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Title: Lifelong Chatbots for Customer Support 

 

 

With advances in machine learning, chatbots are gaining increasing popularity in 

different domains, specifically bots for customer support.  The benefit of these bots is that 

they provide customers instant responses anytime and are able to save cost and time while 

enhancing customer service. However, one of the limitations of existing work on 

customer support bots (CSB) is that models developed for CSBs are either static or 

updated infrequently as more training data becomes available. Additionally, updating the 

learned models often needs human intervention. 

 

To address the limitations of discontinuous CSB learning and the required manual 

intervention, we propose the design of an automated Lifelong Learning CSB (LL-CSB) 

that can continuously learn and adapt its answers based on new knowledge acquired from 

different sources like support forums and discussions on the web. The proposed design 

of the LL-CSB addresses several challenges for lifelong learning (LL) including 

continuous tasks: extraction of new knowledge, update to existing knowledge, 

integration, and updates to LL-CSB response model. We propose to setup the CSB as an 

Information Retrieval (IR) system where the user asks for the solution of a technical 

problem and the response is a potential solution from the support knowledge base. To 

facilitate continuous knowledge updates, we design knowledge base of the LL-CSB as a 

knowledge graph (KG) consisting of <problem, solution> pairs. For continuous 

knowledge update, we propose a lifelong learning algorithm capturing rules for extraction 

of new knowledge from the web and checking whether a problem already exists in the 

knowledge base before adding it with the corresponding solution and linking it to similar 

problems in the KG. The similarity matching is based on a computationally low-cost and 

fast method using hashing TF-IDF vectorizer. For continuous updates of the LL-CSB 

response model and instead of retraining with the whole dataset with new knowledge, a 

TF-IDF hashing solution is used to enable fast additions of vectors representing new 

problems. Finally, we implemented the LL-CSB with real data from CISCO corporation’s 

network support. In addition to the LL-CSB design and implementation, we proposed a 

CSB-specific simulator for evaluation of the LL strategy.  The simulator models real-time 

updates of knowledge over time and evaluates the performance of customer queries over 

simulated time. 
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To evaluate the proposed design, we created a validation dataset comprised of real 

question-answer discussions crawled from CISCO’s online support forum. Using the 

simulator, our experimental results demonstrated the superiority of LL-CSB with up to 

3.18X improvement in F1 score compared to CSB without LL.  The simulator also 

showed how the baseline CSB suffered from a drop in recall and precision with more 

queries when it does not take advantage of lifelong learning. 
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CHAPTER 1 

INTRODUCTION 
 

When dealing with customer support, there are common struggles faced by the 

customers from one end and the businesses from the other, where customers worry about 

waiting hours or days to get a reply or a fix for their, most of the time, simple issues, 

while businesses struggle to keep up with the continuous flow of requests. This is where 

chatbots, or in that context, question-answering (QA) systems, are of great value. They 

provide instant 24-hour responses to simple questions posed by the clients thus allowing 

support staff in companies to focus on harder problems and saving staffing costs for these 

companies [1][2]. The problem however with these traditional QA customer support bots 

(CSB), which receive as an input a user’s problem or question and reply back the top-k 

answers or solutions to that problem, is that as new support knowledge emerges over 

time, the only way they can be updated is through manual re-training performed by 

employees themselves. This re-training process can be arduous as it requires continuous 

human intervention and critical timely updates. Additionally, the operation causes a lag 

in a somewhat discontinued learning process that inevitably causes the bot’s performance 

to suffer as new questions or queries are presented by users during that lag. To overcome 

this limitation, this thesis aims at exploring the integration of automated lifelong learning 

(LL) with the CSB.  The proposed LL-CSB would continuously and automatically learn 

new knowledge, thus avoiding human intervention and any lag in updates while ensuring 

improvement in its performance with new user queries [3]. 

Several approaches were developed for CSBs in answering a user problem or 

query. These approaches include pattern matching [4]–[6], rule-based methods [7]–[9], 



 

 10 

Artificial Intelligence Modelling Language (AIML) [10]–[13], Latent Semantic Analysis 

(LSA) [12], Natural Language Understanding (NLU) [14]–[16], Neural Networks (RNN, 

LSTM) [17]–[25], and Information or Answer Retrieval (IR-QA) [26]–[28]. Most use 

hybrid approaches that combine one or more of the mentioned methods. However, their 

work misses the continual knowledge learning process. On the other hand, research in 

lifelong learning for chatbots, which mostly used knowledge graphs (KGs), involved 

extending knowledge-base completion (KBC) that further links more entities with new 

relations in the KG [29][30] into open knowledge-base completion (OKBC). OKBC 

allows the bot to accept and deal with unseen entities or relations, which is a key-part of 

LL [29]–[32]. There has been some work where continuous learning for bots was 

implemented based on the conversation with the user [35]–[37]. Others have aimed at 

achieving lifelong information extraction by continuously extracting facts and opinions 

from the web [38]–[43]. However, none of the mentioned methodologies were applied 

for customer support. 

To tackle the gap in previous work and the problem of discontinuous learning for 

CSBs, this thesis targets designing lifelong learning for a customer support bot (LL-CSB) 

that continuously learns new knowledge from the web. The flow of LL-CSB is 

demonstrated in Figure 1; the bot takes as an input a user question or problem and returns 

its top-k answers or solutions. The approach is evaluated for network data from CISCO’s 

online forum1. 

                                                 
1 https://community.cisco.com/t5/technology-and-support/ct-p/technology-support 

 

https://community.cisco.com/t5/technology-and-support/ct-p/technology-support
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Figure 1: Our targeted LL-CSB system 

 

The lifelong flow in our system consists of continuously extracting new problem-

solution pairs from the online forum along with other info related to them, matching the 

new problem with existing problems in the KG, and finally adding the extracted info into 

the KG while linking the problem to similar existing problems there. The KG is 

implemented using the Neo4j graph database, and the matching of similar problems 

during the lifelong flow and the answering flow is done through a hashing TFIDF 

vectorizer. This vectorizer saves us the cost of recomputing the vector representations of 

all problems every time we add a new one. The similarity is then calculated based on the 

cosine distance between those vectors. Finally, the answering flow involves matching the 

top similar problem from the KG to the user’s problem or query and returning its solution 

and the solutions of the similar problems linked to this problem based on the degree of 

this similarity. 

To evaluate the impact of the LL-CSB, it’s tested in comparison to a static learned 

system that’s missing the LL (baseline CSB). For that, we need a simulator that simulates 

more knowledge/learning being added over time and more queries being applied over 
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time. The latter is applied for the baseline model to evaluate its performance with more 

user queries, while the LL-CSB is evaluated for all those queries as more knowledge is 

being learned. For the data split, we have the KG dataset i.e., the data that will be 

eventually added to the KG, and an evaluation dataset consisting of user queries, relevant 

set of problems to those queries, and irrelevant set of problems to those queries. These 

relevant and irrelevant sets will be added to the KG while the user queries will be used 

for evaluation. We use common IR metrics for evaluation, namely recall, precision, F1 

score, mean average precision (MAP), and Normalized Discounted Cumulative Gain 

(NDCG). Our results showed the superiority of the LL-CSB over the baseline CSB in the 

mentioned metrics. Additionally, we compare our LL model to other state of the art LL 

models in terms of application to verify its uniqueness. 

