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An Abstract of the Thesis of

Mhd Ghaith Olabi for Master of Science
Major: Computer Science

Title: A Compiler Framework for Optimizing Dynamic Parallelism on GPUs

Dynamic Parallelism on GPUs provides the means for the GPU to generate
work for itself instead of relying on the CPU where a thread running on the
GPU can also launch grids of threads that also run on the GPU. This mech-
anism is particularly useful with applications where the required parallelism is
dynamic and unknown on execution. However, multiple performance issues arise
when using dynamic parallelism. First, the massive number of small launches
incurs massive overhead. Second, the high number of launches is bottlenecked
by the limited numbers of simultaneously executable kernels. Third, the small
grids occupying the GPU causes the device to be underutilized. In this thesis, we
aim to propose a framework that optimizes dynamic parallelism performance by
applying three key compiler optimization techniques: threshold, coarsening, and
aggregation. Thresholding serializes the kernel work when the dynamic paral-
lelism benefit is potentially cancelled by the launch overhead. Coarsening allows
a single child thread block to sequentially execute the work of multiple other
child thread blocks. Aggregation consolidates multiple child grids into a single
aggregated grid. We automate these optimizations as separate compiler passes
then analyze and evaluate the interactions between them. We also combine them
in a single compiler flow, our evaluation on data sets with high parallelism ir-
regularity shows that when our compiler framework is applied on applications
with nested parallelism, on average, it achieves 43.0x speedup over applications
that uses dynamic parallelism, 8.7x speedup over applications that do not use
dynamic parallelism, and 3.6x speedup over applications that use dynamic par-
allelism with aggregation only. Our evaluation also shows that even with all
optimizations applied, on datasets that have low irregularity and low parallelism
requirements, dynamic parallelism still performs significantly worse.
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Chapter 1

Introduction

1.1 Background

Nowadays, mainstream modern computer systems includes both Central Pro-

cessing Units (CPUs) and Graphics Processing Units (GPUs). CPUs have al-

ways been the central general purpose processors in computers whereas GPUs

started o↵ as accelerators that can only perform graphical tasks. By design,

GPUs are composed from many cores where the architecture is optimized for

high throughput achieved by the massive number of operations that can be ex-

ecuted concurrently. Over the past decade, modern GPUs had also proven to

be e↵ective as general purpose processors, this drove the development of many

tools that simplifies the process of expressing programs that can be executed on

GPUs such as CUDA [1]. Distinguished by their ability to execute many tasks

at once, GPUs are often used to accelerate applications with parallel computing

patterns. The most straightforward parallel patterns are the ones where the work

is flat, with minimal dependencies between workers such as drawing pixels on the

screen. The parallel portions of these applications called kernels and are written
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in CUDA, gets executed on the GPU (device) while the sequential portions are

often executed on the CPU (host). In CUDA, Execution is organized in the form

of an array of thread blocks called a grid. A thread block is a batch of threads

that can cooperate with each other. Fig. 1.1 shows how a typical program written

in CUDA runs on the GPU. The host (CPU) issues work to the device by calling

a kernel with a set of configuration and parameters. The configuration specifies

the parallelism requirements, and the parameters are the data needed to exe-

cute the work. GPUs are also leveraged to accelerate many types of computing

patterns, one of these patterns is Nested Parallelism in which the program can

exploit hierarchical levels of parallelism.

Dynamic parallelism is a technique that provides the ability for the GPU to

launch work for itself without relying on the CPU, dynamically, simultaneously,

and independently [2]. The usage of this interface makes it simpler for the devel-

opers to write simpler programs that implement various algorithms with nested

parallelism, especially in the cases where the amount of nested parallelism is ir-

regular and can only be discovered dynamically through execution. An example

of such algorithms is graph algorithms where a parent thread visiting a vertex in

the graph might want to perform some work for each of its neighbours, in such

case, dynamic parallelism is useful such as the parent thread would launch a grid

of thread, whereby a thread is assigned for each neighbour vertex, each thread

would concurrently execute the work.

However, in practice, as shown by prior work [3], dynamic parallelism exhibits

ine�ciency due to limitations in hardware. First, the device can only execute a

limited number of grids and/or thread blocks simultaneously in parallel, when this

limit is exceeded the device serializes the remaining grids and/or blocks. Second,

whenever the GPU API is called to launch a grid there is an incurred overhead.
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Both of these hardware attributes combined are key to understanding the exhib-

ited ine�ciency. The launch overhead is exceedingly high and significant when

a massive number of small grids are launched. Moreover, these small grids will

occupy all the device resources without fully utilizing them because of the small

parallelism requirements. As a result, instead of executing all the thread blocks

in parallel, the device would have to serialize many of them in hardware incurring

additional overhead due to the limited number of concurrently executable grids.

To mitigate the overhead of dynamic parallelism, many hardware and software

approaches were proposed. On the software side, CUDA-NP [4], Free Launch [5],

KLAP [6] and more. CUDA-NP transforms the source code where a potentially

large number of threads is launched upfront, these threads are segmented into

two categories, master and slave threads, where essentially, master threads will be

doing the work of parent threads discovering the work and slave threads perform

the actual work. Free launch, on the other hand, takes a scheduling approach

where it includes multiple techniques to reuse parent threads having them execute

child work in a load-balanced way, either sequentially or in parallel. Both of

these approaches mitigate dynamic parallelism by avoiding it entirely. On the

other hand, KLAP consolidates kernel launches being launched by multiple parent

threads into a single grid. This approach mitigates the overhead by reducing

the number of grids to be launched. Hence, reducing the launch overhead and

allowing higher hardware utilization.

As for the hardware approaches, SPAWN [7] mitigates the overhead by as-

sessing the profitability of the dynamic launches based on the GPU state, then

advises the programmer to either launch or take an alternative method such

as serializing the work in the parent thread. Dynamic Thread Block Launch

(DTBL) [8, 9] allows lightweight launches through extending the grids on the
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fly. LASER [10] enhances dynamic parallelism with (locality aware) scheduling

policies that enhances performance by being aware of the data references locality,

and LaPerm [11] adds locality aware scheduling on top of DTBL.

CPU (Host) GPU (Device)

threadblockgridlaunchLaunch configuration

Figure 1.1: A Typical CUDA Application

1.2 Goals and Contributions

We propose a compiler framework for optimizing dynamic parallelism in appli-

cations with irregular nested parallelism. The framework features three key op-

timizations: thresholding, coarsening, and aggregation. Thresholding allows a

dynamic launch in the parent thread only if the number of child threads exceeds

a certain threshold, the work would be serialized in the parent thread otherwise.

This optimization aims to minimize the overhead incurred by the small launched

grids and underutilized thread blocks. Moreover, when combined with aggre-

gation, this optimization ensures that only large grids are aggregated into the

dynamic launches.

Second, coarsening optimization involves combining the work of multiple
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thread blocks into a single block. The first benefit of this optimization is that

it reduces the number of thread blocks that need to be scheduled, this is poten-

tially useful when the device is oversubscribed with the high number of launches.

Moreover, coarsening integrates well with the aggregation optimization where it

is used to amortize the cost of aggregation across multiple blocks.

Third, aggregation is an optimization where multiple grids being launched

by various parent threads are consolidated into a single one. Instead of having

each thread configure and launch a grid, threads collaborate with each other

and launch a single aggregated grid. The benefit of this optimization is that it

reduces the total number of grids which allows higher device utilization. In this

optimization, we use prior work [6] in the compiler flow.

In this thesis we aim to deliver the following contributions:

• Present a compiler transformation that automates thresholding for dynamic

parallelism

• Present a compiler transformation that automates coarsening in the context

of dynamic parallelism

• Introduce a framework that combines thresholding, coarsening, and aggre-

gation
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Chapter 2

Dynamic Parallelism

Optimizations

2.1 Background on Dynamic Parallelism

Dynamic parallelism allows the programmer to configure and launch grids from

GPU threads instead of switching the context to the CPU then having the CPU

thread configure and launch the grid. A practical example of how dynamic par-

allelism could be used is shown in Fig. 2.1. In this particular example, four

threads are executing on the GPU and each one of these threads discovers nested

work that needs to be executed in parallel, however, the amount of parallelism

required per nested work is di↵erent. Hence, each GPU thread configures a di↵er-

ent nested launch in a separate grid that is scheduled to be run on the GPU. The

above example simulates a graph application algorithm where each parent is set

to process a vertex and for each of its neighbours, the vertex may want to perform

some operation. Instead of the parent thread serially processing these operations

it decides to perform the nested work in parallel, and each of these parents would
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(a) Dynamic Parallelism 

threadblockgriddynamic 
launch

Launch 
configuration

Figure 2.1: Dynamic Parallaleism Example

provide a di↵erent set of configurations and parameters for the nested launches.

For example, di↵erent vertices may have a di↵erent set of neighbours and a dif-

ferent number of neighbours to work on. Hence the grid will be provided with a

di↵erent grid size (launch configurations) and parameters.

