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An Abstract of the Thesis of

Nael Akram Jaber for Master of Engineering
Major: Mechanical Engineering

Title: Detection and Localization of Processionary Moth Nests in Pine Trees
Using Multi-Stream Convolutional Neural Networks

The Pine Processionary Moth (PPM) is considered the main defoliator of
pine trees and a menacing threat to various other perennial species including
oak and cedar. Given their negative secondary effects, spraying of pesticides has
been banned as a means for the eradication of PPM; instead, an individualized
approach is adopted, in which each nest is localized and destroyed. Detection of
PPM nests using optical sensing is challenging because of the changing outdoor
lighting conditions and the camouflaged appearance of moths in the underlying
foliage. In this thesis, a promising solution was proposed for nest detection by
fusing sensory data from a standard RGB camera on one hand and a thermal
camera on the other. The proposed detection system is built on a two-channeled
deep convolutional neural network (CNN), one for each spectrum of the collected
sensor data. Experiments performed in a pine forest report successful detection
rates with an average accuracy of 97%. Geo-localization is performed to report
back the position of the detected nests, within the scanned forest map, by means
of an estimation scheme that was designed for this purpose. The accuracy of the
proposed geo-localization scheme demonstrated an average localization accuracy
of a few centimeters. In summary, this thesis provides a novel scheme to detect
and localize PPM nests by creating a localized, tree-level scanning system that
can be deployed in urban areas.

vi



Contents

Acknowledgements v

Abstract vi

1 Introduction 1

2 Literature Review 6
2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 PPM Nest Surveying . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Deep Learning for crop yield estimation, crop disease assessment,

and pest detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Multi-stream Neural Networks . . . . . . . . . . . . . . . . . . . . 14
2.5 Data Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Software-Based Methods . . . . . . . . . . . . . . . . . . . 16
2.5.2 Hardware-Based Methods . . . . . . . . . . . . . . . . . . 17

3 Proposed System 19
3.1 PPM Nest Detection . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Deep Learning Frameworks . . . . . . . . . . . . . . . . . 19
3.1.2 Multi-Channelled CNN . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Tuning Feature Extraction Network . . . . . . . . . . . . . 23

3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Method 2 (Kalman Filter) . . . . . . . . . . . . . . . . . . 25

3.3 PPM Nest Localization . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experiments 30
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Dataset-A . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Dataset-B . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Dataset-C . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 PPM Nest Detection . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 PPM Nest Tracking . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 PPM Nest Geo-Localization . . . . . . . . . . . . . . . . . 69

5 Discussion 80

6 Conclusion 86

A Abbreviations 88



List of Figures

1.1 (a): PPM feeding on the pine needles [2], (b): Silken PPM nest. . 2
1.2 Schematic illustrating the proposed system and experimental . . . 4
1.3 The workflow of the PPM nests detection, tracking, and . . . . . 5

2.1 Pine processionary moth defoliation in healthy (green dots) . . . . 9
2.2 Tree species identification and pine processionary moth defoliation

in pines in the Codo forest site . . . . . . . . . . . . . . . . . . . . 11
2.3 Network architecture of the early-fusion technique [34]. . . . . . . 15
2.4 Network architecture of the late-fusion technique [34]. . . . . . . . 15

3.1 Architecture of the proposed Multi-Stream Convolutional Neural
Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Architecture of the VGG16 feature extraction network [51]. . . . . 23
3.3 GPS coordinate calculation scheme. . . . . . . . . . . . . . . . . . 27
3.4 Schematic of the localisation system used to calculate the bearing

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Workflow of the proposed system showing sample outputs at the

level of the detection, tracking, and the localisation systems. . . . 29

4.1 The workflow of the experimental work done in this thesis starting
with the data collection process, performing training and testing
on different deep learning models, testing the detector on actual
trees, reaching the validation experiments which tests the proposed
detection, localization and tracking in a combined manner. . . . . 31

4.2 Hand-crafted PPM nest made up from cotton. . . . . . . . . . . . 32
4.3 3D model of the hand-crafted PPM nest. . . . . . . . . . . . . . . 34
4.4 Sample of the synthetic images. . . . . . . . . . . . . . . . . . . . 34
4.5 Sample of the artificial images. . . . . . . . . . . . . . . . . . . . . 35
4.6 Samples of Dataset-A: real (a), synthetic (b), and artificial images

(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Samples of thermal images of PPM nests. . . . . . . . . . . . . . . 37
4.8 Sample of a paired image of the same PPM nest: RGB on the left,

thermal on the right. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.9 A Sample of detection results from Experiments 1 and 2 . . . . . 40

ix



4.10 Samples of the detection results in Experiment-7 . . . . . . . . . . 43

4.11 Schematic of the setup used for testing the detector and synchro-
nizing the data during the experiments . . . . . . . . . . . . . . . 45

4.12 Bebop drone with FLIR® C2 camera mounted on board. . . . . . 46

4.13 RTK-GPS methodology schematic [57]. . . . . . . . . . . . . . . . 46

4.14 Captured RGB, thermal, and overlaid frames showing synchronicity. 47

4.15 Octocopter used with the FLIR® C2 camera, the RGB . . . . . . 48

4.16 Three samples of the detection results from each nest of the tested
nests. Each row corresponds to the same nest. . . . . . . . . . . . 49

4.17 Samples of the results of Experiment-1 showing TN,TP, and FN
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.18 Samples of the results of Experiment-2 showing TN,TP, and FN
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.19 Samples of the results of Experiment-3 showing TN,TP, FN, and
FP cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.20 Samples of the results of Experiment-4 showing TN,TP, and FN
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.21 Sample of the results showing the performance of the detector
trained on the initial dataset vs the new detector trained on the
updated one in identifying the three nests of Experiment-2. . . . . 54

4.22 Output visualizations of three convolution layers of the ResNet101
feature extraction network. . . . . . . . . . . . . . . . . . . . . . . 55

4.23 Output visualization of four ReLu-activation layers while testing
a thermal image (ResNet). . . . . . . . . . . . . . . . . . . . . . . 56

4.24 Output visualization of three ReLu-activation layers while testing
an RGB image (ResNet). . . . . . . . . . . . . . . . . . . . . . . . 57

4.25 Output visualizations of six convolution layers of the VGG16 fea-
ture extraction network for an RGB image. . . . . . . . . . . . . . 57

4.26 Three samples of the detections from Experimet 1. . . . . . . . . 59

4.27 Three samples of the detections of each nest from Experimet 2. . 60

4.28 Three samples of the detections of each nest from Experimet 3. . 60

4.29 Three samples of the detections of each nest from Experimet 4. . 61

4.30 ROC Curve of Experiment-2 . . . . . . . . . . . . . . . . . . . . . 63

4.31 ROC Curve of Experiment-4 . . . . . . . . . . . . . . . . . . . . . 64

4.32 Concept of the Intersection over Union (IOU). . . . . . . . . . . . 66

4.33 Tracking using the Kalman Filter method - Experiment-1 . . . . . 67

4.34 Tracking using the Kalman Filter method - Experiment-2. . . . . 68

4.35 Tracking using the Kalman Filter method - Experiment-3. . . . . 69

4.36 Tracking using the Kalman Filter method - Experiment-4. . . . . 69

4.37 Comparing the performance of methods 1 and 2 on frames from
Experiment-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



4.38 Schematic showing the experimental setup. The RTK-Base-GPS
module is configured in the field receiving the satellite signals and
sending corrections to the RTK-Rover-GPS module on board of
the drone. The user drives the drone manually scanning the tree
for PPM nests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.39 Three instances from Experiment-1 showing the estimated . . . . 72
4.40 Localization result of Experiment-2 showing the drone’s . . . . . . 73
4.41 Localization result of Experiment-3 showing the drone’s . . . . . . 74
4.42 Two instances showing the estimated position of each nest . . . . 75
4.43 Result of Experiment-2 and 3 showing the final output as a 2D map. 76
4.44 Mosaic Maps created from the frames of Experiment-1 using . . . 77
4.45 Orthomosaic map (center) created from Experiment-1 frames . . . 78
4.46 Position of the three nests detected from Experiment-2 marked on

our created orthomosaic image. . . . . . . . . . . . . . . . . . . . 79



List of Tables

4.1 Composition of the Image Datasets . . . . . . . . . . . . . . . . . 37
4.2 Detection results of the different experiments and algorithms. . . 41
4.3 Comparison between Faster R-CNN and YOLO in terms of accu-

racy and computational speed . . . . . . . . . . . . . . . . . . . . 42
4.4 Performance comparison of different detection algorithms upon

training and testing using an 80-20% split. . . . . . . . . . . . . . 44
4.5 Detection results of the different experiments conducted on actual

trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Detection results of the different experiments and algorithms. . . 58
4.7 Detection results of the four conducted experiments using ResNet

101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Detector’s performance when tested on the original dataset (Dataset-

C) at several thresholds for ROC metric. . . . . . . . . . . . . . . 62
4.9 Detector’s performance when tested on Experiment-2 frames at

several thresholds for ROC metric. . . . . . . . . . . . . . . . . . 62
4.10 Detector’s performance when tested on Experiment-4 frames at

several thresholds for ROC metric. . . . . . . . . . . . . . . . . . 63
4.11 Mean Average Precision (mAP) of the two feature extraction al-

gorithms tested on various image datasets (visualization threshold
set to 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Tracking Results of the four conducted experiments using the Kalman
Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 Estimation of the nests’ positions in the four conducted experiments. 74

xii



Chapter 1

Introduction

The Pine Processionary Moth (PPM), also known as Thaumetopoea

Pityocampa, is considered one of the most threatening pests to pine trees. Fur-

thermore, although pine forests are the most prone to its attack, other tree species

such as cedars and larch are also threatened by them. The life cycle of a PPM

is one-year, characterized by the adults emerging during the summer (from June

to September), feeding on pine sprouts during the larval phase in the fall and

winter, and finally in the pupation phase (March to June), the larvae enter the

ground and disperse [1].

PPMs are life-threatening to trees since they feed on the pine sprouts in their

larval phase (Figure 1.1(a)), which results in their defoliation. Furthermore, to

stay warm during the winter season, PPMs build themselves silken nests (also

known as tents) on the branch tips to entrap heat, as shown in Figure 1.1(b).

Caterpillars that turn into PPMs are nocturnal, that is, they come out of

their nests at night, crawl onto the pine tree branches and feed on their needles

before coming back to rest during the day [3]. Besides reducing tree growth and

increasing tree mortality rates [4, 5, 6], PPMs feeding on conifer needles also have

indirect negative consequences, such as they render trees unable to resist fires or

droughts [7], and make them more susceptible to other hazardous pests, such as
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Figure 1.1: (a): PPM feeding on the pine needles [2], (b): Silken PPM nest.

pine beetles.

PPMs require high ambient temperatures to survive and infest. Due to global

warming, PPM are no longer restricted to their native areas in Southern Europe,

North Africa, and Southern Mediterranean, and are spreading northwards. In

fact, PPM spread is becoming a worldwide concern, with colonies starting to

appear in North Paris, Brittany, and Strasbourg, with new studies suggesting

their expansion in the north-western direction in the near future [8].

PPMs are also considered a threat to humans and to warm-blooded animals

because of a toxin (Thaumetopoein) that they release from their natural urticat-

ing hairs. The toxin causes severe skin irritation and allergic reactions, and in

some cases causes oedema or dermatitis in children [9]. Other side effects include

skin rashes and respiratory problems in humans [10], and the toxin has even been

reported to kill domestic animals when ingested [11].

To spot PPM colonies in forests, entomologists traditionally manually scan

the trees from the ground, and report what can be seen from a limited perspec-

tive. Unfortunately, such methods are extremely limited and yield poor estimates

inside dense forests, where areas are difficult to access, trees are high, and nests

are often not visible from the ground. Traditional PPM treatment and removal

2



includes spraying of pesticides, but the sprayed chemicals pose a risk to the en-

vironment and are banned in many countries, especially when the infested trees

are located in rural areas [12]. Alternatively, a new eco-friendly solution was

proposed in which a combination of entomopathogenic fungi and essential oils

were used to treat the PPMs as an alternative to chemical pesticides [13]. This

solution proved to be most effective when the essential oils are injected into the

nests of third instar larvae achieving a significant mortality rate of 87.4%, but it

was not effective on the fourth instar larvae with a reduced mortality rate of less

than 5%.