Our thesis contributions consist of: 

1. Designing a KG to represent network support discussions where this KG should 

provide a seamless learning/updating mechanism (ease of updates) 

2. Designing a LL flow that permits the CSB to continuously update its KG with new 

knowledge form the web while simultaneously linking the newly added problems to 

existing problems in the KG 

3. Designing a low-cost method for the continuous update of the answering model with 

the newly acquired knowledge 

4. Designing an approach to validate the effectiveness of the lifelong process applied to 

support bots  

This report is divided as follows: chapter 2 discusses the previous related work in 

CSBs and LL for chatbots. Chapter 3 presents the methodology followed for the three 

main units in our system (LL flow, KG, and answering integration/flow) in addition to 
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their implementation and the evaluation methodology used. In chapter 4, we discuss the 

dataset used, how we formed the evaluation dataset, the experimental setup followed, and 

the results of the conducted experiments along with their analysis/discussions. The thesis 

is then concluded in chapter 5 with a list of possible future work. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1. Chatbots for Customer Support  

Several work has targeted building chatbot systems for customer support 

considering the value these bots convey to the businesses incorporating them and to their 

clients.  

Most of these older chatbots were based on pattern matching i.e. matching with 

templates to produce a response like in Eliza [4], Alice [5], and Chat Script [6]. Other 

chatbots use rule-based techniques where input keywords or features are mapped to their 

outputs. These chatbots include Cleverbot [7], Chatfuel [8], and Watson [9]. Some of 

these pattern-matching and rule-based chatbots suffer from generating static responses. 

Chakrabarti et. al. [44] used Grice's cooperative maxim and goal fulfillment maps to build 

troubleshooting chatbots with longer and more meaningful conversations. On the other 

hand, using Natural Language Understanding (NLU) to identify valuable information or 

keywords that can be matched to certain outputs has proven to be very useful in some 

systems like LUIS [14], Dialog flow [15], and Amazon Lex [16]. It however limits the 

chatbot sometimes to certain languages. 

Several chatbots, like Mitsuku [10], have been developed based on Artificial 

Intelligence Modelling Language (AIML) which is an XML based markup language 

consisting of categories and possible replies within them. Ghose et. al. [11] uses ALICE 

[5] for advising (in education) where the information source has the form of entities and 

links connecting them with a similar structure to AIML. Reshmi et. al. [13] integrated 

AIML with a knowledge base as a database consisting of basic facts that can be used if 
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something is not found directly using the AIML (a modified version). If missing 

information is encountered, the chatbot asks the user to clarify it. Thomas et. al. [12] 

developed a chatbot system that answers general questions using AIML and service 

specific questions or those AIML could not answer using LSA (Latent Semantic 

Analysis). The latter is trained using a Frequently Asked Questions (FAQs) dataset by 

dividing the documents and creating a matrix showing word similarities based on their 

presence in the documents. The right answer is selected by computing the similarity 

between the question and the FAQs. This strategy is known as information retrieval (IR) 

or answer retrieval where the user’s question or problem is matched to similar problems 

in a knowledge base subsequently returning their respective solutions (a ranking method). 

Another IR-based chatbot that uses FAQ pages from the web was developed in [26] where 

question/answer Q/A pairs were automatically extracted from the collected pages, and 

the users’ questions were answered by detecting similar questions in the Q/A pairs using 

a syntactic tree matching approach. Online discussion forums were also used in [27] to 

create a chatbot’s knowledge as <thread-title, reply> pairs that are extracted and ranked 

using SVM.  

Some papers have used neural networks for chatbots. The authors in [17] 

introduced a sequential matching framework (SMF) where RNNs were used on context-

response matching vectors to model the relationships between statements in a context. 

RNNs were also used in [18] for question-answering and in [19] where a seq2seq model 

was used with GloVe word vectors and trained using cross-entropy error. The latter 

proved to work well with yes/no questions, but attention mechanisms were preferred in 

other cases to treat sentences independently.  Sutskever et. al. [20] used attention 

mechanisms to capture several parts of the input  and  applied neural machine translation 
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with multilayered Long Short-Term Memory (LSTM). Vinyals et. al. [21] made use of a 

seq2seq framework to map sequences and extract knowledge from a domain specific 

dataset for IT troubleshooting (computer issues) and from a larger and general noisy 

domain dataset of movie subtitles. LSTM was used to develop both models to avoid the 

vanishing gradient problem in RNN. The IT model was able to find solutions to technical 

issues through conversations. Boyanov et. al. [24] used online forums to train a seq2seq 

model for answering. The relevant sentences were extracted by matching similar ones 

from the questions and answers using the cosine similarity of their word2vec embeddings. 

The idea was to train the conversational agent from scratch on the forum data alone. To 

deal with the seq2seq models’ limitations of generating long and incoherent responses 

due to the fixed length of the decoder’s hidden state vector, Shao et. al. [22] introduced a 

seq2seq model with stochastic beam-search decoding method. Attention-based seq2seq 

models were used in [23] to improve input-output alignment and understand queries, user 

interactions, and ad recommendations. Bidirectional Encoder Representations from 

Transformers (BERT) was used in [25] where given a conversation history and a passage 

that contains the answer, the bot extracts the relevant answer to a new question from that 

passage. The relevant passage is chosen based on IR techniques. 

All the mentioned chatbots require human intervention in their training and 

evaluation procedures and are missing the continual learning that allows them to quickly 

adapt to new information needed to improve their performance. 

 

2.2. Lifelong Chatbot and Information Extraction Systems 

Ample recent work has been aiming at allowing a certain machine learning system 

to continuously learn new knowledge on its own. Our focus is on lifelong chatbots 
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attempting to learn new knowledge continuously from a certain source. Most of the 

mentioned chatbots rely on knowledge graphs (KGs) which have the form of (entity, 

relation, entity). 

In [29], Shi et al. was able to handle encountering unknown entities by inference 

using external text corpus, but was still incapable of dealing with unknown relations. 

Some knowledge base population (KBP) techniques have been discussed in [30]. They 

target finding new facts about entities in the KB and augmenting them with that KB. 

Hence, they cannot handle unknown entities, but can only find new knowledge based on 

the existing entities in the KB. 

