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Introduction

Modular forms are omnipresent in mathematics. They appear in different mathemat-
ical disciplines like number theory, algebraic geometry, harmonic analysis; and they have
recently turned up in the study of black holes and string theory. P. Sarnak[1] described
this as “The unreasonable effectiveness of modular forms”. Their presence usually indi-
cates a deep underlying structure teeming with symmetry.

Their period polynomials also are of central importance. Their structure and proper-
ties as objects in their own right have attracted a lot of interest from various perspectives.
For instance, their have been a number of recent works on the theory of period polynomi-
als and their zeros. It follows from the Eichler-Shimura Isomorphism that studying the
zeros of period polynomials is as natural as studying the zeros of the cusp forms them-
selves. Moreover, these period polynomials can be viewed as the generating functions for
the critical values of L-functions associated to modular forms; i.e. they provide a way of
encoding critical values of the modular L-functions that has proven very successful in the
uncovering of important arithmetic properties of L-values. Indeed, as L-functions are of
fundamental importance in a wide number of areas of mathematics, it is thus useful to
study period polynomials.

In this survey, we first give a brief introduction to the theory of modular forms and
their period polynomials. We then study the location of the zeros of these period polyno-
mials. The first work on this subject is due to Conrey et al.[2] who showed that the odd
part of the period polynomial for any level 1 Hecke cusp form, apart from the so-called
“trivial zeros”, all lie on the unit circle. Shortly thereafter, El-Guindy and Raji[3] showed
that the zeros of the full period polynomial for any level 1 eigenform lie on the unit circle.
And then, not long afterwards, Ono et al.[4] coined the term “Riemann Hypothesis for
Period Polynomials”(RHPP) for the assertion that all roots of period polynomials lie on
a circle centered at the origin, and showed that RHPP holds for any Hecke eigenform of
higher level. Recently, Rolen et al.[5] showed that RHPP holds in the situation of Hilbert
modular forms as well. More precisely, they show that the zeros of period polynomials of
any parallel weight Hilbert modular eigenform on the full Hilbert modular group lie on
the unit circle.
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Chapter 1

Definitions and Basic Properties

In this chapter, we introduce the basic objects of study: Modular forms, their Hecke
operators, associated L-functions, and period polynomials.

1.1 Modular Forms on SL2(Z)
Denote by H the upper half plane, i.e. the set of all complex numbers with positive
imaginary part:

H = {z ∈ C,=(z) > 0}.

Define the full modular group

Γ := SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

SL2(Z) acts on H in the standard way by Möbius transformations:

For z ∈ C and γ =

(
a b
c d

)
∈ Γ, γ.z =

az + b

cz + d

The action preserves H since, as a simple calculation shows,

=(γz) =
=(z)

|cz + d|2
.

Definition 1.1.1. A modular form of weight k ∈ Z on Γ is a holomorphic function
f : H→ C satisfying

• f(γz) = (cz + d)kf(z) for γ =

(
a b
c d

)
∈ Γ

• f is holomorphic at ∞
(
or f(z) =

∑∞
n=0 c(n)e2πinz

)
.

Remark. For γ = −I, f(−Iz) = (−1)kf(z); but f(−Iz) = f(z), then non-zero modular
forms must be of even weight.

Definition 1.1.2. If c(0) = 0 in the preceding definition (i.e. f vanishes at ∞), we say
that f is a cusp form.
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We denote by Mk the space of modular forms of weight k on Γ, and by Sk that of
cusp forms.

Theorem 1.1.1. Let f ∈ Sk with f(z) =
∑∞

n=1 a(n)e2πinz. Then the Fourier coefficients
a(n) of f satisfy

a(n) = O
(
n

k
2

)
.

Proof. Let

g(z) = y
k
2 |f(z)|

where z ∈ H and y = =(z) > 0. Note that for M =

(
a b
c d

)
∈ Γ,

g(Mz) = =(Mz)
k
2 |f(Mz)|

=

(
=(z)

(cz + d)2

) k
2

|(cz + d)kf(z)|

= y
k
2 |f(z)|

= g(z).

That is, g is invariant under Γ; which means that the values of g arise on the fundametal
domain of Γ (see more on this in [6]). Note also that

lim
z→i∞

g(z) = lim
y→∞

y
k
2

∣∣∣∣∣
∞∑
n=1

a(n)e2πinz

∣∣∣∣∣ ≤ lim
y→∞

y
k
2

∞∑
n=1

|a(n)|e−2πny = 0. (1.1)

Then g is continuous in H and at ∞, and invariant under Γ. These together with (1.1)
give us that g is bounded in H, say g(z) ≤ c. Hence, we obtain

f(z) ≤ cy
−k
2 .

For n ≥ 1 and z ∈ H consider ∫ z+1

z

f(t)e−2πint dt.

We have ∫ z+1

z

f(t)e−2πint dt =

∫ z+1

z

∞∑
m=1

a(m)e2πi(m−n)t dt

=
∞∑
m=1

a(m)

∫ z+1

z

e2πi(m−n)t dt

= a(n).

Therefore,

|a(n)| =
∣∣∣∣∫ z+1

z

f(t)e−2πint dt

∣∣∣∣
≤
∫ z+1

z

|f(t)|e2πny |dt|

≤ cy
−k
2 e2πny.
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This is true for any y > 0; so taking y = 1
n

we get

|a(n)| ≤ ce2πn
k
2

for all n as desired.

Corollary 1.1.1. If k < 0 and f ∈ Sk, then f ≡ 0.

Proof. Write f(z) =
∑∞

n=1 a(n)e2πinz. Then by Theorem 1.1.1, we have that for any
y > 0

|a(n)| ≤ cy
−k
2 e2πny.

Letting y tend to 0, we see that a(n) = 0 for all n ≥ 1.

1.2 The Hecke operators Tn

Definition 1.2.1. For a fixed integer k and any n = 1, 2, ..., the operator Tn is defined
on Mk by the equation

(Tnf)(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
. (1.2)

In the special case when n = p is prime, the sum on d contains only two terms, so we get

Tpf(z) = pk−1f(pz) +
1

p

p−1∑
b=0

f

(
z + b

p

)
.

