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Title: NON-INVASIVE, CONTINUOUS, VASCULATURE-ANATOMY
-INSPIRED RF-BASED SENSOR FOR GLYCEMIC MEASUREMENTS

Diabetes is a chronic disease that affects more than 8.5% of the worldwide
population. The glucometer, which is invasive, is the standard tool for monitor-
ing glucose levels. This approach is painful and uncomfortable. Furthermore, it
is not befitting to provide continuous glucose monitoring, often leading to missing
some serious hyperglycemic and hypoglycemic events that could occur between
finger-prick measurements. To overcome this problem, minimally invasive tech-
nologies have been developed. However, the frequent use of such techniques
causes discomfort and pain in addition to high socio-economic burdens. There-
fore, painless, needle-free, and continuous glucose monitoring sensors are needed
to enhance the quality of life of millions of diabetic patients around the world.
Today, holistic non-invasive approaches are not commercially available. Different
approaches have been introduced in research such as: reverse iontophoresis, bio-
impedance spectroscopy, infrared and ocular spectroscopy and ultrasound. Such
technologies suffer from several difficulties. For instance, interstitial fluid glucose
levels measurements carry a serious time-delay compared to the plasma glucose
levels. Additionally, the stability, safety and portability of the underlying tech-
nologies constitute their main challenges. Nowadays, researchers are focusing on
electromagnetism as a leading technology to achieve noninvasive and continuous
glucose monitoring.
Here, we propose a non-invasive continuous wearable glycemic monitoring elec-
tromagnetic based multi-sensor system with enhanced sensitivity. The system
wirelessly senses hypo- to hyper-glycemic variations with very high accuracy. It
leverages novel vasculature-anatomy-inspired electromagnetic front-end compo-
nents. These components are designed to target simultaneously multiple body
locations. Multiple environmental and physiological sensors are also integrated
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in the proposed system to calibrate out the perturbing factors. The system is
validated on serum, animal tissues and in a clinical setting. Serum-based and
ex-vivo experiments demonstrate high precision across the diabetic glucose range
(10mg/dl - 600mg/dl). Human trials exhibit clinical accuracy of 98% in fifty five
subjects who underwent around hundred Oral Glucose Tolerance Tests. The pro-
posed sensors are embedded in a glove and a sock; results are validated on the sen-
sors both standalone and collectively. The system captures the clinical glycemic
variations without any time-lag, reporting up to 96% correlation between the
system’s physical parameters and blood glucose levels. To our knowledge this
is one of the rare studies to assess the sensitivity of the proposed sensors over
a wide glycemic range (10mg/dl to 600 mg/dl), in different experimental setups
and to calibrate out the multiple environmental and physiological factors.
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Chapter 1

Introduction

Diabetes is a chronic disease that affects more than 8.5% of the worldwide popu-
lation [1]. The glucometer, which is invasive, is the standard tool for monitoring
glucose levels. This approach is painful and uncomfortable. Furthermore, it is
not befitting to provide continuous glucose monitoring (CGM), often leading to
missing some serious hyperglycemic and hypoglycemic events that could occur
between finger-prick measurements. To overcome this problem, minimally inva-
sive technologies have been developed. However, the frequent use of such tech-
niques causes discomfort and pain in addition to high socio-economic burdens [2].
Therefore, the development of an affordable non-invasive CGM device will be life-
changing for diabetic patients worldwide. This chapter provides an overview of
diabetes and its complications. In this context, the importance of self-monitoring
of blood glucose (SMBG) and the available SMBG methods are highlighted. Af-
ter that, the different proposed noninvasive glucose monitoring technologies are
briefly reviewed and the importance of the electromagnetic (EM) technique is
highlighted. Finally, the thesis objective and focus are discussed.

1.1 Diabetes and its complications

Diabetes is considered a chronic metabolic disease that affects millions of people
around the world. It occurs when the pancreas is unable to produce insulin (Type
I) or when the body is unable to use the produced insulin efficiently (Type II).
The elevated blood glucose levels caused by the lack of effective insulin can induce
damage to the body and can cause failure of several organs and tissues over the
long term. Diabetes is the leading cause of blindness and non-traumatic leg and
foot amputations. It is responsible for serious damage to the heart, kidney, and
nerves. Hence, diabetic patients are urged to maintain tight glycemic control by
monitoring their blood glucose levels on a regular basis, in order to prevent such
complications [3].
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1.2 Importance of self-monitoring of blood glu-

cose

Self-monitoring of blood glucose levels is highly recommended for diabetic pa-
tients in order to help them control glucose levels, manage its progression, and
delay its complications. Regular tracking of glucose levels allows healthcare pro-
fessionals to plan personalized diabetes treatment regimens for patients based on
their individual glycemic profile. SMBG allows patients and their parents to take
proper decisions when it comes to their diet and physical activities. Addition-
ally, it enhances the patient’s recognition and control of serious hypoglycemic
events. Several clinical studies assessing patients’ compliance to monitor gly-
caemia shows that the frequency of monitoring is subjective. Most of medical
professionals agree that diabetic patients treated with insulin should track their
glucose variations at least four times a day [4].

1.3 Available methods for SMBG

An invasive technique using the glucometer is the most accurate method for self-
glucose monitoring. This technique requires extracting a drop of blood from the
finger-tip using a lancet. The blood is then placed on a test strip that uses glu-
cose oxidase mechanism to determine glycemic levels. As mentioned before, the
SMBG should be repeated at least 4 times per day for diabetic patients treated
with insulin [4], this renders this technique painful especially for kids. It also
increases the chances of infections and damages the finger tissues over the long
term. Most importantly, one of the main problems with this tool is its inability to
provide CGM, and hence missing some serious hyperglycemic and hypoglycemic
events that could occur between the finger-prick measurements [5].
To overcome this problem, minimally invasive technologies have been developed
[6, 7]. These devices mainly solve the continuity problem of the invasive tech-
niques, by continuously providing information about the glucose levels. The
available real-time minimally invasive CGM systems monitor the glucose levels
in the interstitial fluid (IF) and based on the acquired values, the blood glucose
levels are estimated. These devices are usually composed of three elements: 1)
a small electrochemical sensor which is subcutaneously inserted under the skin
(upper arm or abdominal region), 2) a transmitter that sends data wirelessly to 3)
a receiver that displays the estimated glucose levels in function of time. Partially
implantable solutions are also available for CGM [8]. They rely on measuring
glucose in subcutaneous IF, using enzymatic sensors, which will be replaced after
a certain period of time (90 days for the Food and Drug Administration (FDA)-
approved Eversense device [9]).
Importance of continuous monitoring of glucose levels. CGM devices pro-
vide information about the changes in glucose levels, at regular intervals, 24 hours
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a day. They interpret the acquired data and translate them into dynamic plots
providing information about the rate and the direction of glucose change during
the day, month and year[10]. In addition to the advantages of SMBG in terms of
allowing patients to control their meals, physical activities and treatment, CGM
presents additional benefits; some studies show that the tight glycemic control
provided by the CGM systems will reduce the levels of glycated haemoglobin
(HbA1c). For instance, according to [11] the HbA1c is reduced by 0.15% for
every additional day of CGM device usage. Moreover, CGM will also reduce the
number of hypoglycemic episodes for both adults and children. A study shows
that the regular SMBG technique can miss 71% of hypoglycemic incidents when
blood glucose level is monitored 4 times per day. This percentage is reduced
to 58% missed episodes when the frequency of monitoring the glucose levels in-
creases to 7 times per day [12].
However, all currently minimally invasive CGM devices, approved by U.S. FDA,
are short-term, where the disposable needle-type inserted in the skin, which is an
amperometric enzyme electrode, lasts only up to 14 days. Another problem with
such devices is the time delay between the plasma glucose levels and the glucose
levels in the IF [6] making them in need of daily calibration through finger prick-
ing technique. Although the newer versions don’t need calibration anymore, they
still have high socio-economic burdens [2]. The implantable sensors available in
the market are short-term devices as well, where the sensor needs to be changed
every 90 days and it can be used only by people of 18 years of age and older [9].

1.3.1 Noninvasive glucose monitoring approaches

On the other hand, alternative noninvasive glucose monitoring solutions are in-
troduced using various techniques including reverse iontophoresis [13, 14], bio-
impedance spectroscopy [15, 16], infrared and ocular spectroscopy [17] and ul-
trasound [18, 19]. These technologies present several technical difficulties. For
instance, the results obtained by reverse iontophoresis, which measures the glu-
cose levels in the IF are altered by sweating, in addition to the fact that it causes
skin irritation. Another problem with such technology is the time delay between
the plasma glucose levels and the IF glucose levels. Bio-impedance spectroscopy
uses alternating currents to measure the underlying tissue’s impedance which in
turn are related to the glucose variations. However, it’s highly affected by the
water content[20]. On the other hand, the ocular spectroscopy, which measures
the glucose levels in tears, suffers from a serious time lag and poor correlation
between the measured glucose levels and the reference blood glucose levels[20].
Ultrasound is also suggested as a tool to export the IF to skin level and measure
the glucose levels using electrochemical sensing, however, stability, safety, and
portability are still its main challenges [5, 21, 20, 22].
Today, researchers are focusing on electromagnetism as one of the top technologies
for achieving noninvasive and continuous glucose monitoring [23, 24]. EM-based
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technologies present several advantages. They enable the development of compact
and miniaturized systems and can provide CGM, while handling safety provisions.
Many studies, presented in Chapter 2, found that dielectric spectroscopy, which
is based on EM, allows continuous, noninvasive glucose monitoring through skin
and underlying tissues with good sensitivity. However, most of the proposed
systems rely slowly on EM sensors. Yet, in daily-life situations, the dielectric
spectroscopy could be affected by a variety of environmental and physiological
factors. Hence any noninvasive glucose monitoring system based on EM technol-
ogy must also take into consideration the different perturbing factors.
Table 1.1 presents a list of recent common techniques available in the literature
along with the results obtained during clinical trials (if available). Note that
these techniques were tested in different experimental setups and on a different
number of participants. In addition, they relied on different performance metrics
making it hard to compare between them. In terms of mean absolute relative
difference (MARD) and Clark error grid (CEG), we can clearly see that our pro-
posed system stands well compared with other technologies and provides lower
error and better prediction accuracy.

1.4 Thesis Focus and Rationale

All the available CGM devices, in the market today, are short-term solutions,
either based on minimally invasive needles that should be replaced every 10-14
days or partially implantable devices that last around 90 days and target patients
of 18 years of age and older. The main goal of this work is to develop a wearable
painless continuous monitoring EM-based system, which can sense glucose vari-
ations with high accuracy. All age groups including diabetic and non-diabetic
people (such as athletics) could use the proposed system. Such system could be
connected eventually to the cloud and allows the patient to send the collected
data to healthcare professionals to adjust the treatment. To satisfy these design
objectives, the system needs; an EM-based sensor to monitor the glucose with
high accuracy. Environmental and physiological sensors to calibrate out the po-
tential perturbing factors. A signal processing system to process the output of
the EM-sensor and a regression model to convert these readings into absolute
glucose levels.
Herein, we introduce a noninvasive wearable approach that relies on flexible EM
sensors that can be aligned with body curvatures and adjust to small move-
ments, while focusing on the effective tailoring of EM waves to directly mon-
itor the glucose levels from blood as shown in Figure 1.1(US Patent No. 93
PCT/US2018/054627 [25], US Patent No. 6161-044.PROV [26], US Patent No.
PCT/US19/39238 [27]). We demonstrate that the selection of the appropriate
operational frequencies while taking into consideration the targeted on-body loca-
tion is of utmost importance for our application. We also present a strategy that
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allows the EM technology to be integrated in a multi-sensing wearable format.
The system is composed of flexible EM-Vessels-like sensors targeting multiple on-
body locations along with several environmental and physiological sensors. We
prove that monitoring the glucose variations simultaneously from different body
locations using a multi-sensor approach improves the accuracy of the system by
calibrating out the different perturbing factors.

1.5 Thesis Outline

This dissertation is organized into eight chapters. Chapter 1 gives the moti-
vations of this research with an introduction about diabetes, its complications
and the prevention techniques and introduces the main objectives of this work.
Chapter 2 presents a literature review on EM-based sensors developed specifi-
cally for non-invasive glucose monitoring, starting with an introduction about
glucose-dependent dielectric properties of the blood and the importance of the
frequency choice. In Chapter 3 we discuss the EM-sensors design concept, the
sensing location and the frequency of choice. This chapter presents the fabri-
cation and simulation results of the hand and leg antennas. In Chapter 4 we
discuss the regression modeling techniques utilized to find dependence between
the recorded responses of the proposed sensors and the glucose levels. Chapter
5 and Chapter 6 concentrate on the glove and the socks sensor’s performance
in different experimental setups, respectively, showing the capability of proposed
designs to monitor the glucose variations using serum solutions in in-vitro exper-
iments, followed by ex-vivo experiments on rat tissues. Finally, the sensitivity of
the proposed sensors, tested in real-time in-vivo settings on healthy and diabetic
volunteers is presented. Chapter 7 discusses the importance of adding environ-
mental and physiological sensors to the EM-based sensing system to overcome the
technical difficulties introduced by some environmental factors. In this context,
the proposed antennas along with other sensors are joined into a multi-sensing
system and tested in different experimental setups. Finally, Chapter 8 presents
the conclusions of this work and potential avenues for future research.
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Figure 1.1: Mimicking vasculature anatomy EM sensors.(A) The antenna slots
(US Patent No. PCT/US19/39238) and the filter (US Provisional Patent
No.62/811,760) are inspired by the anatomy of the veins and arteries of the
hand and the arm (US Patent No. PCT/US2018/054627), respectively. (B)
The proposed sensors operate at the ultra-high frequency and microwave bands
ensuring enough EM waves penetration depth to reach the targeted veins and
arteries along with a wide characterization range, (Image modified from YokoDe-
sign/shutterstock). (C) Left: the top sensing layer of the flexible slot antenna
prototype. Right: to sensing layer of the band-reject filter prototype. (D) Left:
Schematic of the flexible slot antenna targeting the hand’s vessels. Right: the
Bottom layer of the proposed band-reject filter mounted on the arm. Photo
Credit: Jessica Hanna, American University of Beirut.

Method Device Technology Measurement Site Continuous Monitoring Accuracy Reference

Clarke Error Grid MARD

Noninvasive

Cnoga Glucometer NIR spectroscopy Finger No Zone A: 91.1%, Zone B:7.8% 18.10% [28]

OrSense NBM-200G NIR Occlusion spectroscopy Finger Yes (professional use only) Zone A: 69.7%, Zone B:25.7% 17.2% [29]

XizmiTM NIR Spectroscopy Arm wrist Yes Zone A: 93%, Zone B:7% 7.23% [30]

GlucoTrack Ultrasound, EM and thermal Ear lobe No Zone A: 62.4%, Zone B:37.6% 19.7% [31]

Split Ring Resonator EM Abdomen Yes Zone A+B: 98.13% 22.7% [32]

GlucoWise EM Hand No NA NA [33]

SugarBEAT Reverse iontophoresis Upper arm Yes NA 13.39% - 12.44% [34]

Minimally Invasive Eversense Fluorescence Upper arm Yes Zone A+B: 99% 9.4% [35]

Our proposed system
Noninvasive

Ediamond EM Multi locations Yes Zone A+B:100% 5% -6%

Table 1.1: Benchmark list of recent common techniques available in the literature.
The corresponding results obtained during clinical trials are presented if available.
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Chapter 2

Electromagnetic based
noninvasive glucose monitoring
technology

In this chapter we explain how technologies based on electromagnetism are used
for noninvasive glucose monitoring. We present a literature review on recent
EM-based components, including waveguides, antennas, filters and resonators,
designed specifically for glucose monitoring. Finally, we discuss the need for a
new approach.

2.1 General description

Today, researchers are focusing on electromagnetism as one of the top technolo-
gies for achieving noninvasive and continuous glucose monitoring [23, 24]. Using
EM sensors to monitor glucose variation is based on two important factors: (i)
the dielectric properties of the medium under test (MUT), which control the be-
havior of the EM waves in that medium and (ii) the glucose level, which alters
the dielectric properties of the blood. Therefore, when EM waves, out of an
EM sensor are transmitted to the body, the reflected and the transmitted waves
are impacted by the underlying tissues and carry valuable information of their
properties [36]. More precisely, the changes in the S-parameters, in terms of mag-
nitude and phase shifts, are associated with the glucose fluctuations in the MUT.
By monitoring these variations, the blood glucose levels are determined. EM-
based technologies present several advantages. They enable the development of
compact and miniaturized systems and can provide CGM, while handling safety
provisions.
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2.2 Glucose dependent dielectric properties of

the blood

During the last decade, many researchers studied the interaction of the EM waves
with the human tissues. Knowing that the dielectric properties of the MUT in-
fluence the waves in that medium, lots of work has been done to characterize the
effects of different diseases on the dielectric properties of the biological tissues. In
this context, using the EM-based techniques to non-invasively monitor the blood
glucose levels has gained a lot of attention recently [37]. The effect of glucose
variation on the dielectric properties of water and blood has been intensively
studied. Karacolak et al. [38] studied the dielectric properties (permittivity
and conductivity) of blood containing glucose concentrations ranging between
0 mg/dl to 16000 mg/dl over a frequency span from 0.5 GHz to 20 GHz using
in-vitro human blood samples. The results show that both the relative permit-
tivity and conductivity vary linearly with the change of glucose concentrations
as shown in Figure 2.1. More precisely, the relative permittivity decreases as
the frequency increases whereas the conductivity increases with the frequency.
On the other hand, the permittivity decreases when the glucose levels increase
and the conductivity varies insignificantly at low frequencies in response to glu-
cose variation. The conductivity variation becomes clearer at higher frequencies
where it varies inversely proportional to the glucose variation. However, for both
parameters, small changes in the blood permittivity/conductivity is governed by
large variations in glucose levels, equivalent to 16000 mg/dl, requiring a very
sensitive EM-based sensor to capture these changes [38].

