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An Abstract of the Thesis of

Hassan Issa El Atwi for Master of Engineering
Major: Electrical and Computer Engineering

Title: Trajectory Tracking of Autonomous Vehicles via Model Predictive Control
Aided by Sliding Mode Control

In this work, we propose a composite control system for stable and robust
trajectory tracking of autonomous ground vehicles (AGVs) in the presence of
bounded disturbances and uncertainties. A nominal model predictive control
(MPC) system is combined with a sliding mode controller (SMC) to formulate
the proposed control system under the umbrella of tube-based MPC approach,
with the aim of tackling the trajectory tracking challenge for AGVs in uncertain
environments. The control scheme is further modified by replacing the classical
first-order sliding mode control (FOSMC) with a second-order one, the super
twisting sliding mode controller (STSMC), to obtain a smooth control signal
by diminishing the chattering phenomena. The proposed system’s stability is
analyzed and guaranteed via Input-to-State Stability (ISS) in coordination with
Lyapunov stability theory.

For the first time, this combined control structure is applied to the nonlinear
kinematic model of AGVs, where STSMC plays the role of an auxiliary controller
in the feedback loop to handle disturbances and uncertainties that cause devia-
tion from the nominal model. In particular, the auxiliary STSMC approach is
used to produce a control action that reduces the difference between the nominal
predicted states and the actual ones, with the main performance metric being
the error between the vehicle’s position and orientation against a desired trajec-
tory, in addition to fulfilling all of the optimization constraints. A comparative
simulation study is presented and demonstrates the effectiveness and robustness
of the proposed composite control system in the presence of disturbance effects.
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Chapter 1

Introduction

Self-driving vehicles are a transformative technological innovation in the
mobility sector owing to their improved safety, accessibility, efficiency, and con-
venience in transportation. The last three decades have witnessed an increase in
research efforts for the sake of developing driverless vehicle technology [2]. Au-
tonomous vehicles are no more an illusion, they have already become a reality
with autonomous vehicles able of tracking given paths [3]. Driverless cars are
essentially autonomous decision-making systems that process a stream of obser-
vations from on-board sensors such as radars, LIDARs, cameras, GPS/INS units,
and odometry [2], and send appropriate commands to actuators that induce the
desired actions and motion.

A scale for grading vehicle’s level of automation, which varies from 0 to 5,
is introduced by SAE J3016 standard; vehicle automation grade vary from fully
human operated (Level 0) to fully autonomous (Level 5) [4]. Based on a stream of
observations from on-board sensors such as radars, LIDARs, cameras, GPS/INS
units, and odometry, autonomous vehicle systems analyze data and make corre-
sponding decisions [4]. Due to an autonomous system’s increased reliability and
faster reaction time as compared to human operators, the number of traffic colli-
sions is expected to be drastically reduced upon the wide adoption of driverless
vehicles. In addition, autonomy would also reduce traffic congestion, increase
roadway capacity, reduce the need of safety gaps (e.g. platooning) and will lead
to better traffic flow management [5]. Last but not least, autonomous vehicles
can facilitate the transportation of people who are unable to drive due to physical
or visual disability [6].

Autonomy can be generally divided into two sub-classes: perception and plan-
ning. In vehicles, perception is responsible for mapping the surrounding environ-
ment and localizing the vehicle within the generated map. On the other hand,
planning is responsible for the decision making process that allows the vehicle to
follow a desired trajectory while avoiding obstacles. The latter requires a global
path planner for constructing an obstacle-free path from a chosen initial configu-
ration to a goal configuration on an occupancy grid map that is provided by the
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perception subsystem. Furthermore, a local motion planner that operates at a
higher frequency continuously reconstructs the vehicle’s local path and plans the
its motion to avoid unexpected changes in the environment (for instance, avoid-
ing dynamic obstacles) [7]. The desired motion is then translated into actuator
commands on the vehicle’s throttle, steering, and braking subsystems through an
adopted vehicle model and dedicated controllers.

One of the most fundamental aspects of autonomous ground vehicles and
mobile wheeled robots is optimal path planning and obstacle avoidance [8]. Mo-
tion planning entails finding collision-free paths in the configuration space, where
various probabilistic and deterministic methods can be used to search for this
path from the initial point to the goal point. Once the motion is planned, the
trajectory planning stage takes into consideration the vehicle’s constraints along
this path such as maximum achievable acceleration and deceleration, and min-
imum turning radius. When the environment includes dynamic obstacles, time
is considered as an additional constraint in the optimization problem. Finally,
path planning is responsible for planning the path within the points generated
by the motion planner. Usually operating at a higher frequency than the motion
planner and in a 2D Euclidean space, the path planner is responsible for solving
the problems that the motion planner could not tackle on a global level such as
convex obstacles and unexpected static or dynamic obstacles. After discretizing
the planners, the planned path and motion are fed to the vehicle model in order
to produce the proper commands to the individual actuators: throttle, braking,
and steering [9].

Autonomous ground vehicles comprise several subsystems that constitute
fields of research on their own. Trajectory-tracking control is an active area of
research that has benefited from noticeable contributions over the years [10]. Re-
searchers have proposed various approaches to address the AGV tracking control
challenge, which include geometrical approaches [11], backstepping [12], feedback
linearization [13], sliding mode control [14], and model predictive control [15, 16],
to only list a few. The main difficulties of the tracking control of mobile robots
arise from their nonlinear dynamic models and underactuated configurations.
Difficulties increase in ground vehicles since their motions must be planned while
satisfying multiple physical constraints such as the nonholonomic constraint, ve-
locity constraint, and input saturation constraint. As such, model predictive
control has shown its effectiveness amongst other approaches due to its advan-
tage of handling physical constraints, while simultaneously optimizing the control
performance [17].

Robustness is another key feature that a motion control system must possess
in order to yield acceptable tracking performance in the presence of uncertain-
ties and disturbances. For the case of AGVs and mobile robots, several factors
introduce uncertainties such as parametric uncertainties, measurement noise, un-
modeled dynamics and nonlinearities, and external disturbances. To address this
problem, researchers have proposed various robust control techniques, with the
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majority being based on sliding mode control (SMC) or model predictive control
(MPC), since the two schemes offer enhanced robustness against various distur-
bances. SMC is a suitable method for dealing with nonlinear uncertain systems,
such as AGVs with nonholonomic constraints, and guarantees the elimination
of matched disturbances [18]. SMC guarantees high performance under distur-
bances and uncertainties, albeit with a risk of subjecting the plant actuators to
physical damage due to control signal chattering. Various approaches have been
proposed to overcome the chattering effect such as high-order sliding mode con-
trollers (HOSMC) and second-order sliding mode controllers (SOSMC). Another
very effective scheme for dealing with chattering is the super twisting sliding mode
controller (STSMC), which is a continuous SOSMC that generates smooth control
signals that overcome the classical SMC drawbacks. Several control structures
that offer robustness based on MPC exist in literature. Min-max formulation was
first introduced in [19] to simply minimize the worst-case deviation from a spec-
ified reference. However, the min-max method suffers from drawbacks related
to high computational cost and limited applicability to slow dynamics. A con-
straint tightening scheme, known as tube-based MPC (TMPC), was proposed to
address the computational expense of the min-max approach. TMPC maintains
the actual state within an invariant ‘tube’ around a nominal trajectory that is
computed while neglecting disturbances [20], and it then forces all possible tra-
jectories of the uncertain system to remain inside the tube boundaries [21]. The
actual constraints are satisfied by replacing them with stricter ones in the opti-
mization problem. TMPC consists of a dual control scheme, MPC with tightened
constraints and an inner feedback loop to robustify the control system about the
center of the designed tube [22, 23]. The effectiveness of both controllers, MPC
and SMC, inspired several researchers to combine these two controllers in a single
scheme to simultaneously benefit from both abilities [24].

In this work, we propose a tube-based MPC scheme for AGVs by augmenting
a nominal MPC with STSMC in the feedback loop to improve trajectory tracking
performance in the presence of uncertainties, which is achieved by the STSMC’s
robustness and the nominal MPC’s ability to handle system constraints. This
control scheme solves the trajectory tracking problem for AGVs and wheeled
mobile robots by achieving minimum error while tracking a reference trajectory
and fulfilling the control requirements from the viewpoints of stability, robustness,
and no constraints violation.