As shown in Fig. 2.1 di↵erent parent threads may configure launches di↵er-

ently whereby a massive number of child grids may be launched and many of them

could be small. An example where such a case would occur would be a graph

that has thousands of vertices and many of these vertices only have a small num-

ber of neighbours. As a result, a massive number of grids that include very few

child threads would be scheduled to launch. In this case, the massive number

of launches will cause a massive launch overhead, and these small grids could

be serialized by the hardware due to the limited amount of grids that could be

run simultaneously causing the device to be underutilized, moreover, the launch

overhead of these small threads could cancel the benefit gained from trying to

run them in parallel.
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2.2 Thresholding

Thresholding is an optimization that tackles the massive launch overhead by

cancelling the small grids being launched. Before committing the launch, the

code would look first at the number of threads required in the to-be-launched

grid as a measurement of potential profitability, then, it compares this amount

of nested work to a certain threshold. Based on this comparison, if the work

is assessed profitable (exceeding the threshold), the code then commits the

launch. Otherwise, it runs sequentially on the parent thread. Fig. 2.2(b) shows

how thresholding can be applied to the example in Fig. 2.2(a). In this example,

there are four parent threads trying to do nested work, two of which only have

work that exceeds the threshold. As a result, two parent threads proceed to

launch two grids where the other two threads work is serialized in their parent.

As aforementioned, when launching the two small grids the benefit gained from

running the work in parallel would very likely be cancelled by the launch overhead.

Also, if the number of small grids exceeds the finite amount of simultaneously

executable grids, this would cause the device to be underutilized. Collectively,

this overhead will have us end up with a result that is much worse than just

serializing the work.

8



threadblockgriddynamic 
launch

Launch 
configuration

Child Serialized 
work

(b) Dynamic Parallelism with Thresholding

(a) Dynamic Parallelism 

Figure 2.2: Dynamic Parallaleism with Thresholding Example

Thresholding is an optimization that is commonly applied by programmers [12,

13, 14, 7]. However, when applied manually it can cause unwanted e↵ects on code

quality such as code duplication. We propose to automate this optimization in a

compiler (Section 3.1). However, automating this optimziation does come with

its own challenges discussed in sections 3.1.3 and 3.1.2.

2.3 Coarsening

Coarsening is a contextual optimization that can be used to tackle a specific

type of overhead or bottleneck depending on the context [15, 16, 17]. Essentially,

coarsening assigns the work of multiple thread blocks to one thread block. E↵ec-
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tively, this one thread block would sequentially execute the work of these multiple

blocks one after the other. The coarsening optimization is usually done by apply-

ing some coarsening factor. For example, given a grid that originally consists

of 6 thread blocks, after applying a COARSE FACTOR = 2 the end result

would be 3 thread blocks that are assigned the work of 6. Fig. 2.3(b) shows an

example of how coarsening can be applied on the example given in Fig. 2.3(a), in

this example, we use COARSE FACTOR = 2 and as a result, each one thread

block would execute the work of two thread blocks.

(a) Dynamic Parallelism 

threadblockgriddynamic 
launch

Launch 
configuration

(b) Dynamic Parallelism with Coarsening 

Original thread block

Figure 2.3: Dynamic Parallelism with Coarsening Example

The immediate result of coarsening is that it reduces the total number of
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block threads that would be scheduled on the GPU, optimally allowing all thread

blocks to run in parallel. For example, when a program oversubscribes the GPU

with large thread block requirements that the hardware is not capable of sup-

porting, instead of having these blocks run in parallel, they would be scheduled

in-order, sequentially, so that once one finish the other starts. Depending on the

context, this end-result can be leveraged to either tackle a specific bottleneck

such as hardware limitations or optimize some specific behaviour depending on

the program. There are multiple advantages that can be achieved by applying

coarsening. First, as aforementioned, when a program oversubscribes the GPU,

instead of having the hardware do the serialization and incur an extra overhead

we can apply coarsening to remove that extra unwanted overhead. Second, since

that work is scheduled in a block level, then executed on a warp level, some

warps could finish their work and wait for the other warp in the thread block,

by applying coarsening this would allow some warps to proceed to work on the

original thread block work before other warps have completed there work. Third,

it leaves the option to the developer to factor out common work across the orig-

inal thread blocks to be done once by the coarsened block having its work cost

amortized. For example, in the context of dynamic parallelism, coarsening can

potentially further increase the performance benefit of the aggregation optimiza-

tion by amortizing the cost of the disaggregation logic (detailed in Section 2.4).

Another example outside dynamic parallelism would be matrix-matrix multipli-

cation, when assigning a thread block to process multiple output tiles that share

input tiles, the cost of loading the input tiles to shared memory is amortized as

the tile is loaded once, then reused multiple times [18]. Moreover, given the case

of a parallel histogram implementation, programmers often uses privatization

which is an optimization that builds a local histogram per thread block to min-
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imize the usage of atomicAdd, coarsening can further enhance the performance

whereby assigning the work of multiple thread blocks to one would allow it to

build a larger local histogram in local memory before committing the global his-

togram which amortizes the cost of atomicAdds [19, 20]. on the other hand, the

disadvantage of coarsening is that it reduces parallelism, as a result, if the used

coarse factor is too high this would lead to having the device underutilized

with work that could have been running in parallel otherwise, as such, the best

coarsening factor in code should be tied to the specific device available resources.

As a result, in the context of dynamic parallelism, when thread block coars-

ening is applied the number of blocks to be scheduled is reduced. However, the

reason we propose to automate it in a compiler and apply this optimization is for

the combined potential when applied alongside the aggregation optimization

discussed in section 2.4.

2.4 Aggregation

While coarsening reduces the total number of thread blocks, aggregation is an

optimization that reduces the total number of grids by consolidating multiple

grids into a single one. Before committing the launch, instead of having each

parent thread discover the nested work and do the launch, they would coordi-

nate between each other to consolidate these launches into a single grid. For

example, Fig. 2.4(b) shows an example of how aggregation can be applied on

the example given in Fig. 2.4(a). In this example, in the original code, every

parent thread discovers some nested work and proceeds to do a dynamic launch,

whereas, in the transformed code, the parent threads would coordinate the launch

requirements and parameters and consolidate these launches into a single grid.
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This coordination usually happens on di↵erent scopes, warps, blocks, or a grid,

this largely depends on the aggregation implementation. In the case of warps

or block, the launch is done dynamically from one GPU thread on behalf of all

others whereas if the coordination is done across the whole grid, the launch is

delayed until all parent threads discover all dynamic work, aggregated, and then

the aggregated grid would be launched from the host. The aggregation optimiza-

tion is an optimization that has been previously done either manually or using a

compiler [12, 13, 14, 6].

(a) Dynamic Parallelism 

threadblockgriddynamic 
launch

Launch 
configuration

Memory access

(b) Dynamic Parallelism with Aggregation 

Figure 2.4: Dynamic Parallaleism with Aggregation Example

In the original code, each parent thread directly knows the relevant launch

13



configuration and parameters and provides them directly to each child grid. How-

ever, after the aggregation transformation, the launched grid/s can not only in-

clude one set of parameters and launch configuration. Hence, before completing

the launch the parent threads must coordinate in order to store their original

parameters and configuration in memory then a pointer to this memory location

would be passed to the aggregated grid, this work is referred to as aggregation

logic. Then, after the aggregated grid is launched each child thread must exe-

cute a search operation to identify the original parent thread before aggregation

in order to load the correct launch configuration and parameters from memory

this work is referred to as disaggregation logic.

The advantage of the aggregation optimization is that it reduces the number

of dynamic launches, which lowers the launch overhead cost alongside maximizing

the size of launched grids per scope, allowing better hardware utilization since

the probability of hitting the hardware limit of simultaneously executable grids

is considerably lower. However, on the other hand, the disadvantages are that

it also incurs the overhead of both the aggregation and disaggregation logic

which extra instructions aside from the original code logic.
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Chapter 3

The Compiler Framework

Our compiler framework consists of three optimizations: thresholding, coarsening,

and aggregation. Each optimization is implemented individually, and separately

as a source-to-source transformation pass that takes a .cu file and generates

a .cu file. This ensures that no optimization relies on the other to generate

correct code and achieves separation of concerns. Also, they can be extended

and configured independently, or can be applied in di↵erent order, or can be

integrated in di↵erent flows.

3.1 Thresholding Transformation

The thresholding optimization transforms the code so that only grids larger than

a certain size are launched, otherwise, the work is serialized. This transformation

includes three key parts: constructing a serial version of the parallel code to be

executed by the parent thread, detecting the amount of work parallel work to

be launched by the parent thread, and applying the threshold guard to either

perform the launch or call the serial kernel.

15



Fig. 3.1 shows an example of how the thresholding transformation is applied

across both parent and child kernel. The original code before the transformation

in Fig. 3.1(a) consisting of two key elements: a parent kernel(lines 04-08) and a

child kernel (lines 01-03). the parent kernel configures a child kernel with some

grid dimension gDim and block dimension bDim then launches the child kernel

using dynamic parallelism (line 06). The transformed code in Fig. 3.1(b) shows

the code after the transformation consisting of three key elements: a parent kernel

(lines 19-28), a device serial function (lines 09-15) and a parallel child kernel (lines

16-18). The parent kernel decides to either launch the parallel kernel or the serial

function based on some value threads that represents the required number of

threads in the dynamic call.