2.3 Frequency of choice and penetration depth

One of the main characteristics of any EM-based sensor is the operational fre-
quency. In fact, the behavior of the dielectric properties of the MUT is checked in
function of frequency. Such analysis is important in order to determine with cer-
tainty the appropriate frequency of operation of the proposed sensor. Figure 2.1
shows the effect of glucose concentration on (a) the dielectric constant and (b)
conductivity for frequencies ranging from 500 MHz to 20 GHz [38]. Karacolak
et al. [38] noted, in their study, that the variation of the dielectric constant due
to glucose levels is somehow greater than the variation of conductivity, and these
changes increase as a function of frequency. Hence, higher frequencies induce
greater changes in terms of dielectric properties. Different frequencies have been
adopted in the literature to capture the glucose variation and the obtained results
are highly dependent on the MUT and the targeted location.
However, there is another important factor to consider when it comes to the fre-
quency choice, which is the depth of penetration (DOP). Any wave transmitted
into a lossy material will be attenuated after a certain depth. The DOP is the
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Figure 2.1: The measured dielectric properties of blood for different glucose levels.
(A), relative permittivity εr and (B) conductivity σ for frequency ranging between
0.5 to 20 GHz. It’s shown that both the dielectric constant and the conductivity
decrease with the increase of glucose levels in blood samples. And it’s clear that
the variation due to glucose levels is more apparent at high frequency. Extracted
from [38].

distance at which the field intensity is 1/e of its original value. It’s shown in
Figure 2.2 that the DOP, which is dependent on the MUT, decreases with the
increase of the frequency. At frequencies lower than 0.1 GHz, the wave is capable
of penetrating the skin, fat and muscle. On the other hand, at frequencies higher
than 10 GHz, the wave barely penetrates the skin, the fat layers and muscle layers
[37], if we are comparing at the same radiated power levels. Additionally higher
frequencies make the sensor more sensitive to motion and environmental factors
[39].
Choosing a frequency range which provides a compromise between the sensitivity
and the penetration depth of the EM waves (to reach the targeted vessels) is very
important in our application.

2.4 EM-based sensors for glucose monitoring:

State of the Art

Different EM-based components operating at various frequencies and designed
specifically for glucose monitoring are available in the literature. These compo-
nents include; antennas, filters, waveguides and resonators.
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Figure 2.2: The depth of penetration of the EM waves versus the frequency for
different tissue types including dry skin, wet skin, muscle blood, brain (white
matter) and fat. It’s clear that the penetration depth decreases with the increase
of the frequency for the different tissues. More precisely, for low frequencies, the
EM waves are capable of penetrating the skin layer, the fat layer and the muscle
layer completely where the thickness of these tissues is less than the depth of
penetration of the waves. On the other hand, for frequencies higher than 10
GHz, very little penetration is expected, where the thickness of some of these
tissues can be higher than the penetration depth. Extracted from [39].

2.4.1 Waveguides for glucose monitoring

Two simple waveguides probes operating between 27 to 40 GHz (Ka band) are
proposed by P. H. Siegel et al. [40] for glucose monitoring. To test the per-
formance of this system, in-vivo experiments on anesthetized rats are conducted.
The earlobe of the rats are placed between the two probes, as shown in Figure 2.3
(A), and the response of the transmission coefficient (S21) is monitored. The rats
are injected with glucose, insulin and saline solutions at separate instances. The
glucose injections induce an increase in the magnitude of the S21, the insulin
injections are followed by a decrease in the magnitude of S21, whereas the saline
solutions do not have any effect on the S21 response as shown in Figure 2.3 (B).
These results demonstrate the selectivity of the proposed system towards glucose
variations. This system is further evaluated on one human healthy subject, in
a real-time glucose monitoring setting [41]. The probes are placed across the
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Figure 2.3: Waveguides probes operating at Ka band for glucose monitoring.
(A), The proposed system is tested in real-time monitoring setup when placed
between the ear of anesthetized rats. (B), millimeter-wave absorption versus the
frequency after glucose (red curve), saline (black curve) and insulin (blue curve)
injections. Extracted from [40].

ear of the subject, who conducted an oral glucose tolerance test (OGTT). The
results, presented in Figure 2.4, show a good correlation between the actual glu-
cose levels and the S21 phase collected at 20 GHz. However, we notice that the
S21 phase curve follows closely the trend of glucose variation with a delay of 40
minutes. One additional disadvantage of such system is its bulkiness and the
difficult alignment between the two probes.

Figure 2.4: The response of the Waveguide based sensing system placed across
the earlobe of a human at 20 GHz. The shifted reference blood glucose is shown
in red and the inverted phase response of the waveguide is presented in green.
Extracted from [41].
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2.4.2 Antennas for glucose monitoring

Two ultra-wide band slot antennas, with a 12.5 GHz bandwidth, are proposed
by X. Xiao et al. [42] for glucose monitoring across the human’s earlobe. The
ability of the antennas to detect the glucose variation is tested through in-vitro
experiments using an earlobe phantom made of a polyformaldehyde container
filled with a water/glucose solution, as shown in Figure 2.5. The glucose levels
are varied from 0 to 4000 mg/dl with a step of 50 mg/dl between 0 and 400
mg/dl. The transmission magnitude | S21 |, are monitored at 6.5 GHz. In this
in-vitro experiment, a total change of | S21 | of around 1.5 dB is achieved for
a 400mg/dl variation of glucose levels. Millimeter-waves capability of detecting

Figure 2.5: Ultra-wide band slot antennas for glucose monitoring. (A), the pro-
posed antennas are testing using earlobe phantom and water/glucose solutions.
(B), The transmission response of the antennas, S21, versus the frequency for
different glucose levels ranging between 0 and 4000 mg/dl. (C), at 6.5 GHz, the
S21 parameters shows an almost linear trend in response to the glucose variation
with a total 1.5 dB of change for 400 mg/dl of glucose variation. Extracted from
[42].

glucose variations is further studied by S. Saha et al. [43, 44], where two mi-
crostrip patch antennas operating at 60 GHz are proposed. The performance
of these antennas is tested in different experimental setups. First, in-vitro ex-
periments are performed using water/glucose solutions. A resolution of around
24 mg/dl is achieved when monitoring the | S21 | antennas response. Human
trials are conducted on 10 healthy subjects using intravenous glucose tolerance
tests (IVGTT). The antennas are placed across the tissue between the index and
the thumb fingers as shown in Figure 2.6 (A). Good correlation between the S21
transmission parameters and the actual glucose variation is achieved for only two
subjects out of the ten due to distortions in the | S21 | signals. These distortions
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are caused by the slight hand motion and the antennas displacements during the
experiments. For good measurements, a change of 0.8 dB in the | S21 | response
is detected for a total of 24 mmol/dl ( 432 mg/dl) variation in the glucose levels
with a delay of 3 min between the glucose spike and the | S21 | spike as shown in
Figure 2.6 (B). Additional measurements are done on a pigs’s ear under IVGTT
[45], Figure 2.6 (C). Different antenna’s positions and distances are studied. A
change of 0.6 dB in the transmission coefficients | S21 | at 60.25 GHz is achieved
for a total glucose variation of around 40 mmol/l ( 720 mg/dl) with a delay of 13
min between the S21 spike and the glucose spike as shown in Figure 2.6 (D).

Figure 2.6: Microstrip patch antennas operating at millimeter-wave band for
glucose monitoring. (A), The performance of the proposed system is testes in
real-time in-vivo settings on human subjects. The antennas are placed across the
area between the thumb and the index finger. (B), the antenna’s transmission
response S21 is compared with the actual glucose level variation across time. (C),
the antennas are also tested on anesthetic pigs, where the antennas are placed
across the pig’s ear. (D), The glucose levels obtained by a traditional glucometer
are compared with the transmission coefficient obtained by the antennas over
time. Extracted from [43, 45].
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2.4.3 Filters for glucose monitoring

A band-pass filter, operating at 1.9 GHz, is designed by R. Baghbani et al. [46]
for noninvasive monitoring of glucose levels through the thumb finger. The filter
is composed of a triangular patch with slots, as shown in Figure 2.7. The slots
concentrate the electrical current across the finger. The reflection and transmis-
sion coefficients are monitored during a clinical trial on a healthy human subject.
Linear variation of the | S11 | and | S21 | coefficients with respect to the glucose
variation is achieved. However, such a design can be highly affected by the pres-
sure applied by the human subject which may result in a bigger variation in the
| S11 | and | S21 | parameters than that induced by the glucose variation.

Figure 2.7: Band pass filter for glucose monitoring. (A), The fabricated band
pass filter for blood glucose monitoring. (B), the proposed filter is tested on
human subject where the finger of the subject is placed on the slots. Extracted
from [46].

2.4.4 Resonators for glucose monitoring

Two-ports, on body patch resonator operating between 2.4 and 2.48 GHz is pro-
posed by T. Yilmaz et al. [47] for glucose levels monitoring, shown in Fig-
ure 2.8. The resonator is tested on tissue mimicking phantom composed of 4
types of layers: wet skin, fat, blood and muscle, shown in Figure 2.8 (B). The
input impedance of the resonator, Re(Zin) and Im(Zin), is monitored for four
different blood layers containing different glucose levels ranging between 0 and
12 mmol/dl (equivalent to 2160 mg/dl). A total change of only -0.24 Ω and +0.38
Ω is achieved in the real and imaginary part of the input impedance, respectively,
over the whole range of glucose variations.
Two split ring resonators, shown in Figure 2.9, operating around 1.4 GHz are
proposed by H. Choi et al. [32, 48]. One of these resonators is used for glucose
sensing and the other one is used as reference to calibrate out the temperature
effect. First, in-vitro measurements using a Franz cell are conducted. The effect
of different endogenous interference agents is studied. The authors are able to
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Figure 2.8: On body matched resonator for glucose monitoring. (A), the designed
and fabricated prototype of the proposed resonator. (B), the resonator is tested
on tissue mimicking phantom with 4 different levels of glucose. (C), the input
impedance Re and Im are monitoring. Extracted from [47].

prove that their system is three times more sensitive toward the glucose variations
in comparison to other sugars (maltose, fructose, and galactose). Additionally,
their sensing system does not capture the variation of ascorbic acids and uric
acids levels. These results highlight the selectivity of the proposed system to-
ward the glucose variations and its ability to differentiate between the different
blood constituents. As a final step, the authors conducted a human trial on 24
diabetic and non-diabetic patients. They converted the resonator response into
glucose levels without discussing the utilized regression techniques neither the
resonator’s parameter/features used. Out of 214 collected point, 210 points are
considered clinically acceptable as they happened to be in zone A and B of the
Clarke error grid as shown in Figure 2.9 (C).
Another resonator operational at 4.8 GHz is designed to monitor the glucose lev-
els at the finger level [49, 50]. The proposed resonator resemble to an interdigital
capacitor, as shown in Figure 2.10. This configuration increases the concentra-
tion of the electrical fields and therefore improves the sensitivity of the system
toward the blood permittivity changes induced by the glucose variation. In-vitro
experiments on water/glucose solutions are conducted. Glucose concentrations
are varied from 0 to 2000 mg/dl, as shown in Figure 2.10 (B). A total linear fre-
quency shift of 32 MHz equivalent to a deviation of 11 KHz/(mg/dl) is achieved.
However when tested on a human subject no frequency shift is detected.
Three versions of a two-port, open-loop, microstrip resonator, operating at 2, 5.7
and 8 GHz in free space are proposed by C. G. Juan et al. [51] mounted with
polytetrafluoroethylene solutions containers. Figure 2.11 shows the microstrip
resonator operating at 5.7 GHz. Microliter volume of water/ glucose solutions
containing two different glucose levels (0% and 10%) are used to test the perfor-

15



Figure 2.9: Two port resonator for glucose monitoring. (A), The proposed blood
glucose sensing system composed of a pair of rings. (B), The system is tested on
human subjects and the proposed system is placed on the abdominal region of
the patients. (C), the Clarke error grid showing the majority of the predictions
in zone A and B. Extracted from [48, 32].

Figure 2.10: A resonator designed for glucose monitoring at the finger level. (A),
the front and back layer of the designed resonator. (B), The resonator is tested
on water with different glucose levels ranging from 0 to 2000 mg/dl. The | S11 |
response shows a sensitivity of 11 KHz/(mg/dl). Extracted from [49].

mance of these resonators. The authors monitored the glucose variations using
the Q factor of the resonator as sensing parameter. The Q factor of the three
resonators varied linearly with the glucose variation, however a total maximum
change of only 7 units is achieved for a glucose change of 10% (∼ 10000mg/dl).

2.5 The need for a new approach

It is clear from the previous section that various ranges of frequencies are in-
vestigated in the literature. Such investigation does not conclude with an ideal
frequency as the optimal and most suitable one for non-invasive glucose mon-
itoring EM systems. Frequencies in the low microwave range are utilized for
deeper tissue penetration. Frequencies in the upper microwave and millimeter-
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Figure 2.11: Two port, open-loop, microstrip resonators for glucose monitoring.
(A), the fabricated resonator operating at 5.7 GHz mounted with a PTEE con-
tainer. (B), The Q factor change is monitored for the different glucose levels
showing a linear variation. Extracted from [51].

wave range can be used when deep penetration is not needed, especially when
targeting thin tissues such as the earlobe, or the fingertip. The frequency of oper-
ation also affects the accuracy and precision of the system, considering that higher
frequencies provide better sensitivity towards the glucose variations. Hence, the
frequency of choice must be carefully selected during the development of a non-
invasive glucose monitoring system.
Additionally, we can see that most researchers resort to ‘standard’ EM-sensors
and very little optimization is done to adapt the proposed sensor to the an-
ticipated body location. When developing a wearable continuous non-invasive
EM-based sensor, the form of the final device must be taken into consideration
from the beginning. Moreover, most of the proposed sensors are tested only on
water/glucose solutions. When tested in real-time monitoring settings on human
subjects many of the techniques in the literature fail to provide good sensitivity
towards the glucose variations mainly due to environmental perturbations. Hence
any noninvasive glucose monitoring system based on EM technology must also
take into consideration the different perturbing factors.
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Chapter 3

Wearable, on-body matched,
Vasculature anatomy inspired
EM-Based sensors

The sensor is the most important component of our system. To improve the
sensitivity of the EM-based sensors many design aspects were considered. In this
chapter we introduce a novel noninvasive wearable approach that relies on flexible
EM-sensors, while focusing on the effective tailoring of EM waves to directly
monitor the glucose level from blood (US Patent No. PCT/US2018/054627) [27].
The design details of the proposed EM-sensors that target two different on-body
locations and rely on multi-operating frequencies is discussed. The frequency
of choice and the targeted sensing location are discussed, followed by the human
phantom models utilized during the design of the antennas. This chapter presents
also the simulated and fabricated results for the designed antennas. Finally the
safety considerations are presented.

3.1 Antenna design concept

The first step to develop the EM-based noninvasive glucose monitoring system
is to design a sensing element (1) exhibiting high sensitivity towards glycemic
fluctuations, (2) achieving high accuracy along the hypo to hyper-glycemic range
and (3) maintaining good performance when loaded with a lossy medium (the
human body).
To achieve high sensitivity towards the glucose variations, different aspects are
considered. First, the proposed sensors are designed to operate in the upper
ultra-high frequency (UHF) and lower microwave bands between 500 MHz and 4
GHz. The frequency choice is one of the main characteristics during the design
of any EM-based sensor. We can find different studies in the literature indicating
good correlation between the EM-sensor’s parameters and the glucose levels in
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the MHz and the GHz range. When we selected the operational frequency range
of the proposed antennas, we took into considerations different factors. These
factors include: the targeted location, DOP, sensitivity, and size of the device
for wearability. To achieve a good functional trade-off between the penetration
depth and the sensitivity towards the glucose variation, detected at the targeted
locations (hand and arm), the proposed sensors are optimized to have multi-bands
in the UHF, L- and lower S-bands ranging between 500 MHz and 4 GHz. This
frequency range allows enough penetration for the waves to reach the targeted
veins and arteries while maintaining good sensitivity as discussed in Chapter 2.
Secondly, the proposed structures mimic the vasculature anatomy as shown in
Figure 1.1 (A). We verify, during in-vitro experiments, in Chapter 5, that by
concentrating the EM waves directly towards the blood network we attain a higher
sensitivity towards the glucose variations. Additionally, the multiple slots result
in a multi-band response which allows the monitoring of glucose levels across a
wide range of frequencies. According to the study conducted by Yilmaz et al.
[37], a multi-band approach can provide better sensitivity/selectivity towards the
glucose variations when compared to single frequency sensors. On the other hand,
when it comes to comparing narrow-band to wide-band sensors, narrow-band
sensors were able to achieve a better sensitivity towards the small variation of
the effective permittivity [37]. We demonstrate later that this, in turn, improves
the accuracy of glucose levels estimation using multi-variate regression-modeling
techniques.
Moreover, the proposed antennas are designed when loaded with a human model.
The operation of an antenna does not depend only on the physical dimensions
of its structure, but also on the permittivity of the medium under test. Since in
our application the antenna radiates near the human body, which is considered a
high loss medium, a new design approach is adopted. Such approach matches the
antenna to the human body and is named here “on-body matching”. Traditional
antennas suffer from strong reflections of the incident waves when in contact
with a lossy medium such as the human body, especially at the air-skin interface.
Such mismatch allows only a small percentage of the incident waves to penetrate
the body [52]. Hence, the incident signal is degraded due to the mismatching
of these antennas caused by the lossy medium. By matching the antenna to the
human body, the reflections at air-skin boundary are reduced and more energy is
transmitted into the body allowing a more reliable analysis of the blood glucose
variations [52]. As a result, the proposed antennas are designed to operate when
loaded with a human model using ANSYS Electronics Desktop Simulator (AED)
[53]. Matching the antennas to the human body has been proven to be as of
utmost importance to our application.
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3.2 Sensing Locations

One of the very important factors to take into account when proposing a wearable
sensor for continuous glucose monitoring system, is the sensing location. Different
locations could be considered. As a first prototype, we targeted the hand as a
sensing area. A wearable glove will ensure comfort for the patients in different
scenarios (work environment, during physical activities, at school and during
sleep), especially for kids, and athletics. It will also ensure good contact between
the sensor and the hand with great stability. The radiating slots are inspired by
the shape of the arteries and veins in a human hand, shown in Figure 3.1, mainly
the deep palmar arch, the superficial palmar arch, the palmar digital arteries
and the dorsal metacarpal veins; the radial artery and the ulnar artery are two
main arteries that supply blood to the hand. The radial artery wraps around the
thumb and comes across the deep palm in an arch shape forming the deep palmar
arch. The ulnar artery comes across the palm also in a shape of arch forming the
superficial palmar arch. The deep palmar arch and the superficial palmar arch
supply blood to the different fingers though small branches. These branches are
referred to as common digital arteries. On the other hand, the blood is drained
from the hand by the dorsal venous plexus and via the cephalic vein and the
basilic vein.

