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An Abstract of the Thesis of

Wassim Ali Sleiman for Master of Science
Major: Physics

Title: Dynamics of the Adsorption-Desorption Transition of A Polymer Near A
Plane

In this thesis we investigate the problem of a single polymer chain one-end-
grafted to a surface of adjustable attraction strength. Particularly we intro-
duce a locally defined adsorption order parameter and analyze its spatial and
temporal correlations to check the consistency of the ”blob” picture. We first
check the accuracy of our molecular dynamics simulations by reproducing known
results pertaining to mean number of adsorbed monomers 〈M〉, mean height
of the chain’s free end 〈Zend〉, and mean parallel-to-surface component of the
chain’s gyration radius 〈RG‖〉. We then characterize the scaling of the system in
the adsorption regime, finding dynamic dependencies such as τZend ∝ 〈Zend〉3.67,
τRG‖ ∝ 〈Zend〉−0.5, and τZend ∝ τM to hold very well against predictions of scaling
theory in conjunction with Rouse model dynamics. The relation between Zend
taken as a measure of the adsorption blob size, and the correlation length mea-
sured along the chain contour did not take the expected form. Finally, the ratio
of the adsorption relaxation time of individual monomers to the global relaxation
time, τmi/τM was analyzed as a function of the adsorption strength. For large
enough N, it shows a sharp drop at the transition point, but both relaxation
times scale with N in the same way irrespective of the adsorption regime.
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Chapter 1

Introduction

Recent groundbreaking technological advancements, such as atomic force mi-

croscopy (AFM) and optical tweezers, have jumpstarted the field of single-chain

phase transition, a big and important branch of soft-matter physics. We have

been able to perform single-chain manipulations since 1986 [7] ; quantities we are

capable of measuring or estimating for a single chain include but are not limited

to its elasticity [8, 9], the strength of the adhesion forces [10], and unfolding re-

sponse to sticking/slipping off a surface [11].

The motivation behind this work comes from biology: studies have been con-

ducted to measure the folding, unfolding, stretching, and adsorption of protein

and DNA strands to cell membranes and other cellular structures. The dynamics

of adsorbed polymers finds itself in many fields, from biophysics to material sci-

ence. It is applied in the study of polymer-coated colloids, and polymer brushes.

On the experimental front, works have been done on the statics and dynamics

of macromolecules in different environments. In 2000, Oesterhelt et al. conducted
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unfolding experiments on bacteriorhodopsin proteins by pulling them away from

a mica surface [12]. AFM was used to pull on one of their monomers while one

of the ends is grafted to the surface. This showed how helical structures within

the protein individually unfolded and interacted with each other. Building on

these findings, Kessler et al. wrote in 2006 about the refolding of these same

proteins [13]. This allowed to estimate the magnitude of the forces felt by the

helical structures. In 2005, Hugel et al. qualitatively compared force-extension

curves of three different polymer architectures [9], and found good agreement

with ab-initio theoretical calculations, while in 2006, Kühner et al. measured the

end-to-end distance and the contour length of pinned carboxy-methyl-amylose

molecules using AFM [14], and were able to find its Kuhn length and scaling

exponent.

The above work was largely done by biologists and biophysicists studying

living organisms. These organisms are made up of substructures such as mem-

branes, proteins, DNA strands etc... which are not yet fully understood on the

physical level. They fall under the class of soft matter, which is a class distinct

from other types of matter such as fluids and solids, due to its interesting and

complex properties [15]. Other examples of soft matter are gels, polymer melts,

and liquid crystals. But polymers actually are fundamental components of a

large number of biological systems, particularly because proteins and DNA are

classified as such. It is therefore necessary, if we want to study living organisms,

to understand polymer physics. Biologists and biophysicists measure all kinds of

interesting polymer-related observables that help understand and better model

biological systems. But to fundamentally understand the behavior of such com-

plex systems, we need to fully understand the simple picture of a single polymer
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at an interface [16, 17, 18].

In the present work, we look at a specific aspect of a polymer’s adsorption-

desorption transition. Phase transitions are a class of phenomena known to occur

in bulk matter under certain conditions, but not exclusively. Soft matter can also

undergo phase transitions, and more specifically, polymers have shown peculiar

characteristics when viewed in the scope of critical phenomena. Many biological

processes have been observed to be based on phase transitions of macromolecules,

which only goes to strengthen the argument for studying polymer phase transi-

tions. Here we study a polymer grafted by one end to a hard surface of varying

interaction parameter, and free at the opposite end.

The general setting is as follows: a single-stranded long chain of N bonded

monomers exists in the vicinity of a hard flat surface, the latter being located at

the plane z = 0. One end of the chain is strongly attached (grafted) to the surface

(typically at x = y = z = 0), while the other end is left unconstrained and free.

What distinguishes the present setting from the regular free-chain one are two

things: the presence of the surface itself, which makes the system anisotropic,

and the monomer-surface interaction, which in terms of energy is given an effec-

tive value -ε (it is negative because the interaction is attractive, so the tendency

for the polymer is to get adsorbed since the system tends to lower its energy).

The order parameter—the parameter we choose to study to classify the system

in terms of its changes, typically ranging between 0 and 1—turns out to be the

fraction of adsorbed monomers, which is simply the fraction of monomers that is

interacting with the surface. If M is the number of adsorbed monomers and N is

the total number of monomers making up the polymer, then the order parame-

ter would be m = M/N , and it has been fundamental in the study of this system.
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A phase transition can be seen when looking at the chosen order parameter

as a function of the interaction energy ε. Figure 1.1 shows this: the order pa-

rameter is nearly null for all ε less than some value, and grows towards 1 for ε

above this value. We call where the two ranges meet the region of the critical

point. The critical point of adsorption is the point where the system’s order pa-

rameter switches from 0 to 1. In phase transition theory, this switch can happen

abruptly or smoothly. In other words, the order parameter can either experience

a discontinuity (a jump) at the critical value ε∗, or it can be smooth, while one

of its derivatives experiences said discontinuity. When the former takes place, we

say that the transition is discontinuous or of the first order, and when the latter

happens we describe the transition as a continuous one, of the n-th order, where

the discontinuity happens in the n-th derivative. Other properties of the system

have also been investigated, such as spatial dimensions normal and parallel to

the surface, and relaxation times of the adsorption number and the height of the

free end. More on this will be expanded in chapter 2.

It is also worth noting that the system has been also studied with two sets of

control variables and order parameters [1]. While the system undergoes a phase

transition when looking at m as a function of ε alone, Zhang et al. showed that

the system exhibits richer behavior when a force is also applied to the free end

of the chain and the stretching degree is taken as the force’s conjugate order

parameter. Said stretching can be written as the height of the free-end monomer

from the surface, divided by the number of monomers: ξ = zend
N

. The resultant

phase diagram is shown in figure 1.2. The applied force is taken to be vertical

only, which distinguishes between positive (stretching) and negative (pressing)

values of F and makes the critical value F ∗ = 0. The interplay between the two
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Figure 1.1: Taken from Zhang et al. [1]. Mean adsorption fraction 〈θ〉 as a
function of adsorption strength ε for chains of 100 (red), 200 (green dashed),
and 400 (blue dashed) monomers. Black dotted line represents the transition
in the thermodynamic limit; it has a corner close to ε = 0.4, indicating the
phase transition. Important to note that the simulations that gave this plot also
employed a pressing force on the free end monomer, meaning that our simulations
will not be identical, and we should not expect the change in m to start at the
same value shown here.

control variables is mostly interesting in the positive-positive quadrant: for both

f > 0 and ε > 0, the polymer is being mechanically pulled off of the surface by

the upward pulling force. The line f = ε divides the quadrant and represents

the first-order transition between adsorbed polymer and stretched polymer con-

figurations. The two negative semi-axes (f = [0;−∞] and ε = [0;−∞]) are two

continuous transitions, and where the three lines meet, we get a critical point

(f = 0; ε = 0).