Several recent papers are trying to build chatbots that can learn from their 

interactions with the users. Mazumder et al. [31][33] implemented a continuous learning 

chatbot by developing the knowledge base completion (KBC) system that infers new facts 

(knowledge) represented as triples (s: source entity, r: relation, t: target entity) from a 

closed-world into an open world assumption (open-world knowledge base completion 

OKBC [29]) that accepts new facts with unknown entities or relations. The system tries 

to infer the new facts from these unknowns by asking the user to fill the missing links, 

thus forming a lifelong interactive learning and inference (LiLi) system. Another OKBC 

approach is introduced in [34] which aims at discovering facts for unknown entities and 

adding them to the KB or KG based on KG embeddings (embedding-based knowledge 

graph completion). Abujabal et. al. [32] tried to handle and learn new and different 

syntaxes for a question by getting semantically close questions from the templates each 

time the system encounters a question asked in a different syntax, then allowing the user 

to vote for the right answer among them to be added to the templates while periodically 

retraining the models. A self-feeding chatbot in a dialogue setting was developed in [35]. 
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This chatbot can detect the satisfaction in the user’s response: if the user is satisfied with 

the replies, their responses are used as new training data, otherwise if not, a feedback is 

requested from the user so that the machine can take the correct scenario instead and re-

train with it. In a movie QA domain, the bot in [37] improved its performance through 

user interaction by learning to ask questions in offline supervised settings and online 

reinforcement learning settings. Moreover, an ongoing project [36] is also aiming at 

developing a chatbot that can learn from its conversation with the user. However, our 

main focus is a chatbot that continuously learns from the web, not from its conversation 

with the user. 

Continuously extracting knowledge from the web is also known as lifelong 

information extraction (IE). The NELL system introduced in [39] was able to add the 

continuous learning part with facts extracted from the web. It consists of several models 

including classifiers, models that execute inference based on embeddings, and an 

ontology expander. These models work together with coupling constraints to widen a KB 

with facts extracted from the web. The updated knowledge is then used to retrain the 

models to guide the following extraction cycles. Similarly, ALICE [38] performs lifelong 

information extraction from the web by utilizing the entity-relation-entity triples 

extracted and KBs like Wordnet to find concepts (general categories of entities) and 

relations between them. Lifelong IE has been used for aspect extraction and opinion 

mining as well, where [40] used lifelong learning and similarity measures to try to find 

correlated words like phone and battery. Shu et. al. [41] also implemented L-CRF 

(lifelong conditional random fields) as a supervised aspect extraction process to improve 

new domains by using knowledge about aspects from previous domains. NELL has been 

used within other systems to apply its lifelong IE concept for morphologically rich 
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languages like Russian [42], where some components were modified, and to train a neural 

tensor network (NTN) [43] from its KG to evaluate the NTN behavior in a more practical 

scenario. NTNs work on inferring new knowledge within the KG (KBC) based on word 

and KG embeddings. Although these mentioned systems apply continuous learning from 

the web, which is our target, they are focused on basic factual knowledge only. They have 

not been applied for discussions that handle support and troubleshooting, or for chatbots 

in customer service/support. Handling such scenarios requires different approaches and 

techniques, hence introducing new challenges. 
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CHAPTER 3 

METHODOLOGY 
 

3.1. High-level Design of the Targeted Lifelong System  

 Figure 2 below illustrates the components involved in our targeted QA system 

from Figure 1. These three components are: 

 Knowledge Graph Representation: It represents the extracted data as a KG 

composed of entities or nodes and relations connecting them. 

 Lifelong Model/Process: It performs the following steps: 

1. Continuously extracts newly posted and solved problems with their solutions and 

information 

2. Transforms the extracted problems and information into nodes/relations (sub-

graph) according to the KG architecture 

3. Matches the extracted problems to problems in the KG 

4. Inserts the new problems with their information/connections and links them to 

their similar problems in the KG 

 Chatbot Model: It receives the user’s question or problem, matches it to the top-k 

similar problems in the KG (method discussed later), and returns their respective top-

k solutions to the user. 
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Figure 2: High level design of our system 

 

 Each of these components and their implementations are discussed next. First, the 

online forum’s hierarchy and data structure is demonstrated in section 3.2. Section 3.3 

depicts the LL process adopted and the implementation details of the similarity measure 

used for the matching. Section 3.4 presents the KG’s final design and execution. The 

chatbot model (the third component from above) and its integration with the LL flow are 

described in section 3.5. Finally, an overview of the evaluation method followed for the 

system is presented in section 3.6. 

 

3.2. Description of Customer Support Data and Hierarchy Structure 

 Our focus in this thesis is on online discussion forums for CISCO. This section 

demonstrates how these forums look like and what hierarchy they follow, in addition to 
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the characteristics involved for the problems and solutions. These aspects are important 

and need to be captured later in the KG design. 

 Figure 3 below shows the overall hierarchy of the forum starting with domains at 

the top. Within each domain exists several topics within which several labels and tags can 

be found. At the last level of the hierarchy are the problems and solutions where each pair 

is related to one or more labels, but the tags are optional.  

 

Figure 3: Overall hierarchy of the online forum data 

 

Examples of this hierarchy are shown in Figure 4. Some of the domains that 

appear are Networking, Security, Wireless – Mobility and others2. Inside the Wireless – 

Mobility domain, one topic can be found: “Wireless”3.  This topic consists of a group of 

                                                 
2 https://community.cisco.com/t5/technology-and-support/ct-p/technology-support 

 
3 https://community.cisco.com/t5/wireless-mobility/ct-p/4931-wireless-mobility 

 

https://community.cisco.com/t5/technology-and-support/ct-p/technology-support
https://community.cisco.com/t5/wireless-mobility/ct-p/4931-wireless-mobility
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labels4 and tags5 (shown at the third level in the figure) with problems listed for each of 

those labels/tags. At the end, one problem within the “5508” tag6 is selected to further 

explore the last level of the hierarchy.  

 

Figure 4: Example of CISCO's online forum hierarchy and data structure 

 

Figure 5 shows that last level which comprises of the problem text and its 

accepted solution text, in addition to features like title, user (with username and level), 

                                                 
4 https://community.cisco.com/t5/wireless/bd-p/discussions-wireless 

 
5 https://community.cisco.com/t5/forums/tagdetailpage/tag-cloud-grouping/tag/tag-cloud-

style/related/message-scope/core-node/board-id/discussions-wireless/user-scope/all/tag-

scope/all/timerange/all/tag-visibility-scope/public 

 
6 https://community.cisco.com/t5/tag/5508/tg-p/board-id/discussions-wireless 

https://community.cisco.com/t5/wireless/bd-p/discussions-wireless
https://community.cisco.com/t5/forums/tagdetailpage/tag-cloud-grouping/tag/tag-cloud-style/related/message-scope/core-node/board-id/discussions-wireless/user-scope/all/tag-scope/all/timerange/all/tag-visibility-scope/public
https://community.cisco.com/t5/forums/tagdetailpage/tag-cloud-grouping/tag/tag-cloud-style/related/message-scope/core-node/board-id/discussions-wireless/user-scope/all/tag-scope/all/timerange/all/tag-visibility-scope/public
https://community.cisco.com/t5/forums/tagdetailpage/tag-cloud-grouping/tag/tag-cloud-style/related/message-scope/core-node/board-id/discussions-wireless/user-scope/all/tag-scope/all/timerange/all/tag-visibility-scope/public
https://community.cisco.com/t5/tag/5508/tg-p/board-id/discussions-wireless
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date, and stats like the number of views, the number of users who found it helpful, and 

the number of replies. 