Theorem 1.2.1. If f has the Fourier expansion at ∞

f =
∞∑
m=0

c(m)e2πimz

then

Tnf(z) =
∞∑
m=0

γn(m)e2πimz

where

γn(m) =
∑
d|(n,m)

dk−1c
(mn
d2

)
.
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Proof. Writing f(z) =
∑∞

m=0 c(m)e2πimz, we get

Tnf(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

∞∑
m=0

c(m)e2πimnz/d2e2πimb/d

=
∞∑
m=0

nk−1
∑
d|n

d−kc(m)e2πimnz/d2
d−1∑
b=0

(e2πim/d)b

=
∞∑
q=0

∑
d|n

(n
d

)k−1

c(qd)e2πiqnz/d (d | m so write m = qd)

=
∞∑
q=0

∑
d|n

dk−1c
(qn
d

)
e2πiqdz (d runs over all divisors of n, then so does

n

d
)

=
∞∑
m=0

∑
d|(m,n)

dk−1c
(mn
d2

)
e2πimz.

Observe that writing n = ad and letting A =

(
a b
0 d

)
, equation (1.2) takes the form

(Tnf)(z) = nk−1
∑

a≥1,ad=n
0≤b<d

d−kf(Az) =
1

n

∑
a≥1,ad=n

0≤b<d

akf(Az).

Let

∆n =

{(
a b
0 d

)
, a, b, d ∈ Z, ad = n, 0 ≤ b < d

}
.

To determine the behavior of Tnf under transformations of Γ, we need to study the set
∆n. One obtains (See [6] Theorem 6.9):

Lemma 1.2.1. If A1 ∈ ∆n and V1 ∈ Γ, then there exist matrices A2 ∈ ∆n and V2 ∈ Γ
such that

A1V1 = V2A2.

Moreover, if

Ai =

(
ai bi
0 di

)
and Vi =

(
αi βi
γi δi

)
for i = 1, 2, then we have

a1(γ2A2z + δ2) = a2(γ1z + δ1).

Theorem 1.2.2. If f ∈Mk and V =

(
α β
γ δ

)
∈ Γ, then

Tnf(V z) = (γz + δ)kTnf(z).
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Proof. For A =

(
a b
0 d

)
∈ ∆n we have

(Tnf)(V z) =
1

n

∑
a≥1,ad=n

0≤b<d

akf(AV z).

By Lemma 1.2.1, there exists A2 =

(
a2 b2

0 d2

)
∈ ∆n and V2 =

(
α2 β2

γ2 δ2

)
∈ Γ such that

AV = V2A2. As a result,

(Tnf)(V z) =
1

n

∑
a≥1,ad=n

0≤b<d

akf(V2(A2z)) =
1

n

∑
a≥1,ad=n

0≤b<d

ak(γ2(A2z) + δ2)kf(A2z)

=
1

n

∑
a2≥1,a2d2=n

0≤b2<d2

ak2(γz + δ)kf(A2z) (from the previous lemma)

= (γz + δ)k
1

n

∑
a2≥1,a2d2=n

0≤b2<d2

ak2 f(A2z)

= (γz + δ)kTnf(z).

Thus, from the last two theorems, we obtain:

Theorem 1.2.3. If f ∈Mk then Tnf ∈Mk. Moreover, if f is a cusp form, then Tnf is
also a cusp form.

Definition 1.2.2. A non-zero function f satisfying a relation of the form

Tnf = λ(n)f

for some complex scalar λ(n) is called an eigenform of the operator Tn, and the scalar
λ(n) is called an eigenvalue of Tn. Moreover, if f is an eigenform for every Hecke operator
Tn, n ≥ 1, then f is called a simultaneous eigenform. A simultaneous eigenform is said
to be normalized if c(1) = 1, where f(z) =

∑∞
m=0 c(m)e2πimz.

Remark. If f is an eigenform then so is cf for every constant c 6= 0. So, if Mk contains
a simultaneous eigenform, then it also contains a normalized eigenform.

We saw that

γn(m) =
∑
d|(n,m)

dk−1c
(mn
d2

)
.

From this, we get

γn(0) =
∑
d|n

dk−1c(0) = σk−1(n)c(0)

and

γn(1) = c(n)

6



Theorem 1.2.4. Let k > 0 be even. If the space Mk contains a simultaneous Hecke
eigenform f with f(z) =

∑∞
m=0 c(m)e2πimz, then c(1) 6= 0.

Proof. We have

Tnf = λ(n)f, ∀n ≥ 1.

Equating coefficients in the corresponding Fourier expansions, we get that γn(m) =
λ(n)c(m), and in particular γn(1) = λ(n)c(1). But we saw that γn(1) = c(n). Then
we have

c(n) = λ(n)c(1), ∀n ≥ 1.

If c(1) = 0, then c(n) = 0,∀n ≥ 1 and so f(z) = c(0). Since k > 0 the only constant
modular form is the zero function, so f ≡ 0. But this contradicts the definition of
eigenform. Therefore, c(1) 6= 0.

Remark. For the case of a normalized simultaneous Hecke eigenform, c(n) = λ(n)c(1) =
λ(n). Hence, the n-th Fourier coefficient of f is the same as its n-th eigenvalue.

Theorem 1.2.5. Let k be an even integer and 0 6= f ∈ Sk with f(z) =
∑∞

m=1 c(m)e2πimz.
Then f is a normalized simultaneous eigenform if and only if

c(m)c(n) =
∑
d|(n,m)

dk−1c
(mn
d2

)
for all m,n ≥ 1.

Proof. Given f normalized simultaneous, we saw that c(n) = λ(n). We also saw that
γn(m) = λ(n)c(m). These give us

γn(m) = c(n)c(m)

as desired. Conversely, if γn(m) = c(n)c(m) then

Tnf(z) =
∞∑
m=1

γn(m)xm =
∞∑
m=1

c(n)c(m)xm = c(n)
∞∑
m=1

c(m)xm = c(n)f(z);

i.e. f is a simultaneous eigenform. Moreover,

c(1) = γ1(1) = c(1)c(1) = c(1)2.

As c(1) 6= 0 by Theorem 1.2.4, the result follows.

