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ABSTRACT 

OF THE THESIS OF 

 

Nour Jamal Absi Halabi  for Master of Engineering Management 

        

 

Title: Discovering the Most Promising Ideas in a Crowdsourcing Platform for Product 

Development 

 

Obtaining and analyzing key customer and product information from various sources 

has become a top priority for major competitive companies who are striving to keep up 

with the digital and technological progress. From this point, the need for creating an 

idea crowdsourcing platform to collect ideas from different stakeholders has become a 

major component of a company’s digital transformation strategy. Today, companies 

resort to idea crowdsourcing platforms to discover novel ideas from the public, 

employees, and vendors that they can use in their product development processes. 

However, these platforms suffer from problems that are related to the voluminous and 

vast amount of data. Different large sets of data are being spurred in these platforms as 

time goes by that render them unbeneficial or useless.  

 

The aim of this thesis is to propose a solution on how to discover the most promising 

ideas to match them to the strategic decisions of a business regarding resource 

allocation and product development roadmap. The thesis introduces a 2-stage filtering 

process that includes a prediction model using a Random Forest Classifier that predicts 

ideas most likely to be implemented and a resource allocation optimization model based 

on Integer Linear Programming that produces an optimal release plan for the predicted 

ideas. The model was tested using real data on an idea crowdsourcing platform that 

remains unnamed in the thesis due to confidentiality. Our prediction model has proved 

to be 93% accurate in predicting promising ideas and our release planning optimization 

problem results were found out to be 85% accurate in producing an optimal release plan 

for ideas. 
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CHAPTER I 

INTRODUCTION 
 

The ongoing digital transformation has intensified the competition among rival 

companies causing the innovation process to be a collective process rather than 

individual (Westerski, Dalamagas & Iglesias, 2013). Today, companies from different 

industries (e.g. Spigit, Imaginitik, Nosco, BrightIdea, Salesforce, and Ideascale) strive 

for getting ideas from external sources and encourage the engagement of external 

contributors on their crowdsourcing platforms for innovation and ideation. For instance, 

“Proctor and Gamble” developed “Connect and Develop” to discover the most 

innovative ideas, and the platform actually helped increase their productivity by 60% 

where 45% of their adopted ideas were sought externally. Also, Walkers Crisps 

launched a “Do us a flavor” campaign to engage customers to send suggestions of a new 

flavor and promised the winner to be granted a million euros for the idea (Forbes & 

Schaefer, 2017). The point behind having a crowdsourcing platform is that while many 

problems and ideas can be solved and provided internally within the company, 

sometimes knowledge and creativity can be sought externally from different 

stakeholders like customers, vendors, or even employees of different cultures, age, and 

demographic locations. Also, Poetz and Schreier (2012) found that compared to in-

house idea innovators, crowdsourcing participants provide ideas that are more novel and 

customer oriented. In addition, Crowdsourcing is certainly cheaper than outsourcing or 

hiring conventional employees (Howe 2006). 
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A. Definition of Crowdsourcing 

There are interchangeable synonyms for idea crowdsourcing as there is no 

agreement on the clear definition associated with crowdsourcing. The terms cloud-

based, co-creation, collective intelligence, and open innovation are all used 

interchangeably as idea crowdsourcing. According to Estellés-Arolas and González-

Ladrón-de-Guevara (2012), there are at least 40 definitions of crowdsourcing in the 

literature. For instance, Alonso and Lease (2011) state that “crowdsourcing is the 

outsourcing of tasks to a large group of people instead of assigning such tasks to an in-

house employee or contractor”, while Brabham (2008) defines crowdsourcing as “a 

strategic model to attract an interested, motivated crowd of individuals capable of 

providing solutions superior in quality and quantity to those that even traditional forms 

of business can”.  However, the term crowdsourcing was first coined by Jeff Howe and 

Mark Robinson (2006) in a Wired Magazine article and was defined as “the act of a 

company or institution taking a function once performed by employees and outsourcing 

it to an undefined (and generally large) network of people in the form of an open call.” 

It should be noted that the idea of crowdsourcing is not completely new, as it was 

applied before in many historical events but not as part of the digital web revolution. 

Back in 1714, the British Parliament offered rewards to anyone who could be able to 

develop a method to examine the longitude at sea.  Another example dates back when 

Napoleon wanted someone to discover an idea to preserve food and offered 12,000 

francs for the person who invented canned food in 1810. However, what is different 

today, is that the new information and communication technologies along with Web 2.0 

have provided an environment that allows the submission, discussion, and evaluation of 

ideas across a single platform all around the world. It is important to note also that the 
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concept of idea crowdsourcing stems from a more general concept referred to as social 

product development. Social Product Development is a new term in engineering design 

which includes several tenants like crowdsourcing, open innovation, IoT, crowdfunding, 

and mass collaboration coexisting altogether (Forbes & Schaefer, 2017).  Abhari et al. 

(2016) refer to social product development as “the social product development model 

extends open innovation beyond customer involvement models to socially engaged 

individual actors fully involved in ideation and development of new products”. 

 

B. Implementation Types and organizational purpose 

Several types of crowdsourcing initiatives can be identified based on two 

dimensions: tasks to solve and incentive structure. Idea Crowdsourcing on web 

platforms can be applied in short-lived contests, open calls with direct rewards, open 

calls with indirect benefits, and micro tasks as shown in Figure 1 (Shergadwala et al., 

2019). Contests are applied in crowdsourcing when a well-bounded problem is made 

available for the crowd to solve in a short time and with a winning prize. An example of 

a crowdsourcing contest is the Gold Corp Global Search Challenge where participants 

submitted ideas of the next potential gold targets, and the top 25 finalists were offered 

$500,000 for their contribution. On the other hand, in open calls with direct rewards, the 

quality metrics are not clearly defined, the time frame is not clearly communicated, and 

the reward may be in the form of cash or royalties. For instance, Procter & Gamble’s 

platform “Connect & Develop” is used to solicit advertising ideas in return of a 

financial award that ranges from $10,000 to $100,000. However, in an open call with 

indirect benefit, participants indirectly benefit from submitting their ideas by gaining 

satisfaction when the company implements their ideas. An example of this is Dell’s Idea 
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Storm platform that seeks new product ideas from the crowd without rewarding them 

financially. Finally, participants usually complete micro-tasks in return of monetary 

rewards as part of a formalized process or platform. For instance, Amazon Mechanical 

Turk is a website that gives businesses the capability of hiring participants to perform 

certain tasks. Thus, the purpose of the crowdsourcing platform also can either be to 

increase the productivity, quality, innovation, product knowledge of a company, or 

emphasize and raise awareness about a company’s brand (Forbes and Schaefer, 2018).  

 

 

Figure 1: Implementation Type and Purpose 

 

C. Crowdsourcing and Product Development Process 

 

Figure 2: Product Development Process 

The traditional product development process involves planning, concept 

development, system level design, detail design, testing and refinement, and production 

as shown in Figure 2 (Karl Ulrich & Steven Eppinger, 2015). During the planning 

phase, a market research is conducted, and an opportunity is identified. In the concept 

development phase, market needs are identified, and various concepts are generated 

Implementation Type 

•Crowdsourcing Contests

•Open Calls with direct rewards

•Open Calls with indirect benefits

•Microtasks

Organisational Purpose

•Increase productivity

•Solicit Innovation

•Improve product knowledge

•Raise Brand Awareness

• Improve/Build Product
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where only once concept is chosen. In the system level and detail design phases, the 

product architecture is defined including the decomposition of the system and the 

subsystems and the determination of complete specifications. Finally, during testing and 

production, the construction of preproduction versions of the product and final version 

takes place. Crowdsourcing can be applied at all these different phases of the product 

development process through an online platform collecting efforts from the crowd. 

However, idea crowdsourcing could be particularly applied at the planning and concept 

development phases where the crowd brainstorms solutions to problems and is a natural 

need specifications producer. 

 

D. Problem Statement 

Companies face today big problems that are related to the huge and voluminous 

amount of data in crowdsourcing platforms, and their incapability of dealing and 

benefiting from this data to get the needed results.  This caused skepticism toward the 

importance of crowdsourcing.  Previous literature (Poetz & Schreier, 2012) shows the 

negative attitude toward the effectiveness of crowdsourcing. Logically, an idea in 

crowdsourcing platform is chosen according to different factors like votes, comments, 

points earned, feasibility, and alignment of an idea with the business strategy which 

might seem like a simple task. However, the sheer volume of data in crowdsourcing 

platforms make selecting the “right” idea a tedious process. This data that is submitted 

in crowdsourcing platforms is divided into three main categories: (1) contributions such 

as ideas, prototypes or suggestions submitted by participants, (2) metadata including 

evaluations, comments, or tags, (3) and finally data about contributors like personal 

characteristics, activity, social network, and preferences (Zhang et al., 2016). 
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This volume and variety of data pose a difficulty in the evaluation process because it is 

time consuming and because crowdsourcers may not have the full capability to assess 

all types of contributions. Thus, many ideas and contributions tend to get unheard and 

do not progress further in the ideation selection process. To filter ideas and 

contributions and simplify the evaluation process with the presence of the high volume 

of data that is being generated at a very fast rate in crowdsourcing platforms, companies 

currently undergo the following strategies of evaluations:  

 

1. Experts Versus Crowd 

Some companies hire experts to filter the best ideas which is a costly and a lengthy 

evaluation process that is sometimes even infeasible. Also, evaluating ideas by experts 

usually cause the company to miss good solutions due to the huge cognitive load on 

these experts in reviewing all these submissions in a very short time.  For instance, 

Google hired more than 3,000 employees to evaluate over 150,000 ideas for its Google 

10th to 100th project which put them 9 months behind their schedule. Also, IBM 

employed 50 senior executives to evaluate all 50,000 ideas that its employees submitted 

in one of its innovation contests (Blohm et al., 2013). Nonetheless, the change.gov 

website shut down because the huge volume of submissions were overwhelming to the 

staff that they found a big difficulty to analyze these contributions (Klein & Garcia, 

2015). In addition, it has been estimated that it takes about $500 and four hours to 

evaluate one idea in a Fortune 100 company (Robinson and Schroeder, 2009).  

Other companies resort to other crowdsourcing evaluation techniques based on 

involving the crowd in the evaluation process. One strategy in doing this is to use 

majority voting similar to Facebook “likes” where every participant can simply vote for 
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the ideas they find as the best, and ideas are then listed in a ranking order. Many 

companies like OpenIDEO and GrabCAD use this strategy in their crowdsourcing 

projects. This strategy is evidently faster and more cost effective since it involves the 

opinions of a diverse group of different backgrounds. However, this strategy also faces 

many struggles. One of them is due to the phenomena of “rich get richer” where people 

tend to vote positively for ideas that are already on the top of the list and “seem” better 

and tend to disregard other ideas that they cannot see or have to do the extra effort of 

scrolling to see.  

 

2. Author Vs Content 

Some companies evaluate ideas according to content while others do that according 

to the author. Some crowdsourcing platforms prefer choosing ideas of users who have a 

higher reputation than others or eliminate certain contributors based on their previous 

“bad behavior”. However, this poses the problem of actually missing ideas from 

“infamous” authors.  Others base their evaluation process on the content rather than the 

submitter and thus disregard ideas that are not well- structured or well-written.  This 

also poses a problem when a very promising idea is not taken into consideration because 

it was not well-written. 

 

3. Machine Vs. Human 

Some companies use a machine-based approach, while others use a human-made 

approach in their evaluation process. For machine-based approaches, companies rely on 

the semantics of text mining to evaluate ideas and contributions similar to the idea of 

ETS grading that processes papers to grade them. These methods study variables like 
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length specificity, writing style, readability, spelling mistakes, context, and also data 

related to crowd activity. However, machine-based approaches miss judging all aspects 

of an idea because this requires a human intervention which constitutes knowledge from 

different fields.  When basing their evaluation on a human-made approach, companies 

either select ideas after evaluating each idea on a predefined scale or select ideas who 

are all in accordance with specific evaluation guidelines they put and then choose 

according to their preference.  

However, filtering ideas is not the only problem related to crowdsourcing platforms. 

Companies also should possess the ability to assimilate and then dissimilate data into 

actual decisions after studying the resource allocation, economic feasibility, and 

estimates of potential revenues (Blohm et. al, 2013). The ability of effectively matching 

the generated crowdsourcing ideas with the company’s strategy for product 

development and placing them in the pipeline is also a struggle for companies today 

who are constantly striving to stay ahead in the competition field. These companies 

need to map ideas to actual decisions regarding what to select and place on the road map 

for implementation and what to neglect based on a comprehensive study of internal 

factors and resources. 

 

E. Definition of data science, machine learning, and predictive analytics and their 

relation to idea crowdsourcing in product development: 

Data science is another term for discovering knowledge from data to perform 

analysis and predictions, and it exists with other terms like machine learning and 

predictive analytics in the data discovery ecosystem (Wimmer & Powell, 2016). 

Machine learning represents a critical aspect of data science and is the process of 
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programming computers to learn from existing data to create predictions and 

classifications or make decisions. In addition, a term that is coined with machine 

learning is predictive analytics which is the ability to create predictions based on 

statistical methods such as regression. These significant terms are being utilized recently 

to analyze and improve systems and strategies of businesses and companies. 

Therefore, data science, machine learning, and predictive analytics are major keys to 

understanding and analyzing idea crowdsourcing platforms today. With the tools 

offered by data science, we will be able to discover the most wanted and needed ideas 

that align with business strategy and internal resources of a company. 

The thesis discusses the problems that companies face today regarding the management 

of crowdsourcing platforms with the sheer amount of data and variety, analyzes a use 

case platform with all its data, and finally maps the results obtained to the resource 

allocation decisions a company must take with this analysis. The thesis thus filters the 

most promising ideas in a crowdsourcing platform to include in the product roadmap by 

considering not only the feedback of customers but also a company’s strategic 

decisions. 