As an alternative to mass spraying pesticides in an indiscriminate manner,

some farmers have resorted to identifying the location of each nest inside of a

forest and manually destroying them. While this seems like a daunting task for

humans to do, the task lends itself well for automation in which an aerial drone

can autonomously detect and destroy all of the nests in a given forest. However,

to be able to do so, the drone must first detect and localize the nests within a

forest area.

While the long term goal of this work is to locate the PPM nests and ex-

terminate the moths, in this thesis we restrict our intervention to the ability to

automatically detect and localize moth nests in each tree. The detection of the

caterpillars themselves is very technically challenging, hence in lieu of doing so

people have attempted to detect their nests, which they inhabit for a considerable

part of their life cycle. PPM nests are relatively large and salient, but they vary

widely in their geometry, size, and construction style.

This thesis proposes an automated system for the detection and localization

of PPM nests inside of a pine forest, as represented in Figure 1.2. The proposed

detection system employs a deep convolutional neural network (CNN), which

3



Figure 1.2: Schematic illustrating the proposed system and experimental pro-
cedure. The drone scanning the trees for PPM nests carries an RGB camera,
thermal camera, and a Real-Time Kinematic GPS (RTK-GPS) on board. The
captured data are stored and processed later on in an offline manner, fed into the
system to perform detection, localization, and tracking before reporting back the
position of the detected PPM nests on a 2D-plot, and on an orthomosaic image
as a better visualization.

takes input sensory data from two cameras: the first being an RGB camera,

and the second a thermal camera. Once detected, each nest is geo-localized

on a two dimensional (2D)-geo-reference map. The workflow is shown later in

Figure 1.3. Experiments in a real pine forest demonstrated the success of the

proposed system with an average nest detection accuracy of 97% and an average

localization accuracy of few centimeters (< 10cm).

4



Multi-Channeled 
CNN 

Tracking Geo-Localization Output Map

Figure 1.3: The workflow of the PPM nests detection, tracking, and geo-
localization.
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Chapter 2

Literature Review

2.1 Object Detection

Detection can be defined as the process of classification and localization combined,

where classification entails determining whether an object is present in an image

or not, without specifying its position in the image, whereas localization is finding

the position of an object within the given image. In this context, detecting PPM

nests entails discerning the presence of nest(s) as well as specifying their locations

within a given image.

Extensive research has been conducted in the field of detecting objects in two-

dimensional (2D) images, where in the past decade deep learning methods have

significantly surpassed traditional hand-crafted methods [14].

In hand-crafted features-based algorithms, the type of features to look for

are specified beforehand. For example, [15] used a Gaussian model classifier for

face detection applications. [16] proposed detecting faces in images using Haar
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wavelets features. Similarly, [17] used the same wavelet feature in proposing a

general detection framework, and tested it on face recognition and on human

body recognition. Such hand-crafted methods proved to be effective in some

applications but had lower accuracy than the more recent CNN-based detection

algorithms [18].

On the other hand, deep learning algorithms use a large amount of labelled

images (dataset) to learn what features are most suitable for the problem at hand.

Using CNNs, significant improvements have been reached in the most important

Computer Vision problems such as segmentation and object detection. A study

by [19], which compared different deep learning methods—including CNNs, Deep

Boltzmann Machines (DBMs), Support Vectors Machines (SVMs), Gaussian and

Markov Processes, and other traditional Computer Vision methods—showed the

typical uses of each method, and where each method excels given the appropriate

type of data. It proved that Deep Neural Networks (DNNs) are best at dealing

with new representations of data, which gives it an advantage over other learning

methods. Moreover, it was shown that classifiers such as SVMs and K-Nearest

Neighbors (KNNs) are generic and not robust to the diversity of data [14].

Solutions based on Deep Neural Networks have widely spread in the past

decade due to their high accuracy in solving real world problems. For example,

[20] used a two eight-layered CNN in a coarse-to-fine manner for the purpose of

detecting inshore ships and they achieved an accuracy of 95.3%. [21] proposed

using a light-weighted deep CNN instead of heavy one for the purpose of detecting

tiny objects (objects in small-scaled images), since heavy CNNs involve a large

number of parameters accompanied by large-scale datasets, and training them

with small datasets causes over-fitting. They trained and tested their network on

the CIFAR-10 (which includes 10 classes, with 6000 images per class) and CIFAR-
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100 (which includes 100 classes containing 600 images each) datasets achieving

94.34% and 73.65% accuracy, respectively. [22] used deep CNNs on RGB-D

images containing small household objects (such as fruit, vegetables, boxes, and

water bottle) for the purpose of their recognition. Their approach achieved a

91.84% accuracy.

The disadvantage of using deep learning algorithms is their need for large

datasets for training the detector and their large computational costs, which

makes it difficult to use deep learning on applications with limited datasets.

To mitigate this issue, networks in transfer learning are previously trained on

very large datasets before they are subsequently trained on new sets of data.

Transfer learning helps in reducing execution time, minimizing computational

expense, and increasing accuracy levels. For example, in their work towards

object and action detection, [23] used layers previously trained on the ImageNet

dataset while computing mid-level image representations of those in the dataset

of PASCAL VOC; their work showed improved results compared to the ones

found in the literature.

2.2 PPM Nest Surveying

Research studies investigating PPM’s infestation in forests using aerial images are

on the rise. Cardil et al [7] tackled a similar problem, with the aim of measuring

the defoliation in a pine field caused by PPMs, as shown in Figure 2.1. Using

unmanned aerial systems (UASs), they collected RGB images from very high alti-

tudes to cover a large area of the monitored field in order to generate orthomosaic

maps from the captured images. Manual labelling of the images was performed,

followed by training a supervised maximum likelihood classifier, which yielded an

8



Figure 2.1: Pine processionary moth defoliation in healthy (green dots) and in-
fested trees (yellow dots) in Torregassa forest. Manual crown segmentation is
performed on the left side, and the automatic classifier measured defoliation as
infested (red) or non-infested green using RGB-UAS images on the right side [7].

accuracy of 79% upon testing. Since their work covers defoliation estimation on

2D orthomosaic images, they are not able to estimate or measure the tree volume

and they cannot access lower parts of the trees, which may contain a considerable

number of nests, thus resulting in an inaccurate tree-level defoliation estimator.

Furthermore, they state that their proposed system faces restrictions represented

by having a limited time window (around noontime) for image acquisition for the

sake of minimizing the amount of shadowing in the images, and by considering

the terrain aspect due to the shadows and brightness which may affect the final

classification outputs depending on the sun illumination. Such a classification

system can only be used to report back the infected areas of a field and can not

be used later for a localized tree-level solution. Hence, the proposed approach in

this work requires a detection system that works on a tree-level, where it should

be able to locate the nest’s position within a tree with high accuracy.

In a more advanced work in 2019, [24] estimated the defoliation rate in a

pine-oak mixed field caused by the PPM. After acquiring aerial multi-spectral
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images, ortho-mosaics were also created and used to estimate vegetation indices,

and to quantify the level of defoliation in the tested forests by reporting back

infested areas, and classifying each tree as non-defoliated, partially defoliated,

or completely defoliated as shown in Figure 2.2. The obtained results yielded

an accuracy of 81.8%. Although they use multi-spectral imaging, their field as-

sessment is different from the method proposed in this work. In this updated

research, they still aim to report back infected areas and classify tree defoliation

levels, which may suffer from low accuracy while scanning from high altitudes.

Furthermore, they still miss a considerable number of nests using this classifica-

tion method in the inaccessible lower branches of the trees. Next, we provide a

survey of related works and categorize the literature per research area.

[11] identify the location of PPM nests in aerial images by first segmenting

each captured image into three categories: foliage, PPM nest, and floor. Their

results were relatively accurate for floor and foliage with rates of 95% and 99%,

respectively; however, they obtained sub-optimal classification results of PPM

nests at approximately 72%. In this thesis, I elect to perform detection, and

not segmentation, for nest identification. Furthermore, I exploit the nest’s silky

characteristic of being a heat absorber, thus rely on multi-spectral images that

contain stark and complementary features to be learned by the network.

2.3 Deep Learning for crop yield estimation, crop

disease assessment, and pest detection.

Deep learning is being widely applied in agriculture upon different approaches.

For instance, [25] proposed an automatic system that classifies plant types based

on the shape of their leaves. They used artificial neural networks to perform

10



Figure 2.2: Tree species identification and pine processionary moth defoliation
in pines in the Codo forest site. (A) Individutal automatic tree delination on
the colour-infrared composite orthomosaic using green, red and nir reflectance
bands. (B) Individutal automatic tree delination on the RGB orthomosaic. (C)
Automatic tree classification in the field as holm oak or non-defoliated, partially
defoliated and completely defoliated pine trhough multispectral highresolution
imagery [24].
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classification after training their algorithm on 817 leaf samples, yielding an ac-

curacy of 96% when tested on two datasets (Flavia and ICL). [26] proposed a

similar approach to perform classification on 22 different weed and crop species

using convolutional neural networks. They trained their algorithm on six different

datasets (total of 10,413 images), which consisted of different varying conditions

such as lighting, resolution, and soil types achieving 86.2% classification accuracy.

In our proposed solution, we perform detection on the input images, in addition

to classification which allows recognizing the nest and reporting back its position

in the image frame. Furthermore, the proposed system utilizes features from the

thermal spectrum to boost its detection accuracy, as opposed to being trained

on RGB images alone. Deep learning has been also employed to detect plants

and estimate crop quality and yield. For instance, deep learning was used in [27]

to detect and count green mangoes by training a YOLO V2 model on a dataset,

collected aerially using a UAV, achieving a mean average precision (mAP) of

86.4%. In [28], deep learning was used to detect passion fruits and classify their

maturity level using RGB-D images, combining color and depth information to

boost the detection performance. A Faster R-CNN model was trained and tested

on achieving a 92.71% detection accuracy. In similar work, [29] also used RGB-D

images in order to detect apple fruits in dense foliage fruit-walling trees. Although

they used Faster RCNN for the deep learning model, the approach was different

from [28] in the sense that they used depth information to exclude background

objects from the RGB images, creating two different datasets (original and the

one including only foreground objects) to train and test on. The network which

was trained and tested on Foreground RGB dataset, yielded the best performance

with 89.3% mAP. In [30], a deep learning algorithm was trained on a dataset,

collected aerially from multiple altitudes (40, 50, and 60 meters), to detect and

12



count banana plants in a field. The dataset consisted of RGB images only and

the algorithm yielded relatively high accuracy rates of 96.4%, 85.1%, and 75.8%

for the aforementioned altitudes, respectively.

Deep learning has been also applied for crop disease assessment as in [31]

who trained and tested the performance of several deep learning architectures

in recognising tomato plant diseases and pests. In [32], the authors trained a

detector using convolutional neural networks to identify apple leaf diseases in

real-time. The apple leaf disease dataset (ALDD) was used to train and test the

algorithm on laboratory images and more complex images under real field condi-

tions, which consisted of 26,377 images of diseased apple leaves. The system was

able to identify five different apple leaf diseases with a mean detection accuracy

of 78.8%. We here note that detection of large banana plants is relatively easier

than detecting PPM nests, which is due to 1) the lack of access to a large dataset

that accommodates for the vast variability in the shape, color texture, lighting

conditions, and backgrounds of PPM nest; and 2) the inability to rely on depth

values as a beneficial feature for learning given the nests’ varying positions and

distances from the camera. Therefore, a more radical solution is established in

this work by using multi-spectral imaging to avoid solely relying on the visible

spectrum.