Figure 3.1: Hand vascular anatomy].(A), The antenna’s slots are biologically
inspired by the hand’s blood vessels; the two semi-circle slots are inspired by the
deep and superficial palmar arches, the small rectangular slots at the peripherals
are inspired by the common palmar digital arteries and the middle small slots are
targeting the dorsal venous network. (B), The average diameter of the different
targeted blood vessels. Extracted from [54, 55].

After the hand, we targeted the lower leg as the second sensing area. The designed
antennas are intended to be fitted inside a sock. The wearable sock will ensure
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comfort for the patients, especially during sleep for kids. It will also ensure good
contact between the sensor and the leg. The radiating slots are inspired by the
shape of the arteries and veins in a human lower leg, shown in Figure 3.2, mainly
the shape of the peroneal venae comites and posterior tibial venae comites. The
sensor is used to transmit EM waves into human tissues in areas in close proximity
to the main vanea comites veins.

Figure 3.2: Leg vascular anatomy. The antenna’s slots are biologically inspired
by the leg’s blood vessels; the two long slots are inspired by the mainly the shape
of the peroneal venae comites and posterior tibial venae comites network.

Phantom used during the design of the antennas.
The on-body antenna is designed to operate in the presence of a human model
parallel to the top sensing layer side of the antenna. The computational phantom
VHP-Female v. 2.0 is used during the design of the proposed antenna. It is
composed of 26 different tissue types and 184 individual tissue parts, in form
of finite-element triangular surface meshes. The image dataset of each tissue
part is obtained from the Visible Human Project®-Female dataset available at
the National Library of Medicine [56]. The dielectric properties of the material
are obtained from IT’IS Database [57]. To simplify the model and reduce the
simulation time rectangular models were used. The material (in terms of dielectric
properties) of this model are exported from the VHP-Female phantom as shown in
Figure 3.3. The electrical properties of each layer, permittivity and conductivity
are in function of frequency and they are exported from the IT’IS Database
[57]. The human phantom is positioned in the radiative near-field region of the
antenna. The radiative near field region of the antenna is calculated using the
following equation:

0.62
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Where: D is the antenna’s dimensions (length or diameter) and λ is the wave-
length [58].

Figure 3.3: Human Phantoms. To simplify the model and to reduce the sim-
ulation time a rectangular hand model was used. The material (in terms of
dielectric properties) of this model are exported from the VHP-Female phantom.
The model composed of 4 layers: skin, blood, fat and muscle. The width of each
layer are 1.5mm, 1mm, 1mm and 2mm respectively. The electrical properties of
each layer, permittivity and conductivity are in function of frequency and they
are exported from the IT’IS Database.

3.3 EM-Sensors design and operation

As a proof of concept, our first prototype is designed to mimic the blood network
at two different locations: the hand and the leg. The designed antenna targeting
the hand vessels is integrated as a part of a wearable glove, which monitors the
blood glucose levels by sensing the hand’s vasculature network. The antenna tar-
geting the leg vessels is incorporated as part of a sock. Such diverse incorporation
of the sensing components in multiple locations enables a higher accuracy and
faster responsiveness in tracking blood glucose levels. Several prototypes catered
for both sensing locations are developed. Conceptual prototypes are tested on
semi-flexible substrates. A full flexible topology is then adopted to better fit the
nature of the human body.

3.3.1 Glove sensors

Using the mentioned ideas, we designed two prototypes; a semi-flexible and a flex-
ible antenna, shown in Figure 3.5 and Figure 3.7 respectively. Both antennas are
designed and simulated by means of the ANSYS AED [53]. They are optimized
and validated when loaded with human tissues. The proposed glove sensors are
composed of three layers: the top sensing layer comprises the radiating slots, the
middle layer includes the dielectric substrate, and the bottom layer contains the
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Figure 3.4: glove sensor layers. The top, middle and bottom layers of the glove
sensor simulated using HFSS.

feeding line as shown in Figure 3.4.
The radiating slots are inspired by the anatomy of the arteries and veins in a
human hand; mainly it emulates parts of the deep palmar arch, the superficial
palmar arch, the palmar digital arteries and the dorsal metacarpal veins. The
feeding structure consists of a spirally shaped feeding transmission line having
50Ω input impedance. The spirally shaped feeding line enhances the coupling
between the feeding lines and the slots on the top layer of the antenna, allowing
the various slots to be active and hence, enhancing the multi-band behavior of
the antenna.
The antenna’s slots are excited by relying on EM coupling through a spiral feed
line. They are designed to operate in the UHF and lower microwave frequency
band ranges. The dimensions of the substrate and the integrated slots that mimic
the blood network of the hand are optimized to operate with great matching at the
desired frequencies of operation, while being loaded by the human hand model.
The width of the slots are optimized based on the average diameters of the differ-
ent blood vessel, which range between 1.2 mm to 2.8 mm [55]. While the length
of the slots are optimized to have multiple operational frequencies between 0.5
GHz and 3 GHz. The hand ranges between 167.9 mm to 187.9 mm in terms of
length and between 75.2mm to 83.6mm in terms of breadth for women and men
respectively [59]. After optimization, the final dimensions are set to 70x70 mm2

for the semi-flexible antenna and 70x80 mm2 for the flexible antenna. This size
is optimized for integration in a wearable glove.
The antenna is designed to operate in the presence of a hand model parallel to the
top layer side of the antenna with a 0.5 cm separation as shown in Figure 3.3. For
the purpose of simulation, the hand model comprises 4 rectangular layers with
different dielectric properties: skin, blood, fat and muscle. The width of each
layer are 1.5mm, 1mm, 1mm and 2mm respectively. The dielectric properties of
these tissues are extracted from the IT’IS Database [57] and set in the ANSYS
AED [53] (Figure 3.3).
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Fabrication

The glove sensors were fabricated on two types of substrates. Rogers RO3003
[60] substrate material of 0.5 mm thickness is used for the semi-flexible antenna.
However, to adapt the antenna structure to the curvature of the hand, the flexible
antenna is designed by relying on Polyethylene Terephthalate (PET) substrate
material of 136 um thickness. The semi-flexible substrate was fabricated using
computerized numerically controlled (CNC) milling machine. For the second
type of substrate we used silver as conductive material and ink-jet printing for
fabrication.

Semi-flexible antenna operation

The fabricated prototype of the semi-flexible antenna design is shown in Fig-
ure 3.5. To validate the performance of the fabricated semi-flexible sensor, its
scattering parameters were measured.

Figure 3.5: Semi-flexible antenna design. (A), the slots are inspired by the vas-
culature anatomy. (B), the top and bottom layers of the Semi-flexible simulated
using HFSS. (C), the fabricated prototype on RO3003 substrate.

Figure 3.6 shows a comparison between simulated and measured reflection coeffi-
cients S11 in free space. The antenna’s multi-band operation is verified as we can
see in Figure 3.6 (A). As we mentioned previously, one of the main characteristics
of the proposed antenna is the on-body matching. Figure 3.6,(B) presents the
measured S11 in free space compared with the measured S11 when loaded with
a human hand. This matching is well preserved, meeting our design objectives.
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Figure 3.6: Semi-flexible antenna response.(A), the measurement versus simula-
tion S11. The small deviation is due to fabrication errors. (B), the antenna’s
reflection coefficient, S11, measured in free space is almost preserved when the
antenna is loaded with a human hand.

Flexible antenna operation

The flexible antenna is fabricated on a 136µ m thick PET substrate (εr = 2.99)
using the Dimatix DMP-2850 inkjet printer with the DMC-11610 nozzles [61].
This printer works in a “drop on demand” manner where a voltage is supplied
to a piezoelectric system, that in turns generates droplets on the substrate. The
PET is first exposed to a UV ozone treatment for 2 minutes and 15 seconds,
to promote better wetting conditions for the printed ink on the substrate. This
treatment is often helpful when the substrate’s surface is hydrophobic while the
printed ink is hydrophilic. The substrate is then cleaned with Ethanol before
being placed on the printer’s platen heated up to 40°C. The cartridge is then
filled with the JS-A102A silver nanoparticles-based ink from Novacentrix with
40% silver (Ag) content. Before placing the cartridge in the printer, the ink is
sonicated for 2 minutes to avoid nozzles clogging during the printing. Three lay-
ers of JS-A102A are deposited on the substrate to ensure that all gaps are filled,
and the printed surface is continuous. The substrate is then placed for 10 minutes
on a 100°C heated plate to dry the solvent before completely sintering the ink in
the oven at 160°C for 30 minutes.
The fabricated prototype of the flexible antenna is shown in Figure 3.7. A com-
parison between simulated and measured reflection coefficients S11 is presented
in Figure 3.8 (A). The results show an excellent matching between the simulated
and the measured measurements with multi-band behavior in the frequency range
[ 0.5, 3 GHz]. The on-body matching is verified in Figure 3.8 (B) where the mea-
sured S11 in free space are compared with the measured S11 recorded when loaded
with a human hand. The on-body matching characteristics of this antenna is also
very clear when it is loaded with human hand. This matching is well preserved
and even enhanced at certain frequencies, meeting our design objectives.
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Figure 3.7: Flexible antenna design. (A), the top and bottom layers of the Semi-
flexible simulated using HFSS. (B), the fabricated prototype on PET substrate.

Figure 3.8: Flexible antenna response. (A), the measurement versus simulation
S11. The small deviation is due to fabrication errors. (B), The antenna’s re-
flection coefficient, S11, measured when loaded with human hand showing the
on-body matched characteristic of the proposed antenna.

Bending analysis

It is important to note that the flexibility of the proposed system (Figure 3.9)
and its wearability are intended to enhance the sensor’s compatibility to expected
body movements as well as adaptability to body surface. We evaluated the flexible
antenna’s performance in two different situations; first, we tested the antenna’s
performance over curvatures of different bending diameters. The flexible antenna
maintained a stable performance for several configurations over planar or curved
surfaces, as shown in Figure 3.9 (A), with minimal difference between the flat
and bended S11 response of the antenna. For this experiment, we used cylindri-
cally shaped foam surfaces with curvatures of 10 cm, 12 cm and 18 cm diameter
respectively. Secondly, the flexible antenna is fixed inside a glove and separated
from the skin surface by a flexible foam (with a thickness of 0.5 cm) allowing
the antenna to move with the human body (Figure 3.9 (B)). Measurements with
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fingers open and closed showed that the movements of the fingers do not affect
the S11 parameters.

Figure 3.9: Bending analysis of the flexible antenna. (A), the effect of bending the
antenna with different bending diameters on the S11 parameters. (B), The effect
of opening and closing of the fingers on the flexible antenna’s S11 parameters
when integrated into a glove.

3.3.2 Sock sensors

To achieve high sensitivity towards the glucose variations, the same concept de-
sign, described previously, is considered for the sock sensors. The proposed EM
sensors are designed to operate at multiple frequencies in the frequency band
ranging between 0.5 and 4 GHz. We propose three different antennas targeting
the lower leg’s veins and arteries. These antennas are designed and simulated
by means of the ANSYS AED [53]. Design #1 is a micro-strip patch antenna
comprising slots following the leg’s vessels as shown in Figure 3.11. Design #2,
presented in Figure 3.12 is an antenna array composed of 4 identical elements.
Design #3, shown in Figure 3.13, is an antenna quasi-array composed of 4 el-
ements with non-identical slots, matching the targeted underlying vasculature
anatomy.
The proposed antennas are composed of three layers: the top sensing layer com-
prises the radiating slots and the microstrip line feeding network used to power
the antenna. Quarter-wave transformer (QWT) technique is utilized to provide
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impedance matching. The middle layer includes an ultrathin flexible dielectric
substrate. To adapt the antenna structures to the curvature of the leg, these
antennas are designed by relying on ultrathin flexible PET substrate material of
100 um thickness with a dielectric constant of 3.1. The bottom layer contains
the ground plane (Figure 3.10 (A)).

Figure 3.10: Glove sensor layers and human model. (A) The top, middle and
bottom layers of the sock sensor simulated using HFSS. (B) human leg phantom.
The phantom composed of 5 layers: skin, blood, fat, muscle and bone.

These antenna are designed to operate in the presence of a leg model parallel
to the top layer side of the antenna with a 0.5 cm separation. For purposes of
simulation, the human leg tissue comprises 5 layers: the skin layer, the fat layer,
the blood layer, the muscle layer and the bone layer, as shown in (Figure 3.10
(B)). The dielectric properties and the thickness of the leg tissues are extracted
from the IT’IS Database [57] and set in ANSYS AED [53].

Fabrication

The fabricated prototype of the antenna designs #1, #2 and #3 are shown in
Figure 3.11, Figure 3.12 and Figure 3.13 respectively. To validate the multi-band
performance of the fabricated antennas and the on-body matching characteristic,
their scattering parameters were measured. A comparison between simulated
and measured reflection coefficients S11 is presented, where the antenna’s multi-
band operations are verified. Figure 3.11, Figure 3.12 and Figure 3.13 (B) Left,
show the simulated and measured scattering parameters (S11) in free space for
the three antenna designs respectively. As we can see in the S11 results, the
antennas presented multiple operating frequencies ranging between 0.5 and 4
GHz. To ensure the on-body matching which allows the penetration of the EM
waves into the underlying tissues (skin, fat, muscle, blood and bone tissues),
the performance of the proposed antennas was measured when loaded with a
human leg. The on-body matching of the proposed antennas is demonstrated

28



in Figure 3.11, Figure 3.12 and Figure 3.13 (B) which present the measured
scattering parameters S11 in free space compared with the measured S11 loaded
with human leg. This matching is well preserved for the three designs, allowing
the EM waves to reach the targeted veins and arteries.

Figure 3.11: Sock sensor design #1. (A), the top layer of the flexible fabricated
prototype of design #1 on PET substrate. (B), Left: the measurement versus
simulation S11. The small deviation is due to fabrication errors. Right: The an-
tenna’s reflection coefficient, S11, measured when loaded with human leg showing
the on-body matched characteristic of the proposed antenna.

3.4 Safety

During the design of EM-based sensors dedicated for biomedical use, the specific
absorption rate (SAR), a highly important parameter, should be considered. This
parameter is a measure of the rate of the EM energy absorption by the body. Two
main SAR safety limit guidelines exist: the US guidelines, which recommend a
SAR limit of 1.6 W/Kg, and the European (EU) guidelines, which recommend
2.0 W/Kg as a limit [62]. For the proposed antennas, SAR is simulated using
ANSYS AED when the human model is placed above the sensor with a separation
of 0.5 cm. SAR for the skin is reported because it’s the closest layer to the sensor.
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Figure 3.12: Sock sensor design #2. (A), the top layer of the flexible fabricated
prototype of design #2 on PET substrate. (B), Left: the measurement versus
simulation S11. The small deviation is due to fabrication errors. Right: The an-
tenna’s reflection coefficient, S11, measured when loaded with human leg showing
the on-body matched characteristic of the proposed antenna.

3.4.1 Glove sensors SAR characteristics

We notice that over the whole frequency range of interest, from 0.5 to 3 GHz,
the peak SAR value is 0.64 W/Kg at 0.876 GHz averaged over 1 g of tissue per
the US guidelines and 0.23 W/Kg averaged over 10 g of tissue at 2.7 GHz per the
European guidelines for the semi-flexible antenna as shown in Figure 3.14 (A).
For the flexible antenna, shown in Figure 3.14 (B), we obtain 0.26 W/Kg at 3
GHz averaged over 1 g of tissue and 0.14 W/Kg at 1.7 GHz averaged over 10 g
of tissue as shown in Figure 3.14. These values fulfill both the US and the EU
guidelines for general public exposure. These results are obtained for 1 W ( 30
dBm) input power; in reality, during the experimental measurements the power
delivered to the antenna by the vector network analyzer (VNA) is -15 dBm which
is much lower than the simulation input-power.
It’s important to mention that during the in-vivo experiments volunteers didn’t
report any discomfort and no visible effect of the EM waves on the skin is ob-
served.
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Figure 3.13: Sock sensor design #3. (A), the top layer of the flexible fabricated
prototype of design #3 on PET substrate. (B), Left: the measurement versus
simulation S11. The small deviation is due to fabrication errors. Right: The an-
tenna’s reflection coefficient, S11, measured when loaded with human leg showing
the on-body matched characteristic of the proposed antenna.

3.4.2 Sock sensors SAR characteristics

For the three antenna designs, we noticed that over the whole frequency range of
interest, ranging from 0.5 to 4 GHz, the peak SAR value is 4.59e-4 W/Kg at 3.93
GHz averaged over 1 g of tissue per the US guidelines for the antenna design #1.
For the antenna design #2, we obtain 4.233e-4 W/Kg at 3.23 GHz averaged over
1 g of tissue. And for the antenna design #3, the peak SAR value is 7.216e-5
W/Kg at 3.248 GHz averaged over 1 g of tissue (Figure 3.15). These values fulfill
the US guidelines for general public exposure. These results are obtained for an
input power of -15dBm (Similar to the input power provided by the VNA during
the experiments).