1.3 L-functions of Eigenforms

Definition 1.3.1. If f(z) = c(0) +
∑∞

n=1 c(n)e2πinz, we define the Dirichlet L-function
of f as

L(f, s) =
∞∑
n=1

c(n)

ns

7



Proposition 1.3.1. If f ∈ Sk, then its L-function L(f, s) converges absolutely for <(s) >
1 + k

2
.

Proof. We have f(z) =
∑∞

n=1 c(n)e2πinz with c(n) ≤ cn
k
2 for some c ∈ R, by Theorem

1.1.1. Then,

|L(f, s)| =
∣∣∣∣ ∞∑
n=1

c(n)

ns

∣∣∣∣ ≤ ∞∑
n=1

|c(n)|
n<(s)

≤ c
∞∑
n=1

1

n<(s)− k
2

.

Therefore, L(f, s) converges absolutely for <(s) > 1 + k
2
.

Theorem 1.3.1. Let f ∈ Sk be a cusp form with associated L-series L(f, s) =
∑∞

n=1
c(n)
ns .

If f is a normalized Hecke eigenform, then

L(f, s) =
∏

p prime

1

1− c(p)p−s + pk−1−2s
.

Proof. From Theorem 1.2.5, we have that

c(m)c(n) =
∑
d|(n,m)

dk−1c(
mn

d2
). (1.3)

Write n = pi11 . . . p
il
l for l ∈ N and p1, . . . , pl distinct primes. Then

L(f, s) =
∞∑
n=1

c(n)

ns

= c(1) +
∑
l≥1

∑
i1,...,il∈N

p1,...,pl distinct primes

c(pi11 . . . p
il
l )

(pi11 . . . p
il
l )s

= 1 +
∑
l≥1

∑
i1,...,il∈N

p1,...,pl distinct primes

c(pi11 ) . . . c(pill )

pi1s1 . . . pilsl

=
∏

p prime

∑
i∈N0

c(pi)

pis

where we used (1.3) and c(1) = 1. So we want to prove that

∑
i∈N0

c(pi)

pis
=

1

1− c(p)p−s + pk−1−2s
. (1.4)
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We will prove (1.4) for any
∑

i∈N0
c(pi)αi where in our situation α = p−s:

(1− c(p)α + pk−1α2)
∑
i∈N0

c(pi)αi

=
∑
i∈N0

c(pi)αi −
∑
i∈N0

c(p)c(pi)αi+1 +
∑
i∈N0

pk−1c(pi)αi+2

= c(1) + c(p)α +
∑
i≥2

c(pi)αi − c(p)c(1)α−
∑
i≥1

c(p)c(pi)αi+1 +
∑
i∈N0

pk−1c(pi)αi+2

= 1 +
∑
i≥2

c(pi)αi −
∑
i≥1

(c(p)c(pi)− pk−1c(pi−1))αi+1 (since c(1) = 1)

= 1 +
∑
i≥2

c(pi)αi −
∑
i≥1

c(pi+1)αi+1 (using (1.3))

= 1 +
∑
i≥2

c(pi)αi −
∑
i≥2

c(pi)αi

= 1.

Definition 1.3.2. For f ∈ Sk, define the completed L-function Λ(f, s) of f by taking the
Mellin transform of f along the upper imaginary axis i.e.

Λ(f, s) =

∫ ∞
0

f(iy)ys−1 dy.

Proposition 1.3.2. Λ(f, s) is well defined for all s ∈ C.

Proof. See Lemma 1.207 of [7].

Theorem 1.3.2. We have

Λ(f, s) =
Γ(s)

(2π)s
L(f, s)

for <(s) > 1 + k
2
, where

Γ(s) =

∫ ∞
0

e−yys−1 dy

is the Euler gamma function.

Proof. Let s ∈ H with <(s) > 1 + k
2
. Since a(n) = O(n

k
2 ), we can apply dominated

convergence to get

Λ(f, s) =

∫ ∞
0

f(iy)ys−1 dy

=

∫ ∞
0

∞∑
n=1

a(n)e−2πnyys−1 dy

=

∫ ∞
0

∞∑
n=1

(2πn)−sa(n)e−ττ s−1 dy (by substituting τ = 2πny)

= (2π)−s
∞∑
n=1

a(n)

ns

∫ ∞
0

e−ττ s−1 dy

=
Γ(s)

(2π)s
L(f, s).

9



Theorem 1.3.3. Λ(f, s) extends holomorphically to the complex plane and satisfies the
functional equation

Λ(f, s) = ε(f)Λ(f, k − s)
for all s ∈ C, where ε(f) = ±1.

Proof. By Proposition 1.3.2, Λ(f, s) exists ∀s ∈ C; and by Theorem 1.3.2, Λ(f, s) is
holomorphic for <(s) > 1 + k

2
. Also, since L(f, s) and Γ(s) are holomorphic on a suitable

right half-plane, we get that Λ(f, s) extends holomorphically to C.

Now let T =

(
0 −1
1 0

)
, then T ∈ Γ and f(−1

z
) = f(Tz) = zkf(z) for all z ∈ H. Using

this, we get

Λ(f, s) =

∫ ∞
0

f(iy)ys−1 dy

= −
∫ 0

∞
f(
−1

iy
)y1−sy−2 dy (by substituting y → 1

y
)

=

∫ ∞
0

(iy)kf(iy)y−1−s dy

= ik
∫ ∞

0

f(iy)yk−1−s dy

= ikΛ(f, k − s).

Corollary 1.3.1. If f ∈ Sk and k ≡ 2 (mod 4), then Λ(f, k
2
) = 0 = L(f, k

2
).

Corollary 1.3.2. L(f, s) extends to a holomorphic function on C and satisfies the func-
tional equation

(2π)k−s

Γ(k − s)
L(f, s) = ik

(2π)s

Γ(s)
L(f, k − s)

for all s ∈ C.