The outline of this thesis is as follows: Chapter 2 presents a review of other re-
lated works available in the literature, which cover control schemes and solutions
proposed to tackle the trajectory tracking problem of mobile ground robots. In
Chapter 3, the perturbed nonholonomic nonlinear kinematic vehicle model is in-
troduced and the proposed control system structure is described and formulated.
The proposed control scheme is validated via numerical simulation in Chapter 4.
A conclusion and an outlook into future work are provided in Chapter 5.
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Chapter 2

Literature Review

This chapter reviews the major advances and main trajectory tracking methods
that are available in the literature of mobile ground robots. First, geometrical
approaches, which are simple to design and implement, are described. However,
the tracking performance of AGVs using geometrical approaches is only guar-
anteed for low speeds. Next, several Lyapunov-based algorithms are discussed
due to their widespread usage based on their guarantee of system stability. The
chapter then discusses model predictive control (MPC) systems, which provide
an optimal solution with the drawback of added computational cost, and they
feature robustness and good performance in addition to stability guarantees. De-
tailed discussions of the pros and cons of the above approaches are presented in
the respective sections.

2.1 Geometrical Approaches

Geometric controllers are widely common path tracking methods that are applied
in mobile robots. These controllers benefit from the geometric relations between
the vehicle’s kinematics and the desired path, which result in direct control law
solutions to the path-tracking problem [25]. The low computational requirement
of geometrical approaches is considered their main advantage, given that they
provide acceptable tracking performance [11]. The Pure Pursuit (PP) algorithm,
illustrated in Fig. 2.1, is the most common and effective geometric method [26].
The PP algorithm computes a curvature that results in driving the vehicle to
a chosen point on the path that is one look-ahead distance from the current
vehicle position [11]. The look-ahead distance is the only parameter that needs
to be tuned based on the vehicle’s velocity, which makes the implementation of
the PP algorithm relatively straightforward. If the magnitude of the look-ahead
distance is small, the vehicle tends to oscillate about the desired path and can
even become unstable for very small values [27]. On the other hand, longer
look-ahead distances cause the vehicle to converge to the path more gradually
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and with less oscillations; however, longer look-ahead distances cause the vehicle
to short-circuit arced paths, thus the controlled vehicle cannot negotiate curvy
maneuvers [28].

Stanley’s method is another geometrical approach developed by the team at
Stanford University and implemented on their vehicle “Stanley” for the DARPA
Grand Challenge [29]. The velocity and steering controllers are applied sepa-
rately; the steering angle is computed by a nonlinear feedback function of the
cross-track error, while velocity control is implemented as a proportional-integral
(PI) controller. The main shortcoming of the Stanley method is that its con-
troller’s performance degrades severely as the vehicle speed increases [30].

Figure 2.1: Pure pursuit algorithm.

2.2 Lyapunov-Based Approaches

This section describes several Lyapunov-based controllers that are used for AGV
tracking. These methods are widely implemented in various forms and aspects
to achieve closed-loop stability. The following control algorithms are described in
this section and covered in detail: feedback linearization, sequential backstepping,
and sliding mode control.
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2.2.1 Feedback Linearization

Feedback linearization is a Lyapunov-based method that has the advantage of
transforming a nonlinear dynamic system into a linear one, which permits us-
ing linear control design techniques to address nonlinear closed-loop performance
specifications [31]. Feedback linearization has been implemented in several ap-
plications in the robotics field. For instance, output feedback linearization was
proposed in [32] to control a mobile ground robot with two arms. The proposed
controller consisted of two components to achieve compatible and smooth motion
between the arms and the base. The first part controls the orientation and the
position of the base, Whereas the second part controls the manipulators for con-
sistent behavior. A wheeled mobile cable-driven parallel robot was considered in
[33]. Its mathematical equations were obtained via the Gibbs-Appel formula, then
a linearized output feedback control law was designed. Simulations and experi-
ments validated the performance of the proposed system. An adaptive controller
was designed in [34] via sliding modes with feedback linearization for heavy deliv-
eries by parachute from an airship; the controller’s stability was achieved based
on Lyapunov’s theory, and validation was performed via numerical simulations.

2.2.2 Backstepping

Backstepping is a systematic control synthesis technique that divides a complex
nonlinear system into several subsystems. It employs a recursive procedure that
combines the choice of a Lyapunov function with the design of feedback control.
The backstepping design starts from the system’s lowest-order differential equa-
tion, introduces the concept of virtual control, and designs the virtual control
inputs step-by-step to obtain the entire system’s control law [35]. The recursive
procedure of backstepping has attracted widespread attention to provide novel so-
lutions for the trajectory tracking problem of mobile robots [35]. A backstepping
control design for trajectory tracking of mobile robots was introduced in [36, 37].
The controller ensured global stabilization achievement, albeit under specific con-
ditions and considering limits on velocities. To overcome the limitation in the
previous work, a modified version was proposed in [38], but the computational
effort of this scheme restricted its suitability for real-time implementation. A
reduced-order backstepping controller was proposed in [39] by decoupling the
two control inputs and adding an integral term for performance enhancement;
the simplicity of the proposed controller makes it suitable for real-time experi-
mentation.

2.2.3 Sliding Mode Control

Sliding mode control (SMC) is another effective method that deals with nonlin-
ear uncertain systems and guarantees the complete elimination of the effects of
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matched disturbances, which disturb a dynamic system through its input chan-
nel(s). The main aim of SMC design is to diminish the complexity of high-order
systems to first-order state variables, namely the sliding function and its deriva-
tive. It offers high accuracy, robustness, fast response, easy tuning, and relatively
simple design [40]. SMC is designed to drive and then constrain the system states
to lie within the neighborhood of a particular surface in the state-space, named
sliding surface (sliding function). After driving the states to the sliding surface,
a selection of a switched feedback control law allows the states to remain on the
surface [41]. SMC has been employed in solving tracking control problems of mo-
bile robots [42, 43]. In [44], an adaptive sliding mode control with an extended
state observer was presented to improve the trajectory tracking performance of
a wheeled mobile robot under unknown skidding and slipping conditions.

A main concern with SMC laws is maintaining the states near the sliding
surface, which may induce severe oscillations since SMC involves high frequency
switching, which is known as the chattering phenomenon. Chattering is unac-
ceptable since it reduces control accuracy, causes high heat losses in electrical
circuits, and induces wear of mechanical parts [45]. Several methods that offer
the elimination of chattering in SMC exist in literature, yet they can have an
advantageous or deteriorative side effect on the controller’s performance against
disturbances. A simple way to avoid chattering is replacing the discontinuous
signum function (sign) in the SMC control law with a continuous hyperbolic tan-
gent function (tanh); however, this method tends to reduce the robustness feature
of the controller against disturbances. The idea of reaching a delicate compromise
between completely cancelling chattering and maintaining the robustness feature
of SMC has motivated researchers to propose other controller enhancement meth-
ods. These enhancements can entail modifying the sliding surface such as integral
SMC, fractional-order SMC, and terminal SMC [45]. High-order SMC (HOSMC)
is another form of SMC design enhancement, where the control inputs act on
higher derivatives of sliding surfaces, unlike FOSMC that deals with first-order
derivatives only. HOSMC provides a smoother control signal, improved perfor-
mance, and better chattering effect suppression in comparison to the FOSMC
[46].