Theoretically, polymer adsorption was first tackled in 1953 [19]. In a letter to

the Journal of Chemical Physics, Frisch, Simha, and Eirich derived the partition

5



Figure 1.2: Taken from Zhang et al. [1]. Schematic sketch of Polymer adsorption-
desorption and loop-stretch phase diagram.

function of a dilute solution of polymers near a weakly adsorbing surface. In the

thermodynamic limit (N −→ ∞), they predicted that all events of adsorption

would be of single monomers. Later in 1965, a study by Robert Rubin looked at

the adsorption of an isolated chain to a surface using a random-walk lattice model

[20]. They determined the average number of adsorbed monomers as a function

of the adsorption energy and the length of the chain M(ε,N), the mean distance

of the free end of the chain from the surface z(ε,N) along with its probability

distribution as a function of height above the surface, and a lattice-dependent

critical adsorption energy εc. In 1977, Lépine and Caillé theoretically compared

the two cases of single-end-grafted and both-ends-grafted polymers at a hard
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surface for three surface types (reflective, attractive, and repulsive) [21]. The

criteria compared were thickness of adsorption layer, the mean number of ad-

sorbed monomers, and the mean distance from the surface. Results were in good

agreement with lattice model studies for the single-end-grafted polymer, and only

differed quantitatively for the both-ends-grafted polymer. Skvortsov, Gorbunov,

and Klushin introduced the idea of stretching the polymer by pulling its free end

upwards, in 1993 [2]. They were able to write a closed analytical form of the par-

tition function, and draw the phase diagram which turned out to be symmetric

under exchange of the pulling force and adsorbing strength parameters. Then in

2004, Descas, Sommer, and Blumen presented extensive Monte Carlo simulations

which focused on the mean number of adsorptions, the chain’s extension, and the

density profile for all monomers [22]. They also were able to estimate the value of

the scaling exponent, but found that its value is significantly sensitive to changes

in the value of the critical adsorption strength. In addition, it was found that

the dynamic scaling at ε∗ matched quantitatively that of free chains. De Gennes

proposed in his work [25] that a coarse-graining approach to the chain in the

adsorption regime leads to a renormalized 2D chain of “adsorption blobs” at the

interface, allowing for further connections to be built between the chain’s differ-

ent spatial dimensions and relaxation times. An in-depth analysis of the phase

transitions followed in 2012 by Skvortsov et al. [23]. Two ensembles were probed:

the force ensemble, in which the control variable is the constant force applied to

the free end of the polymer, and the z-ensemble, in which the height z of the

free end of the polymer is the variable. It turned out that basic thermodynamic

parameters such as the energy of adsorption behave differently in each of the

ensembles. The continuity of the transition also differed. This work also drew

similarities and differences between said transition and the vapor-liquid one, and
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introduced the concept of local order parameter profiles. Lastly, in 2017, Zhang

et al. showed in a paper that for a tethered chain that is being pulled away

from the surface, characteristic relaxation time grew as a power law as εc was ap-

proached [1]. Also, they noted that the mixture of continuous transition features

with the discontinuous transition features could be a phenomenon characteristic

of force-driven transitions of macromolecules.

The focus of this thesis is on the nature of the adsorption order parameter.

While all the previous work was based on studying the system in terms of global

variables and a global adsorption order parameter (defined as the adsorption frac-

tion of the whole chain), we attempt to characterize the system in local terms

as well. More specifically, we define a local order parameter as the contact prob-

ability for a given monomer, and study the correlation length along the chain

contour and the local equilibrium relaxation times of adsorption as a function of

the control parameter, ε, and the chain length, N . We compare the local and

the global descriptions and connect them to the commonly accepted blob picture

[25] taking the height of the free end Zend(ε) as a measure of the blob size. In

section 2.4, we develop theoretical predictions for the correlation length and the

adsorption relaxation times in terms of the blob size, Zend, which also gives them

as implicit functions of the control parameter ε. The blob theory predictions are

then compared to the simulation results. In addition we attempt to quantify the

adsorption event in terms of the local energy of interaction with the surface, and

compare the results to those based on a more traditional definition in terms of

an ad hoc cut-off distance.
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Chapter 2

Theoretical Background

2.1 Chain and Solvent

In this chapter, we put forward the theoretical considerations underlying our

work. It is more than fair to note that this chapter uses and references mostly the

works and results authored by M. Rubinstein and R. Colby [24] for the sections

on the different types of chains and scaling laws (see also the book by P. G. de

Gennes [25]), and C. W. Gardiner [26] for the section on stochastic dynamics.

We use the model of a real chain in a good solvent. To understand the char-

acteristics of this model, one must know the difference between ideal and real

chains, and between different types of solvents.

Ideal chains’ monomers interact with each other as long as they are close to

each other along the chain. Meaning, if the monomers are successively numbered

from 1 to N , then monomer i feels the interaction from only the monomers j

close to i; the interaction between monomers vanishes for |i − j| >> 1. The

unphysical consequence of this limited interaction is that monomers that are far
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away along the chain but close together in space will not interact. They may even

overlap without repelling each other. This is where a real chain comes in handy:

this model simply allows all monomers to interact with each other, regardless of

along-the-chain distance. This obviously comes at a great computational cost.

The first step is to give all monomers their own volume, also called excluded

volume because this volume is occupied by the one monomer and does not allow

other monomers to take part of it: overlap is forbidden. This is called hardcore

repulsion. The second step is to assign an additional monomer-monomer interac-

tion. Monomers could attract each other, and they could also repel each other.

The interplay of the hardcore repulsion with the added attraction/repulsion de-

cides whether the polymer would tend to collapse into a globule, or swell into coil

configurations that are more swollen the stronger the repulsion. specifics of this

interaction will be discussed along with the ones of the solvent next.

The role the solvent plays is essential, simply because adsorption is medi-

ated by it. In the simplest case, we have a homopolymer (a polymer made

from only one type of monomer) in solution. We distinguish two types of par-

ticles: monomers and solvent particle. This entails three types of interactions:

monomer-monomer, solvent-solvent, and monomer-solvent interactions, each char-

acterized by a mean interaction energy. The solvent can be characterized when

these three energies are put together in the flory interaction parameter

χ =
z

2

(2uMS − uMM − uSS)

kT
. (2.1)

Using this parameter, we can get the monomers’ effective excluded volume ac-

cording to veff = (1− 2χ)v0, which then simplifies characterizing the solvent. It
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is worth mentioning that as χ is inversely proportional to the temperature T , one

can speak of that or the other interchangeably, keeping in mind the correct limits.

Given all possible combinations of interaction energies between the species, we

can sum up the types of solvents as the following:

• for χ → 0 or high temperatures, the value of the excluded volume

approaches v0. At this limit the excluded volume is a very slowly varying

function of temperature, hence the effective interaction here can be modeled

as pure hard-core repulsion. We are in an Athermal solvent.

• for 0 < χ < 1/2 and intermediate temperatures, we have 0 < v < v0.

In this regime the monomers feel slight attraction, which reduces their ex-

cluded volume to values below the hard-core volume. The effective inter-

action here can be modeled as purely repulsive as well, but with “smaller

monomers” than that of an athermal solvent. We are in a Good solvent.

• for χ = 1/2 the excluded volume is exactly equal to zero, which is equiv-

alent to the case of an ideal chain, and the polymer will obey ideal chain

statistics, having a mean end-to-end distance of []. In this case, effectively,

there is no interaction between monomers far away from each other along

the chain. We are in θ(Theta)-solvent.

• for χ > 1/2 or low temperatures, we get a negative excluded volume,

and the polymer collapses into a globule. Here the interaction needs to

have both attraction for large and intermediate distances, and repulsion for

short distances. We are in a Poor solvent.

Now that it is clear what a real chain in a good solvent is, we justify our

choice by recognizing that on one hand, a real chain model is more pertinent to
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real-life applications, while on the other hand good solvent regime is the most

interesting and useful of the regimes.

2.2 Chain Near a Surface and Adsorption Events

2.2.1 Chain Near a Surface

Polymer and solvent have been individually looked at. We now consider the envi-

ronment. Having a substrate and a polymer together in space does not guarantee

their interaction, and it would be a waste of time and opportunity to have the

polymer drift around for long times without coming into contact with the surface.

For this reason the polymer is grafted by one of its free ends to the surface. The

chain therefore starts immediately at the interface.

For a real chain in a good solvent, the mean end-to-end distance is

RF = (va2N3)1/5.

When near a purely hard surface, thermal fluctuations knock about the monomers

and are bound to bring some of them to the plane of the surface (say the plane

z = 0), where they will feel an abrupt force that pushes them away and back into

the allowed half-space. This asymmetry causes a change in RF .

We are interested in the behavior of the system as a function of the adsorption

strength, so instead of a hard surface interaction which is infinite at and beyond

the wall and zero before it, we give the surface an interaction parameter ε such

that a monomer gains energy E(z, ε) when it is said to be “in contact” with the

surface. As a consequence to this definition, an attractive surface has positive ε,

lowers monomers’ energies when they make contact, making it favorable to ad-
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sorb; which is what we exactly expect from an attractive surface. The mirrored

opposite can be said for a repulsive surface.

We add that when a polymer is very close to an impenetrable surface, its config-

uration space becomes limited and a force of entropic nature pushes the polymer

away from the surface. The most likely configurations for a polymer tethered to a

hard or repulsive surface are called mushroom-like, because a “stem” starts from

the grafted monomer and a coil-like configuration will dominate in the remainder

of the chain, far from the reach of the surface’s repulsion. The probable configu-

rations in the case of an attractive surface are different; for moderate attraction

strength the number of adsorption events is substantially increased, with long

segments being adsorbed to the surface. At high attraction strength the polymer

is forced onto the surface, describing a 2D random walk.

2.2.2 Adsorption Events

An adsorption event can be defined in different ways. As was mentioned pre-

viously, the potential chosen for the surface to interact with the polymer is a

Lenard-Jones potential, of maximum depth ε. The potential is zero at a distance

σ from the plane. We have two options to define an adsorption event: the defi-

nition that is mainly used in the literature is any monomer (with the exception

of the grafted one) that is between heights z = 0 and some multiple of σ (say,

z = 2.5σ) counts as adsorbed, and the number of adsorbed monomers is just the

simple counting of monomers within that height range. The second option is to

calculate the total energy of interaction between all monomers and the surface

and divide it by an effective potential strength, giving the average number of

adsorbed monomers < M >. We shall mainly focus on the simple counting as it
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is the established method in the literature, but we will also use energy counting

for the purpose of comparing the two methods and their results.