From this functional equation, we see that if ρ is a zero of L(f, s) then so is k − ρ.
Moreover, since L(f, s̄) = L(f, s), then if ρ is a zero then so too is ρ̄. These symmetrical
properties of the zeros suggest that the critical line <(s) = k

2
is a natural line of symmetry

for the L-functions. In fact, all the zeros of L(f, s) lie in the strip |<(s) − k
2
| < 1

2
, with

the grand/generalized Riemann hypothesis (GRH) predicting that all the zeros are on
the line <(s) = k

2
(cf. chapter 4 in [8] ).

1.4 Period Polynomials

Definition 1.4.1. For X ∈ C and a cusp form f ∈ Sk we define the period polynomial
of f by the integral transformation

rf (X) =

∫ i∞

0

(z −X)k−2f(z) dz.

Proposition 1.4.1. The period polynomial is indeed a polynomial of degree less than or
equal to k − 2.
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Proof. Using the binomial formula, we have

(z −X)k−2 =
k−2∑
l=0

(
k − 2

l

)
zl(−X)k−2−l.

It follows that

rf (X) =

∫ i∞

0

k−2∑
l=0

(
k − 2

l

)
zl(−X)k−2−lf(z) dz

=
k−2∑
l=0

(
k − 2

l

)∫ i∞

0

zlf(z) dz (−1)k−2−lXk−2−l

=
k−2∑
l=0

alX
k−2−l

where al =
∑k−2

l=0

(
k−2
l

)
(−1)k−2−l ∫ i∞

0
zlf(z) dz.

Theorem 1.4.1. For f ∈ Sk and X ∈ C we have

rf (X) =
k−2∑
l=0

(
k − 2

l

)
(−X)k−l−2il+1Λ(f, l + 1)

= −
k−2∑
l=0

(
k − 2

l

)
X l(−i)k−1−lΛ(f, k − l − 1).

(1.5)

Proof. We again use the binomial formula

(z −X)k−2 =
k−2∑
l=0

(
k − 2

l

)
zl(−X)k−2−l

to get

rf (X) =

∫ i∞

0

(z −X)k−2f(z) dz

=

∫ i∞

0

k−2∑
l=0

(
k − 2

l

)
zl(−X)k−2−lf(z) dz

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−2−l

∫ i∞

0

zlf(z) dz

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−2−lil+1

∫ ∞
0

ylf(iy) dy (by substituting iy = z)

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−l−2il+1Λ(f, l + 1).

11



The second identity of (1.5) follows similarly using the binomial formula

(z −X)k−2 = (X − z)k−2 =
k−2∑
l=0

(
k − 2

l

)
X l(−z)k−2−l

since k is even.

Therefore, period polynomials are in fact the generating functions for the critical
values of L(f, s):

Corollary 1.4.1. For f ∈ Sk and X ∈ C we have

rf (X) = −
k−2∑
l=0

(k − 2)!

l!

L(f, k − l − 1)

(2πi)k−l−1
X l.

Proof. From Theorem 1.3.2, we have that

Λ(f, k − l − 1) =
(k − l − 2)!

(2π)k−l−1
L(f, k − 1− l).

Using this in the second equality of (1.5), the result follows immediately.

Finally, we show that period polynomials satisfy the following functional equation:

Theorem 1.4.2. Let f ∈ Sk and X ∈ C. Then the period polynomial of f satisfies

rf (X) = −ikε(f)Xk−2rf

(
− 1

X

)
.

Proof. From the second equality of (1.5), we have that

rf (X) = −
k−2∑
l=0

(
k − 2

l

)
X lil+1−kΛ(f, k − l − 1)

= −
k−2∑
l=0

(
k − 2

k − 2− l

)
Xk−2−li−l−1Λ(f, l + 1) (substituting l→ k − 2− l)

= −ε(f)
k−2∑
l=0

(
k − 2

l

)
Xk−2−li−l−1Λ(f, k − l − 1) (by the functional equation)

= −ikε(f)Xk−2

k−2∑
l=0

(
k − 2

l

)
X−lil+1−ki−2−2lΛ(f, k − l − 1)

= −ikε(f)Xk−2rf

(
− 1

X

)
.

This “self-inversive” property of the period polynomial, shows that if ρ is a zero of
rf (X) then so is −1

ρ
; and so the unit circle is a natural line of symmetry for the period

polynomials just as the critical line <(s) = k
2

is a natural line of symmetry for the
completed L-function; and that is what we seek to prove in the next chapter.
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Chapter 2

RHPP of Modular Forms

In this chapter, we prove that the zeros of period polynomials of any level N eigenform
lie on the circle |z| = 1/

√
N .

2.1 The Case of the Full Modular Group

We treat the case when N = 1 separately. We start by recalling the well-known Rouché’s
Theorem, which we will find useful throughout.

Lemma 2.1.1. (Rouché’s Theorem)
Let f and g be two functions holomorphic inside a simple closed curve C, and continuous
on C. If |f | < |g| on C, then g and f+g have the same number of zeros inside C counted
with multiplicities.

We next define what it means for a polynomial to be self-inversive:

Definition 2.1.1. A polynomial P (z) =
∑d

i=0 ciz
i of degree d is said to be self-inversive

if it satisfies

P (z) = εzdP̄
(1

z

)
for some constant ε of modulus 1, where P̄ (z) :=

∑d
i=0 c̄iz

i and the bar denotes complex
conjugation.

Note that the (perhaps more familiar) class of self-reciprocal polynomials is the special
case of this definition when P̄ = P and ε = 1.

Lemma 2.1.2. Let h(z) be a nonzero polynomial of degree n with all its zeros in |z| ≤ 1.
Then for d ≥ n and any λ with |λ| = 1, the self-inversive polynomial

P {λ}(z) = zd−nh(z) + λznh̄
(1

z

)
has all its zeros on the unit circle.

Proof. Write h∗(z) := znh̄(1/z), and temporarily assume that all n zeros of h are in the
open disc |z| < 1. We can then write

h(z) =
n∏
i=1

(z − ai)

13



with |ai| < 1 for all i ≤ n. It follows that

h̄

(
1

z

)
=

n∏
i=1

(
1

z̄
− āi

)
,

and so the n zeros of h∗ are 1/ai which are in |z| > 1. Note also that zd−nh(z) has all its
d zeros inside |z| < 1. If λ < 1, set f(z) = zd−nh(z) and g(z) = λh∗(z). Then for |z| = 1,

|g(z)| < |h∗(z)| = |znh̄(1/z)| = |h̄(z̄)| = |h(z)| = |h(z)| = |f(z)|.