The rest of the thesis proceeds as follows. In the next chapter, we present the 

literature review regarding this subject. Then, we propose our methodology of how we 

to predict winning ideas in crowdsourcing platforms and how to assign them to the 

product development releases. After that, we apply our methodology in a use case 

crowdsourcing platform and analyze the results. Finally, we conclude our thesis with 

suggestions and recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 
 

The idea of effectively exploiting crowdsourcing platforms is not entirely a new 

concept. In this thesis, we will explore further utilizing crowdsourcing platforms to 

assist management in resource allocation decisions during the ideation or release 

planning phase of the product development process. The following literature review 

discusses the algorithms, methods, and tools that were already used to address the 

problems that crowdsourcing platforms or in general online communities with huge 

amount of data suffer from. The literature review is divided into different sections as per 

Figure 3.
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Figure 3: Literature Review 
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A. Filtering Techniques 

       Filtering techniques that narrow down a collection of items into a smaller subset of 

items have been widely implemented. Different filtering algorithms and techniques were 

used to filter winning and useful ideas, requirements, and reviews from online 

communities, platforms, and systems in the literature review. 

  

1. Construct Hybrid model that combines humans and machine learning to evaluate 

crowdsourcing contributions in Idea Contests 

Dellermann et al. (2018) addresses the problem related to the challenges that come with 

evaluating ideas generated from crowdsourcing platforms based on machine learning 

techniques alone or based on crowd evaluation methods alone. They propose a hybrid 

model that combines machine learning techniques with crowd evaluation ones to provide 

the benefit of both sides. Machine learning provides valid accurate results when processing 

information, and on the other hand the human decision makers are better at assessing a 

context according to their intuition or gut feeling. Thus, the paper showed how essential is 

to propose a model that combines machine learning with crowd-based evaluation. It is 

important to note that machine learning techniques include those that evaluate (1) textual 

contributions like length, specificity, completeness, and writing style or (2) representational 

submissions like readability and spelling mistakes or (3) crowd activity like page views, 

votes, and comments. Crowd based evaluations include (1) crowd voting mechanisms and 

(2) rating mechanisms from the crowd. The paper proposed a design science research 

project to provide prescriptive knowledge on how to construct the hybrid model that 
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combines machine learning techniques with crowd evaluation ones. This iterative design 

research cycle methodology interpretation is illustrated in Figure 4. 

 

Figure 4: Design Research (Dellermann et al., 2018) 

Based on Figure 4, the problems related to the current evaluation techniques were 

first identified, then based on deductive reasoning, five design principles were concluded to 

form a novel prototype version of evaluating ideas. Finally, this novel evaluation technique 

was put as a future milestone to be compared with the other two already mentioned 

evaluation techniques alone by conducting an A/B test which is a split testing method that 

compares different methods to understand which performs better. 

Four problems were identified in idea crowdsourcing platforms (Dellermann et al., 2018):  

(1) Because of computational machine learning algorithms that are based on idea 

shortlisting, sometimes ideas are marked as innovative when in fact they are not 

truly innovative. 

(2) The huge number of contributions poses a cognitive load on crowd-based 

evaluation techniques rendering them problematic. 



 

3 
 

(3) Ideas represented at the top of a page always receive the greatest attention (and 

perhaps votes) which may give potentially fake positive feedback. 

(4) Not every participant using the crowdsourcing platform is equally appropriate to 

evaluate an idea.  

Depending on these four problems, five propositions were discussed in the paper to 

solve these problems. The propositions are summarized in the Figure 5. As a summary, the 

idea behind the propositions is to determine the topics of ideas submitted on a 

crowdsourcing platform and match them with participants based on their profiles and 

previous submissions for evaluation. In this way, appropriate experienced participants can 

selectively evaluate ideas based on this match. 

 

 

Figure 5: Proposed Hybrid Filtering Approach (Dellermann et al., 2018) 

These propositions were then given to a group of experts in community and system 

engineering to evaluate them based on completeness, understandability, fidelity, 



 

4 
 

applicability, and clarity, and the p-values of their opinions then showed that the design 

principles are clear for the group of experts and could be beneficial. This filtering strategy 

defined by the design principles will then be compared with the two other existing ones 

(crowd based or computational alone) (A/B tests) and the concept of ROC-curve will be 

used to determine if the evaluation technique is appropriate or not. 

Although the paper only relied on qualitative design science research (DSR) method to 

conclude findings on crowdsourcing platforms, the paper addressed the importance of 

having both evaluation techniques; the computational and the crowd voting; which makes it 

necessary for our model to adopt them both.  

 

2. Determine requirements from helpful online reviews to be used in the product 

development cycle 

Compared to traditional offline or paper and pencil market surveys, online reviews 

provide a way for product designers to understand the requirements of their customers in 

less amount of time and at a much lower cost. Zhang et. al (2016) proposed a model to 

automatically filter helpful online reviews in the product design process and analyze them 

using the KANO model (usually used for standard questionnaires) to develop appropriate 

design strategies. The model proposed thus combined the notion of big data and classical 

management models to solve big data problem in ecommerce. Figure 6 shows the model 

that was developed to determine the helpfulness of reviews and create product 

improvement strategies. The model is divided into 3 parts: Data collection and 

preprocessing though lexicon building, determining helpfulness of an online review 
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through model training and prediction, and creating product improvement strategies. A 

Chinese commerce JD.com was used as a use case to apply the model on where phone 

reviews were extracted. Data about each review was collected, metadata (date of the review 

posted, replies, and votes), and reviewer data (name and grade). Phone product attributes 

were then identified by Dirichlet Allocation and Page Ranking which groups data into 

topics. Some of these attributes were determined to be related to edition, CPU, music, 

battery, and screen. Sentiment analysis was also applied on reviews, and helpfulness score 

was then determined based on linguistic, metadata, and reviewer features. The function that 

was used to determine helpfulness was: y = a (Text features like Number of 

words/sentences) + b (reviewer features like grade of reviewer) + C (metadata features like 

number of replies and stars). Two product designers trained the model by identifying 20% 

of reviews as helpful or not. Through the KANO model, the different attributes were 

extracted and were identified as one dimensional, reverse, attractive, or must be attributes. 

Must be attributes were identified to be battery life, camera, signal, and appearance. QFD 

was then used to map the product attributes to engineering features, and the ranking of the 

features easily helped in the product design process to assign utility factors to features.  

Thus, the three parts model inspires our approach in creating more than one filtering stage 

to determine winning ideas to be implemented in the product development process. 
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Figure 6: Process to Product Improvement Zhang et. al (2016) 

 

3. Discover Product Preferences in Ubiquitous Social Media  

Tuarob & Tucker (2016) discuss a methodology based on POS tokenization, sentiment 

analysis (people’s opinion and emotional strength toward a product feature), Dirichlet 

Allocation (which divides the social media messages into attributes), and consumer reports 

(which validates the preferences) to extract customer preferences on automobile products 

from social media. Instead of resorting to traditional methods like group studies in which 

random users are selected to give their opinions which is costly and only considers a small 

sample, companies today resort to social media platforms like Facebook, Instagram and 

Google+ to solicit product features because they demonstrate high degree of creativity and 

openness and heterogeneity.  
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The paper shows the importance of sentiment analysis algorithms in predicting not only 

the most important features but also product demand. Thus, sentiment analysis should take 

part of our methodology to find best ideas in crowdsourcing platforms. 

 

4. Capturing Winning Ideas in Online Design Communities 

“In a sea of thousands, how can someone sift through ideas to find high quality 

submissions they can build upon or be inspired by?” Ahmed & Fuge (2017) propose a 

model to managers on how to effectively manage large collaborative online communities 

and enable them to filter high quality ideas submitted. The model combines the strengths of 

human and automated techniques (discounted cumulative gain- DCG) to find quality ideas 

in the submission haystack. The model thus uses important factors like community 

feedback, idea uniqueness, and text features to effectively rank submissions by 

quality.  The model was demonstrated on OpenIDEO which is a collaborative online 

community where designers are awarded for winning design challenges. A training set of 

winning ideas was partitioned according to a set of features like readability, coherence, and 

semantics. For each idea, the data describing the idea, the number and timestamp of any 

comments left on the idea, and whether the idea got through to the evaluation or winner 

stage was captured. Data concerning the text readability and complexity of ideas was 

analyzed using the python readability package. Text Cohesion was measured using the 

online Coh-metrix. Linguistic Inquiry and Word Count (LIWC) was used to determine the 

psychological associations. Also, idea uniqueness was determined through network models 

like TextRank. The results of this set were then used to predict ideas on a test set using 
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Gradient Boosted Trees. The results showed that winning ideas had more comments on 

them. Also, winning ideas have unique topics and are long with larger vocabulary. They 

also showed how location of the author had no effect on advancing an idea to later stages. 

Thus, the model proposed helps solve problems related to human bias and machine 

discrepancy since it combines human and automated techniques to find quality ideas. Thus, 

the model tackles problems like the rich get richer “members only visit and vote on already 

highly voted ideas thus biasing vote counts” which is caused because of members’ votes or 

the sparsity problem “members may still never assess some ideas due to fatigue or lack of 

bandwidth, leaving a large number of ideas without any ratings.” It also shows how 

machines alone including text semantics are insufficient for determining quality ideas. 

The paper emphasized our research on the importance of determining the several key 

factors included in filtering quality proposed ideas like votes and text in ideas. 

 

5. Mining Informative Reviews for Developers from Mobile App Marketplace 

According to Chen et. Al (2014), the ability to collect and digest constructive reviews 

from app marketplace is challenging for two reasons: 

(1) Popular apps like Facebook receive around 2000 reviews per day, so digesting these 

reviews is challenging on the cognitive level. 

(2) Only around 35.1% of the reviews in the marketplace contain helpful information to 

improve reviews. 
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Thus, the paper discusses an innovative app review mining technique “AR Miner- 

application review” that successfully (1) extracts informative reviews and filters irrelevant 

ones, (2) groups reviews into categories, (3) prioritizes reviews by a ranking scheme, and 

(4) presents groups of informative reviews in an intuitive visualization manner. This 

technique is finally evaluated on 4 apps on the app store to test its efficiency and 

effectiveness.  

Information about reviews (text review, timestamp, and rating) were collected and 

classified as informative and non-informative reviews. Informative reviews were reviews 

that show the need for adding or changing a new feature and were important to developers, 

and non-informative reviews were reviews that were general descriptions with pure 

emotional expression. Preprocessing was applied first to divide reviews into sentences and 

treat reviews in sentence level granularity. Filtering was then applied to classify reviews 

into informative and non-informative ones using an Expectation Maximization for Naive 

Bayes (EMNB) semi supervised machine learning algorithm since it outperforms other 

machine learning algorithms in text classification. To group different reviews, topic 

modelling was used including Latent Dirichlet Allocation (LDA) and Aspect and Sentiment 

Unification Model (ASUM).  Prioritization of these reviews was then done using a ranking 

technique. This technique was built based on group ranking and instance ranking both of 

which relied on the rating provided (groups with lower rating were prioritized) and time 

submitted (fresh reviews about new bugs were given the priority). The model was then 

tested on 4 apps of different backgrounds including Facebook and Temple run. In testing 

the validity, precision and recall rates were calculated. Also, NDCG Normalized discounted 

gain for measuring the quality of top k ranking results was used.  
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The methodology thus obtained in this paper highlights the importance of preprocessing 

our ideas before evaluating them which should be adopted in our model. 

 

6. Summarizing App Reviews for Recommending Software Changes 

Di Sorbo et. al (2016) discuss SURF (Summarizer of Reviews Feedback) which 

provides a novel approach to filter and summarize the enormous number of reviews that 

developers of popular apps need to manage. These reviews are usually used by the app 

developers to perform maintenance and evolution tasks. The algorithm was tested on 17 

mobiles apps and showed high accuracy in summarizing reviews and reducing the time 

required by developers to go manually over the reviews. Since developers of popular apps 

receive hundreds of reviews every day, it hard on them to filter and read every feedback 

request and aggregate them together as well on Apple Store and Google Play. These 

reviews may include bugs, summaries of user experience with a certain feature, request for 

enhancements, and ideas for new features.  The approach determines for a large number of 

reviews the specific topic discussed in the review (UI improvement, security...), identifies 

the maintenance task to perform to address the request (fix bugs, enhance features), and 

presents this information to the developers in a structured agenda form with actionable 

items. Therefore, the collected reviews were identified according to intention (information 

giving, seeking, feature request, problem discovery, or other) and topics (app, GUI, 

contents, pricing, feature, improvement, security, download, model, company) to help 

developers in taking the necessary actions. The model consisted of the following steps: 

Data collection:  
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The review information text, date of the review, the star rating given by the reviewer, the 

title, the app version, and the handler who posted the review were collected in XML 

format. 

 

a. Intent Classification: 

Intent classification was then applied. This combines NLP, sentiment analysis, and 

text analysis techniques through a ML algorithm. The reviews were then categorized 

according to intention (information giving, seeking, feature request, problem discovery, or 

other). 

b. Topic Classification: 

Concept dictionaries were identified first to classify reviews into topics. For 

example, reviews that have the words “orientation” or button showed that they are dealing 

with GUI. An NLP classifier was then built to specify topics based on keywords they 

consists. To make the dictionaries exhaustive, wordNet was used. To stem sentences to the 

original sentence, Snowball stemmer algorithm.  

c. Sentence Scoring: 

Sentences were scored then depending on the topic and the intent to provide 

recommendations for developers on what to do next. 

 

7. Mining Informative Reviews for Developers from Mobile App Marketplace 

It is very important to stay ahead of competition by constantly analyzing the feedback 

of customers for mobile product development (Ciurumelea et al., 2017). To help developers 
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benefit from the big number of reviews about their applications, a User Request Referencer 

(URR prototype) was built to classify reviews into categories according to a predefined 

taxonomy that was built manually and also recommend for a particular review what are the 

source code files that need to be modified. Reviews were extracted of different applications 

and text preprocessing was applied including stop words removal, punctuation removal, 

and reducing words to their stemmed words, and the model was trained using Gradient 

Boosted Regression Trees. To be able to localize source code to be suggested for reviews in 

order to be modified, information retrieval methods were used were source code files were 

indexed to compute the textual similarity between user reviews and source code. To 

validate the results, the accuracy and precision of the classifier were determined, and two 

external evaluators took a post experiment survey to illustrate the importance of the tool 

and confirm that it would save time for developers. 