Second-order sliding mode (SOSMC) is a HOSMC algorithm that depends
on setting both the sliding surface and its first derivative to zero. A significant
challenge of SOSMC is the usage of derivatives in generating the control signal,
which requires significant care in real-time implementation since it may cause se-
vere oscillations in the presence of measurement noise. To overcome this issue, the
super-twisting sliding mode control was introduced as a continuous SOSMC[47].
When compared to other SOSMC algorithms such as the twisting SMC, STSMC
has a simpler control signal, provides continuous control laws, and it does not
require the measurement of the first-order sliding surface derivative.
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2.3 Model Predictive Control

Model predictive control (MPC), also known as receding horizon control (RHC),
is widely used in industrial process control [48]. MPC is an optimal control
method that uses the model of the process to predict and optimize the system
response over a finite prediction horizon [49], while considering constraints on
the system states and inputs. A significant concern with using a finite prediction
horizon is to determine whether such a control action can guarantee system sta-
bility [50]. While it is shown that an infinite predictive horizon can guarantee the
stability of a system, the choice of an infinite predictive horizon is not feasible
for nonlinear systems in practice [15].
At each time step of the MPC algorithm, only the first step of the generated
control sequence is applied to the plant [51]. Fig. 2.2 illustrates the MPC ap-
proach and shows how the receding horizon strategy introduces feedback. The
various existing MPC algorithms differ among themselves in the model used to
represent the plant, the noise representation, and the optimization algorithm to
minimize the cost function [15]. MPC has been employed by researchers to deal
with the trajectory tracking challenge of nonholonomic mobile robots [52, 53]. In
[53], a robust nonlinear MPC (NMPC) was designed for the path following prob-
lem, where the initial value is determined online by the optimization problem,
both recursive feasibility and stability were proven, and simulations confirmed
the controller performance. In [17], five different trajectory tracking control ap-
proaches (Stanley, Linear Quadratic Regulation, SMC, Fuzzy Logic, and MPC)
were applied to simulate an overtaking maneuver executed at 120 km/h. The
results from the preliminary comparison (i.e., trajectory tracking and actuation)
among the conducted controllers demonstrated that MPC resulted in the smallest
tracking errors (i.e., lateral position and heading angle) with smooth actuation
of the steering angle. In [54], two robust MPC schemes (TMPC and nonlin-
ear MPC) were designed for tracking unicycle robots with input constraints and
small bounded disturbances. Feedback linearization was used for designing the
auxiliary controller in the TMPC framework. Input-to-State Stability (ISS) the-
ory was leveraged to prove robust stability for both controllers. Both controllers
exhibited effective performance, and less computational expense was recorded for
the TMPC approach. Another MPC scheme for trajectory tracking of nonholo-
nomic mobile robots was proposed in [55], where an adjusted cost function was
adopted to minimize the distance between a given reference trajectory coordinate
and the current robot pose. The proposed cost function includes a term that pe-
nalizes the distance between the next waypoint and the mobile robot. Simulation
results show that the cost function modifications increased the algorithm’s com-
putational efficiency. To diminish the computational effort, a threshold for the
error between the predicted and actual states in the event-based model predic-
tive framework was introduced in [56], which helped solve the tracking control
problem of nonholonomic systems in the presence of bounded disturbance.
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Figure 2.2: Model Predictive Control Scheme [1].

2.4 Robust Control

In addition to stability and performance, robustness is a critical feature that
defines the effectiveness of a given control system. The level of required ro-
bustness depends on the magnitude of encountered disturbances and parametric
uncertainties that affect the system under control. Robust control guarantees sys-
tem stability and performance in the presence of uncertainties and disturbances,
within certain known bounds [57]. Several factors introduce uncertainties in mo-
bile robots and AGVs such as sensor measurement noise, unmodeled dynamics,
external and internal disturbances, and parametric uncertainties [58]. To solve
the challenging problem of trajectory tracking of mobile robots in the presence
of large (yet bounded) disturbances and uncertainties, researchers have proposed
various robust control schemes, with the majority being based on sliding mode
control (SMC) [42, 43] or model predictive control (MPC) [52, 53], as will be
detailed next.

2.4.1 Robust MPC

Robustness can be achieved through different control structures that are based
on MPC. Benefiting from the essential advantage of MPC by computing a new
control command online at each sampling time, some degree of robustness can be
attained based on feedback control [59]. One method to deal with uncertainties
is by considering the nominal disturbance-free system. This approach benefits
from the advantage that MPC computes a new command at every sampling time,
which aids in diminishing disturbances [60]; however, there is no guarantee for
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achieving robustness without modeling the uncertainties in the control process.
Another approach to resolve the robustness issue is the min-max formulation,
which was first introduced by Campo and Morari [19]. The main aim of the
min-max formulation is to minimize worst-case deviation, i.e. the uncertainty
that maximizes the specified performance index, while guaranteeing constraint
satisfaction for possible uncertainties. However, the min-max method has the
drawbacks of high computational demand and it only applies to systems with
slow dynamics. A new constraint tightening scheme, namely tube-based MPC,
has been proposed to overcome the drawbacks of the min-max approach in terms
of computational complexity.

Tube-Based MPC: When unknown but bounded uncertainties are present in
a system, several future trajectories or possible solutions exist, each corresponding
to a particular uncertainty. When introducing constraints in the optimization
problem, the control objective becomes to satisfy the constraints in the presence
of uncertainties. Hence, the main objective in tube-based MPC is to design a tube
that maintains all possible trajectories of an uncertain system inside of it [21].
To guarantee that the actual constraints are satisfied, tube-based MPC replaces
them with stricter ones in the optimization problem. Tube-based MPC consists
of a dual control scheme, MPC with stricter tightened constraints and an inner
feedback loop to further robustify the system about the center of the designed
tube [22, 61]. The center of the tube is the trajectory of the uncertainty-free
model generated by the nominal MPC [20].

Tube-based MPC (TMPC) was first introduced in [62] for linear time-invariant
(LTI) systems with additive uncertainty. It was shown that the computational
complexity is linear rather than exponential with the increase of prediction hori-
zon. Researchers have introduced enhancements to the basic TMPC approach
to make it handle nonlinear systems [63, 64, 65, 66]. A tube-based MPC scheme
based on robust control invariant set, with application to Lipschitz nonlinear
systems, was proposed in [66]. A similar formulation was used in [67] to con-
trol generic linear parameter-varying (LPV) systems, and in [68] to control the
nonlinear dynamic model for an unmanned aerial vehicle (UAV).

Tube-based MPC has been employed to solve the trajectory tracking prob-
lem of mobile robots to guarantee stability, performance, and robustness. For
instance, tube-based MPC was applied in [21] to the kinematic model of a mobile
robot, in off-road conditions with longitudinal slip, to validate the performance
and robustness of the tube-based MPC both experimentally and via numerical
simulations, which offered a comparative analysis between TMPC, time-varying
control techniques, and a slip effect compensator. Also, a robust positive invariant
(RPI) set for tightening the constraints was designed in [69] to apply tube-based
MPC to nonholonomic systems. The authors in [22] proposed a robust solution
for the probing motion planning problem based on tube-MPC, where the probing
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property was guaranteed by using the partially closed-loop strategy as a stochas-
tic framework. TMPC was applied in [54] to control the motion of a mobile robot,
where feedback linearization plays the role of the feedback controller that aids
the TMPC system. Furthermore, a composite control scheme that consists of
TMPC and adaptive control was proposed in [10] to handle both the kinematic
and dynamic constraints of nonholonomic mobile robots.

2.4.2 Robust MPC-SMC Schemes

While several control structures that offer robustness based on MPC exist in the
literature, researchers have also proposed to combine MPC with SMC in the feed-
back loop to ensure robustness. The motivation is to maintain the ability to ex-
plicitly deal with state and input constraints via MPC, while attaining increased
robustness via SMC. This combination has been used in the literature in various
ways and purposes. In [70], the latter combination was structured in a cascaded
form, where MPC was used to update the sliding mode parameters to achieve
certain performance objectives such as minimum energy or minimum time. Com-
bining MPC with SMC also took the structure of a feedforward-feedback control
scheme such as in [71, 72] where SMC was used as an auxiliary control law under
the tube-based MPC approach. However, in [72], the nominal MPC that was used
in [71] was substituted by another based on discrete-time Laguerre functions. In
addition to that, an integral sliding mode (ISM) has been proposed instead of a
full state feedback (FSF) controller integrated with MPC to control Continuous-
time sampled-data nonlinear systems in [73]. The authors in [74] proposed to
combine MPC and SMC in electrical grid applications, where simulation results
showed the computational efficiency of this composite scheme over a conventional
MPC by means of a significant reduction in the algorithm’s execution time. For
mobile robot applications, the MPC-SMC combination was used in [75] to control
the lateral motion of a mobile robot using its linear time-invariant (LTI) dynamic
model.

2.5 Thesis Contributions

The main contributions of this thesis compared to the existing trajectory
tracking solutions in the literature are summarized next.

• Proposing a new robust control scheme for nonlinear systems using a com-
posite framework that combines tube-based model predictive control (TMPC)
and super twisting sliding mode control (STSMC).

• Providing a formal proof for the robust stability of the proposed composite
scheme via Input-to-State Stability (ISS) and Lyapunov stability theorem.

