

AMERICAN UNIVERSITY OF BEIRUT

WELL TRAJECTORY DESIGN WITHIN THE INTEGRATED

FIELD DEVELOPMENT OPTIMIZATION FRAMEWORK

by

ANTHONY JEAN AYOUB

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Science

to the Department of Chemical Engineering

of the Maroun Semaan Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

February 2021

Kassem Ghorayeb, on behalf of Dr. Elsa Maalouf

Kassem Ghorayeb, on behalf of Dr. Georges Saad

Kassem Ghorayeb, on behalf of Dr. Joseph Zaiter

AMERICAN UNIVERSITY OF BEIRUT

WELL TRAJECTORY DESIGN WITHIN THE INTEGRATED

FIELD DEVELOPMENT OPTIMIZATION FRAMEWORK

by

ANTHONY JEAN AYOUB

Approved by:

Kassem Ghorayeb

Advisor

Member of Committee

Member of Committee

Member of Committee

Date of thesis defense: February 22, 2021

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name: Ayoub Anthony Jean___

Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic

copies of my thesis; (b) include such copies in the archives and digital repositories of

the University; and (c) make freely available such copies to third parties for research or

educational purposes:

 As of the date of submission

One year from the date of submission of my thesis.

Two years from the date of submission of my thesis.

Three years from the date of submission of my thesis.

28/2/2021

Signature Date

1

ACKNOWLEDGEMENTS

Firstly, I would like to thank God for providing me with the strength, determination,

and energy to be able to successfully finalize this thesis.

Secondly, I would like to thank my advisor Prof. Ghorayeb for his continuous support,

encouragement, and guidance throughout this thesis. Due to this research project, I have

gained a large amount of knowledge in the oil and gas field and specifically in drilling.

Thirdly, I would like to thank all members of the OGED team for providing assistance

and support when needed. I am proud to call myself a member of this amazing and

hardworking team.

Lastly, I would like to thank my family and friends for their support throughout this

experience. I could not have done it without you!

2

ABSTRACT

OF THE THESIS OF

Anthony Jean Ayoub for Master of Science

Major: Chemical Engineering

Title: Well Trajectory Design within the Integrated Field Development Optimization

Framework.

The drilling of vertical wells was the most used technique in the oil and gas industry.

However, as time progressed, the need to drill in a non-vertical path increased in

significance. This led to the creation of directional and horizontal drilling. Due to the

improvement in technology, these two different methods of drilling have become

widely used in the industry today (Short, 1993). The usage of a single directional or

horizontal well may be as efficient as using multiple vertical wells. Therefore, the main

advantage of such methods in drilling is that it can minimize drilling costs while

maximizing profit.

In this thesis paper, we develop a Python tool aiming at 1) designing the well trajectory

and 2) assessing the feasibility of the proposed reservoir targets as part of the integrated

well and facility placement optimization solution being developed by the OGED team.

The input to the “building block” we are developing is the horizontal section of the well

as well as the surface location. The output of the algorithm is a well trajectory honoring

the well design constraints.

We start by studying the different well design techniques, comparing their accuracy,

and implementing these techniques in the tool. This discussion includes the different

parameters related to the used well profiles. We apply the different methods to several

well placement scenarios and test the resulting well trajectories within the framework of

the integrated well and facility placement optimization solution to assess the impact on

the efficiency and robustness of the solution as well as the associated NPV.

3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 1

ABSTRACT ... 2

ILLUSTRATIONS ... 8

TABLES ... 11
Chapter

1. INTRODUCTION .. 12

1.1. Background .. 12

1.2. Problem Statement ... 13

1.3. Objectives .. 14

2. DEFINITIONS ... 15

2.1. True Vertical Depth (TVD) ... 15

2.2. Measured Depth (MD) ... 15

2.3. Horizontal Displacement ... 15

2.4. End of Build Point ... 16

2.5. Vertical Section .. 16

2.6. Build Section .. 16

2.7. Tangent Section ... 16

3. Literatrue Review ... 18

4

3.1. Application for Directional and Horizontal wells .. 18

3.1.1. Main Applications of Directional and Horizontal Wells 18

3.1.2. Scenarios that Favor Horizontal Wells ... 19

3.2. Inclination and Build Rate ... 20

3.3. Azimuth and Turn Rate .. 21

3.4. Dogleg Severity and Dogleg Angle ... 22

3.5. Directional Drilling Well Profiles .. 23

3.5.1. Build and Hold or Single Bend ... 23

3.5.2. Build, Hold, and Drop or S profile ... 26

3.5.3. Continuous Build or J Profile ... 27

3.5.4. Slant Profile .. 28

3.5.5. Extended Reach Profile .. 28

3.6. Horizontal Drilling ... 29

3.7. Complex Wells .. 30

3.8. Surveying Techniques .. 33

3.8.1. Tangential Method .. 34

3.8.2. Balanced Tangential Method .. 34

3.8.3. Average Angle Method ... 35

3.8.4. Radius of Curvature Method ... 35

3.8.5. Minimum Curvature Method .. 36

3.9. Bezier Curves ... 37

3.10. Different Methods Used to Obtain Real (3D) Trajectories. 41

3.11. The Method Selected For this Study. ... 47

4. Methodology ... 48

4.1. Curve Used to Generate 3D Well Trajectories. ... 48

5

4.2. Azimuth. .. 48

4.3. Inclination. ... 49

4.4. Measured Depth. .. 50

4.5. Dogleg Severity. .. 50

4.6. Requirements of the Algorithm. .. 50

4.6.1. Surface coordinates or drilling center ... 50

4.6.2. Target coordinates ... 51

4.6.3. DLS maximum limit ... 51

4.6.4. Kick-Off point or KOP ... 51

4.6.5. Arbitrary parameter to reach Cs .. 51

4.6.6. Parametric t ... 52

4.7. Algorithm Structure ... 53

4.7.1. Read Input Data. ... 53

4.7.2. Trajectory Design Calculations. ... 54

4.7.2.1. Initialize Control Parameters. .. 55

4.7.2.2. Bezier Curve Function. .. 55

4.7.2.2.1. Input Initial Well Data. ... 56

4.7.2.2.2. Create the Vertical Well Section. .. 56

4.7.2.2.3. Calculates the Azimuth of the Drilling Center and Target Well..... 57

4.7.2.2.4. Use Control Parameters. ... 57

4.7.2.2.5. Calculates the Coordinates of the Points to form the Planned

Trajectory using Bezier Curve model. .. 57

4.7.2.2.6. Calculates the error. .. 57

4.7.2.2.7. Checks the error. ... 58

4.7.2.2.8. Return Trajectory List ... 58

4.7.2.3. Check if Trajectory is feasible ... 58

4.7.2.4. Particle Swarm Optimization (PSO) .. 58

4.7.2.5. Calculate Well Trajectory Properties. .. 60

4.7.2.6. Calculate DLS .. 60

4.7.2.7. Check if DLS is feasible .. 61

4.7.2.8. Return Calculated Trajectory. .. 61

4.7.3. Check if trajectory is feasible ... 61

4.7.4. Return output text file and plot ... 61

6

5. OPTIMIZATION AND TESTING .. 62

5.1. Timeline of the Different Studies Done for Well Trajectory Optimization. 62

5.2. A Brief Description of the Different Optimization Algorithms tested. 65

5.2.1. Particle Swarm Optimization .. 66

5.2.2. Differential Evolution ... 66

5.2.3. Genetic Algorithm .. 67

5.2.4. Dual Annealing. .. 67

5.2.5. Sequential Least Square Programming. .. 68

5.3. Results of the Different Optimization Algorithms. ... 68

5.4. Discussion. ... 70

6. RESULTS AND DISCUSSION .. 72

6.1. Sensitivity Analysis. .. 72

6.2. Testing Results and Discussion. .. 81

6.2.1. Initial trajectory ... 81

6.2.2. Manual optimization ... 81

6.2.3. Automated optimization. .. 81

6.2.4. Results and discussion. ... 81

6.2.4.1. Case 1. .. 82

6.2.4.2. Case 2. .. 86

6.2.4.3. Case 3. .. 86

6.2.4.4. Case 4. .. 87

6.2.4.5. Case 5. .. 89

6.2.4.6. Case 6. .. 90

6.2.4.7. Case 7. .. 90

6.2.4.8. Case 8. .. 91

6.2.4.9. Case 9. .. 91

6.2.4.10. Case 10. .. 92

6.2.4.11. Case 11. .. 92

7

6.2.4.12. Case 12. .. 93

6.2.4.13. Case 13. .. 93

6.2.4.14. Case 14. .. 94

6.2.4.15. Case 15. .. 94

6.2.4.16. Case 16. .. 95

6.2.4.17. Case 17. .. 95

6.2.4.18. Case 18. .. 96

6.2.4.19. Case 19. .. 96

6.2.4.20. Case 20. .. 97

6.2.4.21. Case 21. .. 97

6.2.4.22. Case 22. .. 98

6.2.4.23. Case 23. .. 98

6.2.4.24. Case 24. .. 99

7. VERTIFICATION WITH PETREL 100
7.1. Well Path Algorithm in Petrel. .. 100

7.2. Input Parameters Set in Petrel. ... 100

7.3. Results of Testing Wells. ... 101

8. CONCLUSION AND RECOMMENDATIONS FOR

FUTURE WORK ... 103
8.1. Conclusion. .. 103

8.2. Recommendations for future work. ... 104

APPENDIX .. 106

REFERENCES ... 121

8

ILLUSTRATIONS

Figure

1. Different sections in a horizontal well .. 17

2. Well inclination ... 21

3. Well azimuth ... 21

4. Build and hold profile ... 24

5. Build, hold, and drop profile ... 26

6. Continuous build ... 28

7. Different well profiles present in directional drilling. .. 29

8. Different complex wells. ... 31

9. Hook well profile .. 32

10. Snake well profile ... 32

11. Control points. .. 38

12. Control points. .. 39

13. Algorithm structure (Level 1) ... 53

14. Trajectory design calculations structure (Level 2) .. 54

15. Bezier curve function structure (Level 3) ... 55

16. Results: Incremental percentage of the CPU vs Optimization Algorithm. 70

17. Results: Incremental percentage of the Measured Depth vs Optimization

Algorithm. ... 69

18. Results: Standard Deviation vs Optimization Algorithm. 70

19. Well 1. ... 78

20. Well 2. ... 79

21. Well 3. ... 79

9

22. Well 4. ... 79

23. Well 5. ... 80

24. Vertical trajectories of case 1. ... 82

25. Manual optimized trajectories of case 1. .. 83

26. Automated optimized trajectories of case 1. ... 83

27. Case 1. ... 84

28. Case 2. ... 86

29. Case 3. ... 87

30. Case 4. ... 87

31. Case 5. ... 89

32. Case 6. ... 90

33. Case 7. ... 90

34. Case 8. ... 91

35. Case 9. ... 91

36. Case 10. ... 92

37. Case 11. ... 92

38. Case 12. ... 93

39. Case 13. ... 93

40. Case 14. ... 94

41. Case 15. ... 94

42. Case 16. ... 95

43. Case 17. ... 95

44. Case 18. ... 96

45. Case 19. ... 96

10

46. Case 20. ... 97

47. Case 21. ... 97

48. Case 22. ... 98

49. Case 23. ... 98

50. Case 24. ... 99

51. Results. .. 101

11

TABLES

Table

1. Different horizontal well profiles. ... 30

2. Timeline of different studies conducted on well path optimization. 62

3. Measured depth results after changing the number of particles. 72

4. Processing time results after changing the number of particles. 73

5. Measured depth results after changing the convergence criteria 76

6. Processing times results after changing the convergence criteria 76

7. Measured depth comparison for manual and optimized trajectories. 85

8. Measured depth comparison for manual and optimized trajectories in the case of

horizontal targets. .. 88

9. Comparison between Bezier algorithm and Petrel. ... 102

12

CHAPTER 1

INTRODUCTION

In this chapter, the background of well drilling will be discussed. Followed by

the presentation of the problem statement of this paper. Lastly, the different objectives

needed to finalize this study will be explained.

1.1. Background

Drilling of a well is simply the construction of a path or trajectory that connects

two different points. The first point is the starting point of the trajectory. This point is

commonly denoted by the drilling center. On the other hand, the second point is known

as the reservoir target. This point can represent a reservoir or another well that needs to

be intersected. In the oil and gas industry, the three different well types currently

implemented are the vertical, directional, and horizontal wells. These types are

characterized based on how the trajectory intersects the target. For the case of vertical

wells, the planned trajectory intersects the target vertically. In the case of directional

wells, the planned path intersects the target at a calculated angle. Lastly, in the case of

horizontal wells, the planned path intersects the target horizontally.

For directional and horizontal wells, the most important parameter to be

considered is the maximum allowable degree of bending or dogleg severity. Drilling

engineers must take into consideration that the higher the dogleg severity, the larger the

deviation, the smaller the well length required to intersect the target (Hosseini et al.,

2014). However, having high levels of dogleg severity may lead to more frequent

drilling complications (Short, 1993). Therefore, having the highest possible dogleg

13

severity is not always the best option. A second important parameter to be discussed is

the specification of the kick-off point. This point is simply the point at which the

vertical section of the well starts deviating to intersect the target (Inglis, 1987). The

depth of the kick-off point is normally based on the existing scenario. For example, a

shallow kick off point is selected when large inclinations are needed to intersect the

target. In other cases, a deep kick off point is selected in order to avoid “soft

formations” that are near the surface (Inglis, 1987). Similarly, the usage of the different

well profiles present in directional and horizontal wells are also dictated by the scenario

present in each case (Devereux, 1998). After choosing the well profile that serves as the

best fit, the drilling engineer then combines several equations to determine the

trajectory. This is known as the designing phase.

Following the designing phase, the drilling engineer must ensure that the well is

moving according to the correct path. In the designing phase, the 2D trajectory of the

well path is obtained. Therefore, to obtain this trajectory in 3D space, surveying

methods are implemented (Bourgoyne et al., 1991). These different methods are used

to calculate the three-dimensional coordinates of the points that are found in the

calculated well trajectory.

1.2. Problem Statement

The usage of directional and horizontal wells has proven to be beneficial when

compared to vertical wells. However, the equations that are used in these well profiles

do not account for any change in direction. To solve this issue, engineers usually refer

to complex wells (which consist of different turn and build sections). Complex wells

may be combined with different surveying techniques to generate the best well

14

trajectory. Thus, the aim of this study is to design a complex well algorithm that can be

optimized and implemented in the novel integrated solution being developed by the

OGED team. This team, which is led by Professor Ghorayeb, is currently working on

field development planning. Thus, it has been developing both well and facility

placements to be integrated into the studied field development.

1.3. Objectives

1. Design and test a directional well algorithm after studying the different well

profiles present in the literature.

2. Improve the directional well algorithm to account for different bends and/or

turns.

3. Test the newly updated algorithm and visualize the results.

4. Modify and optimize the algorithm.

5. Implement the algorithm into the integrated solution being developed by the

OGED team.

6. Test and verify the newly implemented algorithm using different scenarios.

15

CHAPTER 2

DEFINITIONS

This chapter will discuss the different important definitions that are

implemented in well designing and drilling.

2.1. True Vertical Depth (TVD)

True vertical depth refers to the vertical depth with respect to a reference such as

the surface. If a point lies 300 meters vertically below a surface, then this point’s TVD

is equal to 300 meters.

2.2. Measured Depth (MD)

Measured depth refers to the actual length from the reference to the point.

Therefore, the curves and bends of the well are accounted for when using measured

depth.

2.3. Horizontal Displacement

Horizontal displacement is the horizontal distance between the starting point of

the well and the point of interest.

16

2.4. End of Build Point

The end of build point is the point at which the well stops deviating from

vertical to reach the target. This point is normally obtained by the calculations used for

the different well profiles present in the literature.

2.5. Vertical Section

This section simply represents the vertical part of the well. For example, for a

vertical well the vertical section is equal to the length of the whole well being drilled. In

the case of directional and horizontal wells, this section is normally limited by the kick

off point.

2.6. Build Section

This section represents the part at which the well starts deviating from the

vertical. Therefore, what is normally seen in this section is the change in the inclination

and/or azimuth. The build section is limited by the kick off point and the end of build

point.

2.7. Tangent Section

After having a build section, the well’s inclination angle is usually kept constant.