Since f has its d zeros in |z| < 1, by Rouché’s Theorem we deduce that P {λ} has all its
d zeros in |z| < 1. If λ > 1, we can switch the choice of f and g to deduce that P {λ}

has no zeros in |z| < 1 (as f has no zeros there), and hence all d of its zeros must be in
|z| > 1. As the zeros of P {λ} are continuous functions of λ, we see that, for λ = 1, P {λ}

must have all its zeros on the unit circle. The result under the weaker assumption that
h has all its zeros in the closed unit disc |z| ≤ 1 follows from continuity of the zeros of
P {λ} as functions of the zeros of h.

Given a cusp form f(τ) =
∑∞

n=1 a(n)qn ∈ Sk (where q = e2πiτ ). For w = k − 2 ∈ 2N,
we saw in Corollary 1.4.1 that

rf (X) = −
w∑
n=0

w!

n!

L(f, w − n+ 1)

(2πi)w−n+1
Xn = − w!

(2πi)w+1

w∑
n=0

L(f, w − n+ 1)
(2πiX)n

n!
.

For convenience, we consider the polynomial with real coefficients

pf (X) = −(2πi)w+1

w!
rf

(
X

i

)
=

w∑
n=0

L(f, w − n+ 1)
(2πX)n

n!
.

Proposition 2.1.1. pf (X) is self-inversive and can be written as

pf (X) = qf (X) + ikXwqf

( 1

X

)
where

qf (X) =

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!
+

1

2
L(f, k/2)

(2πX)w/2

(w/2)!
.

Proof. Using Theorem 1.4.2, we see that

pf (X) =
(2πi)w+1

w!
ikε(f)

(
X

i

)k−2

rf

(
− i

X

)
= ik+wikXw (2πi)w+1

w!
rf

(
1

iX

)
= ikXwpf

(
1

X

)
.

14



Hence, pf (X) is self-inversive. Now, we have that

pf (X)−Xwqf

( 1

X

)
=

w∑
n=0

L(f, w − n+ 1)
(2πX)n

n!
−

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n − 1

2
L(f,

k

2
)
(2πX)w/2

(w/2)!

=

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!
+

w∑
n=w

2
+1

L(f, w − n+ 1)
(2πX)n

n!

+
1

2
L(f,

k

2
)
(2πX)w/2

(w/2)!
−

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n

= qf (X) +
w∑

n=w
2

+1

L(f, w − n+ 1)
(2πX)n

n!
−

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n.

(2.1)

Note that

w∑
n=w

2
+1

L(f, w − n+ 1)
(2πX)n

n!
=

w
2
−1∑

n=0

L(f, n+ 1)
(2πX)w−n

(w − n)!
(substituting n→ w − n)

=

w
2
−1∑

n=0

ikL(f, w − n+ 1)
(2π)n

n!
Xw−n (by the functional equation)

Using this in (2.1) it follows that, for ik = 1

pf (X)−Xwqf

( 1

X

)
= qf (X).

And for ik = −1, we have by Corollary 1.3.1 that L(f, k
2
) = 0, and so

qf (X) =

w
2
−1∑

n=0

L(f, w − n+ 1)
(2πX)n

n!
,

which gives in (2.1)

pf (X) = qf (X)− 2

w
2
−1∑

n=0

L(f, w − n+ 1)
(2π)n

n!
Xw−n +Xwqf

( 1

X

)
= qf (X)−Xwqf

( 1

X

)
.

It is clear that rf (X) would have all its zeros on |z| = 1 if and only if the same is true
for pf (X). By Proposition 2.1.1 and Lemma 2.1.2 it suffices to prove that qf (X) has all
its zeros in |z| ≤ 1. To that end, set

Hm(z) =
m∑
n=0

(2π)n

n!
zm−n.
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Proposition 2.1.2. For m ≥ 25, Hm(z) has all its zeros in |z| < 1.

Proof. Write Hm(z) = zm−25H25(z) + gm(z) where

gm(z) =
m∑

n=26

(2π)n

n!
zm−n.

For |z| = 1, we have

|gm(z)| ≤
m∑

n=26

(2π)n

n!
≤

∞∑
n=26

(2π)n

n!
= e2π −H25(1) ≤ 0.000001823 < |H25(z)|.

Hence, gm(z) and zm−25H25(z) are holomorphic in |z| ≤ 1 with |gm(z)| < |zm−25H25(z)|.
Then by Rouché’s Theorem, zm−25H25(z) and gm(z) + zm−25H25(z) = Hm(z) have the
same number of zeros inside the unit disc. Numerical verification using PARI [16] gives
that H25(z) has all its 25 zeros inside the unit disc. Therefore zm−25H25(z) has all its m
zeros inside the unit disc, and so does Hm(z).

Next, we will prove the following useful estimates for L-functions.

Lemma 2.1.3. Let f ∈ Sk be a normalized Hecke eigenform and let L(f, s) be its asso-
ciated L-function. Then, for s ≥ 3k/4, we have

|L(f, s)− 1| ≤ 5× 2−k/4

and, for s ≥ k/2, we have

L(f, s) ≤ 1 + 4
√
k log(2k).

Proof. We will use the following useful bound due to Deligne (see [9] for a proof):

|L(f, s)| =

∣∣∣∣∣
∞∑
n=1

a(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

d(n)

ns−(k−1)/2
,

where d(n) =
∑

d|n 1 is the divisor function. We will also use the fact (also found in [9])
that

ζ(s)2 =
∞∑
n=1

d(n)

ns
,

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function.

Then, if s ≥ 3k/4 we get

|L(f, s)− 1| =

∣∣∣∣∣
∞∑
n=2

a(n)

ns

∣∣∣∣∣ ≤
∞∑
n=2

d(n)

ns−(k−1)/2
≤

∞∑
n=2

d(n)

nk/4
= ζ(k/4)2 − 1.