 

Figure 5: A sample of a forum problem, its solution, and characteristics7  

  

                                                 
7 https://community.cisco.com/t5/wireless/wlc-5508s-sso-v8-5-mgmt-interface-operations/m-p/4148629 

 

https://community.cisco.com/t5/wireless/wlc-5508s-sso-v8-5-mgmt-interface-operations/m-p/4148629
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3.3. Design of Lifelong Learning Logic Flow for Continuous Knowledge Update 

 Figure 6 below shows the lifelong flow. This flow starts by extracting a problem-

solution pair from CISCO’s online forum. The extracted problem is first compared to all 

the existing problems with three possible scenarios based on the level of similarity of the 

extracted problem with any of the existing ones:  

1. Identical problems are substituted with the more recent one. 

2. Similar but non-identical problems are kept and linked together with the link 

expressing the degree of similarity as well. 

3. Unsimilar problems are just added to the KG without being linked to other problems. 

 

Figure 6: Illustration of the lifelong flow as described in Section 3.3.1 

 

  For example, we denote our extracted problem as problem x1. If this problem 

proves to be almost identical (highly similar) to problem x3 from the KG (first scenario), 

two alternative actions can be practiced based on both problems’ dates (which are 
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extracted alongside the problems). If problem x1 is older than problem x3 (possible in 

case x1 was solved later and so extracted later), problem x1 will not be added into the KG 

to avoid duplication, but problem x3 will be used as its substitute. This means that when 

adding problem x1’s solution and other information, they are linked to problem x3 as the 

substitute of problem x1. Otherwise, if problem x3 is older than problem x1, the former 

is replaced by the latter while keeping all its existing connections. 

 On the other hand, if no identical problem is found to this extracted problem x1, 

but one or more problems from the KG show high similarity with it, then x1 is added and 

further linked to those similar problems, with the link reflecting the degree of similarity 

as well (second scenario). Finally, for the third scenario, if problem x1 shows no 

similarity with any of the existing problems, it is simply added to the KG without linking 

it to any other problem.  

 For the solution, the system only checks if an identical solution was found to the 

extracted solution. If so, the more recent one is used similar to what is done for identical 

problems. This implies that only similar problems are linked to each other (not similar 

solutions) since looking at the problems alone is sufficient. The steps on the solution’s 

side are only to avoid duplication.  

 Eventually, the resulting problem-solution pairs are added to the KG (or their 

identical substitutes are used instead) along with their relative information, then 

connected to each other. The nodes and relations used are discussed in section 3.4. . 

 For deciding the similarity in the explained flow (and in the answering later), 

TFIDF was used. It stands for Term Frequency (TF) - Inverse Dense Frequency (IDF). 

TFIDF represents documents, or in our case, problem/solution texts as vectors based on 

the frequency of the words used (TF, eq.1) and the importance of the words used (IDF, 
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eq.2). Less common words are the ones considered important where for example, the 

word “the” receives a low IDF score for being very common. The equations for 

computing TF and IDF are shown below [45]. After reaching the vector representations 

for the documents or problems/solutions, similarity is realized by computing the cosine 

distance between those vectors. Note that after experimenting with different thresholds, 

we determined that a cosine similarity above 0.9 indicated “identical” problems/solutions, 

and a similarity between 0.1 and 0.9 indicated “similar” problems. 

 

𝑇𝐹 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (1) 

𝐼𝐷𝐹 =
log(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑
 (2) 

 

 TFIDF was invented for document search where it provides the most relevant 

results to a search query [46]. It matches the results to the query based on word similarity. 

In our case, specific technical terms are of great importance where the more common 

these technical terms are between two documents, the more these documents should be 

similar or tackling similar problems. For that reason, TFIDF can be of great use. 

Moreover, it is more suitable and less complex for our system since it is: 

 Easy to use: TFIDF does not require training but only transforming the documents 

into their vector representations based on the total words in all documents. This 

further means that no annotated dataset is needed which is difficult to get in our case. 

 Important in evaluation: TFIDF was additionally used later to form the evaluation 

dataset for the experiments (section 4.1. Dataset). 
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 Allows optimization: TFIDF facilitates LL by providing room for optimizing the 

learning process through using the hash vectorizer which will be explained in the next 

section.  

 In the future, more advanced solutions can be used for the similarity technique, 

most important of which is word embeddings that can be extracted from language models 

and deep learning models. Changing the similarity model used does not affect the LL idea 

or flow. What matters is that a low-cost solution is found for the automatic update of the 

chosen model to the continuous knowledge addition.  

 In the standard TFIDF vectorizer, the size of the vectors is determined by the 

number of distinct words in all documents. This means that as more documents or in this 

case, problems are acquired, the vectors need to be recomputed for all the existing 

problems as well since more words are added. This is costly for our lifelong flow. The 

Hash Vectorizer solves this issue by fixing the size of the vector through applying a 

hashing function to the word frequency counts in each document. It is a low-memory 

scalable solution that is very suitable for streaming. To avoid collisions in hashing, the 

vector size was chosen to be large enough for our system (218). The only disadvantage of 

the Hashing Vectorizer is that it does not apply the IDF part since it cannot hold any state. 

This is usually compensated for by applying preprocessing to the text, which is 

demonstrated in section 4.1. Dataset. [47] 

 Having a pre-defined, fixed vector size means that no vector re-computation is 

required for any of the existing problems. Whenever a new problem is extracted, its 

computed vector representation can be simply appended to the matrix of vectors for all 

problems. This matrix is then saved aside and used for all future comparisons of a new 

problem to the existing problems in the KG (in the lifelong flow and the answering flow). 
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This is significant since it means retrieving any problems from the KG is no longer needed 

in both flows to compute similarity; the cosine distance can be directly applied with the 

saved matrix. This is demonstrated in Figure 7 below. 

 

Figure 7: Low-cost solution using the Hash Vectorizer 

 

3.4. Design and Implementation of Knowledge Graph Database 

3.4.1. Requirements  

 KGs are the suitable choice to represent our data for two main reasons. The first 

reason is that KGs facilitate LL where new instances can be directly and easily added 

without affecting the previous version of the KG. Therefore, KGs seem to be the most 

appropriate choice for a system that’s continuously growing over time [48]. The second 

reason is that due to the connections that can be achieved with KGs, the knowledge of the 

system can be improved beyond the extracted data (more insights) [3].  

 The KG design should represent the problems and solutions in a direct way so that 

it facilitates retrieving the needed ones. This includes being able to easily reach similar 
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problems to a certain problem and retrieve their respective solutions. Moreover, the KG 

design should allow linking new problems to similar existing ones and capture the 

hierarchy presented in Figure 3 and the characteristics shown in Figure 5. These 

characteristics represent important information about each problem-solution pair and can 

be used to improve the lifelong and answering models now and in the future. 

 

3.4.2. Final Design 

Figure 8 below shows the final design of our KG. 

 

Figure 8: Final knowledge graph design 

 

An example exhibiting the information captured in the nodes is presented in 

Figure 9. It is important to have the problems and solutions as separate nodes (instead 

of attributes in another node or relation) since they are the main entities in our system 

and thus, need to be represented and reached easily. The attributes for these two nodes 
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are “Text” and “Date”, in addition to “Title” in problem. They’re connected by the 

“SOLVED_BY” relation and similar problems can be connected by the 

“SIMILAR_TO” relation with the degree of similarity stored in the “degree” attribute of 

that relation. For each of the problem and solution, their respective “Users” are 

represented as nodes with “Username” and “Level” as their attributes. Problems and 

solutions are also connected to nodes representing their respective “Labels”, “Tags”, 

“Topic”, and “Domain”. Finally, the “Reference” of the problem-solution pair is 

marked in a separate node consisting of the “URL”, number of “Views”, number of 

users who found this “Helpful”, and the number of “Replies”. 