3.5 Discussion

In this chapter, the design of multiple flexible vasculature anatomy inspired EM
sensors targeting different on-body locations is discussed. To improve the sensi-
tivity of the proposed designs multiple aspects were considered. First the sensing
layers of the designs were inspired by the anatomy of the vessels. In Chapter 5,
we prove that this topology enhances the sensitivity by concentrating the EM
waves onto the blood vessels. The proposed antennas have a multi-band be-
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Figure 3.14: Skin SAR plot with full hand mode in function of frequency. (A),
SAR plot for the semi-flexible antenna. Left: skin SAR values averaged over 10g
of tissue. The peak SAR value is 0.23W/Kg at 2.7 GHz. Right: skin SAR values
averaged over 1g of tissue.The peak SAR value is 0.64W/Kg at 0.876GHz.(B),
SAR plot for the flexible antenna. Left: skin SAR values averaged over 10g of
tissue. The peak SAR value is 0.14W/Kg at 1.7 GHz. Right: skin SAR values
averaged over 1g of tissue.The peak SAR value is 0.26W/Kg at 3GHz.

haviour allowing us to monitor the blood glucose levels at multiple frequencies
simultaneously. More importantly the antennas maintained their multi-band op-
eration when loaded with the human tissues which maximise the penetration
of EM waves to reach the targeted arteries and veins while fulfilling the safety
requirements.
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Figure 3.15: Skin SAR values averaged over 1g of tissue plot with full Leg mode
in function of frequency. Left: SAR plot for the sock sensor design #1. Middle:
SAR plot for the sock sensor design #2. Right: SAR plot for the sock sensor
design #3.
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Chapter 4

Modeling regression to convert
the antenna’s response into
glucose levels

In this chapter we present the means to convert the S-parameters into absolute
glucose values. We first discuss the signal and data processing techniques. After
that we present the different regression techniques utilized to convert the an-
tenna’s response, including the S11 magnitude and the S11 phase, into glucose
levels, along with the feature selection techniques.

4.1 Data analysis

Our main objective is to model the correlation between the sensors’ responses
(S-parameter magnitude and phase) and the blood glucose levels. Since the
glucose levels are continuous variables, regression-based modeling is required to
create this mapping between: 1) X ∈ Rd: the d-dimensional input variables’
vector (also referred to as the features’ vector) which corresponds to the measured
S-parameter obtained at the different frequencies over the operating frequency
range and 2) Y ∈ R the outcome variable which corresponds to the reference
glucose level. The data analysis and regression analysis parts are carried out using
MATLAB R2017a software [63]. We relied on individual training of regression
model to obtain the absolute levels and we compared the obtained values with
the ones measured by a commercial, finger-prick glucometer.

4.1.1 Data collection

During the different experiments, the antenna’s scattering parameters and the
corresponding reference blood glucose levels (measured using a traditional in-
vasive technique [64]) were collected using a portable VNA. The acquired data
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from the antenna consisted of S11 magnitude and S11 phase corresponding to
201 different frequency points within the frequency sweep, ranging between 0.5
GHz and 4 GHz, resulting in different input variables for each reference blood
glucose level.

4.1.2 Pre-processing of the data

For every reference glucose measurement, ten consecutive recordings of the an-
tenna’s response (S11 magnitude and phase) were acquired. The resultant set of
replicated signals then undergoes signal averaging in order to eliminate the ran-
dom noise introduced by the VNA. This technique averages out the uncorrelated
noise, and helps improve the signal to noise ratio.
Around 402 features are measured for each reference glucose level. However,
the S11 behavior trend in response to glucose level variation is very similar for
frequencies that are nearby to each other. Therefore, to minimize redundancy
between features, without loss of generality, 21 equally spaced frequencies were
selected with a step of 0.125 GHz. The S11 magnitude and phase correspond-
ing to these frequencies were then considered as input variables, resulting in 42
features in total. Once averaging is performed, the different features, which cor-
respond to magnitude and phase values, are normalized between 0 and 1.
For the in-vivo experiments, the data sets corresponding to each OGTT experi-
ment were processed separately. In the multi-sensing experiments ( Chapter 7),
where additional sensors are added to the system, the output of each sensor was
normalized between 0 and 1 and used to create the regression model.
Finally, since the invasive reference glucose levels were taken every 15 minutes
whereas the CGM using the proposed antennas were taken every 5 minutes, cubic
spine interpolation [65, 66] was used for time synchronization between the two
measurements.

4.1.3 Pseudo code explaining in details the data collection
and processing steps

−−−−
Outputs:
X: normalized feature vectors.
Y: reference glucose level dependent variable.
−−−−
For each experiment,
Data collection Phase (Pre-processing):
- Every 5 minutes collect from the sensor the ith observation data points: XS:pre(i, :
) = {xj

S:pre(i, :)} with a total of 1206 features in XS:pre, where i ∈ [1, 23] rep-
resents the observation number, j ∈ [1, 2] represents each of S11 magnitudes
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and phase respectively, and each xj
S:pre comprises 201 features obtained over the

frequency range [1-4] GHz,
- Every 15 minutes, perform a standard glucose monitoring, to collect the refer-
ence glucose level, collect: yref :meas(m)
Data Processing Phase:
- Y = {yref(i)}, where yref (i) represents the reference glucose level obtained from
yref :meas(m) and/or using cubic splines for the ith observation point if yref :meas(m)
is missing at that time point to obtain a total of around 23 ref GL over the du-
ration of the OGTT .
- Xs = {Xk

S} is the set of ∼ 42 feature vectors obtained by sampling xj
S:pre at

steps of 0.125 GHz for all j. Therefore, Xk
S(i) is the value of feature k for obser-

vation i, where k ∈ [1, 42], and i ∈ [1, 23].
- We normalize each feature vector, Xk

S, across all observations as follows.

Xk
norm(i) =

Xk
S(i)−min(Xk

S)

max(Xk
S)−min(Xk

S)

- X = {Xk
norm}

4.2 Feature selection

To identify the features exhibiting the best sensitivity towards the glucose levels,
and to reduce the dimensionality of the data, feature selection methods are ap-
plied. For this purpose, two different feature selection methods are considered:
the filter and the wrapper methods.
1. Filters can be considered as pre-processing steps, and they are totally inde-
pendent of the modelling step. Features are selected based on their statistical
significance in terms of, for example, their correlation with the outcome vari-
able. In this work, the significance of the features is calculated using the Pearson
correlation coefficient (PCC). The PCC (61) between the input data X (S11 co-
efficient magnitude and phase) and the output Y (the reference glucose levels) is
calculated using the following equation:

R =
Cxy

σxσy

Where Cxy is the covariance between x and y and σx and σy are the standard
deviation of x and y respectively. R ranges between -1 and 1, where the two
extremes 1 and -1 present a perfect linear correlation between y and x (positive
and negative respectively) and zero means there is no correlation between the
two variables.
2. In wrapper techniques, the optimal feature subset is selected based on the
regression model output. In this work we rely on the forward feature selection
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(FFS) wrapper method where we start with zero features in the subset and for
each iteration we add the feature providing the lowest model output mean per-
centage error. This method can provide a better selection of the features however
it is usually computationally expensive.

4.3 Model evaluation

For the feature selection (and the kernel selection in the Gaussian Process mod-
els), 10-fold cross validation is utilized to minimize the feature subset selection
bias; the data sets are divided randomly into 10 subsets with equal size. For
each round, one out of the 10 subsets is used as a testing set and the remaining
subsets are used as training sets. After 10 rounds, the mean percentage error is
calculated (also called cross-validation error). This procedure is repeated for each
feature set and the optimal feature set and kernel correspond to the combination
providing the lowest cross-validation error.
Once the optimal feature subset is selected, the data sets are randomly divided
into two sets: 2/3 as training sets used for model building and 1/3 as testing sets
to assess the performance of the model. Because of the limited number of obser-
vations in the dataset, this process is repeated 10 times to cover as many glucose
levels as possible. The glucose estimations, from the testing sets, obtained during
the 10 repetitions are provided along with their mean value.

4.4 Regression techniques

In our application, we are faced with two main restrictions for purposes of the
choice of the suitable regression techniques: 1) the small size of the dataset due
to the limited number of reference glucose points, and 2) the high dimensionality
of the dataset. To overcome these restrictions, and based on literature [67, 68,
69, 70, 71], the performance of several suitable regression techniques is evaluated:
as such, Partial Least Square (PLS), Least Absolute Shrinkage and Selection
Operator (LASSO), Gaussian Process (GP) and locally weighted PLS (LW-PLS)
methods were considered, and their performance were compared using different
performance metrics.

4.4.1 PLS

PLS is a regression methodology that handles the dimensionality reduction prob-
lem while maximizing correlation with the outcome. It creates new regressors by
linearly combining the original features based on their univariate effect on the
outcome variable. These regressors, called latent variables or principal compo-
nents, are estimated by maximizing both their variance and their correlation with
the outcome variable [68].
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4.4.2 LASSO

LASSO, on the other hand, is a regression method that performs L1 regularization
and feature selection. LASSO technique enforces sparsity and hence sets many
feature coefficients to zero keeping only the features having the strongest effect
on the estimation of glucose levels. In some cases, some variables set to zero may
contain valuable glucose-related information [67].

4.4.3 LW-PLS

In LW-PLS, PLS is utilized for local modeling relying mainly on the similarity
between the new query and the existing data points [69]. Whenever an estimation
is needed for a new query xq, a local model is created from samples located in
the neighborhood around the query using the following steps:
1. Calculate the similarity matrix Ω = (diag(ω1, ω2, . . . , ωN))
2. Multiply X and Y by the root square of the similarity.
3. Perform a PLS regression analysis using the weighted X and Y obtained from
step 2.
4. Calculate yq.
The definition of the similarity between the query and the existing samples has
a major influence on the LW-PLS performance. Here the similarity is based on
the weighted Euclidean distance dn and it is given by the following equation:

ωn = exp

(
− dn
σdϕ

)

where: dn =
√

(xn − xq)TΘ(xn − xq) , Θ = diag(Θ1,Θ2, ...,ΘM), σd is the stan-
dard deviation of dn, ϕ is a localization parameter, Θ ∈ RM×M is a weighting
matrix, and ΘM is the weight for the m-th input variable. Here ΘM is defined as
the absolute value of the m-th input variable’s regression coefficient of a global
PLS model. ϕ is chosen to optimize the mean square error of the LW-PLS re-
gression model [69].

4.4.4 GP

GP is a probabilistic modeling technique that provides both a prediction and an
uncertainty on the prediction. It uses a “distribution across an infinite function
space to determine functions that are concordant with the underlying training
data set” [72]. It is a non-parametric kernel based probabilistic technique. The
covariance function (or kernel function) comprises one of the most important
characteristics of the GP. Generally, in supervised learning, it is most likely that
the input data with comparable features’ values (Xi), produces similar output
(Y). In GP, the covariance function K(xi, xj) is responsible for comparing the
input feature sets, xi and xj, and finding this similarity (where i �= j ,i=1..n and
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xi and xj d by 1 vectors and d is the number of features, and n is the number of
sample points). This covariance function can take different forms. The kernels
we use are defined by two main hyperparameters: the standard deviation σf and
the characteristic length scale σl. Using the exact GP regression method, the dif-
ferent model parameters are estimated. One approach for estimating the model
parameters, which are the kernel hyperparameters and the noise variance, is by
maximizing the likelihood P(y| X) as a function of kernel parameters and noise
variance. To choose the best covariance function, five different kernels including
exponential, squared exponential, matern 32, matern 52 and rational quadratic
are tested [72]. These five covariance functions are used to create five GP regres-
sion models evaluated with different sets of features.

Derivation. The model parameters are estimated form the training set. For the
test set, the predicted glucose levels are estimated as follow [72]: If we assume
additive input, the covariance of the glucose levels (y) is expressed as followed:

cov(y) = K(X,X) + µI

With µ noise term.
For any point in the test set, the joint distribution of the reference glucose level
(y) and estimated glucose level (y∗) is written as followed

[
y
y∗

]
∼ N

(
0,

[
K(X,X) + µI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

This joint distribution is utilized to estimate the glucose levels for the GP regres-
sion using the training glucose levels:

p(y∗ | X, y, x∗) ∼ N(y∗, cov(y∗))

Where the mean is calculated as followed:

y∗
.
= E[y∗ | X, y, x∗] = K(X∗, X)[K(X,X) + µI]−1y

And the covariance is calculated with

cov(y∗) = K(X∗, X∗)−K(X∗, X)[K(X,X + µI]−1K(X,X∗)

The mean can be also calculated by minimizing the least squares problem, as
described in [72]. Five GPR modules are built using the five kernels. And the
kernel providing the lowest mean percentage error is selected for the estimation
of the glucose levels.

Estimation of the glucose levels. The kernel and the feature subset pro-
viding the lowest cross-validation error, during the feature selection step, are
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selected and used to construct the model for glucose estimation for each experi-
ment separately. As we mentioned in the evaluation model section, the dataset
is randomly divided into two sets: 2/3 to build the model and 1/3 to test its
performance. Because of the limited number of observations in the datasets, this
process is repeated 10 times.

While PLS, LASSO and LWPLS are considered linear regression techniques, GP
is a nonlinear regression methodology. The GP is a probabilistic modeling tech-
nique that provides both the prediction and the uncertainty on the prediction.
The advantage of this technique is that it relates one sample point to the other
using a covariance function (kernel) [72]. The nonlinear kernels in turn capture
the nonlinearities in the system. LASSO performs feature reduction implicitly.
For PLS/ LWPLS deal with dimensionality reduction, 10-fold CV is utilized to
select the critical number of principle components. Feature selection techniques
are explicitly applied for GP models.

4.5 Performance metrics

To verify the accuracy of the estimated glucose levels and to compare the per-
formance of the different regression techniques, a set of assessment criteria com-
monly used in the diabetes research community are computed. These assessment
criteria include the mean percentage error also known as mean absolute relative
difference and the standard error of prediction:
1. The mean absolute relative difference (MARD) [73], illustrates the relative
percentage errors:

MARD =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100

2. The standard error of prediction (SEP), measures the accuracy of prediction:

SEP =

√∑N
i=1(yi − ŷi)2)

N

With: yi the reference glucose levels of the N samples and ŷi the estimated glu-
cose levels provided by the regression models.
While MARD and SEP compute the deviations of glucose estimates from the ref-
erence from a statistical perspective, it doesn’t take into consideration the clinical
impact of these deviations. Clark Error Grid (CEG) analysis, on the other hand,
offers a means to measure the performance while taking into consideration the
clinical relevance of the differences between the estimates and the reference glu-
cose values. This performance criterion is specifically dedicated to evaluate the
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point accuracy of the glucose sensors. It displays the estimated glucose levels ver-
sus the reference levels in a scatter plot divided into five zones: A to E, as shown
in Figure 4.1. Zone A indicates that the estimated glucose levels within 20%
of the reference values. Zone B comprises the estimated glucose levels that are
outside the 20% but wouldn’t induce any inappropriate treatment. Zones A and
B are considered safe and are clinically acceptable. When the estimated glucose
levels fall into zones C/D/E, the results are not safe and are considered clinically
unacceptable. The estimates in these zones will lead to clinically unnecessary or
even dangerous treatments [74].

Figure 4.1: Clarke error grid. This grid is specifically dedicated for the evaluation
of diabetes blood glucose monitoring systems by clinically classifying the errors
between the estimated and the reference glucose levels into 5 different zone: A, B,
C, D and E. While zones A and B identify the clinically acceptable estimations;
zone A contains the points having 20% error with respect to the reference levels,
region B identify the points that have significant quantitative error without mis-
leading the clinical output hence the estimated levels are still labeled correctly
as hypo-hyper and normal glycemic. Region C identify estimation that should
be in the normal range but labeled incorrectly as hypo or hyperglycemic. Region
D identify the estimation labeled normal but in reality should be considered as
hypo- or hyperglycemic. Finally region E is the most dangerous region where the
hypoglycemic points are estimated as hyperglycemic and vice versa. Extracted
from [74].
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4.6 Discussion

In this chapter we presented the data processing and regression techniques used
to analyse the data collected from the proposed antennas. The raw data are first
sampled and normalized. Feature selection techniques are then applied to iden-
tify the features (which correspond to frequencies) exhibiting the best sensitivity
towards the glucose levels variation, and to reduce the dimensionality of the data.
Finally, different regression techniques were considered to convert the scattering
parameters into actual glucose values.
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Chapter 5

Experimental measurements and
results for the glove sensor design

In this chapter we discuss the performance of the proposed glove sensors in differ-
ent set-up configurations and we focus on their sensing capabilities. We started
with in-vitro experiments using fatal bovine serum (FBS)/glucose solutions, fol-
lowed by ex-vivo experiments on rat tissues. Finally we validated the performance
of the proposed system when tested on human volunteers.

5.1 In-vitro measurement

In this experiment, we study the sensitivity of the proposed antenna towards
glucose variations using FBS/glucose solutions. The main objective of this ex-
periment is to demonstrate the ability of the proposed sensors to detect very
small glucose variations over the diabetic range.