After implementing these definitions into the program, we acquire the number

of adsorbed monomers M(t), from which we can get the adsorbed fraction as a

function of time

m(t) =
M(t)

N
, (2.2)

the second-order cumulants of adsorption (see section 2.3.1)

C2 ∝
〈m2〉 − 〈m〉2

〈m〉2
, (2.3)

both with respect to the surface attraction strength ε. In addition, we can get

from this data the auto-correlation functions of M(t) against time, of individual

monomers’ adsorption state mi(t) against time, and the along-the-chain adsorp-

tion correlation functions mi(k), for every ε.

2.3 Global Quantities and Scaling

2.3.1 Scaling Theory and Contact Number

Scaling theory will present the theoretical framework with which we compare our

simulation results. Finite size scaling proposes writing the partition function of

a polymer undergoing the desorption-adsorption transition as

Qε(ε,N) = Qε(ε
∗)Ψε[(ε− ε∗)Nφ] (2.4)
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where φ is called the crossover exponent. In tandem with equation 2.4, the

scaling approach also relies on reasoning for the limits of M . One can intuitively

be convinced that for very weak surface attraction values we get

〈M〉 ∼ N0,

because contacts are unfavorable. For strong surface attraction values we expect

nearly the whole chain to be adsorbed, so

〈M〉 ∼ N1.

As for the critical point, we define φ such that for ε = ε∗,

〈M〉 = Nφ.

Plenty of work [17, 27, 22, 28] has been done to measure φ; for a while different

values were debated, and an upper and lower bounds were proposed. The liter-

ature finally settled on the most accurate estimate of φ = 0.483± 0.003 [27, 28],

while accepting the value φ = 0.5 for chains lengths similar to the ones explored

in this work [28].

In equation 2.4, Ψε is called the crossover function, because it governs the

vicinity of the critical energy in the partition function through its dependence

on the factor (ε − ε∗). This gives equation 2.4 important implications: having

dependence on the interaction energy ε exclusively in Ψε means that we can write
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for the average contact number

〈M〉 =
∂ ln Ψ((ε− ε∗)Nφ)

∂ε
(2.5)

and for the fluctuations of M

σ2(M) = 〈M2〉 − 〈M〉2 =
∂2 ln Ψ((ε− ε∗)Nφ)

∂2ε
. (2.6)

Knowing the expected asymptotic behavior of 〈M〉, we can get that of Ψε(x),

where the scaling variable is

x = (ε− ε∗)Nφ. (2.7)

In fact, equation 2.5 can be written as

〈M〉 = NφfM((ε− ε∗)Nφ) (2.8)

where

fM(x) ∝ ∂ ln Ψ(x)

∂x

is the scaling function of M around criticality. This means that if we attempt

to plot 〈M〉/Nφ against (ε − ε∗)Nφ, lines of different N values should collapse

onto one master-curve which represents the scaling function itself. The quality

of this collapse is a measure of the quality of the combination [ε∗, φ], because

the master-curve depends on both those values. Hence we are presented with a

benchmark that serves to check our critical energy and crossover exponent values

pair. However, we note that we use this method as a check only, and not to

determine the values of [ε∗, φ]. This is because determination of the values using
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the fit quality of the mastercurve gives us the two values depending on each

other; both parameters are being tuned simultaneously, and are therefore not

independent. In other words, it was found [] that a small difference in ε∗ would

lead to large deviations of φ if this method is used to determine instead of check

for agreement [22, 29].

From the above expectations of 〈M〉 we can write the asymptotes of ln Ψε,

and then get more detailed predictions for the asymptotes of 2.5 and 2.6. We

summarize those asymptotes here[1]:

ln Ψε(x)


ln(−x), for x� −1

c′1x+ c′2x
2, for |x| � 1

x1/φ, for x� 1

(2.9)

〈M〉



1
ε∗−ε , for x� −1

Nφ, for |x| � 1

N(ε− ε∗)
1−φ
φ , for x� 1

(2.10)

σ2(M)



1
(ε∗−ε)2 , for x� −1

N2φ, for |x| � 1

N(ε− ε∗)
1−2φ
φ , for x� 1

(2.11)

Given

〈M〉 =
∂ ln Ψε((ε− ε∗)Nφ)

∂ε
∝ Nφ
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(equation 2.10), and

σ2
M =

∂2 ln Ψ((ε− ε∗)Nφ)

∂2ε
∝ N2φ

(equation 2.11), we take the ratio in equation 2.3, giving

σ2
M

〈M〉2
=

∂2 ln Ψ(x)
∂2x

(∂ ln Ψε(x)
∂x

)2
,

which is itself a function of the variable x = (ε− ε∗)Nφ. This means that exactly

at the critical point, regardless of the length of the polymer, c2 has the same

value. The fact that these cumulants have the same value exactly at ε = ε∗ for

different N serves to zero in on the numerical value of the critical energy: plot-

ting the cumulants of polymers of different degrees of polymerization against ε

reveals a point of intersection, whose abscissa corresponds to the critical adsorp-

tion strength ε∗[refer to BINDER]. Once found, the value of ε∗ will allow a more

clear-cut comparison of the system’s behavior on each end.

2.3.2 Scaling of Spatial Components

In the previous section we showed how 〈M〉 scales with N away from and near

the critical point, as a test of our simulations. We also take interest in some

spatial components of the system for the same purpose. Particularly, we take

two components, one being parallel to the surface (we choose the mean gyration

radius component parallel to the surface, 〈RG‖〉) and the other perpendicular to

it (we choose the mean height of the free end, 〈Zend〉).
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The scaling forms of these quantities can be written [30] as:

Zend = Nν3Dh⊥((ε− ε∗)Nφ) (2.12)

RG‖ = Nν3Dh‖((ε− ε∗)Nφ), (2.13)

with h⊥ and h‖ being the corresponding scaling functions. For ε � ε∗ and

ε = ε∗ the different dimensions of the chain scale with N the same way a free

self-avoiding chain does [31, 30]:

〈Zend〉 ∼ 〈RG‖〉 ∼ N ν3D ,

with ν3D ≈ 3
5

= 0.6 being the Flory exponent in three dimensions.

However, in the adsorption regime things do not behave the same way. For ε� ε∗

one can intuitively expect that

〈Zend〉 ∼ N0

when picturing the flat configurations allowed in this regime. For a very attractive

surface it was shown [24] that the polymer will be almost completely adsorbed into

a layer of thickness ξ right above the surface, with a tail of height Zend ∼ ξ. As

for 〈RG‖〉, intuition also says that, since conformations in this regime are nearly

two dimensional at the surface, scaling with N is that of a 2-D self-avoiding chain:

〈RG‖〉 ∼ N ν2D .

ν2D = 3/4 here is the Flory exponent for a self-avoiding chain in two dimensions.

In the same way we wrote the mean values of Zend and RG‖ using the two functions
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in 2.13, which are proportional to the first derivative of the natural logarithm of

the partition function, we can write analogously the fluctuations of the two spatial

components by using the second derivatives. The limits for said fluctuations turn

out to be:

σ2(Zend)


N2ν3D , for x� −1

N2ν3D , for |x| � 1

N0, for x� 1

(2.14)

σ2(RG ‖)


N2ν3D , for x� −1

N2ν3D , for |x| � 1

N2ν2D , for x� 1

(2.15)

We will further expand on the dependencies of quantities of interest (and their

relaxation times) in the strong attraction regime in section 2.4.

2.3.3 Dynamics, Correlations, and Scaling of Relaxation

Times

To get temporal correlation, we can write the autocovariance of the number of

adsorbed monomers Mt at a time t as

KMM(τ) =
1

T

T∑
t=1

(Mt − 〈M〉)(Mt+τ − 〈M〉) =
1

T

T∑
t=1

MtMt+τ − 〈M〉2 (2.16)
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where τ is a time interval, T is the time of the simulation, and 〈M〉 is the average

number of adsorbed monomers over time at equilibrium. Normalizing by

σ2 = KMM(τ = 0)

we get the time-dependent Pearson correlation coefficient, which we will call for

simplicity the Autocorrelation function:

ρMM(τ) =
KMM(τ)

KMM(0)
(2.17)

As for spatial correlation, we are interested in those between different monomers

as a function of the distance between them along the backbone of the polymer. We

therefore compute the adsorption correlation functions along the chain, averaged

over time. We define said functions as

ρs(k) =
Ks(k)

Ks(0)
, (2.18)

where

Ks(k) =
1

N − k

N−k∑
i=1

(si − 〈si〉)(si+k − 〈si〉), (2.19)

s is the adsorption state of monomer of index i, k is the distance along the

chain between the pairs of monomers, and 〈si〉 is the mean adsorption state for

monomer i over all time. It is worth noting that the values s can take depend on

the definition of adsorption event used.

Seeing that we are studying the system at equilibrium, we expect the process

to be a wide-sense stationary one. This allows the use of a Fourier and an Inverse
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Fourier transforms, giving the correlations with much less computation time.

These correlation functions give us —by integration— the characteristic times for

near-equilibrium fluctuations to decay and the correlation distance of adsorption

along the chain.