An innovative solution to boost the detection performance of immature cit-

rus fruits was established in [33]. Similar to the problem faced in PPM nest

detection, immature citrus fruits are very challenging to detect since their color

is very similar to the leaves, which makes RGB cameras inefficient. For this,

they mounted a thermal camera to a ground vehicle with a water spray system,

which applies mist to citrus trees. The water mist induces a temperature differ-

ence between the fruit and leaf surface, which makes the immature citrus fruit
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more visible in the thermal spectrum. The authors collected their own dataset

and used it to train and test the performance of two deep learning detection

models, Faster R-CNN and SSD, which yielded 87.2% and 85.5% mAP values,

respectively. In their work, they discounted the visible spectrum since it did not

always provide beneficial learning features for their application, thus they solely

relied on thermal images. Whereas the solution that we are herewith proposing

to detect PPM nests involves training a dual-channeled CNN on data from both

visible and thermal spectra with the aim of achieving optimal features learning.

2.4 Multi-stream Neural Networks

The solution that we propose for detecting PPM nests involves the fusion of

sensory data from an RGB camera (visible spectrum) and a thermal camera

(infrared spectrum), where the two sources are fed into a multi-channeled deep

network. Similar approaches have been proposed before for other applications.

For instance, [34] proposed two multi-channel CNNs for pedestrian detection.

In the first solution, RGB and thermal images are concatenated to form a four-

channeled input (RGBT) image fed into a single-stream network, called the early-

fusion method, shown in Figure 2.3. The second architecture inputs each image to

its own stream and processes each image in a sub-network; feature maps extracted

from each stream are set to be concatenated, and then enter a fully connected

layer, as shown in Figure 2.4. Results demonstrated the superiority of late-

fusion versus early-fusion methods, showing that the best learning of features

occurs in the dual-streamed network. In [35], the aforementioned fusion methods

were tested on a fruit detection application, with the aim of performing yield

estimation and automated harvesting. Training and testing was performed on a
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Figure 2.3: Network architecture of the early-fusion technique [34].

Figure 2.4: Network architecture of the late-fusion technique [34].

dataset containing both RGB and near-infrared images of seven different fruits.

The obtained results demonstrated boosted accuracy, a noticeable reduction in

training time, and the late-fusion technique outperforming other methods again.

2.5 Data Synchronization

To insure that measurements acquired from multiple sensors correspond to the

same object and time instance, care must be taken to synchronize the data ac-

quisition from the various sources. Three common synchronization methods are

found in the literature to achieve this task.
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2.5.1 Software-Based Methods

This approach for camera synchronization is based on various ”post-processing”

algorithms which are applied on unsynchronized sequences. Knowing the time-

shifts between a signigicant number of view pairs, the entire network can be

synchronized. For example, some papers [36] rely on the cameras’ built-in micro-

phone to capture sound and use the audio signal to align video frames. [37] con-

sidered post-processing based on the timing of a flickering light source recorded

with a shutter speed of 1000 Hz. Also, [38, 39] use flashes to synchronize individ-

ual camera timelines. Such a method for example is not always applicable, such

as in our case, because light sources may be either obstructing the field-of-view,

or overexpose the entire frame.

In [40], Sinha et al proposed an automatic approach to synchronize a network

of uncalibrated and unsynchronized video cameras by computing the epipolar

geometry from dynamic silhouettes and finding the temporal offset between them.

There are other methods similar to the aforementioned ones, but all are related

to the same family of solutions which is based on including strong markers or

features to the pair of images in order to match and synchronize.

In [41], a more sophisticated approach to software-based camera synchroniza-

tion is introduced. This method uses the server-client architecture such as the

previous method with a simple error-checking technique. The problem of the dis-

crepancy in synchronization is solved by calculating the time for sending data over

the network by sending some test data and calculates the network latency. Then

this latency is added to the reference time and sent to all the computers which

they accept this value as their time value thereby synchronizing their clocks with

the true reference time. This technique improves the camera synchronization,

but assumes a constant latency which is added to the reference time.

16



These post-processing methods are quite effective in automatically recovering

the frame temporal offset between image sequences and thus enabling the ”post

synchronization” of the cameras. However, these algorithms cannot be applied

real-time and assume a constant temporal offset. Furthermore, such approaches

are sensitive to occlusion, since they rely on the tracking of image features; which

can be hidden by another imaged surface at arbitrary time frames.

2.5.2 Hardware-Based Methods

Hardware-based solutions are based on having an external device (Multiplexer,

Videos encoders, etc.) which is directly connected to the cameras to trigger

the recordings on all connected devices at the same time. Several approaches for

synchronization at the hardware level are proposed in [42] using either specialized

cameras or external dedicated electric signal.

All these hardware-based solutions properly and precisely synchronize the

cameras but they are also potentially costly, technically complex and not very

flexible (not applicable for many applications).

Another synchronization methods relying on hardware is known as the Special-

Purpose hardware methods, and it’s the most common one to use. It usually con-

sists of a microcomputer control unit which is dedicated to propagating external

synchronization signals for triggering the cameras and achieving the cameras syn-

chronization. In [43], the proposed system consists of the camera-computers and

the triggering-computer. This triggering computer can launch simultaneously

all the cameras. Then, the cameras will immediately start capturing an image.

Since there isn’t any proposal to handle the situation in case of failure of the

synchronization, the method is dependent on the quality of the Ethernet connec-

tion, the operating system’s latency of response to the received triggering signal,

17



as well as the camera drivers and hardware. Thus it is of course inconsistent and

inaccurate.

In [44], which is one of the very recent papers (2018) used such a method to

capture images from different cameras to construct a panoramic image. Their

approach was to directly connect the recording machines to the cameras and

send trigger signals from the machines. The challenge was the synchronization

accuracy of the signals sent to the cameras. Their external trigger box that sends

a signal to all the cameras to capture an image was an Arduino device which uses

its local clock to send a broadcast shutter trigger signal every 1/fps seconds.

The most suitable technique to adopt was the Special-Purpose Hardware

Method were a Raspberry Pi was used as an external trigger for the cameras

to capture frames synchronously. The idea is in avoiding recording a whole video

sequence at different frame rates, and then syncing them in post processing using

the software-based techniques mentioned before. The aim was to capture two

frames from both cameras at the same time for ‘x’ times per second. In this way,

we get the same number of frames from both cameras which should be of the

same exact scene.
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Chapter 3

Proposed System

3.1 PPM Nest Detection

3.1.1 Deep Learning Frameworks

The image datasets are used for training and testing on several deep learning

frameworks to arrive at an optimal solution. Training of the detector is first

performed using the open source framework built by TensorFlow [45], which is the

TensorFlow Object Detection API. This API provides the ability of constructing,

training, and deploying object detection models. Transfer learning is applied

using pre-trained neural networks on the created dataset of the PPM nests.

TensorFlow provides several detection models that are pre-trained on the

COCO dataset [46], the Kitti dataset [47], and several others. The pre-trained

models are advantageous when initializing the training on personalized datasets.

Each pre-trained classifier has its own neural network architecture, thus the most

suitable model is selected based on the application’s needs. Faster RCNN was

chosen to be the most suitable architecture for our application given that it

achieves the highest accuracy in comparison with other models, at the cost of

19



being computationally expensive. Since the detection process in this application

is performed offline, in a post-processing manner and not in real-time, Faster

R-CNN is considered the best option.

On the other hand, you only look once (YOLO) [48] is a real-time object

detection system that uses a different architecture from that of Faster R-CNN.

YOLO does not utilize a Region Proposed Network (RPN), rather it employs 24

convolution layers and two fully connected (FC) layers. So the input is the image

itself passing through the convolutions reaching the fully connected layers with

a number of bounding boxes that may contain an object. Classification occurs

at this point displaying the ones above a specific threshold. YOLO is considered

much faster than Faster R-CNN with very good detection accuracy relative to

its speed. However, for applications that are not being performed in real-time

(offline processing), speed and computational power are not considered an issue.

So applications aiming for highest detection accuracy would adopt the Faster

R-CNN instead.

An ‘Inference Graph’ that contains the object detection classifier is exported

in TensorFlow, and a weights file is exported into YOLO. The detector is tested

using a test subject such as an image, video, or camera feed of a PPM nest,

where the exported ‘Inference Graph’/ ‘Weights File’ is fed as an input and the

imported test subject with a bounding box around the detected PPM nest, if

any, as the output.

3.1.2 Multi-Channelled CNN

The proposed network is a multi-stream Faster R-CNN architecture [49]. For

the detection of PPM nests, high accuracy is desired to detect (and later erad-

icate) the vast majority of present nests, even if computational power and time
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are required. As such, we choose Faster R-CNN [49] as the PPM nest detector

network. Faster R-CNN is an updated version of Region-based Convolutional

Neural Network (R-CNN), which underwent several iterations until evolving into

the Faster-version. In R-CNN, the input image is scanned for possible objects

using selective search to generate region proposals given that manual labeling is

performed beforehand. Features are then extracted from the proposed regions

by running a CNN on each region, followed by Support Vector Machine (SVM)

classifier for region classification. R-CNN is computationally expensive since a

CNN is performed on each image based on its specific feature map. Hence, Fast

R-CNN and Faster R-CNN were subsequently proposed to increase the compu-

tational efficiency of the algorithm. A Faster R-CNN reduces the dimension of

the feature map by having a sliding window move across it, outputting a pre-

defined number of regions (bounding boxes) that may contain an object. The

output is represented by these regions along with a weight and coordinates that

are assigned to each. This process, known as Region Proposed Network (RPN),

is more computationally efficient since it guides the detector where to look for

objects instead of checking the entire initial feature map.

This architecture is adopted and applied on a dual-stream network consisting

of two branches, one for the RGB image and the other for the corresponding ther-

mal image, as shown in Figure 3.1. The architecture is initialized with pre-trained

RGB and thermal weights. The RGB image and its corresponding thermal image

are passed through Resnet Blocks which together constitute a 3x3 convolutional

layer design consisting of a convolution layer followed by a batch normalization

layer (BN) and a ReLU activation function. Each branch of the dual stream

framework outputs two feature maps of 1024 dimension each. These two feature
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maps are stacked and passed through a 1x1 convolution to learn combining these

features appropriately for the given task. The output of the 1x1 convolution is

directly passed into the rest of the Faster-RCNN network, which is the RPN. Re-

gions produced by the RPN are then cropped out of the feature map and passed

into a classification layer, which learns to classify the objects in each ROI. The

RPN loss is adapted from the Faster R-CNN and is denoted by:

L(pi, ti) =
1

N

∑
i=1

L(pi, p
∗
i ) + λ

1

N

∑
i=1

p∗iR(ti, t
∗
i ), (3.1)

where i is the index of an anchor, pi is the predicted probability of anchor i being

an object, p∗i is the ground truth, ti represents the coordinates of the predicted

bounding box, t∗i represents the ground truth bounding box coordinates, L is the

logarithmic loss, R is the robust loss function (smooth L1) as defined in [49], and

λ is a hyper-parameter. The multi-task classification and regression loss at the

end of the network are adopted from Fast R-CNN in [49] .

Figure 3.1: Architecture of the proposed Multi-Stream Convolutional Neural
Network.
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3.1.3 Tuning Feature Extraction Network

To enhance the performance of the deep network, we first investigate potential

improvements at the feature extraction level; for this purpose, we test the effi-

ciency of another feature extraction network: VGG16. The architecture of the

ResNet blocks used earlier [50] is represented by 3x3 convolutional layer design,

followed by a batch normalization (BN) layer and a rectified linear activation

function (ReLU). VGG16 is represented by a stack of convolutional layers fol-

lowed by three fully connected (FC) layers that output a feature map [51], shown

in Figure 3.2.

A contribution lies in testing these two feature extraction networks in this

multi-channel manner, with this performance comparison not being previously

performed in such architecture.

Figure 3.2: Architecture of the VGG16 feature extraction network [51].
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3.2 Tracking

To avoid replication of detected nests since the same nest can be detected in

several subsequent frames, we account for data correspondence by tracking the

position of each nest once it first appears in a frame. This object tracking or

data association could be performed in several ways, for this two methods were

applied.

3.2.1 Method 1

The first technique was to combine three data association methods, and use them

to track the detections. These three methods are represented by the IOU metric,

center tracking, and GPS thresholding. The IOU metric is basically calculating

the IOU between the two consecutive detections, and if these two detections

overlay (match) then it means that same object was detected. Center tracking

method is represented by calculating how much the center of the bounding box

shifted from one frame to another. The GPS thresholding is a similar method to

check the GPS coordinates of two consecutive frames, so as long as the detections

refer to the same GPS position upon a minimal tolerance then it means that the

same object is detected.