Therefore, this part of the well is known as the tangent section. It is important to note

that, in this section, the TVD and horizontal displacement of the well is changing. This

section is limited by the end of build point and/or target. Some of the following

definitions are shown in the figure below:

17

Figure 1 Different sections in a horizontal well

18

CHAPTER 3

LITERATRUE REVIEW

The usage of each well type is dictated by the scenario present in each case.

Vertical wells were primarily used in the case when the target was at a specific vertical

distance below the starting point. In this specific scenario, only vertical wells were

needed to intersect the target. As the cases became more complex, the usage of

directional and horizontal wells became of grave importance. The different applications,

formulas, and examples for each well profile will be presented in this chapter.

3.1. Application for Directional and Horizontal wells

3.1.1. Main Applications of Directional and Horizontal Wells

 In many drilling scenarios, drilling engineers need to avoid certain geological

formations for the procedure to be successful. This can be seen in the case of the

presence of a salt dome above the targeted reservoir. In this specific case, using

the traditional vertical well to intersect the target will yield to complications

such as “corrosion” (Inglis, 1987). To add to the example above, another

geological formation that must be avoided is the presence of “steep inclined

faults” (Inglis, 1987).

 In offshore drilling, multiple wells are usually drilled from the same platform. In

this scenario, wells being drilled must be able to intersect targets that are

kilometres away. For this reason, using directional wells is almost mandatory

19

since it requires the usage of a single platform rather than multiple platforms

when compared to vertical wells (McMillian, 1980).

 In other drilling cases, multiple targets are present that need to be intersected.

Therefore, in order to minimize costs, drilling engineers will resort to a single

directional well that will intersect the different targets rather than drilling

multiple vertical wells for the same purpose (Hossain & Al-Majed, 2015).

 In other scenarios, directional wells are used to relief already present wells that

are undergoing excessive pressures and flowrates. The aim of these directional

wells (also known as relief wells) is to intersect the targeted wells and prevent

them from blowing (Short, 1993).

3.1.2. Scenarios that Favor Horizontal Wells

 It has been proven that horizontal wells have higher production rates when

compared to other well types (Short, 1993). This improvement in productivity is

directly related to the long horizontal section of these types of wells. Therefore,

as the horizontal section of the well increases, the area that is in common

between the well and the reservoir increases. This in turn allows for higher

volume of oil and gas to flow from the reservoir to the well (Short, 1993). As a

result, certain scenarios that were proven to be economically unfeasible using

the vertical or directional well type may be feasible using the horizontal well

type.

 Horizontal wells are also used in the case when “vertical fractures” that contain

hydrocarbons must be penetrated (Short, 1993).

20

 In addition, horizontal wells are also applied to avoid water and gas coning

problems that arise when the pressure difference between the reservoir and the

well increases (Hossain & Al-Majed, 2015). This is possible due to the inversely

proportional relation that exists between the contact area and the pressure

difference. Therefore, as the contact area between the reservoir and the well

increases, the pressure difference between the reservoir and the well will

decrease (Short, 1993).

Horizontal wells are usually more expensive when compared to the other well

types. Therefore, the usage of these wells must be economically justified.

3.2. Inclination and Build Rate

In addition to the terms defined in chapter 2, there exist other basic components

that are used in well trajectory planning. These components will be discussed in this

section.

Inclination is the angle that is being formed between the well and the vertical

plane. As stated previously, a vertical well will intersect the target at an inclination of

zero degrees. Horizontal wells intersect the target at an inclination of 90 degrees. The

higher the well inclination, the greater the complications faced such as logging (Allain,

et al., The Imperial College Lectures in Petroleum Engineering Drilling and Reservoir

Appraisal, 2019). Moreover, the higher the inclination, the larger the costs associated

with drilling (Ma et al., 2016). Therefore, the usage of inclinations above 60 degrees

must be economically justified. Build rate is simply the change in inclination over a

distance that could be 30 meters or 100 feet. The figure below is a graphical

representation of inclination.

21

Figure 2 Well inclination

3.3. Azimuth and Turn Rate

Azimuth or direction is the angle formed with respect to the north when

projected on the horizontal plane. It usually ranges between 0 and 360 degrees. By

convention, it is always measured clockwise with respect to the north (Bourgoyne et al.,

1991). Thus, an azimuth of 90 degrees indicates a turn towards the east. Moreover, an

azimuth of 270 degrees indicates a turn towards the west. If the difference between two

azimuths is positive, then the well must direct itself to the right. In the same manner, if

the difference between the two angles is negative, then the well will turn to the left

(McMillian, 1980). Similarly to the build rate, the turn rate is simply the change in

azimuth over a distance that could be 30 meters or 100 feet. The figure below illustrates

the graphical representation of the azimuth.

Figure 3 Well azimuth

22

3.4. Dogleg Severity and Dogleg Angle

As stated in the introduction, in directional and horizontal wells, drilling

engineers are supposed to take into consideration the risk of having certain equipment

such as the drill string (which is composed of the different drilling tools such as drill

pipe etc...) stuck while drilling. This is also known as key seat (Short, 1993). In other

cases, highly deviated wells may witness casing wear and fatigue (Devereux, 1998).

Therefore, engineers usually set a constraint for the maximum allowable dogleg severity

during drilling. Normally, the dogleg severity is calculated between two points known

as “survey stations” (Hossain & Al-Majed, 2015). It has the following formula (Hossain

& Al-Majed, 2015):

DLS =
𝛷∗30

𝑀𝐷

Where Φ, and MD are the dogleg angle in degrees, and measured depth between

the two points being studied respectively in meters. The unit for the dogleg severity

(DLS) is degrees per 100 feet or 30 meters.

The maximum dogleg severity allowed usually depends on the depth of the well.

In the case of shallow wells, a maximum dogleg severity of 10 degrees per 100 feet or

30 meters is allowable. On the other hand, in the case of deep wells, any dogleg severity

exceeding 3 degrees per 100 feet or 30 meters may lead to drilling problems (Mitchell,

1995).

The formula used to obtain the dogleg angle is the following (Hossain & Al-

Majed, 2015):

Φ= 𝑐𝑜𝑠−1(𝐶𝑜𝑠 𝐼1 ∗ 𝐶𝑜𝑠 𝐼2 + 𝑆𝑖𝑛 𝐼1 ∗ 𝑆𝑖𝑛 𝐼2 ∗ 𝐶𝑜𝑠 (𝐴2 − 𝐴1)

Where, I1 and I2 represent the inclination angles at points 1 and 2 respectively.

A1 and A2 represent the azimuth for each survey point (Hossain & Al-Majed, 2015).

23

For the purpose of this thesis paper, the only two well profiles that will be

described in detail are the build and hold and the complex well profiles. The other

different well profiles will be mentioned briefly.

3.5. Directional Drilling Well Profiles

Other well types do exist in the directional category. This may differ slightly

from one source to the other, but the directional category contains between four or five

well types. Thus, these well profiles are shown below:

 The first well profile is the build and hold (Inglis, 1987).

 The second well profile is the build, hold, and drop (Bourgoyne et al., 1991).

 The third well profile is the continuous build or J type profile (Krishnan &

Kulkarni, 2016).

 The fourth well profile is the slant well profile (Short, 1993).

 Finally, the fifth well profile present in the literature is the extended reach well

(Short, 1993).

3.5.1. Build and Hold or Single Bend

The build and hold trajectory is divided into three different well sections. The

first section is the vertical section. In this section, the well is drilled vertically to reach

the kick-off point. Once the kick-off point is reached, the well then starts deviating at a

given build rate. This forms the build section of the well. Similarly to the vertical

section, the well stops deviating once the end of build point is reached. Following this

24

section, the tangent section then drives the well to intersect the target at a fixed

inclination (known as the hold section).

The figure below shows a geometrical representation of the build and hold

profile. The components of this figure will be discussed throughout this section.

Figure 4 Build and hold profile.

To obtain the radius of curvature, which is represented by “R” in figure

5, the following equation is used (Bourgoyne et al., 1991):

R =
180

𝜋∗𝐵𝑅
=

180∗𝑀𝐷

𝜋∗𝐵𝑅𝐴

Where BR, BRA, and MD are the build rate, build rate angle, and

measured depth respectively. Therefore, the build rate is simply the build rate angle per

measured depth that may be either in feet or in meters (Bourgoyne et al., 1991). After

the build rate is calculated, the horizontal displacement between the target and starting

point must be determined. In figure 5, the horizontal displacement is represented by

“Ht”. To calculate “Ht”, the following equation is used (Inglis, 1987):

25

Ht =√(𝑋𝑡 − 𝑋𝑠𝑝)2 + (𝑌𝑡 − 𝑌𝑠𝑝)2

Where Xt, Yt, Xsp, and Ysp represent the x and y coordinates of the target and

starting point respectively (Inglis, 1987).

Following the horizontal displacement, the engineer needs to obtain the inclination

required to reach the target. The equation used for that purpose is found below (Hossain

& Al-Majed, 2015):

α=sin−1[
𝑅

√(𝑅−𝐻𝑡)2+(𝑇𝑉𝐷−𝐾𝑂𝑃)2

]-tan−1[

𝑅−𝐻𝑡
]

𝑇𝑉𝐷−𝐾𝑂𝑃

Where α and TVD are the inclinations and true vertical depth of the target

respectively.

These calculations will provide the needed components to guide the well

towards the target. However, the direction of the well with respect to the horizontal

plane or azimuth should be calculated. The following equation is used in the literature

to calculate the direction (Inglis, 1987):

β=tan−1(
𝑌𝑡−𝑌𝑠𝑝

)
𝑋𝑡−𝑋𝑠𝑝

This equation can be obtained simply by specifying the angle that is being

formed with the horizontal plane. Once this angle is specified, the application of the

tangent rule is used to calculate this angle based on the given information.

Once all components have been calculated, the directional engineer must calculate the

measured depth to intersect the target. Therefore, the following equations are used

(Bourgoyne Jr., Millheim, Chenevert, & Jr., Applied Drilling Engineering, 1991):

MDT=MDEOB+MDTS

MDEOB=MDKOP+ 30 ∗
𝛼

𝐵𝑅

26

Where, MDT, MDEOB, MDTS, MDKOP, 𝛼 and BR are the measured depth of

the target, end of build point, tangent section of the well, kick off point, inclination and

build rate respectively.

3.5.2. Build, Hold, and Drop or S profile.

This well profile is similar to the build and hold profile discussed in 3.5.1. Thus,

it includes the typical vertical section, build section and hold section. However, what

differentiates this well type is the addition of a fourth section. This is known as the drop

section. Therefore, the well will intersect the target at a decreased inclination that in

some cases may even reach vertical or 0 degrees. The geometrical representation of this

well type is presented in the figure below:

Figure 5 Build, hold, and drop profile.

In this configuration, there are two radii of curvature which are designated by

“R1” and “R2”. “R1” is related to the build section and “R2” is related to the drop

27

section. Thus, there exists two different equations based on the build rate and drop rate

of each well section. These two radii of curvature are calculated by the following

equations (Bourgoyne Jr., Millheim, Chenevert, & Jr., Applied Drilling Engineering,

1991):

R1 =
180

𝜋∗𝐵𝑅

R2 =
180

𝜋∗𝐷𝑅

=

180∗𝑀𝐷

𝜋∗𝐵𝑅𝐴

=

180∗𝑀𝐷

𝜋∗𝐷𝑅𝐴

Where BR, BRA, DR, DRA and MD are the build rate, build rate angle, drop

rate, drop rate angle, and measured depth respectively.

To obtain the inclination required to reach the target, the directional driller must

use the following formulas (Bourgoyne et al., 1991):

If R1+R2>Ht:

α1=tan−1[
𝑇𝑉𝐷−𝐾𝑂𝑃

] - cos−1([

𝑅1+𝑅2

] ∗ 𝑠𝑖𝑛[tan−1[

𝑇𝑉𝐷−𝐾𝑂𝑃

]])

(𝑅1+𝑅2−𝐻𝑡) 𝑇𝑉𝐷−𝐾𝑂𝑃 (𝑅1+𝑅2−𝐻𝑡)

If R1+R2<Ht:

α1=180 − tan−1[
𝑇𝑉𝐷−𝐾𝑂𝑃

] - cos−1([
𝑅1+𝑅2

] ∗ 𝑠𝑖𝑛[tan−1[
𝑇𝑉𝐷−𝐾𝑂𝑃

]])
(𝐻𝑡−(𝑅1−𝑅2) 𝑇𝑉𝐷−𝐾𝑂𝑃 (𝐻𝑡−(𝑅1+𝑅2)

Note: In both cases presented above, the final inclination needed to intersect the

target is at 0 degrees.

3.5.3. Continuous Build or J Profile

This well profile consists of two main sections. The first section is the vertical

section where the well displaces vertically to reach the kick-off point. Once it reaches

the kick-off point, the well then deviates to intersect the target which forms the build

section. Therefore, there is no hold or drop sections in this well profile. It is important

to state that, in this section, the kick-off point is normally located at very deep depths

28

when compared to the previous well profiles. A graphical representation of this well

profile is found in the figure below:

Figure 6 Continuous build

All parameters present in this well profile are calculated using the same

formulas presented in section 3.5.1.

3.5.4. Slant Profile

In this well profile, the well starts with an inclination that ranges between 30 to

45 degrees (Short, 1993). Thus, there is no vertical section to reach the kick-off point as

seen in figure 7. The well then continues with the same inclination to intersect the

target. This is known as the hold section or tangent section. Moreover, all parameters in

this well section are obtained by the equations presented in the sections above.

3.5.5. Extended Reach Profile

It is important to note that, in some other sources, the extended reach well

profile is considered as a horizontal well type. For example, according to Hossain and

29

Al-Majed (2015), the extended reach well type is a special case of horizontal drilling.

This is also the case according to Inglis (1987). For the purpose of this paper, the

different well profiles will follow the classifications presented in section 3.5. This can

be explained by the fact that the extended reach well has an almost identical shape as

the build and hold profile. Therefore, it is more logical to include this well profile in the

directional well’s category. This can be seen in the figure below:

Figure 7 Different well profiles present in directional drilling.

Hence, it is evident that the extended reach profile is similar to the build and

hold but with a greater inclination angle to reach the target that may sometimes reach 90

degrees.

3.6. Horizontal Drilling

Horizontal drilling is considered a special category of directional drilling (Hossain

& Al-Majed, 2015). In this category, wells will intersect the target at an inclination of

90 degrees. Horizontal wells are divided into three main well profiles. The radius of

curvature is what characterizes the different well profiles in this well category. It is

divided into the following:

30

 Long radius or turn

 Medium radius or turn

 Short radius or turn

All three categories mentioned above have the same well sections. The first well

section is the vertical section as described in section 3.5.1. The second well section is

the build section. In this section, the well will build until it reaches an inclination of 90

degrees. Once this inclination is reached, the build section is terminated, and the well

continues on horizontally to intersect the target forming the tangent or hold section.

The main difference between the three categories is presented in the table below:

Table 1 Different horizontal well profiles.

 Long Radius Medium Radius Short Radius

Build Rate 2-6 degrees per

100 ft or 30 meters.

8-30 degrees per

100 ft or 30 meters.

60-150 degrees per

100 ft or 30 meters.

Radius of

Curvature

304-914 meters. 91-243 meters. 0.6-18 meters.

Horizontal Section

(after reaching 90

degree

inclination).

609-1524 meters. 457-914 meters. 30-243 meters.

3.7. Complex Wells

Complex wells were first considered as futuristic approaches to solve modern

day problems. The implementation of such well profiles was directly related to the level

31

of advancement in technologies related to drilling. These types of wells do add a certain

degree of complexity in the drilling process. However, with the development of

enhanced drilling equipment, the usage of these types of wells has become relatively

common. Complex wells are wells that usually contain many changes in direction.

Moreover, these wells may consist of different build and drop sections (Short, 1993). In

other cases, complex wells may even combine between directional and horizontal wells

(Short, 1993). Examples of different complex wells are illustrated in the figure below:

Figure 8 Different complex wells.

Other examples of complex wells are present in the literature. According to

Allain et al. (2019), the hook well and the snake well are examples of wells present in

the industry today. Examples of the two wells will be presented in the two figures

below:

32

Figure 9 Hook well profile.

Figure 10 Snake well profile.

