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An Abstract of the Thesis of

Samer Omar Salloum for Doctor of Philosophy
Major: Mechanical Engineering

Title: Towards Resurrecting Grid-Free Three Dimensional Vortex Methods

We present expressions for approximating the velocity and vortex stretching
vectors induced by a far-field collection of point vortices and we propose a set of
recurrence relations to properly evaluate these expressions. Expressed as trun-
cated series of spherical harmonics, these approximations are used to develop
an error-controlled hybrid adaptive fast solver that combines both O(N) and
O(N logN) schemes. For a given accuracy, the adaptive solver is used in the
context of regularized vortex methods to optimize the speed of the velocity and
vortex stretching calculation. This is accomplished by introducing criteria for
cell division in building of the tree, conversion of multipole to local expansion
coefficients in the downward pass, stopping of the downward pass and choosing
between direct and fast summation to compute the vector fields. These criteria
are based on key parameters (p, nF , nT , dσ) which take into account the elements
distribution, choice of the regularization function, and the computer architecture.
The proposed solver automatically adapts to the evolving flow-field by period-
ically updating the optimal values of these parameters to minimize the speed,
while meeting the accuracy constraints, by balancing near and far-field calcula-
tions. Accuracy of the introduced expressions is investigated by inspecting the
convergence of the velocity and the vortex stretching vectors as a function of the
expansion order. Performance of the proposed adaptive scheme is investigated in
terms of the dependence of cost and accuracy on the various controlling param-
eters. Evolution of the optimal values of adaptive solver parameters along with
the associated computational savings are presented for the case of collision of two
vortex rings over a reasonable time span.
The adaptive solver, along with the introduced expressions, are used to assess
the overall performance of three-dimensional grid-free regularized vortex meth-
ods by simulating the collision of two vortex rings, over a long period of time,
for different values of Reynolds number covering the range 500 − 2000. These
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methods typically rely on operator splitting to handle diffusion and convection
separately. In our implementation, the convection step employs a second order
Runge-Kutta time integration scheme, where the particles velocities and vortex
stretching vectors are computed using the adaptive fast solver that employs the
proposed expressions. To model diffusion, we use an extension of the smoothed
redistribution scheme to 3D unbounded flows and we compare it with the parti-
cle strength exchange diffusion model. We report on the capacity and limitation
of the redistribution diffusion model to maintain a divergence free vorticity field
without the need to resort to explicit methods and we explore the accuracy of
different methods traditionally used to enforce the divergence free condition on
the vorticity field.
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Chapter 1

Introduction

1.1 Literature Review

Vortex methods[1, 2, 3, 4] are Lagrangian mesh-free methods for numerically solv-
ing the vorticity equation. They were originally based on Helmholtz’s circulation
theorem which states that, in a barotropic inviscid fluid subject to conservative
body forces, the circulation is conserved along particles trajectories. Under these
conditions, a complete description of the flow field is obtained by tracking the
motion of vorticity-carrying fluid elements[4], starting with an initial vorticity
distribution. In these methods, the vorticity field is discretized using singular
or regularized vortex blobs. Operator splitting is used to numerically solve the
vorticity equation in two separate steps. The convection step commonly employs
a higher order Runge-Kutta time integration scheme, where the particles are ad-
vected with the local velocity field, and their vorticity strengths are adjusted to
account for straining of the vorticity vector by the local velocity gradient field.
The velocity vector and the velocity gradient tensor at particles locations are
computed using a Biot-Savart type summation over all the particles. In the dif-
fusion step, the vorticity strengths of the particles are modified to account for
viscous effects. As the number of elements is increased, regularized vortex meth-
ods converge to the exact solution provided that the core overlapping condition
is maintained and that particle remeshing is done every few time steps[5]. With-
out particle remeshing, Lagrangian methods rapidly lose their accuracy especially
in high inertia flows where large strain rates cause the particles to move away
from each other thereby violating the overlap condition. Particle remeshing usu-
ally employs the M ′

4 high order interpolation scheme which preserves the total
circulation, linear and angular impulses. However, this interpolation scheme in-
troduces some dissipation[6], effectively acting as a hyper-viscosity.

Since their inception, vortex methods underwent tremendous progress. The first
vortex simulations were conducted by Rosenhead[7] using 12 point vortices in
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two dimensions. Birkhof and Fisher[8] showed that the vortices must be regular-
ized to satisfactorily approximate a vortex sheet. Many of the aspects of modern
vortex methods are due to the pioneering work of Chorin[9], who introduced
the notion of vortex blob and repeated the work of Rosenhead by using regular-
ized vortex cores. Chorin also introduced the random-walk method for grid-free
modeling of diffusion in slightly viscous two-dimensional flows. The advent of
grid-free diffusion modeling methods[10, 2, 11, 12, 13], along with the develop-
ment ofO(N logN) andO(N) fast solvers for fast computation of the velocity and
vortex stretching vectors[14, 15] and the proper handling of different boundary
conditions[16, 17] and of source terms[18, 19] made vortex methods potentially a
viable alternative to grid-based methods for numerically solving the Navier-Stokes
equations at a high resolution[4]. Vortex methods have been utilized extensively
in simulating inviscid and high inertia flows including vortex sheets[20, 21], un-
steady separated flows[22, 23, 24], high Reynolds number wakes[25], and various
three-dimensional problems involving vortex rings, jets, and wakes[26, 27, 28].
They have also been used to study reacting shear layers[29, 30], Rayleigh Taylor
flows[31], fire plumes[32, 33], diffusion-controlled combustion[13], and unsteady
two-dimensional compressible flows[34]. These methods were also employed for
simulating buoyant flows[35, 19], reacting flows[36, 37], radiation in participating
media[38], and reacting-radiating flows[39].

When compared to grid-based methods, grid-free vortex methods possess several
desirable features that kept them of continuous interest. In addition to being
completely mesh-free, vortex methods are highly adaptive because only regions of
non-vanishing vorticity are represented by the computational elements[40]. Fur-
thermore, since these elements are advected by the velocity field, there is no need
for explicit numerical discretization of the convection term, which is a common
source of numerical diffusion in grid-based methods. These methods, by virtue of
their Lagrangian nature, demonstrated exceptional ability to capture the small
scale features in high inertia flows. Another advantage is that the continuity equa-
tion is automatically satisfied for incompressible fluids since the velocity field is
computed as the curl of a vector potential. The absence of the pressure term in
the vorticity equation is another attractive feature[3]. Moreover, the satisfactory
energy conservation properties of vortex methods, in addition to their small dis-
persion error, made them suitable to simulate convection-dominated problems[6].
However, and although it was reported in[41] that vortex methods can be faster
than Eulerian finite-difference methods due to the increased stability and larger
time steps, vortex methods had not yet reached a level of maturity where they
can be considered as an efficient alternative to Eulerian methods. This is because
vortex methods still face some major challenges, especially the challenge of main-
taining a divergence free vorticity field without affecting the conserved quantities.
In fact, although the divergence of the initial vorticity can be made small enough
by using a sufficiently large number of elements, maintaining the divergence free
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condition of the vorticity field remains without any doubt the weakest point of the
3D vortex particle method[42]. According to Winckelmans[5], the vorticity diver-
gence is naturally damped by viscous diffusion especially when the simulation is
well-resolved and particle remeshing is used. However, for long time simulations,
enforcing the divergence free condition is essential especially in high inertia flows.
To this end, Winckelmans[43] proposed the W-scheme and reported, upon exam-
ining this scheme in addition to the P-scheme[44], that both schemes are diffusive.

The accurate calculation of the velocity and vortex stretching vectors is crucial
in vortex methods. In fact, the velocity is used to advect vortex elements using
a time step that is typically larger than that used in Eulerian methods. Thus,
advecting with an inaccurate velocity over a large time step will introduce errors
in the particles trajectories resulting in an inaccurate vorticity field over short
times. Moreover, since the vortex stretching vector, expressed as the dot prod-
uct of the vorticity vector and the rate of strain tensor, is used to update the
vorticity using the Helmholtz equation, inaccurate computation of the rate of
strain tensor over a large time step will introduce time integration errors in the
vorticity representation and will eventually impact the flow invariants such as
total circulation, linear impulse, and angular impulse. Although it is essential
to accurately compute the velocity and its spatial derivatives, calculating these
terms through direct summation comes at a prohibitive O(N2) cost, especially
for simulating three dimensional flows, where a large N is needed to capture the
small scale features. This challenge has been alleviated by the advent of fast
methods for the N body problems[14, 15, 45].
Traditionally, two variants of fast methods for approximating the Biot-Savart
summation are found in the literature. They are the vortex in cell methods
(VIC)[45] and the hierarchical N -body fast multipoles solver[14, 15]. The vortex
in cell methods (VIC) are tailored for computing the velocity and vortex stretch-
ing on a grid[46]. In fact, the vorticity is first interpolated on a grid and the
vector potential is calculated on this grid using a Poisson solver based on the
Fast Fourier Transform. The velocity and vortex stretching are then calculated
by centered finite difference on the grid and then interpolated back to the particle
locations. The particles are then advected using the velocities at their locations
and the vorticity strengths are adjusted to account for vortex stretching. VIC
method still has negligible dispersion error since the particles are advected in a
Lagrangian way. Moreover, the divergence free condition of the vorticity field is
maintained by projecting the vorticity field onto a divergence free basis. This
operation provides an efficient and essentially non-diffusive “relaxation” scheme,
which allows for simulations at high Reynolds number and for arbitrarily long
times[5]. Although VIC methods are very fast and relatively simple to imple-
ment, they face the challenge of setting up the proper boundary conditions of
the Poisson solver in unbounded or semi-bounded domains. The grid must be
taken much larger than the vorticity field region to provide approximate analyt-
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ical boundary conditions for the vector potential, ~ψ. To this end, Chatelain and
Koumoutsakos[47] presented a computationally efficient, adaptive solver for the
solution of the Poisson and Helmholtz equation in domains with combinations of
unbounded and periodic directions. The method relies on FFTs in all directions
and doubles the domain size in the non-periodic directions.

Alternatively, hierarchical N -body fast solvers are flexible and preserve the grid-
free nature of vortex methods. The following two variants of these methods
have been developed, treecodes[14] and FMMs[48]. Compared to the direct sum-
mation, which has a complexity of O(N2), the treecode algorithm[14] achieves a
complexity ofO(N logN). It does so by clustering source particles into larger bins
within a recursive tree-based division operation and using multipole expansions to
approximate their influence on the targets. The fast multipole method (FMM)[15]
extends the Barnes-Hut treecode[14] by including local expansions to further
reduce the computational cost. By clustering the nearby target particles[49],
in addition to the source particles, the FMM[15] can achieve O(N) complex-
ity. Implementation of FMM on de-singularized particles increases the cost to
O(N1.2)[43]. A combination of vortex-in-cell (VIC) and parallel fast multipole
methods (FMM) to simulate unbounded and half-bounded incompressible un-

steady flows is presented in[6]. The exact Dirichlet boundary conditions for ~ψ
are obtained using the parallel fast multipole (FMM) method. These boundary
conditions are used to solve the Poisson equation on a grid without the need of
expanding the grid dimension.

1.2 Motivation and Objectives

In the last two decades, research in grid-free vortex methods has been too slow.
This is because some key challenges hindered the progress of these methods.
These challenges, which have not yet been fully overcome, are the reason why
vortex methods have not yet caught up with mesh-based methods. These chal-
lenges include enforcing a divergence free vorticity field without affecting con-
served quantities, handling source term, efficient treatment of vorticies near solid
boundaries, and accurate and cost-effective evaluation of the velocity and vortex
stretching vectors. However, despite the challenges, vortex methods hold the po-
tential to have advantages over Eulerian methods in some problems.
The main objective of this research is to propel vortex methods forward ploughing
through the challenges facing the evolution of three-dimensional grid-free three-
dimensional vortex methods to realize the potential that these methods hold. The
focus is on truly grid-free methods that do not rely on a grid whatsoever. This
excludes vortex in cells methods and implementations of vortex methods that
employ regridding. Throughout our effort, we formulated the following questions
to address the challenges identified: (i) How can we further increase the speed
for a given accuracy measure?, (ii) What is an accurate, cost-effective, grid-free
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diffusion model?, (iii) How can we handle vortex stretching in an accurate, cost-
effective, and grid-free manner, and (iv) How can we enforce the divergence-free
condition on the vorticity vector field?

For vortex methods to be taken seriously from the mainstream CFD community,
researchers in vortex methods must tackle these challenges and overcome these
difficulties. As such, we outlined our ambitious plan to deal with some of the key
challenges of grid-free three dimensional vortex methods as follows:

1. Introduce simplified spherical harmonics-based expressions for the velocity
and vortex stretching vectors and properly evaluating these expressions near
and at the poles using a set of recurrence relations.

2. Introduce an error-controlled hybrid adaptive fast solver for regularized
vortex methods.

3. Investigate the efficiency and limitation of the Redistribution Method to
simulate vorticity diffusion in unbounded domain and present a comparison
with PSE Scheme.

4. Assess existing methods for enforcing the divergence free condition of the
vorticity field.

We believe that this research will have an impact on the grid-free vortex
methods field and help resurrect these methods.

1.3 Thesis Outline

The thesis is organized as follows: In chapter 1, we present expressions for approx-
imating the velocity and vortex stretching vectors induced by a far-field collection
of point vortices and we propose a set of recurrence relations to properly evaluate
these expressions. In chapter 2, we introduce an error-controlled hybrid adaptive
fast solver along with the key parameters employed in tree division and decision
making for load balancing. We also evaluate the key parameters in terms of the
order of expansion using cost analysis and time measurements specific to com-
puter architecture, code implementation, choice of regularization function, and
identity of the vector quantity being evaluated. Decomposition of the error and
derivation of upper bounds of the constituting components are also presented in
this chapter. In chapter 3, we present an extension to three dimensions of the
smoothed redistribution method. This grid -free diffusion model is used through-
out this paper to simulate three dimensional flows. Basic formulation of the
particle strength exchange diffusion model is also presented in this chapter. In
chapter 4 we assess existing methods for enforcing the divergence free condition
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of the vorticity field. In Chapter 5, extensive validation of the introduced veloc-
ity and vortex stretching expressions and the proposed error-controlled adaptive
solver is performed. Moreover, the overall performance of three dimensional grid-
free vortex methods is assessed by simulating the collision of two vortex rings,
over a long period of time, for different values of Reynolds number. In Chapter
6, we present a summary of conclusions and recommends future work that can
be done.
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Chapter 2

Proper Evaluation of Spherical
Harmonics-Based Expressions
For The Velocity and Vortex
Stretching Vectors in
Three-Dimensional Grid-Free
Vortex Methods

To accurately simulate three dimensional flows, a very large number of elements
is required to resolve the various length scales. Direct evaluation of the velocity
and vortex stretching vectors requires O(N2) computational operations of all the
pairwise interaction in a system of N elements. The prohibitive cost of the direct
evaluation renders the fast multipole method (FMM) an essential tool to exe-
cute particle-based simulations in a reasonable amount of time. Yet, little effort
has been devoted to formulate compact expressions of the velocity and vortex
stretching vectors as a truncated series of spherical harmonics. Winckelmans[43],
Ploumhans[50], and Cocle[6], among others used analytical derivatives of the
multipole expansions to evaluate the velocity vector and the velocity gradient.
Yokota[51, 52, 53] described the expressions for both the velocity and stretching
vectors in several of his papers but he didn’t discuss how to deal with the spa-
tial derivatives of spherical harmonics. Berdowski (2016)[54] presented a detailed
derivation for approximating the velocity and stretching vectors using multipole
expansions and implemented them in O(N logN) fast multipole algorithm. The
discussion, however, does not include local expansions since they are not needed
in the O(N logN)-type fast solver. Furthermore, evaluating the velocity and
vortex stretching vectors using the equations presented in[54] requires dividing
by sinθ and sin2θ, where direct numerical evaluation is problematic as the polar
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angle θ approaches zero at the poles.
In this chapter, we present simple alternative expressions for the velocity and
vortex stretching vectors using both local and multipole expansion coefficients,
and we propose a set of recurrence relations to properly evaluate these expressions
over the entire range of the polar angle.

2.1 Vortex Methods and the Vorticity Trans-

port Equation

For three dimensional incompressibe flow, ∇.~u = 0, the evolution of the vorticity,
~ω, is described by the Helmholtz’s vorticity equation:

d~ω

dt
= (~ω.∇)~u+

∇ρ×∇p
ρ

+∇2~ω (2.1)

where t is time, ~u is the velocity, ρ is the density, p is the pressure, and d/dt is
the Lagrangian derivative d/dt = ∂/∂t+ ~u · ∇.
For an incompressible flow in unbounded domain, the velocity vector field is
computed as the curl of a vector potential field ~ψ

~u = ∇× ~ψ (2.2)

Noting that the vorticity vector field is the curl of the velocity vector field, we
obtain:

~ω = ∇× ~u = ∇× (∇× ~ψ) = −∇2 ~ψ +∇(∇. ~ψ) (2.3)

For ∇. ~ψ = 0, the vector potential field, ~ψ, is governed by the Poisson equation

∇2 ~ψ = −~ω (2.4)

The Green’s function for the Poisson equation (2.4) in an unbounded domain is

G(~x) = − 1
4π‖~x‖ , so that the vector potential field, ~ψ, is calculated as:

~ψ(~x, t) =
1

4π

∫
~ω(~y, t)

‖~x− ~y‖d
3y (2.5)

In vortex methods, the vorticity field is discretized using vortex elements.
The elements can be point vortices (singular representation of the vorticity field)
or blobs (regularized representation of the vorticity field). Associated with each
element i are the position vector ~xi and the strength vector ~αi. Assuming a
singular representation of the vorticity field,

~ωδ(~x, t) =
N∑
i=1

~αiδ(~x− ~xi), (2.6)
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where N is the number of elements and δ is the Dirac delta function, the vector
potential field and the velocity vector field can be approximated as

~ψδ(~x, t) =
1

4π

N∑
i=1

~αi(t)

‖~x(t)− ~xi(t)‖
(2.7)

~uδ(~x, t) = ∇× ~ψδ = − 1

4π

N∑
i=1

(~x(t)− ~xi(t))
‖~x(t)− ~xi(t)‖3

× ~αi(t) (2.8)

A regularized representation of the vorticity field may be expressed as

~ωσ(~x, t) =
N∑
i=1

~αi(t)ζσ(~x− ~xi), (2.9)

where ζσ is a regularization function and σ is the associated smoothing radius.
The regularization function is usually taken as a radially symmetric function,

ζσ(~x− ~xi) = 1
σ3 ζ
(
‖~x−~xi‖

σ

)
= 1

σ3 ζ( r
σ
), that satisfies the normalization condition

4π

∫ ∞
0

ζσ(ρ)ρ2dρ = 1. (2.10)

A regularization function of order l, that conserves up to order l − 1 moments
as the Dirac function, can be constructed as described in[55]. Using a radially
symmetric regularization function, the corresponding vector potential field and
the velocity vector field can be approximated as

~ψσ(~x, t) =
N∑
i=1

Gσ(~x− ~xi)~αi(t) (2.11)

~uσ(~x, t) = ∇× ~ψσ = −
N∑
i=1

qσ (~x(t)− ~xi(t))
(~x(t)− ~xi(t))
‖~x(t)− ~xi(t)‖3

× ~αi(t) (2.12)

Where G solves the Poisson equation ∇2G = −ζ(r), Gσ(r) = 1
σ
G( r

σ
), q(r) =∫ r

0
ζ(ρ)ρ2dρ, and qσ(r) = q( r

σ
)[56].

Direct evaluation of the velocity vector and the rate of strain tensor requires
O(N2) computational operations of all the pairwise interaction in a system of N
particles. The high cost of direct evaluation severely compromises the viability
of the method to simulate transient flows, especially for cases where the number
of particles, required to accurately resolve the vorticity field, grows considerably
with time. Alternatively, the fast multipole method (FMM) enables conducting
these simulations with a reasonable cost. Next, we briefly present the O(N logN)
and O(N) fast solvers.
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2.2 The Fast Multipole in Three Dimensions

The O(N logN) fast multipole scheme is based on approximating, to an arbi-
trary precision, the vector potential induced by clusters of singular vortices in
the far field using multipole expansions[57]. Implementation of O(N) scheme
requires, in addition, the use of local expansions to further reduce the order
of the computations. These two expansions are based on spherical harmonics,
Y m
n (θ, ϕ), n ∈ N, |m| ≤ n, which form a frequency-space basis for representing

functions on a sphere. Thus, any spherical vector field ~φ(θ, ϕ) may be expanded

as the linear combination ~φ(θ, ϕ) =
∑∞

n=0

∑m=n
m=−n

~Cm
n Y

m
n (θ, ϕ), where the coeffi-

cients ~Cm
n are computed by projecting ~ϕ onto each basis function Y m

n .