To theorize about these times, we use the Rouse model which approximates

our chain to one that is made up of (renormalized) beads attached by springs.

During its relaxation time τ , a chain is expected to diffuse a distance proportional

to its own size. Adding onto that the expectation of the diffusion coefficient to

be inversely proportional to N , we can write [3, 25, 32, 33] that a characteristic

relaxation time is

τ ∝ 〈σ
2〉

DN

∝ Nσ2.

σ is the fluctuation of the quantity under consideration, and DN is the diffusion

coefficient of the whole chain. This model predicts therefore that the scaling of τ

with N is predicted by σ of the corresponding spatial quantity, in the following

way:

τX ∼ Nσ2
X . (2.20)

The Rouse model is written for times of spatial diffusion. However, if we attempt

to apply it to the number of contacts M , we get for the scaling of τ

τM ∼


N1, for x� −1

N1+2φ, for |x| � 1

(2.21)

τZend ∼


N1+2ν3D , for x� −1

N1+2ν3D , for |x| � 1

(2.22)
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τRG‖ ∼


N1+2ν3D , for x� −1

N1+2ν3D , for |x| � 1

(2.23)

Where we remind that x = (ε − ε∗)Nφ. We tackle scaling in the adsorption

regime, and summarize the expectations in the next section.

2.4 Local Considerations and the Blob Picture

We have predicted using finite-size scaling theory the scaling laws of different

spatial quantities in our system, but we have skipped the strong attraction (or

adsorption) regime on purpose. The reason we do that is because we believe

scaling in this regime follows different expectations, for the configurations here

are substantially more restricted to a layer near the surface.

For a strongly attractive surface, one can intuitively expect (and show) the

free end monomer to be in the vicinity of the surface regardless of the length

of the polymer; an equilibrated polymer will be predominantly adsorbed to the

surface irrespective of N , especially with increasing ε. In the framework of scaling

theory, however, things usually relate to a ”blob”; renormalization of the chain

units relative to the proper scale of interest is the basic idea of scaling theory, and

in the adsorption regime, the relative scale becomes that of the adsorption blob.

Figure 2.1 elucidates the concept. When our chain is collapsed onto the surface

due to its strong attraction, we can speak of a certain blob, a grouping of our

monomers that is not arbitrary, but is done in such a way that dynamics of interest

become those of monomers inside one blob only, irrelevant of the rest of the chain.

In other words,the chain becomes a collection of uncorrelated parts (blobs), and
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we need only to consider one part to understand the properties of the entire chain.

What becomes our focus then is the dynamics of these adsorption blobs, which

are by definition of the size scale relevant to experience the confinement imposed

by the surface. The size of a blob ξ defines the relevant size scale of the system,

which by definition is equal to the layer’s thickness and to the mean height of the

free end. This means that by measuring 〈Zend〉 we have a direct measurement of

the blob size [24]. This makes things more convenient. We can now proceed to

scale relaxation times in the adsorption regime.

Figure 2.1: Taken from Descas, Sommer, and Blumen [3]. (a) Blob picture of
chain near attractive surface, seen from the side. The chain is confined to a layer
of thickness L beyond which the probability distribution of finding monomers is
insignificant. (b) Top view of the blob picture. The polymer becomes a two-
dimensional chain of blobs on the surface.

Since system properties depend on the blob, our relaxation time scaling will

have to depend on properties of the blob instead of the whole chain. The Rouse
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model gives equation 2.20, with N → g ∼ ξ1/ν3D ∼ 〈Zend〉1/ν3D where g is the

number of monomers in a blob, and σ2 ≡ σ2
Zend
∼ 〈Zend〉2. We thus say

τZend ∼
{
〈Zend〉2+1/ν3D , for x� +1. (2.24)

In the same vein, one can argue that in the parallel-to-surface direction, we have

a two-dimensional chain of blobs of characteristic blob size ξ = 〈Zend〉. The

number of blobs per chain is

nb = N〈Zend〉−1/ν3D ,

and the gyration radius parallel would be

RG‖ ∼ ξnν2Db = N ν2DZ
1− ν2D

ν3D
end .

Thus we finally reach

τRG‖ ∼
{
N1+2ν2D〈Zend〉

2−2
ν2D
ν3D , for x� +1. (2.25)

We summarize all theoretical predictions for the scaling of all quantities of inter-

est, their fluctuations, and their relaxation times in table 2.1.
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Table 2.1: Summary of theoretically expected scaling trends for the three quan-
tities of interest, their fluctuations, and their relaxation times.

Pre-Adsorption
Regime

Critical Point Adsorption Regime

ε� ε∗ ε = ε∗ ε� ε∗

〈M〉 ∼ N0 ∼ Nφ ≈ N0.483 ∼ N1

〈Zend〉 ∼ Nν3D ≈ N0.6 ∼ Nν3D ≈ N0.6 ∼ N0

〈RG‖〉 ∼ Nν3D ≈ N0.6 ∼ Nν3D ≈ N0.6 ∼ N ν2D = N0.75

σM ∼ N0 ∼ Nφ ≈ N0.483 ∼ N1

σZend ∼ N2ν3D ≈ N1.2 ∼ N2ν3D ≈ N1.2 ∼ N0

σRG‖ ∼ N2ν3D ≈ N1.2 ∼ N2ν3D ≈ N1.2 ∼ N2ν2D ≈ N1.5

τMsc ∼ N1 ∼ Nφ ≈ N0.483 ∼ N1

τZend ∼ N1+2ν3D ≈ N2.176 ∼ N1+2ν3D ≈ N2.176 ∼ N0〈Zend〉2+1/ν3D ≈
〈Zend〉3.67

τRG‖ ∼ N1+2ν3D ≈ N2.176 ∼ N1+2ν3D ≈ N2.176 ∼
N1+2ν2D〈Zend〉

2−2
ν2D
ν3D ≈

N2.5〈Zend〉−0.5

We can also speak of the along-the-chain correlations of adsorption. In a chain

of N monomers, the average product of the local contact numbers for monomers

with indices (l, l + k ) is 〈m(l)m(l + k)〉N . If we define adsorption as mi = 0 for

zi > 2.5σ and mi = 1 for zi < 2.5σ, then we can write

〈m(l)〉 = P (l)

〈m(l)m(l + k)〉 = P (l)P (l + k|l)

〈m(l)m(l + k)〉 − 〈m(l)〉〈m(l + k)〉 = P (l)(P (l + k|l)− P (l + k)),

where P (l) and P (l+k|l) are respectively the unconditional probability of having

the l-th monomer adsorbed, and the conditional probability to have the l+ k-th
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monomer adsorbed provided the l-th monomer is also adsorbed. This means that

the dependence of the correlation function on the backbone distance k is given

by the expression

P (l + k|l)− P (l + k). (2.26)

For a self-avoiding chain of N monomers at the critical adsorption strength, these

probabilities are defined in terms of partition functions of a chain with one (2.27)

or two (2.28) end(s) attached to the surface [27],

Ω1c(n) ≈ A1ω
NNγ1c−1, (2.27)

Ω11c(n) ≈ A11ω
NNγ11c−1. (2.28)

In the above partition functions, A1c, A11c, and ω are model dependent constants,

but γ1c and γ11c are believed to be universal, and due to [27] we have γ1c ≈ 1.226

and γ11c ≈ 0.707. Numerically integrating for

〈P (l+k|l)−P (l+k)〉 =
1

N − k

∫ N−k

0

Ω11c(k)Ω1c(N − l − k)

Ω1c(N − l)
−Ω11c(l + k)Ω1c(N − l − k)

Ω1c(N)
dl

gives us a theoretical prediction of how adsorption correlations go with k.
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Chapter 3

Computational Approach

To carry out our study, we adopt a molecular dynamics (MD) simulations ap-

proach. In order to run the simulations two things are needed: a model that

includes the necessary physics of the polymer, and an algorithm that solves the

equations of motion while taking into account the mentioned physical factors of

the chosen model.

3.1 Chain Model

A computational model for a polymer needs to account for various physical as-

pects, from the scales involved to the types of interactions. In this section we

briefly introduce each aspect, and in section 3.2 we set our choices, describing

the model fully.

3.1.1 Coarse Graining

The level at which the polymer behaves properly, also known as the level of coarse

graining, depends on the scale at which the property of interest manifests. For
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example, if we care to study the inter-nucleotide interactions in a DNA strand,

our model will definitely need to include said nucleotides into the structure of

the polymer. On the other hand, if we care to study the relaxation of the DNA

as a chain, whose length happens to be on a much larger scale than that of the

nucleotides, then we can model it as a simple semi-flexible polymer. If one uses

the latter model to study inter-monomer interactions, one would get unphysical

results that are far from the reality of actual DNA. For reviews on the different

types of coarse graining for DNA and proteins see [34] and [35] respectively.

3.1.2 The Solvent

In most real cases, polymers are studied in solutions where they are dissolved in

solvents. The type of the solvent-polymer interaction affects the equilibrium size

of the polymer: a good solvent makes the polymer swell, while a poor solvent leads

to the collapse of the polymer. The different types of solvents are summarized in

section 2.1. Computationally, the solvent can be accounted for either explicitly

or implicitly. In explicit solvent models, aside from the polymer itself, there are

solvent particles that interact with each other and the monomers; the quality of

the solvent is specified by the affinity between the different particle types, also

as described in section 2.1. The second way is that of implicit solvent, where

the solvent is simply accounted for through the type of non-bonded interactions.