3.1.1 Serial Kernel Construction

To construct the serial version, the child kernel is replicated, a serial su�x

is added to its name then transformed from a kernel to a device function by

changing its attribute to device . Then, two parameters are appended to

the replicated function: gDim which represents the original grid dimension in the

parallel kernel, and bDim which represents the original block dimension. Then, we

insert loops that iterate over the original grid and block dimension, the first loop

(line 10) iterates over the grid blocks, whereas the second loop (line 11) iterates

over the threads in a block. Finally we replace all the uses of reserved indices and

dimension variables such as blockIdx.x, threadIdx.x, blockDim.x, gridDim.x

with relevant local variables based on the inserted loop/s. For simplicity, the

above example shows a 1-dimensional child kernel. Noting that this serialization

approach does not work for all cases. The non-serializeable cases are discussed

in section 3.1.2.
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01  __global__ child(...) {
02      child body
03  }

04  __global__ parent(...) {
05      ...
06      child <<< gDim, bDim >>> (...);
07      ...
08  }

09  __device__ child_serial(..., dim3 _gDim, dim3 _bDim) {
10 for(_bx = 0; _bx < _gDim.x; ++_bx) {
11 for(_tx = 0; _tx < _bDim.x; ++_tx) {
12          child body // Replace uses of blockIdx.x with _bx,
13  } // threadIdx.x with _tx, gridDim with
14 }           // _gDim, and blockDim with _bDim
15  }

16  __global__ child(...) {
17      child body
18  }

19  __global__ parent(...) {
20      ...
21  _threads = ...; // Extracted from gDim expression
22  if(_threads >= _THRESHOLD) {
23          child <<< gDim, bDim >>> (...);
24  } else {
25          child_serial (..., gDim, bDim);
26  }
27      ...
28  }

(a) Original Code

(b) Code after Thresholding Transformation

Figure 3.1: Thresholding Transformation Example
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3.1.2 Non-Serializeable Cases

There are multiple cases where constructing a serial kernel automatically is either

infeasible or would yield poor results. The first case is that when the parallel ker-

nel requires collaboration between multiple threads, usually, this collaboration

is achieved either through performing barrier synchronization across threads via

syncthreads() or warp-level primitives. First, code that requires thread col-

laboration assumes the presence of multiple threads executing the work in parallel

which is true in the original code, but not in the transformed code where only one

thread, being the parent, will be executing the work. This collaborative behaviour

requires threads to wait for each other at every barrier operation which cannot

be trivially maintained when serialized, the result of the code transformation de-

scribed in section 3.1.1 would execute the work of every child thread to completion

before moving to the next child’s thread work which e↵ectively would not be able

to port the collaborative nature of the parallel kernel. A similar type of serializa-

tion that supports serializing collaborative kernels has been previously done in

literature [21, 22], however, the target was to serialize multiple GPU threads to a

single CPU thread. The key strategy in these approaches is to divide the code to

multiple sections, separated by barriers, with loops around each section, where

the state of all threads is preserved across all barriers through performing scalar

expansion on all local variables. On the GPU, performing such scalar expansion

would convert all register accesses to local memory accesses which would become

extremely ine�cient. Moreover, code that uses barrier synchronization often im-

plements a parallel algorithm that is not e�cient when performed serially. For

example, when choosing an algorithm that does reduction or scan operations on

a GPU, a parallel reduction tree is often used where barrier synchronization oper-

ations are needed between levels of the tree. However, these algorithms are only
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e�cient when done in parallel due to the nature of the algorithm. Thus, when

running serially on one thread it is much more e�cient to just run a sequential

version of the algorithm like a linear reduction. As a result, in such a case, it is

better to allow the programmer to choose the more e�cient and better performing

algorithm and apply thresholding manually since the best sequential and paral-

lel algorithms di↵er. Moreover, we do not construct serial versions if the child

kernel uses shared memory. The reason is that the aggregated shared memory

requirements per parent thread would be too high as each parent thread would

require what’s equal to an entire child thread grid. In addition to that, code that

relies on shared memory also often uses barrier synchronization across threads

( syncthreads()) operation to coordinate shared memory read and write across

the block threads.

3.1.3 Identifying the Number of Child Threads

One of the key steps and dependencies in applying the transformation described

in 3.1 is the value of threads which represents the units of parallelism required.

The transformation relies on this value to be compared with the threshold, which

is a key part in the decision of whether to serialize or launch a parallel kernel.

However, being able to detect the count of child threads is not a trivial operation

and is often challenging since the number of threads is not explicitly provided

by the programmer in code. When configuring a kernel launch, the programmer

provides the parallel requirements to the kernel call encapsulated in the grid di-

mension (total number of blocks) and block dimension (number of thread blocks),

more specifically, the number of threads is included in the calculation of the grid

dimension. One possible approach to identifying the desired number of threads

would be to multiply the grid dimension by the block dimension. However, this
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approach would calculate the total number of threads inside the launched grid

instead of the usable threads. This value can be misleading and would lead to

overestimating the required amount of parallelism. For example, consider the

case with a parent kernel that also includes a child kernel launch where the block

size dimension is configured to use 1024 threads per block. One of the parent

threads discovering dynamic work identifies two units of nested parallel work to

be processed by a dynamic launch. This parent will configure the child kernel

with exactly one block that includes 1024 threads. In this case, multiplying the

grid dimension by the block size would yield the value of 1024 which is much

larger than the actual required amount of parallelism (two threads). Ideally, the

threshold should be compared to the exact amount of required units of paral-

lelism. As a result, multiplying the grid and block dimension sizes is not a good

approach.

The required number of threads is available in the expression that calculates

the grid dimension, we rely on an observation that this grid dimension is of-

ten calculated by applying a ceiling division operation of the desired number of

threads (which represents the exact value of the required amount of parallelism)

over the block size dimension. Moreover, our observation is complemented by a

set of commonly applied expressions that are commonly used by programmers to

calculate grid dimensions. Fig. 3.2 shows the aforementioned set of expressions.

Options (a)-(c) uses integer arithmetic to calculate the result. Options (d)-(e)

uses floating-point casting operations then calls the ceil function which returns

the same result. Finally, option (f) that represents multi-dimensional blocks

including multiple arguments through the dim3 constructor that takes three ar-

guments, each one of these arguments is an expression that often resembles one

of the options (a) - (e). For all the expression options, the expression may be

20



(a)  (N – 1)/b + 1 N: desired number of threads

(b)  (N + b – 1)/b b: block dimension

(c)   N/b + (N%b == 0)?0:1

(d)   ceil((float)N/b)

(e)   ceil(N/(float)b)

(f)   dim3(..., ..., ...)
// dim3 args could be one of the above expressions

Figure 3.2: Common Expressions for Calculating the Grid Dimension

expressed as whole or it might be calculated through several steps in parts that

are stored in intermediate variables. noting that the expressions N and b can be

any arbitrary expressions.

To identify the number of child threads, based on the mentioned discussion,

we implement an analysis pass to detect and extract the number of threads from

the grid dimension expression. We build the analysis upon an observation made

in Fig. 3.2 that the sub-expression containing N is usually in the sub-expression on

the left-hand side of the division operator. Moreover, the sub-expression N might

also include other sub-expressions that could be constants such as 1 or b which

is also usually a constant. Based on this observation, our analysis unwraps the

expressions and looks for a division operation, takes the sub-expression for the

left-hand-side and removes additions, subtractions of constants only considering

the remaining sub-expression as the desired number of threads. This analysis is

heuristic by nature and does not guarantee to find the exact number of threads.

However, it is acceptable in our context since the result will only be used to

decide to either serialize or launch the parallel kernel and as a result, there is
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absolutely no impact on correctness in any way. After the analysis detects the

number of threads, as shown in Fig. 3.1 we introduce an intermediary variable

threads that holds the value of the found sub-expression. Then, the value of

gDim is replaced with threads to ensure that the expression is not duplicating

this code which would impact correctness if the original expression has any side-

e↵ects.

3.1.4 Applying the Launch Threshold

The final step in the transformation described in 3.1 requires inserting a guard

around the dynamic kernel launch to decide either to launch a dynamic kernel,

or serialize the work. We insert an if statement around the dynamic launch

to ensure that the launch is only performed if the value of threads variable

introduced in 3.1.3 is greater than or equal to THRESHOLD. THRESHOLD is a

macro that can be overridden at compile time for tuning and usability purposes.

If the value threads is less than THRESHOLD then the serial version that has

been constructed as described in 3.1.1 is called, thereby the child work would be

serialized in the parent thread otherwise a nested grid is launched.

3.2 Coarsening Transformation

The coarsening optimization transforms the code whereby the work of multiple

thread blocks in the original code is assigned to a single thread block that executes

the thread blocks serially one after the other. This transformation includes two

key parts: constructing the coarsened child kernel that iterates over multiple

thread blocks, and modifying the launch configuration to launch the coarsened

child kernel with the updated grid configuration.
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Fig. 3.3 shows an example of how the coarsening transformation is applied

across both parent and child kernel. The original code before the transformation

in Fig. 3.3(a) showing two key elements: the parent kernel (lines 04-08) and child

kernel (lines 01-03). Fig. 3.3(b) shows the result of the coarsening transformation

that also consists of two key parts: a modified parent kernel (lines 14-20), and

a modified child kernel (lines 09-13). In the parent kernel, we modify the grid

dimension (lines 16-18) gDim from the original dynamic launch configuration and

update it to the coarsened grid dimension using CFACTOR which is a macro con-

figured at compile time. Also, we update the child kernel creating a new version

using a loop that iterates over the original grid dimension. In this example, we

show coarsening in one dimension only for simplicity.