We note that for a regularized representation of the vorticity field, these same
expansions (which are based on point vortices) are used to calculate the effect of
the far field. In this case, the use of multipole expansion coefficients to approxi-
mate the far-field vector potential ~ψσ will induce an error that is made up of the
following two components:

1. A component resulting from truncating multipole expansions at some order
p: This error is related to the series expansion used to represent the kernel
1
r

at large distance and is a function of the order of expansion p and the
Multipole Acceptance Criteria. This error decreases exponentially as p
increases and converges to zero as p→∞.

2. A component resulting from approximating the Biot-Savart kernel by a 1
r

kernel: This error arises due to the fact that Gσ deviates from 1
4πr

. This
error mainly depends on the size of the smallest boxes (at the deepest level
of the tree). In order to neglect this error, we must keep the leaf boxes width
above a minimum multiple of the core function smoothing radius. In three
dimensional flows, this will pose a considerable computational overload on
the FM schemes, since it will dramatically increase the particle to particle
interaction.

2.2.1 Multipole Expansion of the Vector Potential Field

Suppose that s vortices having strengths (~αj, j = 1...s) are located at the points
~Qj = (ρj, θj, ϕj) inside the sphere DQ, with |ρj| < a (see Figure 2.1, left), then

at any ~P = (r, θ, ϕ) with r > a, the vector potential ~ψδ, is approximated by the
following multipole expansion[15]

~ψδ(~P , t) =
1

4π

∞∑
n=0

n∑
m=−n

~Mm
n

rn+1
Y m
n (θ, ϕ) (2.13)
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with

~Mm
n =

s∑
j=1

~αjρ
n
j Y
−m
n (θj, ϕj) (2.14)

Furthermore, for any p ≥ 1

‖~ψδ(~P , t)−
1

4π

p∑
n=0

n∑
m=−n

~Mm
n

rn+1
Y m
n (θ, ϕ)‖ ≤ 1

4π

ΓDQ
r − a

(a
r

)p+1

(2.15)

where

ΓDQ =
s∑
j=1

‖ ~Γj ‖ (2.16)

Thus, at a given point P = (r, θ, ϕ) with r > a, the vector potential is approxi-
mated by

~ψδ(~P , t) '
1

4π

p∑
n=0

n∑
m=−n

~Mm
n

rn+1
Y m
n (θ, ϕ) (2.17)

r

⇢j

Qj

a

iP

⇢

DO

O

a

DQ

Q
a

r

DQ

Q

Figure 2.1: Schematic for the multipole and local expansions.

2.2.2 Local Expansion of the Vector Potential Field

Suppose that s vortices having strengths (~αj, j = 1...s) are located inside the
sphere DQ of radius a with center at Q = (ρ, α, β) (see Figure 2.1, right), and
that ρ = (c + 1)a with c > 1, then for any point P (r, θ, φ) inside D0 of radius a
centered at the origin, the vector potential due to vortices (~αj, j = 1...s) inside
DQ is described by the following local expansion[15]

~ψδ(P, t) =
1

4π

∞∑
n=0

n∑
m=−n

~Lmn Y
m
n (θ, ϕ)rn, (2.18)

11



where

~Lmn =
∞∑
j=0

j∑
k=−j

~Mk
j .i
|m−k|−|m|−|k|.Akj .A

m
n .ρ

j.Y k−m
n+j (α, β)

(−1)jAk−mn+j .ρ
n+j+1

, (2.19)

with Amn defined by

Amn =
(−1)n√

(n−m)!(n+m)!
(2.20)

Furthermore, for any p ≥ 1,

‖ ~ψδ(P, t)−
1

4π

∞∑
n=0

n∑
m=−n

~Lmn Y
m
n (θ, ϕ)rn ‖≤ ΓDQ

a(c− 1)

(
1

c

)p+1

(2.21)

Thus, at a given point P = (r, θ, ϕ) with r < a, the vector potential due to
vortices inside DQ is approximated by

~ψδ(P, t) =
1

4π

p∑
n=0

n∑
m=−n

~Lmn Y
m
n (θ, ϕ)rn (2.22)

The spherical harmonics can be expressed in term of the associated Legendre
polynomials[15] as

Y m
n (θ, ϕ) =

√
(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ) eimϕ (2.23)

There are many ways to define the associated Legendre polynomials Pm
n and

its derivatives[58]. We propose next a set of recurrence relations to properly
evaluate these polynomials and their first and second order derivatives over the
entire range of polar angle.

2.3 Alternative Simple Expressions for the Ve-

locity and Vortex Stretching Vectors Ex-

pressed as a Truncated Series of Spherical

Harmonics

In three-dimensional vortex methods, computing the velocity and the vortex
stretching vectors at the particles positions is required every time step. Expres-
sions for the far-field component of these two vectors in term of spherical har-
monics can be obtained respectively from the corresponding spatial derivatives
of the vector potential approximations in Eqs. (2.17) and (2.22), as presented
below. These expressions are used in the context of O(N logN) and O(N) FM
schemes to reduce the computational cost of the advection step.
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2.3.1 Expressions for the Velocity Vector in Term of Mul-
tipole and Local Expansion Coefficients

The velocity vector ~uδ is computed as the curl of the vector potential ~ψδ. Ex-
panding ~ψδ in term of multipole expansion coefficients ~Mm

n using Eq. (2.17), and

taking the curl of ~ψδ, the velocity vector can be expressed as

~uδ =
1

4π

p∑
n=0

n∑
m=−n

∇
(
Y m
n (θ, ϕ)

rn+1

)
× ~Mm

n (2.24)

In Cartesian coordinates, we get

~uδ =
1

4π

p∑
n=1

n∑
m=−n

Cm
n e

imϕ

rn+2

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 −(n+ 1)Pm
n

dPmn
dθ

imPmn
sin θ

× ~Mm
n ,

(2.25)
where

Cm
n =

√
(n− |m|)!
(n+ |m|)! (2.26)

Expanding ~ψδ in term of local expansion coefficients ~Lmn using equation (2.18),
the velocity vector can be expressed as

~uδ = ∇× ~ψδ(P, t) =
1

4π

p∑
n=0

n∑
m=−n

∇(rnY m
n (θ, ϕ))× ~Lmn (2.27)

In cartesian coordinates, we get

~uδ =
1

4π

p∑
n=1

n∑
m=−n

rn−1Cm
n e

imϕ

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 nPm
n

dPmn
dθ

imPmn
sin θ

×~Lmn
(2.28)

2.3.2 Expressions for the Vortex Stretching Vector in Term
of Multipole and Local Expansion Coefficients

The vortex stretching vector, (~α.∇)~uδ, quantifies the stretching and tilting of the
vorticity due to the flow velocity gradients. It is computed as the projection of
the rate of strain tensor (gradient of the velocity vector) along the direction of
the vorticity vector ~ω, scaled by the magnitude of the vorticity ||~ω||.
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The rate of stain tensor is expressed in Cartesian coordinates as

∇~uδ =


∂uδ
∂x

∂uδ
∂y

∂uδ
∂z

∂vδ
∂x

∂vδ
∂y

∂vδ
∂z

∂wδ
∂x

∂wδ
∂y

∂wδ
∂z

 (2.29)

Thus the rate of stain tensor is determined completely by the three vectors
∂~uδ
∂x
, ∂~uδ
∂y
, ∂~uδ
∂z

, representing the variation of the velocity vector along the x, y,
and z directions respectively. Applying the chain rule in partial differentiation
we obtain:

 ∂
∂x
∂
∂y
∂
∂z

 ~uδ =

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 ∂
∂r

1
r
∂
∂θ

1
r sin θ

∂
∂ϕ

 ~uδ (2.30)

Expanding ~uδ in term of multipole expansion coefficients ~Mm
n using Eq. (2.25)

and differentiating with respect to r, θ, and φ, we obtain:

∂~uδ
∂r

=
1

4π

p∑
n=2

n∑
m=−n

−(n+ 2)

rn+3
Cmn e

imϕ

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 −(n+ 1)Pmn
dPmn
dθ

imPmn
sin θ

× ~Mm
n

(2.31)

1

r

∂~uδ
∂θ

=
1

4π

p∑
n=2

n∑
m=−n

1

rn+3
Cmn e

imϕ

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0


 −(n+ 2)dP

m
n
dθ

d2Pmn
dθ2
− (n+ 1)Pmn
i ddθ (mP

m
n

sinθ )

× ~Mm
n

(2.32)

1

r sin θ

∂~uδ
∂ϕ

=
1

4π

p∑
n=2

n∑
m=−n

1

rn+3
Cmn e

imϕ

 sinϕDm
n − im cosϕDm

n − (m2 − 1) Pmn
sin2 θ

)

− cosϕDm
n − im sinϕDm

n − (m2 − 1) Pmn
sin2 θ

)

−im(dP
m
n
∂θ + (n+ 1) cos θ

sin θP
m
n )

× ~Mm
n

(2.33)
where

Dm
n =

d2Pmn
dθ2

+ (n+ 1)2Pmn (2.34)
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Expanding ~uδ in term of local expansion coefficients ~Lmn using Eq. (2.28) and
differentiating with respect to r, θ, and φ, we obtain:

∂~uδ
∂r

=
1

4π

p∑
n=2

n∑
m=−n

(n−1)rn−2Cmn e
imϕ

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 nPmn
dPmn
dθ

imPmn
sin θ

×~Lmn
(2.35)

1

r

∂~uδ
∂θ

=
1

4π

p∑
n=2

n∑
m=−n

rn−2Cmn e
imϕ

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0


 (n− 1)dP

m
n
dθ

d2Pmn
dθ2

+ nPmn
i ddθ (mP

m
n

sinθ )

×~Lmn
(2.36)

1

r sin θ

∂~uδ
∂ϕ

=
1

4π

p∑
n=2

n∑
m=−n

rn−2Cmn e
imϕ

 sinϕFmn − im cosϕFmn − (m2 − 1) Pmn
sin2 θ

− cosϕFmn − im sinϕFmn − (m2 − 1) Pmn
sin2 θ

−im(dP
m
n
dθ − n cos θ

sin θP
m
n )

×~Lmn
(2.37)

where

Fmn =
d2Pmn
dθ2

+ n2Pmn (2.38)

2.3.3 Proper Evaluation of the Velocity and Vortex Stretch-
ing Vectors Over the Entire Range of the Polar an-
gle

So far, we derived expressions for the velocity and vortex stretching in terms of (Pmn ,
dPmn
dθ , d2Pmn

d2θ
, Pmn

sin θ , d
dθ
mPmn
sin θ , and Pmn

sin2θ
). Direct numerical evaluation of the last three

terms yield values that tend to infinity when approaching the poles, owing to the fact
that sin θ and sin2 θ tend to zero as θ approach zero. Next we present a method, based
on recurrence relations, that allows accurate evaluation of these terms over the entire
range of the polar angle, θ.

Noting that the associated Legendre polynomial can be written in the form Pmn =
f(cos θ) sinm θ, we introduce the two functions, αmn = Pmn

sin2 θ
for m ≥ 2 and βmn = Pmn

sinθ
for m ≥ 1. In Eqs. (2.25) and (2.28) of the velocity vector, and in Eqs. (2.31-
2.33) and (2.35-2.37) of the velocity spatial derivatives, the term Pmn

sin θ is always mul-
tiplied by m. So we extend the definition of βmn by imposing β0

n = 0. Furthermore,
the term Pmn

sin2θ
is always multiplied by m(m2 − 1). We also extend the definition

of αmn by imposing α0
n = α1

n = 0. By introducing these two functions, we have
m(m2 − 1)αmn = m(m2 − 1) Pmn

sin2 θ
and mβmn = m Pmn

sinθ for any pair (n,m).

To numerically evaluate these associate Legendre polynomial expressions in a robust
manner, we propose an algorithm that uses the following recurrence relations defined
for n > 2 and m > 1.
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Pmn = sin2 θ αmn (2.39)

P 1
n = sin θ β1

n (2.40)

nP 0
n = (2n− 1) cos θ P 0

n−1 − (n− 1)P 0
n−2 (2.41)

where

αnn = (−1)n(2n− 1)!! sinn−2 θ (2.42)

(n−m)αmn = (2n− 1) cos θ αmn−1 − (n+m− 1)αmn−2 (2.43)

βmn = sin θ αmn (2.44)

(n− 1)β1
n = (2n− 1) cos θ β1

n−1 − nβ1
n−2 (2.45)

and the double factorial, !!, is a factorial where only the even terms are included.

The first order derivative of Pmn is calculated using the following recurrence relations
defined for n > 1 and m > 0

dP 0
n

dθ
= P 1

n (2.46)

dPmn
dθ

= n cos θ βmn − (n+m)βmn−1 (2.47)

The second order derivative of Pmn is calculated using the following recurrence relations

d2P 0
n

dθ2
=
dP 1

n

dθ
= n cos θ β1

n − (n+ 1)β1
n−1 (2.48)

d2Pmn
dθ2

=
1

2

[
dPm+1

n

dθ
− (n+m)(n−m+ 1)

dPm−1
n

dθ

]
(2.49)

d2Pnn
dθ2

= −ndP
n−1
n

dθ
= −n cos θ βn−1

n − (2n− 1)βn−1
n−1 (2.50)

According to Petrovskaya and Vershkov[59], the derivative of Pmn
sin θ can be calculated by

the following recurrence relations

d

dθ

(
mPmn
sin θ

)
= m

[
1

sin θ

dPmn
dθ
− cos θ

sin2 θ
Pmn

]
=

1

2

[
(m+ 1)

Pm+1
n

sin θ
− (m− 1)(n+m)(n−m+ 1)

Pm−1
n

sin θ

]
(2.51)

d

dθ

(
mPmn
sin θ

)
=

1

2

[
(m+ 1)βm+1

n − (m− 1)(n+m)(n−m+ 1)βm−1
n

]
(2.52)

For the sake of completeness, and since the spherical harmonics Y m
n contain the

term eimφ, we propose to use Chebyshev’s recurrence relations to calculate cos(mφ)
and sin(mφ)

cos(mφ) = 2 cos(φ) cos(m− 1)φ− cos(m− 2)φ (2.53)

sin(mφ) = 2 cos(φ) sin(m− 1)φ− sin(m− 2)φ (2.54)

We observed that computing these terms using the above recurrence relations led to
considerable savings in CPU time.
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Chapter 3

Error-Controlled Hybrid
Adaptive Fast Solver for
Regularized Vortex Methods

In vortex methods, computing the velocity and vortex stretching vectors at a given
position is done by summing the contributions of all vortex elements in the domain.
Thus direct evaluation of these vectors at the positions of N elements requires O(N2)
computational operations. The prohibitive cost of large N simulations[49] led to the
development of approximate solutions for N body problems.

Two variants of hierarchical N -body methods have been developed, Treecodes and Fast
Multipoles Methods (FMMs). To reduce the complexity to O(N logN) , the Treecode
algorithm[14] clusters source elements into progressively larger bins and then approxi-
mate their contributions at the targets locations using multipole expansions. In addi-
tion to clustering source elements, the FMM[15] reduces the complexity to O(N) by
clustering the nearby target elements as well. The O(N) FMM scheme then employs
local expansions to approximate the contributions of the source elements at the tar-
gets locations[49]. These two methods followed distinct paths of evolution and differ
from each other in the following ways[60, 61, 49, 62, 48]. (i) For the far field, Treecodes
perform cell-element interactions resulting in O(N logN) complexity, while FMMs per-
form cell-cell interactions resulting in O(N) complexity. (ii) Treecodes conventionally
use hard coded Cartesian expansions with a fixed order of expansion (e.g. p = 3), while
FMMs employ spherical harmonic expansions of an arbitrary order. (iii) To build the
interaction list, Treecodes utilize the ratio, θ (also known as the multipole acceptance
criterion (MAC)), of the cells size to the distance between cells to decide whether or not
to further subdivide a cell. In contrast, FMMs use relationships between the parent,
child, and neighbor to build the interaction list[49]. (iv) In Treecodes, the accuracy
is controlled by the value of θ (MAC), while in FMMs, the order of expansion p is
the controlling parameter. (v) In Treecodes, the expansions are around the centers
of mass of the cells, while in FMMs, they are around at the geometrical centers[61].
(vi) While Treecodes are adaptive in nature and permit interaction of cells at different
levels, FMMs usually employ a non-adaptive structure of hierarchical grids where only
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interactions of cells at the same level are considered[60].

There have been several efforts to take the best of these two methods and to develop
optimal algorithms[62].
Cheng et al.[64] extended the work of Greengard[15] to allow for adaptive interaction
of cells at different levels in the tree and introduced a mechanism for choosing between
cell-cell, cell-element, and element-element interaction. To decide on the type of inter-
action to be executed, Cheng associated with each cell four different lists of cells, which
are assembled as the oct-tree adapts to the evolving particles distribution. Element-
element interactions are carried out if the number of elements in a given source cell is
less than p2. Although this criterion captures the expected dependence on p, it is based
on a non-optimal value of the critical number of elements in a cell below which direct
interaction should be carried out. Moreover, the Oct-tree depth is controlled by the
maximum number of elements per cell, Nc, which is specified by the user. Choosing a
large value of Nc results in a shallow tree structure where direct interaction with the
neighboring cells will likely yield significant increase in the computational cost. On
the other hand, if Nc is too small, the scheme will manage to balance cell-cell and
element-element interactions, but it will incur the additional cost of evaluating mul-
tipole and local expansions coefficients at the centers of cells of high level, although
these coefficients are not needed to evaluate the approximate field. In addition, Cheng
et al. did not discuss the limitations arising from the use of a regularization function
and the dependence on the implementation in different hardware architectures.
Walter Dehnen[60, 61] extended the Treecode method of Barnes and hut[14] for fast
evaluation of gravitational forces by including mutual cell-cell interactions, dual tree
traversal, and a mass-dependent error-controlled multipole acceptance criteria based
on the upper-bound expression of the Newtonian forces. To evaluate cell-cell interac-
tions, Dehnen uses the expressions presented in [63], which were derived from Taylor
series expansion in Cartesian coordinates. Dehnen[60] also introduced five different
numbers, namely, Npre

cb , Npost
cb , Npre

cc , Npost
cc , Ncs. While Ncs is used to decide whether

or not to divide a cell to carry out Cell-self interactions, the remaining four numbers
are used to determine the type of interaction to perform between distinct cells, choos-
ing between cell-cell, cell-body, and body-body interaction. The author determined,
through experiments, the optimal values of these five numbers that would result in the
most efficient code for a given accuracy and given hardware architecture, but he did
not present an automated algorithm for adapting to different hardware architecture or
desired level of accuracy. Cell-cell and cell-body interactions are approximated using
a Taylor series expansion with a fixed order p = 3, so that the MAC number is the
only accuracy-control parameter. Upon comparing the performance of his code with
that of the 3D adaptive FMM code by Cheng et al.[64], Dehnen[60] showed that, in
the low accuracy regime, his code is more than ten times faster and twice as accurate,
which makes it favorable for applications where low accuracy is traded for speed (cost),
such as collisionless stellar dynamics. This is in agreement with earlier findings that
report on the performance of traditional FMM in these low accuracy applications[65].
For high accuracy (e.g. O(10−6)), however, Cheng et al. FMM outperforms Dehnen’s
code in terms of speed. According to Dehnen, this behaviour is attributed to the fact
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that, while his code increases accuracy by decreasing the MAC number θ (p is always
constant), FMM increases the accuracy by increasing p. He concluded by pointing out
that a code for which p and θ can be adapted simultaneously would be superior to both
codes.
Yokota and Barba[66] extented Dehnen’s method by implementing a hybrid Treecode-
FMM algorithm that offers control over both the order of expansion and MAC. De-
pending on the required accuracy, their code switches between Cartesian expansions
(lower accuracy) and spherical harmonic expansions (higher accuracy). In addition,
their algorithm is capable of auto-tuning the kernels on heterogeneous architectures.
The key for auto-tuning is to time all the kernels. The algorithm uses this information
to optimally choose the type of interaction to execute in order to evaluate the mutual
contribution between non-neighboring cells during the dual tree traversal. However,
Yokota did not introduce any mechanism to minimize the computational cost of cal-
culating the interaction between neighboring cells (including cell-self interactions). In
fact, the interaction between neighboring cells is performed through direct summation
if both cells are at the terminal tree level, that is the number of elements in these termi-
nal cells is less than Nc where the value of Nc is intoduced by the user. A non-optimal
value of Nc limits the efficiency of the method. Choosing Nc to be too small results
in the additional cost of building the tree and computing the expansion coefficients for
a deeper tree. On the other hand, choosing Nc to be too large increases the cost due
to the associated element-element interactions. Moreover, Yokota and Baraba did not
address the use of a regularization core function and the additional cost incurred to
control the regularization error and to maintain a certain level of accuracy.
Yokota and Barba tested their code by comparing its performance to a pure FMM code
while fixing the maximum number of elements per leaf, Nc. For a well chosen value of
Nc (Nc = 200), the results show that the hybrid method always favors cell-cell interac-
tions and, as such, does not offer a clear advantage over the pure FMM. For Nc = 50,
while the FMM suffers from load imbalance between the far and and near-field calcu-
lations, the hybrid method performs much better because it can choose to carry out
element-element interactions even if the cell is not a leaf. Yokota and Barba concluded
that their hybrid method yields better results due to the automatic fine tuning of the
balance between cell-cell, cell-element, and element-element interactions throughout
the adaptive tree. The hybrid method removes the wavy behavior of the dependence of
the CPU time on N in pure FMMs[66] and achieves optimum performance for all N .
Yokota and Barba also investigated the effect of changing both the multiple acceptance
criteria θ and the order of expansion p to achieve maximum performance for a given
accuracy on both CPUs and GPUs[62]. They showed that it is inefficient to increase
θ to a value that is larger than that of standard FMM codes (θ = 1/2), for both CPU
and GPU implementations. Therefore, when designing a hybrid Treecode-FMM algo-
rithm there is no need for a variable MAC since its optimal value is always 1/2. In
this case, the hybrid scheme, developed by Yokota and Barba, yields a similar interac-
tion list as the algorithm proposed by Cheng et al. in [64]. The implementation of the
hybrid scheme is, however, much simpler and the algorithm is more general and flexible.