In the good solvent regime the interaction is purely repulsive, while it has an

attractive part in the poor solvent regime.
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3.1.3 The Langevin Thermostat

Collisions between the monomers and the solvent particles result in Brownian

diffusion and friction. The fluctuation-dissipation theorem states that

D =
kBT

ζ

where D is the diffusion coefficient and ζ is the drag coefficient. This is known

as the Einstein-Smoluchowski relation, and it can be included in the equations

of motion by accounting for a drag force Fd = −ζẋ and a random force Fr =
√

2ζkBTR(t) where R(t) is a stationary Gaussian process satisfying

〈R(t)〉 = 0

〈R(t)R(t′)〉 = δ(t− t′)

.

3.1.4 Interactions

In most models, interactions between particles in a coarse grained polymer are

divided into types that are defined based on the number of bodies interacting.

First and foremost, two-body interactions are divided into two types:

• bonded interactions, which arise between nearest neighbors, and obey an

interaction potential that keeps the monomers bound to each other;

• non-bonded interactions, which arise between polymers that are far away

from each other along the chain, and reflect the quality of the solvent in

implicit solvent models.
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Figure 3.1: Different Types of Interactions: the brown ”bond stretching” is a
two-body interaction; the cyan ”angle bending” is a three-body interaction; the
blue ”torsion” is a four-body interaction.

Some models take into account higher-order interactions, such as three-body

interactions that are related to the bending of the polymer chain, and four-body

interactions which are specified by the relative angles of the first and last particles

in a sequence of four consecutive monomers along the chain (cf. Figure 3.1). Here

we omit these higher-order interactions, and consider only two-body ones.

3.1.5 Boundaries

The polymer is restricted to a certain space bounded by rigid walls. The geometry

and the interaction potential of the polymer with the wall(s) need to be specified

to complete the model.

3.2 Our Model

The following sets the scene of our computational model. Coarse-graining-wise,

we used a bead-spring model for the polymer. The polymer is modeled as a chain
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Figure 3.2: The potentials used: for non-bonded interactions (between non-
successive monomers) we use the WCA (dashed line) which is the repulsive part
of Lennard-Jones potential but shifted upwards; for bonded interactions (between
successive monomers of the chain) we use WCA+FENE (full line) which is the
overlap of the WCA and the FENE potentials, grows to infinity as it approaches
the asymptote R0 [4].

of beads connected by nonlinear springs. The solvent we used is implicit, in the

good solvent regime. As for interactions, the polymer is fully flexible such that we

ignore three-body and four-body interactions (see section 3.1.4); only two-body

interactions were considered. The types of interactions are the following:

• Non-bonded interactions: To run the simulations in the good solvent regime

we chose the repulsive part of the Lennard-Jones (LJ) potential, also known

as the Weeks-Chandler-Andersen (WCA) potential (Figure 3.2):

U(rij) = UWCA(rij) =


4ε

[(
σ
rij

)12

−
(

σ
rij

)6]
+ ε for rij < rWCA = 21/6σ

0 for rij > rWCA

(3.1)
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Figure 3.3: The Lennard-Jones potential used for the monomer-surface interac-
tion. The potential is 0 at a distance σ from the z = 0 surface, and has a value
−ε at its minimum, which is at z = 21/6σ [5].

• Bonded interactions: for successive monomer-monomer interactions we use

a combination of the Finitely Extensible Nonlinear Elastic (FENE) poten-

tial and the WCA potential (Figure 3.2):

U(rij) = UWCA(rij) + UFENE(rij)

where

UFENE(rij) =


−1

2
kR2

0ln

[
1−

(
rij
R0

)2]
for rij ≤ R0

∞ for rij > R0

(3.2)

• Surface interactions: we use the well known Lennard-Jones (LJ) potential,

with a finite range of 2.5σ (Figure 3.3):

Uwall(rij) = ULJ(rij) = 4εwall

[(
σwall
rij

)12

−
(
σwall
rij

)6]
(3.3)
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For our calculations we chose σ = 1, ε = kBT = 1, k = 30kBT/σ
2 = 30,

R0 = 1.5σ = 1.5, and for the wall we chose σwall = 1.0, and the mass of a

monomer is taken to be m = 1. To make the analogy with biological systems,

taking the monomer size to be on the order of the persistence length of a typical

protein, our length unit is on the order of 10Å. On average one amino acid has

a length of 3.5Å, so our simulation monomer encapsulates about 3 amino acids,

making the mass of a monomer around 5 × 10−25 Kg. Taking T = 300K, the

time unit in our simulation is equivalent to about 36ps.

3.3 The Algorithm

Next, we turn to the algorithm. A very important thing to consider while setting

up molecular dynamics simulations is the choice of algorithm type to integrate

the equations of motion. The most important factors to consider while making

this decision are (time) efficiency and precision. For this reason, we choose the

Verlet algorithm. In the following sections, we will reference Drs Frenkel and

Smit’s ”Understanding molecular simulation: from algorithms to applications”

[6]. In this book, they claim that the Verlet algorithm is both the simplest and

the best one to use, for reasons we put forward in the following section.

3.3.1 The Verlet Algorithm

The aim of the algorithm is to solve the differential equations:
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ẋ = v(t)

ẍ =
f(x, v, t)

2m

This is done by updating the current positions x(t) to their new values x(t+

∆t).

The first step is to do a Taylor expansion on both the new (x(t + ∆t)) and

the old (x(t−∆t)) positions. We get:

x(t+ ∆t) = x(t) + ẋ(t)∆t+ ẍ(t)∆t2 +
...
x∆t3 +O(∆t4)

x(t−∆t) = x(t)− ẋ(t)∆t+ ẍ(t)∆t2 − ...
x∆t3 +O(∆t4)

Adding the two above equations, we get:

x(t+ ∆t) ≈ 2x(t)− x(t−∆t) +
f(t)

m
∆t2 +O(∆t4)

We can see that, given an initial position at time t − ∆t and a subsequent

position at time t, and if the forces depend only on the relative positions of the

particles and walls, all subsequent positions can be effectively calculated, without

having to calculate velocities. Calculating velocities is important in our simula-

tions however because of the presence of viscosity. Several methods can be derived

from the Verlet method to compute velocities. Most of the computational time

is spent calculating forces, which makes the choice of method for the calculation
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of velocities irrelevant for speed; however, the methods differ in accuracy.

We use the Velocity Verlet method outlined below:

1. Take initial positions xi(t) and velocities vi(t)

2. Compute forces fi(t) = −dU(xi)
dxi

+ Fd(vi) + Fr where U(xi) is the particle

potential, Fd and Fr are defined in section 3.1.3

3. Update velocities by half a step using vi(t+ 1
2
∆t) = vi(t) + fi(t)

m
∆t
2

4. Update positions by a full time step using xi(t+ ∆t) = xi(t) + vi(t+ 1
2
∆t)

5. Compute new forces fi(t+ ∆t)

6. Update velocities to full time step vi(t+ ∆t) = vi(t+ 1
2
∆t) + fi(t+∆t)

m
∆t
2

7. Repeat steps 3-5 until satisfied

3.3.2 The Verlet List

In most MD simulations, the only type of interaction that is accounted for is pair-

wise interaction. This means that for each iteration we need to calculate the forces

for N(N − 1)/2 pair interactions. In our simulations interactions are truncated,

saving some time on force calculations. We however still need to calculate the

distances between N(N − 1)/2 pairs to check which particles interact with each

other, so that the simulation time scales like N2. A way to reduce the dependence

of the computational time on the number of particles is to use a Verlet List [36].

The list of every monomer i consists of all particles within a cutoff distance rv

slightly larger than the cutoff radius for the forces rWCA from particle i. During

each iteration, only the distances of particles in the list will be calculated, which is

a calculation of order N , and the particle i will interact with particles within the
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Figure 3.4: The space of the Verlet list. Particles within rv are included in the
list for particle i, while particles within rWCA interact with i. Once a particle is
displaced enough to leave or enter the WCA sphere, the Velrelt list is updated
[6].

interaction range rWCA. From time to time the list will need to be updated; the

update, an operation of order N2, will be performed whenever the displacement

of any particle in the simulation exceeds rv−rWCA. The use of a Verlet list in the

algorithm reduces the dependence of the computational time from N2 to about

N3/2 [6].
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Chapter 4

Simulation Results

We now turn to look at the results of our simulations, comparing them to the ex-

pected results based on the scaling framework. We remind the reader of a few key

conventions: the number of monomers making contact with the surface M will

be measured in two ways. The first by simply counting the number of monomers

of heights in the range 0 ≤ Z ≤ 2.5σ, dubbed Msc for simple counting, and

the second by calculating the total energy due to monomer-interface interactions

and dividing that by the characteristic depth of the potential, ε, dubbed Mec for

energy counting. We discuss the latter in the last section of this chapter. Energy

values are in units of kBT , lengths are in units of the monomer bond equilibrium

length σ, and time scales are in natural (simulation) time units. Uncertainties

and bounds of confidence reported correspond to intervals of 95% confidence.

