Finally, two fully connected layers are added to the LM for classification with

ReLU and Softmax activations respectively. At first, the two fully connected
layers are trained from scratch, while previous layers are frozen. After each
epoch, the next lower frozen layer is unfrozen and fine-tuned until convergence.
This is known as gradual unfreezing, and it is essential to avoid catastrophic
forgetting of the information captured during language modeling.

hULMonA was constructed by first extracting and preprocessing all Arabic
Wikipedia articles up to March of 2019. Articles images, links, and HTML were
removed using an online tool1, and articles with less than 100 characters were
excluded resulting in 600,559 Arabic articles consisting of 108M words, 4M of
which were unique. The large number of unique words requires more parame-
ters to be learnt and is more prone to overfitting. This problem is called lexical
sparsity, and it is a well-known challenge in Arabic NLP. Therefore, text was
preprocessed by replacing numbers by a special token, normalizing Alif and Ta-
marbota, separating punctuations from words by a white space, and removing
diacritics and non-Arabic tokens. Moreover, MADAMIRA [90], an Arabic mor-
phological analyzer and disambiguator, was utilized to separate words prefixes,
such as Al-taareef (the), and suffixes, such as possessive pronouns, resulting in
words stems, thus, reducing lexical sparsity. Table 7.1 shows the number of

1https://github.com/attardi/wikiextractor
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Figure 7.1: Three-step Process for Creating hULMonA.

unique words before and after preprocessing Arabic text using MADAMIRA.
Finally, tokens that appeared less than 5 times were replaced by a special token.

Example
Unique

tokens

Before
�
ém�


' @QË @ð

	
àñÊË @

�
éÖß
Y«

��
é
	
¯A

	
®

�
�

��
èXAÓ ZAÖÏ @ 4.1M

After
éÖß
Y« é

	
¯A

	
®

�
� èXAÓ ZAÓ + È@

ékZ@P + È@ +ð
	
àñË + È@

9.1K

Table 7.1: preprocessing reduces lexical sparsity

Table 7.2 demonstrates the capabilities of the pre-trained language model of
generating coherent Arabic sequences based on initial tokens. To provide credible
evaluation for the performance of the two ULM’s, we catalog a benchmark dataset
for Arabic which can also be used for future research benchmark evaluations.
The data sets vary in size allowing us to demonstrate the ULM’s abilities to
fine tune with little data and achieve high performance. The benchmark data
set is summarized in table 7.3 along with statistics on its content. Fine-tuning
hULMonA achieved a new state-of-the-art on four Arabic Sentiment Analysis
datasets as shown in table 7.4.
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Initial tokens Generated sequence
Pñ

�
J»YË@ ñJ


	
KñK
 ú




	
¯ YËð , ø



Xñª�

�
IkAK. ð I.

�
KA¿ , 	á�mÌ'@ YÔg@ Pñ

�
J»YË@

(Doctor) (Doctor Ahmad Al Hassan is a Saudi writer and researcher. He was born in June)

ÐY
�
¯ èQ» I. «B ¡�ð I. «C¿ I. ªÊK
 ú



¾K
QÓ@ ÐY

�
¯ èQ» I. «B

(football player) (American football player plays as midfield)

éËðX ©
�
®
�
Kð ¡�ðB@

�
�Qå

�
�Ë @ ú




	
¯ èYj

�
JÖÏ @ éJ
K. QªË@

�
H@PAÓB@ éËðX ©

�
®
�
Kð

(The country is located) (United Arab Emirates is located in the middle east)

Table 7.2: generating text using the pre-trained Arabic language model.

Dataset Resource # samples # classes MSA || Dialect
HARD Hotel reviews 93,700 2 MSA & Gulf

[91] (www.booking.com)
ASTD Twitter 10,000 4 MSA & Egyptian

[92]
ASTD-B Twitter 1,600 2 MSA & Egyptian

[92]
ArSenTD-Lev Twitter 4,000 5 Levantine Dialect

[93]

Table 7.3: Datasets statistics

Dataset SOTA Results hULMonA mBERT
HARD 93.1 | 93.2 [91] 95.7 | 95.7 95.7 | 95.7
ASTD 62.0 | 68.7 [92] 67.7 | 69.9 67.0 | 77.1

ASTD-B 82.5 | 82.4 [94] 85.8 | 86.5 80.0 | 80.1
ArSenTD-Lev 50.0 | 51.0 [93] 51.1 | 52.4 51.0 | 51.0

Table 7.4: Comparison of results (F1 | Accuracy) obtained using hULMonA and
other state-of-the-art models.