This paper inspired our approach to include qualitative assessment to validate our 

proposed model. 

 

8. A new approach based on Soft Computing to Accelerate the Selection of New 

Product Ideas 

To survive in the competitive market today, it is important to produce high quality 

products in short development cycle times which makes the need for an efficient product 

development process a vital one. Buyukozkan and Feyzioglu (2003) have proposed a 

methodology to improve the decision making for the development of new products while 

minimizing the uncertainty involved. Uncertainties include technical, management, and 
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commercial sources that are both external and internal to a company. To help identify the 

products needed for implementation and their order, they constructed their model based on 

fuzzy logic, neural networks, multi-criteria decision making, and artificial intelligence 

techniques. Their model consisted of 2 stages where the first stage allows practitioners to 

roughly identify good ideas from bad ones based on previous experience using Artificial 

neural networks and fuzzy logic, and the second stage allows practitioners to analyze in 

detail a more shortened list and is based on multi-criteria decision making. 

 

B. Crowdsourcing Evaluation Strategies 

  To determine if an idea is a winning idea or not, different evaluation strategies can 

be adopted. For instance, participants can like, vote, dislike, downvote, or rate an idea. The 

efficiency of these evaluation strategies in a pool of thousand ideas is a challenge, however. 

Thus, many crowdsourcing evaluation strategies were proposed in the literature review. 

 

1. High speed filtering using a bag of lemons  

Identifying the best ideas in a pool of contributions is time consuming and 

inefficient. Klein and Garcia (2015) proposed the “bag of lemons” approach that provides 

an accurate measure of the best ideas in a fraction of time. This approach is based on the 

idea that the crowd is better at actually eliminating the worst ideas than actually picking the 

best ideas. A research was conducted on R&D lab members of Fluminense Federal 
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Univeristy in Brazil that was facing high competition worldwide and wanted to find new 

innovative productivity enhancement suggestions.  

The study conducted by Klein and Garcia (2015) was divided into two phases. In 

phase 1, an experiment was conducted on an open innovation platform called 

Deliberatoriumin that allows users to submit ideas in a hierarchy. A contest was 

constructed with three financial reward prizes. The contest’s duration was for one month 

and collected around 48 ideas from 23 authors all of which were lab members themselves 

familiar with the lab’s challenges and problems. Also, two cons and two pros of each idea 

were collected. 

Then, these ideas were evaluated by experienced research managers who had 

different backgrounds, gender, and age without knowing the authors of these ideas. The 

experts reviewed and rated these ideas as good, bad, or average according to three criteria:  

a. Cost for implementing the idea 

b. Productivity benefit resulting from the idea 

c. Time needed to start benefiting from the idea 

Nineteen ideas were rated as good by the experts, so the experts did a four round 

Delphi process to choose the three best ideas out of those 19.  

In the second phase, three groups of 20 members each were assembled to evaluate 

the ideas according to the same criteria that was used by the committee members and 

without seeing the authors ’ideas. The three groups were balanced according to gender and 

educational level, and each group used a certain technique to find the best three ideas: 
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a. Likert  

In this technique, the participants rated each idea on a Likert scale from 1 (representing 

highly not to be selected) to 5 (representing highly to be selected as the best idea)  

b. Bag of stars 

Each user was given 10 stars in total to distribute on the present ideas. The idea with the 

greatest number of stars is the idea with the best quality.  

c. Bag of lemons  

Each user was given a budget of 10 lemons to distribute on the ideas. Thus, an idea with the 

big number of lemons is actually the worst idea.  

 

All the collected ideas were then recorded and time stamped.  

To compare how each idea technique was close to the ideal (experts ‘decisions), the 

standard ROC curve was used which is a useful tool for evaluating and comparing 

predictive models. 

The results showed that the larger the group, the more accurate the best ideas result 

was.  

The results also showed that the raters’ demographic criteria had no effect on improving the 

accuracy. More importantly, the results showed that the BOL (bag of lemons) had the 

highest accuracy in determining the best ideas, followed by Likert and then BOS (bag of 

stars). 

BOS and BOL required roughly one third the time needed for the Likert approach 

(p<0.05). The difference in time between BOS and BOL was not statistically significant 
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which made sense since people clicked fewer on “more” link to view the pros and cons 

when they used the BOS/BOL evaluation techniques in contrary to Likert technique. 

Thus, in conclusion, the crowd was much (about 60%) more accurate at eliminating 

bad ideas (BOL) than selecting good ones (BOS) and spent less amount of time in doing so. 

The challenge to these findings is that they can be applied on a small-scale crowdsourcing 

platform. What if there were thousands of ideas, how can users use the bag of lemons to 

identify the worst ideas from these thousand ideas? One suggestion might be to group 

similar ideas, and then rate the worst cluster of ideas.  Another suggestion is to use the 

group of lemons as the first step in the filtering process instead of having it as the complete 

filtering process. However, one important limitation in this strategy is knowing the suitable 

number of tokens to be associated to each user in the evaluation process taking into 

consideration that this number should adapt to the past contribution of the participant.   

 

2. Diverse Bag of Lemons (DBLemons): 

Can we overcome the problems posed by the crowd-based evaluation strategies 

(like crowd voting) which are separating the mediocre from the excellent, and directing 

attention to certain ideas rather than others? Sadien et al. (2018) discuss a new 

crowdsourcing evaluation strategy that is based on the concept of a DBLemons (diverse 

bag of lemons) that solves the problems that some crowdsourcing strategies suffer from. 

The idea of the DBlemons stems from the notion that the crowd is actually better at 

identifying the bad ideas from the good ones. This study is a continuation of the previous 

paper discussed earlier. 
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In the paper, a dataset of a real-world open innovation problems was created. The 

dataset was collected from the platform OpenIdeo around women’s safety challenges ideas: 

“How might we make low-income urban areas safer and more empowering for women and 

girls?" 52 ideas in total regarding the topic were summarized into 150 words each and 

evaluated by 3 viewers. This dataset was then evaluated according to three techniques: bag 

of stars (majority voting), bag of lemons and dB lemons of idea diversification.  

520 workers were hired to evaluate 3 ideas each according to the Likert scale.  

The ideas were evaluated by following these criteria: i) Investment potential, ii) 

Novelty, iii) Impact potential, iv) Feasibility, v) Scalability, vi) Understandability and vii) 

Overall feeling. Each idea was evaluated by 3 evaluators. The quality score then for each 

idea was collected, and the top 30% ideas (16 ideas) were then deduced and was chosen as 

a golden set to compare the different evaluation strategies. 

a. Bag of stars  

Each rater got 52 votes to distribute on the different ideas where they cannot use 

more than one vote on an idea. When the rater sees the ideas to evaluate, he sees them in 

descending order where he sees the most voted on ideas at the top. After putting his votes, 

dynamic voting is assured, and the information becomes updated to put back the ones with 

the greater number of votes back to the top. 

b. Bag of lemons 

Each user gets a budget of 10 down votes (lemons) and distributes them on the 

ideas. The ideas then are re-ordered according to the number of lemons received. The ideas 

with the least number of lemons are displayed first followed by the ones with the lowest 
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number. Similar to bag of stars, according to the number of lemons each vote receives, the 

list is updated.  

c. Diverse Bag of lemons  

In this technique, two concepts are combined: diversity and bag of lemons. 

Each participant is given a budget of 10 lemons and are asked to distribute them. 

From the user’s perspective, this technique is similar to the bag of lemons. What is different 

is what happens behind the scenes. After each participant distributes the bag of lemons, a 

greedy algorithm then displays the top ideas according to the least number of lemons and 

most diverse criteria. 

Idea ranking is displayed according to a submodular diversity function: 

 

The first part of the equation is related to the quality. The higher the quality, the 

higher the function (number of votes in this case). The second part denotes the diversity. 

This part is greater when the idea is from a cluster that has not yet contributed to set S. λ 

represents the value to signify if quality is preferred over diversity.  

This function is based on the following greedy algorithm that is used to order the different 

ideas: 
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Figure 7: DBLemons Greedy Algorithm 

Λ favors diversity and in the experiment’s case, a higher lambda was preferred (In 

other words, a more diverse idea had more value than an idea with a higher quality). 

Results: 

The DBLemons technique was then shown in the paper to be the best strategy to 

evaluate ideas of the three because it considers both diversity and quality in its algorithm 

and puts more weight on diversity which ensures that all ideas get evaluated. 

 

C. Languages Used in data science 

To be able to extract, manipulate, and analyze data, choosing the right Language is 

crucial in the process. 

 

1. Comparison between Python Vs. Matlab Vs. R: 

In today’s data driven environment, there are different data mining and analytics 

programming languages that can perform different functions including visualization, data 

manipulation, classifications, and analysis. Three of them are MatLab, Python, and R which 
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are used to collect and analyze data for decision making purposes (Ozgur et. al, 2017). 

Between the three programming languages, Python is easier to learn because the syntax is 

read like the normal human language and is one of the top coding languages as of 2014. 

However, visualization in Matlab is user friendly, but the language is used by data analysts 

mainly for numerical computations. On the other hand, R has an unmatched analytical and 

statistical power but is much harder to learn as a language than others. Also, Muenchen 

(2017) explained that R is rapidly gaining a share of the data analytics market.  

Because of its relative simplicity and popularity, Python will be used as a starting point 

in this paper to collect, analyze, and understand data collected from a crowdsourcing 

platform use case. 

2. Application of Python in crowdsourcing platforms 

Python and R were both used in previous literature to analyze data in crowdsourcing 

platforms. Sha et al. (2019) used Python web crawler which is Scrapy to pull data 

information of contests between 2010 and 2016 from the platform GrabCad which is a 

website that consisted of contests that offered prizes to designers with the best ideas. They 

also used statnet package in R to analyze the collected data using exponential random graph 

models (ERGMs). Also, data concerning the text readability and complexity of ideas was 

analyzed using the python readability package (Ahmed & Fuge, 2017). 
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D. Text Mining 

To analyze collected data and draw meaningful conclusions, text mining which involves 

a series of steps including data preprocessing, sarcasm detection, and topic modeling are 

necessary for data analysis. 

 

1. Text Preprocessing 

It is important prior to processing and analyzing the data in a textual context to apply 

preprocessing techniques. These techniques eliminate unnecessary noise that impacts the 

smooth analysis of data extracted from crowdsourcing platforms (Kannan & Gurusamy, 

2014). These techniques can be summarized in the three categories:  

a. Tokenization:  

This is the process of dividing a stream of sentences and words into tokens. These 

tokens then are used for further text mining and parsing. The goal behind this technique is 

to remove punctuation marks, and other characters like hyphens, brackets, etc… 

b. Stop Word Removal:  

Stop words are commonly used words like “and”, “are”, and “this” that occur frequently 

in sentences. Because of their nature, these words are not useful when documents are 

classified and thus are always preferred to be removed. 

c. Stemming:  

Stemming is a widely used method when retrieving information which groups the 

variant forms of a word into a common representation which is referred to as a stem. For 
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example, the words “presentation”, “presenting”, and “presented” could all be grouped 

under the same word which is present.  This method suffers from two problems which are 

over stemming and under stemming. Over stemming occurs when there are two words are 

grouped under the same root but instead should not. Under stemming occurs when two 

words that should be stemmed under the same root are stemmed under two different roots.  

d. Application of preprocessing techniques in evaluating and analyzing tweets (online 

communities similar to crowdsourcing platforms) 

In Tuarob et al. (2018), lowercasing was applied and hashtags and stop words were 

removed. Misspelled words were intentionally preserved in addition to emoticons like [-_-]. 

These methods for text preprocessing were utilized before processing the data in tweets and 

determining sarcasm in them. Also, to remove the noise found in tweets collected from 

twitter, preprocessing techniques were applied in (Mehndiratta et al., 2017). Only tweets 

which were created in specific locations like USA or UK were extracted because these 

locations allowed the collection of English only related tweets rather than any other 

language. In addition, short tweets with 3 words or less and retweets were filtered out. 

 

2. Sentiment Analysis 

a. Algorithms: 

 Gupte et. al (2014) discussed and compared different machine learning techniques 

for sentiment analysis. These techniques include Naïve Bayes, max entropy, boosted trees, 

and random forest algorithms. These classifier techniques are different according to their 

complexity, performance, accuracy, and memory requirement. It is shown in Figure 8 that 
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Random Forest is with the highest accuracy and best fits for sentiment analysis although it 

has a high learning time. However, Bayes classifier is preferred if power and memory are 

issues that need to be taken into consideration. In addition, boosted trees is preferred if an 

average classifier is needed.    

 

Figure 8: Sentiment Analysis Classifiers (Gupte et al. , 2014) 

b. Application of sentiment analysis in online communities similar to crowdsourcing 

platforms 

Sentiment analysis was applied in different articles tackling online communities. For 

instance, Taurob & Tucker (2016) used sentiment analysis to understand customer demand. 

According to the paper, the collected sentiment from social media can help determine the 
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demand and thus the sales of a product.  800 million tweets about automobile products 

created in USA from march 2011 to Sep 2012 were collected, and sentiment analysis was 

then applied to these tweets to determine their polarity by an algorithm proposed by 

(Thelwall et al., 2010). The polarity of each tweet message was expressed as [number1, 

number2] where number1 represented the score of positive sentiment and number2 

represented the score of negative sentiment, and the two numbers ranged from 0 to 5. The 

purpose behind placing two numbers in the sentiment polarity was to determine if sarcasm 

existed in the tweet message and to understand also if two sentiments co-existed at the 

same time. Emotional strength was then calculated by using the following formula: 

negative score – positive score. At the end, the demand for a product was calculated as the 

number of positive messages (positive(s)) about a certain product S. This demand was 

compared to the actual sales as informed on Goodcarbadcar.net of these products, and 

results were found to be compatible with the calculated demand. The paper then concluded 

that temporal demand of product could be quantitatively captured from social media and 

then be used by designers to manage their production levels. The same sentiment analysis 

method was also used in (Taurub et al., 2018) as a building step in creating an algorithm 

that determines sarcasm in tweets related to products about phones. Around 20,000 

sarcastic tweets and 100,000 non-sarcastic tweets about phones were collected over a 

period between June-July 14, and sentiment analysis was applied to these tweets. 