5.1.1 Experimental setup

For the in-vitro sensitivity experiments, FBS/glucose solutions are used. Fetal
bovine serum is a liquid fraction of clotted blood harvest from bovine fetuses.
It contains a large number of nutritional factors and growth factors along with
small molecules like amino acids, sugars, lipids, and hormones [75]. The initial
glucose levels in FBS is usually less than 5 mg/dl. A container is designed using
Styrofoam blue foam board to have the same dimensions of the antenna with
a thickness of 0.5 cm. To avoid absorption of the FBS, the foam container is
wrapped with a thin nylon film. The container is then filled with FBS solution
equivalent to 6 mm of thickness. The antenna, connected to the portable VNA
using flexible coaxial cables, is placed on a large foam board under the container
and kept fixed throughout the entire experiment as shown in Figure 5.1.
Knowing that the normal blood glucose level at fasting is less than 100 mg/dl,
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Figure 5.1: In-vitro experimental setup. The antenna is placed on a foam board
under the FBS container. The container is remained fixed during the whole
experiment. The glucose concentration of the FBS is varied, with very small
steps (equivalent to 10 mg/dl), to a wide range of concentrations covering normal
and diabetic blood sugar ranges. Data sets are obtained from a vector network
analyzer (VNA), connected to the antenna, at frequencies that are swept between
0.5 GHz and 3 GHz.

while for diabetic patients it is higher than 126 mg/dl [76], the glucose concen-
tration of the FBS is varied, with very small steps (equivalent to 10 mg/dl), to
a wide range of concentrations covering normal and diabetic blood sugar ranges.
A small amount of D-glucose from SIGMA[77], equivalent to 10 mg/dl, is first
dissolved in 1 ml of FBS extracted from the container itself. The FBS/glucose
solution is well mixed using a vortex and then added back to the container. Af-
ter the glucose addition, the FBS solution is mixed well and left for around 10
minutes to ensure the homogeneity of the solution. A reference glucose level is
then taken using the Accu-Chek glucometer from Roche [64] simultaneously with
ten savings for the S11 magnitude and phase using a VNA. The same procedure
is repeated for both semi-flexible and flexible antennas every 15 minutes.

5.1.2 Scattering parameters Versus glucose levels

During all conducted experiments, we collected from the antenna the input com-
plex reflection coefficients (S11) magnitude and phase at different frequencies. In
this section we study the raw response of the proposed antennas in response to
glucose level variation.

Semi-flexible antenna’s response to glucose variation

The antenna’s S11 response to glucose variation are shown in Figure 5.2. A total
of 41 measurements are taken for the semi-flexible antenna. Glucose concentra-
tion of the FBS solution is varied with very small steps from 50 mg/dl to 445
mg/dl. Good correlation between the S11 parameters and the glucose levels is
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achieved. The S11 magnitude versus the reference glucose levels obtained by
the commercial invasive glucometer is shown in the left plot of Figure 5.2. The
straight cyan line is the S11 fitted curve showing the trend of the antenna’s re-
sponse when the glucose levels increase. These S11 are recorded at 1.475 GHz
which corresponds to one of the frequencies achieving high linear correlation be-
tween the S11 and the glucose reference levels with r=0.97. The right plot in
Figure 5.2, shows the S11 phase versus the reference glucose levels. These S11
values are taken at 1.65 GHz, achieving a correlation of -0.971. These high corre-
lation coefficient values indicate a strong linear relationship between the antenna’s
response and the glucose variation.

Figure 5.2: Semi-flexible antenna’s response to glucose variation during in-vitro
experiments. The semi-flexible antenna’s response (S11) to glucose variation.
Glucose concentration of the FBS solution was varied with very small steps from
50 mg/dl to 450 mg/dl. The normalized S11 versus the reference glucose levels
obtained by the commercial invasive glucometer. The straight cyan line is the S11
fitted curve showing the trend of the antenna’s response when the glucose levels
increase. These S11-parameters correspond to different frequencies achieving high
linear correlation between the S11 and the glucose reference levels.

Flexible antenna’s response to glucose variations

The flexible antenna’s response (S11) to glucose variations are shown in Fig-
ure 5.3. A total of 38 measurements were collected using the flexible antenna
covering glucose levels ranging between 50 to 500 mg/dl. The glucose concentra-
tion of the FBS solution is varied with small steps of ∼ 10mg/dl. High correlation
between the S11 parameters and the glucose levels is achieved, as shown in Fig-
ure 5.3. The S11 magnitude versus the reference glucose levels obtained by the
commercial invasive glucometer is shown in Figure 5.3 (A). The straight cyan
line is the S11 fitted curve showing the trend of the antenna’s response when the
glucose levels increase. These S11 values are recorded at 1.15 GHz and 1.1375
GHz, which correspond to a sample of the frequencies achieving high linear cor-
relation between the S11 and the glucose reference levels with r = 0.96 for both
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frequencies. Figure 5.3 (B) shows the S11 phase versus the reference glucose lev-
els at two different frequencies. A very good correlation of r > 0.96 is achieved.

Figure 5.3: Flexible antenna’s response to glucose variation during in-vitro ex-
periment. The flexible antenna’s response (S11) to glucose variation. Glucose
concentration of the FBS solution was varied with very small steps from 50 mg/dl
to 500 mg/dl. The normalized S11 versus the reference glucose levels obtained
by the commercial invasive glucometer. The straight cyan line is the S11 fitted
curve showing the trend of the antenna’s response when the glucose levels in-
crease. These S11-parameters correspond to different frequencies achieving high
linear correlation between the S11 and the glucose reference levels. (A) shows
the S11 magnitude for two frequencies. (B) shows the S11 phase vs the reference
glucose levels collected at 1.5875 GHz and 1.8 GHz

Importance of the vasculature-inspired slots

The importance of concentrating the EM waves into the vessels’ network is
demonstrated in the following two experiments using the semi-flexible antenna
and a vessel-like container: (1) the vessels of the container that are filled with
FBS/glucose solution are aligned with and placed in parallel to the antenna’s
slots (Figure 5.4 (A)). (2) the container is rotated by 180◦, as shown in Fig-
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ure 5.4 (B), where the vessels are almost orthogonal to and hence not aligned
with the antenna’s slots (only small sections of the antenna’s slots intersect with
the vessels of the container). In both cases, the same experimental setup param-
eters are utilized and the corresponding curves showing the S11 responses versus
the glucose levels are compared. The actual glucose levels are varied between 10
to 600 mg/dl as measured by the invasive method, representing a total change of
590 mg/dl. The total change in the S11 magnitude response corresponding for
the highest correlated S parameter is improved from 0.29 dB for the misaligned
rotated position to 1.55 dB for the aligned or parallel position (Figure 5.4 (C)
Left). Moreover, the total change in S11’s phase response is improved from 1.04◦

for the rotated position to 10◦ for the parallel position (Figure 5.4 (C) Right) and
thus indicating an enhanced sensitivity. In fact, by aligning the vessel’s network
with the slots and concentrating the radiation on the vessels, the sensitivity of
the antenna towards glucose variations is improved by more than 5 folds in terms
of the corresponding S11 magnitude variation and 10 folds for the phase. To
our knowledge, the research here represents the first direct demonstration of the
importance of focusing the EM waves onto the vessels to increase the sensitivity
of the proposed EM-based multi-band sensor toward glucose variations.
It is important to highlight that we were able to obtain high correlation (R>0.95)
between the raw S-parameters and the glucose levels for both experiments. This
high sensitivity is due to the concentration of the surface current around the slots
and their extremities. This experiment was idealized to highlight the importance
and the benefits of concentrating the EM waves on the vessels. In practical
scenarios, the wearable nature of the design, limits the room for misalignment.
Moreover, the concentration of the surface current not only on the slots but rather
around them helps accommodate for any possible slight misalignment between
the targeted vessels and the slots.

Response to common interferants.

To evaluate the effect of some common interferants, including fructose (FRU),
oleic acid (OA) and acetaminophen (AC), on the proposed sensor’s response,
glucose (GLU) and these interferants were added to the FBS solution in concen-
trations much higher than their physiological ranges. We added successively 50
mg/dl of OC, AC, FRU and GLU to the same FBS solution. The S11 parame-
ters showed minimal to no shift when the interferants were added. In contrast, a
significant shift of S11 parameters is produced when the same amount of glucose
is added to the solution, resulting in a correlation with the glucose levels of R >
0.9 (Figure 5.6).
The difference in response is due to the difference in terms of dielectric properties
between these interferants. In a lossy medium, containing lossy materials such as
these interferants, the effective complex permittivity is composed of ε′r which is
the real permittivity that signifies the stored electric field energy, ε′′r which is the
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Figure 5.4: The importance of the blood vessels inspired slots. The FBS-glucose
solution is filled inside a vessel-like container. (A), Left: The antenna is placed
parallel to the vessel-like container, superposing the slots of the antenna upon
that of the container (configuration 1). Right: the vessel-like container is left
in the same position as in A left and the antenna is rotated with a 180° (con-
figuration 2). (B), Comparison between the antenna’s response (S11) versus the
reference glucose levels obtained from the two configurations. The S11 magni-
tude and phase in both experiments corresponds the frequencies achieving the
highest correlation between the S11 parameters and the reference glucose levels.
S11 versus the reference glucose levels obtained using the configuration 2 (red)
and using configuration 2 (blue). Left: S11 magnitude, showing a total change
of 1.55 dB in configuration 1 and 0.29 dB in configuration 2 for glucose levels
ranging from 10 to around 600 mg/dl. Right: S11 phase, showing a total change
of 10 degrees in configuration 1 and 1.04 degrees in configuration 2.

imaginary permittivity that accounts for the losses in the medium and tanδ which
is the loss tangent of the medium. Hence, the complex permittivity highly affects
the EM waves properties in terms of magnitude and phase. We ran experiments
in the lab where we subjected the different interferants to a dielectric sensor that
is designed to identify the various material characteristics. Our results also show
that from a dielectric perspective the glucose showed a clear distinction. Hence,
its signature on the operating EM system is distinctive. Keeping in mind that
even if some material had similar ε′r, their loss tangent may vary significantly,
which impacts our sensors’ responses. We have also introduced these differences
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Figure 5.5: Surface current distribution. Antenna’s current distribution at
0.8GHz (left) and 1.2 GHz (right).

Figure 5.6: Selective response of the flexible glove sensor to glucose (GLU).

in our regression models where we are able to tailor our responses specifically to
glucose variations.

Stability Analysis.

It is important to highlight that the antenna’s S11 response remained stable over
repeated experiments. We were able to identify multiple frequencies at which
the physical parameters of the proposed sensor versus reference glucose levels
remained stable in repeated experiments and demonstrated consistent behavior.
Figure 5.7 shows the glucose measurement response from ∼ 50 to ∼ 600mg/dl
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with a step of 100 mg/dl repeated three times. The sensor’s response remained
stable in repeated experiments as shown in the Figure 5.7.

Figure 5.7: Stability test.The glucose measurement response was repeated three
times.

5.1.3 Regression modeling results

For in-vitro sensitivity experiments, around 40 measurements are collected. The
glucose levels ranged between 50 to 500 mg/dl. S11 magnitude and S11 phase are
sampled at 21 different frequencies equally spaced. A total of 42 features are first
processed to select the best features subset and the best kernel using both filter
and wrapper feature selection techniques. After feature selection the dataset is
divided into two subsets: Training (2/3) and testing (1/3). The first subset is
used to identify the model’s parameters and the second is used to test the models
over “unseen” data. This process is repeated 10 times in order to cover most
observations. The output of the model are the individual estimated glucose level
points along with their mean values from the different replications.

Comparison between the different regression techniques

As discussed in Chapter 4, different regression techniques were considered. Fig-
ure 5.8 provides a comparison between PLS, LASSO and GP performances in
terms of MARD and SEP for the semi-flexible and flexible glove sensors during
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in-vitro experiments. GP models performed the best during our analysis. They
provided the lowest mean percentage error as shown in Figure 5.8 (A). Addi-
tionally, they are able to provide very accurate estimations of the glucose levels
ranging below 70 mg/dl with an SEP of 7.49 mg/dl for the semi- flexible glove
sensor and SEP of 4.26 mg/dl for the flexible glove sensor. Similarly for the SEP
averaged for blood glucose levels higher than 180 mg/dl, where GP provides lower
mean relative error compared with PLS and LASSO. In what follows, we present
the results obtained using the GP model.

Figure 5.8: In-vitro experiments resulting different regression techniques.(A),
A comparison between the mean absolute relative differences between the esti-
mated and actual glucose levels obtained using PLS, LASSO and GP from the
semi-flexible and flexible antennas. (B), the mean relative error in predictions
(SEP) averaged for different glucose levels. The red arrows show the regression
techniques providing the lowest prediction error.

Semi-flexible glove sensor glucose prediction results

Figure 5.9 (A) shows the mean percentage error in function of the number of
features entered to the model for the different kernel functions using the two
previously discussed feature selection techniques (wrapper and filter). It’s clear
that, for both techniques, the mean percentage error, or cross validation error,
decreases when more features are added to the model until it reaches a minimum
value and then it starts to increase again. For the in-vitro dataset, the wrap-
per technique resulted in a mean percentage error which dropped from 12 % to
around 5 % for the best number of features and kernel function; on the other
hand, for the filter technique the error dropped from 25 % to around 6%. By
examining the datasets, we notice that the highest correlated features are usually
very close in frequency, thereby increasing the redundancy of the features in the
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filter technique; this explains the need for a larger number of features to allow for
drop in error. The rational quadratic kernel provided the lowest mean percentage
error using 11 features in the wrapper method while all the kernels provided very
similar behavior in the filter method, with lowest percentage error achieved when
using 20-25 features.
Figure 5.9 (B) presents estimated glucose levels Vs the reference glucose levels
using GP regression models. In the left plot, the wrapper technique is used for the
feature and the kernel selection. Using the rational quadratic as kernel function
along with 11 features to build the model, a MARD of 4.96% is achieved. SEP-
Hypo is 7.49 mg/dl, and SEP-Hyper is 20.48 mg/dl. As for the filter, Matern 32
is utilized as kernel function along with 23 features to build the model. MARD
is 5.81%, SEP-Hypo is 8.77 mg/dl, and SEP-Hyper is 22.00 mg/dl.

Flexible glove sensor glucose prediction results

Figure 5.10 (A) shows the mean percentage error in function of the number of
features entered to the model for the different kernel functions using the two
previously discussed feature selection techniques (wrapper and filter). Using the
flexible antenna, the mean percentage error obtained when using the wrapper
method dropped from 10% for a single feature model to 2% for the best feature
subset/kernel combination whereas for the filter technique the error dropped from
12% to 4%. Again, we notice that the highest correlated features are very close
in frequency, which indicates increased redundancy in the feature subsets of the
filter method. The Matern 52 kernel provided the lowest mean percentage error
for 14 features in the wrapper method, while the Matern 32 kernel provided
the lowest percentage error using 39 features in the filter method. Figure 5.10
(B) presents estimated glucose levels Vs the reference glucose levels using GP
regression models. In the left plot, the wrapper technique is used for the feature
and the kernel selection. Using Matern52 as kernel function along with 14 features
to build the model, a MARD of 3.09% is achieved. SEP-Hypo is 4.26 mg/dl,
and SEP-Hyper is 14.91 mg/dl. As for the filter, Matern 32 is utilized as kernel
function along with 39 features to build the model. MARD is 4.23%, SEP-Hypo is
2.26 mg/dl, and SEP-Hyper is 17.55 mg/dl. We notice that in both experiments,
the wrapper method provided lowest percentage error while using lowest number
of features. Hence, for the following experiments, the wrapper method is adopted.

5.2 Ex-vivo experiments

Before testing the performance of the proposed antennas in an in-vivo configura-
tion, ex-vivo experiments are conducted. The purpose of these experiments is to
confirm the on-body matching of the proposed antennas and to test their abilities
to detect the glucose variations through the different tissues.
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Figure 5.9: Feature selection and glucose levels estimation using semi-flexible
antenna, tested during in-vitro experiment. (A), Features and kernel selections.
The mean percentage error as a function of the number of features in the model
using Left: the wrapper feature selection technique and Right: the filter. We
can notice that the wrapper provide lower mean percentage error compared to
the filter method. (B) Glucose levels estimation and model performance. The
estimated glucose levels obtained by the proposed sensing system versus the refer-
ence glucose levels in the FBS solution (in red), using GP.The green filled circles
represent the predicted glucose levels obtained during the 10 repetition of process
and the blue dotted curve is the mean predicted value. Left: Using the wrapper
for the feature and the kernel selection, rational quadratic is utilized as kernel
function along with 11 features to build the model. The mean percentage error
between the reference and the predicted glucose levels is 4.96%. SEP-hypo is 7.49
mg/dl, and SEP-Hyper is 20.48 mg/dl. Right: Using the filter for the feature and
the kernel selection, Matern 32 is utilized as kernel function along with 23 fea-
tures to build the model. The mean percentage error between the reference and
the predicted glucose levels is 5.81%. SEP-hypo is 8.77 mg/dl, and SEP-Hyper
is 22.00 mg/dl.