As for ensuring a desired accuracy,we emphazise the work of Winckelmans[43], who
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used the Treecode algorithm to simulate viscous and inviscid three dimensional flows
using the regularized vortex particle method. In his algorithm, Winckelmans controlled
the error incurred in approximating the velocity vector by a truncated Taylor series
expansions of a fixed order p = 2. For a desired accuracy, Winckelmans used the upper
bound expression of the error of the velocity field to evaluate a critical value of the
distance between the source cell and target element, dcrit, above which the multipole
expansion approximation is used. We note that, using an upper bound of the error in
the velocity field calculation incurs an additional computational cost, which may be
excessively large when compared to using an accurate measure of the error. Moreover,
and in order to minimize the regularization error, Winckelmans employed a cutoff dis-
tance equal to 5σ below which only direct summation is used, where σ is the smoothing
radius of the regularization function.

In this Chapter, we build on the work of Greengard[15] to introduce an error-controlled
hybrid method that automatically adapts to the time evolution of the particles distri-
bution to minimize the cost of computing the velocity vector and/or rate of strain
tensor fields, while meeting a pre-specified accuracy constraint. The proposed algo-
rithm accomplishes this goal by automatically carrying out periodic load-balancing of
the cell-cell, cell-element, and element-element computations as the flow-field evolves
in time. To realize optimal load, we introduce various criteria to decide on the order
of expansion, tree depth, and whether to compute multipole expansions, local expan-
sions or further divide a cell in the downward and upward tree passes. The criteria are
based on key control parameters, whose optimal values not only depend on the evolv-
ing elements distribution, but also on the choice of the core function, on the computer
architecture, and specific implementation of the executable code.

3.1 The Fast Multipole in Three Dimensions -

Adaptive Scheme

The computational cost of the N body problem is tremendously reduced by recursively
arranging nearby source elements into smaller boxes and using multipole expansion
coefficients ~Mm

n to approximate the far field components of the velocity and vortex
stretching vectors[62]. Further reduction is achieved by clustering target elements and
using local expansion coefficients ~Lmn to approximate the contributions of all distant
sources in the computational domain.

Simple expressions for the velocity and vortex stretching vectors in term of multipole
and local expansion coefficients are derived in chapter2. The hybrid adaptive error-
controlled fast multipole solver introduced in this chapter uses these expressions to
approximate the far-field vectors.

To facilitate the exposition of the proposed error-controlled adaptive solver, we
introduce the following notation:
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• NnD(Il): For a given target box Il at level l, a source box Jl at the same level
belong to the neighborhood of Il, NnD(Il), if and only if the distance along the
x, y, and z coordinates between the centers of the two boxes is less than or equal
to nDWIl where nD is a positive integer and WIl is the width of box Il. For
nD = 1, NnD(Il) consists of the blue boxes in Figure 3.1. For nD = 2, NnD(Il)
consists of the blue and green boxes in Figure 3.1.

• TnD(Il): For a given target box Il at level l, the Interaction List TnD(Il), is the set
of all boxes which are children of neighbors of Il’s parent and are not neighbors
of Il (green boxes in Figure 3.2). For nD = 1, the interaction list is similar to
that in Cheng et al. (1999) and in the hybrid scheme of Yokota for an optimum
MAC value of 1

2 .

• HnD(Il): For a given target box Il at level l, the Inherited List HnD(Il), is the set
of all boxes that belong to the interaction list of Il ancestor, and for which the
adaptive solver chooses not to perform cell-cell interaction. As the name suggest,
this list is transmitted from a parent box to its children.

• P(Il): Parent of box Il.

• N(Il): Number of elements in box Il. When referring to targets, we use NT (Il).
When referring to sources, we use NS(Jl).

• isLeaf(Il): True if Il is a leaf box, false otherwise.

• M(Jl): For a given source box Jl, M(Jl) is the set of multipole expansion coef-
ficients.

• L(Il): For a given target box Il, L(Il) is the set of local expansion coefficients.

We note that in our case the target elements are the same as the source elements. The
subscripts T and S are used to make the discussion more tractable.

i

box I

Figure 3.1: Neighborhood N (Il) of box Il containing element i, for nD = 1 (blue)
and nD = 2. (green)
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The proposed adaptive FMM scheme consists of the following steps:

1. Construct the root box
Construct the smallest cubic box that contains all the vortex elements in the
computational domain. This box is called the root box.

2. Build the tree
Construct a hierarchy of boxes by recursively dividing the root box uniformly
into smaller boxes. Refinement level 0 is equivalent to the root box. Refinement
level l+1 is obtained by subdivision of each box at level l into eight equally sized
children. The division process stops according to criterion 1 described in Table
3.1, where n∗T and n∗F are defined in section 3.2 and d∗σ is defined in section 3.3.

3. Initial expansion
At the finest level, all sources are expanded at their box centers to compute the
far-field multipole expansion coefficients ~Mm

n using Eq. (2.14).

4. Upward pass
Starting from the leaf boxes (boxes with no children), the multipole expansion
coefficients for each source box are recursively translated from the center of the
box to the center of the parent box.

5. Downward pass
At the center of each box at tree levels l ≥ 2, the local expansion coefficients are
recursively calculated. Local expansion coefficients for all boxes at level 1 are first
set to zero. For any target box Il at level l ≥ 2, initial local expansion coefficients
are obtained by translating local coefficients from the center of P(Il) to the center
of box Il. For any source box Jl that belongs to the interaction list TnD(Il), (green
boxes in Figure 3.2), We use criterion 2 to decide whether to include Jl is in the
Inherited list of Il or convert the multipole expansion coefficients at the center
of Jl into local expansion coefficients at the center of box Il using Eq. (2.19) and
add them to the initial local coefficients. The downward pass stops according to
criterion 3.

6. Compute the velocity and vortex stretching vectors
For every target element i in the computational domain, identify leaf box IL that
contains this element.

• Calculate the far-field velocity and vortex stretching vectors at the target
position using IL local expansion coefficients.

• Calculate the velocity and vortex stretching vectors at the target position
due to all sources contained within IL neighbours and Inherited lists using
the recursive method of the O(N logN) scheme:

– For each box J ∈ NnD(IL) or HnD(IL), the velocity and vortex stretch-
ing vectors induced at element i by all source elements contained in
J are calculated by either direct summation or approximated using
multipole expansion coefficients according to criterion 4.
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Table 3.1: Criteria.

criterion conditions action
tree building

1 if dIl = d∗σ or N(Il) < n∗; n∗ = min{n∗T , n∗F} stop division of box Il
downward pass

2 if Jl ∈ TnD(Il) and NT (Il) >
n∗2
F

8n∗
T

M(Jl)→ L(Il)

and NT (Il)×NS(Jl) >
n∗2
F

64

else add Jl to HnD(Il)
computing vector fields

3 if isLeaf(Il) or NT (Il) < n∗F stop downward pass

4 if NS(J) <
n∗
T

8
or isLeaf(J) direct summation

else if i /∈ NnD(J) fast summation
else proceed to next level

I3

W

I2

I2

Neighbor 
of I2

Interaction 
list of I2

Conversion

Tra
nsl

ati
on

WI3

Conversion

Figure 3.2: Schematic for the downward pass in step 5.

The criteria listed in Table 3.1 are designed to ensure optimal load balancing, while
meeting the error threshold requirement. Proper choices of the scheme parameters,
n∗T , n

∗
F , d

∗
σ, in addition to the order of expansion p, are necessary for the proposed

scheme to perform as intended. This is carried out through the cost and error analyses
discussed next, where we account for the evolving elements distribution, in addition to
other factors such as choice of the regularization function and computer architecture.
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iPiP

Figure 3.3: Schematic for step 6 (O(N logN) FM scheme).

3.2 Introducing n∗T and n∗F Through Cost Anal-

ysis

The speed of the adaptive scheme is function of p, nD, and dm, where dm is the tree
depth. Commonly, the accuracy of the approximation can be improved by increasing
p and/or nD, at the expense of a reduction in speed due to the associated additional
computational cost. For a given p and nD, the speed of the adaptive scheme increases
as dm increases up to an optimal depth, d∗m, above which it would be faster and more
accurate to perform direct summation than to further divide the tree.

For a given p and nD, let us consider a target box Il at level l. Next we present a
criterion, based on the number of elements contained in Il, that allows us to decide
whether or not it is faster and more accurate to further divide the box.

We denote nT as the critical number of elements in box Il such that for N(Il) ≤ nT ,
the interaction between Il and all sources in neighboring boxes, i.e. Jl ∈ NnD(Il), is
evaluated at level l using direct summation, and for N(Il) > nT , box Il is divided into
eight children, Il+1, and the interactions, due to the same sources, are evaluated at
level l + 1 using both direct summation (for all sources in NnD(Il+1)) and multipole
expansion (otherwise). We denote nF as the critical number of elements in box Il such
that for N(Il) ≤ nF , the interaction between Il and all sources in neighboring boxes,
i.e. Jl ∈ NnD(Il), is evaluated at level l using direct summation, and for N(Il) > nF ,
box Il is divided into eight children, Il+1, and the interactions, due to the same sources,
are evaluated at level l + 1 using using both direct summation (for all sources within
NnD(Il+1)) and local expansion (otherwise). We denote n∗T and n∗F as the optimal
values of nT and nF respectively. That is, for N(Il) ≤ n∗T , dividing this box into eight
children and evaluating their influence using multipole expansion coefficients rather
than direct summation will lower the speed of the adaptive fast solver. Similarly, for
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N(Il) ≤ n∗F , dividing this box into eight children and evaluating their influence using
local expansion coefficients rather than direct summation will lower the speed of the
adaptive fast solver. as described in section 3.1, n∗T and n∗F are used by the adaptive
scheme to optimize the speed of the fast solver.

To facilitate the discussions that follow, we introduce the cost parameters a, b, c
and d. Let a be the number of operations needed to calculate the direct interaction
at a target i due to point source j, b the number of operations needed to calculate at
a target i the interaction due to the sources located inside box J using multipole ex-
pansion coefficients, c the number of operations needed to convert multipole expansion
coefficients, calculated at the center of a source box J , into local expansion coefficients
at the center of a distant target box I, and d the number of operations needed to
translate local expansion coefficients of a target box to one of its children.

3.2.1 Evaluating n∗T Through Cost Analysis

The number of operations needed to calculate the direct interaction at target i ∈ Il due
to all sources in neighboring boxes, i.e. j ∈ Jl ∈ NnD(Il), is equal to 8

(
nD + 1

2

)3
na,

since there are 8
(
nD + 1

2

)3
neighboring boxes containing n = NS(Jl) sources each.

Now, we estimate, upon division of box Il into 8 children, the number of operations re-
quired to compute the solution at target i due to the same sources, i.e. j ∈ Jl ∈ NnD(Il).
Noting that i belongs to one of the children, Il+1 at level l+1, the number of operations
required to compute the solution at target i is the sum of direct interactions with sources
in NnD(Il+1) and fast multipole interaction with sources in TnD(Il+1). The number of

operations needed to calculate these interactions are respectively
(
nD + 1

2

)3
na and

7× 8
(
nD + 1

2

)3
b, owing to the fact that there are 8

(
nD + 1

2

)3
neighboring boxes, each

containing n
8 sources, and 7 × 8

(
nD + 1

2

)3
boxes which are children of box Il but are

not neighbors of box Il+1.

The critical number n∗T is then equal to the number of elements in box Il that yields
the same number of operations in the two scenarios considered,

8

(
nD +

1

2

)3

n∗Ta =

(
nD +

1

2

)3

n∗Ta+ 7

(
nD +

1

2

)3

× 8× b

Leading to a value of n∗T that is independent of nD

n∗T =
8b

a
(3.1)

We conclude that if NT (Il) > n∗T , it is more cost effective to further divide box Il
to level l + 1 and calculate the velocity and vortex stretching vectors induced by all
sources j ∈ NnD(Il) by direct interactions with sources in the children’s neighborhoods
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and using multipole expansions with sources in the children’s interaction lists. Noting
that b is of the order of p2, we may express

nT = cT2 p
2 + cT1 p+ cT0 (3.2)

where cT0, cT1, and cT2 are functions of the computer system, language, implementa-
tion, core function, etc. They also depend on what vector fields are evaluated.

The critical number n∗T is used to minimize the number of operations needed to
calculate the interactions between a given target i ∈ Il and NnD(Il). However, for
non-neighboring cells, a different criteria is used by the adaptive solver to optimize the
speed of the fast summation. This criteria, which is based on the number of elements
in the source box, is used by the adaptive solver to choose between cell-element and
element-element interaction. If we consider a box Jl that contains NS(Jl) sources, the
number of operations needed to calculate the direct interaction between J and any
target i /∈ NnD(Jl) is equal to NS(Jl)a. However, since i /∈ NnD(Jl), the interaction
between Jl and i can alternatively be performed using one Multipole expansion. In this
case, it is more cost effective to calculate the velocity and vortex stretching vectors us-

ing multipole expansions rather than direct summation if and only if NS(Jl) >
b
a =

n∗
T
8 .

3.2.2 Evaluating n∗F Through Cost Analysis

The number of operations needed to calculate the direct interaction at target i ∈ Il due
to all sources in neighboring boxes, i.e. j ∈ Jl ∈ NnD(Il), is equal to 8

(
nD + 1

2

)3
na,

since there are 8
(
nD + 1

2

)3
neighboring boxes containing n = NS(Jl) sources each. If

the number of targets in Il is NT (Il) = n, then the number of operations needed to
calculate the direct interaction between all targets i ∈ Il and all sources j ∈ NnD(Il) is

equal to 8
(
nD + 1

2

)3
n2a.

Now, we estimate, upon division of box Il into 8 children, the number of operations
required to compute the solution at all targets i ∈ Il due to the same sources, i.e.
j ∈ Jl ∈ NnD(Il). The number of operations required to compute the solution at all
target i ∈ Il+1 is the sum of direction interactions with sources in NnD(Il+1) and the
conversion and translation operations. The number of operations needed to calculate
the direct interactions is

(
nD + 1

2

)3
n2a, owing to the fact that there are 8

(
nD + 1

2

)3
neighboring boxes, each containing n

8 sources. The number of operations needed to

perform the conversion operations is equal to 8×7×8
(
nD + 1

2

)3
c since for each of the

8 children, Il+1, there are 7× 8
(
nD + 1

2

)3
boxes in TnD(Il+1). In addition, the number

of operations needed to perform all the translation operations is equal to 8d.

The critical number n∗F can then be estimated by balancing the number of operations
in the above two cases

8

(
nD +

1

2

)3

(n∗F )2 a =

(
nD +

1

2

)3

(n∗F )2 a+ 8× 7× 8

(
nD +

1

2

)3

c+ 8d

26



leading to

n∗
2

F = 64

(
c

a
+

1

nI

d

a

)
(3.3)

where nI = 56
(
nD + 1

2

)3
is the maximum number of boxes in the interaction list. We

conclude that it is more cost effective to further divide box Il to level l + 1 and then
calculate the velocity and vortex stretching vectors using cell-cell interaction if and
only if N(Il) > n∗F .

Noting the dependence of c and d on p4, we may expressed

n∗
2

F = cF4 p
4 + cF3 p

3 + cF2 p
2 + cF1 p+ cF0 (3.4)

where cF0, cF1, cF2, cF3 and cF4 are functions of the computer system, language, im-
plementation, etc. They also depend on what vector fields are evaluated.

The critical number n∗F is used to minimize the number of operations needed to
calculate the interactions between a given cell and all its neighbours. However, for non-
neighboring cells, a different criteria is used by the adaptive solver to optimize the speed
of the fast summation. This criteria is based on the number of elements contained in
both interacting non-neighboring cells and is used by the adaptive solver to choose be-
tween cell-cell, cell-element, and element-element interactions. If we consider a source
box Jl that contains NS(Jl) elements, the number of operations needed to calculate the
direct interaction between Jl and any target box Il outside NnD(Jl) containing NT (Il)
elements is equal to NS(Jl)×NT (Il)×a. However, since Il is outside NnD(Jl), the inter-
action between Jl and Il can be performed using cell-cell interaction with c operations,
and can also be performed using cell-element interactions with NT (Il)×b operations. In
this case, it is more cost effective to calculate the contributions of all sources j ∈ Jl at
all targets i ∈ Il, Il /∈ NnD(Jl) using cell-cell interation rather than direct summation or

cell-element interaction if and only if NS(Jl)×NT (Il) >
c
a '

n∗2
F

64 and NT (Il) >
c
b '

n∗2
F

8nT
.

For a given architecture, order of expansion p, and regularization core function, the
execution times a, b, c, d are measured. The values of n∗T and n∗F are then computed
using Eqs. (3.1) and (3.3). This procedure is repeated for different values of p, and the
coefficients cT i, i = 0, 1, 2 and cFj , j = 0, 1, . . . , 4 are determined using curve fitting.

3.3 Error Analysis of the Vector Potential and

Velocity Vector for the Adaptive Scheme

with Regularized Vortices

In the regularized vortex method, where the vorticity field is approximated using Eq.
(2.9), approximating the far-field vector potential using Eqs. (2.17) and (2.18) results
in an error made up of three components:

‖ ~E
T,~ψ
‖ = ‖ ~E

σ,~ψ
+ ~E

M,~ψ
+ ~E

L,~ψ
‖ (3.5)
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where ~E
M,~ψ

, ~E
L,~ψ

, and ~E
σ,~ψ

are respectively the error components due to (i) truncating

the multipole expansions at some order p, (ii) truncating the local expansions at some
order p, and (iii) approximating the Biot-Savart kernel as a 1

r kernel. The multipole

expansions truncation component, ~E
M,~ψ

, arises from representing the kernel 1
r at large

distance using a series of multipole expansion up to order p. The local expansions trun-
cation component, ~E

L,~ψ
, arises from representing the kernel 1

r at large distance using a
series of local expansion up to order p and decreases exponentially as p increases. Both
error components, ~E

M,~ψ
and ~E

L,~ψ
, decrease exponentially as p increases and will even-

tually converge to zero as p→∞. Increasing p, however, increases the computational
cost thus reducing the solver speed. We also note that the two truncation errors depend
on the Multipole Acceptance Criteria, referred to as nD. Increasing nD improves the
accuracy of the approximations at the expense of a huge reduction in speed arising from
the additional cost of the associated direction summation. The error component, ~E

σ,~ψ
,

arises from the fact that Gσ deviates from 1
4πr . This error mainly depends on the size

of leaf boxes (at the terminal level of the tree). In order to keep ~E
σ,~ψ

small, the size of
the leaf boxes must be larger than a minimum multiple of the core function smoothing
radius. In three dimensional flows, this adds considerably to the computational cost of
the FM schemes due to the associated increase in element-element interactions.