On the other hand, in (Zhang et al., 2016), reviews of phones from one of the largest 

electronic marketplaces in China; JD.com, were collected, and sentiment analysis was then 

carried out on these reviews but in a different approach. Instead of using the overall rating 

which is 1 to 5 stars present on the ecommerce that could depend on how customers viewed 
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their perception of these ratings, NLP was used to infer the sentiment of text on a three-

point scale: 1 representing positive sentiment, -1 representing negative sentiment, and 0 

representing neutrality.  

Sentiment Orientation was also utilized in Zhang et al. (2011). Reviews about SLR 

cameras and TVs with price range of 500$-700$ from Amazon.com were split into 

sentences using MXTERMINATOR, and the sentences were checked if they were positive 

or negative by marking them using POS tagger to label each word in the sentence.  A set of 

words of sentiment orientation were added from Mpa cite corpus and WordNet to get a 

total of 1974 positive words and 4605 negative words. To identify the sentiment of the 

sentence, the sentence which was composed of words was compared to the formed set of 

positive/negative words. In addition, the possibility of having a negation in a review was 

considered (this is not a good camera) which reverses the orientation of a sentence.   

 

3. Sarcasm Detection: 

a. Coward Network 

Ivanke & Pexman (2003) identified sarcastic sentences in linguistics to consist of 6 

main tuples: s = speaker, h = listener, c= content, u= utterance, L = Literal proposition, p’= 

Intended Proposition. This can be translated into “Speaker S generates an utterance u in 

Context C meaning proposition p but intending that hearer H understands p’.”  In social 

networks, sarcasm has become a social norm where roughly 22.75 % of social media is 

sarcastic. Information collected from social media that contain sarcasm is considered 

implicit information in which the meaning is intended but not directly stated. Algorithms 
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involving natural language processing usually just consider data that is explicit and 

consider implicit data as irrelevant or misinterpret it (noise).  An example of an implicit 

message is “I love when my blackberry screen freezes, I definitely do not like to get an 

iPhone”. However, traditional natural language processing algorithm fail on social media 

data because social media contains a lot of noise like grammatical mistakes whether 

intentional or unintentional, typos, and symbolic words like “lol” that are not well-formed 

and grammatically correct. Taurub et al. (2018) described a model based on heterogeneous 

coward network patterns in order to translate implicit messages (sarcastic) in social media 

to explicit ones with direct meanings. The model is described in the Figure 9. 

 

Figure 9: Detecting sarcasm using coward networks (Taurub et al. 2018) 

b. Winnow Classifier 

Liebrecht et al. (2013) have developed a predictor to detect sarcasm in Dutch tweets 

based on the winnow classifier algorithm. The winnow classifier algorithm is a machine 

learning technique that is usually given a sequence of positive and negative examples to 
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train it to predict and classify novel examples if they were in the target class (positive) or 

not (negative).  In the field of machine learning, it is a type of a linear classifier that uses 

the characteristics of an object to determine to which class it belongs.  They trained their 

model by collecting tweets with the hashtag #sarcasm and then tested their model on tweets 

they collected on a specific date. They concluded that mostly people are sarcastic about 

topics that include the weather, school and related subjects, social media itself, sports, and 

celebrities. They also showed that the use of markers (hashtags) such as #LOL, #jk, 

#sarcasm, #humor, #NOT were also strong indicators for sarcasm. In addition, they 

revealed that around 94 % of sarcastic tweets mostly included positive exclamations like 

wow, yes in addition to strong intensifiers like amazing, soooo, and veery words. 

c. Deep Convolutional Network 

Mehndiratta et al., (2017) has proposed a technique to detect sarcasm using deep 

convolutional neural networks which focused on skip gram technique to convert words 

into vectors. This approach produced results of overall accuracy of 89.9%. Convolutional 

neural network is a deep learning algorithm that takes an input image and differentiates the 

different aspects in this image. 

d. Hashtag Tokenizer 

Maynard et al. (2014) designed a hashtag tokenizer for their solution and considered 

that sarcasm found within hashtags can be detected more easily. They also showed that 

sarcasm cannot be only considered as negation. Some tweets are straightforward like “this 

project is great”, and when the negation is applied, the sentence becomes “this project is 

bad” which shows the intended meaning, but other sentences are not as simple. For the 
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tweet, “I am not happy that I woke up at 5:15 this morning. #greatstart #sarcasm”, the 

negation is not the meaning that is intended, “we are happy to wake up”. Also, if the 

sentence “You are really mature #lying #sarcasm” is negated, the intended meaning will be 

correct but negating the hashtag will not be. 

 

4. Topic Modelling 

a. Algorithms 

Topic modelling is used to classify text in a document to a topic that appears abstractly 

in a document.  There are different algorithms in topic modelling including Latent 

Semantic Analysis (LSA), probabilistic Latent Semantic Analysis (pLSA), and Latent 

Dirichlet Allocation (LDA) (Rajasundari et al., 2017). LSA’s goal is to find the meaning 

behind the words about the different documents. pLSA is used in information retrieval and 

is an automated document indexing. Also, LDA is an example of topic modeling that builds 

a topic per document and words per topic model.  

b. Application in online communities 

Zhang et al. (2016) used Latent Dirichlet Allocation to mine customer requirements 

from online reviews under different categories. First, reviews from one of the largest 

electronic marketplaces in China; JD.com, were collected about 757 phones. Then, 

attributes were identified in these reviews where POS tagging was applied, and a Latent 

Dirichlet Allocation and page rank were then utilized to rank the different terms in the 

reviews based on the frequency and the relationship between the terms.  This enabled 
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filtering the terms into 15 categories of features for phones including the screen, music, 

battery, and CPU. 

 

5. Readability, Coherence, Semantics 

“In a sea of thousand ideas, how can someone sift through ideas to find high quality 

submissions they can build upon or be inspired by?” Ahmed & Fuge (2017) proposed a 

model to managers on how to effectively manage large collaborative online communities 

and enable them to filter high quality ideas submitted using features like readability, 

coherence, idea uniqueness, community feedback, and semantics. The model was 

demonstrated on OpenIDEO which is a collaborative online community where designers 

are awarded for winning design challenges and for each idea, the data describing the idea, 

the number and timestamp of any comments left on the idea, and whether the idea got 

through to the evaluation or winner stage were captured. To analyze the different features 

of data, data concerning the text readability and complexity of ideas was analyzed using 

the Python readability package. Text Cohesion was measured using the online Coh-metrix. 

Linguistic Inquiry and Word Count (LIWC) was used to determine the psychological 

associations. Also, idea uniqueness was determined through network models like 

TextRank. These text analytics showed that winning ideas had more comments on them. 

Also, the analysis showed that winning ideas have unique topics and are long with larger 

vocabulary.  
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E. Nature of Data Collected 

Different categories of information can be collected in idea crowdsourcing platforms 

that can help in the analysis and understanding of these platforms. The categories range 

from data submitted by participants, to metadata about the submitted ideas, and finally to 

data about the participants themselves. For instance, in Zhang et al. (2016), different 

features were collected from reviews of one of the largest electronic marketplaces in China; 

JD.com. These features can be divided into the following: 

a. linguistic features (# of words, # of sentences, average length of sentence, # of 

adjectives, # of adverbs) 

b. Features based on information quality: # of product features, # of subjective 

sentences, # of objective sentences 

c. Reviewer Features: the grade of reviewer, # of reviews 

d. Metadata features: # of replies, helpful votes, # of replies, # stars 

Similarly, Hossain & Islam (2015) collected information from My Starbucks Idea 

platform that included details like the number of votes received, points earned by submitter, 

points earned on idea, number of comments received, category of the idea, and nature of the 

idea if it is a sole idea or is related with other ideas. Dates of registration of submitter, date 

of implementation of the idea, and the user time of involvement with the platform itself 

were also collected. This information was summarized in the Figure 10. 
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Figure 10: Nature of Collected Data (Hossain & Islam, 2015) 

 

F. Network Analysis 

Networks provide a complex representation of interdependence between different 

points of interaction.  

 

1. Modeling a bipartite network using ERMG 

ERGM (Exponential Random graph model) is usually utilized to model social 

interactions and understand interactions in different types of networks. It is a suitable tool 

for modeling crowdsourcing platforms and the interactions between the different elements 

of the platform because it is a method of social network analysis for building complex 

network structures. Sha et al. (2019) modeled the interactions between participants and that 

of design contests as a bipartite network using ERMGs to understand their effect on 

improving participation rates in design contests. The model was applied on a use case 
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which is GrabCAD; a crowdsourcing online platform that connects designers who submit 

CAD files with sponsors who offer prizes to solving their design problems.  The 

methodology applied showed positive correlation between providing incentives in design 

contests and participation rates. It also showed how the fraction of total prize allocated to 

the first prize negatively influences participation, the positive relationship between the 

contest popularity and participation rates, and how the associations between participants 

had no effect on improving the participation rate. The goal of the conducted research was to 

understand the factors that increase participation rates in design contests and more 

importantly help crowdsourcing implementers design the most effective crowdsourcing 

platforms that boost productivity and ERMG has helped in this. 

2. Coward Networks 

As already mentioned in the saracasm detection section of this paper, Taurub et al. 

(2018) described a model based on heterogeneous coward network patterns in order to 

translate implicit messages (sarcastic) in social media to explicit ones with direct meanings.  

 

G. Machine Learning Algorithms: 

There are mainly two types of Machine Learning algorithms (Ayodele, 2010) that help 

analyze data and draw conclusions: 
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1. Supervised learning  

Supervised learning generates a function that maps inputs into the desired outputs. It 

includes different classification problems like Regression, Random Forest Classification, 

and Logistic Regression. 

a. Random Forest Classification  

The basic building block of a Random Forest Classifier is the decision tree. The goal of 

decision tree learning is to predict target variables based on several input variables using a 

tree-like model. Tree models that consist of target variables that take discrete values are 

actually classification trees. However, tree models that consist of target variables that take 

continuous values are regression trees.  

A Random forest builds multiple decision trees, gets prediction from each tree, and 

averages their results to form a forest. It is a supervised learning method that can be used 

either for regression or classification (in our case). Since random forest is a highly accurate 

method that does not suffer from overfitting because it involves taking into consideration 

several decision trees in the process which cancels any biases, it was adopted for our 

prediction model. However, it is important to note that this technique is considerably slow 

in generating predictions because it involves the creation of a number of decision trees to 

average their values. 

b. Logistic Regression 

Logistic regression is a simple machine learning technique that allows you to classify 

data into categories. There are different types of logistic regression including binary logistic 

regression and multinomial logistic regression. Binary logistic regression is when the target 
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variable can only be of two categories (true or false) while multinomial regression is when 

the target variable takes more than 3 categories.  

Figure 11 shows how binary logistic regression takes two discrete values 0 and 1. 

Unlike linear regression which is estimated using ordinary least squares, logistic regression 

is estimated using maximum likelihood approach to determine the specific parametric 

values for a given prediction model. 

 

Figure 11: Logistic Regression 

 

Logistic regression is represented by the Sigmoid function “S” shaped curved that can 

take any real valued number between 0 and 1. If the output is more than 0.5, the outcome is 

identified as “Yes”, and if it is less than 0.5, it is identified as a “No”. If the output of an 

idea in our model is for example 0.8, this means that 80 % that this specific idea will be 

won. However, the disadvantage of this machine learning technique is that it cannot handle 

too many features in the model and can suffer from overfitting.  
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c. Support Vector Machine algorithm 

Support Vector machine algorithm is a classification model where each data item is 

plotted in a nth dimensional space. Zhang et al. (2011) constructed a model to rank 

products (quality) according to customer reviews to help potential customers make more 

informed purchasing decisions since reading and comprehending all reviews submitted is 

infeasible by customers. The model described in the paper used Vector Machine algorithm 

(old machine learning algorithm) to measure the quality of products from reviews by 

filtering unrelated comments in reviews such as those related customer service (has nothing 

to do with product quality).  

A feature vector X was fed into the following equation: h(X) = βTX+ β to determine the 

probability of it being relevant or not. A training set of 1000 sentences collected manually 

was used to determine the linear regression model described in the equation.  

d. Gradient Boosted Trees  

Gradient Boosted trees is a machine learning technique that is used in classification 

problems. This technique produces a prediction model in a form of decision trees. The 

technique was used in (Ahmad & Fuge, 2017) where challenges and ideas were classified 

using RUSBoost algorithm at first, and then, the results of this set were used to predict 

ideas on a test set using Gradient Boosted Trees. 
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2. UnSupervised learning  

Unsupervised learning does not have any target or desired outcome to predict. It is used for 

clustering population in different groups and includes algorithms like Apriori algorithm and 

K-means. 

 

H. Results Validation 

Validating results and ensuring that the target is achieved can be done using different 

tools including using Mean Average Precision, Discounted Cumulative gain, and ROC 

Curve. 

1. Discounted Cumulative Gain 

Discounted Cumulative gain is a measure of ranking quality. It measures the usefulness 

of a document based on its position in the result haystack. This is mostly used in 

information retrieval to measure effectiveness of search algorithms. This method was used 

to measure the effectiveness of the ranking quality algorithm that was proposed in Ahmed 

& Fuge (2017). 

 

2. Mean Average Precision 

AP is used to score document retrieval and it reflects how relevant results are upon 

searching. If we type something in Google for example and it shows us 10 results, it is best 

if all these results were relevant and if some of them are relevant, it is better if the relevant 

ones are displayed first. 
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To check if the model adopted in (Zhang et. al, 2011) was ranking the products 

correctly, the results were compared to the sales rank adopted by amazon (If the product is 

sold more, it means it is better – of higher quality). Also, a method which is called Mean 

Average Precision (MAP); a popular measure used in information retrieval for evaluating 

ranking accuracy (Turpin & Schole, 2006) was used in the same paper for results 

validation. 