A python code was prepared and tested on several experiments, with a very

good performance where the tracking was performed properly, but the main prob-

lem of this method is that it relies always on two consecutive frames. So for

example, in case a false positive was recorded in two consecutive frames, this

false positive object will be given an ID. Moreover, it relies on three different

thresholding values, which makes it sensitive to any unpredicted variation, thus

the tracking easily fails.
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3.2.2 Method 2 (Kalman Filter)

The second method is commonly used for object tracking applications which is

the Kalman Filter. Kalman Filters are very popular for tracking and predicting

objects in current and future positions. Bewley et al. [52] implemented this

method for object tracking where they used YOLO object detector using PyTorch

[53] framework to feed the Kalman Filter with detections. The work of this paper

was applied to our work feeding the Kalman Filter the detections of our system.

As mentioned earlier, a Kalman Filter estimates the position of the detected

object in the coming up frames. So, when the system started to detect an object

and since the first frame, the Kalman filter (KF) starts estimating the position

of the detected object in the next frame. This estimated bounding box by the

KF, which means the estimated position at time t + 1 or in the next frame, is

matched with the actual detection at time t+ 1 to check the IOU between them.

If the IOU value is higher than a predefined threshold (0.5), the prediction is

deemed accurate and tracking is resumed; if not, as is the case for false positives,

tracking is assumed to have failed and the filter eliminates this falsely tracked

object from its input.

The inputs of the Kalman Filter are two lists of bounding box coordinates:

prediction and tracking. The IOU is calculated for each detection with the pre-

dicted trackers, giving the same tracker identification (ID) to the matched detec-

tion. Thus, the KF provides the position of the bounding box at time t+ 1 based

on its previous position at time t. The state of each tracker is represented by

x = [cx, cy, w, h, c
′
x, c
′
y, w

′]T , where cx and cy represent the center coordinates of

the bounding box, w and h represent the width and height of the bounding box,

and c′x,c′y, and w′ represent the changes (velocities) of each of these parameters.

When a detection is associated to a correct prediction, the state vector is updated
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by solving for the velocity components. The approximation of a target’s position

from one frame to another is based on a constant velocity model.

3.3 PPM Nest Localization

In the work of this thesis, the goal is to detect and localize the PPM nests, and

report back its position. In case the drone does not pass perfectly on top of a

nest, the nest would be detected at the borders of the image, which would give a

slightly inaccurate GPS value. Hence, a GPS estimation method is implemented

to report back the actual position of the detected nests.

The idea applied is already used on large scales, where as shown in Figure 3.3,

given initial GPS coordinates Lt1 and Ln1 (latitude and longitude) of the aerial

drone and the distance d from the desired waypoint, the bearing angle (brng)

between this desired point with respect to the North is calculated using (3.2):

Lt2 = sin−1(sin(Lt1). cos(d) + cos(Lt1). sin(d). cos(brng)),

Ln2 = Ln1 + tanh−1(
sin(brng). sin(d). cos(Lt1)

cos(d)− sin(Lt1). sin(Lt2)
).

(3.2)

As mentioned earlier, each matched pair of captured images has a correspond-

ing GPS position, which represents the center of the frame at (Lt1, Ln1). We

note that the distance between the center of the frame and the nest cannot be

determined using a monocular camera since it lacks depth perception. For this

reason, we make a practical simplification that considers the standard size of

PPM nests (15cm) and assume a constant scanning altitude of 2m above the

trees. Hence, using pixel counting and the aforementioned assumptions, distance
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Figure 3.3: GPS coordinate calculation scheme.

d is estimated.

In case the drone is controlled manually, access to the bearing angle is lost,

thus we propose a solution based on equation (3.2), where given the GPS position

of two points represented by (Lt1, Ln1, Lt2, and Ln2), the bearing angle ”brng”

between them, with respect to the North, can be calculated as follows:

∆L = Ln2 − Ln1,

X = cos(Lt2)× sin(∆L),

Y = cos(Lt1)× sin(Lt2)− (sin(Lt1)× cos(Lt2))× sin(∆L),

brng = tan−1(
X

Y
).

(3.3)

Since detection and localization are performed in a post-processing fashion,

the GPS coordinates of all frames are recorded. Using Equation (3.3) and as illus-

trated in Figure 3.4, the bearing angle is calculated between each two consecutive

GPS recordings.
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Figure 3.4: Schematic of the localisation system used to calculate the bearing
angle.

Figure 3.5 is a scheme showing the workflow of the proposed system, and a

sample output at the level of each sub-system.
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Figure 3.5: Workflow of the proposed system showing sample outputs at the level
of the detection, tracking, and the localisation systems.
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Chapter 4

Experiments

In this section, results of the training and testing of several deep learning models

on our collected datasets are provided as a primary work, which motivates the

use of the proposed multi-channeled CNN. The results of conducted validation

experiments in a pine field are then provided to demonstrate the detection, track-

ing, and localization performance of our proposed system. Figure 4.1 provides a

visual illustration of the experimental procedures and a clear breakdown of the

workflow.
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Figure 4.1: The workflow of the experimental work done in this thesis starting
with the data collection process, performing training and testing on different deep
learning models, testing the detector on actual trees, reaching the validation
experiments which tests the proposed detection, localization and tracking in a
combined manner.

4.1 Datasets

Three datasets are gathered in this work for detecting PPM nests: Dataset-A

that includes real, synthetic, and artificial RGB images; Dataset-B that includes

(unpaired) thermal images of PPM nests; and Dataset-C that includes paired

thermal and RGB images that are simultaneously taken of the same PPM nests.

4.1.1 Dataset-A

With the aim of designing a standard single-channel object detector, three types

of RGB images are collected: real, synthetic, and artificial. The real imagesof

PPM nests are taken by a hand-held digital camera and an aerial drone’s camera

as well as some images of PPM nests found on the internet. Synthetic images are

virtually synthesised via rendering software tools to replicate PPM nests on tree
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branches, whereas artificial images are real images of artificially created nests,

using materials that mimic those of PPM nests, placed on real pine trees.

Synthetic Images

Synthetic images are images of moth nests attached to pine trees that are created

purely using software. For the creation of the synthetic trees, 5 tree version were

created using the open-source Plant Factory 2016 [54] software and transferred

to the VUE Infinite 2016 R5 PLE [55] software. On the other hand, for creating

synthetic PPM nests, three 3D structures of the nests were constructed using

cotton. Figure 4.2 shows one of the hand-crafted 3D nest structures.

Figure 4.2: Hand-crafted PPM nest made up from cotton.

Afterwards, 3D models of the cotton-based nest structures were developed by

applying structure from motion as explained in the following section, and was

transferred to the VUE Infinite Software [55].
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Structure from Motion

In order to have a realistic PPM nest model to be used for image synthesis,

structure from motion (SFM) was applied. SFM is based on using a series of 2D

images of a specific object to reconstruct the 3D model of it, having these 2D im-

ages taken from all angles to cover the entire structure. Applying this technique,

can provide a high-resolution digital copy of the 3D model, reconstructing the

object with all its little details from color texture to curved edges, without the

need of expensive equipment. To apply this technique, a hand-crafted nest was

prepared using cotton, and well-prepared to look realistic. Afterwards, images of

this handcrafted nest were taken from different angles covering the whole object.

To apply structure from motion, several specialized software packages are avail-

able, which are able to automatically identify matching features in these images.

Estimates of camera positions and orientations are produced by tracking the fea-

tures from one image to another. After processing of images and deriving camera

positions and orientations, dense cloud is created calculating depth points, which

afterwards allows the meshing of these points, creating the 3D model. Finally,

texture can be added to the meshed 3D model completing the rest of the missing

features such as shades and color. The used software package for creating the

3D model was Agisoft PhotoScan [56], and the 3D model was exported to VUE

software for scene synthesis. Figure 4.3 shows the 3D model developed on Agisoft

PhotoScan for one of the hand-crafted nests.

After developing models for the pine trees and moth nests and transferring

them to the VUE Software, various combinations of PPM nests, trees, lighting

conditions, and background scenes were created and rendered on two computers,

the first having an Intel Core i7-7700HQ processor and 16GB of DDR4 RAM,

whereas the second having Intel Core i5-7200U processor and 8GB RAM. Ren-
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dering of an image having 1060x707 pixels and around 40,000 polygon meshes

took an average of 4 minutes on the first computer, and an average of 9 minutes

on the second one. 233 synthetic images in total were created. Figure 4.4 shows

a sample of the synthetic images created.

Figure 4.3: 3D model of the hand-crafted PPM nest.

Figure 4.4: Sample of the synthetic images.
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Artificial Images

Artificial images are images of cotton structures formed to have the shape of a

nest, attached to real pine trees. A 16 Megapixels camera was used in taking

these images under different lighting conditions. A total of 363 artificial images

were created. Figure 4.5 shows a sample of the artificial images.

The addition of synthesized 3D images, fabricated artificial images, alongside

the real ones is employed to bootstrap the limited dataset of available real images.

Dataset-A contains 1386 images including 232 synthesized images, 362 artificial

images, and 792 real images. Figure 4.6 shows a sample image from each image

type. Training and testing on Dataset-A produced good results, as shown later,

however it is deemed inadequate for the application at hand where a significant

number of PPM nests went undetected in certain cases, with several false positive

detections obtained in other cases.

Figure 4.5: Sample of the artificial images.
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Figure 4.6: Samples of Dataset-A: real (a), synthetic (b), and artificial images
(c).

4.1.2 Dataset-B

This dataset is composed of thermal images only. The FLIR® TG165 camera

is used for acquiring thermal images of PPM nests. It is noted here that While

collecting RGB images, the task is relatively simpler since images of nests located

at high altitudes (at the top of the trees) can be captured using a drone’s camera.

For this dataset, using a hand-held device, fewer images were collected reaching

only 514 images. Although the dataset is not very large, training and testing on it

provide a proof-of-concept of how features extracted from thermal images of the

nests can improve detection accuracy. Samples of the thermal images collected

are shown in Figure 4.7.

4.1.3 Dataset-C

With the aim of building a dataset composed of paired images, i.e. thermal and

RGB images of the same PPM nest, the FLIR® C2 camera is utilized since it

can take both images simultaneously. This dataset is used to train and test the

proposed multi-stream CNN, and it is composed of 542 images (271 images of
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Figure 4.7: Samples of thermal images of PPM nests.

each image type). Sample of the paired images is shown in Figure 4.8.

Figure 4.8: Sample of a paired image of the same PPM nest: RGB on the left,
thermal on the right.

Dataset Real Synthetic Artificial Thermal Total
A 792 232 362 0 1386
B 0 0 0 514 514
C 271 0 0 271 542

Table 4.1: Composition of the Image Datasets
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4.1.4 Data Collection

The data collection was performed over PinusBrutia trees in several regions of

the Mount Lebanon Governorate, southeast of Beirut. A considerate number

of images were captured from the pine forests of ”Kfarchima” town, which is

located in the Baabda District of Mount Lebanon Governorate, and it is around

300 meters above sea level. Images were also acquired from ”Dawhet Aramoun”,

which is a village in the Aley District of Mount Lebanon, Lebanon, lying to

the east of Khalde and 22 kilometres away from Beirut, at an elevation level of

around 450 meters. Some images and experiments were conducted in the ”Abey”

village as well, which is around 800 meters above the sea level, located in the

Aley District of Mount Lebanon. Another set of images where acquired from the

pine trees of ”Ain Wazein” which is a village located in the Chouf District, in

the Mount Lebanon Governorate. This village is around 1100 meter above the

sea level.

These areas were visited to collect several datasets of images of PPM nests,

between the end of February and June. The RGB images were collected at differ-

ent times ofthe day, to cover the various backgrounds, brightness, color textures

and shadings.For the thermal images, different times of the day were also tested,

for example in the early morning, at noon, and even and near sunset. The silky

material of the nest, in allof the aforementioned timings, has always proved to

be capturing heat more than the surroundings, and having a different tempera-

ture than the trees’ branches and leaves.It was intentional to target locations at

multiple altitudes in order to study the effect of this variation in elevation on the

PPM nests’ characteristics in terms of size, color,and temperature.
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4.2 Training and Testing

Several experiments were conducted to evaluate the performance of the various

algorithms and networks, the obtained results are summarized in Table 4.2. Each

algorithm was trained on both datasets A and B (RGB and thermal images).