To estimate upper bounds of these error components, we consider a target element
i in a leaf box IL. The adaptive scheme can perform cell-cell, cell-element, and element-
element interactions. We denote M as the set of all boxes J at different levels that
interact with element i via cell-element interaction (Multipole Expansion) where the
vector potential induced at i by all vortices contained in J is calculated using Eq.
(2.17). We also denote L as the set of all boxes at different levels that interact with
cell Il via cell-cell interaction (Local Expansion) where the vector potential induced at
i by all vortices contained in J is calculated using Eq. (2.18). The upper bounds of
the error components associated with computing the vector potential (derivations are
presented in Appendix A) are

E
σ,~ψ
≤ ΓMLβσ(rm) (3.6)

‖ ~E
M,~ψ
‖ ≤ 1

4π

ΓM
W0

2dm

nD −
√

3−1
2

( √
3

2nD + 1

)p+1

(3.7)

‖ ~E
L,~ψ
‖ ≤ 1

4π

ΓL
W0

2dm

nD + 1−
√

3

(
1

2
√

3
3 (nD + 1)− 1

)p+1

(3.8)

where β(r) = |G(r) − 1
4πr |, βσ(r) = 1

σβ
(
r
σ

)
, rm is the distance that maximizes the

kernel βσ(r), W0 is the width of the root box, and ML = M∪ L. Furthermore, for
any set of boxes S, we have:

ΓS =
∑
j∈S
‖~αj‖ (3.9)
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The velocity vector is also expressed as a truncation of spherical harmonics. How-
ever it has different expressions than those obtained for vector potential, and, as such,
has different error bounds. The error in the velocity vector can also be decomposed into
three components, namely, the multipole truncation error EM,~u, the local truncation
error EL,~u and the regularizing error Eσ,~u. The total error can be expressed as:

‖ ~ET,~u‖ = ‖ ~Eσ,~u + ~EM,~u + ~EL,~u‖ (3.10)

The upper bounds of these error components (derivations are presented in Appendix
A) are

‖ ~Eσ,~u‖ ≤ ΓMLκσ(rm) (3.11)

‖ ~EM,~u‖ ≤
1

4π

ΓM
W 2

0

4dm(
nD −

√
3−1
2

)2

( √
3

2nD + 1

)p+1 [
p+ 2−

√
3

2nD + 1
(p+ 1)

]
(3.12)

‖ ~EL,~u‖ ≤
1

4π

ΓL
W 2

0

4dm(
nD + 1−

√
3
)2
(

1
2
√

3
3 (nD + 1)− 1

)p+1 [
p+ 2−

(
1

2
√

3
3 (nD + 1)− 1

)
p

]
(3.13)

where κ(r) = 1
4πr2
|1− 4πq(r)| and κσ(r) = 1

σ2κ( rσ ).

For a given value of nD, the truncation errors, EM,~u and EL,~u, mainly depend on the
order of expansion p. For a given required accuracy, there exists an optimal value of
the order of expansion, p∗, below which the truncation errors would be higher than
the maximum allowable error. Once calculated, p∗ is used as the truncation order of
both multipole and local expansions and to evaluate the two optimal parameters val-
ues n∗T and n∗F using equations (3.2) and (3.4) respectively. These optimal parameters
values are used by the adaptive solver to limit the depth of the tree in order to balance
near-field and far-field evaluations. For a singular (point vortices) representation of
the vorticity field where the regularization error vanishes, the division process stops
whenever the number of elements in a given box is less than n∗ = min{n∗T , n∗F }. In
this case, n∗ is the only parameter that controls the depth of the tree structure, i.e.
d∗m(n∗). The use of a regularization core function introduces an additional error Eσ,~u
that mainly depends on the maximum level reached upon tree division. In fact, for
a given level of accuracy, there exists a critical tree depth d∗σ above which the regu-
larization error exceeds the maximum allowable error. Thus, in order to maintain the
desired accuracy of regularized vortex methods, the tree division must stop whenever
the tree level reaches d∗ = min(d∗σ, d

∗
m(n∗)). This additional constraint would impact

the FMM balance. If d∗σ > d∗m(n∗), the fast solver will manage to balance the loads. On
the other hand, if d∗σ < d∗m(n∗), the tree structure would be too shallow and the near
field evaluations dominate. In this case, the adaptive solver behaves exactly the same
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as Greengard FMM[15] since the division process is halted at a given level. However,
the adaptive solver will always give the best performance for the desired accuracy and
used core function.

Based on the above cost and error discussions, we propose the algorithm presented
in figure 3.4 to obtain the best performance for a given accuracy constraint while using
a regularized core function. For a given vorticity field representation (elements distri-
bution and core function) and a total error ET specified by the user, the adaptive solver
first determines the minimum number of samples, N∗, required to estimate the average
L2 velocity error for a 95% confidence level, and within 5% confidence interval. A sam-
ple, of size N∗, is then used to calculate the value of the optimal order of expansion p∗

below which the Multipole error exceeds the total error, and the critical level d∗σ above
which the regularization error exceeds the total error. p∗ is then used to calculate the
values of the optimal parameters n∗T and n∗F according to equations (3.2) and (3.4).
Once calculated, these optimal parameters values are used in the adaptive fast solver
to balance the far and near-field evaluations, as described in section 3.1. As the flow-
field evolves in times, N∗, p∗, n∗T , n∗F , and d∗σ are re-evaluated every T times steps or
whenever the calculated error takes a value greater than the pre-defined total error ET .
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Input ET

<latexit sha1_base64="CtFC1D1m+RzGWUU6nEmXh9MtDd4=">AAACCnicbVDLSgMxFL1TX3V8VV26CbaKqzJTCrosiKC7Cn1BO5RMmmlDM5khyQhl6B+4dqvf4E7c+hN+gn9hpu3Cth4IHM65l3ty/JgzpR3n28ptbG5t7+R37b39g8OjwvFJS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Dbz209UKhaJhp7E1AvxULCAEayN1HsQcaJR6a7fsEv9QtEpOzOgdeIuSBEWqPcLP71BRJKQCk04VqrrOrH2Uiw1I5xO7V6iaIzJGA9p11CBQ6q8dJZ5ii6MMkBBJM0TGs3UvxspDpWahL6ZDLEeqVUvE//zuokObryUZR+jgswPBQlHOkJZAWjAJCWaTwzBRDKTFZERlphoU9PSlSEVswS2bZtu3NUm1kmrUnar5epjpVi7XLSUhzM4hytw4RpqcA91aAKBGF7gFd6sZ+vd+rA+56M5a7FzCkuwvn4BU/2ZXw==</latexit>

 

advect and diffuse

calculate average velocity 
L2 error

<latexit sha1_base64="hFUt/FgQIy1/WJ2Pol9+VeUHU4g=">AAACCXicbVDLTgIxFO3gC8cX6tJNI2hckRlCoksSNy5cYCKPZCCkUy7Q0GknbceEEL7AtVv9BnfGrV/hJ/gXlmEWAp6kyck59+aenjDmTBvP+3ZyG5tb2zv5XXdv/+DwqHB80tQyURQaVHKp2iHRwJmAhmGGQztWQKKQQysc38791hMozaR4NJMYuhEZCjZglBgrBaX7XqWEQSmpeoWiV/ZS4HXiZ6SIMtR7hZ9OX9IkAmEoJ1oHvheb7pQowyiHmdtJNMSEjskQAksFiUB3p2nkGb6wSh8PpLJPGJyqfzemJNJ6EoV2MiJmpFe9ufifFyRmcNOdMhEnBgRdHBokHBuJ5//HfaaAGj6xhFDFbFZMR0QRamxLS1eGINIEruvabvzVJtZJs1L2q+XqQ6VYu8xayqMzdI6ukI+uUQ3doTpqIIokekGv6M15dt6dD+dzMZpzsp1TtATn6xcU2plK</latexit>

itime = itime + 1

if L2 error > ET

<latexit sha1_base64="3yjMV53g/9S8mwWnOGxnXYUxTog=">AAACF3icbVC7SgNBFJ2Nr7i+Vi0sbAYTxSrshoBWEhDBwiJCXpCEZXZyNxkyO7vMzAoh5EOsbfUb7MTW0k/wL5w8CpN4qsM593LuPUHCmdKu+21l1tY3Nrey2/bO7t7+gXN4VFdxKinUaMxj2QyIAs4E1DTTHJqJBBIFHBrB4HbiN55AKhaLqh4m0IlIT7CQUaKN5DsnLMT5B7+YxyBlLHH+Bt/51Tz2nZxbcKfAq8Sbkxyao+I7P+1uTNMIhKacKNXy3ER3RkRqRjmM7XaqICF0QHrQMlSQCFRnNH1gjM+N0sWhyQ9jofFU/bsxIpFSwygwkxHRfbXsTcT/vFaqw+vOiIkk1SDoLChMOdYxnrSBu0wC1XxoCKGSmVsx7RNJqDadLaT0QEwvsG3bdOMtN7FK6sWCVyqUHou58sW8pSw6RWfoEnnoCpXRPaqgGqJojF7QK3qznq1368P6nI1mrPnOMVqA9fULBuicwA==</latexit>

or
yesno

determine N⇤

<latexit sha1_base64="H9iexv1CWnlO/q+HbudrDwixS40=">AAACFnicbVDLSgMxFM3UVx1fVcGNm2BRxEWZkYIuC25cSQX7gLaWTHrbhiaZIcmIZex/uHar3+BO3Lr1E/wL02kXtvVA4HDOvbmHE0ScaeN5305maXlldS277m5sbm3v5Hb3qjqMFYUKDXmo6gHRwJmEimGGQz1SQETAoRYMrsZ+7QGUZqG8M8MIWoL0JOsySoyV2rmDpgjCx6QDBpSwf+ARvrk/w+1c3it4KfAi8ackj6Yot3M/zU5IYwHSUE60bvheZFoJUYZRDiO3GWuICB2QHjQslUSAbiVp/hE+tkoHd0NlnzQ4Vf9uJERoPRSBnRTE9PW8Nxb/8xqx6V62Eiaj2ICkk0PdmGMT4nEZuMMUUMOHlhCqmM2KaZ8oQm0bs1d6INMEruvabvz5JhZJ9bzgFwvF22K+dDJtKYsO0RE6RT66QCV0jcqogih6Qi/oFb05z8678+F8TkYzznRnH83A+foFyKGeeQ==</latexit>

calculate n⇤
T and n⇤

F

<latexit sha1_base64="kZc/lrpbaUPBud3RUhegBZNFpjY=">AAACK3icbZDPSsNAEMY3/jf+i3r0slgUUSiJFPQoCOKxQquFNpbJdloXN5uwuxFL6EP4IJ696jN4Urx68C3cpj1Y9YOFj9/MMLNflAquje+/OVPTM7Nz8wuL7tLyyuqat75xqZNMMayzRCSqEYFGwSXWDTcCG6lCiCOBV9Ht6bB+dYdK80TWTD/FMIae5F3OwFjU9g5acZTc5wwEywQYpAMq27XrfTriFGSnQGcWtb2SX/YL0b8mGJsSGava9r5anYRlMUrDBGjdDPzUhDkow5nAgdvKNKbAbqGHTWslxKjDvPjUgO5Y0qHdRNknDS3oz4kcYq37cWQ7YzA3+ndtCP+rNTPTPQ5zLtPMoGSjRd1MUJPQYUK0wxUyI/rWAFPc3krZDShgxuY4saWHsrjAdV2bTfA7ib/m8rAcVMqVi0rpZHec0gLZIttkjwTkiJyQc1IldcLIA3kiz+TFeXRenXfnY9Q65YxnNsmEnM9vOhGmZw==</latexit>

mod (itime, T ) == 0

<latexit sha1_base64="9h9sapyVqPE1Sn1q+WlBAmNhD38=">AAACFXicbZDLSgMxFIYz9VbH26i4chMsSgUpM1LQTaHgxmWF3qAtJZOetsEkMyQZoQx9Dtdu9RnciVvXPoJvYXpZ2NYfDvz85xzO4QtjzrTx/W8ns7a+sbmV3XZ3dvf2D7zDo7qOEkWhRiMeqWZINHAmoWaY4dCMFRARcmiEj3eTfuMJlGaRrJpRDB1BBpL1GSXGRl3vpC2iXppnhgm4wtXLMS6VsN/1cn7BnwqvmmBucmiuStf7afcimgiQhnKidSvwY9NJiTKMchi77URDTOgjGUDLWkkE6E46fX+Mz23Sw/1I2ZIGT9O/GykRWo9EaCcFMUO93JuE//VaienfdlIm48SApLND/YRjE+EJC9xjCqjhI2sIVZYBxXRIFKHGElu4MgA5/cB1XcsmWCaxaurXhaBYKD4Uc+WLOaUsOkVnKI8CdIPK6B5VUA1RlKIX9IrenGfn3flwPmejGWe+c4wW5Hz9Ajh0nPk=</latexit>

determine p⇤ and d⇤�

<latexit sha1_base64="pQYQ50R+fdIwP1kL37Gbl800THs=">AAACL3icbVDLSgMxFM34rOOr6tJNsCjSRZ2Rgi4LblxWsA/oi0zmtg1NMkOSEcvQz/BDXLvVbxA34rZ/YfpY2NYDgcM595UTxJxp43lfztr6xubWdmbH3d3bPzjMHh1XdZQoChUa8UjVA6KBMwkVwwyHeqyAiIBDLRjcTfzaEyjNIvlohjG0BOlJ1mWUGCt1sldNEUTPaQgGlLAz8AjH7TyeqZjI0AphJ21q1hNk1M53sjmv4E2BV4k/Jzk0R7mTHTfDiCYCpKGcaN3wvdi0UqIMoxxGbjPREBM6ID1oWCqJAN1Kpx8b4XOrhLgbKfukwVP1b0dKhNZDEdhKQUxfL3sT8T+vkZjubStlMk4MSDpb1E04NhGepIRDpoAaPrSEUMXsrZj2iSLUxrS4pQdyeoHrujYbfzmJVVK9LvjFQvGhmCtdzFPKoFN0hi6Rj25QCd2jMqogil7QG3pHH86r8+l8Oz+z0jVn3nOCFuCMfwHQ5qji</latexit>

Figure 3.4: Flowchart of the error-controlled adaptive scheme.
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Chapter 4

Handling the Diffusion Term in
the Vorticity Transport Equation

Vortex methods[9], are grid-free Lagrangian computational methods in which the flow
field is represented by a set of Lagrangian particles. They were originally developed to
simulate inviscid incompressible flows at high Reynolds number[4]. However, a num-
ber of numerical diffusion model to handle diffusion effects in vortex methods have
been successfully implemented. Chorin[10] introduced the Random Vortex Method
(RVM) in which particles undergo a random displacement to simulate the effects of
diffusion. Leonard[2] expanded the core of each vortex according to the diffusion
equation. Mas-Gallic[11] introduced the particle strength exchange (PSE) and ap-
proximates the diffusion operator by an integral operator. Shankar[12] introduced the
Redistribution Scheme (RSM) and accounts for the diffusion by exchanging a con-
served quantity between arbitrary computational points. Furthermore, Lakkis and
Ghoniem[13]introduced the smooth redistribution method (SRM) that differs from the
original redistribution method[12] in assuming a smooth core function rather than the
singular Dirac-delta function for the vorticity distribution. Later, they combined the
SRM with the core spreading method to propose a spatially adaptive SRM[40].
Although PSE and RSM schemes have been developed since more than two decades, and
despite the similarity between them (they both assign fraction of strength to neighbors
particle), there is no comparison one to one between the two schemes. A comparative
study is still needed in order to identify the ‘best’ viscous scheme. In this chapter
we will discuss the simulation of diffusion using an extension to three dimensions of
the smoothed redistribution method. We will also present the basic formulation of the
particle strength exchange method.
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4.1 Vorticity Diffusion in an Unbounded Three-

Dimensional Flow Using the Redistribution

Method

The diffusion scheme used throughout this paper is an extension to three dimensions
of the smoothed redistribution method[19, 40, 13], based on Shankar’s redistribution
scheme[12] for point vortices. In the framework of operator splitting of the vorticity
equation, diffusion of vorticity is carried out as a separate step. To this end, the
redistribution scheme diffuses the vorticity field as a superposition of the diffusion of
all the vortex elements[19], taking advantage of the linearity of the diffusion equation.
The vorticity of each vortex element i is diffused by transferring a fraction fij of its
strength ~αi to neighboring elements j that fall within a pre-determined distance RShd,
where hd =

√
ν∆t is the diffusion length during a time step ∆t and

√
4 ≤ RS ≤

√
20

is a normalized search radius. In order to accurately model the diffusion process, these
redistribution fractions are obtained by solving a system of linear equations governing
the fractions fij such that the moments of the approximate and exact solution of
the diffusion equation are equal up to a certain order. The number of equations is
determined by the number of moments we choose to conserve and the stability of this
method is ensured by enforcing the positivity of the redistribution fractions. Upon
diffusing from time t to time t + ∆t, the strength ~αj of each vortex element j is then
calculated as the sum of the received fraction from all its neighbors i,

~αj (t+ ∆t) =
∑
i∈Nj

fij~αi (t) (4.1)

where the set of neighbors Nj consists of all elements within a distance of RShd from
element j. The vorticity field is reconstructed by the superposition

~ωσ (~x, t+ ∆t) =

N(t+∆t)∑
j=1

~αj (t+ ∆t) ζσ (~x− ~xj) (4.2)

where N is the number of elements.

Let i be a computational element characterized by vorticity strength ~αi and position
~xi. We would like to diffuse, from time t to t + ∆t, the vorticity field ~ωi(~x, t) =
~αi (t) ζσ (~x− ~xi), associated with element i by transferring fractions fij of the element’s
strength ~αi(t) to M neighboring elements j ∈ Ni. The fractions fij are determined
such that the approximated vorticity field

∑
j fij~αi(t)ζσ(~x−~xj) and the exact solution

at time t + ∆t,
∫
G(~x − ~x′,∆t)~ωi(~x

′, t)d~x′ have the same moments, expressed in a
coordinate system centered as ~xi as∫ ∞

−∞
xmynzp

∑
j

fij~αi(t)ζσ(~x− ~xj)d~x

=

∫ ∞
−∞

xmynzp
(∫ ∞
−∞

G(~x− ~x′,∆t)~αi (t) ζσ
(
~x′
)
d~x′
)
d~x, (4.3)
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up to order k ≥ 0, where m,n and p are non-negative integers satisfying 0 ≤ m+n+p <
k , and G is the Green’s function of the diffusion equation.

For a core function of order l = k, after removing ~αi(t) from both sides, equation
(4.3) reduces to:

∑
j

fijx
m
j y

n
j z

p
j = 0 for odd m or n or p (4.4)

=
(4ν∆t)

m+n+p
2 γ

(
m+1

2

)
γ
(
n+1

2

)
γ
(
p+1

2

)
√
π

3 otherwise

where γ is the complete gamma function γ(z) ≡
∫∞

0 e−ttz−1 dt, especially γ(1/2) =
√
π.

Defining the vector ~rij = ~xj − ~xi, and shifting coordinates to the global system of
coordinates, the linear system governing fij that conserves moments up to the second
order is

M∑
j=1

fij = 1,

M∑
j=1

fij~rij = ~0, (4.5)

M∑
j=1

fij~r
x
ij~r

y
ij = 0,

M∑
j=1

fij~r
x
ij~r

z
ij = 0,

M∑
j=1

fij~r
y
ij~r

z
ij = 0, (4.6)

M∑
j=1

fij~r
x
ij~r

x
ij = 2ν∆t,

M∑
j=1

fij~r
y
ij~r

y
ij = 2ν∆t,

M∑
j=1

fij~r
z
ij~r

z
ij = 2ν∆t (4.7)

For a given order of accuracy, the redistribution equations, subject to the non-
negativity constraints, are solved using the non-negative least squares (NNLS) method.
If the system fails to yield non-negative fractions, new elements, selected from a set of
candidates uniformly distributed on a sphere of radius RIhd, are sequentially injected
until a solution is obtained, where RI is the normalized injection radius (RI '

√
10).

Injection of a new element is carried out in a manner that maximizes the minimum
distance to the existing neighbors, which ensures some level of uniformity in the ele-
ments distribution. Introducing new elements in the diffusion process will eventually
act to fill the vorticity gaps created by large strain rates which cause the particles to
move away from each other which degrades the spatial resolution. This will reduce
the need for remeshing since the added elements will contribute to maintaining the
overlap condition. For flows with very high strain rate, one can opt to reduce the time
step which in turn reduces the ratio of the advection to diffusion length scales (which
scales as O(

√
∆t)) leading to an improvement in the core overlap condition between

neighboring particles.
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4.2 Vorticity Diffusion Using the Particle Strength

Exchange Method

This method was introduced by Mas-Gallic[11] in 1987. The key idea is to replace the
diffusion operator by an integral one. The integral operator is discretized by quadrature,
using as quadrature points the locations of the particles. Using Taylor series expansions,
Mas-Gallic showed that a good approximation of the Laplacian operator is given by:

∆~ω(~x) =
2

σ2

∫
(~ω(~y)− ~ω(~x))× ησ (~x− ~y) d3y (4.8)

where ησ(ρ) = 1
σ3 η

( ρ
σ

)
, η(ρ) = −1

ρ
d
dρζ(ρ), and ζ(ρ) is a radially symmetric regulariza-

tion function of order r that satisfy the following moment property:∫ ∞
0
|η(ρ)|ρ3+rdρ <∞ (4.9)

Eq. 4.8 provides an integral approximation of the Laplace operator. Particle ap-
proximation of the diffusion can then be defined from numerical integrations of this
equation. The resulting scheme is written as:

d

dt
~αp =

2

σ2

∑
q

(Vp~αq − Vq~αp)× ησ (~xp − ~xq) (4.10)

To model the diffusion, PSE scheme redistribute the strengths among particles in
a consistent and accurate manner following Eq 4.10. Thus, the formulation of PSE
is, in principle, grid-free. However, the fact that the accuracy relies strongly on the
quadrature rules used for the discretized integral means that we must always have
nearly uniformly spaced particle locations. The uniformity of the particle distribution
is periodically restored using remeshing.
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Chapter 5

The Problem of Divergence Free
Vorticity

Vortex methods are grid-free methods used to solve the Navier-Stokes equation by fol-
lowing the evolution of the vorticity-carrying fluid elements. In these methods, the
vorticity field is initially discretized using either singular point vorticies or regularized
vortex blobs. In both cases, the approximated initial vorticity field is not divergence
free. Hence, the difficulty of vortex methods to maintain a divergence free vorticity field
originates from the initialization process. For the initial condition, the divergence can
be made small enough by resolving the initial vorticity field using a sufficiently large
number of elements. However, for high Reynold number, the intense vortex stretching
will tend to move elements farther apart and to amplify the divergence of the vorticity
field. The issue is then to analyze to what extent the divergence of the vorticity is
increased by the velocity gradient field.
The fact that the approximate vorticity field either in the particle form or in its reg-
ularized form is not divergent free is by itself a difficulty that has long been a major
obstacle to vortex particle method. In principal such violation of the fundamental law
of fluid mechanics may result in nonphysical topology of vorticity lines (in particular
the possibility of having non closed vortex lines). Moreover such a violation may leads
also to the non-conservation of the basic invariants in three dimensional inviscid flows,
namely, total circulation, linear angular impulses, energy, and Helicity. In fact, since
∇.~ω is not equal to zero, the stretching term cannot be written in a conservative form
∇.(~ω : ~u) and thus contribute to the production of circulation. Henceforth there is no
guaranty that the circulation will be conserved.