Now for k ≥ 12, we see that

ζ(k/4)2 − 1 = (ζ(k/4) + 1)(ζ(k/4)− 1) ≤ (ζ(3) + 1)(ζ(k/4)− 1) <
5

2
(ζ(k/4)− 1);

16



and

ζ(k/4)− 1 =
∞∑
n=2

1

nk/4
= 2−k/4 +

∞∑
n=3

d(n)

nk/4
≤ 2−k/4 +

∫ ∞
2

u−k/4 du ≤ 2× 2−k/4.

Therefore,
|L(f, s)− 1| ≤ 5× 2−k/4.

Next, if s ≥ k/2 + 1, we get for k ≥ 2

L(f, s) =
∞∑
n=1

a(n)

ns
≤

∞∑
n=1

d(n)

ns−(k−1)/2
≤

∞∑
n=1

d(n)

n3/2
= ζ(3/2)2 < 7 < 4k1/2 log 2k + 1.

If k/2 ≤ s ≤ k/2 + 1, then
|L(f, s)| ≤ |L(f, k/2)|.

Note that from Theorem 1.3.2, we have

Γ(k/2)L(f, k/2) = (2π)k/2Λ(f, k/2)

= (2π)k/2
∫ ∞

0

f(ix)x
k
2
dx

x

= (2π)k/2
(∫ 1

0

f(ix)x
k
2
dx

x
+

∫ ∞
1

f(ix)x
k
2
dx

x

)
.

But substituting x by 1
x

and since f(−1
x

) = xkf(x) we see that the first integral is equal
to ik times the second one∫ 1

0

f(ix)x
k
2
dx

x
=

∫ 1

0

f

(
−1

ix

)
x−

k
2
−1 dx = ik

∫ ∞
1

f(ix)(x)
k
2
−1 dx;

and using the Fourier expansion of f , the second integral becomes∫ ∞
1

f(ix)x
k
2
dx

x
=
∞∑
n=1

an

∫ ∞
1

e−2πnxx
k
2
dx

x
=
∞∑
n=1

an
nk/2

(2π)−k/2
∫ ∞

2πn

e−xx
k
2
dx

x
.

Therefore, we get that

Γ(k/2)L(f, k/2) = (1 + ik)
∞∑
n=1

an
nk/2

∫ ∞
2πn

e−xx
k
2
dx

x
.

Using this with Deligne’s bound, it follows that

|L(f, s)| ≤ |L(f, k/2)| ≤ 2Γ(k/2)−1

∞∑
n=1

d(n)

n1/2

∫ ∞
2πn

e−xx
k
2
dx

x
.

We split the sum over n at k. The terms with n ≤ k are

≤ 2
∑
n≤k

d(n)

n1/2
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as is seen by completing the integrals down to 0. But notice that∑
n≤k

d(n)

n1/2
=
∑
n≤k

∑
d|n

1

n1/2
=
∑
ed≤k

1

(ed)1/2
;

and hence∑
n≤k

d(n)

n1/2
=
∑
mn≤k

1

(mn)1/2
≤
∑
m≤k

1

m1/2

∫ k/m

0

u−1/2 du = 2k1/2
∑
m≤k

1

m
≤ 2k1/2 log(2k)

for k ≥ 5. The tail of the series is

= 2Γ(k/2)−1

∞∑
n=k+1

d(n)

n1/2

∫ ∞
2πn

e−x/2e−x/2x
k
2
dx

x

≤ 2Γ(k/2)−1

∞∑
n=k+1

d(n)

n1/2
e−πn

∫ ∞
2πn

e−x/2x
k
2
dx

x
.

The integral is

= 2k/2
∫ ∞
πn

e−xx
k
2
dx

x
≤ 2k/2Γ(k/2),

and since d(n) ≤ 2
√
n (see [9]) we have that the tail is

≤ 4× 2k/2
∞∑

n=k+1

e−πn ≤ 4× 2k/2e−πk < 1.

This completes the proof.

Theorem 2.1.1. If f ∈ Sk is a Hecke eigenform, then rf (X) has all its zeros on the unit
circle.

Proof. Note that for any c ∈ C, we have rcf (X) = c.rf (X); so we can take f to be
normalized. We want to show that all the zeros of qf (X) are inside the unit circle. Let
m = k/2− 1 = w/2, then for |X| = 1 we have

|qf (X)−Hm(X)| =

∣∣∣∣∣
m−1∑
n=0

L(f, k − n− 1)
(2πX)n

n!
− (2π)n

n!
Xm−n + (

1

2
L(f, k/2)− 1)

(2π)m

m!

∣∣∣∣∣
≤

m−1∑
n=0

(2π)n

n!
|L(f, k − n− 1)− 1|+ (2π)m

m!

∣∣∣∣12L(f, k/2)− 1

∣∣∣∣
≤

m−1∑
n=0

(2π)n

n!
|L(f, k − n− 1)− 1|+ (2π)m

m!

(
|L(f, k/2)|+ 1

)
Now, using Lemma 2.1.3, we know that, for k − n− 1 ≥ 3k/4 (i.e. for n ≤ k/4− 1)

|L(f, k − n− 1)− 1| ≤ 5× 2−k/4
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and, for k − n− 1 ≥ k/2 (i.e. for n ≤ m),

L(f, k − n− 1) ≤ 1 + 4
√
k log(2k).

It follows that

|qf (X)−Hm(X)| ≤
[k/4]−1∑
n=0

(2π)n

n!
|L(f, k − n− 1)− 1|+

m−1∑
[k/4]

(2π)n

n!
|L(f, k − n− 1)− 1|

+
(2π)m

m!

(
|L(f, k/2)|+ 1

)
≤

[k/4]−1∑
n=0

(2π)n

n!
|L(f, k − n− 1)− 1|+

m∑
[k/4]

(2π)n

n!

(
|L(f, k − n− 1)|+ 1

)
≤

[k/4]−1∑
n=0

5× 2−k/4
(2π)n

n!
+

m∑
[k/4]

(
2 + 4

√
k log(2k)

)(2π)n

n!

≤ 5× 2−k/4e2π +
(
2 + 4

√
k log(2k)

)
R[k/4](1)

Since |X| = 1 and by the well-known Taylor inequality, we have

|Rn(X)| =
∣∣∣f (n+1)(X)

(n+ 1)!