5.2.1 Experimental setup

Fresh abdominal unshaved rat skin, fat and muscle are dissected. They are cut
into square pieces and then preserved in phosphate-buffered saline (PBS) on ice.
The different layers with the PBS solution are placed inside a foam container
above the antennas. A layer of FBS/glucose solution is then placed above the
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Figure 5.10: Feature selection and glucose levels estimation using the flexible
glove sensor, tested during in-vitro experiment. (A), The mean percentage error
as a function of the number of features in the model using Left: the wrapper
feature selection technique and Right: the filter. (B), Glucose levels estimation
and model performance. The predicted glucose levels obtained by the proposed
sensing system versus the reference glucose levels in the FBS solution (in red),
using GP. The data is randomly divided into two sets: 2/3 to build the model
and 1/3 to test its performance. Because of the limited number of observation in
the datasets, this process is repeated 10 times .The green filled circles represent
the predicted glucose levels obtained during the 10 repetition of process and the
blue dotted curve is the mean predicted value. Left: Using the wrapper for the
feature and the kernel selection, Matern52 is utilized as kernel function along
with 14 features to build the model. The mean percentage error between the
reference and the predicted glucose levels is 3.09%. SEP-Hypo is 4.26 mg/dl, and
SEP-Hyper is 14.91 mg/dl. Right: Using the filter for the feature and the kernel
selection, Matern 32 is utilized as kernel function along with 39 features to build
the model. The mean percentage error between the reference and the predicted
glucose levels is 4.23%. SEP-Hypo is 2.26 mg/dl, and SEP-Hyper is 17.55mg/dl.

skin in a thin nylon container. Initial measurements using a VNA is taken at time
zero. An amount of D-glucose, equivalent to 100 mg/dl, is added to the FBS
solutions for each measurement. After the glucose addition, the FBS solution
is well mixed and left for around 10 minutes to insure the homogeneity of the
solution. A reference glucose level is then taken using the invasive glucometer
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Figure 5.11: Ex-vivo experiment using the flexible antenna. Ex-vivo experiment
covering the hypo- to hyper-glycemic range. (A) The experimental setup. The
skin and the FBS layers are separated by a thin nylon sheet and the glucose levels
of the FBS solution is varied from the hypo to the hyper glyceamic levels (ranging
between 10 to 600 mg/dl). (B), Semi-Flexible antenna’s response. Left: the S11
magnitude response of the semi-flexible antenna vs frequency. The S11 magnitude
response shows good matching of the antenna when the skin (lossy medium) is
placed in proximity to the antenna. Examples of the S11 magnitude responses
corresponding to multiple glucose levels. (C), Left: the S11 magnitude versus the
reference glucose levels obtained by the commercial invasive glucometer, showing
a good correlation between the two curves (r=0.97). Right: Example of the S11
phase response versus glucose levels. Great correlation between the S11 phase
and the reference glucose levels (r=0.98).

from Roche [64] simultaneously with ten savings for the S11 magnitude and phase
using the VNA. A total of 14 measurements are taken, covering glucose levels
ranging between 10 to 600 mg/dl.

5.2.2 Scattering parameters Versus glucose levels

Semi-flexible glove sensor’s response to glucose variation

The effect of the ex-vivo mammalian skin, fat and muscle and that of the glucose
variation on the S11 response of the semi-flexible antenna is shown in Figure 5.11.
The on-body matching characteristics of the antenna is very clear when loaded
with rat tissues. This matching is well preserved and even enhanced at certain
frequencies, meeting our design objectives. In this experiment, the volume of the
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FBS is reduced to half, allowing a more realistic set-up where 15 ml of FBS is
used equivalent to ∼ 3 mm of thickness. We observe good agreement between the
S11 response and the reference glucose levels achieving a correlation of r=0.89
by the semi-flexible antenna as shown in Figure 5.11 (C). We can also identify
visually some outliers, which could be due to experimental errors.

Flexible glove sensor’s response to glucose variation

The effect of the ex-vivo mammalian skin, fat and muscle and that of the glucose
variation on the S11 response of the flexible antenna is shown in Figure 5.12.
The on-body matching characteristics is very clear when loaded with a rat tissues.
This matching is well preserved and even enhanced at certain frequencies, meeting
our design objectives. We observe good agreement between the S11 response
and the reference glucose levels achieving a correlation of r=0.98 as shown in
Figure 5.12 (B).

Figure 5.12: Ex-vivo experiment using the flexible antenna. Ex-vivo experiment
covering the hypo- to hyper-glycemic range. (A), Flexible antenna’s response.The
S11 magnitude response of the flexible antenna vs frequency. The S11 magnitude
response shows good matching of the antenna when the skin (lossy medium)
is placed in proximity to the antenna. (B), Examples of the S11 magnitude
responses corresponding to multiple glucose levels. Left: the S11 magnitude ver-
sus the reference glucose levels obtained by the commercial invasive glucometer,
showing a good correlation between the two curves (r=0.97). Right: Example of
the S11 phase response versus glucose levels. Great correlation between the S11
phase and the reference glucose levels (r=0.98).

5.3 Clinical Trials

We next evaluated the proposed system on healthy subjects to demonstrate its
ability to monitor the blood glucose levels in real-time-in-vivo settings during
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OGTTs.

5.3.1 Experimental setup

A total of 21 volunteers (11 females and 10 males 19-37 years of age) were re-
cruited in this study. The International Review Board (IRB) approved the ex-
periments and all volunteers signed a consent form. Subjects were considered
eligible for the study if they were between 18 and 70 years of age and able to
provide informed consent. There were no restrictions on either race, sex or ethnic-
ity. Substance abuse, lactation, pregnancy, and being part of an interventional
trial were the exclusive criteria. In the first phase of the study, only healthy
subjects with HbA1c levels less than 6%, normal blood pressure and no sign of
dyslipidemia were recruited. Each volunteer participated in multiple separate
OGTT experiments. Ten minutes prior to sugar intake (75 grams of sugar), the
developed sensors were placed on the corresponding sensing locations and fixed
for the entire OGTT 2-hour time span. Finger prick glucose monitoring device
(ROCHE glucometer [64]) was utilized for glucose fasting referencing. The timer
was then started and the sugar intake was controlled to be within 10-15 minutes.
Afterwards, finger-prick glucose monitoring was performed once every 15 minutes
and VNA savings were taken every five minutes. We relied on interpolation to
populate the remaining reference glucose points over 5 minute-intervals. During
the experiment, volunteers were kept indoor and asked to sit on a chair to limit
as much as possible their movements.

5.3.2 Scattering parameters Versus glucose levels

Semi-flexible glove sensor’s response to glucose variation

Figure 5.13 (B) shows the S11 phase variation with time at 0.7995 GHz dur-
ing one OGTT. We notice that the S11 phase (blue curve) follows the trend of
blood glucose profile (red curve), achieving a very good correlation of 0.944. The
difference in terms of S11 phase in function of frequency for three different glu-
cose levels is presented in Figure 5.13 (B). This difference illustrates the good
tracking of the glucose profile, at different frequencies. Figure 5.14 shows semi-
flexible glove sensor response during representative 8 samples chosen from the 63
OGTTs experiments representing some of the best correlations obtained between
the features (S11 magnitude and phase) and the reference blood glucose levels.
We were able to have high correlated features for the majority of the 63 OGTTs
experiments(Figure 5.14 (B)).

Flexible glove sensor’s response to glucose variations

Figure 5.15 shows the S11 phase variation with time at 1.36 GHz during one
OGTT. We notice that the S11 phase (blue curve) also follows the trend blood
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Figure 5.13: Semi-flexible glove sensor’s response during one OGTT. (A), The
experimental setup; the two antenna prototypes are placed on the volunteer’s
hands and readings are taken simultaneously from both antennas. (B), Antenna’s
response during one OGTT. Left: the blue curve shows the S11 phase response of
the semi-flexible antenna collected at 0.7995 GHz versus time during an OGTT.
This curve follows well the blood glucose profile curve shown in red, achieving
a high correlation of 0.944 between the two measurements. The arrow indicates
the onset of the glucose intake. Right: The antenna’s S11 phase response around
0.7995 GHz, corresponding to three different blood glucose concentrations. This
plot illustrates the good tracking of the glucose profile.

glucose profile (red curve), achieving a very good correlation of -0.94. Figure 5.16
shows the flexible glove sensor’s response during representative 8 samples chosen
from the 63 OGTTs experiments representing some of the best correlations ob-
tained between the features (S11 magnitude and phase) and the reference blood
glucose levels. We were able to have high correlated features for the majority of
the 63 OGTTs experiments (Figure 5.16 (B)).

5.3.3 Regression modeling results

Semi-flexible glove sensor glucose prediction results

Figure 5.17 shows the results obtained from the data collected during the 3
OGTTs completed by volunteer #2 using the semi-flexible glove sensor. Us-
ing the wrapper feature selection technique, 12 features are selected along with
the Matern 32 as kernel for the GP, which provides the lowest mean percent-
age error as shown in Figure 5.17(A). The dataset obtained from volunteer #2
is composed of 69 observations. After normalization and feature selection, this
data set is divided into two independent subsets: 2/3 training set and 1/3 testing
set. The training set is used to build the GP using the 12 predefined features and
the Matern 32 as a kernel. And the testing set is used to test the performance of
the model. Since the number of observations is small, this process is repeated 10
times by randomly dividing the dataset into training and testing sets.
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Figure 5.14: Human trials on healthy volunteers using the semi-flexible an-
tenna.(A), The fabricated semi-flexible antenna prototype. (B), Best correlations
obtained between the features (S11 magnitude and phase) and the reference blood
glucose levels. We were able to have high correlated features for the majority of
the 63 OGTTs experiments. (C), Antenna’s response during representative 8
samples chosen from the 63 OGTTs experiments. The blue curve shows the S11
response versus time during an OGTT. This curve follows well the blood glu-
cose profile curve shown in red, achieving high correlations and indicating good
tracking of the glucose profile. We notice also that there is no significant time
lag between the antenna’s response and the blood glucose peaks where the pre-
dicted blood glucose levels, obtained using the proposed system, match well the
reference blood glucose levels, and follow successfully the upward and downward
trends of the reference blood glucose levels.

We achieved a MARD ranging between 0.02% and 21.2% with a mean percent-
age error of 3.35%. As shown in Figure 5.17 (B), the estimated glucose levels
provided by the proposed system match well the reference blood glucose levels,
and follow successfully the upward and downward trends of the reference blood
glucose levels. More results are shown in Figure 5.18, showing the results for
different volunteers obtained using the semi-flexible antenna.
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Figure 5.15: Flexible glove sensor’s response during one OGTT. Left: the blue
curve shows the S11 phase response of the flexible antenna collected at 1.36 GHz
versus time during an OGTT. This curve follows well the blood glucose profile
curve shown in red, achieving a high correlation of -0.94 between the two mea-
surements. The arrow indicates the onset of the glucose intake. Right: The
antenna’s S11 phase response around 1.36 GHz, corresponding to three differ-
ent blood glucose concentrations. This plot illustrates the good tracking of the
glucose profile.

Flexible glove sensor glucose prediction results

Figure 5.19 shows the results obtained from the data collected during the three
separate OGTTs completed by volunteer #7 using the flexible antenna. Using
the wrapper feature selection technique, only 9 features out of the 42 features are
selected along with the rational quadratic as kernel for the GP which provides the
lowest mean percentage error as shown in Figure 5.19 (A). The dataset obtained
from volunteer #7 during three OGTT is composed of 63 observations. After
normalization and feature selection, this data set is divided into two independent
subsets: 2/3 training set and 1/3 testing set. The training set is used to build the
GP using the 9 predefined features and the rational quadratic as a kernel. And
the testing set is used to test the performance of the model. Since the number of
observations is small, this process is repeated 10 times by randomly dividing the
dataset into training and testing sets.
We achieved a MARD ranging between 0.01 and 18.26 with a mean percentage
error of 3.83%. As shown in Figure 5.19(B), the estimated glucose levels provided
by the proposed system match well the reference blood glucose levels, and follow
successfully the upward and downward trends of the reference blood glucose lev-
els. More importantly, the results show no delay between the estimated and the
reference blood glucose values. More results are shown in Figure 5.20, presenting
the estimated glucose levels obtained during 8 different OGTTs using the flexible
antenna.

The glove sensing system is capable of achieving an overall MARD of 6.08%
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Figure 5.16: Human trials on healthy volunteers using the flexible antenna. (A),
The fabricated flexible antenna prototype. (B), Best correlations obtained be-
tween the features (S11 magnitude and phase) and the reference blood glucose
levels. We were able to have high correlated features for the majority of the 62
OGTTs experiments. (C), Antenna’s response during representative 8 samples
chosen from the 62 OGTTs experiments. The blue curve shows the S11 response
versus time during an OGTT. This curve follows well the blood glucose pro-
file curve shown in red, achieving high correlations and indicating good tracking
of the glucose profile. We can notice also that there is no significant time lag
between the antenna’s response and the blood glucose peaks.

and 6.18% for the semi-flexible and flexible glove sensors respectively for the col-
lected data from all the volunteers during the 63 total OGTTs. These values show
exceptional accuracy; they are comparable to the error obtained by self- monitor-
ing systems available in the market [64]. To prove the repeatability, the Clarke’s
error grid analysis including the data of the 21 volunteers is shown in Figure 5.18
(B) for the semi-flexible glove sensor and in Figure 5.20 (B) for the flexible glove
sensor. We notice that all the estimations fall in the clinically acceptable zones
(zone A and B) with 96.04% of the data in zone A and the remaining 3.96% in
zone B for the semi-flexible prototype and 94.96% in Zone A and 5.04% in zone
B for the flexible prototype. Moreover, 89.78% of estimated values, using the
flexible antenna, are within 15% error, 94.96% are within 20% error, 98.86% are
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Figure 5.17: Feature selection and glucose estimation using the semi-flexible an-
tenna tested on volunteer #2. The data collected during the 3 OGTTs completed
by volunteer #2 are added together and used for both the feature selection and
the model building. (A), The mean percentage error as a function of the number
of features in the model using the wrapper feature selection technique. We can
notice that the matern32 is providing the lowest mean percentage error. (B),
The predicted glucose levels obtained by the proposed sensing system versus the
reference blood glucose levels (in red), using GP. The data is randomly divided
into two sets: 2/3 to build the model and 1/3 to test its performance. Because
of the limited number of observation in the datasets, this process is repeated 10
times .The green filled circles represent the predicted glucose levels obtained dur-
ing the 10 repetition of process and the blue dotted curve is the mean predicted
value. Using the wrapper for the feature and the kernel selection, Matern32 as
kernel function along with the first 12 features are utilized to build the model.
(C), The bar chart shows the percentage error of each observation. The error
ranged between 0.02 and 21.2 with a mean percentage error of 3.35%.

within 30% and 99.71% are within 40% error (These percentages are obtained
for the total 1430 estimated points). The proposed glucose EM-based sensors
are capable of achieving good matching between the estimated and actual (refer-
ence) glucose level, providing further confidence in the potential of the designed
antennas to monitor glucose noninvasively and continuously.
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Figure 5.18: Estimated blood glucose levels during human trials on healthy vol-
unteers using the semi-flexible antenna. (A), for each of the 63 experiments we
achieved a MARD below that 12% with a MARD of 5.304% averaged over all
the 63 experiments. (B), CEG for all the OGTT conducted by the 21 volunteers
showing the averaged estimations of 1427 data point. All the estimated values
are in the acceptable zones A and B with the majority in zone A (96.77%). (C),
93.48% of estimated values are within the 15% MARD error, 96.78% are within
20% MARD error, 99.09% are within 30% MARD error and 99.65% are within
40% MARD error. (D), blood glucose estimation using the GP model. Actual
glucose levels (red) compared with the estimated glucose levels over time (green
dots shows the estimations resulting from the 10 random repetitions in most cases
closely overlapping and the blue curve shows the mean estimation) for 12 repre-
sentative OGTTs chosen from a total of 63 OGTTs. The predicted blood glucose
levels match well the reference blood glucose levels, and follow successfully the
upward and downward trends of the reference blood glucose levels.
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Figure 5.19: Feature selection and glucose estimation using the flexible glove
sensor tested on volunteer #7. The data collected during the 3 OGTTs completed
by volunteer #7 are added together and used for both the feature selection and
the model building. (A),The mean percentage error as a function of the number
of features in the model using the wrapper feature selection technique. We can
notice that the rational quadratic is providing the lowest mean percentage error.
(B),The predicted glucose levels obtained by the proposed sensing system versus
the reference blood glucose levels (in red), using GP. The data is randomly divided
into two sets: 2/3 to build the model and 1/3 to test its performance. Because of
the limited number of observation in the datasets, this process is repeated 10 times
.The green filled circles represent the predicted glucose levels obtained during the
10 repetition of process and the blue dotted curve is the mean predicted value.
Using the wrapper for the feature and the kernel selection, rational quadratic as
kernel function along with the first 9 features are utilized to build the model.
(C),The bar chart shows the percentage error of each observation. The error
ranged between 0.01% and 18.26% with a mean percentage error of 3.83%.

5.3.4 Gender based analysis

To assess if there is a sensitivity difference detected by the proposed sensor be-
tween male/female volunteers we relied on unpaired Student’s t-tests/ Welch’s
t-test. A P value higher than 0.05 is considered statistically not significant and
hence no significant difference is reported between the two groups. We found that
both genders provided very similar sensitivity towards the glucose variations with
no significant difference in terms of mean correlation and MARD (Male, n = 30;
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Figure 5.20: Estimated blood glucose levels during human trials on healthy volun-
teers using the flexible antenna. (A), for each of the 62 experiments we achieved
a MARD below that 15% with a MARD of 4.7% averaged over all the 62 ex-
periments. (B), CEG for all the OGTT conducted by the 21 volunteers showing
the averaged estimations of 1399 data point. All the estimated values are in the
acceptable zones A and B with the majority in zone A (97.9%). (C), 95% of es-
timated values are within the 15% MARD error, 97.93% are within 20% MARD
error, 99.43% are within 30% MARD error and 99.79% are within 40% MARD
error. (D), blood glucose estimation using the GP model. Actual glucose levels
(red) compared with the estimated glucose levels over time for 12 representative
OGTTs chosen from a total of 62 OGTTs. CEG for all the OGTT conducted by
the 21 volunteers.

Female, n = 32). This was performed on the antenna data collected from the 21
volunteers (including 10 male and 11 female volunteers), using the glove sensors,
where each one was subject to three OGTTs. Additionally, no significant gender-
based shift in the correlated frequencies is observed (Male, n = 30; Female, n =
32) as shown in Figure 5.21.
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Figure 5.21: Gender-Based analysis for the flexiblle and semi-felxible glove sensor.
The averaged means ± SD of frequency, correlation and MARD for both antennas
are shown obtained from ∼ 63 experiments (30 male and 33 female). *P value as
calculated by Student t-test.