11



• Implementing, for the first time, a tube-based MPC for the nonlinear kine-
matic model of an autonomous ground vehicle (AGV), with SMC playing
the role of the auxiliary controller in the feedback loop. The proposed
scheme is able to solve the trajectory tracking problem for AGVs and
wheeled mobile robots by achieving minimum error while tracking a ref-
erence trajectory, in the presence of bounded disturbances and uncertain-
ties, and fulfilling the control requirements from the viewpoints of stability,
robustness, and no constraints violation.
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Chapter 3

Proposed Control System Design

This chapter provides the design process of the proposed control system for tra-
jectory tracking of AGVs in presence of disturbances and uncertainties. The
nonlinear kinematic vehicle model is presented first. Then, the proposed com-
posite control scheme is explained by further motivating the combination of MPC
and STSMC in the tube-based MPC framework, which is followed by a detailed
mathematical formulation of tube-MPC aided by SMC and STSMC. Finally, a
formal proof of the proposed control system’s robust stability is provided.

3.1 Nonholonomic Nonlinear Kinematic Model

of Ground Vehicles

Consider a nonholonomic ground vehicle with perturbed input formu-
lated by the following unicycle kinematics:

Ẋ = f(X(t), u(t) + Ω(t)) =

[v(t) + dv(t)] cos θ(t)
[v(t) + dv(t)] sin θ(t)

ω(t) + dω(t)

 , (3.1)

where X(t) = [x(t), y(t), θ(t)] is the vector of Cartesian coordinates (x, y) of the
vehicle’s geometric center its heading angle (θ); u(t) = [v(t), ω(t)] is the vector
of linear and angular velocities, respectively; and Ω(t) = [dv(t), dω(t)] represents
the input disturbances.

The constraints on the allowable states are given by:

X ∈ X = {x | Λx ≤ λ}, (3.2)

the constraints on the allowable input are given by:

u ∈ U = {u | ∆u ≤ δ}, (3.3)
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and the constraints on the allowable range of disturbances are given by:

Ω ∈W = {w | Hw ≤ η}, (3.4)

where Λ,∆, and H ∈ Rn.

Assumption 1 Sets X, U, and W are polyhedral and convex, they are bounded
and thus polytopic, they are of full dimension, and they contain the origin in their
interior.

3.2 Proposed Control Scheme

Trajectory tracking control of a nonholonomic mobile robot (NMR) aims at mak-
ing the actual position and orientation of the NMR converge to a desired reference
trajectory [10]. A key challenge in this tracking problem arises from internal and
external disturbances that influence the robot dynamics and from uncertainties
in sensing and control signals, which diminish the ability to satisfy the system
states and inputs constraints, nonholonomic motion constraints, and collision
avoidance constraints. As mentioned in Chapter 2, several control system de-
signs have been proposed to achieve the requirements of the trajectory tracking
problem. However, the majority of the available techniques are unable to ensure
the fulfillment of constraints and performance against uncertainties at the same
time and within the same accuracy level. Experimental results and real-time
implementation emphasize the ability of SMC to deal with uncertainties, and the
effectiveness of MPC to handle the system constraints. Hence, the combination
of MPC and SMC is expected to enhance the system’s ability to track reference
trajectories in the presence of uncertainties and disturbances, while respecting
the constraints on the states, inputs, and motion.

However, a main concern with MPC remains its computational expense given
the requirement of having to solve an optimization problem online. On the other
hand, the computational expense of SMC is relatively minimal, which makes it
suitable as an auxiliary controller in the feedback loop within a TMPC scheme.
To speed up the computation and reduce complexity, a nominal MPC is designed
to control a nominal plant model, which comes at the cost of a compromised dis-
turbance rejection ability. This further motivates the employment of SMC in the
feedback loop to offer disturbance rejection with minimal additional computa-
tional effort. The resultant control system is a two-degrees-of-freedom controller,
where MPC provides model-based feedforward control and SMC generates feed-
back control to compensate for the deviation between the real and nominal sys-
tem, even in the presence of disturbances and uncertainties that are not handled
by the nominal MPC.

But before implementing SMC as an auxiliary aid to the nominal MPC, we
must account for SMC’s undesirable chattering that can be detrimental to the
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Figure 3.1: A block diagram of the proposed composite control system. The
MPC system generates a control signal (uMPC) based on the optimization of
a cost function that considers the error between the nominal model states and
the desired trajectory. The STSMC system generates a control signal (uSTSMC)
based on the error between the nominal model states and the actual plant (AGV)
states as measured by on-board sensors or estimated by observers.

control system performance. Chattering mainly stems from the presence of the so-
called parasitic or unmodelled dynamics, which induce deviations that cause SMC
to keep oscillating about the sliding surface. Second-order sliding mode control
(SOSMC) systems are designed to help in eliminating the chattering effects by
having both the sliding surface and its first derivative at zero, which theoretically
results in chattering suppression and thus a smoother control signal. However, the
drawback of using derivatives to generate the control signal in SOSMC presents
a technical challenge in real-time implementation due to the presence of sensor
measurement noise. To overcome this drawback of SOSMC, the super-twisting
sliding mode control (STSMC), which is a continuous SOSMC, is employed as the
auxiliary controller in the tube-based MPC scheme. STSMC has a simpler control
algorithm as compared with other SOSMC systems, it provides a continuous
control law, and it does not require the measurement of the time derivative of
the SMC manifold.

Two cases are considered in the problem formulation, the first one is designing
the TMPC with the classical first-order SMC (FOSMC), and the second one is
substituting the FOSMC by the super-twisting sliding mode algorithm to vali-
date its ability in eliminating the chattering phenomena. The control scheme is
illustrated in Fig. 3.1, whereby the trajectory of the uncertainty-free model is
generated by the nominal MPC’s input, whereas the STSMC input deals with
the deviation between the real and nominal states in the presence of disturbances
and uncertainties.

The system state is split into two components: a nominal component, Z, and
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a deviation from nominal, X̃, such that:

X = Z + X̃. (3.5)

Given the aim of this work, the input is split into the input from the nominal
MPC, uMPC , and the input from the auxiliary STSMC, uSTSMC , such that:

u = uMPC + uSTSMC . (3.6)

3.3 Tube-based Model Predictive Control

Consider the nominal nonlinear kinematic model of a ground vehicle as:
ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇(t) = ω(t),

(3.7)

where x and y are the Cartesian coordinates of the vehicle’s geometric center,
v is the translational velocity, θ is the heading angle, and ωr is the angular
velocity. Vector, Z = [x, y, θ], represents the system’s nominal states and vector,
V = [v, ω], is the control input generated by the nominal MPC (uMPC). As a
result, the following optimization problem is solved at each iteration:

min
Z,V

J(Z, V )

subject to
ż = f(Z(t), V (t))
Z(t) ∈ Z ∀t ∈ [0, T ],
V (t) ∈ V ∀t ∈ [0, T ],
Z(T ) = 0,

(3.8)

where T is the prediction horizon, and J(Z,V) is the cost function that has to
be minimized and is given by:

J(Z, V ) =

∫ tk+T

tk

L(Z(τ |tk), V (τ |tk)) dτ + g(Z(tk + T |tk)). (3.9)

L(Z(τ |tk), V (τ |tk)) = ‖Z(τ |tk)‖2Q + ‖V (τ |tk) ‖2R represents the cost function that
penalizes the control effort and the difference between the current vehicle’s pose
and the reference trajectory, where the penalizations are associated with the
weight matrices, Q=diag{q1, q2} and R=diag{r1, r2}, which define the propor-
tion of penalization over the cost function’s global value. J(Z,V) contains a
quadratic function g(Z(tk + T |tk)) = 1

2
‖Z(τ |tk)‖2P , which is a terminal penalty
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that guarantees stability when there exists a matrix P > 0. Furthermore, condi-
tion Z(T ) = 0 in (3.8) imposes a terminal condition to ensure stability [23].

Hence, the nominal MPC computes the optimal trajectories with stricter
constraints than the original ones in (3.2) and (3.3) given that it considers a
disturbance-free model. Therefore, new sets of tighter constraints, Z ⊂ X and
V ⊂ U, are generated by means of the constraints tightening approach that is
illustrated next in Section 3.3.1.