3.2.1 Constructing the Coarsened Kernel

The transformation described in 3.2 requires a modified kernel such that every

thread block executes the work of multiple thread blocks. To construct such ker-

nel, we start by appending a parameter gDim to the parameters list as shown

in Fig (b) (line 09). This parameter represents the original grid dimension with-

out coarsening. Then, we append a loop that iterates over child thread blocks

assigned to the new coarse block. We also replace the uses of all reserved in-

dices such as blockIdx.x and gridDim.x with the corresponding loop indices

and bounds. For simplicity, the above example only shows transformation with

a single grid dimension, if the child grid is multidimensional, loops would be in-

serted for each dimension and reserved indices would also be replaced as such.

The way loops are inserted and the calculation of thread block indices can be

done in di↵erent strategies, we discuss three di↵erent strategies in section 3.2.2
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01  __global__ child(...) {
02      child body
03  }

04  __global__ parent(...) {
05      ...
06      child <<< gDim, bDim >>> (...);
07      ...
08  }

09  __global__ child(..., _gDim) {
10 for(_bx = blockIdx.x; _bx < _gDim.x; _bx += gridDim.x) {
11      child body // Replace uses of blockIdx.x with _bx
12 } // and gridDim with _gDim
13  }

14  __global__ parent(...) {
15      ...
16      _cgDim = _gDim = gDim ;
17      _cgDim.x = (_gDim.x + _CFACTOR – 1)/_CFACTOR;
18      child <<< _cgDim, bDim >>>(..., _gDim);
19      ...
20  }

(a) Original Code

(b) Code after Child Coarsening

Figure 3.3: Coarsening
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3.2.2 Coarsening Strategies

A coarsened kernel can be expressed in multiple di↵erent ways. Fig. 3.4 shows

three di↵erent ways that we use to express coarsening in the child kernel.

Fig. 3.4(a) shows the coarsening strategy (1) that uses a loop iterating over

the child thread blocks assigned to the coarse block, the iterator is bounded by

the original grid dimension and incremented using the coarsened grid dimension.

For example, given a grid that originally consists of 6 zero-indexed blocks (blocks

0-5), after applying coarsening using CFACTOR = 2 we end up with exactly 3

zero-indexed coarsened blocks (blocks 0-2), this strategy would assign the extra

work of block 3 to 0, the work of block 4 to 1, and block 5 to block 2 as shown

in Fig. 3.5(a).

Fig. 3.4(b) shows the coarsening strategy (2) that uses a loop iterating over

the child thread blocks assigned to the coarse block, the iterator is bounded by the

original grid dimension and incremented using an o↵set of 1. For example, given

a grid that originally consists of 6 zero-indexed blocks (blocks 0-5), after applying

coarsening using CFACTOR = 2 we end up with exactly 3 zero-indexed coarsened

blocks (blocks 0-2), this strategy would manipulate the indices whereas every

thread block would execute the work based on its index plus a certain o↵set. In

this particular example, block 0 is assigned the work of (0-1), block 1 is assigned

the work of (2-3), and block 2 is assigned the work of (4-5).

Fig. 3.4(c) shows the coarsening strategy (3) that uses a loop iterating over

CI, the iterator is bounded by the coarsening factor represented by CI and

incremented using an o↵set of 1, then the new block index is calculated as a

factor of the coarsened block index, the coarse factor, and the iterator. For

example, given a grid that originally consists of 6 zero-indexed blocks (blocks

0-5), after coarsening using CFACTOR = 2 we end up with exactly 3 zero-indexed
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coarsened blocks (blocks 0-2), this strategy works the same way with reindexing

as a strategy (2) as shown in Fig. 3.5(c). The di↵erence between strategy (2) and

(3) is that the latter might allow the compiler to apply loop unrolling optimization

since the iterator factors are always constants.

As such the main di↵erence between strategy (1) and strategies (2-3) is how

the work is assigned across the launched thread blocks which could potentially

result in a di↵erence in performance due to the possible locality influence. Ap-

plying the desired coarsening strategy in our compiler is configurable with a flag

on compile time.
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09  __global__ child(..., _gDim) {
10 for(_bx = blockIdx.x; _bx < _gDim.x; _bx += gridDim.x) {
11      child body // Replace uses of blockIdx.x with _bx
12 } // and gridDim with _gDim
13 }

(a) Strategy 1

09  __global__ child(..., _gDim) {
10 for(_bx= blockIdx.x * _CF; _bx< min((blockIdx.x + 1) * _CF, _gDim.x);++_bx) {
11      child body // Replace uses of blockIdx.x with _bx
12 } // and gridDim with _gDim
13 }

(b) Strategy 2

09  __global__ child(..., _gDim) {
10 for (_CI = 0; _CI < _CF; ++_CI) {
11 _bx = blockIdx.x * _CF + _CI;  
12 if(_bx < gDim.x) {
11          child body // Replace uses of blockIdx.x with _bx
12 } // and gridDim with _gDim
13 }

(c) Strategy 3

Figure 3.4: Coarsening Strategies
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(b) Strategy 1: assigns work using the new gridDim as factor to process original block threads

(c) Strategy 2 & 3: assigns work using coarsening factor offset to process neighbouring blocks

B0 B1 B2B0 B1 B2

B0 B1 B2

B3 B4 B5B0 B1 B2

(a) Original Grid

Figure 3.5: Coarsening Strategies Processing

3.2.3 Modifying the Grid Dimension

The transformation described in 3.2 requires the original parent kernel to launch

a modified coarsened child kernel as shown in Fig. 3.2.1(line 18). To modify the

launch configuration of the dynamic child launch, first, we store the original grid

dimension gDim in a variable gDim line(16). The value is then also copied to

cgDim which would represent the new coarsen grid dimension. The x-dimension

of the coarsened grid dimension cgDim is then calculated as the ceiling division

by CFACTOR(line 17) which represents the coarsening factor. CFACTOR is a macro

that can be configured at compile time for tuning and usability purposes.
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3.3 Overall Compiler Flow

As discussed in section. 3 the optimizations are implemented independently and

can be applied in di↵erent orders. We apply the optimizations in the following

order: thresholding, coarsening, then aggregation as shown in 3.6. We start by

applying thresholding because coarsening updates the original grid dimension

as discussed in section 3.2.3 which makes it harder to identify the number of

threads that need to be compared with the threshold as detailed in section 3.1.4.

Thresholding is also applied before aggregation to isolate small grids and serialize

them before they are aggregated and set to be launched dynamically since that

the logic of aggregation makes it much more di�cult to detect those small grids.

Coarsening is also applied before aggregation because the aggregation logic should

be outside the coarsening loop so that the cost of disaggregation is amortized

across the coarsen child block threads.

Thresholding Coarsening Aggregation.cu .cu .cu .cu

Figure 3.6: Overall Compiler Flow

For thresholding and coarsening we transform the code using our implemen-

tation as detailed in 3.1 and 3.2. As for aggregation, we leverage a prior compiler-

based implementation [6] in our compiler flow.
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Chapter 4

Methodology

4.1 Implementation and Setup

The thresholding and coarsening compiler passes are implemented as source-

to-source transformation pass in Clang version 7.1.0 [23]. For the aggregation

transformation component, we leverage prior works [6]. We evaluate our work on

a system with the following specifications:

• CPU: AMD EPYC 7551P

• Main Memory: 15GB

• GPU: Nvidia’s Volta V100 with 32GB of device memory

4.2 Benchmarks

The benchmarks used are shown in table 4.1. For each benchmark, we use two

base implementations CDP and NoCDP. The NoCDP version is a manual implemen-

tation that does not use CUDA dynamic parallelism feature. The CDP version is
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a manual implementation that uses dynamic parallelism. All other versions are

generated through the compiler using the CDP version as a base. T is for thresh-

olding, C for coarsening, and A for aggregation. To evaluate, we apply all the

optimizations separately or combined on each benchmark. For example, CDP + T

+ C + A would mean that thresholding, coarsening, and aggregation are applied

through the compiler to this benchmark in the same respective order as discussed

in 3.3. The only exception for this is with Triangle Counting (TC) benchmark be-

cause the thresholding is manually applied in the original code implementation.

Each of these benchmarks also includes a testsuite that asserts the correctness of

the benchmark result, we leverage that to verify the correctness of our generated

code, we also verify the results manually. For our combined optimizations evalu-

ation, we always use coarsening strategy (1) described in 3.4, when we tune the

threshold, we always report speedups where there is at least one nested launch

unless explicitly stated otherwise. To avoid overflowing the launch bu↵er pool,

all the benchmarks are configured with appropriate launch count. Also, when

compiled, we use per-thread default streams to ensure that the launches from the

same block are not bottlenecked on the same default stream.