∣∣∣ ≤ (2π)n+1

(n+ 1)!
e2π

in particular,

R[k/4](1) ≤ e2π (2π)[k/4]

[k/4]!
.

Moreover, one can show that, for k ≥ 124(
2 + 4

√
k log(2k)

)
e2π (2π)[k/4]

[k/4]!
≤ 0.000045

and
5e2π2−k/4 ≤ 0.0000025.

Therefore, for k ≥ 124 (so m > 25) and |X| = 1, we have |qf (X)−Hm(X)| < |Hm(X)|,
and it follows from Rouché’s theorem that qf (X) has the same number of zeros as Hm(X)
inside the unit circle, namely m by Proposition 2.1.2. For cusp forms with 12 ≤ k ≤ 122,
the result can be verified directly using PARI. The code is as follows:

mf(k)=mfinit([1,k],1)

B(k)=mfbasis(mf(k))

P(k)=mfperiodpol(mf(k),B(k)[1])

Z(k)=polroots(P(k))

default(parisizemax,1G)

ploth(t=0,100,apply(z->z+t*exp(I*t)/10^4,Z(k))~,4096)
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2.2 Eigenforms of Higher Levels

We now turn to the general case (any N ∈ N). We begin by giving a brief introduction to
the theory of modular forms of higher levels. For a more detailed introduction, see [10].

2.2.1 Modular Forms on Congruence Subgroups

The principle subgroup of SL2(Z) of level N ∈ N is given by

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

Note that Γ(1) = SL2(Z). Moreover, Γ(N) is normal and has a finite index in Γ(1).
Note also that if N ′ | N , then Γ(N) ⊂ Γ(N ′) ⊂ Γ(1).

Definition 2.2.1. A congruence subgroup is a subgroup of SL2(Z) that contains Γ(N)
for some N ∈ N.

We are particularly interested in the subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

Γ0(N) is a congruence subgroup of SL2(Z).

Definition 2.2.2. Let G be a congruence subgroup and α ∈ G. Then α is said to be
parabolic if |tr(α)| = 2.

Definition 2.2.3. A cusp of a congruence subgroup G is an element z ∈ R∪{∞} which
is fixed by a parabolic element α of G, i.e. ∃α ∈ G parabolic such that αz = z.

Definition 2.2.4. A modular form of weight k ∈ Z and level N is a holomorphic function
f : H→ C satisfying:

• f(γz) = (cz + d)kf(z) for γ =

(
a b
c d

)
∈ Γ0(N)

• f is holomorphic at all the cusps of Γ0(N).

Since S =

(
1 1
0 1

)
∈ Γ0(N) for any N , we have that f(Sz) = f(z + 1) = f(z). So f

has a Fourier expansion

f(z) =
∞∑
n=0

ane
2πinz.

We denote by Mk(Γ0(N)) the space of modular forms of weight k and level N .

Definition 2.2.5. If f ∈ Mk(Γ0(N)) and f(z) → 0 as z tends to any cusp, then f is
said to be a cusp form and we write f ∈ Sk(Γ0(N)).
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A form f ∈ Sk(Γ0(N)) is an oldform if f(z) = g(dz) for some g ∈ Sk(Γ0(M)) with
M | N and d | N/M . We say f is a newform if f is a normalized eigenform which
is orthogonal to the space of oldforms (with respect to the Petersson inner product, cf.
chapter 1 in [7]). The space of newforms of level N is denoted by Snew

k (Γ0(N)).

Let k be even and f ∈ Snew
k (Γ0(N)). Associated to f is its L-function

L(f, s) =
∞∑
n=1

a(n)

ns
=

∏
p prime

(1− a(p)p−s + 1N(p)pk−1−2s)−1

where 1N(p) is 1 when p - N and is 0 when p | N . Its completed L-function is defined by

Λ(f, s) = N s/2

∫ ∞
0

f(iy)ys−1 dy

satisfying, as before,

Λ(f, s) =

(√
N

2π

)s

Γ(s)L(f, s) (2.2)

and the functional equation

Λ(f, s) = ε(f)Λ(f, k − s),
with ε(f) = ±1. The period polynomial associated to f is the degree k − 2 polynomial

rf (z) =

∫ i∞

0

f(τ)(τ − z)k−2 dτ,

which is again the generating function for the critical values of the L-function:

Theorem 2.2.1. The period polynomial of f satisfies

rf (z) = ik−1N−
k−1
2

k−2∑
n=0

(
k − 2

n

)
(
√
Niz)nΛ(f, k − 1− n).

Proof. Using the binomial expansion, we get

rf (X) =

∫ i∞

0

(z −X)k−2f(z) dz

=

∫ i∞

0

k−2∑
n=0

(
k − 2

n

)
zn(−X)k−2−nf(z) dz

=
k−2∑
n=0

(
k − 2

n

)
(−X)k−2−n

∫ i∞

0

znf(z) dz

=
k−2∑
n=0

(
k − 2

n

)
(−X)k−2−nin+1

∫ ∞
0

ynf(iy) dy (by substituting iy = z)

=
k−2∑
n=0

(
k − 2

n

)
(−X)k−n−2in+1N−

n+1
2 Λ(f, n+ 1)

= ik−1N−
k−1
2

k−2∑
n=0

(
k − 2

n

)
(
√
NiX)nΛ(f, k − 1− n) (substituting n→ k − 2− n).
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Corollary 2.2.1. The period polynomial of f further satisfies

rf (z) = − (k − 2)!

(2πi)k−1

k−2∑
n=0

(2πiz)n

n!
L(f, k − n− 1).

Proof. From 2.2, we have that

Λ(f, s) =

(√
N

2π

)k−n−1

Γ(k − n− 1)L(f, k − n− 1).

Using this in the expression of rf in Theorem 2.2.1, we get our result.

2.2.2 Zeros of Period Polynomials

For f ∈ Snew
k (Γ0(N)), put m = k−2

2
and define

Pf (z) =
1

2

(
2m

m

)
Λ(f,

k

2
) +

m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
+ j)zj.