38



4.1 Second-Order Cumulants

Firstly, we characterize our system by locating the critical energy of adsorption.

As explained in section 2.3.1, the cumulant intersection method is one of the most

accurate methods to find the critical point. We plot the second-order cumulants

as a function of energy for chains of lengths N = 50, 100, 150, 200, and 250 in

figure 4.1.

The intersection seems to be in the general region 1.00 ≤ ε ≤ 1.20. Zooming in,

Figure 4.1: Second-order cumulants of adsorption number.

we notice multiple intersections (Figure 4.2). Calculating the arithmetic mean,

we find ε∗ = 1.11± 0.03.
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Figure 4.2: Close-up of the intersection region of the cumulants.

4.2 Statics of Quantities of Interest

We now turn our attention to the static quantities of the system: namely the

mean number of adsorbed monomers 〈M〉 (4.3), the mean height of the free end

〈Zend〉 (4.4), and the mean value of the component of the gyration radius that

is parallel to the surface, 〈RG‖〉 (4.5), along with their fluctuations (4.7 to 4.9),

all as functions of the adsorption energy ε. As stated previously, the surface

introduces an anisotropy to the problem. For this reason we look at dimensions

parallel and perpendicular to the surface separately.

A superficial look tells us that the number of contacts exhibits the proper lim-
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its in the weak and strong adsorption regimes; 〈M〉 ≈ 0 for ε = 0.15� ε∗ since we

expect very few contacts at these weak energies, and 〈M〉 ≈ N for ε = 2.00� ε∗

since we expect the entire chain to be collapsed into a two dimensional layer near

the surface in this strong adsorption regime. Length components parallel and

normal to the surface behave differently as was expected. In the weak attraction

limit, general dimensions of the chain (both parallel and normal to the surface)

obey 3-D Self-Avoiding Walk (SAW) scaling laws, governed by the Flory expo-

nent in three dimensions ν3D ≈ 3/5 = 0.6. In the strong adsorption regime the

two dimensions separate in behavior however. While it is expected for the height

of the free end to collapse to a nearly 2-D layer in the immediate vicinity of

the surface, parallel dimensions increase in size because the increasing adsorption

strength flattens the polymer against the surface, forcing it into a 2-D conforma-

tion that is governed by the 2-D Flory exponent ν2D = 3/4 = 0.75. We can see

the manifestation of this basic line of reasoning in figures 4.4 and 4.5. Increasing

ε in the former decreases the average height Zend, while it increases 〈RG‖〉 in the

latter.
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Figure 4.3: Mean number of contacts 〈M〉 as a function of adsorption strength ε.

Figure 4.4: Mean height of the free end of the chain 〈Zend〉 as a function of
adsorption strength ε.
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Figure 4.5: Mean value of the lateral (X − Y ) component of the chain’s gyration
radius 〈RG‖〉 as a function of adsorption strength ε.

To find the dependence over N of the three quantities, we can take crossections

at specific values of ε of the corresponding quantity, and plot their logarithms

versus log(N), as we do for 〈M〉 in figure 4.6. We can then fit each set to a line

to get the power of N as the slope. Tables 4.1 and 4.2 summarize the scaling

exponents of the three quantities with respect to N , in all three regions. We take

multiple values near the expected critical point in table 4.2 to double-check our

estimate of the critical energy.
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Figure 4.6: Natural logarithm plot of 〈M〉 against N for repulsion (ε = 0.15),
attraction (ε = 2.00), and in the critical region (for three candidate energies
ε = 1.00, 1.05, 1.10).

Table 4.1: Scaling exponents for the N-dependence of quantities of interest 〈M〉,
〈Zend〉, and 〈RG‖〉 below and above the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Desorption Regime Adsorption Regime

ε = 0.15 Theoretical
Prediction

ε = 2.00 Theoretical
Prediction

〈M〉sc 0.020± 0.015 0 1.0130±
0.0020

1

〈Zend〉 0.620± 0.020 0.6 0.0030±
0.0020

0

〈RG‖〉 0.620± 0.015 0.6 0.74± 0.04 0.75
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Table 4.2: Scaling exponents for the N-dependence of quantities of interest 〈M〉,
〈Zend〉, and 〈RG‖〉, in the vicinity of the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Critical Point Region

ε = 1.00 ε = 1.05 ε = 1.10 Theoretical
Prediction

〈M〉sc 0.428± 0.010 0.52± 0.02 0.65± 0.06 φ ≈ 0.483

〈Zend〉 0.596± 0.012 0.56± 0.03 0.490± 0.007 0.6

〈RG‖〉 0.624± 0.004 0.630± 0.010 0.655± 0.006 0.6

In both the weak and strong adsorption regimes our intervals of uncertainty

nicely include all predicted values, except for 〈Msc〉. In the critical region we

compare our values of the first row of 4.2 to the most recently accepted value

of φ = 0.483 ± 0.003. Our findings suggest that ε = 1.05 is the safest estimate

of the critical energy, while the value (ε∗ = 1.11) corresponding to the cumulant

intersection method overestimates φ noticeably.

Next we discuss the corresponding fluctuations, defined for each quantity as

σX =
√
〈X2〉 − 〈X〉2. Figures 4.7, 4.8, and 4.9 show the fluctuations, and tables

4.3 and 4.4 show the scaling with N along with the values we predict. These

scaling powers of N are retrieved in the same way throughout the entire thesis,

by plotting the logarithm of the quantity of interest against the logarithm of the

variable whose scaling we are investigating, linearly fitting said plot, and taking

the slope.
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Figure 4.7: Fluctuation σM of the number of contacts M as a function of adsorp-
tion strength ε.
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Figure 4.8: Fluctuation σZend of the height of the free end Zend as a function of
adsorption strength ε.
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Figure 4.9: Fluctuation σRG‖ of the lateral component of the gyration radius RG‖
as a function of adsorption strength ε.

Table 4.3: Scaling exponents for the N-dependence of the fluctuations σM , σZend ,
and σRG‖ , below and above the transition point, along with the theoretical pre-
dictions. N = 50, 100, 150, 200, 250.

Desorption Regime Adsorption Regime

ε = 0.15 Theoretical
Prediction

ε = 2.00 Theoretical
Prediction

σMsc 0.08± 0.06 0 0.490± 0.007 0.5

σZend 0.63± 0.03 0.6 0.010± 0.007 0

σRG‖ 0.65± 0.03 0.6 0.801± 0.012 0.75

In the weak and strong adsorption regimes (table 4.3) our simulations re-

produce the expected scaling neatly for the fluctuations of all three considered
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Table 4.4: Scaling exponents for the N-dependence of the fluctuations σM , σZend ,
and σRG‖ , in the vicinity of the transition point, along with the theoretical pre-
dictions. N = 50, 100, 150, 200, 250.

Critical Point Region

ε = 1.00 ε = 1.05 ε = 1.10 Theoretical
Prediction

σMsc 0.54± 0.04 0.61± 0.04 0.67± 0.06 φ ≈ 0.483

σZend 0.63± 0.03 0.63± 0.03 0.58± 0.04 0.6

σRG‖ 0.65± 0.03 0.670± 0.025 0.68± 0.04 0.6

quantities. The same goes for the spatial components’ fluctuations, when in the

critical vicinity (table 4.4). As for the fluctuations of the number of contacts at

the three candidate energies, they predict less accurately a cross-over exponent

in a range of 0.45 ≤ φ ≤ 0.73 (including uncertainties). Only at ε = 1.00 do we

get φ = 0.54±0.09, which includes the literature value of 0.483 in its uncertainty

interval.

As a last check of both values of critical energy and cross-over exponent, we

plot the scaled number of contacts log(〈M〉N−φ) against the scaled unitless en-

ergy log (ε−ε∗)
(ε∗)

Nφ (see section 2.3.1). We can compare the two sets of values,

[ε, φ] = [1.11, 0.64] gotten from the cumulant method and subsequent fit, and

[ε, φ] = [1.05, 0.52], in terms of their collapse onto the same master-curve for all

different values of N . We present said master-curves in figures 4.10 and 4.11.
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 for [ , ]=[1.11,0.64]

Figure 4.10: log-log plot of the rescaled number of contacts 〈M〉N−φ as a

function of the normalized scaling variable (ε−ε∗)
(ε∗)

Nφ, for the pair of values

[ε∗,φ]=[1.11,0.64].

Scaled  M
sc

 for [ , ]=[1.05,0.52]

Figure 4.11: Same as figure 4.10, but for the pair of values [ε∗,φ]=[1.05,0.52].49



The collapse onto a master-curve is significantly better for [ε, φ] = [1.11, 0.64],

the values which correspond to the cumulants intersection method.

With the presented values, we can say with a good degree of confidence that

our simulations reproduce the proper static scaling behaviors. We can move now

to consider the dynamical properties of the system.