 

Figure 9: Example of the information captured in the graph design7 
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3.4.3. Implementation: Neo4j Graph Database 

 For the implementation of the KG, two options are graph databases and 

triplestores. Below (Figure 10) is a comparison between the two. Graph databases greatly 

suit our system implementation since they provide better modeling with the option of 

having attributes which are deeply needed in our graph as shown in the previous section. 

Graph databases are also convenient due to their capability of storing various types of 

graphs, in addition to their easy and straightforward usage. Switching to triplestores in 

the future might help in the scalability of the system. 

 

Figure 10: Graph Databases vs. Triplestores [49]–[51] 

 

 The Neo4j8 (NoSQL) graph database was selected for our implementation. It’s 

one of the leading graph databases and has several advantages that suit our system 

including [52]:  

 Flexible data model 

                                                 
8 https://neo4j.com/ 

 

https://neo4j.com/
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 High performance due to Native Graph Storage and Processing, and high scalability 

 Easy to learn and implement 

 Big active community 

 Can be used with python  

 Figure 11 below shows one example extracted to Neo4j (attributes not shown 

inside each node in the picture), and Figure 12 shows how the graph grows as we add 

more knowledge and connections via the LL flow. The left picture in Figure 12 highlights 

one of the “SIMILAR_TO” relations where the degree of similarity can be observed at 

the bottom of the picture as the attribute “degree”. 

 

Figure 11: Example of a problem and its information extracted and represented in Neo4j9 

 

                                                 
9 https://community.cisco.com/t5/wireless/ap-adder-license-for-vwlc-running-in-same-mobilty-group/m-

p/4138846#M118242 

 

https://community.cisco.com/t5/wireless/ap-adder-license-for-vwlc-running-in-same-mobilty-group/m-p/4138846#M118242
https://community.cisco.com/t5/wireless/ap-adder-license-for-vwlc-running-in-same-mobilty-group/m-p/4138846#M118242


 

 34 

 

Figure 12: Adding and linking more knowledge with Neo4j (LL Flow) 

 

3.5. Integration of the Answering Flow with the Lifelong Learning Flow 

 The executed answering flow is shown in Figure 13 below where the user’s 

question or problem is first compared to the existing problems in the KG. The comparison 

here is done through TFIDF, specifically the Hashing Vectorizer, similar to how it is done 

in the LL flow. Likewise, the Hashing Vectorizer allows us here to avoid actually 

retrieving the existing problems from the KG, and instead, compute the cosine similarity 

with the saved matrix of these existing problems. If no problems showing a similarity 

higher than 0.1 with the user’s problem are found, no answers are returned, only a 

“Cannot Answer” reply. Otherwise, the problem showing the highest similarity is chosen. 

This problem’s direct solution or solutions are returned at the first level as the highest 

ranked solution/s. The number of answers returned (k) can be specified by us or by the 

user. In addition to the most similar problem’s solution, the solutions of the similar 

problems to this top problem are also returned in order of their similarity with this top 

problem. If any of the problems has multiple solutions, these solutions are currently 
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returned at the same level (see Figure 14). For the future, multiple methods can be 

followed to rank these solutions like the “Helpful” attribute which can show how many 

users have found this specific solution helpful. 

 

Figure 13: The answering flow 

 

 
Figure 14: Answering with multiple solutions for a problem 

 

 If similar problems are not linked in the KG, the answering flow will then be 

modified to detect the top-k similar problems instead of the top-1 problem. Subsequently, 

the solutions to these problems are returned in the order of their similarity to the user’s 

problem instead of returning the solutions connected to the top problem. Answering the 
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same example from Figure 13 without the linked problems is shown in Figure 15. This 

is just to demonstrate how answering differs without linked problems (which is not our 

case). This is used in the experimental results later (Error! Reference source not found.) 

to prove the value of this linking. 

 

Figure 15: Answering without linked problems 

 

3.6. Design of Evaluation Process for Lifelong Learning for Customer Support 

 The evaluation consists of three main steps that focus on testing LL in comparison 

to a static learned system: 

1. Compute the performance of the system without LL (baseline) 

2. Compute the performance of the system with LL 

3. Compare 

The idea is that a baseline model without LL is a model that suffers from a lag in 

its knowledge update process. During that delay, it will receive more and more user 

questions that it may or may not be able to answer yet, especially the most recent ones. 

On the other hand, a LL model is a model that avoids this lag by continuously updating 

itself with the new knowledge emerging from its source of data while answering the same 
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user queries. To mimic this behavior, we utilize a simulator that simulates more queries 

being applied over time and more knowledge/learning being added over time. This allows 

us to evaluate the baseline model with more user queries and the LL model on these 

queries as it continuously learns additional knowledge over time. 

Since our baseline model is an information-retrieval (IR) system, we select the 

most suitable evaluation metrics for such systems [12], [26]–[28], [53]. The chosen 

evaluation metrics are recall, precision, F1 score, mean average precision (MAP), and 

Normalized Discounted Cumulative Gain (NDCG) per number of answers returned (k), 

and their respective equations are presented below (Equations 3, 4, 5, 6 and 7). Relevance 

here is based on the problem texts for that is what is being compared and matched in our 

system. In order to be able to compute these metrics, an annotated evaluation dataset is 

required consisting of user queries, relevant problems to these queries, and irrelevant 

problems to these queries. The user queries alone are then used to test the system while 

the relevant and irrelevant problems should be added to the knowledge graph (KG) 

eventually. These relevant problems are then expected to be returned by our system when 

their respective user queries are applied, and the evaluation is built upon that. 

 

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =
# 𝑜𝑓 𝑜𝑢𝑟 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 

# 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 
  ( 3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
# 𝑜𝑓 𝑜𝑢𝑟 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

# 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟𝑠
   (4) 

𝐴𝑃@𝑘 =
1

# 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑖 𝑖𝑓 𝑖𝑡ℎ 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑙𝑠𝑒 0

𝑘

𝑖=1

   (5) 

𝐹1@𝑘 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (6) 
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𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
=

∑
𝑟𝑒𝑙𝑖

log2(𝑖 + 1)
𝑘
𝑖=1  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

∑
𝑟𝑒𝑙𝑖

log2(𝑖 + 1)
𝑘
𝑖=1  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑙𝑖𝑠𝑡 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 𝑟𝑒𝑙

  (7) 

 

Regarding NDCG, since the length of the Discounted Cumulative Gain (DCG) 

varies with the number of returned answers (k), it needs to be normalized by dividing it 

by the ideal DCG (IDCG) that consists of all possible answers in the KG ordered 

according to their actual relevance (rel) to the query and taken up to position k [53].  

On the other hand, the scalability of the LL system should be evaluated as well. 