3.3.1 Constraints Tightening

An important feature of MPC is its ability to consider the constraints of a con-
trol problem in a relatively straightforward manner, a feature that should be
preserved. However, minimizing the computational requirements by solving the
nominal MPC problem and introducing an auxiliary SMC comes at the cost of
losing this important feature, which is due to the fact that the proposed com-
bination does not guarantee the satisfaction of the problem constraints. This
poses a challenge that must be solved to overcome this potential drawback of the
proposed control scheme; the solution is realized by modifying the MPC formu-
lation. The MPC’s original control constraints are modified by calculating an
upper bound for the control input generated by SMC [24, 76], which is computed
based on the trajectory tracking error boundaries given by:

Z − |X̃| ≤ X ≤ Z + |X̃|, (3.10)

where Z is the nominal state trajectory, X̃ is the trajectory tracking error, and
X is the real state trajectory. After obtaining the upper bound of SMC, the new
input constraint is given by:

V = U− Uupper, (3.11)

where U is the set of original control constraints and Uupper is the upper bound
of the SMC signal.

3.3.2 Adding an Obstacle as a Path Constraint

MPC provides the ability of avoiding obstacles while tracking a predefined tra-
jectory by including additional constraints in the optimization problem. To avoid
obstacles, the vehicle must maintain a lower-bound of the Euclidean distance be-
tween the prediction of its position and that of the obstacle. Thus, the following
path constraint is imposed:√

(x− xo)2 + (y − yo)2 ≥ rv + ro, (3.12)

where (xo, yo) is the obstacle position, and rv and ro are the radii of virtual circles
that are placed around the vehicle and obstacle(s), respectively.
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3.4 Auxiliary Control Based on Super-Twisting

Sliding Mode Control

3.4.1 Sliding Mode Control

The sliding mode controller plays its auxiliary role in the feedback loop of the
proposed scheme to compensate for the deviation between the real and the nom-
inal states. SMC is designed based on the ground vehicle’s nominal nonlinear
kinematic model in (3.7). The deviation model between the actual system and
the nominal system is given by the following trajectory tracking error vector:xeye

θe

 =

 cos θd sin θd 0
− sin θd cos θd 0

0 0 1

xr − xdyr − yd
θr − θd

 , (3.13)

where Fig. 3.2 shows the tracking error and the virtual vehicle pose that represents
the reference pose (xd, yd, θd) at each sample time.

Figure 3.2: Tracking Error between the Controlled and Virtual Vehicles

The corresponding tracking error derivatives are:
ẋe = −vd + vr cos θe + yeωd,

ẏe = −vr + vr sin θe + xeωd,

θ̇e = ωr − ωd,
(3.14)

where vd and ωd are the desired linear and angular velocities, respectively. The
lateral error, ye, and angular deviation, θe, are internally coupled with each other,
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thus only two sliding surfaces are designed. The first surface, s1, controls the
convergence of xe, while the second surface, s2, controls the convergence of both
ye and θe. To reduce chattering, the sliding mode control action is smoothed by
defining a boundary layer with thickness Φ around the switching surface using
the saturation function instead of the signum function [24], as expressed below:

s1 = ẋe + k1.xe, (3.15)

s2 = ẏe + k2.ye + k0sat(ye/Φ)θe, (3.16)

where k0, k1, and k2 are positive constant parameters that are tuned per the
desired performance requirements, and sat is the saturation function.

In SMC, there is a reaching phase that drives the system states towards a
designed sliding surface. The exponential reaching law is given by:

ṡ = −Q̃s− P̃ sat(s/Φ), (3.17)

such that−Q̃s is an exponential term, where Q̃ = diag{q̃1, q̃2} and P̃ = diag{p̃1, p̃2}
are constant positive definite matrices. After mathematical manipulation and
adopting the reaching law in [77], the following equations that govern the control
input formulation are attained:

v̇c = −q̃1.s1 − p̃1.sat(s1/Φ)− k1.ẋe − ω̇d.ye − ωd.ẏe + vr.θ̇e. sin θe + v̇d)/ cos θe,

(3.18)

ωc = ωd +
−q̃2.s2 − p̃2.sat(s2/Φ)− k2.ẏe − v̇r. sin θe + ω̇d.xe + ωd.ẋe

vr. cos θe + k0.sat(ye/Φ)
, (3.19)

where v̇c is the linear velocity rate that is integrated to obtain the first control
input, and wc is the angular velocity and the second control input to the system.

3.4.2 Super-Twisting Sliding Mode Control

In this section, the proposed control system is modified by replacing the stan-
dard sliding mode control(SMC) with the super-twisting sliding mode control
(STSMC) to play the role of the auxiliary controller in the composite scheme.
The main drawback of the standard first-order sliding mode control system is
chattering in the commanded control signal, where the modification aims to di-
minish this effect by generating a smooth control signal. As already mentioned
in Chapter 2, STSMC is a second-order sliding mode control that forces both the
sliding surface and its first derivative to zero in finite time. The super-twisting
sliding mode control has an advantage over other second-order sliding mode con-
trollers since it maintains the main properties of FOSMC, without a need for the
derivatives of the sliding surface. The design process of the STSMC system is
divided into two steps. First, the sliding surfaces are designed to capture the de-
sired performance requirements. The second step is designing a control input to
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ensure that the states stay on the designed surface [46]. The STSMC controller
is designed based on the nominal nonholonomic vehicle model (3.7) and the error
dynamic system (3.13). The corresponding error derivatives are given by:

ẋe = −vd + vr. cosφe + ye.ωd,

ẏe = −vr + vr. sinφe + xe.ωd,

φ̇e = ωr − ωd,
(3.20)

where vd and ωd are the desired linear and angular velocities, respectively.
Similar to the standard FOSMC, it is sufficient to design only two sliding surfaces
for the problem of AGV trajectory tracking, since the lateral error, ye, and an-
gular variable, φe, are internally coupled with each other. Therefore, the lateral
dynamics error require only one surface (S1) to obtain convergence, while the
other surface (S2) is designed for the longitudinal error.

S1 = k1ex +

∫
exdt, (3.21)

S2 = ėy + k2ey + k3sin(eθ) +

∫
eydt. (3.22)

Integral terms are added to the sliding surfaces, which helps in achieving a
zero steady-state error. The continuous control signal of STSMC that guarantees
the convergence of S and Ṡ in finite time is given by:

V = −av
√
|S1| arctan (S1) + Υ, (3.23)

Υ̇ = −bv arctan (S1), (3.24)

W = −aW
√
|S2| arctan (S2) +Q, (3.25)

Q̇ = −bW arctan (S2), (3.26)

where the virtual inputs Z and Q are used to get a smooth continuous control
signal; V and W are the vehicle’s linear and angular velocities, respectively. On
the other hand, the controller gains av, bv, aW and bw are positive and must satisfy
certain conditions to guarantee stability, which are explained in Section 3.5.
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3.5 Robustness and Stability Analysis

3.5.1 Input-to-State Stability (ISS) Definitions

This section deals with the stability analysis of the tube-based MPC aided by
the super-twisting SMC for the uncertain nonlinear kinematic vehicle model.
The framework used for the analysis of the robust stability of systems controlled
by MPC is based Input-to-State Stability (ISS) theory. We first introduce the
following closed-loop system:

ẋ = f(x(t), u(t) + d(t), w(t)), (3.27)

where x ∈ Rn is the system state, u is the control signal u ∈ Rm, d ∈ Rq is
the matched disturbance (enters through the input channel), and w ∈ Rp is the
unmatched disturbance (state dependent). The nominal model of the plant (3.27)
denotes the system considering zero-disturbance, and it is given by:

˙̃x = f̃(x̃(t), u(t)), (3.28)

Definition 1: The system ˙̃x = f̃(x̃(t)) is globally asymptotically stable if there
exist a KL function β such that |x̃(t, |x(0)|)| ≤ β(| x(0) |, t).
Definition 2: System (3.28) has an asymptotic gain if there exists a K function
γa such that for each x(0) and d, the state of the system satisfies the following
property:

lim
t→∞

sup |x(t, x(0), d)| ≤ γa( lim
t→∞

sup | d(t) |) (3.29)

According to the above definitions of nominal stability and asymptotic gain, we
can prove that the system is input state stable (ISS) as given next. System (3.27)
is ISS if there exists a KL function, β, and a K function, γ, such that for all
initial state x(0) and disturbances d,

|x(t, x(0), d)| ≤ β(|x(0)|, t) + γ(‖d‖). (3.30)