As seen in figure 9, the hook well may be used in the specific case when the

well trajectory must go below a certain obstacle such as a fault and then rise to intersect

the target. On the other hand, in figure 10, the snake well profile may be used in the

case of multiple targets. Therefore, instead of using multiple vertical wells or even

directional wells to intersect the targets, the drilling engineer may be able to use one

single complex well. As a result, any well profile with bends and turns can be classified

as a complex well.

33

As stated previously, the main disadvantage related to directional and horizontal

wells is the assumption that no change in direction is required to intersect the target.

Therefore, the build and hold profile assumes the need of a straight line to intersect the

target. However, in real cases witnessed in the oil and gas industry, directional

engineers most likely will be required to drive the well in a path full of bends and turns.

To be able to design this 3D curved trajectory, engineers resort to different surveying

techniques which require the usage of survey points. According to Bourgoyne et al.

(1991), for each point, the inclination, azimuth, and measured depth between the two

points are required to successfully perform the needed calculations.

3.8. Surveying Techniques

The different surveying techniques are mainly divided into two different parts.

The first part assumes that a straight line can join the two survey points being studied

(Bourgoyne et al., 1991). While as, for the second part, the main assumption is that a

curve can join the two survey points used (Bourgoyne et al., 1991). The five different

methods used are the following (Inglis, 1987):

1. Tangential method.

2. Balanced tangential method.

3. Average angle method.

4. Radius of curvature method.

5. Minimum curvature method.

34

3.8.1. Tangential Method

In this surveying method, the path of the well is assumed to follow a straight

line. It is solely defined by the inclination and azimuth of the lower survey point (Inglis,

1987). The equations used in this method are the following (Inglis, 1987):

ΔV = L . cos I2

ΔN = L . sin I2 . cos A2

ΔE = L . sin I2 . sin A2

Where I, A, and L are inclination, azimuth, and measured depth between the

survey points respectively. The numbers 1 and 2 represent the previous and next station

points to be calculated.

However, this calculation method is not recommended since it may lead to large

errors when the well path changes.

3.8.2. Balanced Tangential Method

This surveying methods assumes that the actual path between the two survey

points can be measured by the usage of two equal straight lines (Hossain & Al-Majed,

2015). Based on this surveying technique, the well path is defined by the inclination and

azimuth of both surveying points (Hossain & Al-Majed, 2015). The equations used in

this method are the following (Hossain & Al-Majed, 2015):

ΔV =

L

𝐿
. (cos I1 + cos I2)

2

ΔN =

ΔE =

. (sin I1 . cos A1 + sin I2 . cos A2)
2

𝐿
. (sin I1 . sin A1 + sin I2 . sin A2)

2

35

Where I, A, and L are inclination, azimuth, and measured depth between the

survey points respectively. The numbers 1 and 2 represent the previous and next station

points to be calculated.

3.8.3. Average Angle Method

In this surveying method, the path of the well is assumed to follow a straight line

that joins the two survey points (Hossain & Al-Majed, 2015). The inclination and

azimuth of both points are averaged (Hossain & Al-Majed, 2015). The equations used

in this method are the following:

ΔV = L . cos (
I1 + I2

)
2

ΔN = L . sin (
I1 + I2

2

) . cos (
A1 + A2

)
2

ΔE = L . sin (

I1 + I2

2

) . sin (

A1 + A2
)

2

Where I, A, and L are inclination, azimuth, and measured depth between the

survey points respectively. The numbers 1 and 2 represent the previous and next station

points to be calculated.

3.8.4. Radius of Curvature Method

In this surveying method, the path that connects the two surveying points is

assumed to follow a circular arc (Hossain & Al-Majed, 2015). This circular arc is

tangential to the inclination and azimuth at the surveying points (Inglis, 1987). The

equations used in this surveying method are as follows (Hossain & Al-Majed, 2015):

36

Rv =
L

I2 − I1

180
.

π

ΔV = Rv . (sin I2 – sin I1)

ΔH = Rv . (cos I1 − cos I2)

ΔN =

L

α2 − α1

180
. (

π

2 (cos I1 − cos I2)(sin 𝐴2 − sin 𝐴1)
) .

A2 − A1

ΔN =

L

α2 − α1

180
. (

π

2 (cos I1 − cos I2)(cos 𝐴1 − cos 𝐴2)
) .

A2 − A1

Where Rv, L, I, and A are the radius in the vertical plane, measured depth

between the survey points, inclination, and azimuth respectively. The numbers 1 and 2

represent the previous and next station points to be calculated.

3.8.5. Minimum Curvature Method

This method is considered as an extension to the balanced tangential method

(Inglis, 1987). In the case of the minimum curvature methood, the path between two

points is estimated by the usage of a curve (Inglis, 1987). This curvature is obtained by

the usage of a ratio factor or “F” (Inglis, 1987). The equations used in this method are

presented below (Inglis, 1987):

F =
2

(180) tan (Φ)
Φ π 2

ΔV = F 𝐿
2

(cos I1 + cos I2)

ΔN = F 𝐿
2

(sin I1 cos A1 + sin I2 cos A2)

ΔE = F 𝐿 (sin I1 sin A1 + sin I2 sin A2)
2

37

Where Φ, I, L, and A are the dogleg angle, inclination, measured depth

between the survey points, and azimuth respectively. The numbers 1 and 2 represent the

previous and next station points to be calculated. Note: the dogleg angle is obtained as

presented in section 3.4.

To study the effectiveness of each method, different studies were conducted

using different methods. Moreover, other studies used mathematical expressions

combined with surveying methods to obtain 3D well trajectories. These different studies

will be discussed in this chapter.

3.9. Bezier Curves

A Bezier curve is a parametric curve that is used to describe 2D and 3D

trajectories (Sampaio Jr, 2016). It was first presented by Pierre Bezier in 1962 to be

used in the automotive industry (Joshi & Samuel, 2017).

A second-order Bezier curve is defined as the following:

𝐵(𝑈) = 𝑆(1 − 𝑈)2 + 2(1 − 𝑈)𝑈𝐶𝑠 + 𝑈2𝐸

Where S, E, and Cs are the starting point, end point, and control point of the curve.

In addition, U is a dimensionless parameter that lies in the interval [0, 1] (Sampaio Jr,

2016). By replacing U in the equation above, the coordinates of all the points along the

trajectory can be obtained. For example, when U=0 is replaced in the equation above, B

(U=0) =S which is the coordinates of the starting point. Similarly, the coordinates of the

end point is obtained when replacing U=1.

The impact of changing the control point or attractor Cs is shown in the figure

below:

38

Figure 11 Control points.

Based on figure 11, any change in Cs (Cs1, Cs2 and Cs3) will lead to a change in

the shape of the Bezier curve (B1, B2 and B3). However, based on the same figure, it can

be seen that the different Bezier curves are tangent to the line that starts at S (Sampaio

Jr, 2016). It is important to note that, both points S and E are fixed points that do not

change when using this type of function.

A third order Bezier curve is defined as follows:

𝐵(𝑈) = 𝑆(1 − 𝑈)3 + 3(1 − 𝑈)2𝑈𝐶𝑠 + 3(1 − 𝑈)𝑈2𝐶𝑒 + 𝑈3𝐸

Where CE is the second control point related to the ending part of the curve

(Joshi & Samuel, 2017). Similarly as to the control point Cs, changing CE will lead to a

change in the shape of the Bezier curve as seen in the figure below:

39

Figure 12 Control points.

According to figure 12, a change in the control point CE (CE1, CE2 and CE3) will

lead to a change in the shape of the Bezier curve (B1, B2 and B3). In addition, it is

evident that Bezier curves are tangent to the line that joins the end point E to the control

point CE. Based on Sampaio Jr (2016), the main difference between a 2D and 3D Bezier

curve is that in the case of the latter, the lines containing S and Cs or E and CE may not

necessarily be straight lines.

The information provided will dictate the type of trajectory used when

implementing Bezier curves for well path generation. These types are summarized

below. Note: The coordinates of S and E are always given independent of the type of

trajectory.

- Free-end trajectory: In this category, the inclination and azimuth at the target are

not given. Therefore, only the inclination and azimuth at the start point are

known. In addition, the only control point present in this trajectory is Cs

(Sampaio Jr, 2016).

40

- Set-end trajectory: In this category, the inclination and azimuth at both the start

point and target are given. In addition, both control points Cs and CE are present

in the well path (Sampaio Jr, 2016).

- Set-Free and Free-set trajectory: In this category, the inclination or azimuth is

not given at the target (Sampaio Jr, 2016).

The tangent vectors at S and E (ts and tE) are calculated using the following equations:

𝑡𝑠 = [sin 𝐼𝑠 . cos 𝐴𝑠 , sin 𝐼𝑠 . sin 𝐴𝑠 , cos 𝐼𝑠]

𝑡E = [sin 𝐼E . cos 𝐴E , sin 𝐼E . sin 𝐴E , cos 𝐼E]

Where Is, As, IE and AE are the given inclination and azimuth at both the start

point and end point respectively (Sampaio Jr, 2016).

Once ts and tE are calculated, the control point Cs and CE can then be calculated

using the following equations:

𝐶𝑠 = 𝑆 + 𝑑𝑠 𝑡𝑠

𝐶E = 𝐸 + 𝑑E 𝑡E

Note: If the trajectory is free-end, then only Cs is calculated. If the trajectory is set-end,

then both are needed to obtain the trajectory.

Where S and E are the given coordinates of the start point and target point. In

addition, ds and dE are two arbitrary scalar parameters that provide two degrees of

freedom when using Bezier curves (Sampaio Jr, 2016). These parameters may be changed

to obtain the best fit depending on the given scenario.

The following equation is used to calculate the unit tangent vector for points that

lie in between the start point and end point or when U>0 and U<1:

𝐵(𝑈)1
𝑡 =

√𝐵(𝑈)1. 𝐵(𝑈)1

41

Where B(U)1 is dependent on the type of the trajectory. When the trajectory is

free-end, B(U)1 is simply the derivative of the 2D Bezier function with respect to u. It is

represented as follows (Sampaio Jr, 2016):

𝐵(𝑈)1 = −2(1 − 𝑈)𝑆 + 2(1 − 2𝑈)𝐶𝑠 + 2𝑈𝐸

When the trajectory type is a set-end trajectory, then B(U)1is the derivative of the

3D Bezier function with respect to u. It is represented as follows (Sampaio Jr, 2016):

𝐵(𝑈)1 = 3(1 − 𝑈)2𝑆 + 3(1 − 𝑈)(1 − 3𝑈)𝐶𝑠 + 3(2 − 3𝑈)𝑈𝐶𝑒 + 3𝑈2𝐸

Once the unit tangent vector is obtained, the coordinates of the calculated tangent

vector are used to obtain the inclination and azimuth using the following equations

(Sampaio Jr, 2016):

𝐼 = cos−1 𝑡𝑧

𝐴 = tan−1
𝑡𝑦

𝑡𝑥

Note: The inclination and azimuth are used to check for dogleg severity constraints.

To calculate the trajectory length needed to intersect the target, the following

equation is used (Sampaio Jr, 2016):

𝑖

𝑀𝐷 = 𝐿(𝑈𝑖) = ∑ √(𝛥𝑥𝑖)2 + (𝛥𝑦𝑖)2 + (𝛥𝑧𝑖)2
0

Where Δxi, Δyi, and Δzi is simply the difference between the coordinates of two

consecutive points. Since this expression is integrated numerically, then the length

obtained is always slightly smaller than the actual trajectory length (Sampaio Jr, 2016).

3.10. Different Methods Used to Obtain Real (3D) Trajectories.

Based on McMillian (1980), the usage of the radius of curvature method to

calculate the trajectory of a well is a practical method to obtain a well path. In addition,

42

acoording to McMillian (1980), this method may be applied on all directional wells. To

account for the simultanous change in azimuth and inclination, and to simplify the

problem presented, the usage of a 3x3 matrix was required. This matrix was used to

convert the well path from 3D trajectory to 2D (McMillian, 1980). Once the trajectory

was calculated in 2D, the solution would then be transferred back into a 3D trajectory

by the usage of the inverse matrix (McMillian, 1980) .

Studies to calculate the 3D trajectory of a well using mathmtical expressions

were also conducted. Scholes (1983) devloped an algorithm that would obtain 3D

trajectories by the usage of cubic polynomials. In this study, the coordinates of the

points along the path were determined by identifying the coeffecients of the

polynomials using the information provided regarding the given end points and their

respective inclination and azimuth.

McClendon and Andres (1985) developed an algorithm that plots 3D well paths

by the usage of the catenary model. Based on the research conducted, it was shown that

using this model provided concrete advantages over other methods used.

According to Bourgoyne et al. (1991), the tangential method was the most used

method in the industry. However, due to the large errors in this method, other methods

gained importance. To determine the most accurate surveying method, (Bourgoyne et

al., 1991) compared the results obtained from the different surveying methods after

using data obtained from “test holes”. The results, which were presented in a table,

indicated that the difference between the minimum curvature method, radius of

curvature method, and balanced tangentail method were negligible (Bourgoyne et al.,

1991). Therefore, any of the three mentioned methods could be used. However, based

43

on Bourgoyne et al. (1991), due to the enhancement in programmable calculators, the

most common method used in today’s industry is the minimum curvature method.

Guo et al. (1992) also implemented the usage of mathematical models to plan

well trajectories. In this study, the method implemented was the usage of the constant

curvature method.

On the other hand, Konstantakopoulos and Stamataki (1996) focused on the

ability to controll the trajectory of a well while drilling. To monitor the change in the

position of the well, the radius of curvature method was implemented.

Sawaryn and Thorogood (2003) aimed at providing unified nomenclatures and

mathematical conventions for the implementation of the minimum curvature method. In

addition, the different limitations when using this algorithm were also covered and

discussed in this study.

Sampaio (2006) further developed the usage of cubic polynomials to calculate

3D trajectories. In this paper, different end conditions were introduced depending on the

information provided. The first end condition is the free end condition. In this condition,

both the azimuth and inclination of the target are uknown. On the other hand, the set

end condition is when both inclination and azimuth of the target are provided. The third

end condition is the set inclination and free azimuth. Thus, in this scenario, the

inclination is specified while the azimuth is unkown. Lastly, the fourth given condition

is the set azimuth and free inclination. In this end condition the azimuth is known while

the inclination is uknown. However, using cubic polynomials meant the presence of a

limitation that does not provide any degree of freedom when calculating trajectories

(Sampaio, 2006).

44

To solve this issue, Sampaio (2007) presented the usage of spline-in-tension

functions to plot 3D trajecotries. These functions are simply continuous functions

obtained as solutions by solving differential equations. By using this method, Sampaio

(2007) was able to provide a parameter called tension. This parameter allowed the

algorithm to have a certain degree of freedom when calculating trajectories (Sampaio,

2007).

To reduce the time required to solve the different complex equations used for

well trajectory design, Amorin and Broni-Bediako (2010) designed an excel spreadsheet

that implemented the different surveying methods such as the radius of curvature

method and constant curvature method. Also, this excel spreadsheet provides both

vertical and horizontal views of the well trajectory.

In the case study conducted by Amorin and Bediako (2010), all five different

surveying techniques were tested. In the following article, the author devloped an “excel

spreadsheet” to perfrom the calculations required (Amorin & Bediako, 2010).

According to Amorin and Bediako (2010), the data used were obtained from two

different studies found in the literature. This data was then used as separate inputs in the

spreadsheet and the results of each case was obtained. These results were then

compared to the results of the respective studies for verification. Therefore, after

comparing the calculated outputs with the outputs found in the literature, Amorin and

Bediako (2010) deduced that the difference between the average angle, balanced

tangential, radius of curvature, and minimum curvature surveying methods was very

small. Therefore, all four different methods may be used. On the other hand, the

tangential method was considered to be inaccurate. However, Amorin and Bediako

(2010) concluded that the most accurate method between the four methods stated was

45

the minimum curvature method. This was supported by the fact that the results obtained

by using this method contained the smallest error.

More studies on the radius of curvature method were conducted. Based on

Krishnan and Kulkarni (2016), the radius of curvature method was used to generate a

well path for the build and hold well profile. Once the tajectory was generated, it was

compared to the output from the “COMPASS” software which is commonly used in the

industry for well planning (Krishnan & Kulkarni, 2016). The results obtained indicated

that similarity between both outputs exist (Krishnan & Kulkarni, 2016).