For long time simulations, enforcing the divergence free condition is essential es-
pecially in high inertia flows. To this end, few tools have been developed. Some of
these methods rely on subtracting the gradient part of the vorticity field, other recover
the vorticity field from the velocity field[4]. Yet, maintaining a divergence free vortic-
ity field remains a standing challenge in vortex methods. In this chapter, we present
few relaxation schemes introduced to force the particle vorticity field to remain nearly
divergence-free at all times.
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5.1 Winckelmans Method

The approximated vorticity field is not generally divergence free. In fact, for a regu-
larized representation of the vorticity, the divergence of the vorticity field is expressed
as:

∇ · ~ωσ =
∑
p

~αp.∇ζσ(~x− ~xp) =
1

σ4

∑
p

dζ(r)

dr
| r
σ

(~αp.~urp), (5.1)

where ~urp =
~x−~xp
||~x−~xp|| . It is clear that ∇.~ωσ is generally not equal to zero and its value

is inversely proportional to σ4. As σ increases, ∇.~ωσ decreases.
Initially ~ωσ(~x, 0) can be set to be a good representation of the vorticity field but as time
evolves, this property is not maintained. Winckelmans[56, 43] proposed to reconstruct
the divergence free vorticity field by taking the curl of the calculated velocity field, ~ωσ,
expressed as:

~̃ωσ(~x, t) = ∇× ~uσ(~x, t) = ∇× (∇× ψσ(~x, t)) = −∇2ψσ(~x, t) +∇(∇ · ψσ(~x, t)) (5.2)

~̃ωσ(~x, t) =
∑
p

[~αp(t)ζσ(~x− ~xp(t) +∇(~αp(t) · ∇(Gσ(~x− ~xp(t)))] (5.3)

=
∑
p

[
ζσ(~x− ~xp)−

qσ(~x− ~xp)
||~x− ~xp| |3

]
~αp

+

[
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]
× (~x− ~xp) · ~αp
||~x− ~xp| |2

(~x− ~xp)

Whenever ~ωσ becomes a poor representation of the divergence free field, Winckelmans
assign new particle strengths ~αnewp by imposing ~ωnewσ (~xp) = ~̃ωσ(~xp). This is done by
solving a system of linear equation for all p:∑

q

~αnewp ζσ(~xp − ~xq) =
∑
q

[
~αoldq (t)ζσ(~xp − ~xq) +∇(~αoldq · ∇(Gσ(~xp − ~xq))

]
(5.4)

The corrected vorticity field is always divergence free independent of the choice of
the core function. However, this method is quite dissipative and does not conserve the
linear invariants. In fact, we have showed (derivation is detailed in appendix C) that
every time we apply this method to reconstruct a divergence free vorticity field, the
total circulation and linear impulse are multiplied by a factor of 2

3 , so we have:

~Γnew =
2

3

∑
p

~αoldp =
2

3
~Γold (5.5)

~Inew =
2

3

∑
p

~xp × ~αoldp =
2

3
~Iold (5.6)

According to Newton’s second law of motion, the rate of change of a system’s momen-
tum is directly proportional to the net force acting on it. Hence, this scheme produces
non-physical results since it acts as an external net force that dissipates energy out of
the system and slow down fluid particles.
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5.2 Marshal Method

According to Marshal[18], the vorticity vector, ~ω, can be decomposed into the sum of
a divergent vector field, ~q(~x, t), and the gradient of a scalar, ∇α(~x, t), such that

~ω = ~q −∇α (5.7)

In an unbounded domain, the gradient term in the vorticty equation makes no contri-
bution to the induced velocity. This property was noted both by Novikov (1983) and
Winckelmans and Leonard (1993). In fact, it also follows from the fact that∇×∇α = ~0.
For ∇.~ω = 0, the vorticity equation is expressed as:

~ω = ~q(~x, t)−∇
[

1

4π

∫
~q′.~r

r3
dv′
]

(5.8)

If the generator field, ~q(~x, t), is represented in terms of overlapping elements centered
at the control points xn(t) n = 1, ........N

~q(x, t) =
∑
n

~αn(t)ζσ(~x− ~xn(t), (5.9)

the vorticity field can be expressed as:

~ω(x, t) =
∑
n

[~α(t)ζσ(~x− ~xn(t) +∇(~αn(t) · ∇(Gσ(~x− ~xn(t)))] (5.10)

The vorticity is divergence-free for any core function, ζσ. The strength vectors ~αn are
obtained by solving the matrix

~ωp =
∑
n

[~αnζσ(~xp − ~xn) +∇(~αn · ∇(Gσ(~xp − ~xn))] (5.11)

where ~wp denotes the value of the vorticity at the control points ~xp. Hence, Marshall
and Grant assign a value resulting from a global matrix calculation that insures that
a divergence free vorticity field results from the particle discretization. The method
utilizes a representation for the vorticity field as a set of overlapping elements, similar
to the ‘vortex blob’ method which converges to the prescribed vorticity field as the
number of control points becomes large. Yet, there is no proof that that this method
converges to exact solution. Moreover, at each time step, Marshal method requires
finding the inverse of a 3N × 3N square matrix, where N is the number of control
points. For large N , this method become infeasible.

5.3 Divergence Filtering Method

In the context of singular particle, a relaxation schemes called “divergence filtering
method” was proposed by Pedrizzetti[44]. This scheme can also be used in the context
of regularized particle. In his paper Pedrizzetti introduced a linear filtering feedback
procedure requiring to align the vorticity field with the reconstructed solenoidal vortic-
ity field, ~̃ω = ∇×~uσ. When the strength vectors are well aligned with the reconstructed
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vorticity field, the particle representation is a good approximation of the divergence
free vorticity field. As such, Pedrizzetti introduced a filtering procedure which gives the
strength vectors tendency to realign with the reconstructed solenoidal vorticity field,
~̃ω. He defined the aligned intensity as

~γ (~xp(t), t) =
∇× ~uσ (~xp(t), t)

‖∇ × ~uσ(~xp(t), t)‖
‖~αp‖ (5.12)

and introduce an equation for the evolution of the vorton intensity

d(~αp)

dt
= −η(~αp − ~γp) (5.13)

The parameter η is the characteristic frequency of the linear filter operation. At each
time step the strength vector are updated using:

~αnewp = (1− η∂t)~αp + η∂t
∇× ~uσ (~xp(t), t)

‖∇ × ~uσ(~xp(t), t)‖
‖~αp‖ (5.14)

The divergence filtering procedure has no clear physical meaning. In fact, even at the
initial stage where the divergence can be made small enough by resolving the initial
vorticity field using a sufficiently large number of elements, the calculated vorticity
does no align with the reconstructed solenoidal vorticity field, ~̃ω.
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Chapter 6

Results and Discussion

In section 6.1, the convergence of the velocity and vortex stretching vectors, expressed
as a truncated series of spherical harmonics, are first assessed by presenting the depen-
dence of the L2 error in the velocity and vortex stretching vector fields on the order
of expansion, p. The performance of the adaptive solver in terms of the dependence
of cost and accuracy on the various controlling parameters is investigated in sections
6.2 and 6.3. The evolution of the optimal values of these parameters along with the
associated computational savings for the case of collision of two vortex rings over a
reasonable time span are presented in section 6.4. In section 6.5, the adaptive solver,
along with the introduced expressions, are used to assess the overall performance of
three-dimensional grid-free regularized vortex methods by simulating the collision of
two vortex rings, over a long period of time, for different values of Reynolds number
covering the range 500 − 2000. In section 6.6, we present a comparative study of the
PSE diffusion model and the extension to 3D of the smoothed redistribution

6.1 Convergence of the FMM Expressions for

the Velocity and Vortex Stretching Vectors

The convergence of the derived simple expressions for the velocity and vortex stretching
vectors, expressed as a truncated series of spherical harmonics, is assessed as p, the order
of expansion, is increased from 2 to 20. Evaluations are carried for a vortex elements
distribution representing a vortex ring with a dimensionless core radius a = 0.1. The
vorticity within the core of the ring is taken as a second-order Gaussian distribution

~ω(r) =
Γ

2πa2
exp

−r2
2a2 ~eθ (6.1)

where ~eθ is the unit vector along the azimuthal direction, r is measured from the core
center, and Γ is the circulation around the core and it is set to unity. The vorticity
field, discretized using 1377744 equi-spaced elements, is approximated by

~ωδ(~x) =
∑
i

~αiδ (~x− ~xi) , (6.2)
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where the strength of element i is ~αi = ~ω(~xi)dv and dv is the grid cell volume.

L2 errors in the velocity and the vortex stretching vectors, calculated for both
O(N logN) and O(N) schemes, are plotted against the expansion order in Figs. 6.1
and 6.2, respectively. The errors, which measure the departure of the solutions pre-
dicted by the O(N logN) and O(N) schemes from those obtained by direct summa-
tion, are calculated using the following L2 norm expressions

L2(~v) =

√∑
i

||~vf (~xi)− ~vd(~xi)||2 (6.3)

L2(~S) =

√∑
i

∣∣∣∣∣∣~Sf (~xi)− ~Sd(~xi)
∣∣∣∣∣∣2 (6.4)

where the subscripts d and f refer to the direct and fast multipole schemes respectively,
and ~S = ~ω · ∇~u is the vortex stretching vector. As can be observed in Figs. 6.1 and
6.2, the solutions obtained by the fast solver converge rapidly to the direct solution as
the expansion order increased, where the L2 errors decay as Cp with C ranges between
0.41 and 0.48.
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Figure 6.1: L2 norm of the velocity error vs p for O(N) and O(N logN) schemes

6.2 Computational Cost of the Adaptive Solver

The proposed error-controlled algorithm makes use of the two optimal parameters n∗T
and n∗F developed in section 3.2 to balance the far-field and near-field evaluations for
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Figure 6.2: L2 norm of the vortex stretching error vs p for O(N) and O(N logN)
schemes

different architectures. For a given architecture, order of expansion p, and regulariz-
ing core function, the execution times a, b, c, d are measured. The values of n∗T and
n∗F are then computed using Eqs. (3.1) and (3.3). This procedure is repeated for
different values of p, and the coefficients cT i, i = 0 . . . 2 and cFj , j = 0 . . . 4 are de-
termined using curve fitting. For example, using an Intel Xeon E5-2620 architecture
(2.1 GHz, 8 physical cores) and singular vortices, the dependence of n∗T and n∗F on
p is shown in figure 6.3 for the case of optimizing the cost of computing the velocity
vector, and in figure 6.4 for the case of optimizing the cost of computing both the
velocity and vortex stretching vectors. The fitted expressions for n∗T and n∗F are re-
spectively n∗T,δ(p) = 3.112p2 + 13.35p + 19.11, n∗F,δ(p) = 5.897p2 + 9.468p + 19.69 and

n∗T,δ(p) = 4.802p2 + 16.74p+ 63.52, n∗F,δ(p) = 4.167p2 + 6.689p+ 13.91, where the sub-
script δ is indicates the use of a singular representation of the vorticity field.

As seen in figures 6.3 and 6.4, n∗T,δ and n∗F,δ increase as p increases. This is due
to the fact that it is more expensive to calculate cell-element and cell-cell interac-
tions for larger p. When only the velocity vector is calculated by the fast scheme, n∗F
takes larger values than n∗T , as shown Figure 6.3. Thus further cost reduction can be
achieved by reaching higher tree level and using cell-element interaction at these levels
to approximate the far-field velocity. At these levels, local expansion coefficients are
not calculated since cell-cell interactions would increase the overall computational cost.
However when both the velocity and vortex stretching vectors are evaluated by the fast
scheme, n∗F takes on smaller values than n∗T for any order of expansion p, as shown
Figure 6.4. Thus local expansion coefficients are calculated for all cells at leaf level and
the use of cell-element interaction is the more expensive choice. In this case, the adap-
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tive scheme will basically calibrate the balance between cell-cell and element-element
interactions to obtain the optimum speed.
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Figure 6.3: Optimum n∗T,δ and n∗F,δ used when calculating only the velocity vector
vesus p.

The fact that n∗F,δ becomes smaller than n∗T,δ when both the velocity and stretching
vectors are calculated can be justified as follows. Cell-cell computational cost is mainly
due to conversion and translation operations which are used to evaluate local expan-
sions coefficients at the center of each leaf cell. Once obtained, these coefficients are
used to approximate the velocity, vortex stretching, and any higher order derivative of
the velocity vector field. This is a fixed cost that must be incurred whether we want to
calculate only the velocity vector or both the velocity and vortex stretching vectors and
it is by far the most expensive component of the cell-cell evaluations. Thus calculating
the vortex stretching vector, in addition to velocity vector, would not impact cell-cell
computational load since the local expansion coefficients must be calculated either way.
Computing the vortex stretching tensor, in addition to the velocity vector, would, how-
ever, dramatically increase the element-element and cell-element computational costs.
Thus, to achieve the optimum speed, n∗F,δ must decrease in order to balance element-
element and cell-cell interactions. On the other hand, the corresponding decrease of
n∗T,δ is rather limited because both element-element and cell-element loads are increas-
ing.

The values of n∗T and n∗F also depend on the regularization function used to evaluate
the near-field velocity and vortex stretching tensor via element-element interaction. For
a given regularization core function, ζ(r), the optimal values of nT and nF are related
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Figure 6.4: Optimum n∗T,δ and n∗F,δ used when calculating both velocity and
stretching vectors vesus p.

to n∗T,δ(p) and n∗F,δ(p) as

n∗T,σ(p) =
n∗T,δ(p)

R
(6.5)

n∗F,σ(p) =
n∗F,δ(p)√

R
(6.6)

where R = aσ
aδ

, and aδ and aσ are the number of operations needed to calculate the
direct interaction between two elements for the case of singular and regularized vor-
tices respectively. Using the same architecture mentionned above, the values of R for
different core functions are listed in table 6.2

Description 4πζ(r) R

Dirac Function δ(r) 1.000
First order algebraic 3

(1+r2)
5
2

1.318

Second order algebraic 7.5

(1+r2)
7
2

1.349

Fourth order algebraic 1
2

5−4r6

(1+r6)
7
2

1.38

Second order Gaussian
√

2
πe
− r

2

2 1.724

Fourth order Gaussian
√

2
π

(
2.5− r2

2

)
e−

r2

2 1.775

Second order Gaussian 3e−r
3

1.532

Fourth order exponential 1.5
(
5− 3r3

)
e−r

3
1.659

Table 1. Value of R for different core functions.
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To investigate the performance of the adaptive scheme, we carried out several simu-
lations where both velocity and vortex stretching vectors are calculated using a fourth
order algebraic core function. A vortex ring with a unit radius and a core radius
equal to 0.1 is considered. The initial vorticity within the core of the ring, taken as
a second-order Gaussian distribution, is discretized using N singular vortex elements
where N ranges between 10 thousand and 20 million. Throughout all the simulations,
nD is set to 1. This is equivalent to a typical fast multipole with a 3× 3× 3 neighbor
list. The adaptive scheme employs the criteria listed in Table 3.1 to perform cell-cell,
cell-element, and element-element interactions.

The computational cost, measured in terms of CPU time on a single CPU core, is
plotted versus the number of elements in Figure 6.5 for nF = 40, 129, 250, and 500,
using an order of expansions p = 5 and an optimal value of n∗T = 193. Inspection of the
figure reveals that, for all considered values of the number of elements, the value of nF
that optimizes the speed of the adaptive scheme by balancing near-field and far-field
evaluations is nF = n∗F,σ(p) = 129 where p = 5, R = 1.38. For other values of nF ,
the adaptive scheme suffers from load imbalance between the near-field and far-field
evaluations. Element-element interactions dominate the cost for nF = 250 and 500,
while cell-cell interaction are dominant for the case of nF = 40, which is due to the
associate cost of computing local expansions for cells in a deep tree structure.
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Figure 6.5: Measured simulation time versus the number of elements for different
nF using an order of expansion p = 5.

Figure 6.5 also shows that as nF deviates from its optimum value, the simulation time
oscillates above that of n∗F,δ = 129. These oscillations assume a higher peak value and
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a smaller frequency as nF further departs from its optimal value. As can be seen in
the figure, the load imbalance caused a 250% increase in the CPU time for nF = 50
and N = 20 million elements.

Figure 7.12 in Appendix D shows that similar results are obtained for p = 8, where
the optimal value of nF = n∗F,σ(p) = 285, chosen by the adaptive solver, gives the best
performance.

We conclude that the optimum case has major advantages. By limiting the depth of
the tree structure and balancing near-field and far-field evaluation, the adaptive scheme
optimizes the speed of the fast multipole method for a given order of expansion. This
scheme is flexible and has auto-tuning capabilities on heterogeneous architectures, and
can run on any machine without changing anything. Moreover, the current method will
automatically choose the optimal values of the scheme parameters and save the user
from this burden. In addition, the adaptive scheme scale as O(N1.045) and eliminates
the number of elements dependence of the method.

6.3 Error Analysis of the Adaptive Aolver

For singular representation of the vorticity field, choosing the values of n∗T and n∗F
according to Eqs. (3.2) and (3.4) optimizes the speed of the adaptive solver for a given
order of expansion p. In this case, the accuracy of the fast summation is completely
determined by the order of expansion. However, the use of a regularization core func-
tion induces an additional error, which depends on the used core function, ζ(r), and
the neighborhood dimension, nD, as discussed in section 3.3.

To investigate the accuracy of the adaptive scheme, we report the L2 norm of the
truncation and regularization errors in velocity for different values of p and choices of
ζ(r), for the vortex ring considered above, where the initial vorticity distribution is dis-
cretized usingN = 1108880 elements. For each value of p, the tree division process stops
whenever the number of elements in a box become less than n∗ = min{n∗T (p), n∗F (p)}
without any constraint on the maximum allowable depth. In this case, the tree depth
obtained upon tree division is denoted by d∗m, which, for a given elements distribution,
is a function of n∗ only. Figure 6.6 shows the L2 error norm versus p for the fourth
order algebraic core function. The L2 error norm, which measures the departure of the
solution predicted by the adaptive scheme from that obtained by direct summation, is
computed using the following expression

L2(~v) =

√∑
i

||~vf (~xi)− ~vd(~xi)||2 (6.7)

where the subscripts d and f refer to the direct and fast multipole schemes respectively.
Figures 7.8 and 7.9 in Appendix D show L2 error norm plotted against p for a second
order algebraic core function and second order Gaussian core function respectively.
One can observe in Figures 6.6 and 7.8 and 7.9 that there exists a critical value of p
below which the total error is dominated by the truncation error and above which it
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is dominated by the regularization error. As can be seen in all cases, the truncation
error monotonically decreases exponentially, while the regularization error (and thus
the total error) decreases in jumps. As p increases, these jumps occur when the tree
depth, d∗m(n∗), decreases (for example from 6 to 5 as shown in the figure) in response
to an increase in n∗. In the range of p where the regularization error is dominant,
increasing p beyond a certain value p∗(d∗m(n∗)) (in Figure 6.6, p∗ =3 for d∗m(n∗)=6 and
9 for d∗m(n∗) =5) will only lead to an improvement in accuracy if also accompanied
by a drop in the tree depth, d∗m(n∗). This is because the regularization error depends
mainly on the core function and on the distance to neighbor cells, which is related to
the tree depth d∗m(n∗), which in turn assumes staircase dependence on p.
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Figure 6.6: L2 norm for the truncation and regularization error versus p using a
fourth order algebraic core function in the context of adaptive scheme.