3. ROC Curve  

An ROC Curve measures the accuracy of a classification model. Accuracy is 

determined by the proportion of observations that are correctly predicted to be positive and 

the proportion of observations that are incorrectly predicted to be positive. 

An important factor in an ROC Curve is measuring the AUC ROC score which is the area 

under the curve and is usually between 0 and 1 where a meaningful classifier usually has an 

AUC greater than 0.5. 

 

I. Release Planning 

Release planning is the ability to select and assign features to consecutive releases 

taking into consideration technical, resource, budget, and risk constraints (Ruhe & Saliu, 

2005).  It is a crucial step in improving any product because it makes sure customers’ 

expectations are met and quality, cost, and effort constraints are not violated. According to 

Pfleeger (2002), the best release plan is the plan that involves feasible features that bring 
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the greatest business value in the right sequence of releases satisfying all the stakeholders 

involved and taking into consideration resource capacities and feature dependencies.  

 

1. The Art and Science of Software Release Planning 

An inclusive release planning process is hybrid and is divided into two important parts: 

the human intuition (expert knowledge) and the science of problem formulation 

(computational intelligence) (Ruhe & Saliu, 2005). All stakeholders like project managers, 

senior developers, and project sponsors meet and decide which features should be 

developed informally or through spreadsheets by balancing manually resources with their 

interests.  This is complex to be applied alone when multiple stakeholders are involved, and 

there are conflicting demands between resources, interests, and constraints (Ruhe & Saliu, 

2005) This is mainly due to the big number of features involved and different conflicting 

objectives between stakeholders. For example, out of a set of 100 features, a project 

manager could prefer to launch a feature in the first release to enhance user experience 

where as a senior developer might believe it is not as important as another feature that 

optimizes a code script. This leads to a complex optimization problem that makes sure all 

stake holders are satisfied with the release plan produced. 

Ruhe & Saliu (2005) formulated an optimization problem and decomposed it into the 

following: 
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a. Decision Variables 

Suppose there are n features, these features can be described as decision variables x(1), 

x(2)….x(n) with x(i) = k if feature “i” (1≤ i ≤ n) is assigned to release option k where  1≤ k ≤ 

K, and x(i) = 0 if a feature is not  implemented in any release. 

b. Dependencies:  

Features can be related to each other. They can either have a coupling relation C (they 

should be implemented in the same release because they depend on each other), a 

precedence relation P (they should be implemented consecutively), or no relation at all. 

c. Resource constraints:  

Resource constraints are related to budget and effort consumption. The sum of 

resources of type t needed by features in a certain release should be less than the available 

capacity of resources of type t of this release. 

∑ 𝐫(𝐢, 𝐭) ≤ 𝐂𝐚𝐩(𝐤,
𝐱(𝐢)=𝐤

𝐭) 

where t represents type of resource, k represents the release number, i represents the feature 

number, r represents the amount of resources of type t, and Cap(k,t) represents the capacity 

of a resource of a certain release. 

These are estimates determined by experts and prone to uncertainties. 

d. Stakeholders:   

In choosing what idea to implement, stakeholders are usually involved. These 

stakeholders have different relative importance assigned to them depending on their 
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position in the organization (Ruhe & Saliu, 2005). For a set of stakeholders, each 

stakeholder can have a different importance level based on a 9-point scale ordinal 

[1,3,5,7,9] where 1 represents very low importance and 9 represents extremely high 

importance. Stakeholders can be product managers or developers.  

𝑷(𝒔) = 𝒑 

Where 1≤ s ≤ S stakeholders and 𝑝 ∈ [1,3,5,7,9] . 

e. Prioritization of ideas:  

Prioritization of ideas is determined based on 2 factors: value (how valuable is this 

feature) and urgency (how urgent is this feature). These values are set by the stakeholders. 

They are also determined based on a 9-scale ordinal. A feature with Value= 1 has a lower 

priority than a feature with value= 9. 

𝑽(𝒔, 𝒊) = 𝒗 

Where 𝑣 ∈ [1,3,5,7,9] , 1≤ s ≤ S stakeholders, 1≤ i ≤ n. 

Urgency is determined by giving a set of votes to a stakeholder. For example, 

suppose there are 2 releases. Each stakeholder is given 9 votes on a particular feature to 

distribute among the releases to allow sufficient differentiation in the degree of importance 

(Number of votes = 9). If a stakeholder voted as (9,0,0), then this feature is very urgent to 

be produced in the first release as per the stakeholder. If a stakeholder voted (0,0,9), then 

the stakeholder thinks this feature is not urgent and should be postponed after the 2 

releases. If a stakeholder voted (3,3,3), then this stakeholder thinks that this feature can be 

implemented in any release or even postponed. 
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𝑼(𝒔, 𝒊) = [𝒖𝟏, 𝒖𝟐 … 𝒖𝒌] 

Where  ∑ 𝒖𝒚𝒚=𝟏→𝒌  ≤ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑽𝒐𝒕𝒆𝒔𝒔 

1≤ s ≤ S stakeholders 

1≤ i ≤ n 

f. Objective Function: 

The objective is to increase the weighted average satisfaction of all stake holders with 

the release plan of features: 

F(x) =  ∑ ∑ WAS(i,k)
x(i)=kk=1…K

 

where WAS(i,k) =  ξ(k)[∑ P(s). V(s, i). U(s, is=1..k , k)]  

P(s) =importance of stakeholder 

ξ(k)= importance of the release 

V(s, i) = Value of feature i from stake holder s 

U(s, i, k) = 𝑈𝑟𝑔𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑘𝑒 ℎ𝑜𝑙𝑑𝑒𝑟 𝑠 𝑓𝑜𝑟 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑘 

Subject to Constraints: ∑ 𝑟(𝑖, 𝑡) ≤ 𝐶𝑎𝑝(𝑘,𝑥(𝑖)=𝑘 𝑡) 

 



 

42 
 

2. Determination of the Next Release of a Software Product: An Approach using 

Integer Linear Programming 

Selecting the needed requirements for the next release is a complex task due to many 

reasons including the different interests of stakeholders involved and the high number of 

requirements at hand (Akker et al., 2005). To aid managers in requirements management, 

an Integer Linear Programming technique was proposed that takes as input the different 

number of requirements, estimated revenue per requirement, and availability of resources 

and produces a release’s best set of requirements that leads to maximum projected revenue 

against available resources in a given period of time. In addition, managerial steering 

mechanisms were introduced like transferring developers across teams.  

To model the Integer Linear Programming model, they let {R1, R2…Rn} be the set of 

requirements, and they assumed it was possible to estimate the revenue for each 

requirement as vj. They also assumed that there was a fixed development period denoted by 

T and denoted d(T) as the number of working days in a development period, and Q as the 

number of persons working in the development teams of the company.  

The problem was thus modeled at first as the following Linear Integer programming 

problem:  

Maximize ∑ 𝑣𝑖𝑥𝑗
𝑛
𝑗=1  

Subject to ∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑑(𝑇)𝑄  

𝑥𝑗 ∈ {0,1} for j=1,…,n 
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However, the problem was also extended to include other important scenarios. If a 

certain company decides for sure to have a requirement i in the release for example, then xj 

will be equal to 1 for this requirement “i” and the equation would be added as one of the 

constraints above. In addition, if the developers working have different number of working 

days, this will be denoted by ∑ 𝑑𝑝(𝑇) 𝑃
𝑝=1 where 𝑑𝑝(𝑇) is the number of working days per 

person. 

If there is more than one development team each with their own specialization in 

the organization, and m is the total number of teams available, then Gi (i =1,...,m) consists 

of Qi persons, so the implementation of requirement Rj  would need aij of man days from 

team Gi. 

Thus, the constraint can be modified into the following: 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑑(𝑇) 𝑄𝑖 for I =1,…,m 

To increase revenue, one team member from team Gi can work in team Gk to 

provide more flexibility so the constraint can finally be modified into: 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑦𝑖𝑖 +  ∑ 𝑏𝑘𝑖𝑥𝑘𝑖

𝑘:𝑘≠𝑖

 

∑ 𝑦𝑖𝑘 = 𝑚𝑖
𝑚
𝑘=1  𝑥𝑗 ∈ {0,1} for j=1,…,n , i=1,…,m 

It was shown that the assumption that considered no different teams of developers 

involved produced the highest revenue, followed by the scenario which included transfers 

between teams, and followed lastly by the scenario that treated teams as independent.  
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3. Optimized Resource Allocation for Software Release Planning 

Ruhe (2009) considers the planning of software releases and allocation of resources as 

one entity: defining releases without digging into the resources leads to unfeasible plans. 

The paper uses Integer Linear programming and genetic programming to generate 

operation resource allocation plans. According to Ruhe (2009), without optimal release 

planning, companies will miss implementing the right features at the right time causing 

dissatisfied customers and exceeding budget.  

The paper defines a release plan as the assignment of features to releases where x(n,k) = 1 

if feature f(n) is offered at release k (k =1…K) and x(n,k)= o otherwise. The paper also 

considers that features can have a coupling or precedence relationship. For example, if 

feature f(i) precedes feature f(j), and f(i) is to be implemented in release k, then feature f(j) 

cannot be implemented at any release 1…k-1 earlier than k.  

F(x) represents the total value of individual values v(n,k) of each feature f(n) 

assigned to release k. The model also considers that each feature may require different tasks 

that include technical, quality assurance and managerial tasks. It also considers that 

different human resources may be needed to complete the different tasks of features 

(analysts, developers for example). Also, features might require the consumption of non-

human resources like capital. The model considers as well that different developers might 

have different productivity or expertise levels and thus this affects their assignment to 

features and release planning. Finally, the objective function is defined to increase the value 

of different features subject to the resource allocation u. 
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Maximize ∑ ∑ 𝑣(𝑛, 𝑘). 𝑥(𝑛, 𝑘)𝐾
𝑘=1

𝑁
𝑛=1  

Subject to (𝑥, 𝑢)  ∈ {X,U}   
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CHAPTER III 

METHODOLOGY 
 

The objective of this thesis is to determine the winning ideas from an idea 

crowdsourcing platform to implement in the next release for the product in an innovative 2-

stage amalgamated process. To achieve this objective, the methodology is divided into two 

sections: 

1. Predicting the winning ideas needed to be implemented based on the crowd profiles and 

feedback. 

2. Putting these winning ideas optimally on the product roadmap by the management team 

taking into consideration the resource, budget, technical, and risk constraints. 

Thus, as shown in Figure 12, our model combines the ability to determine winning 

ideas in crowdsourcing platforms through a classifier which is based on the crowd’s 

feedback with the capability to determine which of these wining ideas should be put in the 

current release product roadmap through resource allocation. 
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Figure 12: Methodology General Overview 

A. Prediction Model based on Crowd’s feedback and Profiles 

Idea Crowdsourcing platforms are rich in data. They do not only include information 

about the ideas submitted, but also details about the profiles of the participants who 

submitted them. To construct our prediction model that predicts winning ideas in 

crowdsourcing platforms, it is very important that we extract this data, analyze it, and then 

produce our predictions. As shown in Figure 13, the information we collect about an idea 

includes not only the text of the idea but also the number of comments it received, votes it 

acquired, year it was created in, and the average sentiment it portrayed. Similarly, the 

information collected about a participant’s profile is not only directly related to the idea 

itself but also connected to his previous participation through votes, comments, and ideas. 

After extracting this valuable information from the crowdsourcing platform, we can use this 

collected information to discover a trend and create a prediction that lets us know if this 

idea has the potential of being executed by the implementation team or not.  

 



 

48 
 

 

Figure 13: Prediction Model 

To build and test the prediction model using different tools and mechanisms, the 

following methodology as described in Figure 14 was followed. Data is first extracted from 

the crowdsourcing sourcing platform using the Python software and collected into excel 

sheets. These excel sheets are then processed to remove any noise that could affect our 

results. To understand our data better, we used Tableau to draw conclusions about the data 

we collected and form preliminary hypotheses.  Finally, a random Forest Classifier was 

created and fed with the data to produce the necessary predictions. 

Each part of the methodology that we followed is further illustrated in the sections 

that follow as summarized in Figure 14. 
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Figure 14: Prediction Classifier Creation Process 

1. Data Acquisition 

Data was collected from an online idea crowdsourcing platform using “Beautiful soup” 

library in Python. The Beautiful Soup Library allows you to collect data from a web 

browser by parsing the HTML code to fill data in excel sheets. A spider code was created 

to scrape the ideas with their statuses, number of votes earned, number of comments 

received, and year created. Also, profiles of the idea submitters were scraped using 

Selenium and chrome driver in Python. The data collected about the participants included 

their total number of ideas, comments, and votes resulting from all their participation 

previously with the platform. 

Data Acquisition: 
-Beautiful Soup
-Chrome Driver

-Selenium

Data 
preprocessing 

-Excel Vlookup

Data Analysis
-Tableau

Random Classifier 
Creation

-Training/ Testing Data 
-Classification Report
-Feature Importance

-ROC curve
-Comparison to 

Logistic Regression
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The aim of gathering data about the participants was to understand the influence of the 

submitters and how their profiles can have a strong effect on getting their ideas to be put on 

the product roadmap of the company.  

 

2. Data processing 

As was just discussed, two different codes were used in Python to scrape the data from 

the online idea crowdsourcing platform: one related to the ideas, and the other related to the 

profiles of the submitters. Thus, the data was scraped and collected into two different 

sheets: (1) ideas data and (2) idea submitter data corresponding to the different ideas each. 