In conclusion, we utilized Transfer Learning to develop the first Arabic uni-
versal language model, hULMonA, that can be fine-tuned for almost any Arabic
text classification task. Language knowledge learnt unsupervisedly from general-
domain dataset is transferred to target task to improve overall performance and
generalization. We show that hULMonA outperforms several state-of-the-art
Arabic sentiment analysis datasets. In addition, we evaluate another ULM,
mBERT, and compare results. We make hULMonA available for the commu-
nity https://github.com/aub-mind/hULMonA
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Chapter 8

Conclusion

We study Cognitive Psychology to find out that reading comprehension involves
several cognitive processes, some of which are not covered by recent NLP meth-
ods. We developed models to account for the uncovered human’s cognitive pro-
cesses by mapping text to images that can provide additional semantic environ-
ment. We develop and compare three methods of inferring sentiment from the
image intermediate representation. We found that enabling machines to extract
their own cognitive representations through end-to-end models outperforms go-
ing through images as an intermediate representation. We also build our own
text-image-sentiment dataset to evaluate and compare our proposed approaches.
We conclude that although images represent a rich environment of information
for humans, utilizing images as an intermediate representation misled machine’s
attention to focus on unrelated details, and hence end-to-end cognitive models
achieved the best performance. No matter how advanced AI technologies get,
they must be inspired by the most intelligent creature in the universe; humans.

We finally show two other applications of the human’s and the machine’s
intermediate representation for Arabic NLP, namely Arabic Image Captioning
and Arabic End-to-End Language Model. In Arabic Image Captioning, we ad-
dress the challenge of Image Captioning in Arabic including the lack of Arabic
resources. We develop a new Arabic Image Captioning dataset and propose two
separate models for evaluation: translated English Image Captioning, and 2. end-
to-end model that directly transcribes Arabic text from images. The models are
compared using our developed dataset, and the results show the superiority of
our end-to-end Arabic Image Captioning system. In Arabic end-to-end Language
Model, we advance the Transfer Learning progress in Arabic by developing the
first Arabic-specific universal Language model. Pre-trained on a huge data, the
general-domain Language Model can be fine-tuned on any Arabic text classifica-
tion task and any Arabic dialect. We show the superiority of our Language Model
by achieving state-of-the-art results on four Arabic Sentiment Analysis datasets.

For our future work, we intend to conduct further analysis on the final repre-
sentation of both approaches, HMI and MII, and visualize them in a 3D space in
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our attempt to understand and explain models’ behaviours. We are also planning
to apply our findings of the reading comprehension cognitive process on a large
variety of NLP tasks other than Sentiment Analysis to evaluate the generalization
of our approach. Other tasks might include emotion recognition, cyberbullying
and hate speech detection, sarcasm detection, fake news detection, etc. Finally,
instead of studying the psychology of reading comprehension in general, we will
focus on the psychological cognitive processes of particular downstream tasks,
such as the mental processes involved in Sentiment Analysis specifically.
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Appendix A

Abbreviations

AI Artificial Intelligence
AIC Arabic Image Captioning
CI Construction-Integration
CNN Convolutional Neural Network
CV Computer Vision
EIC English Image Captioning
E2E End-to-End
DL Deep Learning
GAN enerative Adversarial Network
HMI Human Mental Intermediate representation
hULMonA the first Universal Language Model in Arabic
IC Image Captioning
LM Language Model
LSA Latent Semantic Analysis
LSTM Long Short-Term Memory
MII Machine Intermediate Internal representation
ML Machine Learning
NLP Natural Language Processing
OSCAR Object-Semantics Aligned Pre-training
RNN Recurrent Neural Network
T4SA Twitter for Sentiment Analysis
T2I2T Text-to-Image-to-Task
ULM Universal Language Model
V+L Vision-Language
VLP Vision-Language Pre-training
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