5.4 Discussion

In this chapter we evaluated the performance of the designed glove antennas in
different experimental setups. The in-vitro experiments demonstrated the ability
of the proposed sensors to detect very small glucose variations over the diabetic
range. We were also able to verify the importance of concentrating EM waves into
the vessels’ network. The ex-vivo experiments, on the other hand, demonstrated
the ability of the proposed system to provide good sensitivity towards the glucose
variations when placed in proximity to a lossy medium such as the mammalian
skin, fat and muscle layers. During this experiment the flexible antenna demon-
strated better sensitivity, which is explained by its superior on-body matching
response.
The proposed sensing system satisfies all the following requirements: its ability
(1) to detect very small glucose glycemic variations (10 mg/dl) over the hypo-
to hyper glycemic range, demonstrated during in-vivo experiments, and (2) to
maintain a good sensitivity in the presence of a lossy medium, verified during
ex-vivo experiments.
In this chapter, the sensors were tested separately. In chapter 7, we added mul-
tiple sensors to the system and we combined the antennas into a multi-location,
multi-sensing system to calibrate out some perturbing factors.
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Chapter 6

Experimental measurements and
results for the sock sensor design

This chapter presents the performance of the proposed sock sensors in different
experimental setups. We started with in-vitro experiments, where we proved the
capability of the proposed designs to monitor small variations of glucose levels.
After that we validated the performance of the proposed system when tested on
healthy and diabetic human volunteers.

6.1 In-vitro measurements

6.1.1 Scattering parameters versus glucose levels

The sock sensor’s S11 magnitude and phase at different glucose levels are shown
in Figure 6.1 and Figure 6.2 respectively. Around 35 measurements are taken
from each antenna design. Glucose concentration of the FBS solution is varied
with small steps from 50 mg/dl to 500 mg/dl. Good correlation between the S11
parameters and the glucose levels is achieved. The S11 magnitudes of the differ-
ent antenna designs at different glucose levels versus the frequency are shown in
Figure 6.1 left. The S11 magnitude versus the reference glucose levels obtained
by the commercial invasive glucometer is shown in the right plots of Figure 6.1.
The straight cyan line is the S11 fitted curve showing the trend of the antenna’s
response when the glucose levels increase.
High correlation coefficient values were obtained for the three different designs
indicating a strong linear relationship between the antenna’s response and the
glucose variation. We can notice that the three proposed designs were capable
of achieving very good sensitivity towards the glucose variations. Both S11 mag-
nitude and phase provided very good sensitivity towards the glucose variations
capturing the hypo-to hyper glycemic variations with high sensitivity.
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Figure 6.1: Sock sensor’s magnitude response to glucose variation during in-vitro
experiments. (A), Design #1. (B), Design#2. (C), Design #3.

6.1.2 Regression modeling prediction results

Figure 6.3 shows the prediction results for the three sock sensor designs during in-
vitro experiments. Figure 6.3 (A) shows the mean percentage error in function of
the number of features entered to the model for the different kernel functions using
wrapper as a feature selection technique. It’s clear that, for the three designs, the
mean percentage error, or cross validation error, decreases when more features are
added to the model until it reaches a minimum value and then it starts to increase
again. For antenna design #1 and #3, the wrapper technique resulted in a mean
percentage error which dropped from 9% to around 4% for the best number of
features and kernel function. For the antenna design #2, the mean percentage
error dropped from 5% to around 2%. Figure 6.3 (B) presents reference glucose
levels Vs the estimated glucose levels using GP regression models for the three
sock sensor designs. In the left plot, the results for design #1. Using the rational
quadratic as kernel function along with 8 features to build the model, a MARD
of 5.37% is achieved. As for design #2, Matern 32 is utilized as kernel function
along with 13 features to build the model achieving a MARD of 7.38%. The
squared exponential provided the lowest mean percentage error using 15 features
for design #3 achieving a MARD of 8.25%.
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Figure 6.2: Sock sensor’s phase response to glucose variation during in-vitro
experiments.(A), Design #1. (B), Design#2. (C), Design #3.

6.1.3 Response to common interferants

To evaluate the effect of some common interferants, including metformin, oleic
acid, panadol and fructose, on the proposed sensor’s response, glucose and these
interferants were added to the FBS solution in concentrations much higher than
their physiological ranges. We added successively 50 mg/dl of MET, OA, PAN,
FRU and GLU to the same FBS solution. The S11 parameters showed minimal
to no shift when the interferants were added for the three designs as shown in
Figure 6.4. In contrast, a significant shift of S11 parameters is produced when
the same amount of glucose is added to the solution, resulting in a correlation
with the glucose levels of R > 0.9 for the three proposed antennas.

The three proposed designs provided high sensitivity and high selectivity towards
the glucose variations with very similar correlations between the S parameters and
glucose levels. In the following experiments we used antenna design #3, corre-
sponding to the quasi-array antenna composed of 4 elements with non-identical
slots.
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Figure 6.3: Feature selection and glucose levels estimation using sock sensor,
tested during in-vitro experiment. (A), Features and kernel selections. The mean
percentage error as a function of the number of features in the model using Left:
Using the rational quadratic as kernel function along with 8 features sock sensor
design #1 achieved a the lowest percentage error. Middle: for sock sensor design
#2, Matern 32 kernel function achieved the lowest mean percentage error with
13 features to build the model. Right: The squared exponential kernel function
provided the lowest mean percentage error using 15 features for design #3. (B),
Glucose levels estimation and model performance. The estimated glucose levels
obtained by the proposed sensing system versus the reference glucose levels in the
FBS solution (in red), using GP. The green filled circles represent the predicted
glucose levels obtained during the 10 repetition of process and the blue dotted
curve is the mean predicted value. Left: sock sensor design #1 prediction results
with a MARD of 5.37%. Middle: sock sensor design #2 achieved a MARD of
7.38. Right: The mean percentage error between the reference and the predicted
glucose levels using antenna design #3 is 8.25%.

6.2 Clinical Trials

We evaluated the sock sensor design #3 on healthy and diabetic subjects to
demonstrate its ability to monitor the blood glucose levels in real-time settings
during OGTTs. A total of 28 volunteers were included in this experiment, 10
healthy and 18 diabetic, where each one underwent one OGTT.

Experimental setup

A total of 28 volunteers (10 healthy and 18 diabetic) were recruited in this study.
The IRB approved the experiments and all volunteers signed a consent form.
Subjects were considered eligible for the study if they were between 18 and 70
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Figure 6.4: Selective response of the sock sensors to glucose (Glu).(A), antenna
design #1 S11 response to different interferants. (B), antenna design #2 S11
response to common interferants and (C), antenna design # 3 S11 response to
the different interferants.

years of age and able to provide informed consent. There were no restrictions on
either race, sex or ethnicity. Substance abuse, lactation, pregnancy, and being
part of an interventional trial were the exclusive criteria. Each volunteer partic-
ipated in one OGTT experiment. The proposed sock sensor was placed on the
corresponding sensing location and fixed for the entire OGTT 2-hour time span
as shown in Figure 6.5 (A).

6.2.1 Scattering parameters Versus glucose levels

Figure 6.5 (B) left shows the S11 phase variation with time at 3.35 GHz during one
OGTT for a healthy volunteer. We notice that the S11 phase (blue curve) follows
the trend of blood glucose profile (red curve), achieving a very good correlation
of 0.93. Figure 6.5 (B) Right shows the S11 magnitude variation with time at
2.74 GHz for a diabetic volunteer showing a high correlation of 0.98 between the
actual glucose levels and the antenna’s S-parameters. The correlation between
the S-parameters and the glucose levels for the 28 OGTTs are shown in Figure 6.5
(C). We can see that out of the 28 OGGTs, 16 had a correlation higher than 0.8.
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Figure 6.6 show sock sensor’s response during representative 11 samples chosen
from the 28 OGTTs experiments.

Figure 6.5: Human trials on healthy and diabetic volunteers using the sock sensor
design #3. Real-time, continuous glucose monitoring on healthy and diabetic
volunteers. (A), The experimental setup; the antenna is placed on the volunteer’s
leg. (B), Antenna’s response during OGTT. Left: S11 phase variation with time
at 3.35 GHz during one OGTT for a healthy volunteer. We notice that the
S11 phase (blue curve) follows the trend of blood glucose profile (red curve).
This curve follows well the blood glucose profile curve shown in red, achieving a
high correlation of 0.93 between the two measurements. Right: S11 magnitude
variation with time at 2.74 GHz for a diabetic volunteer showing a high correlation
of 0.98 between the actual glucose levels and the antenna’s S-parameters. (c), The
correlation between the S-parameters and the glucose levels for the 28 OGTTs.
We can see that out of the 28 OGGTs, 16 had a correlation higher than 0.8.

6.2.2 Regression modeling results

The flexible sock sensor design #3 is fixed on the volunteers’ leg as shown in Fig-
ure 6.5. The non-invasively estimated blood glucose levels obtained by the GP
model for a one OGTT of a healthy volunteer, shown in Figure 6.7 (A), match
well the upward and downward trends of the reference blood glucose levels achiev-
ing a MARD of 0.926%. For this experiment, we relied on 16 features selected
by the wrapper feature selection technique along with the rational quadratic as
kernel for the GP, which provides the lowest mean percentage error as shown in
Figure 6.7 (A) top. Figure 6.7 (B), shows the results for a diabetic volunteer,
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Figure 6.6: Sock sensor response during OGTTs on healthy and diabetic volun-
teers. Sock sensor’s response during representative 11 samples chosen from the
28 OGTTs experiments.

where we achieved a MARD of only 0.62%. For this experiment, we relied on
only 10 features selected by the wrapper feature selection technique along with
the rational quadratic as kernel for the GP.
The leg sensing system achieves an overall MARD of 3.48% across all the volun-
teers, 3.57% for the diabetic and 3.31% for the control. To prove repeatability,
the CEG analysis for all 28 OGTTs is shown in Figure 6.8 (B). The mean es-
timated glucose levels fall 100% into the clinically acceptable zones (97.85% in
Zone A and 2.15% in B) for the sock sensor prototype. Moreover, 96.20% of the
estimated values are within 15% error, 97.85% are within 20% error, 99.17% are
within 30% and 99.50% are within 40% error. More results are shown in Fig-
ure 6.8 (D), showing the results for 8 healthy and diabetic volunteers obtained
using the flexible sock sensor.
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Figure 6.7: Feature selection and glucose estimation using the flexible sock sensor
(design #3). (A), the sock sensor tested on healthy volunteer. (B), sock sensor
tested on a diabetic volunteer.

6.3 Discussion

We are able to achieve very good matching between the estimated blood glucose
levels by the proposed system in comparison to the reference blood glucose levels
with a very low percentage error. In addition, our system is able to successfully
follow the increase and decrease of these levels. More importantly, the obtained
results show no delay between the estimated and the reference blood glucose
values. This observation indicates that our proposed system is monitoring the
glucose present in the blood, hence verifies one of our main design characteris-
tics which is the choice of the frequency range. The antenna’s waves at these
frequencies infiltrate sufficiently into the underlying tissues, reaching the blood
layers and hence providing direct information about the changes in the “blood”
dielectric properties.
The proposed sensors, tested separately, achieved very good matching between
the raw S11 data collected from the EM-sensors and the reference glucose levels,
providing confidence in the potential of the proposed non-invasive when tested in
controlled environments. The sensors provided also very high selectivity toward
glucose compared with other interferants and very good glucose prediction accu-
racy. We also noticed that the response of the antennas varied from one volunteer
to another while maintaining the multi-band, on-body matching characteristics.
This is mainly attributed to the difference of the underlying tissue compositions
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Figure 6.8: Estimated blood glucose levels during human trials on healthy and
diabetic volunteers using the sock sensor. (A), for each of the 28 experiments we
achieved a MARD below that 20% with a MARD of 3.48% averaged over all the 28
experiments. (B), CEG for all the OGTT conducted by the 28 volunteers showing
the averaged estimations of 605 data point. All the estimated values are in the
acceptable zones A and B with the majority in zone A (97.85%). (C), 96.20% of
the estimated values are within 15% error, 97.85% are within 20% error, 99.17%
are within 30% and 99.50% are within 40% MARD error. (D), blood glucose
estimation using the GP model. Actual glucose levels (red) compared with the
estimated glucose levels over time for 8 representative OGTTs chosen from a
total of 28 OGTTs.

between one person and the other, and more precisely, to the difference in terms
of: skin thickness, skin color, hydration level, sweat and hair density. In chapter
7, we added multiple sensors to the system and we combined the antennas into
a multi-location system to calibrate out these perturbing factors.
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Chapter 7

Calibration using environmental
and physiological sensors

In this chapter we evaluated the proposed sensors in different experimental setups.
First, we tested the performance of the proposed system when we collected data
simultaneously from two different locations. After that we added multiple sensors
to the system to take into consideration different environmental factors such as
temperature, humidity, sweat and movement. Finally, we provide, in this chapter,
a comparison between the different testing scenarios.

7.1 Introduction

Previous clinical trial’s results showed good correlation between the dielectric
signal and the actual blood glucose levels with very promising accuracy. How-
ever, in daily-life situations, the dielectric spectroscopy could be affected by a
variety of environmental and physiological factors. These perturbing factors in-
clude ambient temperature and humidity, skin temperature, skin conductance
which is mainly affected by the sweat, and motion which could affect the sensor-
skin contact. As a result, any noninvasive glucose monitoring system based on
EM technology must also take into consideration the different perturbing factors.
Hence, we introduce a strategy for fully noninvasive glucose monitoring system
that allows the proposed EM technology to be integrated in a multi-sensing wear-
able format. The system is composed of two flexible EM- Vessels-like sensors
and multiple environmental and physiological sensors. The EM- based sensors
are designed to monitor the glucose variations from different body locations si-
multaneously, integrated inside wearable apparels, and continuously monitor the
glucose levels of deep vasculatures without the operational difficulties or insta-
bilities encountered by other conventional approaches. Additional environmental
and physiological sensors are also incorporated inside the apparels as shown in
Figure 7.1. Each sensor provides non-invasive and continuous monitoring of the
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different perturbing factors.

Figure 7.1: Illustration of the multi-location multi-sensing system. The system
is composed of EM sensors for glucose measurements targeting the hand, leg and
arm along with the environmental and physiological sensors for skin temperature,
sweat, ambient temperature, ambient humidity and movement measurement sen-
sors.

7.2 One system multiple locations

To overcome the technical difficulties introduced by some environmental factors
and to improve the sensitivity of the device, first we joined the proposed sensors
into a multi-location system. In one experiment, we joined a filter designed to
target the arm vessels [78] along with the hand flexible antenna. In another
experiment, we joined the flexible hand antenna with the leg antenna.

7.2.1 Glove antenna and armband filter joined system

The glove antenna and the filter are joined into a multi-location system targeting
the hand and the arm. The system is tested on six healthy volunteers recruited for
this experiment. Each volunteer underwent one OGTT resulting in six OGTTs
in total. During each OGTT, around 23 measurements are recorded. The same
procedure as before is adopted and each OGTT is processed separately. The
respective responses, towards the variation of glucose levels, of both the antenna
and filter are obtained from a portable VNA as shown in Figure 7.2. The VNA is
connected to the sensors, while uniformly sweeping the frequencies over the 0.5-3
GHz range.
Figure 7.2 displays the antenna’s and the filter’s individual S parameters versus
glucose levels for one volunteer. For this volunteer, the filter’s third configuration
provided the highest correlation between the S parameters and the glucose levels.
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By combining the responses of both sensors and relying on the wrapper technique
to select the most important features, we are able to reduce the MARD from
2.84% for the antenna alone to 0.91% for the combined system.

Figure 7.2: Multi-location system with the hand antenna and the arm filter
response during one OGTT. The antenna and the filter are simultaneously tested
on six healthy volunteers. We first evaluated the response of each sensor. (A)
Top: Antenna’s response for one volunteer. Bottom: Blood glucose estimation
using the GP model. (B) Filter’s response using three different tuning states.
(C) Multisystem setup. (D) Multisystem blood glucose estimation.

We notice during the initial set of human trials that the response of the proposed
sensors varied between patients (Figure 7.3). Hence, by monitoring the glucose
levels using both the antenna and the tunable filter, we are able to tailor the
proposed sensing system to better capture the specific individuals’ characteristics.
The wrapper feature selection technique helped us capture or identify the best
combinations of features obtained from the different tunings of the filter and the
antenna device. The arrows in Figure 7.3 are intended to indicate that each
person may interact with each tuning differently; however, it emphasizes that the
best set features obtained from the different sensors’ settings indeed provide the
best predictions.
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Figure 7.3: Multi-location system with the hand antenna and the arm filter.
(A), Personalized monitoring. For each volunteer, the antenna and the filter re-
sponded differently, as shown in the bar plot, depending of the subject’s physical
characteristics. The red arrow indicate the sensor achieving the highest corre-
lation between the senor’s response and the actual glucose level. By combining
the responses of both sensors, we relied on the wrapper technique to select the
most significant features for each volunteer among the features obtained from the
different configurations and sensing devices. (B), blood glucose estimation using
the GP model. Actual glucose levels (red) compared with the estimated glucose
levels over time (green dots shows the estimations resulting from the 10 random
repetitions in most cases closely overlapping and the blue curve shows the mean
estimation) for 4 representative OGTTs chosen from a total of 6 OGTTs. The re-
sults show very good agreement between the estimated and the reference glucose
levels. CEG for all the OGTT conducted by the 6 volunteers.

7.2.2 Glove antenna and sock antenna joined system

The glove antenna and the sock antenna are joined into a multi-location system.
The system is tested on 10 healthy volunteers and 18 diabetic patients recruited
for this experiment. Each volunteer underwent one OGTT resulting in a total
of 28 OGTTs. During each OGTT, around 23 measurements are recorded. The
same procedure as before is adopted and each OGTT is processed separately. The
respective responses, towards the variation of glucose levels, of both the Hand
antenna and Leg antenna that are integrated respectively within the glove and
the sock for one volunteer are shown in Figure 7.4. For this volunteer, the leg
antenna provided lower prediction error of only 0.6% compared with the hand
antenna, which achieved a MARD of 2.85%. By combining the responses of both
sensors and relying on the wrapper technique to select the most important fea-
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tures, we are able to reduce the MARD from 2.85% for the hand antenna alone
to 0.4% for the combined system.