The datasets were split into 80% for training and 20% for testing, which is a

widely used split for testing a detector’s accuracy, especially in cases where limited

datasets are available.

In the first experiment, Dataset-A is used for training and testing the Faster

R-CNN algorithm using the TensorFlow framework. As shown in Table 4.2, the

system detected 215 nests out of the 285 nests (True Positives or TP) present in

all images. The algorithm failed to detect 70 nests (false negatives or FN) since

the algorithm missed detecting a nest even though it is indeed present within an

image. On the other hand, the algorithm yielded 55 instances of false positives

(FP) when it falsely detected a nest when it was not present within an image.

Zero true negatives (TN) were obtained as the algorithm accurately detects the

absence of a nest when it is not present in an image. To clearly illustrate this,

Fig. 4.9 shows a sample of TP, FP, and FN cases. The overall accuracy of the

detector in Experiment-1 is around 63% based on the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.1)

In Experiment-2, Dataset-B that only contains thermal images of PPM nests is

used for training and testing using TensorFlow. The system detected 103 (TP)

nests out of the 124 nests present in all of the thermal images. It failed to detect

the presence of four nests (FN), and resulted in 21 instances of false positives and

zero true negatives. The resultant accuracy of this detector is near 80%, which is
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Figure 4.9: A Sample of detection results from Experiments 1 and 2. Thermal
image on the left: the nest in the bottom left corner is not detected (FN) whereas
the nest in the middle right is detected (TP), which is indicated by the green
bounding box placed around the nest. RGB image on the right: the nest in the
middle left corner is detected (TP) whereas the pine cone in the middle right is
mistaken for a nest (FP).

significantly higher than the accuracy in Experiment-1 where only RGB images

were used. This result illustrates the richness of features that are detected in

thermal images as compared to RGB images, which motivates the idea of using

both image types to boost the detector accuracy.

Experiment-3 is basically the same as Experiment-1 with the only difference

being that training and testing on Dataset-A are performed via the YOLO al-

gorithm instead of Faster R-CNN. The YOLO detector’s accuracy reached 51%

where it successfully detected 176 (TP) nests out of the 285, thus missing 90

of them (FN). In Experiment-4, the YOLO detection algorithm is trained and

tested on Dataset-B (thermal images only) and achieved an accuracy of 70%,

where it successfully detected 92 nests out of 124 and missed the remaining 32

nests. Comparing the Faster RCNN architecture with YOLO while tested on the

same dataset shows that Faster RCNN outperforms YOLO in terms of accuracy.

On the other hand, YOLO had a faster computational speed when tested on
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a video stream, which makes it a viable option for real-time applications, even

though it provides faster detection rate at the cost of decreased accuracy. Ta-

ble 4.3 presents this comparison between the two algorithms (YOLO vs. Faster

R-CNN).

Table 4.2: Detection results of the different experiments and algorithms.
Experiment No. of Nests No. of Detections TP FP TN FN

1 285 272 215 55 0 70
2 124 107 103 4 0 21
3 285 254 176 78 0 90
4 124 100 92 8 0 32
5 78 58 22 36 0 56
6 78 91 58 33 0 20
7 78 72 72 0 0 6

In an effort to improve the accuracy of the detector, the network is first

trained on both image types: RGB and thermal. In experiments 5-6, RGB

and thermal images of different PPM nests, simultaneously taken by the same

camera (FLIR® C2), are used to separately train each branch of the proposed

dual-stream network. The purpose of conducting these two experiments is to

determine the resulting calculated weights, WRGB and WThermal, for initializing

the two branches of the proposed multi-stream network in Experiment-7. The

dataset includes 542 total images of PPM nests, where 156 images were used for

testing purposes (78 images from each modality). The RGB branch is trained on

the RGB images of Dataset-C and the thermal branch is trained on the thermal

images of Dataset-C. As expected, training and testing each stream alone results

in very poor accuracy, as shown in Table 4.4, where Experiment-5 (RGB branch)

yielded 19% accuracy while the thermal detector in Experiment-6 reached 52%.

Having determined the initialization weights of each branch, Dataset-C that

contains paired RGB and thermal images of the same PPM nests is used in
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Table 4.3: Comparison between Faster R-CNN and YOLO in terms of accuracy
and computational speed on NVIDIA GeForce GTX 1060 GPU.

Experiment Network Accuracy Frames per Second (FPS)
1 Faster R-CNN 63% ≈ 10
2 Faster R-CNN 80% ≈ 10
3 YOLO 51% ≈ 60
4 YOLO 70% ≈ 60

Experiment-7 to train the multi-stream CNN. Training required approximately

one hour on the used GPU (NVIDIA GeForce GTX 1060), and an accuracy of

92% was achieved during the testing phase. 72 nests out 78 were successfully

detected (TP), 6 nests were missed (FN), and no false positive instances. The

obtained results demonstrate the accuracy of the proposed network architecture

and the effectiveness of the combined learned features. Figure 4.10 shows samples

of the detection results of the RGB branch alone (a), the thermal branch alone

(b), and the multi-stream network with both image spectra. In general, the

behavior of the detection algorithm is fairly represented by the image samples

shown in Fig. 4.10. The RGB network branch, initialized with the RGB weights

obtained in Experiment-5, is tested on the RGB version of the nest image, which

does not successfully detect the nest in the two images shown in Fig. 4.10(a). In

Fig. 4.10(b), the thermal branch, initialized with the thermal weights obtained in

Experiment-6, is tested on the thermal version of the nests in (a). In both images

(top and bottom) of column (b), the nest is successfully detected but with a false

positive (FP) detection. In Fig. 4.10(c), the multi-stream CNN accurately detects

the nest without any FP cases, which demonstrates the accuracy and reliability

of the proposed architecture that benefits from enhanced learning due to a richer

features extraction from both image spectra.
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Figure 4.10: Samples of the detection results in Experiment-7. Each row (top and
bottom) has three image types of the same nest: RGB on the left, thermal in the
middle, and overlaid RGB and thermal on the right. The columns show sample
detection results: (a) shows the detection results of training the RGB branch
alone (single channel) and tested on the RGB image version of a nest, (b) shows
the detection results of training the thermal branch alone (single channel) tested
on a paired thermal image of the same nest, and (c) shows the detection results
of the multi-stream network tested on the overlaid images of the nests in (a) and
(b).

4.3 Experimental Setup

A main challenge, which was encountered while testing this detector was lacking

the ability to access the FLIR® C2 camera for triggering the image capturing

process, thus lacking the ability to acquire both image types (RGB and IR) in

a synchronized manner from its built-in dual cameras, that is, to capture the

identical scene of the PPM nest from both sensors.Therefore, a separate RGB
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Table 4.4: Performance comparison of different detection algorithms upon train-
ing and testing using an 80-20% split.

Experiment Network Algorithm Dataset Accuracy
1 Single-Stream Faster R-CNN A (RGB) 63%
2 Single-Stream Faster R-CNN B (Thermal) 80%
3 Single-Stream YOLO A (RGB) 51%
4 Single-Stream YOLO B (Thermal) 70%
5 Single-Stream a Faster R-CNN C (RGB) 19%
6 Single-Stream b Faster R-CNN C (Thermal) 52%
7 Dual-Stream Faster R-CNN C (Both) 92%

a Represents the RGB stream of the proposed network, trained and tested on the
RGB images of Dataset-C alone.
b Represents the thermal stream of the proposed network, trained and tested on
the thermal images of Dataset-C alone.

camera is mounted on-board the drone.

Furthermore, and in order to localize the nest, a GPS module is needed. So

the system to be used for validation experiments should include an RGB camera

and a thermal camera to feed the multi-channelled network mentioned in section

3.1.2, and a GPS module to localize the detected nest.

Accessing these three different data streams, two synchronization issues had

to be solved. The first one was was represented by having two different cameras

(RGB and Thermal), each having a different sight angle. The RGB camera is the

Raspberry Pi Camera Module V2 which has a 48.8 degree field of view (FOV),

and the thermal camera is the FLIR® C2 which has a 45 degree FOV. The other

issue was having two video streams recorded at different frame rates, and another

type of data which is the GPS data acquired separately as well.

For solving the first issue, it required a geometric transformation to warp

the RGB image (wider sight angle) and bring it into the coordinate system of

the thermal image, thus achieving full synchronicity. Pairs of control points are

manually identified between the two images, which are then used to infer an affine
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geometric transformation bringing the RGB image into the coordinate system of

the thermal version.

The software-based trigger solution adopted from literature was applied by

writing a Python code which runs three sub-processes in parallel. These sub-

processes or Python codes are represented by one triggering the RGB camera for

a shot, the second is triggering the thermal camera (FLIR® C2) for a shot, and

the third capturing a reading from the GPS. Figure 4.11 illustrates the setup

and the equipment used in conducting these experiments. The drone used was

the Parrot Bebop 2. Figure 4.12 shows the Bebop 2 assembled with FLIR® C2

camera.

Figure 4.11: Schematic of the setup used for testing the detector and synchroniz-
ing the data during the experiments. A Python script is executed on a Raspberry
Pi to synchronize the data streams of the three sensors: RGB camera, thermal
camera, and GPS.

The GPS used for the experiments was an advanced RTK-GPS which is repre-
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Figure 4.12: Bebop drone with FLIR® C2 camera mounted on board.

sented by two GPS modules working together where one is the base (stationary)

and the other is the rover (on the drone) as illustrated in Figure 4.13. After the

base reaches a minimum error, its reading is set as the base coordinates, and the

rover starts getting input correction from the base. When fixating its signal, it

reaches an accuracy of few centimeters.

Figure 4.13: RTK-GPS methodology schematic [57].

The setup shown Figure 4.12 in was utilized in an experiment represented by

hovering over two ‘X’ markers to prove synchronization of frames. Figure 4.14
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shows samples of synced frames. The two frame sequences were converted into

videos and when played overlaid synchronization seemed to be successful.

Figure 4.14: Captured RGB, thermal, and overlaid frames showing synchronicity.

Being able to synchronize the three data channels properly, the system was

tested on actual trees as part of the validation experiments. These experiments

were conducted using the setup shown in Figure 4.11, utilizing an octocopter

instead of the Bebop 2 which has a payload of around one kilogram. A new 3D

printed part was prepared for this drone, for the equipment to fit in place using

SolidWorks. Figure 4.15 shows the octocopter assembled with the equipment

installed onboard.
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Figure 4.15: Octocopter used with the FLIR® C2 camera, the RGB camera, the
Raspberry Pi micro-controller, and the RTK-rover-GPS module on board.

4.4 Validation Experiments

4.4.1 PPM Nest Detection

Primary Results

In the first set of the experiments, the detector was tested only on frame sequences

which included nests. The main concern at that point was to check if the system

was able to identify new nests on new trees, other than the ones that it has been

trained on. This set of experiments was conducted on three trees; the first one

containing two nests and the other trees containing one nest each. Detection

was successful with the system able to identify all the four nests, each in several

frames, as shown in Figure 4.16.

After achieving these results, the second stage of the experimentation started

where the detector is tested on complete flights. Such experiments are needed to

check if any false positive cases may be recorded, especially in frames which do

not include a nest such as at the takeoff or while transitioning from one tree to
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Figure 4.16: Three samples of the detection results from each nest of the tested
nests. Each row corresponds to the same nest.

another.

The first experiment was conducted on a tree which contains one nest. Zero

false positive (FP) cases were recorded in all the tested frames, however the

detector failed to detect the nest in 7 frames (FN), successfully detected the nest

in 5 frames, and successfully detected the absence of a nest when it is not present

in 79 frames (TN). Table 4.5 shows the results along with the yielded accuracy

and Figure 4.17 shows samples of the reported results.

The second experiment was conducted on three trees, each containing only one

nest. In this experiment as well, all the flights’ frames were tested. The first and
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Figure 4.17: Samples of the results of Experiment-1 showing TN,TP, and FN
cases.

the second nest were detected successfully even if not in all their corresponding

frames, but the final nest was not identified in any of the frames including it.