Table 4.1: Benchmarks

Name Description Dataset

BFS Breadth First Search [24] KRON, CNR

BT Bezier Tessellation [25] T0032-C16, T2048-C64

MSTF Minimum Spanning Tree (find kernel) [26] KRON, CNR

MSTV Minimum Spanning Tree (verify kernel) [26] KRON, CNR

SP Survey Propagation [26] RAND-3, 5-SAT

SSSP Single Source Shortest Path [26] KRON, CNR

TC Triangle Counting [27] KRON, CNR
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4.3 Datasets

The datasets used are shown in table 4.2. We use larger datasets than prior works

because we evaluate on a larger GPU. For all the graph application benchmarks,

namely, BFS, MSTF, MSTV, and SSSP [24, 26, 27] we use the same set of graphs

KRON, and CNR [28, 29] in full. The only exception is TC where we only use

part of the two mentioned graphs (570K edges) for memory constraints. As for

BT we test on two datasets, one with the default value from the source code

implementation and the other where we synthetically increase the curvature and

max tessellation points [25]. Finally, for SP we use 5-SAT and RAND-3 datasets.

[30, 26].

Table 4.2: Datasets

Name Description

KRON kron g500-simple-logn16, 65,536 vertices, 2,456,071 edges [29]

CNR cnr-2000, 325,557 vertices, 2,738,969 edges [28]

T0032-C16 Max Tessellation 32, Curvature: 16, Lines: 20,000 [25]

T2048-C64 Max Tessellation: 2048, Curvature: 64, Lines: 20,000 [25]

RAND-3 random-42000-10000-3, 10,000 literals [26]

5-SAT 5-SATISFIABLE, 117,296 literals [30]
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Chapter 5

Evaluation

5.1 Performance

We apply all the optimizations and their combinations on the benchmarks and

present the results in form of performance speedup over the manual CDP and

NoCDP implementations. When directly comparing the CDP and NoCDP ver-

sions it is clear that CDP almost always performs significantly worse. Fig. 5.1

shows the overall speedup when each optimization is applied by its own. First,

we start by only applying thresholding showing that it alone provides a sub-

stantial speedup of 13.4x (geomean) over CDP. Second, as for coarsening, by

itself, it only provides a very modest speedup of 1.01x over CDP. Finally, we ap-

ply aggregation by itself providing a substantial speedup of 12.1x than CDP. In

our compiler flow, when applied separately, aggregation and thresholding are the

main techniques that directly targets the launch overhead, whereas coarsening

is designed to work in synergy with aggregation as shown later in section 5.4.

In accordance with previous works, the major slowdown in CDP vs NoCDP is

caused by the sheer number of launches that overwhelms the device by causing
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a massive overhead [12, 13, 6, 14], hence when targeted directly, both aggrega-

tion and thresholding recovers from the performance degradation and achieves

substantial performance increase over both CDP and NoCDP.
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Figure 5.1: Individual Optimizations Speedup

5.1.1 Thresholding

Applying thresholding alone provides a substantial speedup of 13.4x (geomean)

over CDP. Being an optimization that directly targets the launch overhead by

reducing the number of launches and only allowing launches where the benefit is

not cancelled by the launch overhead.

We apply thresholding alone and tune the threshold where there is at least

one dynamic launch, except for the last data point where we experimentally

34



tune the threshold beyond the largest launch, however, this data point is not

considered as part of the eventual speedup and only considered in section 5.5.

Fig 5.6 shows the design space achieved when thresholding is applied. The first

observation is that for most benchmarks, incrementally increasing the threshold

improves performance which makes sense since that it lowers the launch over-

head. The second observation is that for most benchmarks, setting too high of

a threshold decreases performance, the reason behind that is when the threshold

is too large the dynamic launches are serialized in their parent threads reducing

parallelism. There are few inconsistencies in the behaviour of benchmarks after

applying thresholding, notably BT (T2048-C64 dataset) and TC, as for BT the dif-

ferent increments in thresholding is yielding di↵erent values, the reason behind

this is that the implementation highly depends on dynamic memory allocation in

the child kernel as (broken down further in section 5.2), thus the huge memory

calls largely a↵ects the result. As for TC, incremental threshold steps does not

make a substantial di↵erence until the threshold reaches the highest tune-able

values, the reason behind this lies in the di↵erence between TC and the other

algorithms. BFS, SSSP, MSTF, and MSTV are iterative algorithms that operate

on a subset of the edges at a time, per iteration, whereas for TC the used imple-

mentation uses all the processable edges of the graph at the same time, for that

reason, the device is extremely overwhelmed with launches even at relatively very

high threshold values.

Fig. 5.2 shows that when aggregation is applied after thresholding in CDP +

T + A version, thresholding still gives a speedup where it performs significantly

better at 2.9x than when aggregation is applied alone (geomean). Although

aggregation and thresholding tackle the same launch overhead issue, aggregation

could include underutilized thread blocks whereas thresholding serializes them.
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This behaviour is further discussed in 5.3.
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Figure 5.2: Thresholding Optimization Speedup

5.1.2 Coarsening

Fig. 5.1 shows that applying coarsening alone provides a very modest speedup of

1.01x (geomean) over CDP. This makes sense for the reason is that in the context

of dynamic parallelism, and our benchmarks, by itself, coarsening does not tackle

any specific bottleneck or tries to minimize any specific overhead.

However, Fig. 5.3 shows that coarsening is synergistic with both aggregation

and thresholding. When coarsening is applied on top on thresholding, in the

CDP + T + C version it provides 1.09x speedup over just CDP + T. When

also combined with aggregation, CDP + C + A provides 1.16x speedup over just

applying CDP + A. Although these speedups are less apparent than CDP + A
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and CDP + T over the base CDP version, they are still significant. as discussed

in 5.4
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Figure 5.3: Coarsening Synergistic Speedup

5.1.3 Aggregation

As shown in Fig. 5.1 Applying aggregation alone provides a significant speedup

of 12.1x faster than CDP (geomean). This speedup makes sense since that

aggregation directly tackles the massive overhead caused by the massive num-

ber of launches, this observation is consistent with evaluations made in prior

works [12, 13, 6, 14]. Moreover, the speedup achieved by aggregation alone over-

takes the performance degradation from the launch overhead being 2.4X faster

than the NoCDP implementation.
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5.1.4 Compiler Framework

As discussed in section 3.3 we choose our implementations based not only on

their separate performance enhancements but also on their synergistic potential.

We apply our 3 optimizations in the following order: thresholding, coarsening,

then aggregation. With the three optimizations applied in CDP + T + C + A

this version provides a speedup of 1.22x (geomean) over CDP + T + A, and

3.1x (geomean) over CDP + C + A. In total, when compared to the base CDP

and NoCDP versions, Fig. 5.4 shows that a major speedup of 43.0x (geomean)

is achieved over CDP and a significant speedup of 8.7x (geomean) over NoCDP

version.

As a result, being able to understand the bottlenecks of dynamic parallelism

then applying the right optimizations that tackles them showcases that dynamic

parallelism is a powerful programming feature that can provide a significant

speedup.
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Figure 5.4: Overall Compiler Framework Speedup

5.2 Breakdown of Execution Time

To better understand the e↵ects of each optimization, and the incremental com-

binations we profile the run-times to obtain the breakdown of execution time

shown in Fig. 5.5. To obtain this data, we start with the base unaltered code

then incrementally deactivate parts of the same code, execute and measure the

execution time di↵erence. When deactivating the code, we use guards around the

code with conditionals that are always false so that the code is never executed,

we also eliminate the possibility of dead-code-elimination by using conditionals

that cannot be detected to be false at compile time.

In order to understand the interaction between aggregation alone and the
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combination of the other optimizations, we do not include the CDP version and

use CDP + A as a baseline. However, prior work [6] already shows a thorough

comparison between CDP + A and CDP.

We start our observations by looking at Fig. 5.5 from left to right. We start by

comparing CDP + A and CDP + T. The first and most notable observation is that

when thresholding is applied, the child work greatly decreases and parent work

greatly increases, this result is predictable since thresholding would cancel many

launches from the parent that would have been child work and this same work is

shifted to the parent when the work is serialized. Second, the launch overhead

is also significantly reduced, this result is not surprising because thresholding

reduces the number of launches overall, and by cancelling the small launches

it eliminates a significant part of the launch overhead. Finally, thresholding

decreases both the aggregation and disaggregation logic, through reducing the

number of the launches, fewer parent threads would engage in proceeding to do

the aggregation work and the disaggregation logic would also be reduced since

fewer child threads would be searching for their parents.

We proceed by adding coarsening to our analysis and compare CDP + T +

C + A to CDP + T + A. Our first observation is that coarsening contributes

to the overall speedup by decreasing the launch overhead, this is achieved by

having a reduced number of thread blocks that would need to be scheduled on

the GPU. Second, coarsening decreases the disaggregation logic overhead. This

is because the total number of scheduled aggregated child block threads is less

overall and as a result, the cost of the disaggregation logic that’s usually done

across multiple thread blocks would be amortized and done only on the relevant

coarsened blocks.
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Figure 5.5: Breakdown of Execution time

5.3 Interaction between Thresholding and Ag-

gregation

The overall interaction between thresholding and aggregation in our complete

framework is shown in Fig. 5.6. We fix the best coarsening factor for each bench-

mark, for each data set and observe the di↵erences in behaviour when applying

di↵erent thresholds across di↵erent aggregation granularities. The first observa-

tion is that for most datapoints, when combined, higher aggregation granularity

always yields the best results even in the presence of thresholding, this is consis-

tent with prior work where the higher granularity performed better [6, 14]. The

second observation is that lower granularity level favours higher threshold as the

optimal number. The reason behind this is when the granularity level is lower,

there would be a higher number of launches overall, as a result, thresholding
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would further decrease this number of launches lowering the launch overhead.