According to Sampaio (2016), the transformation of Bezier curves into 3D

may generate a practical method to calculate well trajectories. Moreover, Sampaio

(2016) also stated that this mathematical model performs better and is more flexible

when compared to other algorithms that use cubic polynomials or spline-in-tension

functions to define 3D trajectories. To support this claim, Sampaio (2016) stated that

the trajectory of a well is obtained by using a single expression rather than working with

three separate coordinate functions. In addition, two arbitrary scalar parameters were

added that increased the flexibility of the algorithm.

Another study that used mathematical modeling for the calculation of 3D

well trajectories was conducted by Okpozo et al. (2016). Based on Okpozo et al. (2016),

this mathematical model would ensure not to surpass the maximum dogleg allowed in

the scenario being tested. This model needed the usage of a “curved horizontal

displacement” rather than the standard straight displacement (Okpozo et al., 2016).

Therefore, the authors first derived the necessary equations to fit in their mathematical

model. Once the derivations were established, the authors then developed a software

known as “WELLTIT” (Okpozo et al., 2016). This software depends on the radius of

46

curvature surveying method to calcualte well trajectories. Therefore, the vailidity of this

mathematical model was tested by the usage of the developed software (Okpozo et al.,

2016). The results obtained indicated that the usage of the mathematical model proved

to be working “effectively” (Okpozo et al., 2016).

Joshi and Samuel (2017) combined the usage of both surveying methods and

mathematical expressions to correct any departure from a planned path. In this research

paper, the authors proposed a “closed loop system” that automates the process of path

correction and determines the best path based on the current location of the well (Joshi

& Samuel, 2017). This study was based on different surveying methods such as the

balanced tangential and minimum curvature method. In addition, the authors used

different mathematical functions such as the Bezier curves and cubic polynomials (Joshi

& Samuel, 2017).

On the other hand, Wang et al. (2019) used the “vector algebra method” with

the minimum cruvature method to design a 3D well trajectory. In this study, the shape

of the target was taken into consideration to ensure that the well is following the correct

path (Wang et al., 2019). Therefore, different mathemtaical expression were derived

based on the target’s shape. The purpose of this study was to explain the derivtions

related to the formulation of the expressions. Then, Wang et al. (2019) implemented the

newly derived expressions to confirm that the model would function. Based on the

results, Wang et al. (2019) deduced that the vector algebra method is suitable for the

usage in determining well trajectories.

47

3.11. The Method Selected For this Study.

For this study, Bezier curves will be used as the function needed to calculate

3D trajectories. This can be supported by the fact that the usage of such functions has

provided added flexibility by the presence of two control points. The presence of

control points in such functions allows the user to modify the curvature to fit certain

requirements. This allows the planned trajectory to intersect horizontal well targets in a

smooth and curved manner. This is why the Bezier model provides two degrees of

freedom. While both the spline-in-tension model and cubic polynomial model provide

one and zero degrees of freedom respectively.

In addition to flexibility, the Bezier curve model is capable of obtaining the

exact position of points by the usage of a single expression. However, for the catenary

model, multiple expressions are needed for the same purpose. On the other hand, for

determining the coordinates of points along the well path, the constant curvature

method requires the solving of integrals using numerical approximations which may

lead to unwanted errors.

As a result, the Bezier model is capable of calculating well trajectories in a

simple, accurate, and flexible manner. This explains why it was selected as the model of

choice for well path design in this thesis study.

48

CHAPTER 4

METHODOLOGY

This section will be divided into two main parts. The first part will discuss the

different components that were implemented in the algorithm.While as, the second part

will be related to the input parameters, outputs, and the algorithm structure.

To successfully design the 3D well trajectory required, an algorithm was generated in

Python. This algorithm implements the usage of different components that were

presented in this paper.

4.1. Curve Used to Generate 3D Well Trajectories.

As stated in section 3.9, Bezier Curves will be used to model 3D well

trajectories. These curves were selected due to the added flexibility that is provided by

the presence of the two control points. These control points ensure that the planned

trajectory is capable of intersecting horizontal well targets efficiently and smoothly.

Therefore, the equations present in section 3.9 were implemented to generate the needed

algorithm.

4.2. Azimuth.

The azimuth used in the algorithm being discussed accounts for changes in

three-dimensional space. As explained in section 3.3, the azimuth is the angle formed

with the horizontal plane. Based on trigonometric functions, the inverse tangent is used

to calculate the azimuth of a line that joins two points. This is done by applying the

formula below:

49

𝐴𝑧𝑖𝑚𝑢𝑡ℎ = tan−1(
𝑑𝑦

)
𝑑𝑥

Where dy and dx are simply the difference in the y and x coordinates of the two

points being studied.

However, the inverse function “arctan” used in Python will provide a solution in

the range of [-90, 90] degrees. Thus, it is evident that this inverse function cannot

account for the azimuth on all four quadrants. To solve this issue, the inverse function

“arctan2” was implemented. This inverse function provides the solution in the range of

[-180,180] degrees. The answer provided by using this function is in radians and is

measured anticlockwise from the positive x-axis. The equation of arctan2 is the

following:

𝐴𝑧𝑖𝑚𝑢𝑡ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑑𝑦, 𝑑𝑥)

It is important to note that, based on section 3.3, the azimuth is always

calculated in the clockwise direction with respect to the north or positive y-axis. To be

consistent with this definition, some modifications were implemented to convert the

obtained angle. As a result, the final equation that calculates the azimuth is the

following:

𝐴𝑧𝑖𝑚𝑢𝑡ℎ = −𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑑𝑦, 𝑑𝑥) + 𝜋
2

4.3. Inclination.

As described in section 3.2, the inclination is the angle formed with the vertical

plane. For this study, the inclination was calculated using the equations described in

section 3.9.

50

4.4. Measured Depth.

For this study, the measured depth was calculated using the equation described

in section 3.9.

4.5. Dogleg Severity.

As stated in section 3.4, dogleg severity is a function of the dogleg angle. Thus,

the equations presented in this section were implemented. The maximum allowable

DLS was chosen based on the range defined by Mitchel (1995), who stated that the DLS

of a well may range from 3 to 10 depending on the well depth. Therefore, all well

trajectories planned by the algorithm must not exceed a maximum DLS limit which was

set at 7.

4.6. Requirements of the Algorithm.

The input parameters needed for the algorithm to function are the following:

1- Surface coordinates or drilling center.

2- Target coordinates.

3- DLS maximum limit.

4- Kick-Off point.

5- Arbitrary parameter to reach Cs.

6- Parametric t.

4.6.1. Surface coordinates or drilling center.

The surface coordinates are specified by the OGED team as will be seen in the

testing cases. This point is also known as the drilling center.

51

4.6.2. Target coordinates.

The target coordinates are specified by the OGED team as will be seen in the

testing cases. Normally, the target is a horizontal or vertical well that consists of

multiple points.

4.6.3. DLS maximum limit.

The DLS maximum limit is set by the user. For the cases tested in this paper, a

DLS limit of 7 was set. It is important to note that, the higher the DLS, the lower the

needed measured depth needed to reach the target.

4.6.4. Kick-Off point or KOP.

In some drilling scenarios, the kick-off point may be provided by the geologist

based on the formation. In other cases, the directional engineer is responsible for

determining its position (Inglis, 1987). In this study, the kick-off point is a decision

variable in the optimization problem. Thus, it will be specified by the optimizer.

4.6.5. Arbitrary parameter to reach Cs.

As described in section 3.9, the control parameter Cs is calculated using the

following equation:

𝐶𝑠 = 𝑆 + 𝑑𝑠 𝑡𝑠

Based on this study, the starting point or “S” is the point that lies vertically

below the drilling center at a depth equal to KOP. In addition, ts can also be calculated

using the equation discussed in section 3.9. Thus, the control point Cs can be obtained

52

after setting a value for the arbitrary parameter to reach Cs designated by ds. In this

study, ds is a decision variable in the optimization problem. Thus, it will be specified by

the optimizer.

4.6.6. Parametric t.

To calculate the second control point Ce, a modification was implemented to

ensure that the planned well trajectory intersects the target smoothly. Based on the

definition of a Bezier curve, the trajectory will always be tangent to the line that joins

the control point and the initial or end point (Sampaio Jr, 2016). To apply this

modification to the algorithm, the following steps were used:

1- Calculate the direction vector of the horizontal well target between the target

point and the point that directly follows it.

2- Calculate the parametric equation of the line between these two points.

3- Specify the value of the parametric t to calculate the control point Ce.

By using these steps, the control point Ce will always be collinear with the target.

This will allow the calculated trajectory to intersect the target smoothly. In this study,

parametric t is a decision variable in the optimization problem. Thus, it will be specified

by the optimizer.

53

4.7. Algorithm Structure.

As described throughout this paper, an algorithm was designed and implemented in

Python for well path calculation. This algorithm follows the following structure:

Figure 13 Algorithm structure (Level 1)

Based on Figure 13, the algorithm in level 1 is divided into the following

sections:

1- Read Input Data.

2- Trajectory Design Calculations.

3- Check if Trajectory is feasible.

4- Return Output Text File and Plot.

4.7.1. Read Input Data.

For the algorithm to function, the OGED team will provide an input text file that

will contain the well that needs to be intersected also known as the targeted well. This

text file will also contain the Surface coordinates or drilling center as explained in

section 4.6.1. Thus, for each well that needs to be intersected, a text file will be

54

provided. Hence, once this text file has been introduced, the algorithm will identify the

surface point and store it in the variable “drilling_center”. In addition, it will store the

targeted well in the variable “well_array”.

4.7.2. Trajectory Design Calculations.

This section is further divided into the following parts (level 2):

Figure 14 Trajectory design calculations structure (Level 2)

Based on figure 14, the trajectory design calculations section in level 2 is

divided into the following parts:

1- Initialize Control Parameters.

2- Bezier Curve Functions.

3- Check if Trajectory is feasible.

4- Particle Swarm Optimization (PSO).

55

5- Calculate Well Trajectory Properties.

6- Calculate DLS.

7- Check if DLS is feasible.

8- Return Calculated Trajectory.

4.7.2.1. Initialize Control Parameters.

The control parameters of this algorithm are the kick-off point, arbitrary

parameter to reach Cs, and parametric t. Each control parameter is discussed in detail

in section 4.6. In this section, the three parameters are initially set with a random

number.

4.7.2.2. Bezier Curve Function.

This function is divided into different sections as shown in the figure below

(level 3):

Figure 15 Bezier curve function structure (Level 3)

56

Based on figure 15, the Bezier Curve function section in level 3 is divided into

the following parts:

1- Input Initial Well Data.

2- Creates the Vertical Well Section.

3- Calculates the Azimuth of the Drilling Center and Target Well.

4- Uses Control Parameters.

5- Calculates the Coordinates of the Points to form the Planned Trajectory using

Bezier Curve Model.

6- Calculates the Error.

7- Checks the Error.

8- Return Trajectory List.

4.7.2.2.1. Input Initial Well Data.

For this part, the algorithm will simply receive the inputs that are required for

normal functioning. Thus, it will receive the input parameters, drilling center

location, and initial well trajectory.

4.7.2.2.2. Create the Vertical Well Section.

The vertical segment of the well is generated in this section. Therefore, a loop is

implemented to generate all the points that lie in this section. This loop will

simply start at the coordinates of the drilling center. Then, by only changing the

z-axis coordinates, the loop will add an increment of 30 meters to reach the

starting point or “S” which has a z-axis value equal to the kick-off point. All the

points generated in this section will be added to the list designated by

”trajectory_list”. In addition, in this section, the algorithm will specify the point

of intersection or target point. This point is assigned based on the minimum

57

Euclidean distance calculated from the starting point “S” to the well extremities

(both well heel and well toe). Thus, this specified point will be the point that

needs to be intersected by the calculated Bezier curve trajectory.

4.7.2.2.3. Calculates the Azimuth of the Drilling Center and Target Well.

In this section, the azimuth of both the drilling center and well target will be

calculated using the method described in section 4.2.

4.7.2.2.4. Use Control Parameters.

In this part of the function, the tangent vectors at the starting point “S” and end

point “E” are calculated using the equations presented in section 3.9. In addition,

based on the given input parameters, control points Cs and Ce are also calculated

using the equations described in sections 4.6.5 and 4.6.6.

4.7.2.2.5. Calculates the Coordinates of the Points to form the Planned

Trajectory using Bezier Curve model.

In this section, all the points that lie in this curved segment are generated using

the Bezier curve equations presented in section 3.9. These points are added to

the “trajectory_list”. In addition, the inclination of all the points is calculated in

this section as described in section 3.9.

4.7.2.2.6. Calculates the error.

This part of the function calculates the distance between the last point present in

the “trajectory_list” and the target point. This distance is known as the error

distance.

58

4.7.2.2.7. Checks the error.

In this section, the error distance is checked. If this distance is greater than 0.01

or less than 0, then the calculated well is not feasible and the “trajectory_list” is

emptied.

4.7.2.2.8. Return Trajectory List.

This part of the Bezier curve function returns the obtained “trajectory_list”.

4.7.2.3. Check if Trajectory is feasible.

In this section, the length of the “trajectory_list” is checked. If the length is not

empty or greater than 0, the algorithm will continue with the different functions.

However, if the length of the “trajectory_list” is empty or 0, then the optimizer “PSO”

will be introduced.

4.7.2.4. Particle Swarm Optimization (PSO).

According to Ahmad et al. (2019), the particle swarm optimization algorithm

was designed based on the behavior of schools of fish or flocks of birds. Fish and birds

normally travel based on the position and velocity that is provided by the group. To

convert this into an optimization problem, the objective function solution is represented

by a particle (Ahmad et al., 2019). Also, the group of particles is represented by a

swarm (Ahmad et al., 2019). From the previous iteration, a velocity parameter is used to

affect the position of every particle (Ahmad et al., 2019). This velocity parameter is

modified based on a mathematical function that uses the following three pieces of

information. The first piece of information used is the particle’s previous velocity. The

second piece of information used is the distance to where the particle achieved the local

59

best. Finally, the last piece of information used is the distance to where the particle

achieved the global best (Ahmad et al., 2019). It is important to state that, every particle

in this algorithm will store the local best position it achieved. In addition, the algorithm

itself will store the global best position achieved between all the particles known as the

swarm global best (Ahmad et al., 2019). The equations presented below are used to

calculate the position and velocity of each particle (Ahmad et al., 2019).

𝑋𝑖, 𝑗(𝐾 + 1) = 𝑋𝑖, 𝑗(𝐾) + 𝑉𝑖, 𝑗(𝐾 + 1)

𝑉𝑖, 𝑗(𝐾 + 1) = 𝑤 ∗ 𝑉𝑖, 𝑗(𝐾) + 𝐶𝑝 ∗ 𝑟1(𝑃𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑋𝑖, 𝑗(𝐾)) + 𝐶𝑔

∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑋𝑖, 𝑗(𝐾))

Where i, j, and k refer to the particle, optimization variable, and current

iteration respectively (Ahmad et al., 2019). Also, in the velocity equation, w, cp, cg, r1,

and r2 refer to the inertia weight, cognitive weight, social weight, and independent

uniform random variables respectively (Ahmad et al., 2019).

The inertia weight, cognitive weight, and social weight provide the

influence of how the swarm moves towards the particle velocity, particle local best, and

swarm global best (Ahmad et al., 2019). To prevent the algorithm from falling into a

local optimum, the random variables r1 and r2 were introduced. These variables range

between 0 and 1 and allow the optimization problem to become stochastic (Ahmad et

al., 2019).

This algorithm usually requires the presence of a convergence criteria. This is

the criteria that specifies when the algorithm converges. Thus, the value of the

difference in the objective function between two particles of the same iteration will be

calculated. The optimization problem converges when this difference is equal to or less

60

than the specified convergence criteria. Another requirement for the particle swarm

optimization algorithm is, the specification of the number of particles present in the

optimization problem. Finally, the maximum number of iterations must also be defined.

This will prevent the algorithm from falling into an infinite loop in case it gets stuck in

a local minimum solution.

The purpose of this study is to provide the shortest distance from the starting

point to reach the target point while satisfying the DLS constraint. Thus, it is obvious

that the PSO optimizer implemented needs to minimize the measured depth to reach the

target point (which is the objective function of the optimization problem). This is done

by providing an input to the Bezier curve function with the three optimal parameters

that were initially set at a random number as discussed in section 4.7.2.1 (level 2).