Zero false positive (FP) cases were recorded in all the tested frames, however the

detector failed to detect the nest in 36 frames (FN), successfully detected the

nest in 21 frames, and successfully detected the absence of a nest when it is not

present in 152 frames (TN). Table 4.5 shows the results as well along with some

samples of the results in Figure 4.18.

Figure 4.18: Samples of the results of Experiment-2 showing TN,TP, and FN
cases.

The third experiment was conducted on one tree containing two nests. The

first nest was detected successfully even if not in all its corresponding frames,

but the second nest was not identified in any of the frames including it. In this
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experiment, the first false positive case was recorded where a pine cone was de-

tected as a nest in a very high confidence rate. In total, and after analyzing all

the tested frames, 34 false positive (FP) cases were recorded in all the tested

frames, however the detector failed to detect the nest in 73 frames (FN), success-

fully detected the nest in 16 frames, and successfully detected the absence of a

nest when it is not present in 105 frames (TN). Figure 4.19 illustrates more the

reported cases.

Figure 4.19: Samples of the results of Experiment-3 showing TN,TP, FN, and
FP cases.

The fourth experiment was conducted on two trees, each containing two nests.

The first nest was detected successfully even if not in all its corresponding frames,

but the second nest was not identified in any of the frames including it. As shown
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in Table 4.5, zero false positive (FP) cases were recorded in all the tested frames,

however the detector failed to detect the nest in 20 frames (FN), successfully

detected the nest in 3 frames, and successfully detected the absence of a nest

when it is not present in 128 frames (TN).Figure 4.20 shows some samples of the

results.

Figure 4.20: Samples of the results of Experiment-4 showing TN,TP, and FN
cases.

Experiment No. of Frames TP FP TN FN Accuracy
1 91 5 0 79 7 92.3%
2 209 21 0 152 36 82.7%
3 151 3 0 128 20 86.7%
4 203 16 34 105 73 53.0%
5 209 48 0 152 9 95.7%

Table 4.5: Detection results of the different experiments conducted on actual
trees.

After analyzing the results of the conducted validation experiments and tak-

ing into consideration that our detector was only trained on the initial dataset

mentioned in section 4.1.3 (’Dataset C’- around 500 images), the detector did a

good job identifying the new nests. However, the false positive case mentioned

in Experiment-3 and missing some nests in all their corresponding frames was

something that should be taken into consideration.

In the aim of testing the general hypothesis which says that the limited dataset

trained on is the cause of such recorded cases, an update to the dataset was
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applied. The frames captured during the aforementioned experiments which

included nests were labelled and added to the dataset. Only the frames of

Experiment-2 were not included. The new dataset (Dataset-C) contains now

1308 images (654 from each modality). The detector was trained again on this

new dataset, and it was tested on the frames of Experiment-2 which are left out

of the training process.

So as mentioned before, the fifth experiment is basically Experiment-2 but

tested on the newly trained detector. The new detector did not miss the last nest

on the third tree visited, and identified the nests in a higher number of frames

than the old detector. The results in Table 4.5 illustrated more these findings.

Zero false positive (FP) cases were recorded in all the tested frames, however the

detector failed to detect the nest in 36 frames (FN), successfully detected the

nest in 21 frames, and successfully detected the absence of a nest when it is not

present in 152 frames (TN). Figure 4.21 shows the compared results between the

old and new detector at several instances.

The numbers show that the performance was boosted where the number of

FN cases dropped and switched into being TP cases, which means being able to

capture the nest now in a higher number of frames than before.

Feature Visualization

Although training the detector on the updated dataset showed improved results,

but still the approach was considered a black-box testing method. In order to

better understand and interpret the results, some visualizations were performed

to show the extracted features.

As shown in Figure 4.22, the corresponding visualizations of the nest features
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Figure 4.21: Sample of the results showing the performance of the detector trained
on the initial dataset vs the new detector trained on the updated one in identifying
the three nests of Experiment-2.

extracted from the RGB image are not very obvious, where features seem to

be extracted not only for the nest compared by the features extracted from the

thermal image. Although the visualizations are not perfect, but it definitely

shows that the feature extraction process is better in the thermal image than the

RGB image, which is reflected and illustrated in the results. I have to note that

these visualizations refer to the “ResNet101” feature extractor implemented in

the multi-Channeled CNN.

Figures 4.24 and 4.23 better interpret the aforementioned hypothesis by show-

ing the features being fired for in the activation layers. It’s obvious that for the

thermal image (Figure 4.23), features extracted in the convolution layers were
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Figure 4.22: Output visualizations of three convolution layers of the ResNet101
feature extraction network.

perfect, since it only fired for the nest features in the activation layers; while

in the case of the RGB image (Figure 4.24), the features extracted seem to be

random and inaccurate, firing later for several objects in the activation layers.

ResNet101 vs VGG16 Networks

The VGG16 network was trained and tested on the same dataset which the

initial detector was trained and tested on before. As for the initial detector,

the single streams (RGB and Thermal) were trained and tested each by its own

before training the multi-channeled CNN to check the effectiveness of the new

feature extraction network versus the old (Resnet). The two architectures are

implemented using Pytorch [53]. Using an NVIDIA GeForce GTX 1060 GPU;

the single stream training of each modality required an estimated time of three

hours, and the multi-channeled network, initialized by the outputted pre-trained

weights (WRGB and WThermal), required one hour of training to reach a minimum
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Figure 4.23: Output visualization of four ReLu-activation layers while testing a
thermal image (ResNet).

loss.

Precision =
TP

TP + FP
. (4.2)

Recall =
TP

TP + FN
. (4.3)

F1Score =
2× Precision×Recall
Precision+Recall

. (4.4)

As shown in Figure 4.25, relying on the VGG16 feature extraction network

showed improved visualizations where the features extracted from several convo-

lution layers are more obvious compared to the ResNet network.

As shown in Table 4.6, accuracy, precision, recall, and F1 score - given in equa-
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Figure 4.24: Output visualization of three ReLu-activation layers while testing
an RGB image (ResNet).

Figure 4.25: Output visualizations of six convolution layers of the VGG16 feature
extraction network for an RGB image.
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tions (4.1-4.4) - are used as evaluation metrics to assess the performance of each

network . The VGG network outperforms the ResNet network when training the

single streams alone, achieving a 95.9% accuracy versus only 81.9% for ResNet in

the RGB case, and 88.4% accuracy vs 84.9% for ResNet in the thermal domain.

Interpreting the results, ResNet recorded a higher number of false positive (FP)

cases than the VGG 16, but almost the same number of true positives (TPs),

indicating the improved feature extraction of the VGG network. When training

the multi-channeled CNN, the ResNet101 feature extraction network outperforms

the VGG network, showing that better feature learning is achieved when using

both image types from the visual and thermal spectra. The visualization thresh-

old for these experiments is set at 0.8, which indicates that only predictions that

are 80% confident or above are visualized. A contribution lies in testing these two

feature extraction networks in this multi-channel manner, with this performance

comparison not being previously performed in such architecture.

Table 4.6: Detection results of the different experiments and algorithms.
Stream Nb. samples TP FP TN FN Accuracy Precision Recall F1 score

VGG 16

RGB 121 117 1 0 4 95.9% 99.1% 96.6% 97.8%
Thermal 121 115 9 0 6 88.4% 92.7% 95 % 93.8%

Multi 121 117 0 0 4 96.7% 100 % 96.6% 98.3%

ResNet101

RGB 121 118 23 0 3 81.9% 83.6% 97.5% 90 %
Thermal 121 114 18 0 7 84.9% 86.3% 94.2% 90.1%

Multi 121 121 0 0 0 100 % 100 % 100 % 100 %

Final Experiments

Given its superior performance in multi-channeled streams, we rely on the ResNet101

feature extraction network and conduct four experiments to evaluate the detec-

tor’s performance in real-life conditions, with the results shown in Table 4.7.

Experiment-1 consists of a drone flight approaching only one nest that is

successfully detected in all frames, recording zero false positive cases. Samples of
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the detection are shown in Figure 4.26.

Figure 4.26: Three samples of the detections from Experimet 1.

In Experiment-2, the drone scans three trees, each containing one nest. The

three nests are properly detected in 48 out of 57 frames, without recording any

FP case. Three samples of the detection of each nest are shown in Figure 4.27.

Experiment-3 is represented by a flight scanning two trees, each containing

one nest. The nests are faultlessly identified in all frames, also without recording

any false detections. Some of the results are shown in Figure 4.28.

Experiment-4 involves scanning two nests on two different trees, detecting

the nests in 142 out of the 144 frames, while recording a false positive detection

of the same object in 12 consecutive frames. The average accuracy of all four

experiments is 97%. Sample of the results are shown in Figure 4.29.

Table 4.7: Detection results of the four conducted experiments using ResNet 101.
Experiment No. of Frames TP FP TN FN Accuracy Precision Recall F1 Score

1 46 40 0 6 0 100% 100% 100% 100%
2 209 48 0 152 9 95.7% 100% 84.2% 91.4%
3 121 27 0 94 0 100% 100% 100% 100%
4 187 142 12 33 2 92.6% 92.2% 98.6% 95.3%

Evaluation Metrics

To have a more profound comparison and analysis of the obtained results, two

widely used evaluation metrics were employed.
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Figure 4.27: Three samples of the detections of each nest from Experimet 2.

Figure 4.28: Three samples of the detections of each nest from Experimet 3.

ROC Curve: An ROC curve (receiver operating characteristic curve) is a

graph showing the performance of a model at several thresholds. This curve plots

two parameters:
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Figure 4.29: Three samples of the detections of each nest from Experimet 4.

1) TPR = TP/TP + FN

2) FPR = FP/FP + TN

An ROC curve plots TPR vs. FPR at different thresholds. Lowering the

classification threshold classifies more items as positive, thus increasing both False

Positives and True Positives. Applying this metric on the conducted validation

experiments, and testing the performance of the detector at several thresholds

(0.05, 0.1, 0.2, 0.3, . . . , 1) yielded a (TPR, FPR) at each value set. Table 4.8

represents the performance of the detector at the aforementioned thresholds while

testing it on our original dataset. Tables 4.9 and 4.10 show the results of the same

work applied on Experiments 2 and 4 from the validation experiments mentioned

in section 4.4.1.

As shown in Table 4.8, a curve could not be generated obtaining the same

(TPR, FPR) values at all thresholds and the reason behind that is lacking FN

cases (missing nests) and TN cases (all images include a nest).

Figures 4.30 and 4.31 show the ROC Curves corresponding to Experiments 2

and 4 respectively. As shown in the figures, the ROC metric applied in this work
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Table 4.8: Detector’s performance when tested on the original dataset (Dataset-
C) at several thresholds for ROC metric.

Threshold No. of Frames TP FP TN FN TPR FPR
0.1 121 121 3 0 0 1 1
0.2 121 121 3 0 0 1 1
0.3 121 121 3 0 0 1 1
0.4 121 121 2 0 0 1 1
0.5 121 121 2 0 0 1 1
0.6 121 121 2 0 0 1 1
0.7 121 121 2 0 0 1 1
0.8 121 121 2 0 0 1 1
0.9 121 121 1 0 0 1 1

Table 4.9: Detector’s performance when tested on Experiment-2 frames at several
thresholds for ROC metric.

Threshold No. of Frames TP FP TN FN TPR FPR
0.05 210 58 1 142 10 0.85 0.007
0.1 210 57 1 142 11 0.83 0.007
0.2 210 55 1 142 13 0.8 0.007
0.3 210 55 1 142 13 0.8 0.007
0.4 210 55 1 142 13 0.8 0.007
0.5 210 55 1 142 13 0.8 0.007
0.6 210 55 1 142 13 0.8 0.007
0.7 210 55 1 142 13 0.8 0.007
0.8 210 55 0 142 13 0.8 0
0.9 210 54 0 142 14 0.79 0
1.0 210 51 0 142 17 0.75 0

did not yield the proper curve. This method is widely used for evaluating the

performance of classification models, not for object detection. Looking for the

a more suitable metric for object detection, the Mean Average Precision (mAP)

metric is adopted.