To be able to analyze this data and input it into the prediction model, it was necessary to 

filter any null values first and then combine the two different excel sheets into one table 

sheet. This is because null values have devastating effects on prediction models. Thus, the 

two sheets were then combined into one sheet using VLOOKUP depending on the idea ID 

as a key. The final ideas sheet consisted of non-null values of ideas, number of votes 

received per idea, number of comments received per idea, number of total votes submitted 

by a participant, and total number of comments submitted by a participant. The average 

sentiment of comments of an idea was also calculated as the average of total comments for 

an idea by using the Sentiment package in Python. Ideas that were submitted months, days, 

or even hours ago were assumed to be created a year ago. For ideas in which we were not 

able to access the profile participant data due to privacy or expiry, we decided to remove 

them.  
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3. Data Analysis  

To analyze and investigate the data collected before building the prediction model, 

Tableau was used to construct visualizations of the data. By building these visualizations, 

we were able to understand our data better before creating our prediction model. We were 

able to understand the percentage of the ideas collected that were delivered relative to the 

total number, the relationship between the average number of votes received on the idea 

and the year it was created, and the effect of the participants profile on the status of the 

idea. 

 

4. Random Forest Classifier Creation 

To predict and thus filter ideas that are to be delivered or not, a Random Forest 

Classifier was adopted and fed with the collected processed data.  

Our random Forest Classifier was created using Python. It involved reading the data 

and then splitting it into training and testing data sets. In machine learning, training data 

sets are used to train a prediction model on making accurate predictions whereas a testing 

data set is used to validate the accuracy of the predictions.  

After creating our Random Forest Classifier, it was very important to determine the 

accuracy of it because accuracy plays an important role in understanding how effective a 

prediction model is. To determine the accuracy of the prediction model, a classification 

report and an ROC Curve can be used in Python. Accuracy is the fraction of predictions 

that the model got correct and is defined by:  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
. 
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Therefore, both a classification report and an ROC Curve were constructed to show the 

accuracy of determining winning ideas. Finally, the importance of every feature was 

determined to understand what predictors have the greatest effect on the prediction model, 

and what features were better to be removed to improve our model.  

 

5. Logistic Regression Creation 

To validate that Random Forest Classifier is the most accurate to use in predicting ideas 

to be delivered, Logistic Regression was created to compare it with Random Forest 

Classifier’s results. 

Logistic Regression was implemented using Python as well and compared to Random 

Forest Classifier in terms of Accuracy using an ROC Curve to illustrate how Random 

Forest Classifier is the most accurate.  

 

B. Release Planning 

After determining the most promising ideas through our prediction model based on the 

Random Forest Classifier, we will be presented with a subset of ideas based on the crowd’s 

input. This subset can then be filtered as a second stage based on different stakeholders’ 

decisions. To filter these ideas, we have formalized an optimization problem that 

maximizes the value of features given by different stakeholders. This optimization problem 

is built based on the Knapsack formulation problem. The objective of a Knapsack is to 

maximize the value of items that can fit into a knapsack without exceeding a maximum 
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weight constraint. In our case, it is to maximize the value of implementing ideas without 

exceeding the budget allocated for every release.  

The general formulation of a multiple knapsack problem will be our starting point for our 

optimization model: 

Maximize ∑ ∑ 𝑣𝑖𝑥𝑖𝑘
𝐹
𝑖=1

𝐾
𝑘=1   

subject to ∑ 𝑤𝑖𝑥𝑖𝑘
𝐹
𝑖=1 ≤ 𝑐𝑘 where k ∈ K = {1,…,K} 

∑ 𝑥𝑖𝑘
𝐾
𝑘=1 ≤ 1 where i ∈ F = {1,…,F}. 

𝑥𝑖𝑘 = 0 𝑜𝑟 1 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘 𝑘 where i ∈ F , k ∈ K. 

 

1. Decision variables 

Starting from the Knapsack optimization problem illustrated before, suppose there are F 

predicted winning ideas produced (1≤ i ≤ F) from the first filtering stage through the 

Random Forest Classifier, these promising ideas can be described as decision variables xik 

= 1 if idea “i” (1 ≤ i ≤ F) is assigned to release option k where 1≤ k ≤ K, and xik = 0 if an 

idea “i” is not implemented in release k.  

 

2. Constraints 

An idea is only implemented in one release, and thus cannot be assigned to more than 

one release which can be denoted by Equation (1): 
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∑ 𝒙𝒊𝒌
𝑲
𝒌=𝟏 ≤ 𝟏 where i ∈ F = {1,…,F}  (1) 

In addition, resource constraints are related to budget and effort consumption. The 

total number of resources consumed for all ideas in a release should be less than the budget 

allocated for a certain release. To implement an idea, it is important to ensure not only to 

cover development cost, but also quality assurance and project management cost. Thus, the 

Cost of implementing one idea is usually composed of the sum of management cost, 

development cost, and quality cost needed to implement an idea. 

Management cost is usually equal to 20% of (development and quality assurance 

cost) and quality assurance cost is usually 25% of development cost. 

Let Bk be the available development budget of release k. 

Define ci as the development cost for feature i, where: 

 𝒄𝒊= Labor (Man-days) * Labor rate ($/man day) (2) 

 We assume that the management and quality assurance cost combined is 50% of 

development cost. This leads to our new constraint as depicted in equation (3). 

Constraints:  

 ∑ 𝟏. 𝟓𝒄𝒊𝒙𝒊𝒌 ≤ 𝒃𝒌
𝑭
𝒊=𝟏    (3) 

Where k ∈ K = {1,…,K} 

3. Stakeholders 

  In choosing what idea to implement, stakeholders are usually involved. These 

stakeholders can have different relative importance assigned to them depending on their 

positions and power in an organization. The higher the importance, the more control they 
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have on implementing the idea in a certain release.  Importance priority of a stakeholder 

can be defined by Equation (4):  

 𝑷(𝒋) = 𝒑  

Where 

1≤ j ≤ S stakeholders   (4) 

𝒑 ∈ [𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗] 

 

4. Release Importance: 

Driven by market demands, each release can have an importance factor denoted by ξk 

which represents the weighted average of importance factors given by the different 

stakeholders for a given release. Each stakeholder can distribute a sum of 100 votes on the 

different releases to indicate the importance of each. 

 

 𝝃𝒌 =  
∑ 𝝃(𝒌,𝒋)𝑺

𝒋= 𝟏

𝟏𝟎𝟎𝑺
   (5) 

                                                                Where ∑ 𝝃𝒌
𝑲
𝒌= 𝟏  = 1 

 S = Number of Stakeholders 

 

5. Prioritization of ideas:  

Each idea can be given a value by a stakeholder for a given release to indicate how 

valuable it is and how urgent.  An idea “1” with Value V(1,2,3)= 1 assigned by stakeholder 
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2 for release 3 has a lower value than the same idea “1” with V(1,1,3) = 4 assigned by 

stakeholder 1 for the same release 3.  

V (𝒊, 𝒋, 𝒌) = 𝒗   (6) 

      Where 

𝒗 ∈ [𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗]  

1≤ i ≤ F  

1≤ j ≤ S  

1≤ k ≤ K 

 

6. Objective function:      

It is important to maximize the weighted average value (WAV) of all features given by 

different stakeholders for different releases to ensure the maximum satisfaction of 

stakeholders. Thus, we denote our objective function by: 

         𝑴𝒂𝒙 𝑭(𝒙) = ∑ ∑ 𝑾𝑨𝑽(𝒊, 𝒌)𝒙𝒊𝒌
𝑭
𝒊=𝟏

𝒌
𝒌=𝟏  

                           𝑾𝑨𝑽(𝒊, 𝒌) = 𝝃𝒌 ∑ 𝑷(𝒋). 𝑽(𝒊, 𝒋, 𝒌).𝑺
𝒋=𝟏                

P(j) =importance priority of stakeholder 

𝑽(𝒊, 𝒋, 𝒌)

= 𝑽𝒂𝒍𝒖𝒆 𝒐𝒇 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒊 𝒈𝒊𝒗𝒆𝒏 𝒃𝒚 𝒔𝒕𝒂𝒌𝒆 𝒉𝒐𝒍𝒅𝒆𝒓 𝒋 𝒇𝒐𝒓 𝒓𝒆𝒍𝒆𝒂𝒔𝒆 𝒌 

𝝃𝒌 =  𝒊𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒄𝒆 𝒐𝒇 𝒓𝒆𝒍𝒆𝒂𝒔𝒆 𝒌 

𝝃𝒌 =  
∑ 𝝃(𝒌,𝒋)𝑺

𝒋= 𝟏

𝟏𝟎𝟎𝑺
 𝒘𝒉𝒆𝒓𝒆  ∑ 𝝃𝒌

𝑲
𝒌= 𝟏  = 1  and j ∈   S = {1,…,S}. 
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Subject to Constraints:  

∑ 𝒙𝒊𝒌
𝑲
𝒌=𝟏 ≤ 𝟏 where i ∈   F = {1,…,F}. 

∑ 𝟏. 𝟓𝒄𝒊𝒙𝒊𝒌 ≤ 𝒃𝒌
𝑭
𝒊=𝟏  where k ∈  K = {1,…,K} 

Where 𝒄𝒊= Number of Man days * Price/man day. 
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CHAPTER IV 

CASE STUDY 
 

Our model was constructed and applied to an idea crowdsourcing platform of a 

Multinational Technology Provider Company that remains confidential. The crowdsourcing 

platform of our company collects ideas from the public about desirable features to be 

included in the next scheduled Technology releases of the company. The platform is 

suffering today from the voluminous amount of data that is rendering it ineffective in 

responding to the public’s needs and requirements. The company is not being able to 

effectively prioritize the needed ideas that are necessary to implement in the next releases. 

The data was extracted from the platform and analyzed to predict winning ideas using 

Random Forest Classifier. They were then filtered by a second stage filtering optimization 

solution based on Knapsack algorithm with multiple knapsacks. 

 

A. Prediction Model based on Crowd’s feedback and Profile 

1. Data Acquisition, Processing, and Analysis: 

Data was crawled using Selenium, ChromeDriver, and BeautifulSoup in Python 

from the crowdsourcing platform that remains anonymous in the thesis due to 

confidentiality. To analyze and investigate the data collected, Tableau was used to construct 

visualizations of the data. However, it is important to note that any other data analysis tool 

like Excel can also be used. The result of our collected data consisted of around 1152 



 

59 
 

records of delivered and non-delivered ideas. Figure 15 shows the number of records per 

status. More than 85% of the collected data were ideas that were not yet delivered. 

 

 

Figure 15: Number of records per status 

To understand the effect of points (votes) received on an idea and their relationship 

to the year the idea was created in, Figure 16 was constructed to display the average points 

per created year that delivered and non-delivered ideas have received. The results show that 

the average points (votes) are higher for ideas that were created long time ago (13 years 

ago) than ideas that were recently created. This coincides with the notion that older ideas 

should have a greater number of votes than newer ideas because they were exposed to the 

public for longer periods. What is significant and bizarre however, is that delivered ideas 

received less average number of points than non-delivered ideas. 
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Figure 16: Average Points / Year 

To illustrate the relationships between ideas submitters and the deliverability of 

ideas, Figure 17 compared the profiles of submitters of winning and non-delivered ideas. It 

shows that the average number of total votes that participants of winning ideas have given 

is much higher than the average number of total votes that participants of non-delivered 

ideas have given. This might give a notion that ideas of participants with more active 

profiles are preferred over those of less active participants. 
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Figure 17: Participant Profile by Status 

After investigating the data collected and understanding which attributes or factors 

that might have the greatest effect on determining if an idea will be a winning idea or not, a 

random Forest Classifier was created and fed with 1152 entries of data with the following 

columns: 

• Points which are the earned votes an idea received from the different participants 

and public                                 

• Comments which is the number of comments an idea received from the public                             

• Status of the idea which determines if an idea was delivered and implemented or 

not                             

• Year which represents the year the idea was posted on the platform                                  

• Sentiment of average of comments which determines the average sentiment of the 

comments posted on an idea     
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• Number of ideas already submitted by the idea submitter which signifies how 

advanced his or her profile is    

• Number of votes already submitted by the idea submitter which signifies how 

interactive the submitter is with other existing posts          

• Number of comments already submitted by the idea submitter which shows how 

much experience the submitter has 

Data was then split into training and testing data sets. 20% of the data was allocated 

for testing which are 231 records out of 1152 records and 80% was used in training.  

Before taking a single prediction run and investigating it further, we ran our model 

10 times with randomness for our training and testing data sets which means on each run, 

our training and testing data sets were chosen randomly. It is important to note that unless 

we pick different datasets for our training and testing data sets or change the percentage of 

data allocated to testing and training, we will always get the same results when we run our 

prediction model multiple times. Our prediction model was run 10 times to understand 

what ideas were always predicted to be delivered between the different runs, and if there 

were any pattern between them. Our Python code produced predicted ideas on each run, 

and each set of predictions was outputted to an excel sheet. We used COUNTIF between 

the excel sheets to consolidate which ideas were predicted in common between all the 

sheets and investigate the pattern between them. 

Some ideas were common in 2, 3, 5, or 5 runs. Ideas that were commonly predicted 

to be delivered across 5 out of the different 10 runs are shown in Table 1. We can see from 

Table 1 that these ideas were created many years ago, and they had received a high number 
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of votes which means that years created and number of votes received plays an important 

role in our prediction model. 

Idea Number of Votes Year 

1139 424  12 

1040th 104 11 

Table 1: Ideas Produced from 10 Runs 

 

A confusion matrix was built to understand how close our predictions and our actual 

values are. The number of ideas that were correctly predicted to be delivered and they were 

indeed delivered were 9. The ideas that were correctly predicted to be non-delivered and 

were in fact non-delivered are 201 ideas. There were 5 ideas that were falsely predicted to 

be delivered when they are not in fact delivered, and 16 ideas that were falsely predicted to 

be non-delivered when they are in fact delivered. 