The definition of input-to-state stability of a system comprises both effects: nom-
inal stability and uniformly bounded effect of the uncertainties, in a single condi-
tion. Therefore, considering system (3.27), the nominal system is asymptotically
stable (AS) and the disturbed system has an asymptotic gain (AG) [78], which
means that it is indeed input-to-state stable (ISS).
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3.5.2 TMPC-STSMC Robust Stability Analysis

This section presents the robust stability analysis of the proposed composite
controller to deal with the trajectory tracking problem of ground vehicles and
mobile robots in the presence of bounded uncertainties and disturbances. The
input-to-state stability is considered a suitable framework for robust stability
analysis. According to the definitions mentioned in the previous section for ISS
theory, the first step of the robust stability analysis is to prove that the tracking
error of the nominal model converges to the origin. Then, it should be shown that
the real states converge to an invariant set along the nominal optimal trajectory,
which is the center of the designed MPC tube. To demonstrate nominal stability,
Lyapunov stability theory is used by choosing the cost function in the MPC
formulation as a candidate Lyapunov function. Thus, the candidate Lyapunov
function is V2 = J(Z∗, V ∗).
Consider the difference of the Lyapunov function at tk and tk+1:

∆V2 = V2(tk+1)− V (tk)

≤ J(Z∗(tk+1), V
∗tk+1)− J(Z∗(tk), V

∗tk)

=

∫ tk+1+T

tk+T

‖(Z(τ |tk+1)‖2Q + ‖V (τ |tk+1) ‖2Rdτ

−
∫ tk+T

tk

‖(Z(τ |tk)‖2Q + ‖V (τ |tk) ‖2Rdτ

+ ‖Z(tk+1 + T |tk+1)‖2R − ‖Z(tk + T |tk)‖2R, (3.31)

= −
∫ tk+T

tk

‖(Z(τ |tk)‖2Q + ‖V (τ |tk) ‖2Rdτ

+

∫ tk+1+T

tk+T

‖(Z(τ |tk+1)‖2Q + ‖V (τ |tk+1) ‖2Rdτ

+ ‖Z(tk+1 + T |tk+1)‖2R − ‖Z(tk + T |tk)‖2R.

The following inequality is defined for the nominal tracking error system,
which is a compatibility condition between L and g to ensure stability [54]:

ġ(Z(tk + T |tk)) + L(Z(τ |tk), V (τ |tk)) ≤ 0. (3.32)

By integrating (3.32) from (tk + T ) to (tk+1 + T ), it follows that:
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‖Z(tk+1 + T |tk+1)‖2R − ‖Z(tk + T |tk)‖2R

+

∫ tk+T

tk

L(Z(τ |tk), V (τ |tk)) dτ ≤ 0. (3.33)

Substituting (3.33) into (3.32), we get that ∆V2 ≤ 0, which implies that the
nominal system is asymptotically stable and the nominal states are bounded by
a class KL function, β(., .), such that:

‖Z(t)‖ ≤ β(‖Z(t0)‖, t),∀t > t0. (3.34)

Now, the stability of the super-twisting sliding mode control system must be
guaranteed to validate that the error between the real states and the nominal
states is bounded, and that the real states will indeed converge to the nominal
trajectory. Consider the perturbed control signal generated by the super-twisting
sliding mode algorithm as follows:

V = VSTSMC + %1, (3.35)

Υ̇ = Υ̇STSMC + %2,

where the disturbance terms, %1 and %2, are globally bounded by:

|%1| ≤ η1|S1|1/2,
|%2| ≤ η2, (3.36)

for some constants η1,η2 ≥ 0.
To guarantee the robust stability of the closed-loop system, the following can-
didate Lyapunov function is considered to prove the stability of the STSMC
algorithm:

V3 = 2bv|S|+
1

2
Υ2 +

1

2
(av|S|1/2 arctan(S)−Υ). (3.37)

The proposed Lyapunov function (3.37) guarantees that the trajectory tracking
error is bounded having chosen the gains in the STSMC algorithm to satisfy the
following inequalities [79]:

av > 2η1,

bv > av
5η1av + 6η2 + 4(η1 + η2/av)

2

2(av − 2η1)
. (3.38)
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The proposed Lyapunov function can be written in the form V3 = ζTPζ, where
ζT = [|S|1/2sign(S),Υ]. Therefore, its time derivative is given by:

V̇3 = − 1

|S|1/2
ζTQζ +

%1
|S|1/2

qT1 ζ + %2q
T
2 ζ, (3.39)

where
qT1 =

[
(2bv + a2v

2
) −av

2

]
qT2 =

[
−av 2

]
(3.40)

Given the bounds on the disturbances in (3.36),

V̇3 ≤
1

|S|1/2
ζT Q̃ζ, (3.41)

where

Q̃ =
av
2

[
2bv + a2v − (4bv

av
)η1 − 2η2 −(av + 2η1 + 2η2

av
)

−(av + 2η1 + 2η2
av

) 1

]
. (3.42)

If the inequalities in (3.38) exist, then Q̃ > 0, which implies that V̇ is negative
definite. As a result, the super-twisting sliding mode control algorithm is asymp-
totically stable, which means that the deviation between the nominal states and
the real one is bounded, and there exists a K function γ(.) such that:

‖X̃(t)‖ ≤ γ(η),∀t > t0, (3.43)

where η is the upper bound of the disturbance.
It follows from (3.5), which splits the real states into nominal states and deviation
from the nominal states, that:

‖X(t)‖ ≤ β(‖X(t0)‖, t) + γ(η), (3.44)

which indicates that the closed-loop system is indeed ISS.
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Chapter 4

Simulation Results and
Discussion

In this section, we provide a performance check of the proposed control system
(MPC+STSMC) and compare it against the nominal MPC system to validate
the robustness feature of the proposed controller. Furthermore, the two proposed
auxiliary controllers (SMC/STSMC) are compared in terms of the smoothness
degree of their control signals. Simulations are carried out in MATLAB using
the CasADi toolbox [80], which is used to solve the optimization problem of the
nominal MPC. The numerical simulations are conducted using an Intel Core i7-
5500U @ 2.40 GHz processor, whereby comparing the loop-times of the nominal
MPC (2.58s) and the proposed system (2.96s) reveals an improved performance
at a reasonable computational cost increase of ≈15%.

The perturbed vehicle model is tested among several standard paths for vali-
dating the trajectory tracking controllers. The robustness attribute is verified by
checking the performance against two types of disturbances: matched and un-
matched. The matched disturbance is one that comes through the input channel.
Matched Disturbance describes disturbances and uncertainties such as the delay
between the high-level control that generates the linear and angular velocities
(TMPC/STSMC) and the low level control that controls the vehicle actuators.
On the other hand, the state-dependent disturbances are considered unmatched.
The latter accounts for several categories of disturbance, such as road nature un-
certainties(bumps, inclined surfaces) and measurement noise uncertainties. Sev-
eral simulation scenarios are considered to confirm the ability of the proposed
controller to achieve acceptable performance.
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The original input and state constraints are respectively defined as follows: X =
{x, y | |x| ≤ 100m ; |y| ≤ 100m} and U = {v, ω | |v| ≤ 5m/s ; |ω| ≤ π/3rad/s}.
The MPC parameters are set as follows: N = 8, Q = diag{1, 1, 0.5}, R =
diag{0.5, 0.05}, P = diag{0.5, 0.5, 0.5}; and the SMC parameters are tuned as
follows: Q̃=diag{2, 0.8}, P̃=diag{0.5, 0.5}, k0 = 1, k1 = 5, k2 = 6, and φ = 1.2.
The tuned gains for the super twisting sliding mode control algorithm are as fol-
lows: k1 = 2, k2 = 1, k3 = 2 ,av = 5, bv = 3, aw = 5, bw = 0.1. In all scenarios,
the disturbances are injected at 65 seconds. The first vehicle reference trajectory
(sinusoidal) is generated as follows:{

x(t) = t,

y(t) = sin 0.5t+ 0.5t.
(4.1)

4.1 Disturbance-Free Scenario

In this section, the ground vehicle performance is tested without disturbance in-
jection. Fig. 4.1 shows the trajectory tracking performance of the proposed con-
trol law for both cases (TMPC+SMC) and (TMPC+STSMC) versus the nom-
inal MPC,SMC,and Lyapunov based controller designed in [81]. As observed,
the tracking error is zero for all cases, and the mobile robot is able to follow the
predefined path

Fig. 4.2 demonstrates the ability of the (TMPC+STSMC) system in obtaining
a minimum tracking error. Despite considering a disturbance-free scenario, SMC
results in a tracking error ,seen in Fig. 4.2, which is due to the noisy signal
generated by SMC as shown in Fig. 4.4. On the other hand, we notice that
chattering is avoided by the STSMC algorithm, as observed in Fig. 4.3, where no
control effort is provided by STSMC in the absence of disturbances.