Figure 6.7 shows the L2 norm of the truncation and regularization errors versus
tree depth, dσ, for a fixed order of expansion p = 5 using a fourth order algebraic core
function. Figures 7.10 and 7.11 in appendix D show the variation of these errors with
dσ for a second order algebraic core function and second order Gaussian core function,
respectively. It is clear that as the tree depth dσ increases, the regularization error
increases while the truncation error remains constant. The increase in the regulariza-
tion error is because increasing the tree depth dσ will decrease the distance between
neighboring cells and thus increase κσ.

Figure 6.8 shows the regularization error versus tree depth, dσ, for the three core
functions considered above and for a fixed order of expansion p = 5. It can be seen
that the regularization error resulting from the use of the fourth order algebraic core
function is always smaller than that obtained for a second order algebraic core function.
Moreover, the second order Gaussian core function is more accurate than both algebraic
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Figure 6.7: L2 norm of the truncation and regularization errors versus dσ for a
fixed order of expansion p = 5 using a fourth order algebraic core function in the
adaptive scheme.

functions for small dσ. However, as dσ increases, the second order Gaussian core
function quickly loses its accuracy to become the least accurate at tree depths larger
than 5. Thus, in the low accuracy regime, the second order Gaussian core function is
the preferred choice among the core functions considered.

We conclude that, for a regularized representation of the vorticity field, it is in-
efficient to increase the order of expansion p unless it is accompanied by a drop in
the tree depth since this will only increase the computational cost without improving
the accuracy. The proposed hybrid scheme realizes optimal speed for a given accuracy
by automatically computing optimal values of the scheme parameters as follows. The
algorithm first determines the optimal tree depth, d∗σ, beyond which the regularization
error exceeds the user defined error threshold. For this optimal level, the algorithm
then computes the optimal order of expansion, p∗, above which increasing p will only
increase the computational cost without improving the total error. As shown in the
flowchart of figure 3.4, d∗σ and p∗ are first computed by evaluating the errors on a
representative sample of vortices. Then, n∗T and n∗F are evaluated as a function of p∗,
using Eqs. (3.2) and (3.4).

Next, we present a case study to investigate the evolution of the adaptive solver key
parameters in order to achieve the optimal efficiency in term of speed and accuracy.
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6.4 Case Study: Evolution of the Optimal Val-

ues of Adaptive Solver Key Parameters

In this section, we explore the performance of the proposed error controlled hybrid
adaptive scheme in simulating, using a regularized grid-free vortex method, the collision
of two identical axisymmetric vortex rings for Reynolds number Re = 1000. Initially,
each of the two rings is centered on the x axis and is at an angle of 10 degree from the xy
plane oriented towards the z axis, as depicted in figure 6.9. The vorticity of the rings,
initially along the azimuthal direction, assumes a second-order Gaussian distribution

~ω0(r) =
Γ

2πa2
exp

−r2
2a2 ~eθ (6.8)

where r is the distance from the center, ~eθ is the unit vector along the azimuthal direc-
tion and a is the dimensionless core radius, taken to be equal to 0.1. The circulation,
Γ, around the core is set to unity. The initial vorticity distribution is represented by
159400 equally spaced elements located at the centers of the cells of a uniform radial
mesh constructed for each ring. The strength of each particle is set to the product of
the value of the vorticity at the particle position and cell volume, ~αi = ~ω0(~xi)dv. The
initial vorticity field is approximated by

~ωσ(~x) =
∑
i

~αiζσ (~x− ~xi) , (6.9)
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where a fourth order regularizing function with smoothing radius σ is used; ζσ(ρ) =
1
σ3 ζ( ρσ ), ζ(ρ) = 3

8π
5−4ρ6

(1+ρ6)
5
2

, and σ = 2h0 where h0 =
√

10ν∆t is the initial elements

spacing.

We numerically solve this advection-diffusion problem using a (completely) grid-free
vortex method that relies on operator splitting to separately handle advection and
diffusion. In the advection step, the elements are convected by the local velocity field
using a second order Runge-Kutta time integration scheme with a time step of ∆t = 0.1
and the strength vector is strained and tilted by the local rate of strain tensor. The
velocity and stretching terms are calculated using the adaptive fast multipole algorithm
with an order of expansion, p∗, and tree depth , d∗σ, calculated by the adaptive solver
to meet the accuracy condition specified by the user in terms of a maximum allowable
error, ET . For the diffusion step, we use the three-dimensional Smooth Redistribution
Method (SRM) presented in [67].

As presented in the flowchart of figure 3.4, for a given bounding error ET , the
adaptive solver first determines the minimum number of samples, N∗, required to
estimate the average velocity error for a 95% confidence level, and within 5% confidence
interval. A sample, of size N∗, is then used to calculate the optimal order of expansion
p∗ below which the Multipole error would take higher value than the total error, and
the critical tree depth d∗σ above which the regularization error would exceed the total
error. The optimal order of expansion p∗ is used to calculate the two critical numbers
n∗T and n∗F introduced in section 3.1 and used by the adaptive solver to balance the far
and near-field evaluations. This operation is repeated every 50 time steps, or whenever
the calculated error takes a value greater than the pre-defined total error E∗T = 10−3

(see Fig 3.4).

In order to assess the efficiency of the fast solver, the CPU time and the average
L2 velocity error are measured every time step, and p∗ and d∗σ are recorded. Fig
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6.10 shows, to the left, the average L2 norm of the velocity error versus time, and
to the right, the CPU times for evaluating the local expansion coefficients and direct
summation versus time. At t = 0, the average L2 norm of the velocity is equal to 8.84×
10−4 which is smaller than the E∗T . The solver automatically satisfies the error bound
condition by choosing p∗ = 4 and d∗σ = 6. As time increases, the total error decreases
since the average distance between neighboring elements increases which reduces the
regularization error. Moreover, the cpu time increases as the number of elements
increase. At t = 35, the optimal order of expansion p∗ dropped from 4 to 3, which
immediately resulted in more than 50% savings in the CPU time of the direct evaluation
(from 1067 to 475). This is accompanied by a jump in the velocity error from 3.6×10−4

to 8.86 × 10−4 which is still smaller than E∗T . For t > 35, the velocity error decreases
and the CPU time increases due the increase of the number of elements. The adaptive
solver continuously updated, and in an automated fashion, the parameters p∗, n∗F , n

∗
T

and d∗σ, to minimize the cost while meeting the accuracy condition, which resulted in
considerable savings in the computational cost.
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Figure 6.10: Variation with time of the average velocity L2 error (left) and the
CPU times for computing the local expansion coefficients and the direct sum-
mation (right) showing the automated adjustment of d∗σ and p∗ to reduce the
computational cost while meeting the error requirement (ET ≤ 10−3). The direct
summation cost includes both the velocity and the vortex stretching computa-
tions.
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6.5 Case Study: Collision of Two Identical Ax-

isymmetric Viscous Vortex Rings

In this section, we present transient simulations, over a long period of time, of the
collision of two vortex rings for different values of Reynolds number covering the range
Re = 500−2000. We chose this problem to demonstrate the performance of the method
because it has been the subject of numerous experimental and numerical studies. Kida
et. al[68] numerically investigated the interaction of two identical circular viscous vor-
tex rings using a spectral method with 64×64×64 grid points. Their study explores the
collision of two vortex rings at various collision angles and for initial values of Re up to
1153 over a period of time up to 60 seconds. They observed two reconnections, referred
to respectively as “fusion” and “fission”, the existence of which persisted over the con-
sidered ranges of viscosity and collision angle. Moreover, the collision of two vortex
rings moving side by side has been studied experimentally by Kambe and Takoa [69].
They were the first to report the occurrence of the two reconnections with the second
reconnection taking place only within a narrow range of the initial linear impulse. Fohl
and Turner[70] also experimentally studied the collision of two rings traveling along
intersecting paths in water for a Re ' 4000 . They reported the existence of a critical
approach angle above which fusion and fission were always observed. Their experiments
showed that while fusion always occurs below this critical angle, fission does not always
follow.

In this section, we present transient simulations, over a long period of time, of
the collision of two vortex rings for different values of Reynolds number covering the
range Re = 500 − 2000. The vortex method used to numerically solve this advection-
diffusion problem is completely grid-free. The operator splitting scheme employs a
second Runge-Kutta time integration scheme for advection and a novel extension to
three-dimensions of the redistribution method[12] for the diffusion step. In the ad-
vection step, the velocity and stretching terms are calculated using an adaptive fast
multipole algorithm that combines both O(N) and O(N logN) schemes with an order
of expansion p equal to 5. The code uses the expressions developed throughout this
paper and is optimized in order to reduce the calculation efforts. The elements are
convected by the local velocity field and the strength vector is strained and tilted by
the local stretching term using a second order Runge-Kutta method with a time step
of ∆t = 0.1. In the diffusion step, the 3D grid-free redistribution scheme simulates
the diffusion of each particle, over a time step, by transferring non-negative fractions
of its strength to its neighboring vortices in a manner that satisfies the zeroth, first,
and second moments of the diffusion equation. In the process, the scheme adaptively
introduces new particles in gaps introduced by large strains in the advection step. The
vorticity field is approximated as

~ωσ(~x) =
∑
i

~αiζσ(~x− ~xi) (6.10)

where a fourth order regularizing function with smoothing radius σ is used; ζσ(ρ) =
1
σ3 ζ( ρσ ), ζ(ρ) = 3

8π
5−4ρ6

(1+ρ6)
5
2

, and σ = 2.5h0 where h0 =
√

10ν∆t is the initial elements
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spacing (and the injection radius).

Initially, the two vortex rings are set up as shown in Fig. 6.9. The rings are inclined by
an angle of 10 degree towards the z axis, with their centers on the x axis. Taking the
vortex ring radius R as a characteristic length scale and the circulation around its core,
Γ, as a reference circulation, the dimensionless core radius of each ring and the distance
separating the centers of the two rings are chosen to be a = 0.1 and D = 2.8, respec-
tively. The reference time is T = R2/Γ and the reported time is made dimensionless
by dividing by T . Initially the vorticity of the ring is along the azimuthal direction and
depends on r, the distance from the core center, as a second-order Gaussian distribu-
tion of Eq. (6.11), where ~eθ is the unit vector along the azimuthal direction. The initial
vorticity distribution is represented by particles located at the cell centers of an equi-
spaced radial mesh constructed for each ring. The number of mesh points increases as
we move outwards to maintain the radial distance between neighboring points approx-
imately the same equal to h0. Each particle is assigned with a strength vector ~αi equal
to the value of the vorticity at particle position multiplied by the volume of the cell.

The results are presented in terms of iso-surfaces of vorticity norm and vorticity
lines at several representative stages of the time evolution for Re = 500. These are
shown in Figs. 6.11 - 6.12, where the levels of the iso-surfaces are 10%, 50%, and 80% of
the instantaneous maximum of the vorticity norm. For Re = 500, 1000, 1500, 2000, we
present the following time dependent diagnostics: (i) the evolution of the total kinetic
energy (Fig. 6.20), (ii) the circulation around interacting vortex tubes during various
reconnection events (Figs. 6.14, 6.15, and 6.16), (iii) the evolution of the error in the
divergence of the vorticity (Fig. 6.18), (iv) growth in the number of particles as a
function of time (Fig. 6.21), and (v) the following flow invariants (Fig. 6.17) : total
circulation, linear impulse, and angular impulse. We also show the impact of reducing
the time step on the divergence of the vorticity for the case Re = 2000 (Fig. 6.19).
It should be noted that the degrees to which the method conserves the flow invariants
and maintains the vorticity field to be divergence free are commonly used metrics to
assess the convergence of the method.

6.5.0.1 First, Second and Third Reconnection of the Re = 500 Case

Figures 6.11-6.12 show the iso-surfaces of vorticity norm and vorticity lines projected
onto the (xy) plane (as seen from z direction) for the case Re = 500. The figures show
that as the two vortex rings move along their axes due to self-induction, they undergo
rotation toward the (yz) plane due to mutual induction. In effect, the rings approach
each other and eventually collide at around t = 2. At the collision (yz) plane, viscous
diffusion causes cancellation of vortex lines carrying vorticity of opposite signs, and
at the same time the outermost vortex lines, that possess the lowest vorticity, start
to connect forming two symmetric “bridges” of high vorticity at the back of the rings
and two symmetric “threads” at the front (Fig. 6.12, t = 2), where the front and
back sides are defined as in Fig. 6.13. Vorticity cancellation at the interaction zone
is accompanied by a strong converging flow caused by vorticity away from the zone.
This flow constantly brings the innermost part of the rings closer to each other which
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Figure 6.11: Iso-surfaces of vorticity norm and a random collection of vorticity
lines at several representative stages of evolution for Re = 500 seen from z direc-
tion. The levels of the iso-surfaces are 10%, 50%, and 80% of the instantaneous
maximum of the vorticity norm

enhances the cancellation rate. In consequence, the number of reconnected vortex lines
increases with time forming a single big distorted ring (Fig. 6.11, t = 6). Annihilation
of vorticity in the interaction zone by viscous cross-diffusion continues to take place
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lines at several representative stages of evolution for Re = 500 seen from z direc-
tion. The levels of the iso-surfaces are 10%, 50%, and 80% of the instantaneous
maximum of the vorticity norm

between the “threads” and the main distorted ring until the two “threads” disappear
completely. This continues to take place until the two rings completely fuse into a single
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ring at t ∼ 20 (Fig. 6.11). This reconnection process, referred to as vortex fusion, has
been observed and described in detail by Kida et al.[68] for Re = 577 and 1153.

front

back

Figure 6.13: Iso -surfaces of vorticity norm at several representative stages of
evolution for Re = 500 seen from x and y directions. The level of the iso-surface
is 25% of the instantaneous maximum of the vorticity norm

At short times (t < 10 for the case Re = 500), the circulation is nearly constant
along vortex tubes, as seen in Fig. 6.14. In fact, during the rings fusion process, the
rate of decay of circulation

∣∣Ty+∣∣ is balanced by an equal circulation Tx− gain. The
circulations

∣∣Ty+∣∣ and Tx− are computed respectively as vorticity integrals over the xz
and yz sections shown in Fig. 6.11. This is clearly seen from Fig. 6.15 between t = 2
and t = 8 where 90% of the vortex tubes have been reconnected. These observations
are in agreement with results reported by Winckelmans and Leonard[56] for Re = 400
and also by Kida et. al[68] for Re = 577 and 1153.

After the first reconnection is completed, the distorted vortex ring keeps moving
in the negative z direction. Moreover, the self-induced velocity field causes stretching
of the vortex tubes at the “bridges” along the y direction so that the two “bridges”
rotate around the x-axis forming a plane ring that moves in the negative z direction,
as shown in Fig. 6.13. Meanwhile the vorticity distribution also causes the outermost
vortex tubes to approach each other, and the ring will have a “gourd-shaped form”[68]
at around t = 24 as seen in Fig. 6.11. These tubes will continue to approach each other
(narrowing of the “neck”) until they contact at around t = 28, triggering the second
reconnection.
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Figure 6.15: Time-development of circulation around interacting vortex tubes
during the first reconnection for different values of Re

Similar to the first reconnection, the second reconnection takes place via “bridges”,
forming at the front of the vortex ring, that connect the two tubes of opposing vorticity
direction. The second reconnection is, however, slower than the first. This is because,
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in contrast with the first reconnection, the second reconnection cannot be maintained
due to the absence of an external converging flow. This causes the second reconnection
to stop early at t = 54, where two rings, connected by two “legs”, emerge out of the
distorted ring (Fig. 6.12, t = 50, 60). At this time, only 46% of the total circulation is
contained in the connecting “bridges” (Fig. 6.14), while the remaining uncanceled 54%
are contained in the connecting “legs”. This vortex ”fission” process, in which the ring
seems to reverse its evolution by splitting back into two rings, has been experimentally
observed in [70] and numerically predicted in[68]. The reported time and speed of these
processes are different than ours due to difference in the initial conditions.

Note however that the sum of the circulation passing through the “bridges” (Tx+)
and the absolute value of that passing through the “legs” (

∣∣Ty−∣∣) is always equal to the
total circulation (which in this case is Tx−), as shown in Fig. 6.14. The circulations
Tx+ ,

∣∣Ty−∣∣, and Tx− are computed respectively as vorticity integrals over the yz, xz,
and yz sections shown in Fig. 6.12. Fig. 6.14 also shows that Tx− decreases with
time due to viscous cross diffusion. In fact, at around t = 98, the total circulation is
decreased by 25%.

The vorticity in the growing “bridges” keeps increasing until it pushes the “legs”
back to the positive z direction (Fig. 6.13). This in turn increases the “neck” curvature
and the two rings formed upon the second reconnection approach each other, triggering
the third reconnection that would take place at t ' 98 (Fig. 6.12, t = 90).

6.5.0.2 The Cases Re = 1000, 1500, and 2000

Prior to the first reconnection, the global motion of the vortex rings, seems to be inde-
pendent of the value of Re. The first reconnection starts at t ' 2 and the cancellation
of vorticity in the interaction zone is complete for all cases (see Figures 7.2 - 7.7 in
Appendix A). We note, however, that the rate of vorticity cancellation is higher for
larger values of Reynolds number, as seen in Fig. 6.15. This is because, despite the
fact that viscosity is smaller for larger Re, the opposing vortex tubes in the interaction
zone are more stretched for the larger Re case (larger vorticity), so that the net effect
is a higher vorticity cancellation rate. At later times, viscosity has a bigger impact on
the evolution of the vorticity field. This is manifested in a smaller approach velocity of
the two rings for lower Re, resulting in a delay in the second reconnection. Fig. 6.16
shows that the second reconnection for Re = 1000 starts at t ' 24, which is ∼ 4 earlier
than that of Re = 500. Moreover, the second reconnection is incomplete for higher
Re, with the remaining vortices having larger circulation. In fact, for Re = 1000, 78%
of total circulation is left uncanceled compared to 54% for Re = 500. For Re = 1500
and 2000, the portion of the reconnected vortex tube is negligible and more than 98%
of total circulation is left uncanceled. Moreover, for Re = 1000, 1500, and 2000, the
vorticity field leads to stretching of the vortex tubes in the x-direction which prevents
any further tube reconnection. This behavior is more prominent for larger Re where
the percentage of reconnected vortex tubes decreases dramatically. This is in contrast
with what we observed for Re = 500, where the vorticity distribution pushes back the
“legs” to the positive z direction, triggering a third reconnection.

These results are also in agreement with the experiments presented by Fohl and
turner[70], who reported the existence of a critical angle, equal to 16◦, below which
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the second reconnection does not always occur. For an angle of 10◦, our simulations
show that the second reconnection takes place for Re = 500 and 1000. However, for
Re = 1500 and 2000, it does not. Further studies are needed to identify the parameters
which completely define the occurrence of the second reconnection.
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Figure 6.16: Time-development of circulation around interacting vortex tubes
during the second reconnection for different values of Reynolds number

6.5.0.3 Global Flow Invariants, Vorticity Divergence, and Total Ki-
netic Energy

A common measure of the accuracy of vortex methods is how well they conserve the
various invariants. The x, y and z components of the total vorticity are plotted against
time in the first row of Fig. 6.17 for the different values of Re. Variation with time of the
x and y components of the linear impulse, and the relative % error in its z component
are plotted in the second row of Fig. 6.17. In addition, the x, y and z components of
the angular impulse are plotted vs time in the third row of the same figure. The figures
show that these quantities are conserved to within ∼ 98%, where the larger errors
are commonly incurred for larger Re. This is attributed to the stronger inertia of the
larger Re cases which results in larger strain rates that cause the particles to move
away from each other which degrades the spatial resolution. Impact of inertia on the
accuracy is also assessed by quantifying the departure of the divergence of the vorticity
vector from zero. Fig. 6.18 shows that the normalized L2 norm of the divergence of
the vorticity decreases in time for all Reynolds numbers. As can be seen in the figure,
departure from the zero vorticity divergence is larger for the case with larger Re, with
the peak taking place during the fusion of the two vortex rings, where vortex stretching
is the characterizing mechanism. For the initial condition, the divergence was made
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small enough by resolving the initial vorticity field using a sufficiently large number of
elements. As time increases, the vorticity divergence increases between t = 0 and t = 2
due to the dominance of inertia effects at early stages. In fact, although we didn’t use
any particular scheme to enforce the divergence free condition, a nearly divergence free
vorticity field was maintained by the method. As time increases, although the vortex
stretching tend to amplify the vorticity divergence, the diffusion process, modeled by
the redistribution method, played a stabilizing role which damped the growth of the
vorticity divergence throughout all the simulation and for all studied values of Reynolds
number. In fact, the diffusion scheme will always contribute to filling the gaps by
injecting new particles. Filling the gaps, as required by the redistribution scheme to
model diffusion, acts against the large strain rates that tend to move elements farther
apart. This effectively improves the overlap between neighboring elements and works
towards maintaining the vorticity field to be divergence free. However, for large values
of Re, and for moderate values of the time step (and default elements spacing), the
strain rates are so large that the redistribution scheme will not be able, on its own, to fill
the gaps properly and ensure overlap. Fig. 6.17 shows that this problem starts showing
up at Re = 2000. In this case, maintaining the divergence-free vorticity field remains
a challenge and the only existing cost-effective way of dealing with this challenge is
re-projection. Another way, which is computationally expensive, is to reduce the time
step. Fig. 6.19 shows that increasing the resolution of the method by reducing the
time step led to a significant drop in the vorticity divergence during the fusion event.
In fact, since the injection length is proportional to

√
∆t and the advection length is

proportional to ∆t, decreasing the time step will eventually decrease the ratio of the
advection length to injection length and will result also in an increase of the number
of elements injected per unit time. These together will act to maintain the spatial
resolution and dampen the variation of L2 norm of ∇.~ω. Decreasing the time step is,
however, expected to help in maintaining a divergence free vorticity field only up to
some point. For high Reynolds number flows, where the intense vortex stretching results
in complex vorticity fields, the elements injection in the redistribution scheme will be
unable to maintain the desired spatial resolution. In this case, the core overlapping
condition is no longer satisfied and the numerical method rapidly loses its accuracy.