Third, applying too high of threshold decreases performance as it varies from the

optimal value, the reason behind this is that higher threshold would move the

work to the parent to be serialized instead of having it aggregated, this e↵ect is

also consistent when the threshold was applied on its own 5.1.1.
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Figure 5.6: Design Space Exploration of Thresholding and Aggregation
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5.4 Interaction between Coarsening and Aggre-

gation

Using the same methodology in section 5.3 we fix the best threshold and observe

the di↵erences as shown in Fig. 5.7. The first observation, is that coarsening

also does not a↵ect the choice of the best granularity which remains to be the

highest across almost all benchmarks. The second observation, adding coarsening

on top of aggregation increases performance, as we increase the coarsening factor

for the first few steps the performance increases. However, adding coarsening

by itself does not improve performance notably as discussed in section 5.1.2.

The third observation is that if the applied coarsening factor is too high, then

it hurts performance. The second and third observation makes sense together,

since that there is a sweet spot where the coarsening factor decreases the number

of scheduled blocks but also doesn’t majorly a↵ect the parallelism as noted in

section 5.2. Finally, we note that the highest granularity benefits the most from

applying the coarsening optimization, which also makes sense since that the goal

from applying coarsening is to amortize the disaggregation logic which is higher

when using higher granularities because the search operation for every thread to

find its parent would be more expensive, this note is also consistent with prior

works where the breakdown between di↵erent aggregation granularities is also

shown [6].
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Figure 5.7: Design Space Exploration of Coarsening and Aggregation

5.4.1 E↵ects of Applying Di↵erent Coarsening Strategies

We implement the coarsening strategies in our compiler as discussed in sec-

tion 3.2.2. We use CDP + T + C + A version because it is the most performing

version, We fix the best threshold value for each benchmark, for each dataset and

always use grid granularity. Fig. 5.8 shows the performance di↵erence between

coarsening strategies (1-3) using CDP + T + C + A strategy (1) as baseline. The
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first observation is that performance slightly diverges as we incrementally increase

the coarsening factor. The second observation is that strategy (1-2) performs al-

most the same on most points whereas strategy (3) performance significantly

diverges to the lower end of the spectrum. The reason behind coarsening strat-

egy (3) performing worse on high factors is because when the coarsening factor

is tuned beyond the total number of blocks, due to the loop not being bounded,

it would still try to execute all iterations as shown in Fig. 3.4 line(10).
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Figure 5.8: Comparing Di↵erent Coarsening Strategies
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5.5 Unsuitable Cases

Dynamic Parallelism is a powerful tool when applied with the right optimiza-

tions. Most notably, when the application’s parallelism requirements are high.

All the aforementioned optimizations minimize the launch overhead, threshold-

ing cancelling the small launches and serializing the work, and aggregation by

consolidating small launches into a single grid. However, there are cases where

the parallel requirements are too low in the application itself where even if the

launches are consolidated, the launch overhead still overtake the benefit of thresh-

olding. In particular, when applying thresholding, it would serialize all the work

turning CDP to NoCDP, but it will also still incur the thresholding logic over-

head. To showcase and demonstrate an example of such a case, we evaluate

the graph benchmarks on a road graph (USA-road-d.NY [31]). The graph has

264,346 vertices, 730,100 edges, an average degree of 3, and a maximum degree

of 8.

We follow the same methodology applied in section 5.1 by applying all our

set of optimizations. Fig. 5.9 shows that the CDP version performs significantly

worse than its NoCDP counterpart, and this is because that in the given graph,

the degree of each vertex is too low on average, thus having very low nested

parallelism requirements. Another observation is that even when all the opti-

mizations are applied, NoCDP version still performs significantly faster for the

same reason, aggregation does not find enough child threads to justify the launch

and increasing the threshold any further would disallow the code from allowing

any nested launch, as a matter of fact, for this particular experiment we tune the

threshold beyond the maximum number of the highest launch and serialize all

child work, however, the incurred overhead of applying all the optimizations in
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code does not allow the performance to fully recover.

The SP benchmark in Fig. 5.4 exhibits the same behaviour on the RAND-3

data-set where NoCDP version performs significantly better than all the optimiza-

tions, that is for the same reason where the largest grid required to be launched

includes only 32 threads.
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Chapter 6

Related Work

The dynamic parallelism concept and implementation provided scientists with a

powerful tool that would simplify their implementations and potentially make it

achieve higher parallelism. However, several benchmarks had shown ine�ciencies

in practice caused by hardware utilization and launch overhead [3, 32, 33], which

motivated multiple optimizations. In this section, we discuss typical use cases of

dynamic parallelism and multiple approaches that were used to optimize dynamic

parallelism through either hardware or software.

6.1 Applications using Dynamic Parallelism

In literature, there are three main categories of applications that use dynamic

parallelism. The first category is applications where dynamic parallelism is used

to transfer control from the CPU to the GPU [34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46]. There are many applications that relies on iteratively launching

consecutive grids, this is usually done on a CPU thread handling the launches.

This first category lets the GPU control these launches instead. This minimizes
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the reliance on the CPU and reduces host-device communication while also freeing

the CPU to do other work. This type of applications do not leverage nested

parallelism and is not targeted by our optimizations.

The second category is applications with regular nested parallelism, this type

of applications performs a specific level of nested parallelism where the amount

of parallelism at every level required is also known before execution [47, 48, 49,

50, 51]. The usage of Dynamic parallelism may provide multiple advantages over

just having the CPU iteratively launch a grid for every level of nesting such as

providing a simpler interface to the programmer, launch work for multiple levels

instead of waiting for the tail of one level to complete its work, and finally by

transferring the control from the CPU to the GPU.

The third category is applications with irregular nested parallelism, the main

distinction of this category is that both or one of the depth of nested parallelism

and amount of parallelism required per level is unknown before execution. The

use of dynamic parallelism provides a simpler interface that alleviates the com-

plexity of programming this type of applications with only CPU launches as it

would require processing techniques to either serialize all the work of the next

nesting level or use complex scheduling techniques to collect work and distribute it

across grid launches. Moreover, it potentially provides better performances if the

right optimizations are applied. There are many applications where the amount

of parallelism is unknown, most notably graph applications such as breadth-

first search [52, 53], Minimum Spanning Tree Find and Verify [26], single-source

shortest path [52, 53], and depth-first search [54], where the amount of nested

parallelism depends on the graph size.
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6.2 Hardware Optimizations

Various hardware approaches to optimize dynamic parallelism and mitigate its

overhead have been developed and proposed. SPAWN [7] is a hardware controller

that advises programmers if a dynamic launch is profitable or not. LASER [10]

improves the locality aware scheduling enhancing dynamic parallelism. Dynamic

Thread Block Launch (DTBL) [8, 9] proposes hardware support for dynamic

lightweight launches of thread blocks that are added to the currently launched

grids on the fly instead of launching new entire grids. LaPerm [11] extends DTBL

work by adding a locality aware scheduler. The main disadvantage of these ap-

proaches is that they all have hardware requirements that are not satisfied by

current GPUs motivating the need for software-based optimizations. Moreover,

our proposed software optimizations would be synergistic with the hardware op-

timizations.

6.3 Software Optimizations

Many software approaches have been proposed to optimize dynamic parallelism.

CUDA-NP [4] is a compiler approach that transforms the source code where in-

stead of using the dynamic parallelism API, the code is partitioned into sequential

and parallel sections, a large number of threads is launched upfront then these

threads are segmented into two categories, master and slave threads, then using

control flow and annotations, the master threads are activated when encountering

sequential sections whereas slave threads would execute the parallel sections.

Free Launch [5], is another software approach that transforms the code whereby

it eliminates child grid launches entirely and instead of using dynamic parallelism,

the host starts by launching the maximum number of allocatable parent thread
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blocks based on the device capabilities and takes a scheduling approach whereby

it reuses parent threads/blocks and has them execute the child work in a load-

balanced way, either sequentially or in parallel.

Both of these approaches mitigate the overhead of dynamic parallelism but

they also avoid it entirely. Moreover, they require threads to be held on standby

regardless of the availability of work. Li et al. [12, 13], Wu et al. [14], and

KLAP [6] aggregates the work of multiple child kernels and combines them into a

single aggregated grid, hence reducing the launch overhead. We leverage [6] and

use it as the aggregation component in our workflow.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we presented a compiler framework that includes three separately

implemented key optimizations: thresholding, coarsening, and aggregation that

optimizes the performance of applications that uses dynamic parallelism. First,

Thresholding only allows large enough grids to be launched otherwise it serializes

the work thereby the potential benefit of the launch is higher and the reduced

number of launches lowers the total launch overhead. Second, coarsening assigns

the work of multiple thread blocks to a single thread block thereby when combined

with threshold, it reduces the schedulable blocks which could remove cases where

the device is oversubscribed, or when combined with aggregation it amortizes the

cost of the disaggregation logic. Third, aggregation consolidates multiple grids

into a single grid thereby reducing the launch overhead and allowing for better

device utilization.

We showcased the compiler implementations, then analyzed and discussed the

advantages and use cases of each of these optimizations when applied separately,
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or combined. Then we thoroughly evaluated the interactions between the di↵erent

optimizations. Our evaluation showcases that our compiler framework provides

substantial speed-ups over applications that use nested parallelism when the data

sets exhibits high irregularity.