201 (TN) 5 (FP) 

16 (FN) 9 (TP) 

Table 2:Confusion Matrix 

                    

To understand how effective our Random Forest Classifier is, we created our 

classification report.  Our classification report shows the Precision, Recall, F1-Score, and 

values for our different ideas.  
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• Accuracy represents the proportion of the predictions that the model classified 

correctly: Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

• Precision shows the proportion of predictions that were correctly predicted to be 

true: Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

• Recall (True Positive Rate) shows the proportion of actual positives that was 

identified correctly without missing any hits: Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

• F1-Score represents a harmonic mean between precision and recall and it measures 

the preciseness and robustness of a model: F1-Score = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

The accuracy of our prediction model was found out to be 91 % which means 91% 

of our all predictions were correctly predicted. However, our model is 64% precise in 

predicting correct ideas which means that 64% of the ideas were predicted to be delivered 

and they were in fact delivered. In addition, our model has a recall of 36% which means 

that 36% of our ideas were predicted to be delivered and 64% of ideas that were supposed 

to be predicted to be delivered were missed. The closer our percentages to 100, the better. 

 Precision Recall F1-Score Support 

Non-Delivered 0.93 0.98 0.95 206 

Delivered 0.64 0.36 0.46 25 

Accuracy   0.91 231 

Macro Avg 0.78 067 0.71 231 

Table 3: Classification Report 
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We constructed an ROC to find AUC in our prediction model and to assess our 

classifier further. The ROC Curve shows the TPR or Sensitivity OR recall (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) vs the 

FPR (
𝐹𝑃

𝐹𝑃+𝑇𝑁
 ) which is also 1-specificity (1- 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 ).As shown in figure 18, AUC in our 

prediction model is 0.88 which shows that our classifier is 88 % accurate in predicting the 

next winning idea. This means that our classifier is relatively a good classifier since AUC > 

50%. Also, since our TPR is 36% (0.36), we can conclude from our graph that our FPR is 

around 2.5% (0.025) which is close to zero. This is a good indication since this means that 

our false positives are low which means the number of ideas that are predicted to be 

winning and are not in fact not winning is low.  

 

Figure 18: Prediction Model ROC Curve 
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To interpret and explain machine learning models that are not intuitive and too 

complicated for a human to understand, we can use specific techniques to understand 

explainable models such as feature importance and LIME (Local Interpretable Model-

Agonistic Explanation). The importance of every feature was determined to understand 

what predictors had the greatest effect on the prediction model, and what features were 

better to be removed.  

As shown in figure 19, year created was found to have the biggest effect (30%) on 

predicting ideas to be delivered followed by points received (20%) whereas the number of 

total comments and total ideas that the submitter has submitted previously on the platform 

had the lowest effect on the prediction model (less than 10%).  

 

Figure 19: Visualizing Important Features 

To increase accuracy in our prediction model, the total number of ideas already 

submitted by the idea submitter on the platform and total number of comments already 
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submitted by the idea submitter on the platform were dropped. The model was run again to 

check for improvements. As shown in Table 4, Precision increased from 64% to 79-80% 

for delivered ideas, and recall improved from 36% to 44%. In addition, accuracy increased 

by 2% to reach 93% 

 Precision Recall F1-Score Support 

False 0.94 0.99 0.96 206 

True 0.79 0.44 0.56 25 

Accuracy   0.93 231 

Macro Avg 0.86 0.71 0.76 231 

Table 4: Classification Report 

 

2. Logistic Regression 

To compare the results of Random Forest Classifier with another machine learning 

algorithm, Logistic regression model was adopted. Accuracy and precision of the model 

were determined to be 89% and 50% respectively which were lower than the Random 

Forest classifier. 

Similar to Random Forest Classifier, we constructed an ROC to find AUC in our 

prediction model. As shown in figure 10, AUC in our prediction model is 0.83 which 

shows that Logistic Regression Classifier is 83 % accurate in predicting the next winning 

idea. This means that our Random Forest classifier is relatively better than the Logistic 

Regression Classifier. 
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Figure 20: Logistic Regression ROC 

 

B. Release Planning 

Our prediction model through the Random Forest Classifier has given us 14 ideas 

that were predicted to be winning ideas. We compared predicted values with actual values 

and found out that only 4 ideas out of 14 were wrongly predicted to be delivered when they 

were not actually winning ideas. However, we kept the 14 ideas to use in our second stage 

filtering process to check if they will be filtered out by our second stage filtering process. 

After predicting our winning ideas through a Random Forest Classifier, we have used our 

formulized optimization problem to narrow down what ideas out of these 14 should be 

implemented and in which release. 
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1. Number of releases:  

After interviewing 3 stakeholders from our company, we have discovered that they 

were considering which features to include in their next release, which features to postpone 

in the release after, and which features not to implement at all. According to the 

stakeholders, it is only important to plan for the year ahead which consists of 2 releases 

since planning for more than 2 releases is prone to market and demand changes as new 

ideas are produced and collected. Therefore, we took into consideration that there only 2 

releases to include in the release plan for the confidential platform 1≤ k ≤ 2. 

 

2. Decision Variables:  

After running our Random Forest Classification model, we have concluded a subset of 

14 predicted ideas to be winning with xik = 1 if idea i (1≤ i ≤ 10) is assigned to release 

option k where 1≤ k ≤ 2, and xik = 0 if an idea is not  implemented in release k. 

 

3. Stakeholders:  

We met with three stakeholders who are the Project Sponsor, Project Manager, and 

Developer denoted by j = 1,2,3. The first stakeholder is the Project Sponsor, the second is 

the Project Manager. and the third is the Developer. We denote by P(j) the importance level 

of each stakeholder which illustrates the power involved in determining which ideas to 

implement in which release and this power corresponds to the positions in the company 

hierarchy. 

𝑃(1) = 9 
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𝑃(2) = 6 

𝑃(3) = 3 

Where 

1≤ j ≤3 stakeholders 

 

4. Release Importance: 

  Each stakeholder has voted on which release was the most important. The average 

importance of each release was then calculated using table 5 and equation (5). It was found 

that the  𝝃𝟏= 26.7% of release 1 and 𝝃𝟐= 73.3%. of release 2. 

Release 𝝃(𝒌, 𝟏) 𝝃(𝒌, 𝟐) 𝝃(𝒌, 𝟑) 𝝃𝒌 

1 40 30 10  
40+30+10

100∗3
 = 26.7% (5) 

2 60 70 90 60+70+90

100∗3
 = 73.3% (5) 

Table 5: Release Importance 

 

5. Survey Results:  

We have used Qualtrics (www.qualtrics.com) which is feedback tool to be able to 

collect feedback from the different stakeholders on how they value features related to 

releases. A survey was constructed and distributed to the different stakeholders. Each of 

the stakeholders received the survey, checked the different ideas, and filled the 

corresponding value  of each idea corresponding to which release it should be. Figure 
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21 shows how the survey allows our different stakeholders to enter the priority of the 

ideas to be implemented in the next releases. The ideas described in the figure are 

transformed into generic labels to protect the confidentiality of the platform. 
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Figure 21: Survey 

 

6. Budget: 

  The project sponsor has then informed us that the approval for the Budget of 

release 1 is $50,000 whereas the budget allocated for release 2 is $65,000. He also 

informed us that the Cost per man day that is taken into consideration by the company 

usually in any projects delivered is equal to $500/day. 

This can be illustrated for release 1 by the following: 
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∑ 𝟏. 𝟓𝒄𝒊𝒙𝒊𝟏 ≤ $𝟓𝟎, 𝟎𝟎𝟎

𝑭

𝒊=𝟏

 

This can be illustrated for release 2 by the following: 

∑ 𝟏. 𝟓𝒄𝒊𝒙𝒊𝟐 ≤ $𝟔𝟓, 𝟎𝟎𝟎

𝑭

𝒊=𝟏

 

𝒄𝒊= Number of Man days * 500$. 

After analyzing the different ideas sent through the survey, each stakeholder inputted the 

value of a given idea for a certain release. The results of their inputs are shown in Table 6. 

 

Idea Man 

Days 

Ci 𝑽(𝒊, 𝟏, 𝟏) 𝑽(𝒊, 𝟏, 𝟐) 𝑽(𝒊, 𝟐,1) 𝑽(𝒊, 𝟐 ,2) 𝑽(𝒊, 

3,1) 

𝑽(𝒊, 

3,2) 

1 20 10000 3 6 2 1 2 7 

2 10 5000 5 9 8 3 4 9 

3 24 12000 7 9 4 6 8 5 

4 15 7500 8 2 9 0 9 3 

5 35 17500 7 2 7 5 7 0 

6 50 25000 6 7 8 4 6 2 

7 38 19000 2 3 3 6 8 9 

8 30 15000 5 4 9 7 5 1 

9 35 17500 2 8 6 8 7 2 

10 42 21000 7 5 7 9 8 5 

11 20 10000 3 9 5 6 7 7 
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12 24 12000 3 5 3 2 0 9 

13 56 28000 2 2 4 5 4 4 

14 35 17500 3 4 5 6 4 4 

Table 6:Stakeholders Inputs 

 

A python code (Appendix 8.3) was run using Table 6 to deduce using a source 

script what ideas should be implemented in which releases and find the optimal release 

plan. 

According to Table 6 and based on our code, we were able to deduce the following 

results in Table 7 related to the ideas and which releases to implement them in. Table 7 thus 

presents the optimal solution that illustrates which ideas should be implemented and in 

what releases, and Table 8 and Table 9 show the different optimal release plans for release 

1 and 2. 

Idea Release 

1 Release 1 

2 Release 2 

3 Release 2 

4 Release 1 

5 - 

6 - 

7 - 
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8 Release 1 

9 - 

10 - 

11 Release 2 

12 Release 2 

13 - 

14 - 

Table 7: Multiple Knapsack results 

Release 1 Cost WAV 

Idea 1 15,000 12.015 

Idea 4 11,250 40.851 

Idea 8 22,500 30.43 

Table 8:Release 1 Plan 

Release 2 Cost WAV 

Idea 2 7,500 92.358 

Idea 3 18000 97.756 

Idea 11 15,000 101.154 

Idea 12 18000 61.571 

Table 9:Release 2 Plan 

 

7. Sensitivity Analysis: 

To understand how sensitive our data is and how prone it is to changes depending 

on different factors like change of release budget, we have increased and decreased the 
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budgets of Release 1 and Release 2 as shown in Table 10&11. Our aim was to discover the 

cut-off points at which our release plans will change, so we increased and decreased our 

release 1 and release 2 budgets by 1% gradually to notice the change in the release plans.  

Upon increasing or decreasing the budget of release 1 by less than 4%, our release 

plan remained the same. However, as shown in Table 10, our release plan changed upon 

increasing or decreasing release 1’s budget to more than 4% and not only release 1’s plan 

was affected but also release 2 was affected as well by this change. Only ideas 4 (release 1), 

2 (release 2), and 11 (release 2) remained intact in the release plan. 

Similarly, we decreased and increased release 2’s budget gradually by 1 % to detect 

our cut-off points at which our release plan changed. Our release plan remained the same 

up until we decreased release 2’s budget by 10% and increased it by 3%. At that stage, only 

ideas 4 (release 1), 2 (release 2), and 11 (release 2) remained intact in the release plan. 

This information gives important information to project sponsors to acquire budget 

approvals knowing how sensitive the set of requirements chosen is. 

Release 1 Budget $50,000 $52,000 (+ 4%) $48,000 (- 4%) 

Release 1    

 1 3 3 

 4 4 4 

 8 8 12 

Release 2    

 2 2 2 
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 3 9 9 

 11 11 11 

 12 1 1 

Table 10: Budget Sensitivity Analysis for Release 1 

 

Release 2 Budget $65,000 $58,000 (-10%) 67,000 (+3%) 

Release 1    

 1  1 

 4 4 4 

 8 10 8 

Release 2    

 2 2 2 

 3 3 3 

 11 11 11 

 12 1 9 

Table 11: Budget Sensitivity Analysis for Release 2 

 

8. Validation 

Python Code Results Validation 

To validate the results obtained in Table 4 & 5, we have calculated the WAV for 

idea 1 using a sample calculation and indeed we got WAV (1,1) = 12 for idea 1 in release 1 

and CDev = 1.5 * 10,000 = $15,000 

Value of idea 1 implemented in Release 1: 
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𝑽(𝟏, 𝟏) = 𝑷(𝟏)𝑽(𝟏, 𝟏, 𝟏) + 𝑷(𝟐)𝑽(𝟏, 𝟐, 𝟏) + 𝑷(𝟑)𝑽(𝟏, 𝟑, 𝟏) = 

(9*3) + (6*2) + (3*2) = 45 

𝑾𝑨𝑽(𝟏, 𝟏) = 𝟎. 𝟐𝟔𝟕𝟕 ∗ 𝟒𝟓 = 𝟏𝟐.015 

Value of idea 1 implemented in Release 2: 

𝑽(𝟏, 𝟐) = 𝑷(𝟏)𝑽(𝟏, 𝟏, 𝟐) + 𝑷(𝟐)𝑽(𝟏, 𝟐, 𝟐) + 𝑷(𝟑)𝑽(𝟏, 𝟑, 𝟐) = 

(9*6) + (6*1) + (3*7) = 81 

𝑾𝑨𝑽(𝟏, 𝟐) = 𝟎. 𝟕𝟑𝟑 ∗ 𝟖𝟏 = 𝟓𝟗. 𝟑 

 

9. Stakeholders Consensus 

       After running the results and validating our mathematical model using a sample, we 

have presented the 2 release plans shown in Table 12 on the different stakeholders to 

discuss them. None of the stakeholders were satisfied with the results for idea 1 as they saw 

it not necessary to be included in the first release and preferred to have it in release 2. 

However, the different stakeholders strongly agreed to have idea 4 implemented in release 

1, and they were okay with idea 8 in release 1 especially the project manager who strongly 

wanted to implement idea 8 in Release 1. This coincides with the sensitivity analysis 

conducted earlier where idea 4 remained intact in the release plan no matter how much we 

changed the budget since it gives us a great value. 

Concerning release 2’s plan, the stakeholders strongly agreed on having ideas 2,3, and 11 in 

release 2 but disagreed to implement idea 12. Only the developer was in favor for 
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implementing  idea 12 in release 2 due to its technical but non-urgent importance and tried 

to convince the project sponsor and project manager to reach a consensus. 