Figure 7.4: Multi-location system with the hand antenna and the leg antenna.
The hand antenna and the leg antenna are simultaneously tested on 8 healthy and
8 diabetic volunteers. We first evaluated the response of each sensor alone. (A)
Left: Hand Antenna’s glucose prediction for one volunteer using the GP model.
Right: Leg Antenna’s glucose prediction for one volunteer using the GP model.
(B) Left: Multi-location system blood glucose estimation. (C) Comparison be-
tween the standalone and combined system in terms of mean percentage error of
the glucose levels prediction. The bar plot, shows that the multi- location system
provided lower prediction error compared with the standalone system. By com-
bining the responses of both sensors, we relied on the wrapper technique to select
the most significant features for each volunteer among the features obtained from
the two sensing devices.

Figure 7.5 shows a comparison between prediction errors for hand antenna used
alone, leg antenna used alone and the combined system for all the experiments.
As we can see, the combined multi-location system provided the lowest MARD
(Figure 7.5 (A) and (B)). We believe that the multi-location system reduces the
impact of interfering factors in real-life condition such as surface temperature,
humidity, and movement by monitoring the glucose levels from two different lo-
cations. However we also noticed that each sensor could be used alone, providing
predictions in the clinically acceptable zones, as shown in the CEG in Figure 7.5
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(C).

Figure 7.5: Comparison between the standalone and combined multi-location
system. (A), for the 28 experiments we achieved a MARD below that 4% with a
MARD of 3.58% averaged over all the 28 experiments for the hand antenna alone,
3.48% for the leg antenna alone and 2.73% for the combined system. (B), For the
hand antenna alone: 96.4% of estimated values are within the 15% MARD error,
98% are within 20% MARD error, 99.2% are within 30% MARD error and 99.70%
are within 40% MARD error. For the Leg antenna alone: 96.2% of estimated
values are within the 15% MARD error, 97.85% are within 20% MARD error,
99.17% are within 30% MARD error and 99.5% are within 40% MARD error. For
the combined multi-location system: 97.55% of estimated values are within the
15% MARD error, 98.04% are within 20% MARD error, 99.51% are within 30%
MARD error and 99.84% are within 40%MARD error. The multi-location system
shows superior performance compared with the standalone systems. (C), CEG
for all the OGTT conducted by the 28 volunteers for the standalone systems and
the combined system. Left: CEG analysis when using the hand antenna alone.
Middle: CEG analysis when using the leg antenna alone. Right: CEG analysis
when using the combined system.All the estimated values are in the acceptable
zones A and B with the majority in zone A.
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7.3 One System with multiple environmental/

physiological sensors

In the previous experiments we found that dielectric spectroscopy allows contin-
uous, noninvasive glucose monitoring through skin and underlying tissues. The
results in controlled clinical trials showed good correlation between the dielectric
signal and the actual blood glucose levels with very promising accuracy. How-
ever, in daily-life situations, the dielectric spectroscopy could be affected by a
variety of environmental and physiological factors. These perturbing factors in-
clude ambient temperature, humidity, skin temperature, skin conductance which
is mainly affected by the sweat, and motion which could affect the sensor-skin
contact.
To test and compensate for the possible influence of some environmental effects
on the EM sensors readings, we created a sensing array comprising: Skin temper-
ature sensor, sweat sensor, environmental temperature and humidity sensor and
a motion sensor. All these sensors are embedded inside the designed glove and
sock.

7.3.1 Skin Temperature Sensor

Skin temperature can provide clinical information about many aspects of human
physiology including various skin injuries and diseases [79] which could affect
the dielectric properties of the MUT. Additionally, skin temperature monitoring
is needed to take into the account and reduce the temperature variation in the
readings of the EM sensors through a built- in signal processor.
A Philips 21091A skin-surface temperature probe [80] was used for skin tem-
perature monitoring and fixed inside both the glove and the sock as shown in
(Figure 7.6). The accuracy of the probe is ± 0.1 °C for temperatures ranging
between 25°C and 45 °C, and ±0.2 °C otherwise (0-60 °C). The collected data are
sent via Bluetooth to a phone application.

7.3.2 Skin conductance response (SCR) sensor

The SCR known also as galvanic skin response (GSR) measures the variation in
the electrical conductivity of the skin which varies with its moisture level. These
variations are mainly due to the skin sweat generated by the sweat glands and
can be utilized to estimate the sweat rate. The GSR can be measured in terms
of conductance, resistance and electro- physiological potential. The conductivity
of the skin increases when the sweat rate increases [81]. The sensor measures
the electrical conductivity between two electrodes and is considered a type of
ohmmeter.
The GROVE GSR sensor [82] is integrated inside the glove monitoring the skin

82



conductivity using two Ag/AgCl electrodes fixed on the skin. A small voltage of
0.5 V is applied between the two electrodes. And by relying on ohm’s law, the
electrical conductivity of the skin is measured using the current flow between the
two electrodes. The GSR sensor is wired to an Arduino to collect and save the
data.

7.3.3 Environmental temperature and humidity sensor

Since the environmental temperature and humidity may affect directly the elec-
trical properties of the tissues under test specifically the dielectrical constant and
the loss tangent, compensation for these two factors is crucial in our application.
In [83] the authors proved that the ambient temperature has a higher effect on
the EM-sensor response than humidity.
To test and compensate for environmental temperature and humidity potential
effects, a CC2650STK, Sensor Tag Development kit [84] is added to the proposed
system to monitor the ambient humidity and temperature of the test environ-
ment. The collected data are sent via Bluetooth to a phone application.

7.3.4 Motion sensor

Motion could affect the EM-sensor to skin contact, hence to take into considera-
tion these movements effect on the S-parameters readings, we added a FLORA
Accelerometer sensor [85] to the proposed system. The sensor is wired to an
Arduino to collect and save the 3-axis accelerometer data.

7.3.5 Multi-location and multi-sensing system results

To evaluate the performance of the proposed multi-location, multi-sensor system,
clinical trial was carried out on 10 healthy and 18 diabetic subjects. The blood
glucose levels of these volunteers were varied during OGTTs. Signals from the
arm and leg antennas along with the integrated sensors were monitored during
2hours OGTT for each volunteer. One of the study goals is to check the effect of
the temperature, humidity, skin temperature, galvanic skin response and move-
ment on the EM-signal and to compensate for these perturbations.
The responses, towards the variation of glucose levels, during one OGTT using
the multi-sensing, multi-location-system are detailed in Figure 7.6. Normalized
data collected from the environmental/physiological sensors: skin temperature,
humidity, ambient temperature, GSR and motion in terms of X, Y and Z as mea-
sured by sensors integrated in the glove are shown in Figure 7.6 (A). These signals
along with the S parameters collected from the leg and hand antennas are used
to predict the glucose levels. Using the wrapper feature-selection technique, we
are able to identify the most important features for each volunteer by analyzing
their individual data and we are able to compensate for the perturbations caused
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by the different environmental and physiological factors. GP regression model
is adopted as before and each OGTT is processed separately. The comparison
between the standalone and combined system in terms of mean percentage error
of the glucose levels prediction shows that the multi- sensing system provided
lower prediction error compared with the standalone system.
For this volunteer, shown in Figure 7.6 ,the leg antenna provided lower prediction
error of only 0.93% compared with the hand antenna which achieved a MARD of
2.15%. By combining the responses from both sensors along with the signals from
the physiological/environmental sensors we are able to reduce the MARD from
2.15% for the hand antenna alone to 0.61% for the combined system improving
the results by 3.5 folds.

Figure 7.6: On-body real-time analysis during one OGTT experiment. (A),
Normalized data collected from the environmental/physiological sensors: skin
temperature, humidity, ambient temperature, GSR and motion in terms of X, Y
and Z as measured by sensors integrated in the glove. (B), Left: real-time raw
S11 data collected from the hand antenna. Right: Glucose prediction using the
GP model when relying only on the hand antenna data. (C), Left: real-time raw
S11 data collected from the leg antenna. Right: Glucose prediction using the GP
model when relying only on the leg antenna data. (D), Left: Multi-sensing system
blood glucose estimation. E, Comparison between the standalone and combined
system in terms of mean percentage error of the glucose levels prediction. The
bar plot, shows that the multi- sensing system provided lower prediction error
compared with the standalone system. By combining the responses of sensors,
we relied on the wrapper technique to select the most significant features for each
volunteer among the features obtained from the two sensing devices.

Figure 7.7 shows a comparison between prediction errors for the hand antenna

84



used alone, the leg antenna used alone and the multi-sensing, multi-location sys-
tem for all the 28 experiments. The CEGs for all the OGTT conducted by the 28
volunteers for the standalone systems and the multi-sensing, multi-location sys-
tem are shown in Figure 7.7 (B). All the estimated values are in the acceptable
zones A and B with the majority in zone A. The multi-sensing system resulted
in 99.01% of the predictions in zone A and the remaining 0.99% predictions in
zone B. It achieved: 98.18% of estimated values, within the 15% MARD error,
98.84% within 20% MARD error, 99.67% within 30% MARD error and 99.83%
within 40% MARD error. The multi-sensing system shows superior performance
compared with the standalone systems. And if we compared the MARD values
obtained by these three setups, the combined multi-location multi-sensing system
provided the lowest MARD of only 2.45%, for the 605 prediction points, as shown
in Figure 7.7 (A).

7.4 Discussion

The multi-location, multi-sensing system reduces the impact of interfering factors
in real-life condition such as surface temperature, humidity, and movement when
monitoring the glucose levels from the EM sensors and compensating for the per-
turbing factors by adding the physiological and environmental sensors. However
we also noticed that each sensor could be used alone, providing predictions in the
clinically acceptable zones, as shown in the CEG in Figure 7.7.
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Figure 7.7: Comparison between the standalone and combined multi-location
system. (A), for the 28 experiments we achieved a MARD below that 4% with a
MARD of 3.58% averaged over all the 28 experiments for the hand antenna alone,
3.48% for the leg antenna alone and 2.45% for the mutli-sensing system. (B), For
the hand antenna alone: 96.4% of estimated values are within the 15% MARD
error, 98% are within 20% MARD error, 99.2% are within 30% MARD error
and 99.70% are within 40% MARD error. For the Leg antenna alone: 96.2%
of estimated values are within the 15% MARD error, 97.85% are within 20%
MARD error, 99.17% are within 30% MARD error and 99.5% are within 40%
MARD error. For the combined multi-sensing multi-location system: 98.18% of
estimated values are within the 15% MARD error, 98.84% are within 20% MARD
error, 99.67% are within 30% MARD error and 99.83% are within 40% MARD
error. The mulit-location system shows superior performance compared with the
standalone systems. (C), CEG for all the OGTT conducted by the 28 volunteers
for the standalone systems and the combined system. Left: CEG analysing when
using the hand antenna alone. Middle: CEG analysis when using the leg antenna
alone. Right: CEG analysis when using the multi-location and multi-sensing
system. All the estimated values are in the acceptable zones A and B with the
majority in zone A.
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Chapter 8

Conclusion and Future Directions

In this thesis, we provide proof of concept for a novel non-invasive, multi-location
glucose monitoring system, based on a multi-sensing array integrated into wear-
able apparel. The concept is founded on EM sensors fabricated on ultrathin,
flexible substrates designed specifically to concentrate the EM waves toward the
targeted veins and arteries. EM-based sensing technologies are ideal for cheap,
miniaturized, portable, and wearable biomarker monitoring solutions. As a first
prototype, we targeted the hand and the leg as sensing locations. A wearable
glove and sock will ensure comfort for the patients in different scenarios (work en-
vironment, physical activities, school). Many other locations could be considered.
EM waves are transmitted into the body reaching the desired veins and arteries
and allowing the extraction of information directly from the blood. To improve
the sensitivity of the EM sensors several factors were considered: (1) they are de-
signed to operate in the UHF and microwave bands allowing enough penetration
depth of the EM waves to reach the blood vessels and hence providing good sen-
sitivity towards glucose variation. (2) The slots are inspired by the blood vessel’s
network. The multiple slots result in a multi-band response allowing the system
to sense the glucose variation at different frequencies with enhanced sensitivity
due to the alignment between the antenna slots and the underlying vasculature
anatomy. This allows focusing the EM waves on the targeted veins and arter-
ies and results in improved sensitivity. (3) They are designed to operate when
loaded with a lossy medium (on-body matching); this is intended to maintain the
multi-band operation of the antenna when loaded with the human hand. These
EM sensors are designed to target simultaneously multiple body locations. To
calibrate out the different perturbing factors affecting the dielectric spectroscopy
multiple environmental and physiological sensors were added to the system.
The system is validated on serum, animal tissues, and in a clinical setting. Serum-
based and ex-vivo experiments demonstrate high precision across the diabetic
glucose range (10mg/dl - 600mg/dl). Human trials exhibit clinical accuracy of
98% on fifty-five healthy and diabetic subjects who underwent around hundred
OGTTs. Results are validated on the sensors (leg and hand sensors) used sep-
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arately and collectively. The multi-sensing, multi-location approach greatly im-
proved the accuracy of the blood glucose level estimation. The system captures
the clinical glycemic variations without any time lag, reporting up to 98% cor-
relation between the system’s physical parameters and blood glucose levels. To
our knowledge, this is one of the rare studies that assess the sensitivity of the
proposed sensors on serum containing several ranges of glucose (10mg/dl to 600
mg/dl), on ex-vivo animal tissues exposed to a wide range of glucose (10 mg/dl
to 600mg/dl) and in a clinical trial.

8.1 Future Directions

In this work, we developed a painless continuous wearable glycemic monitoring
multi-sensor system that could be used by all age groups of diabetic and non-
diabetic people. The fact that the proposed biosensors are streamlined, moving
away from the typical patches/wristbands and more into embedded sensors fixed
inside fashionable accessories and textiles that blend into patient’s daily life is
what makes our solution unique. The patients, of all age groups, could continu-
ously monitor the glucose levels using his/her daily wearable accessories without
the need to wear a specific patch. By adding multiple sensors to the proposed
system and monitoring the blood glucose from different locations, we were able
to further improve the system’s sensitivity. In addition, the multi-sensing system
provided personalized monitoring of the glucose levels, based on the patient’s
characteristics. The obtained results are highly encouraging showing comparable
results with minimally-invasive, FDA-approved systems. Besides improving the
quality of life of diabetic patients, especially children, such non-invasive continu-
ous glucose-monitoring technology could pave the way for the development of a
full closed-loop artificial pancreas system.
Several aspects of this research are still ongoing work in progress targeting to
expedite its deployment for real-world applications. A brief overview of the work
in progress is presented here along with an outlook towards potential future de-
velopments of this technology.

The next steps include:

• Peripheral circuit miniaturization: This encompasses reducing the overall
size of the VNA, which can be used as a back-end circuitry for the system.
This will make our system fully wearable, allowing us to test its performance
on large-scale clinical trials.

• Energy sustainability: There is a need for providing efficient energy har-
vesting approach to sustainably power the proposed wearable system. High-
energy consumption is a crucial challenge in wearable sensors. Energy could
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be harvest from different sources including wearable, portable and sustain-
able sources such as solar light, bio-fluids, human motion, and wifi.

• Large scale clinical trials: We aim at testing the wearable system in large
scale international multi-center multi-phase clinical trials, which will in-
clude diverse volunteers from all around the MENA region, UK and USA.
Such clinical trials will allow us to take into account different age groups and
different skin pigmentation and test the sensitivity of the proposed system
towards different physiological conditions including obesity, cardiovascular
diseases, and other diabetes complications.

• Data analytics: In this thesis, we relied on the Gaussian process regression
technique to relate S11 coefficients to actual blood glucose concentrations
based on the available data sets. With time, calibration is needed to ac-
count for physiological changes. Self-calibration is possible where additional
sensors along with intelligent machine learning techniques are employed.
Large-scale clinical trials will pave the way for a holistic data analytics
framework that enables robust modeling with self-calibration techniques.

• CGM on the cloud: We aim at developing a software that fully automates
data collection and processing from all the integrated sensors inside the pro-
posed multi-sensing system. Similarly, an application could be developed
for computers, tablets, smartphones, and watches to allow the patients to
monitor their glucose levels on their portable devices. Furthermore, con-
necting the system to the cloud allows the patients to share their results
with and follow up closely with physicians who in turn can provide them
with personalized treatment regimens based on their individual glycemic
profiles. This will help in the management of the progression of the disease.
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Appendix A

Abbreviations

IF Interstitial Fluid
CGM Continuous Glucose Monitoring
EM Electromagnetic
MUT Medium Under Test
SMBG Self Monitoring of Blood Glucose
HbA1c Hemoglobin A1C
OGTT Oral Glucose Tolerance Test
IVGTT Intravenous Glucose Tolerance Test
UHF ultrahigh frequency
FDA Food and Drug Administration
DOP Depth of Penetration
PET Polyethylene terephthalate
AED Electronics Desktop Simulator
CNC Computerized Numerical Control
QWT Quarter-Wave Transformer
SAR Specific Absorption Rate
EU European
FBS Fetal Bovine Serum
VNA Vector Network Analyzer
PBS Phosphate-Buffered Saline
IRB International Review Board
GP Gaussian Process
PLS Partial Least Square
LASSO Least Absolute Shrinkage and Selection Operator
LWPLS Locally Weighted Partial Least Square
PCC Pearson Correlation Coefficient
FFS Forward Feature Selection
MARD Mean Absolute Relative Difference
SEP Standard Error of Prediction
CEG Clarke Error Grid
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SCR Skin Conductance Response
GSR Galvanic Skin Response
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