It is important to note that, the PSO optimizer will keep on providing different

input parameters to the Bezier Curve function until it meets the maximum number of

iterations or converges. Once it meets one of these two conditions, it will terminate and

send the obtained results to section 4.7.2.8 (level 2).

4.7.2.5. Calculate Well Trajectory Properties.

In this section, the azimuth of all the points in “trajectory_list” is calculated as

described in section 4.2. In addition, the measured depth to reach the intersection point

is also calculated as described in section 4.4.

4.7.2.6. Calculate DLS.

In this section, the DLS of all the points in “trajectory_list” is calculated as

described in section 3.4.

61

4.7.2.7. Check if DLS is feasible.

In this section, every DLS obtained in the previous section is compared to the

DLS limit that is set at 7. If one DLS element obtained is larger than the DLS limit then

the whole well is not feasible and the “trajectory_list” is emptied. The output of this

section is sent back to the PSO optimizer.

4.7.2.8. Return Calculated Trajectory.

In this section, the”trajectory_list” is returned as the output. This occurs once the

optimizer has either converged or attained the maximum number of iterations allowed.

4.7.3. Check if trajectory is feasible.

In this section, the length of “trajectory_list” will be checked for the final time.

If the trajectory is empty, then this section will return false. Otherwise, it will send the

list to the final section below.

4.7.4. Return output text file and plot.

In this section, the output text file that contains the trajectory of the well, and all

other properties is created. In addition, a plot in python is generated to show how the

calculated well (represented as blue in the plot) will intersect the target (represented by

red in the plot).

62

CHAPTER 5

OPTIMIZATION AND TESTING

As seen in chapter 4, the Bezier curve algorithm was designed and optimized

using the Particle Swarm Optimization algorithm. This selection was done to provide

consistency with using the same optimization algorithm as used by the OGED team in

well placement and facility optimization. For further testing, different optimizers were

linked to the bezier curve algorithm and tested. The results obtained will be shown in

this chapter.

5.1. Timeline of the Different Studies Done for Well Trajectory Optimization.

Multiple studies exist in the literature that tackle the optimization of the design

of well trajectories. These studies will be presented briefly in the table below.

Table 2 Timeline of different studies conducted on well path optimization.

Author Description of study

Helmy et al., 1998 In this research paper, the authors implemented the

usage of non-linear optimization based on the

sequential unconstrained minimization technique

(SUMT) to minimize drilling depth and reduce

drilling costs of an S-type well profile (Helmy et al.,

1998).

63

Shokir et al., 2004 In this research paper, the authors implemented the

usage of the Genetic Algorithm (GA) to optimize

horizontal and directional well parameters using the

radius of curvature method (Shokir et al., 2004).

Schulze-Riegert et. Al.,

2011

The authors of this study implement the usage of the

stochastic optimizer (Covariance Matrix Adaption

Evolution Strategy) (Schulze-Riegert et. Al., 2011).

Arabjamaloei et al., 2011 In this research study, the authors used artificial

neural network to optimize well trajectories

(Arabjamaloei et al., 2011).

Seyyedattar et al., 2012 The authors of this study optimize the process of

locating the well head and well path design via one

step using the well optimizer module of Petrel which

is the curvature method.

(Seyyedattar et al., 2012).

Atashnezhad et al., 2014. The usage of the particle swarm optimization (PSO)

to optimize horizontal and directional well

parameters using the radius of curvature method

(Atashnezhad et al., 2014).

Guria et al., 2014. The authors of this study use the elitist non-

dominated sorting genetic algorithm for multi-

objective optimization (Guria et al., 2014).

64

Mansouri et al., 2015. The usage of a multi-objective genetic algorithm to

minimize MD and frictional torque based on the

radius of curvature method (Mansouri et al., 2015).

Tianshou et al., 2015. The usage of breakout width model and Mogi–

Coulomb criterion to optimize both well trajectory

and wellbore stability (Tianshou et al., 2015).

Wood 2016. The Hybrid cuckoo search optimization algorithm

was used to optimize the trajectories of wells using

the radius of curvature method (Wood, 2016).

Wood, 2016. The usage of the Hybrid bat flight optimization

algorithm to optimize the trajectories of wells using

the radius of curvature method (Wood, 2016).

Salman et al., 2017. The authors of this study conducted optimization by

combining firefly algorithm with hybrid

implementations of mutation and annealing to well

path produced by spline curves (Salman et al., 2017).

Sha & Pan, 2018. The usage of Fibonacci sequence-based self-

adjustment quantum genetic algorithm to optimize

trajectories based on the radius of curvature method

(Sha & Pan, 2018).

Halafawi & Avram, 2018. Optimization by selecting the KOP, horizontal turn

trajectory, vertical turn determination mud weight,

65

 and horizontal profile. After optimization, the 3D

trajectory was produced using the minimum

curvature method (Halafawi & Avram, 2018).

Wi´sniowski et al., 2020. The optimization using two methods (GA and State

Space Search) of trajectories produced by the

classical sectional trajectory that was modified to

model the catenary trajectory (Wi´sniowski et al.,

2020).

Biswas et al., 2020. The optimization of multiple objective functions

using the hyena optimizer (Biswas et al., 2020).

5.2. A Brief Description of the Different Optimization Algorithms tested.

A different combination of both gradient and non-gradient based algorithms was

tested. These algorithms are the following:

1- Particle Swarm Optimization or PSO.

2- Differential Evolution or DE.

3- Genetic Algorithm or GA.

4- Dual Annealing or DA.

5- Sequential Least Square Programming or SLSQP.

66

5.2.1. Particle Swarm Optimization.

A detailed description of this optimization algorithm was presented in section

4.7.2.4.

5.2.2. Differential Evolution.

Similarly, to PSO, the DE algorithm requires the presence of particles. These

particles are considered as solutions to the optimization problem. In this algorithm, the

search space is covered by the generation of vector populations (Price et al., 2005).

Once the search space has been populated, the algorithm will select two vectors

randomly and will calculate the difference between these two vectors (Price et al.,

2005). Then, the difference is added to a third randomly selected vector and multiplied

by a mutant factor to form the mutant vector (Price et al., 2005). The building of a trial

vector is done by the selection of parameters from two different mutant vectors. This

selection is controlled by the probability of crossover which will dictate the fraction of

the different values copied from the mutant vector (Price et al., 2005). Once the trial

vector has been built, it will be compared to a target population vector (Price et al.,

2005). The vector that has the lowest fitness (objective function value) will be used to

form the population of the next iteration. This continues until a certain limit is reached.

As an input, this algorithm requires the user to set the number of particles and a

maximum number of iterations. (This will be discussed in the next sections of this

chapter).

67

5.2.3. Genetic Algorithm.

Similar to PSO and DE, this algorithm is a population-based algorithm

(Mirjalili, 2018). It is based on the survival of the fittest creature (Mirjalili, 2018). Each

particle in this optimization algorithm represents a chromosome (Mirjalili, 2018).

During each iteration or generation, the fitness of each particle is reviewed, and the

particles with the lowest fitness are selected to form the new generation. To prevent the

GA from falling into local optima, the selection of the fittest particles is done

stochastically (Mirjalili, 2018). This will allow the algorithm to choose poor solutions

as well, and thus prevent the algorithm from falling into a trap (Mirjalili, 2018). The

crossover between particles and the mutation or change in the gene of the chromosomes

also provide the algorithm with diversity (Mirjalili, 2018). This continues until a

certain limit is reached. As an input, this algorithm requires the user to set the number

of particles and a maximum number of iterations. (This will be discussed in the next

sections of this chapter).

5.2.4. Dual Annealing.

This algorithm is based on the annealing of a metal which is the heating

and controlled cooling of the metal to reach its crystalline state (Xiang et al., 2013).

Therefore, the objective function of this algorithm is simply the energy function of the

annealing process (Xiang et al., 2013). This function will be cooled based on different

cooling formulas to reach the global optimum (Xiang et al., 2013). Initially, the

algorithm will start at a given initial artificial temperature which is normally very high.

Then, the temperature will gradually decrease, and this will cause the energy function to

change. In this decrease, the algorithm will be visiting and evaluating the energy

68

function for the different regions of the search space. The visiting of the algorithm from

one region to the next is based on a visiting distribution (Xiang et al., 2013). Also,

during the visiting of different regions, the algorithm will accept/reject regions based on

an acceptance probability which is a generalized Metropolis algorithm (Xiang et al.,

2013). This continues until a certain limit is reached. As an input, this algorithm

requires the user to set a maximum number of iterations. (This will be discussed in the

next sections of this chapter).

5.2.5. Sequential Least Square Programming.

This algorithm is used to iteratively solve non-linear optimization problems

(Kraft, 1988). Thus, the algorithm must first be provided with an initial guess “X0”

(Kraft, 1988). This initial guess is updated based on the search direction multiplied by

the step length. The search direction is found by having a quadratic subproblem (Kraft,

1988). This subproblem is generated by applying an approximation to the LAGRANGE

function (Kraft, 1988). The SLSQP algorithm uses only first-order data to estimate the

Hessian matrix of the function (Lagrange) (Kraft, 1988). In the case that the

optimization problem has equality constraints, then this method will implement the

usage of the Kuhn-Tucker system of conditions (Kraft, 1988). The problem continues

until certain criteria has been met which may range from a maximum set of iterations to

satisfying a certain threshold or error.

5.3. Results of the Different Optimization Algorithms.

As described previously, the different algorithms presented above were tested on

the Bezier curve algorithm. A maximum number of 500 iterations was set to all the

69

optimizers. All non-gradient-based and particle-based optimizers have 15 particles. The

testing that will be presented below was conducted on five different wells. Each well

was tested 100 times. It is important to note that, both PSO and DE were combined with

SLSQP to test the effectiveness of having a mix between gradient and non-gradient

optimization. Non-gradient particle-based algorithms will converge when the

difference between the average particle and best particle is less than or equal to 0.05.

For the non-gradient and non-particle-based algorithms, the algorithm converges when

50 iterations pass without having any improvement in the objective function. Finally,

for the gradient-based algorithm, the optimizer converges when the difference in the

objective function is less than 10
-6

.

Figure 16 Results: Incremental percentage of the Measured Depth vs Optimization

Algorithm.

70

Figure 17 Results: Incremental percentage of the CPU vs Optimization Algorithm.

Figure 18 Results: Standard Deviation vs Optimization Algorithm.

5.4. Discussion.

Based on figures 16,17, and 18, it can be deduced that using the DE algorithm

will provide the lowest average measured depth. Also, this algorithm is the most stable

method between the different methods since it provided a standard deviation of almost

0. In terms of speed, combining DE with SLSQP outperformed DE. However, DE is

still relatively fast with respect to the other optimizers. Thus, for optimizing well

trajectory design using the Bezier curve model, DE is the best optimizer. However, for

71

the purpose of this research study, (this was explained before), PSO will be

implemented to provide consistency with the algorithm used by the OGED for

optimization.

72

CHAPTER 6

RESULTS AND DISCUSSION

This chapter will be divided into two main parts. The first part will include the

sensitivity analysis conducted to specify the values of the convergence criteria, swarm

size, and maximum number of iterations needed for the PSO algorithm to produce

optimal and robust solutions. The second part of this chapter will include both the

results obtained and discussions after implementing the parameters found in the first

part of this chapter.

6.1. Sensitivity Analysis.

Firstly, a sensitivity analysis was conducted to decide on the needed number of

particles for the optimization problem to function properly. Thus, for the same wells

being tested, the number of particles was changed between the following values: 15, 25,

35, and 45. The obtained measured depth and processing time for each case was then

studied and compared. The results are found in the two tables below:

Table 3 Measured depth results after changing the number of particles.

Well

Number:

Number of

Particles: 15

Measured Depth

Number of

Particles: 25

Measured

Depth

Number of

Particles: 35

Measured

Depth

Number of

Particles: 45

Measured

Depth

1 2555.844 m 2554.251 m 2554.277 m 2554.242 m

73

2 2547.401 m 2547.426 m 2547.377 m 2547.380 m

3 2528.480 m 2529.064 m 2528.525 m 2528.468 m

4 2464.580 m 2463.633 m 2466.334 m 2463.490 m

5 2707.768 m 2707.728 m 2707.726 m 2707.710 m

6 2646.0795 m 2653.893 m 2617.318 m 2485.512 m

7 Not Feasible Not Feasible Not Feasible Not Feasible

8 2917.597 m 2893.994 m 2894.015 m 2894.003 m

9 2482.192 m 2481.849 m 2481.837 m 2482.582 m

10 2628.687 m 2628.470 m 2628.411 m 2628.414 m

Average

MD

2608.737 m 2606.701 m 2602.869 2587.978 m

Table 4 Processing time results after changing the number of particles.

Well

Number

Number of

Particles: 15

Processing time

Number of

Particles: 25

Processing

time

Number of

Particles: 35

Processing time

Number of

Particles: 45

Processing time

1 18.522 s 28.427 s 44.740 s 58.700 s

2 12.951 s 29.496 s 44.409 s 57.004 s

3 16.174 s 24.284 s 52.727 s 48.125 s

4 18.040 s 24.983 s 53.405 s 20.983 s

5 17.588 s 21.511 s 47.989 s 18.221 s

6 0.696 s 0.4713 s 1.493 s 8.346 s

74

7 Not Feasible Not Feasible Not Feasible Not Feasible

8 5.949 s 17.529 s 38.071 s 42.541 s

9 17.548 s 22.315 s 18.481 s 54.029 s

10 14.214 s 23.512 s 33.404 s 35.994 s

Average

Time

13.52 s 21.392 s 37.191 s 38.215 s

Based on the results obtained in table 3 above, after comparing the average

measured depths between the different cases, it can be deduced that the average

measured depth calculated decreases as the number of particles increases. On the other

hand, based on the results obtained in table 4 above, the average processing time

increases as the number of particles increases. This can be explained by the fact that for

a Particle Swarm Optimization problem that needs to minimize the objective function,

increasing the number of particles will improve the final solution due to the presence of

larger number of particles in the search space and vice versa. Thus, to achieve this

solution, the PSO algorithm will require a larger processing time for a larger number of

particles.

However, based on table 3, it can also be seen that the difference between the

average measured depths obtained when having 15 and 25 particles is equal to 2 meters.

This shows that changing the particle number from 15 to 25 has a small impact on the

measured depth. However, when comparing the difference in the average measured

depths calculated between 15 and 35 particles, the difference is equal to 5.86 meters.

Therefore, in this case, changing the number of particles by 20 has a significant impact

on the measured depth. On the other hand, based on table 4, when comparing the results

75

for the same cases above, it can be seen that the average processing time increases

significantly from 13.52 seconds to 21.392 seconds and 37.191 seconds in the cases of

15, 25, and 35 number of particles respectively.

Therefore, the selection of the number of particles largely depends on the testing

scenario. If the goal is to provide the best solution regardless of the processing time,

then increasing the number of particles will be the solution. However, for the purpose of

this study, a balance between the solution and processing time must exist. Therefore,

selecting 15 particles for the optimization problem is considered the best solution since

it provides a significant decrease in the average processing time while maintaining a

good average measured depth solution.

After specifying that the number of particles must be set at 15, for the same

wells tested in tables 3 and 4, the impact of the convergence criteria on the measured

depth and processing time was also tested. As described in section 4.2.7.4, the

convergence criteria is simply the criteria that specifies when the algorithm converges.

Thus, the value of the difference in the objective function between two particles of the

same iteration will be calculated. For the PSO optimizer being implemented in this

study, the convergence criteria is calculated based on the average particle and best

particle of the same iteration. Once this difference reaches the convergence criteria, the

algorithm will terminate and provide the optimal solution. The results obtained are

found in the tables below:

76

Table 5 Measured depth results after changing the convergence criteria.