7.2 Future Work

Based on the results we observed in our evaluation and tuning, we believe that

there is more to these optimizations and we can still fine-tune the performance

to achieve even better results. First, we would like to expand on the aggregation

granularities. As shown in section 5.3, there is a direct relationship between the

optimal threshold and optimal granularity, as such, it would be interesting to ex-

plore dynamically configurable granularities where we can fine-tune even further

and observe the interaction. Second, we would like to expand the thresholding

optimization and apply it on aggregation, whereas we would only allow a launch

to be included in the aggregation based on a certain threshold, this would al-

low us to further understand the interaction between the two techniques. Third,

showcased in the coarsening strategies section 3.4 we feel that further analysis

should be done to be able fine-tune how these optimizations are applied and

look for opportunities. Fourth, as shown in our evaluation 5.3 and 5.4, di↵erent

coarsening factors and thresholds across di↵erent benchmarks and datasets can

yield di↵erent results, while we’ve explored the space and logged performance at

several points exhausting the space, future work could allow these parameters to

be auto-tuned through more sophisticated methods such as leveraging a machine

learning model to minimize the space when searching for the best values.
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Appendix A

Code Transformations

Listing A.1: BFS CDP Code

__global__ void BFS_child(unsigned int *levels, unsigned int

*edgeArrayAux, int curr, int nbr_off, int num_nbr, int *flag) {

int gid = blockDim.x*blockIdx.x + threadIdx.x;

if(gid < num_nbr){

int v = edgeArrayAux[gid + nbr_off];

if(levels[v] == UINT_MAX) {

levels[v] = curr + 1;

*flag = 1;

}

}

}

__global__ void BFS_parent(

unsigned int *levels,

unsigned int *edgeArray,

unsigned int *edgeArrayAux,

54



unsigned int numVertices,

int curr,

int *flag) {

int gid = blockDim.x * blockIdx.x + threadIdx.x;

if (gid < numVertices) {

if (levels[gid] == curr) {

unsigned int nbr_off = edgeArray[gid];

unsigned int num_nbr = edgeArray[gid + 1] - nbr_off;

BFS_child<<< (num_nbr - 1) / CHILD_BLOCK_SIZE + 1,

CHILD_BLOCK_SIZE>>>(levels, edgeArrayAux, curr, nbr_off,

num_nbr, flag);

}

}

}

Listing A.2: BFS CDP + T

__device__ void

BFS_child__serial(

unsigned int *levels,

unsigned int *edgeArrayAux,

int curr,

int nbr_off,

int num_nbr,

int *flag,

unsigned int _bDim,

unsigned int _gDim

) {
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for (unsigned _bx = 0; _bx < _gDim; ++_bx) {

for (unsigned int _tx = 0; _tx < _bDim; ++_tx) {

int gid = _bDim * _bx + _tx;

if (gid < num_nbr) {

int v = edgeArrayAux[gid + nbr_off];

if (levels[v] == (2147483647 * 2U + 1U)) {

levels[v] = curr + 1;

*flag = 1;

}

}

}

}

}

__global__ void BFS_parent(

unsigned int *levels,

unsigned int *edgeArray,

unsigned int *edgeArrayAux,

unsigned int numVertices,

int curr,

int *flag) {

int gid = blockDim.x * blockIdx.x + threadIdx.x;

if (gid < numVertices) {

if (levels[gid] == curr) {

unsigned int nbr_off = edgeArray[gid];

unsigned int num_nbr = edgeArray[gid + 1] - nbr_off;

unsigned int _bDim = 32;
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unsigned int __threads = num_nbr;

unsigned int _gDim = (__threads + _bDim - 1) / _bDim;

if (__threads >= _THRESHOLD) {

BFS_child<<<_gDim, _bDim>>>(levels, edgeArrayAux, curr,

nbr_off, num_nbr, flag);

} else {

BFS_child__serial(levels, edgeArrayAux, curr, nbr_off,

num_nbr, flag, _bDim, _gDim);

}

}

}

}

Listing A.3: BFS CDP + C

__global__ void BFS_child(

unsigned int *levels,

unsigned int *edgeArrayAux,

int curr,

int nbr_off,

int num_nbr,

int *flag,

unsigned int _gDim) {

for (unsigned int _bx = blockIdx.x; _bx < _gDim; _bx += gridDim.x) {

int gid = blockDim.x * _bx + threadIdx.x;

if (gid < num_nbr) {

int v = edgeArrayAux[gid + nbr_off];
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if (levels[v] == UINT_MAX) {

levels[v] = curr + 1;

*flag = 1;

}

}

}

}

__global__ void BFS_parent(

unsigned int *levels,

unsigned int *edgeArray,

unsigned int *edgeArrayAux,

unsigned int numVertices,

int curr,

int *flag,

unsigned int _gDim

) {

int gid = blockDim.x*blockIdx.x + threadIdx.x;

if(gid < numVertices){

if(levels[gid] == curr){

unsigned int nbr_off = edgeArray[gid];

unsigned int num_nbr = edgeArray[gid + 1] - nbr_off;

unsigned int _gDim = (num_nbr - 1) / 32 + 1;

BFS_child<<< (_gDim + _CFACTOR - 1)/ _CFACTOR ,

CHILD_BLOCK_SIZE>>>(levels, edgeArrayAux, curr, nbr_off,

num_nbr, flag, _gDim);

}

}
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}

Listing A.4: BFS CDP + T + C + A (grid granularity)

__device__ void BFS_child__serial(

unsigned int *levels,

unsigned int *edgeArrayAux,

int curr,

int nbr_off,

int num_nbr,

int *flag,

unsigned int _bDim,

unsigned int _gDim

) {

for (unsigned _bx = 0; _bx < _gDim; ++_bx) {

for (unsigned int _tx = 0; _tx < _bDim; ++_tx) {

int gid = _bDim * _bx + _tx;

if (gid < num_nbr) {

int v = edgeArrayAux[gid + nbr_off];

if (levels[v] == (2147483647 * 2U + 1U)) {

levels[v] = curr + 1;

*flag = 1;

}

}

}

}

}
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__global__ void BFS_child(

unsigned int **levels_array,

unsigned int **edgeArrayAux_array,

int *curr_array,

int *nbr_off_array,

int *num_nbr_array,

int **flag_array,

unsigned int *___gridDimConfig_C_array,

unsigned int *__gDim_array,

unsigned int *__bDim_array,

unsigned int __parentSize,

__GridMemPool __memPool

) {

unsigned int __parentIdx = __find_parent_idx_kernel(__gDim_array,

blockIdx.x, __parentSize);

unsigned int *levels = levels_array[0];

unsigned int *edgeArrayAux = edgeArrayAux_array[0];

int curr = curr_array[0];

int nbr_off = nbr_off_array[__parentIdx];

int num_nbr = num_nbr_array[__parentIdx];

int *flag = flag_array[0];

unsigned int ___gridDimConfig_C =

___gridDimConfig_C_array[__parentIdx];

unsigned int __gridDim_x = __gDim_array[__parentIdx] -

((__parentIdx == 0) ? 0 : __gDim_array[__parentIdx - 1]);

unsigned int __blockDim_x = __bDim_array[__parentIdx];

unsigned int __blockIdx_x = blockIdx.x - ((__parentIdx == 0) ? 0 :
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__gDim_array[__parentIdx - 1]);

if (threadIdx.x < __blockDim_x) {

for (unsigned int _bx = __blockIdx_x; _bx < ___gridDimConfig_C;

_bx += __gridDim_x) {

int gid = __blockDim_x * _bx + threadIdx.x;

if (gid < num_nbr) {

int v = edgeArrayAux[gid + nbr_off];

if (levels[v] == UINT_MAX) {

levels[v] = curr + 1;

*flag = 1;

}

}

};

}

}

__global__ void BFS_parent(

unsigned int *levels,

unsigned int *edgeArray,

unsigned int *edgeArrayAux,

unsigned int numVertices,

int curr,

int *flag,

unsigned int _gDim,

__GridMemPool __memPool

){
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int gid = blockDim.x * blockIdx.x + threadIdx.x;

unsigned int __nb = 0;

unsigned int __nt;

int __param3;

int __param4;

unsigned int __param6;

if (gid < numVertices) {

if (levels[gid] == curr) {

unsigned int nbr_off = edgeArray[gid];

unsigned int num_nbr = edgeArray[gid + 1] - nbr_off;

unsigned int _bDim = 32;

unsigned int __threads = num_nbr;

unsigned int __gridDimConfig = (__threads + _bDim - 1) /

_bDim;

if (__threads >= _THRESHOLD) {

unsigned int _gDim = __gridDimConfig;

__nb = (_gDim + _CFACTOR - 1) / _CFACTOR;

__nt = _bDim;

__param3 = nbr_off;

__param4 = num_nbr;

__param6 = _gDim;;

} else {

BFS_child__serial(levels, edgeArrayAux, curr, nbr_off,

num_nbr, flag, _bDim, __gridDimConfig);