In contrast, the tracking error alone is not sufficient to demonstrate the supe-
riority of one controller over another. Looking at the nature of the control input
signal of each controller can give more insight about the inner workings of each
design. Fig. 4.3 and Fig. 4.4 show the linear (right) and angular (left) velocities
for both designs, and they demonstrate the advantages of using STSMC in terms
of providing a smooth signal to the robot actuators. On the other hand, Fig. 4.4
shows significant chattering in the control signal of the SMC, especially at the
beginning of the simulation, which is in contrast with the smooth STSMC signals.
Another important aspect that these figures show is the role of both controllers

26



Figure 4.1: Trajectories without Disturbance

Figure 4.2: Tracking error without disturbance. Left: (TMPC+STSMC), Right:
(TMPC+SMC)

in aiding MPC; it can be seen that their control signals remain near zero, which
is consistent with the role of SMC in the proposed control as feedback controllers,
in the sense that SMC does not contribute much to the total control effort in the
absence of disturbances acting on the ground vehicle.

Furthermore, Fig. 4.5 shows the ability of the (TMPC+STSMC) controller
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Figure 4.3: Control Inputs Without Disturbance (STSMC)

Figure 4.4: Control Inputs Without Disturbance (SMC)

to satisfy the original constraints and remain within their specified bounds at all
times, whereas the (TMPC+SMC) system results in constraint violation, exceed-
ing both the upper and lower bounds of the rotational velocity, due to chattering.

Fig. 4.6 further demonstrates the advantage of using the STSMC algorithm,
which maintains the sliding surfaces near zero at all times, whereas the SMC
system does not drive the first sliding surface to converge to zero. These results
indicate that STSMC can attain a smoother response in contrast to the SMC
algorithm. The variation in SMC sliding surfaces, as shown in Fig. 4.6, is induced
by chattering.
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Figure 4.5: Total Control Input Without Disturbance

Figure 4.6: Sliding Surfaces (Without Disturbance)

4.2 Adding Matched Disturbance Scenario

In this section, the ground vehicle performance is tested under matched distur-
bance (dV = 3m/s, dW = 0.7rad/s) that is added to the vehicle model. Note that
this injected disturbance is considered relatively large as it exceeds half of the
constraints’ boundaries. Fig. 4.7 shows the trajectory tracking performance of the
proposed control law for both cases (TMPC+SMC) and (TMPC+STSMC) ver-
sus the nominal MPC alone,SMC,and Lyapunov based controller . As observed,
despite the addition of an input disturbance at t = 65, both proposed controllers
(TMPC+SMC/STSMC) and SMC compensate for the injected disturbance and
promptly reject it, whereas both the nominal MPC and the Lyapunov based con-
troller are not able to reject the effect of the perturbed input, which leads to
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unacceptable tracking performance.

Figure 4.7: Trajectories with an added matched disturbance. SMC,
(MPC+SMC) and (MPC+STSMC) show robustness by tracking the trajectory
in the presence of a matched disturbance, whereas both the nominal MPC and
Lyapunov controller should be modified to account for disturbances.

The trajectory tracking simulation results emphasize the importance of inte-
grating MPC with SMC algorithms for AGVs, since the vehicle tracks a relatively
complex predefined trajectory with minimum error, as seen in Fig. 4.8, which is
due to the limited prediction capability of MPC over a finite horizon, and the
additive disturbance rejection ability of SMC algorithms.

Fig. 4.9 and Fig. 4.10 show the linear and angular velocities for both cases
of the proposed controller, TMPC aided by STSMC and SMC, respectively. The
results demonstrate the critical complementary role that the auxiliary SMC con-
troller plays in aiding the nominal MPC when the matched disturbance occurs.
when a disturbance is injected, the nominal MPC alone is not capable of attain-
ing acceptable tracking performance as was shown in Fig. 4.7, which necessitates
the intervention of the SMC to account for the induced disturbance, as shown in
Fig. 4.9 and Fig. 4.10. Furthermore, Fig. 4.9 illustrates the ability of STSMC in
aiding the MPC by rejecting the matched disturbances via a smooth control sig-
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Figure 4.8: Tracking Error With Matched Disturbance

nal. On the contrary, SMC rejects the matched disturbance with a noisy control
signal, as shown in Fig. 4.10.

Figure 4.9: Control Inputs With Matched Disturbance (STSMC)

The original input constraints are satisfied for the (TMPC+STSMC) system,
where the control actions remain within the thresholds of the original constraints
(red and yellow lines), as shown in Fig. 4.11. This demonstrates the effect of
tightening the constraints in Section 3.3.1. However,the (TMPC+SMC) system
is not able to satisfy the original constraints due to the noisy signal generated
by the SMC. Finally, Fig. 4.12 shows that the sliding surfaces of the STSMC
algorithm converge to zero, whereas those of the SMC do not. The variation
in SMC sliding surfaces observed in Fig. 4.12 is caused by disturbances and
uncertainties.
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Figure 4.10: Control Inputs With Matched Disturbance (SMC)

Figure 4.11: Total Control Input With Matched Disturbance

Figure 4.12: Sliding Surfaces (With Matched Disturbance)
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4.3 Adding Matched and Unmatched Distur-

bances Scenario

In this section, the simulation results demonstrate the capability of the proposed
control system (TMPC+STSMC) in accomplishing the control objectives in the
presence of matched (dV = 3m/s, dW = 0.7rad/s) and unmatched (ωx/ωy =
0.6m) disturbances. Fig. 4.13 presents the trajectory tracking performance of
the (TMPC+STSMC) scheme. As observed, despite the addition of matched
and unmatched disturbances, the proposed controller compensates for the in-
jected disturbances and promptly rejects them. Also note that the integration
terms, which are added to the sliding surfaces (3.21) and (3.22) in the design
of the STSMC system, minimize the steady-state error and produce an accept-
able performance against matched and unmatched disturbances. Contrarily, in
Fig. 4.14 the (TMPC+SMC) control scheme shows unacceptable performance in
the presence of both matched and unmatched disturbances, as it fails to reduce
the steady-state error caused by the disturbances addition.

Figure 4.13: Trajectories with Matched and Unmatched Disturbance (STSMC)
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Figure 4.14: Trajectories with Matched and Unmatched Disturbance

Figure 4.15: Tracking Error With Matched an Unmatched Disturbances

Despite the addition of both types of disturbances, the STSMC algorithm still
provides a continuous smooth signal as present in Fig. 4.16. On the other hand,
chattering severely impacts the SMC control signal, as illustrated in Fig. 4.17.
The simulation results also validate the ability of the (TMPC+STSMC) algo-
rithm in fulfilling the system constraints in this scenario, as observed in Fig. 4.18.
On the other hand, Fig. 4.18 demonstrates the constraint violation caused by the
noisy control signal. The sliding surfaces of STSMC in this scenario maintain con-
vergence near zero, whereas the SMC sliding surfaces have a steady-state error,
as shown in Fig. 4.19 due to the chattereing phenomena.