Mean Average Precision (mAP) is a popular metric in measuring the

accuracy of object detectors like Faster R-CNN, SSD, etc. Average precision
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Table 4.10: Detector’s performance when tested on Experiment-4 frames at sev-
eral thresholds for ROC metric.

Threshold No. of Frames TP FP TN FN TPR FPR
0.05 180 145 12 21 2 0.988 0.36
0.1 180 144 12 21 3 0.977 0.36
0.2 180 144 11 22 3 0.977 0.33
0.3 180 144 11 22 3 0.977 0.33
0.4 180 143 11 22 4 0.972 0.33
0.5 180 143 9 24 4 0.972 0.272
0.6 180 143 9 24 4 0.972 0.272
0.7 180 143 8 25 4 0.972 0.242
0.8 180 143 7 26 4 0.972 0.212
0.9 180 141 6 27 6 0.95 0.18
1.0 180 138 1 32 9 0.93 0.03

Figure 4.30: ROC Curve of Experiment-2. This curve is the plot of data corre-
sponding to Table 4.9 where even at threshold=1.0, the detector still records TP
cases, so it does not start from (0,0). Since the dataset does not include any TN
cases (only images containing nests), the curve could not reach (1,1).

computes the average precision value for recall value over 0 to 1. The general

definition for the Average Precision (AP) is finding the area under the precision-

recall curve, where “Precision” and “Recall” are always between 0 and 1, and are
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Figure 4.31: ROC Curve of Experiment-4.This curve is the plot of data corre-
sponding to Table 4.10 where even at threshold=1.0, the detector still records TP
cases, so it does not start from (0,0). Since the dataset does not include any TN
cases (only images containing nests), the curve could not reach (1,1). The detec-
tor recorded a higher number of FP cases in this experiment than Experiment-2
at low threshold values, which then dropped at higher ones.

calculated using equations 4.2 and 4.3 . Therefore, AP falls within 0 and 1 also.

The mean average precision (mAP) metric, which evaluates the performance

of each network over all visualization thresholds, was employed. The Intersection

over Union (IOU) threshold is set to 0.5, which means that only predictions

50% overlaying with the ground truth label are deemed true positives, which is

the default value used for several benchmark datasets [58]. The IOU concept is

shown in Figure 4.32.This metric was applied to compare again the performance

of VGG16 versus ResNet101 and for the vakidation experiments. A python code

was prepared which automatically gives the mAP of the tested frames, given that

all the tested frames should have a ground truth. The images of the dataset were

already manually labelled to train and test the deep learning models on it, but

the validation experiments’ frames needed to be labelled as well, for a proper
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evaluation.

Evaluating and comparing the performance of the VGG16 feature extraction

network and the ResNet101 was done again, this time relying on the mAP. The

results are captured in Table 4.11.The VGG16 network performs better feature

extraction than ResNet, recording a significantly less number of FP cases thus a

higher mAP (6 versus 48 in the RGB domain, and 22 versus 165 in the thermal

domain), however both networks missed a similar number of nests (recording 4

versus 3 false negative cases (FN) in the RGB domain, and 6 versus 7 in the

thermal domain). The dataset consists only of images which include a nest, so

zero true negatives (TN) are of course recorded. Comparing the multi-channeled

networks, ResNet again outperforms the VGG16 network, which performs better

in single-stream trainings, achieving the highest mAP value of 98.3%.

Table 4.11: Mean Average Precision (mAP) of the two feature extraction algo-
rithms tested on various image datasets (visualization threshold set to 0.5).

Stream Nb. samples TP FP TN FN mAP

VGG 16

RGB 121 118 6 0 3 97.02%
Thermal 121 115 22 0 1 94.35%

Multi 121 116 9 0 1 94.2%

ResNet101

RGB 121 112 48 0 0 90.95%
Thermal 121 112 165 0 0 83.71%

Multi 121 119 5 0 0 98.31%

For the validation experiments, the frames of all four experiments were eval-

uated, and it yielded a 98.4% mAP. It is noteworthy to mention that a similar

mAP value was obtained in the experiments as compared to the theoretical value

(achieved from the image datasets), which demonstrates the detector’s reliability

in real-life conditions.
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Figure 4.32: Concept of the Intersection over Union (IOU).

4.4.2 PPM Nest Tracking

For single object tracking applications, accuracy is a critical metric that is com-

monly used for performance evaluation. Accuracy in object tracking is repre-

sented by calculating the IOU between the bounding box that is predicted by the

tracker and the ground-truth (actual location of the object in the image). Accu-

racy is the average of all IoU values over the frames of the sequence. Tracking of

the detected PPM nests is achieved in the four conducted experiments mentioned

in section 4.4.1, where each nest is given a unique ID and FP are disregarded.

The tracking accuracy in each of the conducted experiments is captured in

Table 4.12. Tracking is performed on the frame sequences of the validation ex-

periments by setting the IOU threshold to 0.5, and setting the number of hits to

5. This implies that predictions above 50% of the actual detection are deemed

successful, and attaining five consecutive correct predictions of a new tracked

object gives it an ID.

Figure 4.33 shows thee samples of the results of the tracking performance

during the first experiment that includes one nests, where the detected nest is
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given the same ID in subsequent frames achieving a tracking accuracy of 68.5%

over all the frames’ sequence. The tracker didn’t lose the target anytime (i.e

the IoU falls below a given threshold) throughout the entire sequence, yielding a

continuous tracking

Figure 4.34 shows a sample of the results of the tracking performance during

the second experiment that includes three nests, where each detected nest is given

the same ID that is appropriated tracked as it appears in subsequent frames. In

this experiment, an accuracy of 74.3% was achieved tracking three nests in the

frames’ sequence. Each nest showing up in several frames was given the same ID,

however the tracker lost the second nest once before tracking it again successfully.

Table 4.12: Tracking Results of the four conducted experiments using the Kalman
Filter.

Experiment No. of Frames Accuracy
1 46 68%
2 209 74%
3 121 71%
4 187 64%

Figure 4.33: Tracking using the Kalman Filter method - Experiment-1
.

In the third experiment, a continuous tracking was performed giving the first

and the second nests the proper IDs, achieving an accuracy of 71.1%. Figure 4.35

shows samples of the tracking performance on two detected nests. Figure 4.36

shows samples of the tracking performance during Experiment-4, tracking each
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Figure 4.34: Tracking using the Kalman Filter method - Experiment-2.

of the two nests scanned in this experiment. In this experiment, the tracker lost

the first nest once due to one wrong prediction before tracking it successfully in

the rest of the frames, and tracked the second nest continuously. Both nests were

given the proper IDs, as shown in the figure, with an accuracy of 64.8%.

In the fourth experiment, the detector records a false positive case during

takeoff, which was detected in several frames. Figure 4.37 shows the performance

of the two tracking methods illustrated before, where the first method gave the

FP detection an ID number ’1’, and tracked this FP in the subsequent frames;

giving the first detected nest later on an ID number ’2’. While for the KF, and

as shown in the figure, the tracker disregarded this FP case, and gave the ID

number ’1’ to the first detected nest directly.
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Figure 4.35: Tracking using the Kalman Filter method - Experiment-3.

Figure 4.36: Tracking using the Kalman Filter method - Experiment-4.

4.4.3 PPM Nest Geo-Localization

As shown in Figure 4.38, experiments start by configuring the RTK-GPS in the

field. The base station (RTK-base-GPS module) is configured (initialized and

calibrated) and positioned at a location that receives the strongest signal from

the satellites to attain minimal positioning error. In each of the four conducted

experiments, the base is set to reach an accuracy of approximately 10cm. The

rover-RTK-GPS module is mounted on board of the drone and receives input
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Figure 4.37: Comparing the performance of methods 1 and 2 on frames from
Experiment-4.

corrections from the base via long range (LoRa) radio communication, achieving

an accuracy of 1cm given an interrupted signal during the entire flight.

To evaluate the performance of the proposed geo-localization scheme, the

devised algorithm is tested in experiments where the drone approaches a nest

from the top, and the algorithm estimates the nest’s position before reaching it,

whenever a detection occurs. Manual ground truthing is performed by taking

advantage of the accurate RTK-GPS readings, where the user manually flies the

drone and vertically approaches each nest in the trees being scanned. When

the drone becomes exactly on top of the approached nest, i.e. when the nest

appears in the center of the downward-pointing camera stream, the user records

the position of the drone acquired from its on-board RTK rover-GPS module,

which is stored as the nest’s ground-truth position. This process is repeated

for all trees being scanned in the experiments to record the ground-truth of all

present nests. In scanning mode, the drone is flown on top of trees at low speeds

that require small pitch angles (not to have a tilted camera view), and its flight

data (RGB and thermal cameras, RTK-GPS) are recorded. The acquired data
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are processed offline to detect and localize the nests, where the reported positions

of the detections are compared to the ground truth values that were manually

recorded beforehand.

Figure 4.38: Schematic showing the experimental setup. The RTK-Base-GPS
module is configured in the field receiving the satellite signals and sending cor-
rections to the RTK-Rover-GPS module on board of the drone. The user drives
the drone manually scanning the tree for PPM nests.

Figures 4.39 through 4.42 show the results of experiments 1,2,3 and 4 respec-

tively, with the drone approaching each nest and estimating its position.The GPS

data being captured is in the Longitude/Latitude/Height (LLH) format, but it

has been converted by the GPS estimation code into the Universal Transverse

Mercator-UTM format as shown in the figures of the results, where the values
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are converted to meters.

Figure 4.39: Three instances from Experiment-1 showing the estimated position
of the nest at each corresponding detection showing the drone’s moving position
(red), the nest’s ground truth position (green), and the estimated position of the
nest (blue). Minimal error is observed between the true and estimated positions
of the nest.
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Figure 4.40: Localization result of Experiment-2 showing the drone’s moving po-
sition (red), the nest’s ground truth position (green), and the estimated position
of the nest (blue). Rows 1,2, and 3 show the frame where the first, second, and
third nests got detected for the first time respectively, and their estimated po-
sitions. Minimal error is observed between the true and estimated positions of
each nest.

Table 4.13 shows the numerical results of four conducted experiments. Experiment-

1 includes only one nest, where this nest showed up in 16 frames and the average

estimation error versus its actual position (ground truth) is approximately 5 cm.

Experiment-2 entails a drone flight over three nests, and the estimation process

of the nests’ position was successful with an error not exceeding 10cm for each

nest. In Experiment-3, the flight included two nests: the first nest showed up in

19 frames while the second nest showed up in eight (8) frames only. The average
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Figure 4.41: Localization result of Experiment-3 showing the drone’s moving po-
sition (red), the nest’s ground truth position (green), and the estimated position
of the nest (blue). Rows 1 and 2 show the frame where the first and the second
nest got detected for the first time and their estimated positions.

estimation error was approximately 24 cm and 12 cm for the first and the second

nest, respectively. The fourth experiment entails detecting and estimating the

positions of two nests, achieving accurate estimations and small average errors of

approximately 7 cm from the ground truth, for each.

Table 4.13: Estimation of the nests’ positions in the four conducted experiments.
Experiment Nest Number of frames Average Error

1 1 16 5 cm

2
1 19 2 cm
2 30 2 cm
3 8 9 cm

3
1 19 24 cm
2 8 12 cm

4
1 84 7 cm
2 59 7 cm
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Figure 4.42: Two instances showing the estimated position of each nest when it
got detected for the first time. The first row corresponds to the first nest, and
the second row corresponds to the second nest.The drone’s moving position (red),
the nest’s ground truth position (green), and the estimated position of the nest
(blue).

Output Maps

After performing accurate estimation of the nests’ GPS positions, along with

proper tracking, the desired output is yielded. The most accurate position to be

reported of a nest is when the drone passes directly on top of it, which correlates

to the drone’s actual position. Thus, in the conducted experiments, the positions

of nests passing at the center of the frame are directly associated with the drone’s
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position at that frame, without relying on the estimation. On the other hand, if

a detected nest does not appear in the center of a frame, it is assigned the latest

estimated position.