Wells Convergence

Criteria = 0.01

Measured

Depth

Convergence

Criteria = 0.05

Measured

Depth

Convergence

Criteria = 0.1

Measured

Depth

Convergence

Criteria = 0.3

Measured

Depth

1 2555.844 m 2558.368 m 2555.142 m 2559.218 m

2 2547.401 m 2553.863 m 2551.106 m 2549.235 m

3 2528.480 m 2531.859 m 2545.638 m 2531.988 m

4 2464.580 m 2468.384 m 2465.887 m 2465.501 m

5 2707.768 m 2708.079 m 2708.458 m 2755.629 m

6 2646.0795 m 2636.989 m 2694.934 m 2702.312 m

7 Not Feasible Not Feasible Not Feasible Not Feasible

8 2917.597 m 2909.583 m 2899.946 m 2941.145 m

9 2482.192 m 2483.285 m 2482.922 m 2493.040 m

10 2628.687 m 2629.030 m 2629.092 m 2635.039 m

Average 2608.737 m 2608.827 m 2614.792 m 2625.901 m

Table 6 Processing times results after changing the convergence criteria.

Well

Number

Convergence

Criteria: 0.01

Processing time

Convergence

Criteria: 0.05

Processing

time

Convergence

Criteria: 0.01

Processing time

Convergence

Criteria: 0.03

Processing time

1 18.522 s 11.338 s 7.468 s 5.105 s

2 12.951 s 10.480 s 8.401 s 5.756 s

3 16.174 s 8.952 s 2.983 s 4.406 s

4 18.040 s 9.794 s 7.237 s 5.602 s

77

5 17.588 s 8.629 s 5.284 s 2.111 s

6 0.696 s 0.548 s 0.569 s 0.826 s

7 Not Feasible Not feasible Not Feasible Not Feasible

8 5.949 s 3.923 s 5.527 s 2.531 s

9 17.548 s 7.831 s 8.067 s 4.636 s

10 14.214 s 8.081 s 6.472 s 4.773 s

Average

Time

13.52 s 7.73 s 5.778 s 3.971 s

Based on the results of table 5, the average measured depth obtained increases

with the increase in the convergence criteria. On the other hand, after comparing the

results of table 6, it can be deduced that the average processing time decreases with the

increase in the converging criteria. This can be explained by the fact that, as stated

previously, the convergence criteria is simply the difference between the objective

function of particles in the same iteration. Thus, as the convergence criteria is increased,

the solution of the optimization algorithm does not improve and vice versa. However, as

the convergence criteria increases, less processing time is needed for the algorithm to

converge.

According to table 5, the difference in the average measured depth for the cases

having the convergence criteria of 0.01 and 0.05 is less than 1 meter. This indicates that,

in this specific case, increasing the convergence criteria by 0.04 has little impact on the

calculated measured depth. However, the difference in the average measured depth

between the cases having the convergence criteria of 0.01 and 0.3 is equal to 6.05

meters. Thus, increasing the convergence criteria by 0.29 will lead to a significant

change in the calculated objective function. On the other hand, based on table 6, when

78

comparing the results for the same cases above, it can be seen that the average

processing time decreases significantly from 13.52 seconds to 7.73 seconds and 3.971

seconds for the cases having the convergence criteria of 0.01, 0.05, and 0.3 respectively.

As a summary, the selection of the convergence criteria largely depends on the

testing scenario. If the goal is to provide the best solution regardless of the processing

time, then decreasing the convergence criteria will be the solution. However, for the

purpose of this study, a balance between the solution and processing time must exist.

Therefore, selecting a convergence criteria of 0.05 for the optimization problem is

considered the best solution since it provides an almost exact average measured depth

when compared to the lowest convergence criteria of 0.01 while simultaneously

decreasing the processing time by approximately 43%.

Finally, after defining that the swarm size must be set at 15 and the convergence

criteria must not exceed 0.05, the maximum number of iterations must be specified.

Thus, after fixing the swarm size and convergence criteria at 15 and 0.05 respectively,

the first five wells presented in the sensitivity analysis above were tested based on a

maximum iteration of 100. The results will be presented in the figures below.

Figure 19 Well 1.

79

Figure 21 Well 2.

Figure 20 Well 3.

Figure 22 Well 4.

80

Figure 23 Well 5.

In the figures above, the x-axis and y-axis simply represent the number of

iterations and objective function values respectively. In addition, the green and orange

particles represent the average particle and best particle for each iteration in the PSO

algorithm. Thus, for an iteration of 0, two particles are seen. The green particle

symbolizes the particle with the lowest objective function value. While as, the orange

particle, represents the average objective function value obtained between the particles.

Once the average particle approaches the green particle based on the convergence

criteria, the algorithm converges.

According to figures 19, 20, 21, 22 and 23 it is evident that the algorithm is

converging at a maximum of 36 iterations. Thus, it was decided to implement 100 as the

maximum number of iterations to provide the algorithm with some added space in case

of no convergence. Any number above this value will be redundant since most wells are

converging when the number of iterations is reaching 40.

81

6.2. Testing Results and Discussion.

In this section, 24 different cases were tested by implementing the optimization

parameters obtained in section 6.1. The graphical results of these cases will be

presented in this section below. It is important to note that, the visualization of three

different results will take place in this section. These results are divided into three

sections.

6.2.1. Initial trajectory

In this section, the trajectories produced are based on the Euclidean distance

from the drilling center to reach the point of intersection.

6.2.2. Manual optimization

In this case, the trajectories produced are based on fixing the kick-off point and

the arbitrary parameter to reach Cs at 400 meters and 600 meters respectively. For the

parametric t, a while loop is introduced that loops from [0,200]. This loop will terminate

once a feasible solution is obtained.

6.2.3. Automated optimization.

The results obtained from this case are simply the trajectories produced by

implementing the different optimization parameters defined in section 6.1.

6.2.4. Results and discussion.

The results of 24 cases will be presented in this thesis paper. These results will

combine the three sections (6.2.1, 6.2.2, and 6.2.3) in the same figure for cases 1, 2, 4,

82

and 5. Otherwise, all other cases will only contain figures combining sections 6.2.1 and

6.2.3. Thus, every figure will represent a case. However, specifically for case 1, four

figures will be presented. The first three figures will show the three different sections

separately. While the fourth case will combine all three sections together.

6.2.4.1. Case 1.

Case 1 includes 20 targeted vertical wells. The results obtained in this case are

shown in the figures below.

Figure 24 Vertical trajectories of case 1.

83

Figure 25 Manual optimized trajectories of case 1.

Figure 26 Automated optimized trajectories of case 1.

84

Figure 27 Case 1.

In figure 24, the initial trajectory is represented by red. However, in figure 25,

the manual trajectory is represented by black. Lastly, based on figure 26, the optimized

trajectory is designated by blue. For consistency, all results will follow the same color

scheme as in this case.

According to figure 24, the initial trajectory is simply the straight distance that

connects the drilling center with the intersection point. This is the initial trajectory that

is provided to the code as an input (found in section 4.7.2.2.1). It is obvious that this

type of trajectory may not be used in real drilling cases due to the high degree of

bending. To solve this issue, the usage of the Bezier curve algorithm was implemented.

Based on figures 25, 26 and 27, it can be deduced that curved smooth

trajectories are produced when applying the designed algorithm. However, to be able to

assess the difference between the manual trajectories and optimized trajectories, the

following results must be compared in the table below:

85

Table 7 Measured depth comparison for manual and optimized trajectories.

Well Number: Manual Trjaectory

Measured Depth

Optimized Trajectory

Measured Depth

1 2407.029 m 2367.532 m

2 2287.922 m 2331.316 m

3 2616.061 m 2543.55 m

4 2563.624 m 2560.813 m

5 2582.243 m 2561.305 m

6 2467.466 m 2529.286 m

7 2280.918 m 2265.161 m

8 2699.738 m 2611.781 m

9 2336.723 m 2366.378 m

10 2622.866 m 2652.013 m

Average MD 2486.459 m 2478.913 m

As seen in table 7 above, the implementation of PSO optimization on the well

trajectory algorithm decreased the average measured depth calculated by 7.54 meters

when compared to the manual trajectory. This indicates that the implementation of the

86

PSO algorithm has proven to be beneficial and will aid in reducing the cost associated

in well designing and drilling.

6.2.4.2. Case 2.

Similar to case 1, the wells that need to be intersected are vertical wells in this

case. The resulting trajectories obtained are found in the figure below:

Figure 28 Case 2.

6.2.4.3. Case 3.

The wells that need to be intersected in this case are vertical wells. The results

obtained are visualized in the figure below:

87

Figure 29 Case 3.

6.2.4.4. Case 4.

In this case, the targeted wells are horizontal wells. The results obtained will be

shown in the figure below:

Figure 30 Case 4.

88

To be able to assess the difference between the manual trajectories and

optimized trajectories in the case of horizontal targets, the following results must be

compared in the table below:

Table 8 Measured depth comparison for manual and optimized trajectories in the case of

horizontal targets.

Well Number: Manual Trjaectory

Measured Depth

Optimized Trajectory

Measured Depth

1 2572.052 m 2558.954 m

2 2565.069 m 2537.929 m

3 2545.312 m 2520.335 m

4 2468.793 m 2463.954 m

5 2724.818 m 2685.138 m

6 2595.39 m 2508.007 m

7 Not Feasible 2544.65 m

8 2924.206 m 2861.345 m

9 2493.627 m 2480.567 m

10 2646.694 m 2612.647 m

Average MD 2615.107 m 2580.986 m

(excluding well 7).

89

Based on the results obtained in table 8, it can be deduced that the usage of the

PSO optimizer was able to decrease the average measured depth by 34.12 meters. This

shows the significance of implementing the optimizer to minimize the measured depth

needed to intersect the target. In addition, as seen in table 8, well number 7 was initially

unfeasible in the case of manual trajectory. However, after the introduction of the PSO

optimizer, the well became feasible. This further shows the associated improvement in

implementing the optimization algorithm.

6.2.4.5. Case 5.

The target wells of this case are horizontal wells. The results are shown in the

figure below:

Figure 31 Case 5.

90

6.2.4.6. Case 6.

The results obtained in case 6 are shown in the figure below:

Figure 32 Case 6.

6.2.4.7. Case 7.

The obtained trajectories in this case are shown in the figure below:

Figure 33 Case 7.

91

Figure 34 Case 8.

6.2.4.8. Case 8.

The calculated trajectories are found in the figure below:

6.2.4.9. Case 9.

The calculated trajectories are found in the figure below:

Figure 35 Case 9.

92

6.2.4.10. Case 10.

The calculated trajectories are found in the figure below:

Figure 36 Case 10.

6.2.4.11. Case 11.

The calculated trajectories are found in the figure below:

Figure 37 Case 11.

93

6.2.4.12. Case 12.

The calculated trajectories are found in the figure below:

Figure 38 Case 12.

6.2.4.13. Case 13.

The calculated trajectories are found in the figure below:

Figure 39 Case 13.

94

6.2.4.14. Case 14.

The calculated trajectories are found in the figure below:

Figure 40 Case 14.

6.2.4.15. Case 15.

The calculated trajectories are found in the figure below:

Figure 41 Case 15.

95

6.2.4.16. Case 16.

The calculated trajectories are found in the figure below:

Figure 42 Case 16.

6.2.4.17. Case 17.

The calculated trajectories are found in the figure below:

Figure 43 Case 17.

96

6.2.4.18. Case 18.

The calculated trajectories are found in the figure below:

Figure 44 Case 18.

6.2.4.19. Case 19.

The calculated trajectories are found in the figure below:

Figure 45 Case 19.

97

6.2.4.20. Case 20.

The calculated trajectories are found in the figure below:

Figure 46 Case 20.

6.2.4.21. Case 21.

The calculated trajectories are found in the figure below:

Figure 47 Case 21.

98

6.2.4.22. Case 22.

The calculated trajectories are found in the figure below:

Figure 48 Case 22.

6.2.4.23. Case 23.

The calculated trajectories are found in the figure below:

Figure 49 Case 23.

99

6.2.4.24. Case 24.

The calculated trajectories are found in the figure below:

Figure 50 Case 24.

As a summary, based on the results obtained in section 6.2.4, it can be deduced

that the usage of the Bezier curve function to model well trajectories was able to

smoothen the well path. This usage allowed the conversion of unfeasible wells to

feasible wells by decreasing the associated dogleg severity. In addition, to further

improve the Bezier curve function, the particle swarm optimization algorithm was

introduced. The optimized trajectories obtained were compared to the trajectories

obtained from the manual scenario. Based on this comparison, it was shown that the

average measured depth of the optimized trajectory was decreased when compared to

the manual trajectory. This decrease was more significant in the case of horizontal well

targets.

100

CHAPTER 7

VERTIFICATION WITH PETREL

To further support the importance of the Bezier curve algorithm, it was

compared to the well path algorithm implemented in Petrel. The results obtained will be

presented in this chapter.

7.1. Well Path Algorithm in Petrel.

This algorithm implements the Advanced Design Trajectory (ADT) to generate

well trajectories (SCM,2009). To design trajectories and calculate costs, the algorithm

will limit the curvature to a specified DLS (SCM,2009). The user must provide the

algorithm with the upper and lower DLS limit. Also, both the starting point and

reservoir target must be provided (SCM, 2009). Finally, the user has the option to

provide the exact measured depth to reach the kick-off point.

7.2. Input Parameters Set in Petrel.

For this comparison to be efficient, the input provided to Petrel consisted of the

following:

1- Same starting point or well head as in the case of the Bezier curve testing case.

2- Same reservoir target as in the case of the Bezier curve testing case.

3- Same measured depth to reach kick-off point as the Bezier curve testing case.

4- Requested upper DLS was set at 7.

5- Lower DLS limit was set at 3. (Since this algorithm will calculate trajectories by

using either the low DLS limit or the upper DLS limit, a trade-off must be

101

established between having a very low DLS limit which will yield very large

measured depths to intersect the target and having a very high DLS limit which

will yield excessive tension on the drilling equipment).

7.3. Results of Testing Wells.

10 different wells presented in case 4 of chapter 6 were tested using both the

Bezier curve algorithm and Petrel Well Path algorithm. The results are shown in the

figure below:

Figure 51 Results.

The black and red curves presented in figure 51 represent the results using the

Bezier curve and Petrel Well Path algorithms respectively. Based on this figure, it is

evident that by using the Bezier curve algorithm, shorter curves were obtained when

compared to Petrel’s Well Path Algorithm.

102

To further support this claim, the average measured depth and average CPU

needed to produce trajectories using both models will be presented in the two tables

below.

Table 9 Comparison between Bezier algorithm and Petrel.

Algorithm Used Total Average Measured Depth

(Meters) for all wells

Petrel’s algorithm 2989.224 m

Bezier algorithm 2977.82 m

Table 10 Comparison between Bezier algorithm and Petrel.

Algorithm Used Average Maximum DLS reached

Petrel’s algorithm 7

Bezier algorithm 6.96

Based on table 9, it can be deduced that using the Bezier curve algorithm aided

in decreasing the total average measured depth by 11.4 meters. Thus, it is safe to say

that this algorithm provided shorter wells when compared to Petrel.

Based on table 10, it can also be deduced that the Bezier curve algorithm needed

a slightly lower average maximum DLS limit of 6.96 when compared to Petrel which

obtained an average maximum DLS average of 7. This shows that the Bezier curve

algorithm will generate wells that help in decreasing the tension exerted on the wellbore

and the drilling equipment. Thus, using this algorithm was proven to be efficient and

economical.

103

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS FOR FUTURE

WORK

This chapter will include the conclusion and a few suggestions on how to further

develop this thesis in the future.

8.1. Conclusion.

The objective of this thesis has been to design and implement a well planning

algorithm that is capable of producing 3D well trajectories. To achieve this purpose, an

extensive literature review was conducted to search for the best model that would

provide simplicity and added flexibility. Based on the research conducted in this

section, the Bezier curve model was chosen for this purpose. Once the model was

selected, the algorithm was designed.

After the algorithm was designed, it was deduced that the optimization of the

three input parameters associated with the Bezier model would provide optimal and

robust solutions. Therefore, the particle swarm optimization technique was

implemented. For this optimization problem, after conducting a sensitivity analysis, the

convergence criteria of the PSO algorithm was set at 0.05. Also, the number of particles

present in this optimization problem was specified at 15. Lastly, the maximum number

of iterations was set at 100.

Different optimization algorithms such as GA, DE, DA, and SLSQP were linked

to the Bezier curve algorithm. This was done to determine the best optimizer for this

optimization problem. Based on the results obtained, the DE algorithm proved to be the

104

best optimizer in terms of average measured depth and standard deviation. However,

further testing on the robustness and scalability of each algorithm must be conducted. In

addition, to provide consistency with the optimizer used by the OGED team for well

placement and facility optimization, it was decided that the PSO algorithm shall be used

for this thesis study. However, all of the different algorithms were implemented into the

integrated platform and can be used when needed for testing.