4.3 Dynamical Considerations: Relaxation Times

The quantities we have been interested in so far are the number of contacts M ,

the height of the free end Zend, and the parallel component of the gyration radius

RG‖. We wish to characterize the system’s dynamics by considering how things

change as a function of time. This study however remains one of equilibrium, so

we can rightfully expect that the static means of the quantities and their cor-

responding fluctuations will not change with time. For this reason we focus on

their correlations (and auto-correlations) as functions of time, discussed in more

detail in 2.3.3.

We show the time auto-correlation functions of M , Zend, and RG‖ in figures

4.12 to 4.14, for N = 250 uniquely for conciseness. Each figure shows the auto-

correlations at all the energies we have been considering, color-coded as follows:

blue lines correspond to the energies in the weak adsorption regime, red lines to

the strong adsorption regime, and green lines to the energies close to the critical

value of ε.
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Figure 4.12: Time Autocorrelation functions of number of contacts for a chain of
250 monomers, shown for all values of ε. Blue lines are for the desorption regime,
red ones are for the adsorption regime, and green ones are for energies in the
critical vicinity.
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Figure 4.13: Time Autocorrelation functions of Zend for a chain of 250 monomers,
shown for all values of ε. Same color scheme as figure 4.12.

Figure 4.14: Time Autocorrelation functions of RG‖ for a chain of 250 monomers,
shown for all values of ε. Same color scheme as figure 4.12.
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These correlation functions are later integrated to get the slowest time of re-

laxation. In other words, we integrate the correlation functions to get an estimate

of the time it takes the value of the variable to fluctuate and forget itself.

We present the relaxation time profiles in figures 4.15 to 4.17. A similar ba-

sic analysis to the one employed for the static averages can be used here. We

promptly summarize how these times scale with N , and state the expected scaling

from the theoretical framework: see tables 4.5 and 4.6.

M

Figure 4.15: Relaxation times of M as function of ε for different values of N .
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Figure 4.16: Relaxation times of Zend as function of ε for different values of N .
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Figure 4.17: Relaxation times of RG‖ as function of ε for different values of N .

54



Table 4.5: Scaling exponents for the N-dependence of the relaxation times τM ,
τZend , and τRG‖ , below and above the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Desorption Regime Adsorption Regime

ε = 0.15 Theoretical
Prediction

ε = 2.00 Theoretical
Prediction

τMsc 1.10± 0.15 1 0.37± 0.10 0

τZend 1.94± 0.12 2.2 0.04± 0.06 0

τRG‖ 1.94± 0.07 2.2 2.20± 0.15 2.5

Table 4.6: Scaling exponents for the N-dependence of the relaxation times τM ,
τZend , and τRG‖ , in the vicinity of the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Critical Point Region

ε = 1.00 ε = 1.05 ε = 1.10 Theoretical
Prediction

τMsc 1.58± 0.11 1.63± 0.13 1.66± 0.12 1 + 2φ ≈
1.966

τZend 1.81± 0.11 1.80± 0.14 1.70± 0.15 2.2

τRG‖ 1.84± 0.14 1.85± 0.10 1.80± 0.15 2.2

The scaling for the relaxation times with N does not agree as neatly with

the theoretical predictions as in the previous parts. While τMsc in the desorption

regime and τZend and τRG‖ in the adsorption regime all agree with the expectations,

all the other values in all three regimes were underestimated by our simulations

or analysis (or both). This error can be caused by a number of reasons. The first

is the limited sampling that we are able to achieve. Running the simulations for

much longer times can increase the accuracy of our results, however we did not

have the time needed for such simulation runs in the present work. A second
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possible reason for this skew is the method used to obtain the relaxation times.

The best way in principle to get the slowest times of relaxation is to plot the

logarithms of the auto-correlation functions against linear time, find the most

linear parts with the smallest apparent slopes, and get those slopes by fitting to

a straight line. Two reasons pushed us to use a different method, one where we

simply integrate the correlation functions giving us an estimate of the mean time

of relaxation, which is a mean of the relaxation times of all different processes

happening in the system. Since we are interested in the slowest time, and since

said mean’s main contribution comes from said slowest times, we can use the

integration instead. The two reasons we did not go by fitting the logarithm of

each correlation function are: firstly, we did attempt it for τM earlier during this

work, and found that it was not as reliable as we expected. An example can be

seen in figure 4.18. The times calculated from integration are systematically all

less than those obtained from the slopes method. This is to be expected since

the integration gives an averaged time instead of the slowest one. However, as is

evident in figure 4.18, the slopes method is prone to a high degree of uncertainty

due to it largely depending on estimation. The second reason we went with the

integration method is the sheer number of correlation functions we would need

to manually fit to get the slopes, since the linear parts do not all fall in the

same regions. This means that the process cannot be automated, and for every

correlation function —as in for every energy, for every N , for every quantity—

we need to do the fit independently. This was not doable in the time-frame of

the present thesis.
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M

Figure 4.18: Relaxation times of M as found from two different methods; the
blue line shows the values achieved from integrating the correlation functions,
while the red line shows the values gotten from a visual search of the most linear
part of the logarithm of the correlation functions, with the smallest slope.

4.4 A Look at Local Behaviors of the System

Up until now we have been only looking at the system from a global perspective,

where all the parameters monitored were defined in the global sense of the whole

chain. In this section, we will look at two new quantities, the correlation time

of adsorption of any (or of the mean) monomer τi, and the correlation distance-

along-the-chain of adsorption ξ. We will also investigate the validity of the blob

picture in the strong adsorption regime.

4.4.1 Adsorption Correlation Times and Distances for In-

dividual Monomers

We begin by showing a sample of the correlation functions of the adsorption

of individual monomers against time (4.19), and of the correlation functions of

adsorption of individual monomers along the chain, as in against the monomer
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index i (4.20).

Figure 4.19: Time correlation functions of individual monomers’ adsorption
events for a chain of 250 monomers, shown for all values of ε. Same color scheme
as figure 4.12.

Figure 4.20: Correlation functions of individual monomers’ adsorption events
along the chain (against distance along the chain) for a chain of 150 monomers,
shown for all values of ε. Same color scheme as figure 4.12.

It can be noted from both that correlations decay slower the closer we are

to the critical point. For a more quantitative evaluation, we plot the found
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times and lengths of said correlations in figures 4.21 and 4.22, achieved in by the

same integration method. We remind that correlation lengths are obtained from

correlation functions that have no time lag; we are calculating the correlation

between different monomers at the same instant in time.

Figure 4.21: Correlations between different monomers’ individual adsorption
events in units of distance along the chain, for different values of N .

Figure 4.22: Correlation times between different monomers’ individual adsorption
events, for different values of N .

Theoretical predictions tell us that fluctuations and correlation lengths be-
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come of the size of the whole chain at the critical point. This is severely under-

realized in our work, where we see that correlations along the chain peak at a

value of nearly 14 monomers, for a chain of 800 monomers near the critical point

(figure 4.21). For further investigation, we compare our correlation functions of

ε in the critical vicinity to a theoretical estimate 2.4, both for N = 800 (fig-

ure 4.23). What we see is a good fit for small along-the-chain distances, which

becomes worse progressively with increasing backbone distance. Our simulation

correlations reach zero faster than the theoretical prediction. A possible reason

for this is the discreteness of our energy axis. Since we only look at quantities for

ε multiples of 0.05, it is very likely that our functions need corrections because

of our distance from the actual critical point. A quick calculation tells us that

our rescaled maximum distance from the critical point can be 0.05/2
1.11
∗Nφ = 1.24,

if we use φ = 0.6. This rescaled maximum distance is actually quite significant

when we look at figure 4.10. This means that the resolution of the energy in

our simulations is low, and that we can expect that even our nearest correlation

functions to the critical energy will not give a great fit to the theory. However, we

can also see that our simulation results are well behaved up to some corrections

to scaling.

As for the relaxation times, one issue to be noted is how the curves are not mono-

tone in N ; the adsorption relaxation time for a single monomer as a function of

ε is systematically larger for N = 100, 150, 200 than for N = 250, 800. In order

to see any trend in these plots easily, we can plot the ratio τmi/τM , as seen in

figure 4.24. Despite the noise, it is evident that the ratios for different chain

lengths converge to a certain small range (between 0.1 and 0.35) in the adsorp-

tion regime. It is not exactly clear if the ratios for different N are converging to

the same value, however, due to the fluctuations. Longer simulations and further
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averaging could help in determining the limit of this convergence.

Figure 4.23: Natural logarithm of the along-the-chain correlation functions of
individual adsorption events, theoretically at the critical energy (black line), and
from simulations at the candidate energies(colored lines).
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Figure 4.24: Ratio τmi
τM

as a function of ε, for different values of N .

4.4.2 Strong Adsorption Regime and the Blob Picture

To investigate the validity of the hypothesis expanded on in section 2.4, that

which expects that the behavior in the adsorption regime obeys the scaling of

adsorption blobs, we analyze the dependencies of particularly picked pairs of

quantities for 1.5 ≤ ε ≤ 2.0.

In figure 4.25 we log-log plot the along-the-chain correlation lengths against

the mean height of the free end. If the blob picture is to hold, we can expect that

〈Zend〉 ∼ ξM ∝ gν3DM .
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This means that a logarithmic plot should give a slope of 1/ν3D = 1.67. Looking

at said figure, we find that for lower energies (while remaining in the adsorption

regime) our data does not fit well the expectation. Surprisingly however, the fit

becomes noticeably better for higher energies. This is surprising because the blob

idea supposedly works better for weak adsorption and (relatively) large blobs (as

in blobs of many monomers as opposed to one or two). Here, our ”blob” fit is

describing smaller blobs better than larger ones.