 

Release 1 Release 2 

Idea 1 Idea 2 

Idea 4 Idea 3 

Idea 8 Idea 11 

 Idea 12 

Table 12: Release Plans 

 

 

10. Comparison of Predicted Results with Actually Delivered Ideas 

It was important to compare the actual data with our findings and predictions to validate 

the accuracy of our release plans with what has actually happened in the past. The ideas 

which were predicted to be winning ideas using our first stage filtering Random Forest 

Classifier are presented in Table 8 below.  Table 12 compares the results of our predictions 

and assignment of ideas to release plans with what has happened in the past. As shown in 

Table 13, ideas 2,3,4,8,11 and 12 were indeed delivered before and thus were correctly 

predicted to be winning ideas to be assigned to release plans. In addition, ideas 4 & 8 were 

implemented before ideas 2,3,11, and 12 which coincides with our notion of release 

planning illustrated in table 7. However, idea 1 was wrongly assigned to a release plan 

which makes our release planning Accuracy for this run = 
6

7
  x 100 = 85.7%. In addition, 
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ideas 1,6, 9, and 14 were wrongly predicted to be winning ideas by our Random Forest 

Classifier to be winning ideas. 

Idea Actually Delivered Predicted to be 

Delivered using 

Random Forest 

Classifier 

Delivered 

Years Ago 

Assigned to a 

release using our 

Optimization 

Algorithm 

1 False True - True 

2 True True 11 True 

3 True True 5 True 

4 True True 12 True 

5 True True 3  

6 False True -  

7 True True 5  

8 True True 12 True 

9 False True -  

10 True True 11  

11 True True 5 True 

12 True True 2 True 

13 True True 13  

14 False True -  

Table 13: Actual Ideas Delivered Vs Ideas Predicted to be Delivered. 
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CHAPTER V 

CONCLUSION 
 

Voluminous number of ideas are being submitted to crowdsourcing platforms which 

make them difficult to process and filter in order to allocate them to the product roadmap 

and integrate them into the company’s strategy. In other words, the sheer volume of data in 

crowdsourcing platforms make selecting the “right” idea a tedious process and not only 

poses a huge cognitive load on experts but also renders filtering processes that are only 

based on computational algorithms as lacking to the importance of human intuition and 

experience factor. 

Dellermann et al. (2018) recommended that a combined human and computational 

method builds a strong foundation for filtering the most promising ideas, which was 

followed in this research. This thesis aimed to identify a way to filter ideas submitted in a 

seamless 2-stage filtering process combining crowd results (first filter) with management 

allocation decisions (second filter). The first stage created a Random Forest Classifier that 

predicts the most promising ideas in a crowdsourcing platform by scraping and analyzing 

inputted data from the crowd while the second stage tackled the resource allocation 

management optimization problem by introducing management’s decisions.  

The methodology was built and tested on a two-stage filtering process that includes 

a Random Forest Classifier and an optimization problem based on multiple Knapsack. It 

has proved to be 89% accurate in predicting promising ideas and 85% accurate in release 

planning.  
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However, our current research was only applied to one use case, but more accurate 

results can be achieved if it is applied to more than one platform and performance results 

are compared between platforms.  

In addition, our approach did not consider the precedence and coupling nature 

between ideas. It assumes that all ideas are treated independently which is not usually the 

case. In some cases, an idea can only be implemented if another idea related to it is 

implemented in an iteration before it. However, this scenario can be incorporated by adding 

the following constraint to our model: If idea xn precedes idea xm and idea xn is planned to 

be implemented at release k, then idea xm cannot be implemented at any release 1…k-1 

earlier than k.   

Also, it is important to note that values given by our stakeholders in release 

planning for the different ideas are perceived estimates and thus prone to inaccuracy in 

determining the real effectivity or importance behind ideas.  

In addition, our methodology does not take into consideration that a set of ideas if 

implemented together can create or cause a higher value than when implemented 

individually. This is true because sometimes ideas in synergies can produce a higher value 

than separate ideas and thus should be considered in bulk. 

Our model also assumes that the data inputted in our idea crowdsourcing platform is 

from legitimate users and is not polluted by malicious automations. It assumes that 

automation restrictions are handled on the platform side to prevent any robotic malicious 

actions. Malicious activities can include intentional placement of false information, hacking 
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attempts, botnet attacks, privacy violation attempts, and these can be prevented by different 

control measures (Onuchowska & de Vreede, 2018).  These measures include constant 

monitoring of the platform and its recurring data input to protect the integrity of the 

crowdsourcing platform. 

 In addition, our model assumes that there are no duplicate ideas in the idea 

crowdsourcing platform from which we are scraping the ideas which is not usually the case. 

Sometimes similar ideas are submitted by different participants and thus a mechanism can 

be used to detect the similarity between ideas in the first filtering stage.  

To train our Random Forest Classifier, our model only considers the dataset of ideas 

that were delivered. However, this dataset does not take into consideration that ideas 

delivered might in fact not be successful or generate revenue at the end which means that 

ideas delivered are not necessarily the “right” or “winning” to train the Random Forest 

Classifier with.  

It is important to note that our Optimization model can be extended to include the 

commercial team and their inputs on the ROI generated from ideas and not just the priority 

perceived by the different stakeholders on how valuable implementing an idea is.  

Our methodology also opens the possibility of building a seamless complete one 

user interface portal using our code that scrapes the ideas from an idea crowdsourcing 

platform to produce the most promising ideas to be inputted into a resource allocation 

optimization solution with a few clicks in a user experience fashion. 



 

84 
 

Future research can apply our proposed methodology on different implementation 

types of crowdsourcing platforms like crowdsourcing contests, open calls with direct 

rewards, or microtasks to understand the effectivity of the model on different 

implementation types. For instance, our model can help contest creators evaluate, predict, 

and plan for winning ideas for contests in a faster and more efficient manner especially that 

contests have a time frame.  
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APPENDIX 
 

A. Web Scraping Code 

from urllib.request import urlopen 
from bs4 import BeautifulSoup 
import time 
import csv 
from textblob import TextBlob 
import nltk 
import requests 
import selenium 
from selenium import webdriver 
from selenium.webdriver.common.by import By 
 
#define empty lists 
listComments = [None] 
listVotes = [None] 
listStatuses = [None] 
listYears = [None] 
listProfileLinks = [None] 
ListIdeaLinks = [None] 
listTitles = [None] 
ideaProfileLinkMap = {} 
ideaLinkMap = {} 
 
#for 5 different web pages of ideas 
for x in range(1, 30): 
    print('Scraping webpage ') 
    print(x) 
    time.sleep(5) 
    # scrap the web/insert website link 
    html= 
urlopen("https://confidentialplatform?pageNo="+x.__str__()+"&filter=Deliv
ered") 
        bsObj = BeautifulSoup(html.read()) 
 
#get all ideas on the web page ( 10 ideas) 
    for x in range(0, 10): 
        numberOfComments = '' 
    # get number of comments 
        if(bsObj.findAll('a', {"id":" confidential" + x.__str__() + " 
confidential"})): 
            numberOfComments = bsObj.findAll('a', {"id":"confidential:" + 
x.__str__() + " confidential"})[0].text.strip() 
        listComments.insert(x,numberOfComments) 
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#export to file 
 
    with open('ideas.csv', 'a' , newline='' , encoding="utf-8") as file: 
        for x in range(0, 10): 
            writer = csv.writer(file) 
            writer.writerow([listVotes[x], listComments[x], 
listStatuses[x],listYears[x],ListIdeaLinks[x],listProfileLinks[x]]  
 

B. Random Forest Classifier 

 
import matplotlib 
# Load library 
#import nltk 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import seaborn as sns 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.svm import SVC 
from sklearn import svm 
from sklearn.metrics import confusion_matrix, classification_report 
from sklearn.preprocessing import StandardScaler, LabelEncoder 
from sklearn.model_selection import train_test_split 
 
 
import matplotlib.pyplot as plt 
from sklearn.svm import SVC 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import plot_roc_curve 
from sklearn.datasets import load_wine 
from sklearn.model_selection import train_test_split 
 
ideas = pd.read_csv('ideastoBeInserted2.csv',sep=',') 
print('General information of ideas including head, info describe, how many 
delivered or not ideas') 
print(ideas.head()) 
print(ideas.info()) 
print(ideas.describe()) 
print(ideas['Status'].value_counts()) 
print(sns.countplot(ideas['Status'])) 
plt.show() 
#get features of the model 
X = ideas.drop('Status', axis = 1) 
# get names of the features 
X_list = list(X.columns) 
#get target of the model 
Y = ideas['Status'] 
# get target column name 
Y_list = ['Status'] 



 

87 
 

 
# Split dataset into training set and test set 
X_train, X_test , Y_train , Y_test = train_test_split(X, Y , test_size = 0.2 , 
random_state = 42) 
sc = StandardScaler() 
X_train =sc.fit_transform(X_train) 
X_test = sc.transform(X_test) 
print('Printing x train 10 records') 
print(X_train[:10]) 
 
#Create a Gaussian Classifier 
rfc = RandomForestClassifier(n_estimators=200) 
 
#Train the model using the training sets y_pred=clf.predict(X_test) 
rfc.fit(X_train,Y_train) 
pred_rfc = rfc.predict(X_test) 
 
# Model Accuracy, how often is the classifier correct? 
from sklearn import metrics 
print("Accuracy:", metrics.accuracy_score(Y_test, pred_rfc)) 
 
#predict a value 
#rfc.predict([[3, 5, 4, 2]]) 
 
print(classification_report(Y_test, pred_rfc)) 
print(rfc.score(X_train,Y_train)) 
 
import pandas as pd 
feature_imp = 
pd.Series(rfc.feature_importances_,index=X_list).sort_values(ascending=False) 
print(feature_imp) 
import matplotlib.pyplot as plt 
import seaborn as sns 
# Creating a bar plot 
sns.barplot(x=feature_imp, y=feature_imp.index) 
# Add labels to your graph 
plt.xlabel('Feature Importance Score') 
plt.ylabel('Features') 
plt.title("Visualizing Important Features") 
plt.legend() 
plt.show() 
 
#ROC Curve 
svc_disp = plot_roc_curve(rfc, X_test, Y_test) 
 
# show the plots 
plt.show() 
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C. Optimization Problem Code 

 
import ortools 
from ortools.linear_solver import pywraplp 
 
def create_data_model(): 
    """Create the data for the example.""" 
    data = {} 
    weights = [] 
    values = [] 
    # Defining cost dev of every feature 
    costDev = [10000,5000,12000,7500,17500,25000,19000,15000,17500, 
21000,10000,12000,28000,17500] 
    i=0 
    j=0 
 
    # Defining the total cost of every feature - used in Constraint 
    while i <= 13: 
        weights.append( 1.5 * costDev[i] ) 
        i += 1 
    print(weights) 
 
    # Defining the values for every feature - 
    # Value1 is the value given by stakeholder 1 
    value1 = [[3,6], [5, 9],[7, 9], [8, 2] , [7, 2], [6, 7], [2, 3], [5, 4], [2, 
8], [7, 5] , [3,9], [3,5],[2,2] ,[3,4] ] 
    value2 = [[2,1], [8, 3],[4, 6], [9, 0] , [7, 5], [8, 4], [3, 6], [9, 7], [6, 
8], [7, 9] , [5,6],[3,2],[4,5],[5,6] ] 
    value3 = [[2,7], [4, 9],[8, 5], [9, 3] , [7, 0], [6, 2], [8, 9], [5, 1], [7, 
2], [8, 5] ,[7,7],[0,9],[4,4],[4,4]] 
    totalValues = [] 
    i=0 
    j=0 
    while j <= 13: 
        while i<=1: 
            priority = ( 9 * value1[j][i] ) + ( 6 * value2[j][i] ) + ( 3 * 
value3[j][i] ) 
            values.append(priority) 
            i +=1 
        totalValues.append(values) 
        values=[] 
        i=0 
        j += 1 
 
    print(totalValues) 
 
    # Defining the objective function variables 
    data['releaseImportance'] =[0.267,0.733] 
    data['weights'] = weights 
    data['values'] = totalValues 
    data['items'] = list(range(len(weights))) 
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    data['num_items'] = len(weights) 
    num_bins = 2 
    data['bins'] = list(range(num_bins)) 
    data['bin_capacities'] = [48000, 65000] 
    return data 
 
    # Create the mip solver with the SCIP backend. 
solver = pywraplp.Solver.CreateSolver('SCIP') 
data = create_data_model() 
# Variables 
# x[i, j] = 1 if item i is packed in bin j. 
x = {} 
for i in data['items']: 
    for j in data['bins']: 
        x[(i, j)] = solver.IntVar(0, 1, 'x_%i_%i' % (i, j)) 
 
# Constraints 
# Each item can be in at most one bin. 
for i in data['items']: 
    solver.Add(sum(x[i, j] for j in data['bins']) <= 1) 
# The amount packed in each bin cannot exceed its capacity. 
for j in data['bins']: 
    solver.Add( 
        sum(x[(i, j)] * data['weights'][i] 
            for i in data['items']) <= data['bin_capacities'][j]) 
 
# Objective 
objective = solver.Objective() 
 
for i in data['items']: 
    for j in data['bins']: 
        objective.SetCoefficient(x[(i, j)], data['releaseImportance'][j] * 
data['values'][i][j]) 
objective.SetMaximization() 
status = solver.Solve() 
if status == pywraplp.Solver.OPTIMAL: 
    print('Total packed value:', objective.Value()) 
    total_weight = 0 
    for j in data['bins']: 
        bin_weight = 0 
        bin_value = 0 
        print('Release ', j, '\n') 
        for i in data['items']: 
            if x[i, j].solution_value() > 0: 
                print('Idea', i+1, '- weight:', data['weights'][i], ' value:', 
                      data['releaseImportance'][j] * data['values'][i][j]) 
                bin_weight += data['weights'][i] 
                bin_value += data['releaseImportance'][j] *  
data['values'][i][j] 
        print('Packed bin weight:', bin_weight) 
        print('Packed bin value:', bin_value) 
        print() 
        total_weight += bin_weight 
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    print('Total packed weight:', total_weight) 
else: 
    print('The problem does not have an optimal solution.') 
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