This includes measuring the time needed to add and link new problems in the KG and 

the time taken to answer the user queries with respect to the size of the KG in terms of 

the number of problems within it so far. 
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CHAPTER 4 

EXPERIMENTS AND EVALUATION 
 

In this section, we describe the dataset used for evaluation and present our 

experimental setup. 

  

4.1. Dataset 

 From the wireless topicError! Bookmark not defined., we crawled all the 

problem-solution pairs marked as “solved”. This gave us a total of 7945 pairs with their 

info. In order to enable creating the evaluation dataset, for 1066 out of those 7945 pairs 

(between 10 and 15%), we crawled their recommended problems from the forum. Figure 

16 shows how each problem receives similar recommended problems on the forum. The 

amount of crawled recommended problems was 2245, adding up to a total of 10190 

crawled problem-solution pairs with their needed information.  

The crawling was done using a customizable crawling software called OutWit 

hub10, and the results were saved in a csv file with its columns representing the attributes 

that need to be captured like domain, topic, problem/solution texts and users, title, labels, 

tags, views, helpful, and replies. Alternatively, in a real-life scenario, this crawling should 

be scheduled to occur automatically on its own via a running script. 

                                                 
10 https://www.outwit.com/ 

 

https://www.outwit.com/
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Figure 16: Recommended problems via forum 

 

 The preprocessing steps for the problem/solution texts included transforming to 

lowercase, removing all punctuation, removing one-character words, removing stop-

words, and lemmatization. Furthermore, we separated numbers from words; for example, 

“wlc2709” is transformed into “wlc 2709” since such numbers indicate certain products11 

within CISCO and are thus important to be captured correctly with TFIDF. 

                                                 
11 https://www.cisco.com/c/en/us/support/wireless/index.html 

 

https://www.cisco.com/c/en/us/support/wireless/index.html
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 As previously touched on, the evaluation dataset requires annotated data 

consisting of queries, relevant problems to these queries, and irrelevant problems to these 

queries. Since we are missing annotated data, we had to collect this relevant set through 

two methods. The first is based on the recommended problems via the forum (pre-

defined); for that reason, we selected the 1066 problem-solution pairs as the queries since 

we’ve crawled their recommended problems which now make-up the relevant set for 

those queries. The irrelevant set then consists of all the other problems among the total 

10190 pairs. Since we want to study the impact of LL alone, we selected those 

recommended/relevant problems to have somehow similar wording to their respective 

queries. In other words, in order to make sure that the observed results are only due to the 

LL factor, the impact of the similarity measure used (TFIDF) should be extracted and 

removed because it’s not our focus in this thesis. However, to further check our results 

without such TFIDF impact extraction, we used another method to select the relevant 

problems for these 1066 queries. This method is based on title-answer similarity where 

TFIDF was applied to the titles and solutions of the 1066 queries on one hand and all the 

other 9214 pairs on the other hand, and the pairs showing a high cosine similarity (above 

0.4) to those queries were selected. We also made sure that no more than 20 relevant 

problems are included for each query. This second method is based on the idea that if two 

problems have very similar titles and solutions, these problems should be similar too. A 

close strategy was followed in [54] to evaluate their IR system. We additionally took into 

consideration common labels and tags and the number of helpful in this second technique, 

but the focus was on title-answer similarity. 
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4.2. Experiment Setup 

 The formed evaluation dataset should be divided as follows: the user queries 

should be used alone to evaluate the system, while the relevant and irrelevant sets to these 

queries should be the ones added to the KG.  The data was ordered by the date of the 

problem to closely mimic the real-life situation. Figure 17 below shows the process 

followed in evaluation. The simulator here presents the batches of user queries and the 

batches of new knowledge to be learned over time. For the baseline model, we add the 

first 1000 problems alone into the KG and consider we reached the gap here. We then 

evaluate the model for every 200 new user queries out of the 1066 queries. The lifelong 

model is evaluated for all those 1066 queries with every 200 new learnt pairs added to its 

KG starting the 1000 of the baseline model. 

 

Figure 17: The followed evaluation procedure 
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As previously mentioned, the KG is created using Neo4j. We implemented all of 

the LL, answering, and evaluation procedures in python. The neomodel12 library was 

employed to connect to and use Neo4j with python, the nltk13 library for data 

preprocessing, and sklearn14 library for applying the TFIDF Vectorizer and the cosine 

similarity. The evaluation metrics used are recall, precision, F1, MAP, and NDCG as 

discussed earlier. For NDCG, the relevance rel is taken as 1 for relevant answers and 0 

for the irrelevant ones. 

 

4.3. Quantitative Evaluation 

4.3.1. Evaluation of the Baseline Model 

 We present the results of the evaluation for the baseline model in the figures 

below. It should be pointed out that in this chapter, we’re showing results for both 

evaluation methods used (mentioned earlier) which differ by how relevance was decided 

for the user queries (based on the recommended problems via the forum or based on title-

answer similarity). From Figure 18 (based on forum-defined relevance) and Figure 19 

(based on title/answer relevance), it’s evident that the baseline model performs poorly in 

all metrics at the beginning, and its performance keeps declining with more user queries 

for all values of k (k being the number of answers returned and varying between 1, 5, 10, 

15, 20, 25, and 30). This proves that the baseline’s performance suffers during the lag in 

update before it gets updated with the new knowledge. Table 1 specifies the % decrease 

with every new 200-queries batch for all the metrics.  

                                                 
12 https://neomodel.readthedocs.io/en/latest/ 

 
13 https://www.nltk.org/ 

 
14 https://scikit-learn.org/stable/ 

 

https://neomodel.readthedocs.io/en/latest/
https://www.nltk.org/
https://scikit-learn.org/stable/
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Figure 18: Recall (upper left), precision (upper middle), F1 (upper right), NDCG (lower 

left), and MAP (lower middle) for baseline model with more user queries based on the 

first evaluation method and over a range of values for k  

 

 

Figure 19: Recall (upper left), precision (middle left), F1 (lower middle), NDCG (upper 

right), and MAP (middle right) for baseline model with more user queries based on the 

second evaluation method and over a range of values for k 
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Table 1: Average (over all values of k) percent decrease per 200 new user queries in the 

baseline model 

 Recall Precision F1 Score MAP NDCG 

Test 1 17% 14% 15% 19% 17% 

Test 2 27% 17% 20% 33% 27% 

 

Figure 20 below shows the portion of the missed answers that were actually 

present in the KG and hence, missed by the model itself. The small values of this portion 

verify that the absence of the answers in the KG due to the learning lag is the main 

contributor to the model’s poor performance. 

 

Figure 20: Portion of the missed queries whose answers were actually in the KG 

 

4.3.2. Evaluation of the Lifelong Model 

 The lifelong evaluation was done for two systems: a system without linked 

problems in its KG and a system with linked problems (our target system). It was 

previously demonstrated in section 3.5 how the answering flow occurs without linked 

problems in the KG and how it differs from the linked case. 
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4.3.2.1. LL Evaluation for System with Unlinked Problems in its KG 

 The graphs below show how all five metrics (recall, precision, F1, MAP, and 

NDCG) of the LL model improve as it learns more knowledge for all values of k (k being 

the number of answers returned and varying between 1, 5, 10, 15, 20, 25, and 30). Figure 

21 consists of the resulting graphs for the first evaluation method, and Figure 23 includes 

those for the second evaluation method. The evaluation was done on all 1066 queries. 