Based on the testing cases presented in this thesis, it was concluded that the

algorithm (Bezier curve model and PSO optimizer) was able to produce an optimal

solution when compared to the solution of the Bezier curve model (without the PSO

optimizer). Furthermore, this improvement is more significant in the case of horizontal

well targets. The results were visualized in Petrel to ensure that the trajectories obtained

were feasible.

To further verify the strength of using the Bezier curve model, a comparison was

done with the Well Path algorithm implemented in Petrel. This comparison showed that

the Bezier curve algorithm was capable of generating shorter wells with a lower

maximum DLS.

Once the results were validated, the algorithm was then implemented into the

integrated well and facility placement optimization solution being developed by the

OGED team. After implementation, the algorithm was used to successfully test different

scenarios.

8.2. Recommendations for future work.

- Different optimization methods need to be tested.

- Implementation of other well trajectory models.

105

- Addition of geological constraints to the optimization problem.

- Modification of the algorithm to account for risks associated with drilling.

- Enhancing the process time of the optimziation algorithm being implemented in

this thesis.

106

APPENDIX

Bezier curves

import math

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from numpy import arctan2

import time

#from .node import Node

#from .well import Well

#from pso import PSO

Parameters that can be changed:

1- KOP: Kick off point

2- distance_platform_cs: distance from the platform(well head) to the control point

Cs.

3- parametric_t: The t found in the parametric equation of the line to get the control

point Ce.

4- DLS_limit: The maximum DLS allowabl.

DLS_PARAMETER = 30

ERROR_THRESHOLD = 0.01

#global total_time

#total_time=0

This cannot be changed

1- DLS_PARAMETER: is simply the 30 found in the equation of DLS. This is

inserted to obtain degrees/30 meters

The function is divided to the following parts:

Part 1: Enters the OGED file and identifies the given well. In this well, it selects the

drilling center and then removes it from the file to only have the horizontal well nodes.

Part 2: The code chooses the intersection pt between well heel and well toe.

Part 3: The vertical section of the well to reach KOP.

Part 4: Azimuth of horizontal well and wellhead to target (this may be removed since

its not used like discussed)

Part 5: Calculation of control points Cs and Ce. For Ce, I am using a parametric

equation.

Part 6: Loop where t ranges from 0.01 to 1 to calculate coordinates and inclination

and azimuth.

Part 7: Calculation of error between last point produced by the code and the point of

intersection(well heel or toe).

Part 8: Add the horizontal well nodes to the produced trajectory to obtain a length of

120 nodes instead of 100.

107

Part 9: Calculate the total depth or measured depth using eculidean distances.

Part 10: Calculation of DLS for the whole trajectory (length of 120)

Part 11: To check if in the length of the produced trajectory (length 100) DLS exceeds

DLS_limit of 7.

Part 12: Loop to reach the maximum_parametric_t and see the first feasible trajectory.

Part 13: Form a list to contain all outputs needed by Dr. Kassem.

Part 14: Output the list in part 13 into a txt file and table format.

def read_well_data(filename):

To get the given horizontal well as an input:

file=open(filename,'r')

well_list=[]

for line in file:

splitLine=line.split(" ")

x=float(splitLine[0])

well_list.append(x)

y=float(splitLine[1])

well_list.append(y)

z=float(splitLine[2])

well_list.append(z)

counter_list=len(well_list)

if well_list[2]<0:

platform_x=well_list[0]

platform_y=well_list[1]

platform_z=well_list[2]

del well_list[0:3]

else:

platform_x=well_list[-3]

platform_y=well_list[-2]

platform_z=well_list[-1]

del well_list[-3:]

platform=[platform_x,platform_y,platform_z]

well_array1=np.array([well_list])

counter=well_array1.shape[1]

a=counter/3

well_array=well_array1.reshape(int(a),3)

file.close()

return well_array, platform

def bezier_curve(well_array, platform, KOP, distance_platform_cs, parametric_t):

depth=platform[2]

108

z,gamma=0,0

trajectory_list=[]

increment=30

point=[]

initial_inclination=0

if len(well_array) == 2:

final_inclination = 0

else:

final_inclination = 90

initial_azimuth=0

direction_list=[]

inclination_list=[]

azimuth_list=[]

inclination_list,azimuth_list=[],[]

To get target 1 and target 2

target1_array=well_array[0]

target1=target1_array.tolist()

target2_array=well_array[-1]

target2=target2_array.tolist()

platform_array=np.array([platform])

target_counter=well_array.shape[0]

To choose the point of intersection with the given well.

distance_target1=np.linalg.norm(target1_array-platform_array)

distance_target2=np.linalg.norm(target2_array-platform_array)

if distance_target1<distance_target2:

intersection_pt=target1
else:

intersection_pt=target2

intersection_pt_array=np.array([intersection_pt])

Vertical section of the well will end once the well reaches KOP.

while depth<KOP:

point=[platform[0],platform[1],depth]

depth+=increment

trajectory_list.append(point)

inclination_list.append(initial_inclination)

azimuth_list.append(initial_azimuth)

point=[platform[0],platform[1],KOP]

inclination_list.append(initial_inclination)

azimuth_list.append(initial_azimuth)

trajectory_list.append(point)

Calculate the azimuth of the kick off point and target

vector_platform_intersection_pt=[]

for element in range(len(intersection_pt)):

109

x=intersection_pt[element]-point[element]

vector_platform_intersection_pt.append(x)

Using trigonometric relations to guide the trajectory to target 1:

azimuth_1=-

arctan2(vector_platform_intersection_pt[1],vector_platform_intersection_pt[0])+math.p

i/2

if azimuth_1<0:

azimuth_1=azimuth_1+2*math.pi

maximum_azimuth1=math.degrees(azimuth_1)

Using trigonometric relations to get the azimuth of the horizontal well:

horizontal_well_vector=[]

if intersection_pt==target1:

target1_n=well_array[1]

target1_n_list=target1_n.tolist()

for element in range(len(target1)):

x=target1_n_list[element]-target1[element]

horizontal_well_vector.append(x)

else:

for element in range(len(well_array)-1):

continue

target2_n=well_array[element]

target2_n_list=target2_n.tolist()

for element in range(len(target2)):

x=target2[element]-target2_n[element]

horizontal_well_vector.append(x)

azimuth_2=-arctan2(horizontal_well_vector[1],horizontal_well_vector[0])+math.pi/2

if azimuth_2<0:

azimuth_2=azimuth_1+2*math.pi

maximum_azimuth2=math.degrees(azimuth_2)

Calculate Ts and Te

Ts,Te,Ti_list=[],[],[]

Tsx,Tsy,Tsz,Tex,Tey,Tez=0,0,0,0,0,0

Tsx=(math.sin(math.radians(initial_inclination)))*(math.cos(math.radians(maximum_az

imuth1)))

Tsy=(math.sin(math.radians(initial_inclination)))*(math.sin(math.radians(maximum_az

imuth1)))

Tsz=math.cos(math.radians(initial_inclination))

Ts=[Tsx,Tsy,Tsz]

Ts_array=np.array([Ts])

Ti_list.append(Ts)

110

Tex=(math.sin(math.radians(final_inclination)))*(math.cos(math.radians(maximum_azi

muth2)))

Tey=(math.sin(math.radians(final_inclination)))*(math.sin(math.radians(maximum_azi

muth2)))

Tez=math.cos(math.radians(final_inclination))

Te=[Tex,Tey,Tez]

Te_array=np.array([Te])

Calculate Cs and Ce

Cex,Cey,Cez=0,0,0

Cs,Ce=[],[]

#de=(2.6232747288751776e+16)

starting_pt_x,starting_pt_y,starting_pt_z=platform[0],platform[1],KOP

starting_pt=[starting_pt_x,starting_pt_y,starting_pt_z]

intersection_pt_x,intersection_pt_y,intersection_pt_z=intersection_pt[0],intersection_pt

[1],intersection_pt[2]

intersection_pt=[intersection_pt_x,intersection_pt_y,intersection_pt_z]

Csx=starting_pt_x+(distance_platform_cs*Tsx)

Csy=starting_pt_y+(distance_platform_cs*Tsy)

Csz=starting_pt_z+(distance_platform_cs*Tsz)

Csx = starting_pt_x

Csy = starting_pt_y
Csz = starting_pt_z + distance_platform_cs

Cs=[Csx,Csy,Csz]

To get Ce:

if intersection_pt==target1:

target_n1_array=well_array[1]

target_n1=target_n1_array.tolist()

direction_vector=target1_array-target_n1_array

equation_line=(parametric_t*direction_vector)+target1_array

else:

target_n2_array=well_array[target_counter-2]

target_n2=target_n2_array.tolist()

direction_vector=target2_array-target_n2_array

equation_line=(parametric_t*direction_vector)+target2_array

Cex=equation_line[0]

Cey=equation_line[1]

Cez=equation_line[2]

Ce=[Cex,Cey,Cez]

Calculate ti,inclination_i,azimuth_i

111

u,counter=0,0

Tix,Tiy,Tiz=0,0,0

B_dot_x,B_dot_y,B_dot_z=0,0,0

B_dot=[]

inclination_i,azimuth_i=0,0

list=[]

while u<1:

u+=0.01

counter+=1

B_dot_x=(-3*((1-u)**2)*starting_pt_x)+(3*(1-u)*(1-3*u)*Csx)+(3*(2-

3*u)*u*Cex)+(3*u*u*intersection_pt_x)

B_dot_y=(-3*((1-u)**2)*starting_pt_y)+(3*(1-u)*(1-3*u)*Csy)+(3*(2-

3*u)*u*Cey)+(3*u*u*intersection_pt_y)

B_dot_z=(-3*((1-u)**2)*starting_pt_z)+(3*(1-u)*(1-3*u)*Csz)+(3*(2-

3*u)*u*Cez)+(3*u*u*intersection_pt_z)

B_dot=np.array([B_dot_x,B_dot_y,B_dot_z])

B_dot_radical1=(B_dot*B_dot)**(0.5)

B_dot_radical=np.linalg.norm(B_dot_radical1)

Ti=(B_dot/B_dot_radical)

Tix=Ti[0]

Tiy=Ti[1]

Tiz=Ti[2]

Ti1=[Tix,Tiy,Tiz]

Ti_list.append(Ti1)

inclination_i=math.degrees(math.acos(Tiz))

inclination_list.append(inclination_i)

last_point_x=(((1-u)**3)*starting_pt_x)+(3*((1-u)**2)*u*Csx)+((3*(1-

u)*u*u*Cex))+((u**3)*intersection_pt_x)

last_point_y=(((1-u)**3)*starting_pt_y)+(3*((1-u)**2)*u*Csy)+((3*(1-

u)*u*u*Cey))+((u**3)*intersection_pt_y)

last_point_z=(((1-u)**3)*starting_pt_z)+(3*((1-u)**2)*u*Csz)+((3*(1-

u)*u*u*Cez))+((u**3)*intersection_pt_z)

last_point=np.array([last_point_x,last_point_y,last_point_z])

trajectory_list.append(last_point)

error=np.linalg.norm(intersection_pt_array-last_point)

if error < 0 or error > ERROR_THRESHOLD:

trajectory_list = []

return trajectory_list

112

results = {

'trajectory_list': trajectory_list,

'well_array': well_array,

'azimuth_list': azimuth_list,

'inclination_list': inclination_list,

'final_inclination': final_inclination,

'intersection_pt_array': intersection_pt_array

}

return results

#return

trajectory_list,well_array,azimuth_list,inclination_list,final_inclination,KOP,DLS_para

meter,DLS_limit,intersection_pt_array

To add the horizontal well to the trajectory_list:

def append_horizontal_plannned(trajectory_list,well_array,intersection_pt_array):

trajectory_list_length=len(trajectory_list)

trajectory_list_modified=trajectory_list

trajectory_array_plannedwell=np.array([trajectory_list])

trajectory_array_plannedwell_counter=trajectory_array_plannedwell.shape[1]

horizontal_well_entry_point1_array=np.array([well_array[0]])

horizontal_well_entry_point2_array=np.array([well_array[-1]])

well_horizontal_list=well_array.tolist()

well_horizontal_list_length=len(well_horizontal_list)

if np.linalg.norm(horizontal_well_entry_point1_array-intersection_pt_array)==0:

del well_horizontal_list[0]

for i in range(len(well_horizontal_list)):

trajectory_list_modified.append(well_horizontal_list[i])

elif np.linalg.norm(horizontal_well_entry_point2_array-intersection_pt_array)==0:

del well_horizontal_list[-1]

for i in reversed(range(len(well_horizontal_list))):

trajectory_list_modified.append(well_horizontal_list[i])

trajectory_array=np.array([trajectory_list_modified])

trajectory_array_counter = trajectory_array.shape[1]

results = {

'trajectory_list_modified': trajectory_list_modified,

'trajectory_array': trajectory_array,

'trajectory_array_counter': trajectory_array_counter,

'trajectory_array_plannedwell': trajectory_array_plannedwell,

'trajectory_array_plannedwell_counter': trajectory_array_plannedwell_counter,

'well_horizontal_list': well_horizontal_list

}

113

return results

#return

well_horizontal_list,trajectory_list_modified,trajectory_array_counter,trajectory_array,t

rajectory_array_plannedwell,trajectory_array_plannedwell_counter

To determine the position at which the KOP is found:

def azimuth_allpoints(trajectory_list,azimuth_list,KOP):

azimuth_list_modified=azimuth_list

for KOP_position in range(len(trajectory_list)):

if trajectory_list[KOP_position][2]==KOP:

break

else:

continue

To determine the azimuth of the points in the trajectory:

delta_x,delta_y=0,0

for i in range(KOP_position,len(trajectory_list)-1):

delta_x=trajectory_list[i+1][0]-trajectory_list[i][0]

delta_y=trajectory_list[i+1][1]-trajectory_list[i][1]

azimuth=-arctan2(delta_y,delta_x)+math.pi/2

if azimuth<0:

azimuth=azimuth+2*math.pi

azimuth_i=math.degrees(azimuth)

azimuth_list_modified.append(azimuth_i)

return azimuth_list_modified

To calculate the euclidean distance of all the points in the well:

def

Measured_distance(trajectory_list_modified,trajectory_array_plannedwell,trajectory_ar

ray):

MD_list=[]

distance_all=[]

trajectory_array_counter = len(trajectory_array[0])

trajectory_array_plannedwell_counter = len(trajectory_array_plannedwell[0])

for i in range(trajectory_array_counter-1):

distance=np.linalg.norm(trajectory_array[0][i+1]-trajectory_array[0][i])

distance_all.append(distance)

MD=0

for i in range(trajectory_array_plannedwell_counter-1):

MD+=distance_all[i]

MD_list.append(MD)

results = {

'distance_all': distance_all,

'MD_list': MD_list,

'MD': MD,

114

'trajectory_array': trajectory_array

}

return results

To calculate DLS for distance_all:

def

DLS_all(well_horizontal_list,inclination_list,final_inclination,azimuth_list_modified,di

stance_all,DLS_parameter):

inclination_list_modified=inclination_list

for i in range(len(well_horizontal_list)):

inclination_list_modified.append(final_inclination)

inclination_array_counter=len(inclination_list_modified)

inclination_array=np.array([inclination_list_modified]).reshape(inclination_array_count

er,1)

azimuth_array=np.array([azimuth_list_modified]).reshape(inclination_array_counter,1)

dogleg_angle_list=[]

for i in range(inclination_array_counter-1):

dogleg_angle=math.acos(math.cos(math.radians(inclination_array[i]))*math.cos(math.r

adians(inclination_array[i+1]))+math.sin(math.radians(inclination_array[i]))*math.sin(

math.radians(inclination_array[i+1]))*math.cos(math.radians(azimuth_array[i+1]-

azimuth_array[i])))

dogleg_angle_list.append(math.degrees(dogleg_angle))

dogleg_angle_array=np.array([dogleg_angle_list]).reshape(inclination_array_counter-

1,1)

DLS_list=[]

for i in range(inclination_array_counter-1):

if distance_all[i]==0:

DLS=0

DLS_list.append(DLS)

else:

DLS=(DLS_parameter/distance_all[i])*dogleg_angle_array[i][0]

DLS_list.append(DLS)

results = {

'DLS_list': DLS_list,

'inclination_list_modified': inclination_list_modified,

'dogleg_angle_list': dogleg_angle_list

}

115

return results

To caclulate DLS untill intersection_pt is reached:

def

DLS_planned_trajectory(DLS_list,trajectory_array_plannedwell,DLS_limit,trajectory_l

ist_modified):

DLS_planned_well_list=[]

for i in range(len(trajectory_array_plannedwell[0])-1):

DLS_planned_well_list.append(DLS_list[i])

for i in DLS_planned_well_list:

if i>DLS_limit:

trajectory_list_modified=[]

break

result = {

'DLS_planned_well_list': DLS_planned_well_list,

'trajectory_list_modified': trajectory_list_modified

}

return result

class WellTrajetoryDesign:

def init (self, well=None, platform=None, well_heel=0, DLS_limit=7,

KOP=600):

self.well_nodes = well

self.platform = platform

self.well_heel = well_heel

self.DLS_limit = DLS_limit

self.KOP = KOP

well_nodes = self.well_nodes

if self.well_heel == 0:

self.well_array = [node for node in well_nodes]

else:

self.well_array = [node for node in reversed(well_nodes)]

self.well_array = np.array(self.well_array)

return

def get_well_trajectory(self, well_array, platform, distance_platform_cs,

parametric_t):

116

solution = bezier_curve(well_array, platform, self.KOP, distance_platform_cs,

parametric_t)

if not solution: return None #If failed to construct bezier curve, return

trajectory_list = solution['trajectory_list']

intersection_pt_array = solution['intersection_pt_array']

azimuth_list = solution['azimuth_list']

inclination_list = solution['inclination_list']

final_inclination = solution['final_inclination']

solution = append_horizontal_plannned(trajectory_list, well_array,

intersection_pt_array)

trajectory_list_modified = solution['trajectory_list_modified']

trajectory_array = solution['trajectory_array']

trajectory_array_counter = solution['trajectory_array_counter']

trajectory_array_plannedwell = solution['trajectory_array_plannedwell']

trajectory_array_plannedwell_counter =

solution['trajectory_array_plannedwell_counter']

well_horizontal_list = solution['well_horizontal_list']

azimuth_list_modified =

azimuth_allpoints(trajectory_list_modified,azimuth_list,self.KOP)

solution = Measured_distance(trajectory_list_modified,

trajectory_array_plannedwell, trajectory_array)

distance_all = solution['distance_all']

MD_list = solution['MD_list']

MD = solution['MD']

trajectory_array = solution['trajectory_array']

solution = DLS_all(well_horizontal_list, inclination_list,

final_inclination,azimuth_list_modified ,distance_all, DLS_PARAMETER)

DLS_list = solution['DLS_list']

inclination_list_modified = solution['inclination_list_modified']

dogleg_angle_list = solution['dogleg_angle_list']

solution = DLS_planned_trajectory(DLS_list,trajectory_array_plannedwell,

self.DLS_limit, trajectory_list_modified)

DLS_planned_well_list = solution['DLS_planned_well_list']

trajectory_list_modified = solution['trajectory_list_modified']

if not trajectory_list_modified: return None #If exceeded DLS limit, return

result = {

'well_trajectory': trajectory_list_modified,

'azimuth_list': azimuth_list_modified,

117

'inclination_list': inclination_list_modified,

'DLS_list': DLS_list,

'MD_list': MD_list,

'intersection_pt_counter': trajectory_array_plannedwell_counter,

'trajectory_array_counter': trajectory_array_counter

}

return result

def generate_well_trajectory(self, well, heel_index, platform, distance_platform_cs,

parametric_t):

well_nodes = well.trajectory_nodes

well_array = []

if heel_index == 0:

well_array = [[node.x, node.y, node.prop] for node in well_nodes]

else:

well_array = [[node.x, node.y, node.prop] for node in reversed(well_nodes)]

well_trajectory_solution = self.get_well_trajectory(well_array, platform,

distance_platform_cs, parametric_t)

well_nodes = [Node(n[0], n[1], n[2]) for n in

well_trajectory_solution['well_trajectory'][0]]

well.trajectory_nodes = well_nodes

well.well_trajectory_solution = well_trajectory_solution

return well

def cost_function(self, positions, particle_id, close_to_convergence=False):

distance_platform_cs = positions[0]

parametric_t = positions[1]

KOP = positions[2]

self.KOP = KOP

well_trajectory_solution = self.get_well_trajectory(self.well_array, self.platform,

distance_platform_cs, parametric_t)

if not well_trajectory_solution:

return 1e4

return well_trajectory_solution['MD_list'][-1]

def well_trajectory_final_iteration(self, positions):

distance_platform_cs = positions[0]

parametric_t = positions[1]

118

KOP = positions[2]

self.KOP = KOP

well_trajectory_solution = self.get_well_trajectory(self.well_array, self.platform,

distance_platform_cs, parametric_t)

if not well_trajectory_solution:

return None

return well_trajectory_solution

def optimize_well_trajectory_PSO(well_nodes, platform, well_heel=0, DLS_Limit=7):

platform = np.array(platform)

well_nodes = np.array(well_nodes)

well_trajectory_design = WellTrajetoryDesign(well_nodes, platform,

DLS_limit=DLS_Limit)

bounds = [

(0, 1000),

(0, 100),

(200, 600)

]

number_particles = 15

number_iterations = 100

convergence_threshold = 0.05

initial = []

#init0,init1,init2=0,0,0

for i in range(number_particles):

init = []

#init =np.array([init0,init1,init2])

#init[0]=np.random.uniform(300,900)

#init[1]=np.random.uniform(0,2)

#init[2]=np.random.uniform(200,400)

for j, bound in enumerate(bounds):

init.append(np.random.uniform(bound[0], bound[1]))

initial.append(init)

s = time.time()

pso = PSO(well_trajectory_design.cost_function, initial, bounds, number_particles,

number_iterations, convergence=convergence_threshold, is_max=False,

run_parallel=False, plot_err=True)

pso.run_optimization_sync()

e = time.time()

119

#total_time+=(e-s)

best_particle_position = pso.pos_best_g

best_npv = pso.err_best_g

print(best_particle_position)

print(best_npv)

print(e-s)

well_trajectory_solution =

well_trajectory_design.well_trajectory_final_iteration(best_particle_position)

if well_trajectory_solution is None :

return None

trajectory_list = well_trajectory_solution['well_trajectory']

print("Done")

return well_trajectory_solution

def optimize_well_trajectory(well_nodes, platform, well_heel=0, DLS_Limit=7,

KOP=600):

well_trajectory_design = WellTrajetoryDesign(DLS_limit=DLS_Limit, KOP=KOP)

if well_heel == 0:

well_array = np.array([[node.x, node.y, node.prop] for node in well_nodes[:]])
else:

well_array = np.array([[node.x, node.y, node.prop] for node in

reversed(well_nodes[:])])

platform = np.array([platform.x, platform.y, platform.prop])

#Very simple un-optimized 'optimizer'

maximum_parametric_t=0

distance_platform_cs=0

done = False

trajectory_list_solution = None

'''

while maximum_parametric_t<200 and not done:

120

maximum_parametric_t+=1

while distance_platform_cs < 1000 and not done:

distance_platform_cs += 200

distance_platform_cs = 600

trajectory_list_solution = well_trajectory_design.get_well_trajectory(well_array,

platform,

distance_platform_cs=distance_platform_cs,parametric_t=maximum_parametric_t)

if not trajectory_list_solution:

break#continue

else:

done = True

break

return trajectory_list_solution

'''

121

REFERENCES

Helmy, M. W., Khalaf, F., & Darwish, T. A. (1998). Well Design Using a Computer Model. Society

of Petroleum Engineers.

Allain, O., Dyson, M., Jing, X., Pentland , C., Polikar, M., & Suicmez, V. S. (2019).

The Imperial College Lectures in Petroleum Engineering Drilling and Reservoir

Appraisal. World Scientific Publishing Europe Ltd.

Amorin, R., & Bediako, E. B. (2010). Application of Minimum Curvature Method to

Wellpath Calculations. Research Journal of Applied Sciences, Engineering and

Technology.

Amorin, R., & Broni-Bediako, E. (2010). Application of Minimum Curvature Method

to Wellpath Calculations. Research Journal of Applied Sciences, Engineering

and Technology.

ARABJAMALOEI, R., EDALATKHAH, S., & JAMSHIDI, E. (2011). A New

Approach to Well Trajectory Optimization Based on Rate of Penetration and

Wellbore Stability. Petroleum Science and Technology.

Atashnezhad, A., Wood, D. A., Fereidounpour, A., & Khosravanian, R. (2014).

Designing and optimizing deviated wellbore trajectories using novel particle

swarm algorithms. Journal of Natural Gas Science and Engineering.

Azar, J. J., & Samuel, G. R. (2007). Drilling Engineering. PennWell Corporation.

Biswas, K., Islam, T., Joy, J. S., Vasant, P., Vintaned, J. A., & Watada, J. (2020). Multi-

Objective Spotted Hyena Optimizer for 3D Well Path Optimization. Journal of

Science and Sustainable Development.

Bourgoyne Jr., A. T., Millheim, K. K., Chenevert, M. E., & Young Jr., F. (1991).

Applied Drilling Engineering. Society of Petroleum Engineers.

Denney, D. (2011). Overcoming Challenges of Drilling High-Dogleg-Severity Curves.

Journal of Petroleum Technology.

Devereux, S. (1998). Practical Well Planning and Drilling Manual. PennWell

Corporation.

Farah, F. O. (2013). DIRECTIONAL WELL DESIGN, TRAJECTORY AND SURVEY

CALCULATIONS, WITH A CASE STUDY IN FIALE, ASAL RIFT, DJIBOUTI.

United Nations University.

Guo, B., Miska, S., & Lee, R. L. (1992). Constant Curvature Method for Planning a 3-D

Directional Well. Society of Petroleum Engineers.

122

Guria, C., Goli, K. K., & Pathak , A. K. (2014). Multi-objective optimization of oil well

drilling using elitist non-dominated sorting genetic algorithm. Springer.

Halafawi, M., & Avram, L. (February 05, 2019). Wellbore Trajectory Optimization for

Horizontal Wells: The Plan Versus the Reality. Journal of Oil, Gas and

Petrochemical Sciences.

Harb, A., Kassem, H., & Ghorayeb, K. (2019). Black hole particle swarm optimization

for well placement optimization. Springer Nature Switzerland.

Hossain, M. E., & Al-Majed, A. A. (2015). Fundamentals of Sustainable Drilling

Engineering. Scrivener Publishing.

Hosseini, S., Ghanbarzadeh, A., & Hashemi, A. (2014). Optimization of Dogleg

Severity in Directional Drilling Oil Wells Using Particle Swarm Algorithm.

Journal of Chemical and Petroleum Engineering.

Inglis, T. A. (1987). Directional Drilling. Graham &Trotman Limited.

Jones, R., Rose, J., Laurie, P., Hibbert, E., Butler, P., Freeman, A., . . . Halliburton

Energy Services. (1997). Design, Planning, Implementation & Management of a

Multi-Lateral Well on the BP Forties FIeld: A North Sea Case History. Soceity

of Petroleum Engineers.

Joshi, D. R., & Samuel, R. (2017). Automated Geometric Path Correction in Directional

Drilling. Society of Petroleum Engineers.

Konstantakopoulos, I. K., & Stamataki, S. K. (1996). A Computerized Method for the

Real-Time Well Path Monitoring and Placement in 3-D Space. Society of

Petroleum Engineers.

Kraft, D. (1988). A Software Package for Sequential Quadratic Programming.

Krishnan, A., & Kulkarni, A. (2016). Well Trajectory Survey of a Directional well.

International Research Journal of Engineering and Technology (IRJET).

Ma, T., Chen, P., & Zhao, J. (2016). Overiew on Vertical and Directional Drilling

Technologies for the Exploaration and Explotation of Deep Petroleum

Resources. Springer International Publishing Switzerland.

Ma, T., Chen, P., Yang, C., & Zhao, J. (2015). Wellbore stability analysis and well path

optimization based on the breakout width model and Mogi–Coulomb criterion.

Journal of Petroleum Science and Engineering.

Mansouri, V., Khosravanian, R., Wood, D. A., & Aadnoy, B. S. (2015). 3-D well path

design using a multi objective genetic algorithm. Journal of Natural Gas

Science and Engineering.

McClendon, R. T., & Anders, E. O. (1985). Directional Drilling Using the Catenary

Method. Society of Petroleum Engineers.

123

McMillian, W. H. (1980). Planning the Directional Well - A Calculation Method.

Journal of Petroleum Technology .

Mirjalili, S. (2018). Evolutionary Algorithms and Neural Networks Theory and

Applications.

Mitchell, B. (1995). Advanced Oil Well Drilling Engineering Handbook and Computer

Programs. The Society of Petroleum Engineers of the AIME.

Navarro, A. R., & Yalcin, O. (1990). Determination of the Drillability of High-Angle,

Large-Displacement Wells by Analyzing the Effects of Dog-Leg Severity.

Society of Petroleum Engineers.

Okpozo, P. O., Peters, A., & Okologume, W. C. (2016). Directional Well Trajectory

Design: The Effect of Change of Azimuth Builds and Turns On Build-&-Hold

and Continuous Build Trajectories. Journal of the Nigerian Association of

Mathematical Physics.

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution A Practical

Approach to Global Optimization. Springer.

Salman, M., Joshi, D., & Samuel, R. (2017). Application of Geomechanics and Hybrid

Metaheuristics in Designing an Optimized Well Path. Society of Petroleum

Engineers.

Sampaio Jr, J. H. (2016). Designing 3D Directional Well Trajectories Using Bezier

Curves. Journal of Energy Resources Technology.

Sampaio, J. H. (2006). Planning 3D Well Trajectories Using Cubic Functions. Journal

of Energy Resources Technology.

Sampaio, J. H. (2007). Planning 3D Well Trajectories Using Spline-in-Tension

Functions. Journal of Energy Resources Technology.

Sawaryn, S. J., & Thorogood, J. L. (2003). A Compendium of Directional Calculations

Based on the Minimum Curvature Method. Society of Petroleum Engineers.

Scholes, H. (1983). A Three-Dimensional Well Planning Method for HDR. Society of

Petroleum Engineers.

Schulze-Riegert, R., Bagheri, M., Krosche , M., Kück, N., & Ma, D. (2011). Multiple-

Objective Optimization Applied to Well Path Design under Geological

Uncertainty. Society of Petroleum Engineers.

SCM. (2009). Petrel help manual.

Seyyedattar, S. M., Parvizi, H., & Malekzadeh, E. (2012). Optimization of Wellhead

Location Selection and Well Path Design. Petroleum Science and Technology.

Sha, L., & Pan, Z. (2018). FSQGA based 3D complexity wellbore trajectory

optimization. Oil & Gas Science and Technology.

124

Shokir, E. E., Emera, M. K., Eid, S. M., & Wally, A. W. (2004). A New Optimization

Model for 3D Well Design. Oil & Gas Science and Technology.

Short, J. (1993). Introduction to Directional and Horizontal Drilling. PennWell

Publishing Company.

Wang, Z., & Inglis, T. A. (December 1990). Planning Directional Wells Through a.

SPE Drilling Engineering.

Wang, Z., Gao, D., & Yang, J. (2019). Desing and Calculation of Complex Directional-

Well Trajectories on the Basis of the Minimum-Curvature Method. SPE Drilling

& Completion.

Wiśniowski, R., Łopata, P., & Orłowicz, G. (2020). Numerical Methods for

Optimization of the Horizontal Directional Drilling (HDD) Well Path

Trajectory. Energies.

Wood, D. A. (2016). Hybrid bat flight optimization algorithm applied to complex

wellbore trajectories highlights the relative contributions of metaheuristic

components. Journal of Natural Gas Science and Engineering.

Wood, D. A. (2016). Hybrid cuckoo search optimization algorithms applied to complex

wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution

sampling and metaheuristic profiling. Journal of Natural Gas Science and

Engineering.

Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized Simulated

Annealing for Global Optimization: The GenSA Package. The R Journal.