Figure 4.25: log-log graph of the correlation length (of adsorption events) along
the chain gM against Zend in the adsorption regime, with theoretical slope shown
by the black line.

Next we look at how relaxation times are related in the adsorption regime.

We plot τZend against τMsc in figure 4.26. The lines for different N ’s seem to be
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in relatively good agreement with the expectation of slope = 1.

Figure 4.26: Relaxation time of Zend against that of M in the adsorption regime
(1.4 ≤ ε ≤ 2), with theoretical slope shown by the black line.

Furthermore, if the system is in fact governed by blob scaling in the adsorption

regime, it can be shown in fact that(as we do in 2.4)

τZend ∝ 〈Zend〉
2+ 1

ν3D ≈ 〈Zend〉3.67,

and that

τRG‖ ∝ 〈Zend〉
2−2

ν2D
ν3D ≈ 〈Zend〉−0.5.

Figures 4.27 and 4.28 expose those very dependencies, giving visually pleasing

64



fits as can be seen.

For the more useful quantitative analysis we turn the reader’s attention to table

4.7, which presents all the relevant scaling laws and dependencies along with un-

certainties and theoretical predictions.

Figure 4.27: Relaxation time of Zend against Zend in the adsorption regime, with
theoretical slope shown by the black line.

Our simulations return values that are systematically smaller than the ex-

pected 1.67 for the slope of log gMsc against logZend, for the values of N con-

sidered here; only for N = 250 does the expectation fall within the uncertainty

range obtained. However, with few exceptions, the slopes calculated for the rest

of the variables are well within reasonable range to the theoretical predictions.
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Figure 4.28: Relaxation time of RG‖ against Zend in the adsorption regime, with
theoretical slope shown by the black line.

Our simulations show that in fact τZend scales nearly linearly with τMsc, with that

linearity decreasing with increasing N . As for τZend and τRG‖ against Zend, we get

a clear disagreement for N = 50, but very good agreements for all other chain

lengths.

The results we have achieved, while mixed, tell us that the validity of the blob

picture’s description of polymer dynamics is not out of the question, when in

the adsorption regime. We have shown that Molecular Dynamics simulation re-

sults support to a good extent this description. However, further investigation

is necessary, with more care taken to eliminate possible sources of error, such as

an alternate method of calculation for the relaxation times, corrections of higher

order to scaling, and greater simulation time and averaging.
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Table 4.7: Slopes of linear fits of pairs of quantities for different N values, along
with the corresponding theoretical predictions.

log gMsc vs
logZend

(expected
slope = 1.67)

τZend vs τM
(expected
slope = 1)

log τZend vs
logZend

(expected
slope ≈ 3.67)

log τRG‖ vs
logZend

(expected
slope ≈ −0.5)

N = 50 1.00± 0.20 1.00± 0.05 3.16± 0.06 0.10± 0.20

N = 100 1.20± 0.20 1.07± 0.04 3.54± 0.09 −0.24± 0.14

N = 150 1.20± 0.20 0.99± 0.13 3.68± 0.08 −0.40± 0.25

N = 200 1.20± 0.20 0.97± 0.10 3.67± 0.12 −0.4± 0.4

N = 250 1.20± 0.25 0.88± 0.10 3.62± 0.16 −0.5± 0.3

4.5 Energy Counting of Adsorption Events

We finally investigate the second method of defining and counting adsorption

events. While we previously counted the number of monomers with z-components

between 0 and 2.5σ, one can conversely calculate the energetic interaction between

all monomers and the surface, and divide that by ε. We show in this section the

same graphs as for the simple counting but while applying this new definition.

Starting with the cumulants in figure 4.29, we calculate the intersection to be at

ε∗ec = 1.012±0.013. The two methods give slightly different results, while staying

in the general vicinity of ε = 1. As for the number of contacts, we show figure

4.30. One important artifact of this counting is the curvature we see at very low

energies. This curvature does not express actual increase in the contact number,

but is there due to the division by ε. This means that energy counting is not

reliable in the weak adsorption regime. We can also plot the adsorbed fractions

for both counting methods (figure 4.31), which suggests that energy counting

67



underestimates the number of contacts.

Figure 4.29: Second-order cumulants of adsorption number Mec as counted by
energy counting.
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Figure 4.30: Mean number of contacts 〈Mec〉 as counted by energy counting.

Simple Counting

Energy Counting

Figure 4.31: Adsorption fraction 〈m〉 = 〈M〉/N for both simple and energy
counting methods, as labeled, for N = 50, 100, 150, 200, 250.
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Figure 4.32: Time autocorrelation functions of adsorption number 〈Mec〉 as
counted by energy counting, for all values of ε. Same color scheme as figure
4.12.

Lastly, we show a sample of the adsorption correlation functions (figure 4.32),

where energy counting was employed to get the number of contacts. Integrating

as previously done yields the relaxation times of figure 4.33. We summarize the

scaling with N of the three quantities of interest obtained by energy counting in

tables 4.8 and 4.9.
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M
ec

Figure 4.33: Relaxation times gotten by integrating the correlation functions of
〈Mec〉, as functions of N .

Table 4.8: Scaling exponents for the N-dependence of quantities of interest 〈M〉,
〈Zend〉, and 〈RG‖〉 below and above the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Desorption Regime Adsorption Regime

ε = 0.15 Theoretical
Prediction

ε = 2.00 Theoretical
Prediction

〈M〉ec −0.00040±
0.00020

0 1.022± 0.004 1

σMec −0.0027±0.0007 0 1.000± 0.003 0.5

τMec 0.84± 0.10 1 0.32± 0.06 0

Energy counting also gives mixed results. Most estimates of φ are bad when

looking at either 〈M〉ec or σMec; however the scaling of τMec with N appears to
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Table 4.9: Scaling exponents for the N-dependence of quantities of interest 〈M〉,
〈Zend〉, and 〈RG‖〉, in the vicinity of the transition point, along with the theoretical
predictions. N = 50, 100, 150, 200, 250.

Critical Point Region

ε = 1.00 ε = 1.05 ε = 1.10 Theoretical
Prediction

〈M〉ec 0.473± 0.014 0.560± 0.020 0.691± 0.012 φ ≈ 0.483

σMec 0.950± 0.020 1.090± 0.015 1.212± 0.004 φ ≈ 0.483

τMec 1.70± 0.14 1.75± 0.08 1.72± 0.16 1 + 2φ ≈ 1.966

be somewhat better. We conclude that energy counting as used in the present

work is less reliable than simple counting. It gives partial agreement with the

theory when it comes to scaling with N , but poor mean adsorption number in

the weak regime. It also underrates the number of contacts in the strong regime,

when compared to the more widely used simple counting.
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Chapter 5

Conclusion and Future Work

In this work, we ran molecular dynamics simulations to simulate a real chain

near an attractive solid interface at equilibrium. While the chain goes through a

phase transition as the attraction strength ε is varied, we focus our investigation

into the adsorption regime, where ε > ε∗ and the chain is more likely to be found

near the surface. We aimed to check the validity of the adsorption blob argument

set out originally by de Gennes [25], by deriving from it scaling laws of system

properties. We also attempt to characterize the system in terms of local variables,

namely individual monomers’ adsorption events.

After ensuring our simulations’ consistency with previous known results, per-

taining to mean number of adsorbed monomers 〈M〉, mean height of the chain’s

free end 〈Zend〉, and mean parallel-to-surface component of the chain’s gyration

radius 〈RG‖〉, we investigate the adsorption regime for spatial and temporal de-

pendencies that may strengthen the “blob” argument. Scaling arguments are

employed conjointly with the Rouse model to write the expected scaling of cor-

relation lengths and times with measured quantities (see table 2.1).
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Very good agreement between our simulations and the adsorption blob the-

ory’s predictions is found for τZend ∝ 〈Zend〉3.67, τRG‖ ∝ 〈Zend〉−0.5, and τZend ∝

τM . The prediction that ξM ∼ g0.67
M ∝ Zend was not properly verified; the power

of 0.67 was overestimated for chains of lengths between 50 and 250. In addition,

the ratio of the adsorption relaxation time of individual monomers to the relax-

ation time of M , τmi/τM , was also probed, finding that for different chain lengths

the ratios converged in the adsorption regime to a narrow range between 0.1 and

0.35. Lastly, along-the-chain correlation functions were calculated from simula-

tions, giving a profile for correlations’ decay along the polymer, as function of

the adsorption strength. They were also compared to theoretically derived corre-

lations, where proximity and similarity were evident for short backbone distances.

Future work will investigate the source of the departures from expectations

and theory found. An increase in the resolution of the ε axis, along with extended

simulation time and better averaging are expected to enhance most found scaling

laws, both reproducing known results better, and finding local variables more

accurately. A better method will also be employed to extract relaxation times

from correlation functions. Lastly, the range of validity of the blob argument is

worth probing in the adsorption regime.
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