Figure 4.43 shows sample outputs of Experiment-2 (top) and Experiment-

3 (bottom). The output plot of Experiment-2 shows the position of the three

successfully detected nests by reporting back only three points assigned to each

nest, indicating that tracking is successful. For Experiment-3 as well, a 2D map

showing the two nest positions, which are detected during the drone’s flight, is

reported back.

Figure 4.43: Result of Experiment-2 and 3 showing the final output as a 2D map.

Orthomosaicing

Having a good detection system along with a proper localization method, a 2D

plot showing the detected nests’ locations is our output. A better visualization of

the nest location is set to show the nests’ positions on an image instead of a 2D

76



plot. Image mosaicing is considered the proper solution to do that, which stiches

the frames together to form one complete image of the complete sight covered.

Such a process could be done using several commercial software programs

such as “Reality Capture” [59], “Agisoft Photoscan” [56], “Pix4D mapper” [60].

Using these programs, acceptable results were obtained as shown in Figure 4.44.

Although the output shown in Figure 4.44 shows good visualization of the

scene, but they are still not geo-referenced. Given that the flight’s frames are

recorded synchronously, but independently from the GPS data, the captured

frames are geo-tagged by adding each frame’s corresponding latitude and longi-

tude positions to its metadata.This method is applied to Experiment-1, which

yields the orthomosaic map shown in Figure 4.45, scaled by the proper GPS

positions.

Figure 4.44: Mosaic Maps created from the frames of Experiment-1 using Reality
Capture [59] and Agisoft Photoscan [56].

For better visualization of the complete surveyed site, another orthomosaic

map is created. Lacking access to high resolution satellite images, frames of

the experimented region are captured using our drone from high altitude (25

meters) in order to create our own high-resolution Birdseye-view image. These
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Figure 4.45: Orthomosaic map (center) created from Experiment-1 frames se-
quence (surrounding frames), with the GPS coordinates of the detected nest
shown in the bottom left.

geo-referenced frames are imported into Pix4D mapper [60] to create this highly

detailed orthomosaic image. Overlaying this image on Google Earth [61] and

plotting the GPS positions of the three detected nests in Experiment-2 is shown

in Figure 4.46.
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Figure 4.46: Position of the three nests detected from Experiment-2 marked on
our created orthomosaic image.
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Chapter 5

Discussion

Given the gravity of the situation caused by PPM caterpillars, which are rapidly

spreading [8] and destroying pine trees every season at large scales, a radical so-

lution to eradicate is sought after in order to be applied as soon as possible. Any

proposed system solution must feature a robust and accurate detection system,

which identifies the presence of the moths before taking any measures of treat-

ment. Options to detect PPMs include identifying the presence of their eggs, their

caterpillars, or their nests. Detecting PPM eggs and caterpillars is technically

challenging, thus tracking their nests is a more practical and feasible solution.

Measurement of defoliation in fields of pine trees due to PPMs is convention-

ally performed visually by forestry technicians on site. Visual examination is

subjective and requires a lot of experience since there is minimal data available

to validate the results. Using Computer Vision for the detection of PPM nests

is a viable alternative to estimate the PPM defoliation in a tree. Such a system

can also locate the nests within a tree environment, which enables targeting them

with appropriate treatment options such as mechanical, chemical, biological, or

other.
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The goal of this research was to come up with a system which is able to detect

a PPM nest properly, track it when it appears in several frames, and report

back its best corresponding GPS position, within an accuracy of few centimeters

(< 10cm). The work done in this paper is different from prior research attempting

to detect and localize these nests, creating a localized, tree-level scanning system

which could be deployed in urban areas such as near houses, in private gardens,

farms, road-side plantations etc. which their pine trees are also being attacked

by PPM [62]; as much as in dense foliage forests.

In this work, a computer vision-based detection algorithm that leverages con-

volutional neural networks to detect the presence of a PPM nest and locate it

within an image was proposed. A minimum detection accuracy of 90% was ar-

tificially imposed for the proposed solution to be accepted for later adoption by

stakeholders. It is found that relying on RGB images in the visual spectrum alone

for detecting PPM nests did not provide adequate accuracy (in the range of 60%),

where a significant number of PPM nests went undetected in certain cases, with

several false positive detections obtained in other cases. Since we aim to furnish

an end-to-end localized solution with high precision to specifically target each

PPM nest, false positive detections were considered a serious issue. Hence, a

more accurate detection system was required to overcome the shortcomings of

training the machine learning algorithms on RGB images alone. Inspired by the

idea of using thermal images in agriculture for various detection and inspection

purposes, we leverage the thermal characteristics of the silky material of the PPM

nests that causes them to have a different temperature than their surroundings.

This feature is employed to acquire a richer dataset for machine learning that

can limit the number of false detections.

Datasets specifically collected for this work are acquired from different loca-
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tions. Several altitudes are targeted in the aim of gaining a better understanding

of PPM nests’ characteristics. Visited areas at multiple altitudes (300, 450, 800,

and 1100m) had PPM nests of similar sizes, with an average size of 15cm. With

respect to thermal images, the silky material proved to entrap more heat than

the tree branches and needles. Having most of the nests built on the outer-most

branches of pine trees, little difficulty is faced during the collection of images and

validation of the proposed system. That said, we discuss next some potential sce-

narios where the proposed system might not function as intended due to various

challenges. A limited, yet possible, scenario may involve the nest getting affected

by shade, which would result in a poor representation in the thermal images.

Another challenge can occur when trying to capture thermal images of nests that

are located in the lower part of the tree (lowest branches), where the background

can become the ground, which may contain heat-absorbing objects that have

similar temperature as the PPM nests. The proposed deep-learning architecture

can deal with the above challenges and limitations given its learning of features

from both spectra (visible and thermal), which can attenuate the effect of such

unpredictable scenarios. In fact, the fusion of images from both spectra produced

a significant improvement in detection accuracy (exceeding the specified thresh-

old of 90%), which is achieved by reducing the number FP detections. In most

cases, the individually trained branches yielded much lower detection accuracy

and more FPs as compared to the dual-stream CNN. This gave confidence in the

type of dataset (paired images), the suitability of the employed machine learn-

ing algorithm given the limited available dataset, and the dual-stream network

architecture that we are proposing in this work. The conducted experiments

demonstrate the applicability and performance of the proposed system in real-

life conditions, as it achieved a similar mAP value to that obtained during the
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training and testing phase on the custom yet limited dataset.

In this work, we conducted an interesting performance comparison by testing

two feature extraction networks (ResNet 101 and VGG16) in a multi-channel

system, something that has not been previously performed in such architectures.

The interesting result of the comparison was in the fact that the ResNet 101

network, which performed poorer feature extraction in the single-channeled ar-

chitecture, outperformed the VGG16 network in the dual-channeled architecture.

This can be interpreted by the fact that ResNet tends to extract a wider range

of features from the PPM nests present in the images, which is illustrated by the

higher number of TP cases in the single-channeled training, at the cost of record-

ing a higher number of FP cases as well. However, in the multi-channeled system,

this wide range of extracted features by ResNet is fused with the features from

the other modality, which produces better a richer set of features that represent

the PPM nests, and thus better learning and training.

After achieving accurate detection of PPM nests, their global positions are

reported back on a map with minimal error. Geo-localization is applied to ac-

curately estimate the nests’ positions as best as possible, especially when the

scanning drone is not perfectly aligned on top of the nests. An RTK-GPS is used

in the experimental setup for ground truth determination, which demonstrated

the accuracy of the devised estimation scheme, even when estimating the position

of nests that appear in the border of the processed frame, i.e., not right at its

center. It is important to note that the achieved localization results were based

on the assumption that the nest’s size is around 15cm (based on observations

from field visits), and that the drone scans the trees from a height of 2m above

the region to be scanned.

This height restriction is due to the low resolution of the used thermal camera,
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which requires the drone to be in close proximity of the scanned nests to make

them perceivable in the captured thermal image. While these assumptions proved

the concept of the proposed system, an enhanced solution can include using higher

resolution thermal imaging devices and sensors that provide depth information

(e.g. stereo camera or 2D LiDAR).

In addition to detection and localization, object tracking is performed to

identify the same nests that appear in several subsequent frames, with the purpose

of reporting back the best corresponding position of each nest, and not to plot the

corresponding position of each frame detection. A Kalman filter is implemented

to achieve accurate tracking by predicting the position of the detected objects in

future frames, disregarding false positives, and giving the same ID to the correct

predictions. The KF follows a constant velocity model, which yielded successful

tracking in the conducted experiments. This constraint poses a limitation of the

proposed system where sudden perturbations in the drone’s motion may cause

loss of tracking, or re-initialization of the tracker in less severe cases. This issue

can be remedied by investigating more robust filters at a later stage if the system

is to be deployed in harsh conditions.

The complete system is tested in real-life experiments and demonstrated its

success at detecting, tracking, and localizing PPM nests. In the conducted exper-

iments, the system was able to detect nests with high accuracy (97%), estimate

the position of the detected nests properly (< 20cm), and track the same nests

that appear in several frames in order to report back the corresponding GPS

location. For better visualization, two orthomosaic maps are created. The first

one is from the geo-referenced frames captured while scanning the trees for nests,

and the second one is from captured frames of the experimented area at high

altitude, yielding a Birdseye-view satellite image showing the positions of the
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detected nests.

In this thesis, the developed system is only able to scan a limited number

of trees in one flight, due to issues faced with the system’s hardware and con-

figuration. In the validation experiments, we aimed to avoid causing damage to

the octocopter UAV, which is an expensive research platform and is very hard

to manually control and maneuver, thus we carefully tested the system in safe

areas where trees stand solely without neighboring trees, and on PPM nests that

are located on the lower level of the tree and could be easily reached. Another

encountered issue was the discontinuous capturing of video frames and GPS data

by the Raspberry Pi, due to its limited computational power that requires recon-

figuration and repetition of the experiment all over again. We also faced issues

with the RTK-GPS frequently losing its fixed signal upon experimentation, which

required repeating of the experiment when this happens, even if the signal fixa-

tion loss was for few seconds of the flight. Although facing these hardware issues,

the conducted experiments demonstrate that the system can detect several PPM

nests, albeit not in a continuous manner. By addressing these limitations, the

proposed system can be utilized for scanning large areas, while considering the

design of a localized solution for eradicating these menacing pests.
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Chapter 6

Conclusion

In this thesis, a multi-stream CNN architecture is proposed with the aim of

designing a robust and accurate PPM nests detector. During preliminary experi-

ments, it was discovered that the silky-like material of PPM nests lead to higher

heat absorption and entrapment than the surrounding branches and leaves. As a

result, the thermal spectrum was included as an additional channel in the data

input, paired with the regular RGB channel; both channels provided complemen-

tary valuable features as inputs to the multi-stream CNN. The performance of

two feature extraction networks was investigated when implemented in such a

multi-channeled manner.

Experimental results validated the worth of the multi-channel approach over

the single channel, especially in these unstructured environments where large

variations in appearance are expected. Deep learning proved to be well-suited for

applications with limited datasets when using a multi-stream framework, enabling

the design of a robust detector that required relatively low computation and

training time.

An advanced RTK-GPS was used in the experiments to guarantee an accurate
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geo-localization process when passing on top of the scanned nests;, however, a

GPS calculation method was implemented to geo-tag the position of the detected

nests located in the drone’s perimeter. In order to report back a map showing the

position of the detected nests, a Kalman Filter was utilized as a nest tracker , to

avoid reporting back the position of the same nest several times. Experimental

results validated the successful combination of the aforementioned systems in

performing a robust detection and localization of PPM nests, reporting back the

desired 2D and orthomosaic maps.
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Appendix A

Abbreviations

PPM Pine Processionary Moth

DNN Deep Neural Network

DBM Deep Boltzmann Machines

SVM Support Vectors Machines

KNN K-NearestNeighbor

CNN Convolutional Neural Network

R-CNN Regional-Convolutional Neural Network

RPN Region Proposed Network

FC Fully Connected

BN Batch Normalization

TF TensorFlow

GPS Global Positioning System

RTK Real-time kinematic

KF Kalman Filter

IOU Intersection Over Union

mAP Mean Average Precision
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TP True Positive

FP False Positive

TN True Negative

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

GPU Graphical Processing Unit

SFM Structure from Motion
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