Due to viscous dissipation, the total kinetic energy decreases in time, as shown in
Fig. 6.20. The figure also shows that the rate of decay is larger for smaller Reynolds
number because of the higher viscosity.

6.5.0.4 Computational Cost

Figure 6.21 shows that the growth in the number of elements with time obeys a nearly
linear trend for all the cases studied. This increase is due to the fact that the re-
distribution scheme, used to simulate diffusion, injects new elements as neighbors of
existing particles at the edge of the domain and/or in gaps created by large strain-
ing. The injection mechanism is carried out in a manner that promotes uniformity in
the elements locations while conserving the various moments of the vorticity diffusion
equation. Figure 6.21 also shows that the number of elements increases at a higher
rate for larger values of Re. This is because stronger convection creates more gaps
which must be filled by the redistribution scheme. Similar trends were observed by
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Shankar [12] for the two dimensional flow over an impulsively started cylinder. We
finally point out that optimized injection and neighbor search algorithm, in addition
to parallel implementation, allows the cost of the diffusion step in terms of CPU time
to be a fraction of that of the advection step.

6.6 Comparative Study of the PSE Diffusion

Model and the 3D Extension of the Smoothed

Redistribution Diffusion Model

In this section, we present a comparative study of PSE and the 3D extension of the
smoothed redistribution (SRM) model in simulating the collision of two vortex rings
for Reynolds number Re = 500. Initially, each of the two identical axisymmetric vortex
rings is centered on the x axis and is at an angle of 10 degree from the xy plane oriented
towards the z axis, as depicted in figure 6.9. The vorticity of the rings, initially along
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the azimuthal direction, assumes a second-order Gaussian distribution,

~ω0(r) =
Γ

2πa2
exp

−r2
2a2 ~eθ (6.11)
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Figure 6.21: Number of elements vs time for different values of Reynolds number.

where r is the distance from the center, ~eθ is the unit vector along the azimuthal direc-
tion and a is the dimensionless core radius, taken to be equal to 0.1. The circulation,
Γ, around the core of the ring is set to unity. The initial vorticity distribution is repre-
sented by 48144 equally spaced elements located at the centers of the cells of a uniform
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radial mesh constructed for each ring. The strength of each particle is set to the prod-
uct of the value of the vorticity at the particle position and cell volume, ~αi = ~ω0(~xi)dv.
The initial vorticity field is approximated by

~ωσ(~x) =
∑
i

~αiζσ (~x− ~xi) , (6.12)

where a fourth order regularizing function with smoothing radius σ is used; ζσ(ρ) =
1
σ3 ζ( ρσ ), ζ(ρ) = 3

8π
5−4ρ6

(1+ρ6)
5
2

, and σ = 2.5h0 where h0 =
√

10ν∆t is the initial elements

spacing.

For the PSE scheme case, M ′4 remeshing scheme with h = h0 = 0.05 is performed
every 10 time step (with the smallest particle strength kept ‖~ω‖ = 10−6). Moreover,
the cutoff distance for PSE diffusion is taken equal to 3.2σ. For the SRM scheme, we
didn’t use any remeshing scheme and we didn’t merge nearby elements no matter how
close they are. Moreover, all elements obtained upon diffusion are kept no matter how
small they are. However, only elements with strength less than 10−6 are diffused by
the SRM scheme.

The results show that similar results are obtained by the two diffusion models. In fact,
both models were able to went through the “fusion” and “fission” process, and both
schemes were able to identify a third vortex reconnection that took place at t ' 98.
Moreover, both schemes were able to maintain a nearly divergence free vorticity field
throughout the simulation. In addition, all linear invariants are nearly conserved in
both simulations.
Fig 6.22 shows the number of elements versus time for both schemes. It is clear that,
for the SRM case, the number of elements increased dramatically and reaches a value
of 5.2 million at t = 100. This is due to the fact the SRM scheme will always inject new
element to properly model the diffusion and we didn’t apply any procedure to merge
nearby elements or to redistribute elements with small strengths. On the other hand,
the increase of the number of elements in the PSE scheme is very modest compared
to that of the SRM scheme. In fact, the number of elements at t = 100 is around 1
million which is five time smaller than the number of elements obtained by the SRM
scheme. This will considerably increase the computational cost of the advection step
for the SRM case.
The computational cost of the advection and diffusion steps, measured in terms of CPU
time on a single CPU core, is plotted versus time in Fig 6.23 for both diffusion schemes.
The results show that, although the number of diffused elements in the PSE case is
much smaller than that of the number of elements in the SRM case, the CPU time of
the PSE diffusion step is larger than the CPU time of the PSE diffusion step. Moreover,
Fig 6.23 shows that the CPU time of the diffusion step for the PSE case is even larger
than the CPU time of the advection step in the PSE case. In fact, the evaluation of
the diffusion term in the PSE model requires O(N2) computational operation where N
is the number of elements. Although we used a small cutoff diffusion distance of 3.2σ,
the CPU time of the diffusion step is approximatively twice that of the advection step
for the PSE case. However, the overall CPU time (advection & diffision) of the SRM
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Figure 6.22: Number of elements vs time.

diffusion model is much larger than that of the PSE. This is related to the additional
computational cost of advecting a very large number of elements in the SRM case.
Fig 6.24 shows the L2 norm of the vorticity divergence versus time. As can be seen
in this figure, although we didn’t use any particular scheme to enforce the divergence
free condition, a nearly divergence free vorticity field was maintained by both diffusion
methods. Both schemes played a stabilizing role which damped the growth of the
vorticity divergence throughout the simulation. However, during the fusion of the two
vortex rings, where vortex stretching is the characterizing mechanism, the divergence
of the vorticity in the PSE scheme case takes on higher value than that observed in the
SRM case.
The relative % error in the z components of the linear impulse is plotted against time
for the two diffusion models is shown in Fig 6.25. The figure shows that the linear
impulse is better conserved in the SRM scheme. In fact, the relative % error is around
4.6% at t = 100 for the PSE case, while it is only 0.6% for the SRM case.
Fig. 6.26 shows that, throughout the simulation, the rate of vorticity cancelation and
the decrease in total circulation is approximately the same for both diffusion scheme.
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Figure 6.23: CPU time for the advection and diffusion step.

Figure 6.24: L2 norm of the vorticity divergence vs time.
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Figure 6.25: % relative error in the z−component of the total linear impulse vs
time.

Figure 6.26: Time-development of circulation around interacting vortex tubes.
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Chapter 7

Conclusion and Future Work

We presented simple expressions for approximating the velocity and vortex stretch-
ing vectors induced by a far-field collection of point vortices and we proposed a set
of recurrence relations to properly evaluate these expressions over the entire range
of polar angle. The expressions are used by an adaptive error-controlled hybrid fast
solver that minimizes, for a given accuracy, the cost of approximating the velocity and
vortex stretching vectors using a regularized representation of the vorticity field. The
hybrid fast solver uses both multipole and local spherical harmonic based expansions
to approximate the vector fields. The proposed solver extends Greengard [15] fast
multipole algorithm to continuously optimize the speed of the fast multipole method
to adapt to the evolving flow-field, while meeting a given accuracy constraint. The
automated scheme employs, in addition to the order of expansion p∗, the parameters
n∗T (p∗) and n∗F (p∗) to control the depth of the tree structure and to balance the far-
field and near-field evaluations by properly choosing, based on well-defined criteria, the
type of interaction (cell-cell, cell-element, and element-element) to perform in order to
compute the contribution of non-neighboring cells. The scheme also uses a criterion,
based on the critical tree depth d∗σ, to limit the tree depth to keep the regularization
error below the user defined error threshold. Optimal values of the parameters p∗, n∗T ,
n∗F , and d∗σ are periodically evaluated by the automated algorithm to account for the
evolving elements distribution. For a given implementation on a given architecture and
a given choice of the regularization core function, the dependence of n∗T and n∗F on p
is established in a one-time only preprocessing step.
To investigate the accuracy of the introduced expressions, we carried out several sim-
ulations where the convergence of the velocity and the vortex stretching vectors as
a function of the expansion order p is inspected. These simulations showed that the
solutions converge to the direct solution with the expansion order as Cp, where C
ranges between 0.41 and 0.48. To assess the performance of the adaptive scheme, we
carried out several simulations where the CPU time for evaluating both velocity and
vortex stretching vectors is reported for different values of nF and different values of
the number of elements. These simulations showed that for values of nF other than
n∗F,σ(p∗), the adaptive scheme suffers from load imbalance between the near-field and
far-field evaluations, resulting in a simulation time that oscillates above that of n∗F,σ,
where n∗F,σ = 129 for p∗ = 5. Element-element interactions dominate the cost for
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nF > n∗F,σ(p), while cell-cell interaction are dominant for the case of nF < n∗F,σ(p),
which is due to the associated cost of computing local expansions for cells in a deep
tree structure. The simulations also showed that for an optimum value of nF , the
adaptive scheme scale as O(N1.045), hence assuming an almost linear dependence on
the number of elements. Moreover, the simulations showed that the truncation error
exponentially decreases as p increases, while the regularization error (and thus the to-
tal error) decreases in jumps. These jumps occur when the tree depth decreases in
response to an increase in n∗. We concluded that for a regularized representation of
the vorticity field, it is inefficient to increase the order of expansion p unless it is ac-
companied by a drop in the tree depth since this will only increase the computational
cost without improving the accuracy. We showcased the adaptive error-controlled hy-
brid fast solver by simulating the collision of two vortex rings at Reynolds number
Re = 1000 while constraining the maximum error on the average L2 velocity error to
a pre-defined total error of ET = 10−3. The results showed that the proposed scheme
realizes optimal speed for a given accuracy by automatically computing the optimal
values of the scheme parameters to adapt to the evolving flow-field.
The adaptive scheme, along with the derived expressions, are employed to simulate
the collision of two vortex rings over a long period of time. In these simulations, an
extension to three dimensions of the smoothed redistribution method is used to model
the diffusion. The simulations were carried out for the following values of Reynolds
number: 500, 1000, 1500, 2000. The performance of the method is then assessed by
comparing the evolution of the rings with previous work. The simulations showed that
the first reconnection, in which the two rings fuse into a single distorted ring, persists
for all considered values of Re, which is in agreement with reported experiments. The
rings undergo a second reconnection which is slower than the first reconnection and
where the cancellation of vorticity is incomplete. The remnant vortices have higher
circulation for larger Re and the second reconnection is nearly not existing for Re =
1500 and 2000. These findings are also in agreement with previous experiments. The
simulations uncovered a third reconnection for the case Re = 500, which is not reported
elsewhere. The convergence of the method is also inspected in term of conserving the
following flow invariants: total circulation and linear and angular impulse. All the
invariants were nearly conserved (98%). Despite the fact that the method does not
implement an algorithm for nullifying the non-divergent component of the computed
vorticity vector, the vorticity divergence free condition was maintained for the low
Reynolds number cases. This is because the redistribution scheme injects elements in
gaps, created by the large strain rates, in a manner that maintains the overlap condition
between neighboring elements. For large values of Re, and for moderate values of the
time step, the redistribution scheme was not able to fill the gaps properly and ensure
overlap which caused a noticeable non-zero divergence in the vorticity field. In this
case, reducing the time step decreases the ratio of the advection to injection lengths.
This effectively increases the number of injected elements per unit time which acts to
maintain the spatial resolution and dampen the variation of L2 norm of ∇.~ω, as was
observed during the first reconnection the Re = 2000 case.
We presented a comparative study of PSE and the 3D extension of the smoothed re-
distribution diffusion model (SRM) in simulating the collision of two vortex rings for

69



Reynolds number Re = 500. The simulations showed that similar results are obtained
by the two diffusion models. In fact, both models were able to went through the
“fusion” and “fission” process, and both schemes were able to identify a third vortex
reconnection that took place at t ' 98. Moreover, both schemes manage to maintain
a nearly divergence free vorticity field throughout the simulation. Although the lin-
ear invariants are better conserved in the SRM diffusion model, the overall CPU time
(advection & diffision) for the SRM case is much larger than that of the PSE. This
is related to the additional computational cost of advecting a very large number of
elements in the SRM case since the number of elements introduced by the SRM model
is about five time that introduced by the PSE model. The reason why we have ob-
tained such a large number of elements by the SRM model is that we didn’t apply any
procedure to merge nearby elements or to redistribute elements with small strengths.
The simulations also showed that the CPU time of the diffusion step of the PSE case
is much larger than that of the PSE case, and it is even larger the CPU time of the
advection step in the PSE case. In fact, the evaluation of the diffusion term in the PSE
model requires O(N2) computational operation where N is the number of elements.
Although we used a small cutoff diffusion distance of 3.2σ, the CPU time of the diffu-
sion step is approximatively twice that of the advection step for the PSE case. Future
work should implement and apply merging and redistribution procedure along with the
SRM model and compare the two diffusion models for higher Reynolds number.
We also presented few relaxation schemes introduced to force the particle vorticity
field to remain nearly divergence-free at all times. Upon investigating the conservation
properties of the relaxation scheme introduced by Winckelmans, we showed that every
time we apply this method to reconstruct a divergence free vorticity field, the total
circulation and linear impulse are multiplied by a factor of 2

3 . Hence, this scheme pro-
duces non-physical results since it acts as an external net force that dissipates energy
out of the system and slow down fluid particles. Future work concerns deeper analy-
sis of some particular mechanisms, to maintain the divergence free condition without
affecting the conserved quantities.
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7.1 Appendix A: Error bounds for the potential

and velocity vectors

7.1.1 Error Bounds for the Potential Vector Induced by
a Singular Source Element

Consider a singular source element j of strength ~αj located at Q = (ρj , θj , ϕj). The
potential vector induced by j at a target element located at P = (r, θ, ϕ) has the
following expression:

~ψj(P ) =
~αj

4πdj
, (7.1)

where dj =‖ ~QP ‖ is the distance between source and target elements, as depicted in
Figure 7.1. Let γ be the angle between the vectors P and Q. From the law of cosines,
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Figure 7.1: Schematic showing source and target.

we have:

d2
j = r2 + ρ2

j − 2rρjcosγ (7.2)

From this relation, we may write

~ψj(P ) =
~αj

4πr

1√
1− 2

(ρj
r

)
cosγ +

(ρj
r

)2 (7.3)

Let µj =
ρj
r . For ρj < r, that is µj < 1, if we expand ~ψ(P ) in term of Legendre

Polynomial we obtain:

~ψj(P ) =
~αj

4πr

∞∑
n=0

µnj Pn(cosγ) (7.4)
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The error resulting from truncating ~ψj(P ) at some order p is:

E~ψj
=

∣∣∣∣∣
∣∣∣∣∣ ~αj4πdj

− ~αj
4πr

p∑
n=0

µnj Pn(cosγ)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣ ~αj4πr

∞∑
n=p+1

µnj Pn(cosγ)

∣∣∣∣∣∣
∣∣∣∣∣∣ (7.5)

Knowing that Pn(cosγ) ≤ 1, and using the triangle inequality, we obtain an error bound
for the multipole expansion

E~ψj
≤

∣∣∣∣∣∣
∣∣∣∣∣∣ ~αj4πr

∞∑
n=p+1

µnj
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∣∣∣∣∣∣ ≤ ‖ ~αj ‖4πr

µp+1
j

1− µj
(7.6)

E~ψj
≤ 1

4π

‖ ~αj ‖
(r − ρj)

(ρj
r

)p+1
(7.7)

Similary, when r < ρj , we define µj = r
ρj

. The potential vector and the error bound

for the local expansion would have the following expressions:

~ψj(P ) =
~αj

4πdj
=

~αj
4πρj

∞∑
n=0

µnj Pn(cosγ) (7.8)

E~ψj
≤ 1

4π

‖ ~αj ‖
(ρj − r)

(
r

ρj

)p+1

(7.9)

7.1.2 Error Bounds for the Potential Vector Induced by
a Cluster of Source Elements

Suppose that s vortices with strength (~αj , j = 1 . . . s) are located at the points ~Qj =
(ρj , θj , ϕj) inside the sphere DQ of radius a with center at Q = (0, 0, 0), then at any
~P = (r, θ, ϕ) with r > a, the potential vector field is given by:

~ψ =
∑
j

~ψj =
∑
j

~αj
4πdj

=
∑
j

~αj
4πr

∞∑
n=0

µnj Pn(cosγ) (7.10)

The error resulting from truncating ~ψ(P ) at some order p is:

E~ψ
=

∣∣∣∣∣∣
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∑
j

(
~αj

4πdj
− ~αj

4πr
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µnj Pn(cosγ)
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Using the triangle inequality, and since µj ≤ a
r , the multipole expansion error will be

bounded by:

E~ψ
≤ 1

4π

ΓDQ
(r − a)

(a
r

)p+1
(7.12)

where ΓDQ =
∑

j ‖ ~αj ‖
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Now suppose that s vortices with strength (~αj , j = 1 . . . s) are located inside a cubic
box Jl at level l with center at Q = (0, 0, 0). The radius of the smallest sphere which

encloses box Jl is aJl =
√

3
2 WJl where WJl is the box width. Following the adaptive

solver Scheme described in section 3.1, the distance between the center of box Jl and any
point P = (r, θ, ϕ) located outside the neighborhood of box Jl is rJl ≥ (nD + 0.5)WJl .
For any p ≥ 1, the multipole expansion error will be bounded by:

~E
M,~ψ
≤ 1

4π

ΓJl
WJl

1

nD −
√

3−1
2

( √
3

2nD + 1

)p+1

(7.13)

Noting that WJl = W0/2
l, we get

E
M,~ψ
≤ 1

4π

ΓJl
W0

2l

nD −
√

3−1
2

( √
3

2nD + 1

)p+1

(7.14)

where W0 is the width of the root box, ΓJl =
∑

j ‖ ~αj ‖ and the summation is done
over all the source elements within box Jl.

Similary, suppose that s vortices with strength (~αi, i = 1 . . . s) are located inside
the sphere DQ of radius a with center at Q = (ρ, α, β), and that ρ = (c + 1)a with
c > 1, then for any target P = (r, θ, φ) inside the sphere D0 of radius a centred at the
Origin, the potential vector is given by

~ψ =
∑
j

~ψj =
∑
j

~αj
4πdj

=
∑
j

~αj
4πρj

∞∑
n=0

µnj Pn(cosγ) (7.15)

The error resulting from truncating ~ψ(P ) at some order p is:

E~ψ
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

(
~αj

4πdj
− ~αj

4πρj

p∑
n=0

µnj Pn(cosγ)

)∣∣∣∣∣∣
∣∣∣∣∣∣ (7.16)

Since µj = r
ρj
≤ a

ρ−a = 1
c , using the triangle inequality, the local expansion error will

be bounded by:

E~ψ
≤ 1

4π

ΓDQ
(ca− a)

(
1

c

)p+1

(7.17)

where ΓDQ =
∑

j ‖ ~αj ‖.