34



Figure 4.16: Control Inputs With Matched and Unmatched Disturbance
(STSMC)

Figure 4.17: Control Inputs With Matched and Unmatched Disturbances (SMC)

Figure 4.18: Total Control Input With Matched and Unmatched Disturbances
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Figure 4.19: Sliding Surfaces (With Matched and Unmatched Disturbances)

4.4 Testing Different Trajectories: Circular and

Eight Paths

In this section, the proposed (TMPC+STSMC) system is tested on different
trajectories that are commonly used in the literature as standard trajectories
(Circular and Eight Paths). The paths are defined as follows:
Circular Path: {

x(t) = 10 sin 0.1t,

y(t) = 10 cos 0.1t.
(4.2)

Eight Path: {
x(t) = 20 sin 0.2t,

y(t) = 20 sin 0.1t.
(4.3)

Fig. 4.20 and Fig. 4.22show the capability of the proposed (TMPC+STSMC)
system to successfully track the specified trajectories. Whereas both the nominal
MPC and TMPC+SMC controller show unacceptable performance in tracking
the defined standard paths. As before, the control scheme guarantees obtaining
minimum tracking error as well as satisfying the constraints as shown in Fig. 4.21
and Fig. 4.23.
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Figure 4.20: Performance With Matched Disturbance (Circle Path)

Figure 4.21: TMPC-STSMC Total Control Input With Matched Disturbance
(Circle Path)
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Figure 4.22: Performance With Matched Disturbance (Eight Path)

Figure 4.23: TMPC-STSMC Total Control Input With Matched Disturbance
(Eight Path)

4.5 Obstacle Avoidance

This section demonstrates the ability of the proposed (TMPC+STSMC) system
to avoid obstacles. In Fig. 4.24, the vehicle avoids two obstacles along its path
by integrating the clearance distance constraint in (3.12) into the MPC problem
formulation.
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Figure 4.24: Obstacle Avoidance Via TMPC-STSMC

4.6 Comparing Controllers via Performance In-

dices (ISE/IAE/ITAE)

In this section, three trajectory tracking performance indices are adopted to com-
pare the performance of the designed controllers: integral squared error (ISE),
integral absolute error (IAE), and integral time-weighted absolute error (ITAE).
The indices are defined as follows, where e is the tracking error between the
predefined trajectory and the actual states of the AVG:

ISE =

∫ T

0

e2(t) dt, (4.4)

IAE =

∫ T

0

|e(t)| dt, (4.5)

ITAE =

∫ T

0

t|e(t)| dt. (4.6)

Table 4.1 shows the ISE, IAE, and ITAE values of the simulation results of the
tracking problem of a ground vehicle following a sinusoidal trajectory using MPC
alone, (MPC+SMC), and (TMPC+STSMC). The comparison shows clearly that
the MPC+STSMC algorithm gives acceptable performances and it’s more robust
than MPC and MPC+STSMC algorithms.
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ISE IAE ITAE(*1.0e+04)

Lyapunov ex 510 153 0.4
ey 25 29 0.0073

SMC ex 131 111 2.6
ey 2.5 11 0.2

MPC ex 1.6 404 10
ey 0.07 77 2

MPC+SMC ex 21 45 2
ey 0.06 2 0.04

MPC+STSMC ex 0.001 0.2 0.000042
ey 0.0006 0.2 0.000059

Table 4.1: Quantitative comparison between the proposed MPC+STSMC,
MPC+SMC, MPC ,SMC, and Lyapunov controllers for the sinusoidal maneu-
ver in (4.1).

4.7 Validation in ROS Environment

4.7.1 Simulation in ROS Environment

This section provides an overview of the different autonomy subsystems that were
implemented in Robot operating system (ROS) on an autonomous ground vehicle
research platform, NV-X1 Electric Vehicle shown in Fig. 4.25, which is available
at the American University of Beirut (AUB). The proposed trajectory tracking
control system is simulated and validated in the ROS environment. ROS was
introduced in [82] to serve as tool that boosts researchers’ productivity while
solving wide-spanning robotics problems. It is a flexible structure for developing
robot software, and it contains a collection of tools and libraries that simplify
simulation and implementation across a broad range of robotic platforms.

The flowchart in Fig. 4.26 demonstrates the communication within the two
autonomy subsystems: perception and planning. A 3D-Lidar is used for more
reliable localization and mapping by means of generating a 3D point cloud that
produces an offline map. The 3D point cloud is used to provide the planning and
control subsystems with accurate vehicle localization for improved navigation.
ROS packages that were developed by AUTOWARE Foundation [83] were used
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Figure 4.25: NV-X1 Electric Vehicle

given that they are open-source codes specifically designed for self-driving vehicles
applications.

The path planner is based on the A* algorithm, which uses an occupancy grid
to search for optimal solutions from the initial point to the goal. While optimality
is guaranteed with A*, its main drawback lies in its large computational burden.

The proposed controller (TMPC+STSMC) completes the autonomy system
by generating commands to the low-level actuator controllers. This enables the
vehicle to track the planned trajectory in presence of uncertainties and distur-
bances. An Arduino UNO microcontroller is used to transform the control signals
generated by the controller into executable commands addressed to vehicle actu-
ators (throttle/braking/steering).

Numerical simulations using the simulation loop in Fig. 4.27 were executed
to validate the proposed controller within the ROS environment. As shown in
Fig. 4.28, the vehicle is able to track the planned trajectory. RVIZ - visualization
tool in ROS - is used to plot the path generated by the A* algorithm (black line)
and the actual vehicle trajectory (green line).
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Figure 4.26: Flowchart Summarizing the autonomy subsystems of the NV-X1
Electric Vehicle platform, starting from sensing and mapping and ending with
planned path execution.

Figure 4.27: Simulation Loop Applied in ROS

4.7.2 Experimental Validation in ROS Environment(Pure
Pursuit)

In addition to the numerical simulations, experimental testing was also conducted
to validate the autonomy subsystems integrated into ROS. Fig. 4.29 shows the
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Figure 4.28: Tracking Performance in ROS Environment. The Map is for the
IOEC B2 Parking Structure at AUB.

path generated by the A* algorithm while taking into consideration the offline
map. However, it is noted that in this experimental validation, the pure pursuit
algorithm was used to have the vehicle track the generated path by providing the
high-level control commands (linear and angular velocities) to Arduino via serial
communication. Moreover, the 3D Lidar runs online to provide the current vehicle
position as feedback for the controller to close the loop. The communication and
integration of the autonomy subsystems in the ROS environment are presented
in Fig. 4.30.
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Figure 4.29: Tracked Path in the Experimental Testing. The Map is for the IOEC
B2 Parking Structure at AUB (via Pure Pursuit )

Figure 4.30: Autonomy System ROS Packages and Nodes communication in ROS
(via Pure Pursuit)
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Chapter 5

Conclusion and Future Work

This thesis presents the design strategy of a robust and optimal control scheme to
enhance the trajectory tracking performance of autonomous ground vehicles. The
proposed control system entails the combination of a nominal model predictive
controller and an auxiliary sliding mode controller, which falls under the umbrella
of tube-based MPC, but is developed for the nonlinear kinematic model of AGVs
for the first time in this work. First-order SMC (FOSMC) and super twisting
SMC (STSMC) are designed as auxiliary controllers. The super twisting sliding
mode algorithm has the advantage of overcoming chattering in the control signal,
which is the main drawback of the FOSMC system.

The nominal MPC component generates an optimal control effort to track a
desired trajectory while fulfilling the involved constraints, and the SMC algorithm
aids it by rejecting disturbances and compensating for uncertainties that induce
deviations from the nominal model. The proposed control system’s stability is
proven by leveraging Input-to-State Stability (ISS) and Lyapunov stability theory.
Simulation results demonstrate the effectiveness of the proposed control structure,
and reveal a well-behaved interaction between the two sub-controllers to reach
the common objective of good trajectory tracking and avoiding the obstacles,
despite the presence of disturbances.

Future work includes enhancing the (MPC+STSMC) system performance in
the presence of unmatched disturbances by integrating state observers in the
control scheme, or designing the sliding surfaces using adaptive control theory.
Last but not least, the proposed composite scheme is to be validated on an
experimental AGV platform.

45



Appendix A

Abbreviations

MPC Model Predictive Control
SMC Sliding Mode Control
TMPC Tube Based Model Predictive Control
STSMC Super Twisting Sliding Mode Control
NMPC Non Linear Model Predective Control.
FOSMC First Order Sliding Mode Control
SOSMC Second Order Sliding Mode Control
HOSMC High Order Sliding Mode Control
ISM Integral Sliding Mode Control
AGV Autonomous Ground Vehicle
ISS Input State Stability
NMR Nonholonomic Mobile Robot
WMR Wheeled Mobile Robot
LIDAR Light Detection and Ranging
GPS/INS Global Positioning System aided Inertial Navigation Systems
DARPA Defense Advanced Research Projects Agency
PI Proportional–Integral Controller
RHS Receding Horizon Control
LQR Linear–Quadratic Regulator
UAV Unmanned Aerial Vehicle
LTI Linear Time Invariant
ISE Integral Squared Error,
IAE Integral Absolute Error
ITAE Integral Time-weighted Absolute Error.
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ROS Robot Operating System .
AUB American University of Beirut.
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