The x-axis of the graphs expresses the number of problem-solution pairs learnt so far by 

the model. Since the baseline stopped learning at 1000 pairs, this point can be spotted on 

the graph and the factor of improvement of the LL model from that baseline with every 

batch of 200 new learnt pairs can then be computed. This improvement, averaged over 

the values of k, is shown in Figure 22 for the first evaluation method and Figure 24 for 

the second. The average improvement per batch for all metrics and both tests is presented 

in Table 2. 

 With respect to k, as expected, we can see that recall increases as we increase k 

while precision decreases since it’s inversely proportional to k. MAP depends on the 

ranking of the relevant returned solutions as well, so the observed increasing MAP values 

indicate that the system is improving at returning the relevant solutions higher in the 

returned k solutions. The same thing applies to NDCG since it also expresses the ranking 

of the returned solutions. One difference is that NDCG has higher scores for k=1 since 

it’s computed with respect to the ideal ordering for k = 1 not the number of relevant 

answers in general as in MAP. 
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Figure 21: Recall (upper left), precision (upper middle), F1 (upper right), NDCG (lower 

left), and MAP (lower middle) of unlinked LL model as it learns more knowledge, based 

on the first evaluation method and over a range of values for k 

 

 

Figure 22: Factor of improvement (averaged over all values of k and based on the first 

evaluation method) of the unlinked LL model’s recall (upper left), precision (upper 

middle), F1 (upper right), NDCG (lower left), and MAP (lower middle) from the baseline 

model (the model at batch 1000) with more learnt batches  
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Figure 23: Recall (upper left), precision (upper middle), F1 (upper right), NDCG (lower 

left), and MAP (lower middle) of unlinked LL model as it learns more knowledge, based 

on the second evaluation method and over a range of values for k 

 

 
Figure 24: Factor of improvement (averaged over all values of k and based on the second 

evaluation method) of the unlinked LL model’s recall (upper left), precision (upper 

middle), F1 (upper right), NDCG (lower left), and MAP (lower middle) from the baseline 

model (the model at batch 1000) with more learnt batches 
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Table 2: Average (over all values of k) factor of improvement of the unlinked LL model 

from the baseline model per 200 new learnt pairs  

 Recall Precision F1 Score MAP NDCG 

Test 1 3.8 3.7 3.7 3.4 3.3 

Test 2 3.13 2.5 2.7 3.5 2.9 

 

Figure 25 reveals that as the model learns more knowledge, the missed answers 

become more due to the model not answering correctly than the answers not actually 

existing in the KG. However, the number of missed answers in total is still decreasing 

thanks to the continuous learning of the needed knowledge to answer the questions 

correctly. This further verifies that LL is achieving its purpose. 

 

Figure 25: Missed answers that actually existed in the KG at that time out of the total 

missed answers by the answering model of the unlinked LL system 

 

 The overall results discussed so far verify that the LL model performs better than 

the baseline model whose learning stopped early due to the absence of the automatic LL 

process in it. The results also show that the LL model keeps improving for the same 

queries as it learns more knowledge. 
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4.3.2.2. LL Evaluation for System with Linked Problems in its KG 

 Similar to the previous section, the graphs below and Table 3 show the continuous 

improvement of the LL model (with linked problems) from the baseline as it learns more 

knowledge (Figure 26 and Figure 27 for first evaluation method and Figure 28 and 

Figure 29 for the second evaluation method). Likewise here, the baseline model is taken 

at the point of 1000 learnt problems (after_batch = 1000) where we consider it stopped 

further learning.  Figure 30 also shows how the contribution of the incompleteness of the 

KG to the missed answers decreases as more knowledge is learnt, in addition to a general 

observed decrease in total missed answers. 

 

Figure 26: Recall (upper left), precision (upper middle), F1 (upper right), NDCG (lower 

left), and MAP (lower middle) of linked LL model as it learns more knowledge, based on 

the first evaluation method and over a range of values for k 
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Figure 27: Factor of improvement (averaged over all values of k and based on the first 

evaluation method) of the linked LL model’s recall (upper left), precision (upper middle), 

F1 (upper right), NDCG (lower left), and MAP (lower middle) from the baseline model 

(the model at batch 1000) with more learnt batches 

 

 

Figure 28: Recall (upper left), precision (upper middle), F1 (upper right), NDCG (lower 

left), and MAP (lower middle) of linked LL model as it learns more knowledge, based on 

the second evaluation method and over a range of values for k 
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Figure 29: Factor of improvement (averaged over all values of k and based on the second 

evaluation method) of the linked LL model’s recall (upper left), precision (upper middle), 

F1 (upper right), NDCG (lower left), and MAP (lower middle) from the baseline model 

(the model at batch 1000) with more learnt batches 

 

 

Figure 30: Missed answers that actually existed in the KG at that time out of the total 

missed answers by the answering model of the linked LL system 

 

Table 3: Average (over all values of k) factor of improvement of the linked LL model 

from the baseline model per 200 new learnt pairs  

 Recall Precision F1 Score MAP NDCG 

Test 1 3.0 2.8 2.8 2.9 2.8 

Test 2 3.4 2.7 2.9 3.6 3.1 
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4.3.2.3. LL Linked vs. Unlinked 

 From the previous graphs and from Table 4 below, it is demonstrated that the 

model that uses linked problems in the KG to answer the queries has a much better 

performance in all metrics than the model with unlinked problems that just retrieves the 

top-k similar to the user queries. This proves the value of the further linking that we’re 

doing in our system. 

 

Table 4: Average (over all values of k) percent improvement of the linked LL model 

from the unlinked LL model per 200 newly learnt pairs  

 Recall Precision F1 Score MAP NDCG 

Test 1 13% 5% 6% 38% 14% 

Test 2 48% 23% 28% 68% 34% 

 

4.3.2.4. Using the “helpful” Attribute to Rank Answers 

 The “helpful” attribute, which indicates how many users have found this answer 

helpful, was used in this section and experiment to rank the returned results to the user. 

This was done for the linked LL system by sorting the top-k returned solutions according 

to how helpful people found them. However, looking at the evaluation metrics that are 

affected by the answer ranking, that is MAP (Figure 31) and NDCG (Figure 32), and 

comparing the linked LL model that uses the “helpful” attribute to that which does not, 

we concluded that sorting the returned answers according to the “helpful” attribute did 

not actually show improvement. This is most probably due to the fact that the relevance 

of an answer to a query still mainly depends on the relevance (i.e. the similarity) of its 

respective problem to that query, regardless of how many people found that thread useful 

(especially that we are already using the accepted solution). 
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Figure 31: MAP of linked LL system not sorting according to the number of users that 

found a solution helpful (left) vs. that sorting according to it (right) 

 

 

Figure 32: NDCG of linked LL system not sorting according to the number of users that 

found a solution helpful (left) vs. that sorting according to it (right) 
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4.3.2.5. Scalability of the LL Model 

The figures below show that the time taken to insert and link a problem (Figure 33) and 

the time taken to answer a user query (Figure 34) grow somehow linearly with the size 

of the KG. However, the rate at which they grow is relatively slow especially for 

answering. In addition, the range of values is still very acceptable for our implementation, 

where less than a minute per problem is adequate for the insertion process since it does 

not affect or stop the system, and since the number of problems emerging daily/weekly 

(to be crawled and added) is not immense. On the other hand, the answering is taking less 

than 0.04 seconds per user query (even if you project it for more problems in KG), so it 

is still very convenient. 