Now suppose that s vortices with strength (~αj , j = 1 . . . s) are located inside a cubic
box Jl at level l with center at Q = (ρ, α, β). The radius of the smallest sphere which

encloses box Jl is aJl =
√

3
2 WJl where WJl is the box width. Following the adaptive

solver Scheme described in section 3.1, an upper bound for c is given by

c ≥ 2
√

3

3
(nD + 1)− 1, (7.18)

79



and for any p ≥ 1, the local expansion error that results upon approximating the
potential vector at any point P within a box Il centered at the origin is bounded by:

E
L,~ψ
≤ 1

4π

ΓJl
W0

2l

nD + 1−
√

3
2

(
1

2
√

3
3 (nD + 1)− 1

)p+1

(7.19)

7.1.3 Error Bounds for the Velocity Vector Induced by a
Singular Source Element

Once again, let us consider a singular source element j of strength ~αj located at Q =
(ρj , θj , ϕj). The velocity at a target element P = (r, θ, ϕ) is calculated as the curl of

the potential vector ~ψj

~uj(P ) = ∇× ~ψj(P ) = ∇×
(
~αj

4πr

∞∑
n=0

µnj Pn(cosγ)

)
=

∞∑
n=0

ρnj
4π
∇
(
Pn(cosγ)

rn+1

)
×~αj (7.20)

The error resulting from truncating ~uj(P ) at some order p is:

E~uj =

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

n=p+1

ρnj
4π
∇
(
Pn(cosγ)

rn+1

)
× ~αj

∣∣∣∣∣∣
∣∣∣∣∣∣ (7.21)

Since ‖ ~u × ~v ‖≤‖ ~u ‖‖ ~v ‖ for any two vectors ~u and ~v, using the triangle inequality,
the truncating error will be bounded by:

E~uj ≤
‖ ~αj ‖

4π

∞∑
n=p+1

ρnj

∣∣∣∣∣∣∣∣∇(Pn(cosγ)

rn+1

)∣∣∣∣∣∣∣∣ (7.22)

Since the norm of a vector does not vary when we change the reference frame, we will

evaluate the expression of
∣∣∣∣∣∣∇(Pn(cosγ)

rn+1

)∣∣∣∣∣∣ in a new frame obtained by rotating the old

frame such that the source element Q will be locatated on the new zz′ axe, that is we
have cosγ = cosθ

∇
(
Pn(cosθ)

rn+1

)
= − 1

rn+2

(
(n+ 1)Pn(cosθ), sin(θ)P ′n(cosθ), 0

)T
(7.23)

∣∣∣∣∣∣∣∣∇(Pn(cosθ)

rn+1

)∣∣∣∣∣∣∣∣ =
1

rn+2

√
(n+ 1)2P 2

n(cosθ) + sin2(θ)P ′2n(cosθ) (7.24)

Knowing that

(n+ 1)2P 2
n(x) + (1− x2)P ′

2
n(x) ≤ (n+ 1)2 (7.25)

we obtain : ∣∣∣∣∣∣∣∣∇(Pn(cosθ)

rn+1

)∣∣∣∣∣∣∣∣ ≤ n+ 1

rn + 2
(7.26)
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Replacing in equation (7.22), the multipole expansion error of the velocity vector is
bounded by:

E~uj ≤
‖ ~αj ‖
4πr2

∞∑
n=p+1

(n+ 1)µnj (7.27)

E~uj ≤
‖ ~αj ‖
4πr2

[
µp+1
j

1− µj
+ µ

d

dµj

(
µp+1
j

1− µj

)]
(7.28)

E~uj ≤
‖ ~αj ‖
4πr2

µp+1
j

(1− µj)2
[p+ 2− µj (p+ 1)] (7.29)

E~uj ≤
1

4π

‖ ~αi ‖
(r − ρj)2

(ρj
r

)p+1 [
p+ 2− ρj

r
(p+ 1)

]
(7.30)

Similary, when r < ρj , µj = r
ρj

, the velocity vector induced by j at a target P = (r, θ, φ)

is calculated as the curl of the potential vector and has the following expression:

~uj(P ) = ∇× ~ψj(P ) = ∇×
(

~αj
4πρj

∞∑
n=0

µnj Pn(cosγ)

)
=
∞∑
n=0

1

4πρnj
∇ (rnPn(cosγ))× ~αj

(7.31)
The error resulting from truncating ~uj(P ) at some order p is:

E~uj =

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

n=p+1

1

4πρnj
∇ (rnPn(cosγ))× ~αj

∣∣∣∣∣∣
∣∣∣∣∣∣ (7.32)

E~uj ≤
‖ ~αj ‖

4π

∞∑
n=p+1

1

ρnj
||∇ (rnPn(cosγ))|| (7.33)

Once again, the norm of a vector does not vary when we change the reference frame.
Calculating the norm in the new reference frame decribed above, we obtain:

∇ (rnPn(cosγ)) = rn−1(nPn(cosθ),−sinθP ′n(cosθ), 0)T (7.34)

||rnPn(cosγ)|| = rn−1
√
n2P 2

n(cosθ) + sin2θP ′2n(cosθ) (7.35)

Knowing that

n2P 2
n(x) + (1− x2)P ′

2
n(x) ≤ n2 (7.36)

we obtain :

||rnPn(cosγ)|| = nrn−1 (7.37)

Replacing in equation (7.33), the local expansion error of the velocity vector is bounded
by:

E~uj ≤
‖ ~αj ‖
4πρj

∞∑
n=p+1

nµnj (7.38)
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E~uj ≤
‖ ~αj ‖
4πρj

µ
d

dµj

(
µp+1
j

1− µj

)
(7.39)

E~uj ≤
‖ ~αj ‖
4πρ2

j

µp+1
j

(1− µj)2
[p+ 2− µjp] (7.40)

E~uj ≤
1

4π

‖ ~αi ‖
(ρj − r)2

(
r

ρj

)p+1 [
p+ 2− r

ρj
p

]
(7.41)

7.1.4 Error Bounds for the Velocity Vector Induced by a
Cluster of Source Elements

Suppose that s vortices with strength (~αj , j = 1 . . . s) are located at the points ~Qj =
(ρj , θj , ϕj) inside the sphere DQ of radius a with center at Q = (0, 0, 0), then at any
~P = (r, θ, ϕ) with r > a, the velocity vector field is given by:

~u =
∑
j

~uj =
∑
j

∞∑
n=0

ρnj
4π
∇
(
Pn(cosγ)

rn+1

)
× ~αj (7.42)

Using the triangle inequality, and since µj ≤ a
r , the multipole expansion error will be

bounded by:

E~u ≤
∑
i

E~uj ≤
1

4π

ΓDQ
(r − a)2

(a
r

)p+1 [
p+ 2− a

r
(p+ 1)

]
(7.43)

where ΓDQ =
∑

j ‖ ~αj ‖.

Now suppose that s vortices with strength (~αj , j = 1 . . . s) are located inside a cubic
box Jl at level l with center at Q = (0, 0, 0). For any p ≥ 1, the multipole expansion
error that results upon approximating the velocity vector at any point P outside the
neighbours of Jl is bounded by:

EM,~u ≤
1

4π

ΓJl
W 2

0

4l(
nD −

√
3−1
2

)2

( √
3

2nD + 1

)p+1 [
p+ 2−

√
3

2nD + 1
(p+ 1)

]
(7.44)

Similary, suppose that s vortices having circulation (~αi, i = 1 . . . s) are located
inside the sphere DQ of radius a with center at Q = (ρ, α, β), and that ρ = (c + 1)a
with c > 1, then for any target P = (r, θ, φ) inside the sphere D0 of radius a centred
at the Origin, the velocity vector is given by

~u =
∑
j

~uj =
∑
j

∞∑
n=0

1

4πρnj
∇ (rnPn(cosγ))× ~αj (7.45)
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Since µj = r
ρj
≤ a

ρ−a = 1
c , using the triangle inequality, the local expansion error will

be bounded by:

E~u ≤
∑

E~uj ≤
1

4π

ΓDQ
(ca− c)2

(
1

c

)p+1 [
p+ 2− 1

c
p

]
(7.46)

where ΓDQ =
∑

j ‖ ~αj ‖.

Now suppose that s vortices with strength (~αj , j = 1 . . . s) are located inside a cubic
box Jl at level l with center at Q = (ρ, α, β). For any p ≥ 1, the local expansion error
that results upon approximating the velocity vector at any point P within a box Il
centered at the origin is bounded by:

EL,~u ≤
1

4π

ΓJl
W 2

0

4l(
nD + 1−

√
3
)2
(

1
2
√

3
3 (nD + 1)− 1

)p+1 [
p+ 2−

(
1

2
√

3
3 (nD + 1)− 1

)
p

]
(7.47)

7.1.5 Regularization Error Bounds for the Potential Vec-
tor

In the case of regularized vortex method, an additional error E
σ,~ψ

aroses since Gσ

deviates from 1
4πr . Let us consider s vortices with strength (~αj , j = 1 . . . s) located

inside a cubic box Jl. Introducing the kernel βσ(r) = 1
σβ
(
r
σ

)
, and β(r) = |G(r)− 1

4πr |
we obtain:

E
σ,~ψ

= ‖
∑
j∈Jl

~αj

(
Gσ(rj)−

1

4πrj

)
‖

≤
∑
j∈Jl

‖~αj‖|Gσ(rj)−
1

4πrj
|

≤ |Gσ(rm)− 1

4πrm
|
∑
j∈Jl

‖~αj‖

≤ ΓJlβσ(rm) (7.48)

where ΓJl =
∑

j‖~αj‖, rj is the distance between source element j and P , rm is the
distance that maximizes the kernel βσ(r). r∗ depends only on the choice of the core
function and for most cases we have rm = (nD + 0.5)Wmin = (nD + 0.5)W0

2l
.

7.1.6 Regularization Error Bounds for the Velocity Vec-
tor

The regularizing error for the velocity arose since qσ(r) deviates from 1
4π . Let us

consider s vortices with strength (~αj , j = 1 . . . s) located inside a cubic box Jl. For any
target element i we have:
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Eσ,~u = ‖
∑
j∈Jl

1

4πr3
j

(~xi − ~xj) ∧ ~αj −
qσ(rj)

r3
j

(~xi − ~xj) ∧ ~αj‖

≤
∑
j∈Jl

‖ 1

4πr3
j

(~xi − ~xj) ∧ ~αj −
qσ(rj)

r3
j

(~xi − ~xj) ∧ ~αj‖

≤
∑
j∈Jl

1

4πr3
j

|1− 4πqσ(rj)| ‖ (~xi − ~xj) ∧ ~αj ‖

≤
∑
j∈Jl

1

4πr2
j

|1− 4πqσ(rj)| ‖ ~αj ‖

≤ ΓJl
4πrm2

|1− 4πq(
rm
σ

)|

≤ ΓJlκσ(rm) (7.49)

where ΓJl =
∑

j‖~αj‖, κ(r) = 1
4πr2
|1 − 4πq(r)| and κσ(r) = 1

σ2κ( rσ ), rj is the distance
between source element and target elements, rm is the distance that maximizes the
kernel κσ(r).

7.2 Appendix B: Expressions of the Total Cir-

culation, Linear and Angular Impulse, for a

Regularized Vortex Method with Radially

Symmetric Cutoff Function

~ωσ =
∑
p

~αpζσ (~x− ~xp) (7.50)

~Γ =

∫
~ωσdv =

∫ ∑
p

~αpζσ (~x− ~xp) dv =
∑
p

~αp

∫
ζσ (~x− ~xp) dv =

∑
p

~αp (7.51)

~I =

∫
~x× ~ωσdv =

∫
~x×

∑
p

~αpζσ (~x− ~xp) dv =
∑
p

∫
~x× ~αpζσ (~x− ~xp) dv (7.52)

~I =
∑
p

∫
~xp × ~αpζσ (~x− ~xp) dv +

∑
p

∫
(~x− ~xp)× ~αpζσ (~x− ~xp) dv (7.53)

~I =
∑
p

~xp × ~αp
∫
ζσ (~x− ~xp) dv −

∑
p

~αp ×
∫

(~x− ~xp) ζσ (~x− ~xp) dv (7.54)

~I =
∑
p

~xp × ~αp (7.55)
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~A =

∫
~x×(~x×~ωσ)dv =

∫
~x×
(
~x×

∑
p

~αpζσ (~x− ~xp)
)
dv =

∑
p

∫
~x×(~x× ~αpζσ (~x− ~xp)) dv

(7.56)

~A =
∑
p

∫
(~x− ~xp + ~xp)× ((~x− ~xp + ~xp)× ~αpζσ (~x− ~xp)) dv (7.57)

~A =
∑
p

∫
~xp × (~xp × ~αpζσ (~x− ~xp)) dv +

∫
~xp × ((~x− ~xp)× ~αpζσ (~x− ~xp)) dv

+

∫
(~x− ~xp)× (~xp × ~αpζσ (~x− ~xp)) dv +

∫
(~x− ~xp)× ((~x− ~xp)× ~αpζσ (~x− ~xp)) dv

~A =
∑
p

~xp × (~xp × ~αp)
∫
ζσ (~x− ~xp) dv + ~xp ×

((∫
(~x− ~xp) ζσ (~x− ~xp) dv

)
× ~αp

)
+

(∫
(~x− ~xp) ζσ (~x− ~xp) dv

)
× (~xp × ~αp) +

∫
(~x− ~xp)× ((~x− ~xp)× ~αpζσ (~x− ~xp)) dv

~A =
∑
p

~xp × (~xp × ~αp) +

∫
(~x− ~xp)× ((~x− ~xp)× ~αpζσ (~x− ~xp)) dv (7.58)

~A =
∑
p

~xp×(~xp × ~αp)+
∫

[(~x− ~xp) .~αpζσ (~x− ~xp)] (~x− ~xp) dv−
∫
||~x− ~xp| |2~αpζσ (~x− ~xp) dv

(7.59)

~A =
∑
p

~xp×(~xp × ~αp)+
∫

[(~x− ~xp) .~αpζσ (~x− ~xp)] (~x− ~xp) dv−4π~αp

∫
||~x− ~xp| |4ζσ (~x− ~xp) dr

(7.60)

∫
[(~x− ~xp) .~αpζσ (~x− ~xp)] (~x− ~xp) dv =

∫
||~x− ~xp| |2ζσ (~x− ~xp) (||~αp| |cosφ) ~urp

(7.61)

Where φ is the angle between ~αp and ~x−~xp . The last integral, which contains the
term cosφ, is symmetric with respect to ~αp and has a non null component in only ~αp
direction. If we consider a reference frame centered at p and the z component is along
~αp , the aformentiened integral reduces to :

∫
||~x− ~xp| |2ζσ (~x− ~xp) [||~αp| |cosφ] ~urp = ~αp

∫
||~x− ~xp| |2ζσ (~x− ~xp) cos2φdv (7.62)
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~αp

∫
||~x− ~xp| |2ζσ (~x− ~xp) r2dr

∫
cos2φsinφdφ

∫ π

0
dθ =

4π

3
~αp

∫
||~x− ~xp| |2ζσ (~x− ~xp) dr

(7.63)

~A =
∑
p

~xp × (~xp × ~αp)−
2

3
~αp

∫
4π ||~x− ~xp| |4ζσ (~x− ~xp) dr (7.64)

Let C = 4π
∫
r4ζσ(r)dr = 4πσ2

∫
ρ4ζ(ρ)dρ then we have:

~A =
∑
p

~xp × (~xp × ~αp)−
2

3
Cσ2

∑
p

~αp (7.65)

~A =
∑
p

~xp × (~xp × ~αp)−
2

3
Cσ2~Ω (7.66)

For any core function of third order and above we have C = 0 thus :

~A =
∑
p

~xp × (~xp × ~αp) (7.67)

7.3 Appendix C: Variation of Total Circulation

and Linear Impulse Upon Using Winckel-

mans Method to Resolve the Problem of the

Vorticity Divergence

~Γ =

∫
~ωσ(~x)dv =

∑
p

~αp

∫ [
ζσ(~x− ~xp)−

qσ(~x− ~xp)
||~x− ~xp| |3

]
dv

+

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]

(||~αp| |cosφ) ~urpdv

Where φ is the angle between ~αp and ~x − ~xp . The last integral, which contains the
term cosφ, is symmetric with respect to ~αp and has a non null component in only ~αp
direction. If we consider a reference frame centered at p and the z component is along
~αp, the aformentiened integral reduces to :
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∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]

(||~αp| |cosφ) ~urpdv = ~αp

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]
cos2φdv

~αp

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]
r2dr

∫ π

0
cos2φsinφdφ

∫ 2π

0
dθ =

4π

3
~αp

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]
r2dr =

1

3
~αp

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]
dv =

~αp

∫ [
qσ(~x− ~xp)
||~x− ~xp| |3

− 1

3
ζσ(~x− ~xp)

]
dv

Thus the total circulation can be expressed as:

~Γ =
∑
p

~αp

∫ [
ζσ(~x− ~xp)−

qσ(~x− ~xp)
||~x− ~xp| |3

]
+

[
qσ(~x− ~xp)
||~x− ~xp| |3

− 1

3
ζσ(~x− ~xp)

]
dv (7.68)

~Γ =
∑
p

2

3
~αp

∫
ζσ(~x− ~xp)dv (7.69)

~Γ =
2

3

∑
p

~αp (7.70)

~I =

∫
~x× ~ωσ(~x)dv =

∑
p

−~αp ×
∫ [

ζσ(~x− ~xp)−
qσ(~x− ~xp)
||~x− ~xp| |3

]
~xdv

+

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]

(||~αp| |cosφ) (~x× ~urp)dv

~I =
∑
p

~xp × ~αp
∫ [

ζσ(~x− ~xp)−
qσ(~x− ~xp)
||~x− ~xp| |3

]
dv

− ~αp ×
∫ [

ζσ(~x− ~xp)−
qσ(~x− ~xp)
||~x− ~xp| |3

]
(~x− ~xp)dv

+ ~xp ×
∫ [

3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]

(||~αp| |cosφ) ~urpdv

+

∫ [
3
qσ(~x− ~xp)
||~x− ~xp| |3

− ζσ(~x− ~xp)
]

(||~αp| |cosφ) (~x− ~xp)× ~urpdv

The last integral is zero since ~x−~xp is in the same direction of ~urp . The second integral
is also equal to zero since it is symmetric with respect to the source location p. Noting
that we have an expression for the third integral, the linear impulse is expressed as :
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~I =
∑
p

~xp × ~αp
∫ [

ζσ(~x− ~xp)−
qσ(~x− ~xp)
||~x− ~xp| |3

]
dv

+ ~xp × ~αp
∫ [

qσ(~x− ~xp)
||~x− ~xp| |3

− 1

3
ζσ(~x− ~xp)

]
dv

~I =
2

3

∑
p

~xp × ~αp
∫
ζσ(~x− ~xp)dv (7.71)

~I =
2

3

∑
p

~xp × ~αp (7.72)

7.4 Appendix D: Extra Results

Figures 7.2, 7.4, and 7.6 show the time development of contours and vorticity lines, as
seen from the z direction for the cases Re = 1000, 1500, and 2000, respectively. The
corresponding iso-vorticity surfaces, as seen from the x and y directions are shown in
Figs. 7.3, 7.5, and 7.7.

Figures 7.8 and 7.9 show the L2 norm for the truncation and regularization error
versus p using a second order algebraic core function and second order Gaussian core
function. Figures 7.10 and 7.11 show the L2 norm of the truncation and regularization
errors versus d for a fixed order of expansion p = 5 using a second order algebraic core
function and second order Gaussian core function.

Figure 7.12 show the measured simulation time versus the number of elements for
different nF using an order of expansion p = 8.
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Figure 7.2: Iso -surfaces of vorticity norm and a random collection of vorticity
lines at several representative stages of evolution for Re = 1000 seen from z direc-
tion. The levels of the iso-surfaces are 10%, 50%, and 80% of the instantaneous
maximum of the vorticity norm
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Figure 7.3: Iso -surfaces of vorticity norm at several representative stages of
evolution for Re = 1000 seen from x and y directions. The level of the iso-surface
is 25% of the instantaneous maximum of the vorticity norm
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Figure 7.4: Iso -surfaces of vorticity norm and a random collection of vorticity
lines at several representative stages of evolution for Re = 1500 seen from z direc-
tion. The levels of the iso-surfaces are 10%, 50%, and 80% of the instantaneous
maximum of the vorticity norm
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Figure 7.5: Iso -surfaces of vorticity norm at several representative stages of
evolution for Re = 1500 seen from x and y directions. The level of the iso-surface
is 25% of the instantaneous maximum of the vorticity norm
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Figure 7.6: Iso -surfaces of vorticity norm and a random collection of vorticity
lines at several representative stages of evolution for Re = 2000 seen from z direc-
tion. The levels of the iso-surfaces are 10%, 50%, and 80% of the instantaneous
maximum of the vorticity norm
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Figure 7.7: Iso -surfaces of vorticity norm at several representative stages of
evolution for Re = 2000 seen from x and y directions. The level of the iso-surface
is 25% of the instantaneous maximum of the vorticity norm
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Figure 7.8: L2 norm for the truncation and regularization error versus p using a
second order algebraic core function in the context of adaptive scheme.
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Figure 7.9: L2 norm for the truncation and regularization error versus p using a
second order Gaussian core function in the context of adaptive scheme.

10−3

10−2

10−1

100

101

102

3 4 5 6 7 8

L
2
er
ro
r

tree depth (d)

truncation error

regularization error

total error

Figure 7.10: L2 norm of the truncation and regularization errors versus dσ for a
fixed order of expansion p = 5 using a second order algebraic core function in the
adaptive scheme.
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Figure 7.11: L2 norm of the truncation and regularization errors versus dσ for a
fixed order of expansion p = 5 using a second order Gaussian core function in the
adaptive scheme.
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Figure 7.12: Measured simulation time versus the number of elements for different
nF using an order of expansion p = 8.
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