}

}
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}

{

unsigned int **levels_array = __memPool.grid_allocate<unsigned

int *>(2);

unsigned int **edgeArrayAux_array =

__memPool.grid_allocate<unsigned int *>(2);

int *curr_array = __memPool.grid_allocate<int>(2);

int *nbr_off_array = __memPool.grid_allocate<int>(blockDim.x *

gridDim.x);

int *num_nbr_array = __memPool.grid_allocate<int>(blockDim.x *

gridDim.x);

int **flag_array = __memPool.grid_allocate<int *>(2);

unsigned int *_gDim_array = __memPool.grid_allocate<unsigned

int>(blockDim.x * gridDim.x);

unsigned int *__gDim_array = __memPool.grid_allocate<unsigned

int>(blockDim.x * gridDim.x);

unsigned int *__bDim_array = __memPool.grid_allocate<unsigned

int>(blockDim.x * gridDim.x);

union scan_counter *_sc_ = __memPool.grid_allocate<union

scan_counter>(1);

unsigned int __gDim = __nb;

if (__gDim > 0) {

union scan_counter sc_local;

sc_local.idx = 1;

sc_local.nb = __gDim;

sc_local.fused = atomicAdd(&(_sc_->fused), sc_local.fused);

unsigned int _i_ = sc_local.idx;
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nbr_off_array[_i_] = __param3;

num_nbr_array[_i_] = __param4;

_gDim_array[_i_] = __param6;

__gDim_array[_i_] = sc_local.nb + __gDim;

__bDim_array[_i_] = __nt;

} // __gDim > 0

if (threadIdx.x == 0) levels_array[0] = levels;

if (threadIdx.x == 0) edgeArrayAux_array[0] = edgeArrayAux;

if (threadIdx.x == 0) curr_array[0] = curr;

if (threadIdx.x == 0) flag_array[0] = flag;

};

}

void launch_kernel(

unsigned int *d_costArray,

unsigned int *d_edgeArray,

unsigned int *d_edgeArrayAux,

unsigned int numVerts,

int iters,

int *d_flag

) {

unsigned int numBlocks = (numVerts - 1) / PARENT_BLOCK_SIZE + 1;

unsigned int _gDim = numBlocks;

{

static __MemPool __memPool(1073741824);

__GridMemPool __memPoolHost(__memPool);

__GridMemPool __memPoolDevice = __memPoolHost;
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unsigned int __gDim = _gDim;

unsigned int __bDim = 1024;

unsigned int **levels_array_child =

__memPoolHost.grid_allocate<unsigned int *>(2);

unsigned int **edgeArrayAux_array_child =

__memPoolHost.grid_allocate<unsigned int *>(2);

int *curr_array_child = __memPoolHost.grid_allocate<int>(2);

int *nbr_off_array_child =

__memPoolHost.grid_allocate<int>(__gDim * __bDim);

int *num_nbr_array_child =

__memPoolHost.grid_allocate<int>(__gDim * __bDim);

int **flag_array_child = __memPoolHost.grid_allocate<int *>(2);

unsigned int *_gDim_array_child =

__memPoolHost.grid_allocate<unsigned int>(__gDim * __bDim);

unsigned int *gDim_array_child =

__memPoolHost.grid_allocate<unsigned int>(__gDim * __bDim);

unsigned int *bDim_array_child =

__memPoolHost.grid_allocate<unsigned int>(__gDim * __bDim);

union scan_counter *_sc_ = __memPoolHost.grid_allocate<union

scan_counter>(1);

cudaMemset(gDim_array_child, 0,(__gDim * __bDim + __gDim *

__bDim) * sizeof(unsigned int) + sizeof(union

scan_counter));

BFS_parent<<< __gDim, __bDim >>>(d_costArray, d_edgeArray,

d_edgeArrayAux, numVerts,iters, d_flag, _gDim,

__memPoolDevice);

union scan_counter sc_child;
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cudaMemcpy(&sc_child, _sc_, sizeof(union scan_counter),

cudaMemcpyDeviceToHost);

unsigned int __gDim_child = sc_child.nb;

unsigned int __bDim_child = kernel_max(bDim_array_child, __gDim

* __bDim);

BFS_child_h(

__gDim_child,

__bDim_child,

levels_array_child,

edgeArrayAux_array_child,

curr_array_child,

nbr_off_array_child,

num_nbr_array_child,

flag_array_child,

_gDim_array_child,

gDim_array_child,

bDim_array_child,

sc_child.idx,

__memPoolHost

);

};

}
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Appendix B

Abbreviations

DP Dynamic Parallelism

CDP CUDA Dynamic Parallelism

CPU Central Processing Unit

GPU Graphical Processing Unit

BFS Breadth First Search

SSSP Single Source Shortest Path

SP Survey Probagation

TC Triangle Counting

BT Bezier Tessellation

MSTF Minimum Spanning Tree Find

MSTV Minimum Spanning Tree Verify
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[37] L. Oden, B. Klenk, and H. Fröning, “Energy-e�cient stencil computations

on distributed GPUs using dynamic parallelism and GPU-controlled com-

munication,” in Energy E�cient Supercomputing Workshop (E2SC), 2014,

pp. 31–40, IEEE, 2014.

[38] V. Mehta, “Exploiting CUDA dynamic parallelism for low power arm based

prototypes,” in GPU Technology Conference, San Jose, 2015.

[39] J. Aliaga, D. Davidović, J. Pérez, and E. S. Quintana-Ort́ı, “Harnessing

CUDA dynamic parallelism for the solution of sparse linear systems,” Par-

allel Computing: On the Road to Exascale, vol. 27, p. 217, 2016.

[40] M. Abdellah, A. Eldeib, and M. I. Owis, “GPU acceleration for digitally re-

constructed radiographs using bindless texture objects and CUDA/OpenGL

interoperability,” in Engineering in Medicine and Biology Society (EMBC),

2015 37th Annual International Conference of the IEEE, pp. 4242–4245,

IEEE, 2015.

[41] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Performance, de-

sign, and autotuning of batched GEMM for GPUs,” in International Con-

ference on High Performance Computing, pp. 21–38, Springer, 2016.

73



[42] Y. Zhang, J. Liu, X. Li, and Y. Wang, “Fast processing method to gener-

ate gigabyte computer generated holography for three-dimensional dynamic

holographic display,” Chinese Optics Letters, vol. 14, no. 3, p. 030901, 2016.

[43] M. Alandoli, M. Al-Ayyoub, M. Al-Smadi, Y. Jararweh, and E. Benkhelifa,

“Using dynamic parallelism to speed up clustering-based community detec-

tion in social networks,” in Future Internet of Things and Cloud Workshops

(FiCloudW), IEEE International Conference on, pp. 240–245, IEEE, 2016.

[44] M. Al-Ayyoub, M. Al-andoli, Y. Jararweh, M. Smadi, and B. Gupta, “Im-

proving fuzzy c-mean-based community detection in social networks using

dynamic parallelism,” Computers & Electrical Engineering, 2018.

[45] A. F. Sibero, O. S. Sitompul, and M. K. Nasution, “Enhancing performance

of parallel self-organizing map on large dataset with dynamic parallel and

hyper-q,” Data Science: Journal of Computing and Applied Informatics,

vol. 2, no. 02, pp. 62–73, 2018.

[46] Y. Tian, C. Taylor, and Y. Ji, “Improving the performance of the CamShift

algorithm using dynamic parallelism on GPU,” in Information Technology-

New Generations, pp. 667–675, Springer, 2018.

[47] A. Capozzoli, C. Curcio, A. Liseno, and G. Toso, “Speeding up aperiodic

reflectarray antenna analysis by CUDA dynamic parallelism,” in Numerical

Electromagnetic Modeling and Optimization for RF, Microwave, and Ter-

ahertz Applications (NEMO), 2014 International Conference on, pp. 1–4,

IEEE, 2014.

74



[48] A. Capozzoli, C. Curcio, A. Liseno, and G. Toso, “Fast, phase-only synthesis

of aperiodic reflectarrays using NUFFTs and CUDA,” Progress In Electro-

magnetics Research, vol. 156, pp. 83–103, 2016.

[49] G. Mei, “Evaluating the power of GPU acceleration for IDW interpolation

algorithm,” The Scientific World Journal, vol. 2014, 2014.

[50] G. Mei and H. Tian, “Impact of data layouts on the e�ciency of GPU-

accelerated IDW interpolation,” SpringerPlus, vol. 5, no. 1, p. 104, 2016.

[51] A. O. Adeyemi-Ejeye and S. Walker, “4kUHD H264 wireless live video

streaming using CUDA,” Journal of Electrical and Computer Engineering,

vol. 2014, p. 2, 2014.

[52] P. Zhang, E. Holk, J. Matty, S. Misurda, M. Zalewski, J. Chu, S. McMillan,

and A. Lumsdaine, “Dynamic parallelism for simple and e�cient GPU graph

algorithms,” in Proceedings of the 5th Workshop on Irregular Applications:

Architectures and Algorithms, IA3 ’15, pp. 11:1–11:4, ACM, 2015.

[53] S. Lai, G. Lai, F. Lu, G. Shen, J. Jin, and X. Lin, “A BSP model graph pro-

cessing system on many cores,” Cluster Computing, vol. 20, no. 2, pp. 1359–

1377, 2017.

[54] F. Wang, J. Dong, and B. Yuan, “Graph-based substructure pattern mining

using CUDA dynamic parallelism,” in International Conference on Intel-

ligent Data Engineering and Automated Learning, pp. 342–349, Springer,

2013.