 

Figure 33: Time taken to insert and link a problem with its info in the KG with respect 

to the size of the KG (according to the number of problems present there so far) 
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Figure 34: Time taken to answer user queries with respect to the size of the KG 

(according to the number of problems present there so far) 

 

4.4. Qualitative Comparison of our LL Model with State-of-the-art LL Models 

 In this section, we discuss why the state-of-the-art LL systems mentioned in the 

literature review are not applicable to our implementation of web-based LL for customer-

support chatbots. That said, those SOTA LL systems cannot be directly compared to our 

approach.  

Shi et al. [29] and Shah et. al. [34] target connecting new entities, mainly names, 

to existing ones based on their descriptions and using embeddings. In the study of KBC 

in [30], the authors aim at adding more information for the existing name entities from 

external documents by representing this information as new relations connecting those 

entities together. Hence, those three works maintain a different underlying structure of 

the KG compared to ours as it's now evident how the entities and relations are connected 

in both cases, and thus they are handled differently. 

Likewise, the models developed in [31][33] only work for triplets in the form of: entity, 

relation, entity, while also relying on the user to help them find the missing links. This is 

not applicable to our system because we do not use any user interaction, feedback 
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mechanism, or even an expert intervention to extract the knowledge and form the KG. 

This essential requirement is what makes our model novel compared to the chatbots that 

continuously learn from their interaction with the user. One of those chatbots was 

introduced by Abujabal et. al.  [32] where in addition to depending on the user’s feedback 

and voting to update its knowledge, it only updates the template-query model with new 

syntaxes for the same questions instead of updating the actual KG. Similarly, the chatbot 

developed in [36] depends on the user’s feedback, and the one in [37] learns by knowing 

how to ask questions to the user or teacher. The last mentioned bot to also learn from user 

interactions is the one in [35] which detects the user’s satisfaction with the response. If 

the users seem to be unsatisfied with the generated response, the bot directly requests 

from them the specific answers that they were looking for and automatically assimilates 

them.  

So far, the mentioned systems are not applicable since their KG structure is 

different and solely depends on user interaction and feedback to learn the new knowledge. 

Furthermore, most of them are more conversational than QA. However, the 

implementation in [35] can be an adequate add-on to our system providing it with the 

capability  of learning from conversations. The bot can inquire the solution(s) (among the 

returned solutions or different new ones) that were most suitable in the user's case and 

add them to the KG. If no solution works for the user, the bot can direct him/her to the 

forum where their posted question and its answer will be extracted and learned by our 

system eventually (in the LL process). 

 Regarding the lifelong IE systems, one of the main differences between them and 

our work is that most of them are not actually chatbots or answering systems since their 

focus is on extracting new knowledge from the web. Additionally, their applications are 
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very different from ours (which ultimately means their KG structure is different too as 

noticed before). This is observed for system [39] whose only target is to read and learn 

the whole web (the same applies to the system in [42] but for Russian language). The 

model in [38] extracts triplets from web texts and tries to find their general concepts 

(higher categories or classes for those entities) and relations between them using wordnet 

and KNOWITALL. After that, it guides the next learning cycle (concept-relation finding) 

based on the previous one. The studies in [40] and [41] also target a different application 

called opinion mining. They try to expand opinion extraction (aspects, opinions for 

certain products) by continuously linking similar aspects using recommender systems and 

opinion texts for other products (shared aspects for many).  

 To sum up, our work is unique compared to the SOTA LL systems in that its 

learning process does not require feedback from the user or an expert, it is more QA than 

conversational, and that its application differs significantly from those systems as well as 

its KG structure. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 
 

This thesis achieved designing lifelong learning (LL) for an information retrieval 

(IR), question-answering (QA) customer support bot (CSB) for network operations, with 

CISCO used as the case study. This LL enabled the CSB to continuously learn new 

knowledge on its own from CISCO’s online support forum. Several contributions were 

tackled in the thesis, the first being the design of the knowledge graph (KG) to represent 

the online support discussions from CISCO. This design captured the main hierarchy of 

domains, topics, labels/tags, and problem-solution pairs from that forum and many useful 

features of the problems/solutions like date, users, views, helpful, and number of replies. 

The KG was implemented via Neo4j graph database and succeeded in facilitating the 

continuous update of this KG with new knowledge and linking similar problems to each 

other.  

The second contribution was designing the LL flow which permitted the CSB to 

continuously learn new knowledge on its own from the online forum. This flow 

additionally included avoiding problem/solution duplicates and linking new problems to 

similar existing ones. The matching was done using the hashing TFIDF vectorizer that 

enabled us to avoid recomputing the vector representations of all problems with every 

addition of a new problem, hence providing a low-cost solution for the lifelong flow and 

the answering flow which constitutes our third contribution. This answering flow 

involved matching the user’s question or query to the most similar problem from the KG 
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and returning its solution with the solutions of the similar problems to this problem ranked 

based on their similarity to that top problem.  

Finally, as a third contribution, we introduced an approach to validate the 

effectiveness of the LL process through a simulator that simulates adding more user 

queries and adding/learning more knowledge over time. The evaluation dataset consisted 

of queries, relevant problems to those queries, irrelevant problems to those queries, and 

we formed the relevant set based on two methods: recommended problems via the online 

forum (pre-defined) and problems showing similarities with the queries in titles and 

answers.  

Our results showed the superiority of the lifelong model with a 2X to 3X 

improvement in all of recall, precision, F1 score, MAP, and NDCG compared to 

answering without LL. The LL model also kept improving in all metrics as it learned 

more knowledge while the baseline model suffered from a drop in those metrics with 

more user queries since it does not take advantage of LL. Our results further showed that 

linking similar problems in the KG during the lifelong flow improved the system’s 

answering performance, whereas, ranking the returned solutions based on how helpful 

users considered them did not actually help our system. In terms of scalability of the LL 

model, the time to add new knowledge and the time to answer appeared to grow linearly 

with the size of the KG but at a slow rate and within a very acceptable range for our 

implementation. Our system also certified having a unique application after comparing it 

to state-of-the-art LL systems. 

Future work focuses on three main points. The most important one is the similarity 

model which can be improved by adopting methods that focus more on the context and 

semantic than the actual words. This part also involves doing advanced text processing 
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and cleaning and even extracting the exact problem and answer from the text. Improving 

this part will improve both the baseline and LL models’ performances. The second part 

is expanding the scalability of the system by either further optimizing the current process 

if possible or switching to using triplestores instead of graph databases. Finally, the 

answering flow can be deeply enhanced by making more use of the data hierarchy and 

additional nodes present in the KG, and by looking more into query refinement within a 

session and creating query logs to keep track of the discussion. 
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