Then we have the following relation:

Proposition 2.2.1. The period polynomial of f satisfies

rf

(
z

i
√
N

)
= ik−1N−

k−1
2 ε(f)zm

(
Pf (z) + ε(f)Pf

(1

z

))
.

Proof. From Theorem 2.2.1, we have

rf

(
z

i
√
N

)
= ik−1N−

k−1
2

k−2∑
n=0

(
k − 2

n

)
Λ(f, k − 1− n)zn

= ik−1N−
k−1
2

m∑
j=−m

(
2m

m+ j

)
Λ(f,

k

2
− j)zm+j (substituting n→ m+ j)

= ik−1N−
k−1
2 ε(f)zm

m∑
j=−m

(
2m

m+ j

)
Λ(f,

k

2
+ j)zj (by the functional equation)

= ik−1N−
k−1
2 ε(f)zm

[ 0∑
j=−m

(
2m

m+ j

)
Λ(f,

k

2
+ j)zj +

m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
+ j)zj

]

= ik−1N−
k−1
2 ε(f)zm

[ m∑
j=0

(
2m

m+ j

)
Λ(f,

k

2
− j)z−j + Pf (z)− 1

2

(
2m

m

)
Λ(f,

k

2
)

]

= ik−1N−
k−1
2 ε(f)zm

[ m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
− j)z−j + Pf (z) +

1

2

(
2m

m

)
Λ(f,

k

2
)

]
= ik−1N−

k−1
2 ε(f)zm

[
ε(f)Pf

(1

z

)
− ε(f)

1

2
Λ(f,

k

2
) + Pf (z) +

1

2

(
2m

m

)
Λ(f,

k

2
)

]
.

If ε(f) = 1, the result is clear. If ε(f) = −1, then note that Λ(f, k
2
) = 0, and so the result

follows.
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Therefore, rf (z) would have all its zeros on |z| = 1/
√
N if and only if Pf (z) +

ε(f)Pf (1/z) has all its zeros on the unit circle. For that purpose, we prove the following
two lemmas about L-functions that we shall find useful.

Lemma 2.2.1. Let f ∈ Snew
k (Γ0(N)). Then the function Λ(f, s) is monotone increasing

for s ≥ k
2

+ 1
2
. Moreover, we have

0 ≤ Λ(f,
k

2
) ≤ Λ(f,

k

2
+ 1) ≤ Λ(f,

k

2
+ 2) ≤ . . .

If ε(f) = −1, then Λ(f, k
2
) = 0 and

0 ≤ Λ(f,
k

2
+ 1) ≤ 1

2
Λ(f,

k

2
+ 2) ≤ 1

3
Λ(f,

k

2
+ 3) ≤ . . .

Proof. Λ(f, s) is an entire function of order 1, with its zeros all lying in the strip |<(s)−
k
2
| < 1

2
. Thus, Hadamard’s factorization formula applies and we may write

Λ(f, s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ. (2.3)

Here the product is over all of the zeros of Λ(f, s), and A and B are constants. Since
Λ(f, s) is real valued for real s, we see that B ∈ R. Note also that if ρ is a zero then so
too are ρ̄ and k−ρ. Then using the functional equation for the case of ε(f) = 1 (similarly
if ε(f) = −1), we have that

Λ(f, s)

Λ(f, k − s)
= 1

⇒
eA+Bs

∏
ρ

(
1− s

ρ

)
es/ρ

eA+B(k−s)
∏

ρ

(
1− k−s

ρ

)
e(k−s)/ρ

= 1

⇒ eB(2s−k)
∏
ρ

(
ρ− s

ρ− k + s

)
e2s−k/ρ = 1

⇒ B(2s− k) +
∑
ρ

log

(
ρ− s

ρ− k + s

)
+
∑
ρ

2s− k
ρ

= 0

⇒ B(2s− k) +
1

2

∑
ρ

[
log

(
ρ− s

ρ− k + s

)
+ log

(
k − ρ− s
s− ρ

)]
+

2s− k
2

∑
ρ

(
1

ρ
+

1

ρ̄

)
= 0

⇒ B(2s− k) +
1

2

∑
ρ

log

(
ρ− s

ρ− k + s

k − ρ− s
s− ρ

)
+ (2s− k)

∑
ρ

<(ρ)

|ρ|2
= 0

⇒ B = −
∑
ρ

<(ρ)

|ρ|2
.
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Therefore, we get for real s

Λ(f, s) = eA
∏
ρ

exp

(
−s<(ρ)

|ρ|2

)(
1− s

ρ

)
es/ρ

= eA
∏
ρ∈R

(
1− s

ρ

) ∏
=(ρ)>0

exp

(
−s<(ρ)

|ρ|2

)(
1− s

ρ

)
es/ρ

∏
=(ρ)<0

exp

(
−s<(ρ)

|ρ|2

)(
1− s

ρ

)
es/ρ

= eA
∏
ρ∈R

(
1− s

ρ

) ∏
=(ρ)>0

exp

(
−s<(ρ)

|ρ|2

)(
1− s

ρ

)
es/ρ

∏
=(ρ)>0

exp

(
−s<(ρ̄)

|ρ̄|2

)(
1− s

ρ̄

)
es/ρ̄

= eA
∏
ρ∈R

(
1− s

ρ

) ∏
=(ρ)>0

exp

(
−2s
<(ρ)

|ρ|2

)(
1− s

ρ

)(
1− s

ρ̄

)
exp

(
2s
<(ρ)

|ρ|2

)

= eA
∏
ρ∈R

(
1− s

ρ

) ∏
=(ρ)>0

∣∣∣∣1− s

ρ

∣∣∣∣2.
(2.4)

Now, for s ≥ k
2

+ 1
2
, we have that

|ρ− s|2 = (<(ρ)− s)2 + =(ρ)2,

then for s1 < s2, and because all of the zeros lie in |<(s)− k
2
| < 1

2
,

|ρ− s1|2 − |ρ− s2|2 = (s1 − s2)(s1 + s2 − 2<(ρ)) < 0

and thus |1− s/ρ| is increasing in s. For =(ρ) > 0, |1− s/ρ|2 is increasing then so is the
product above. For real ρ, since the number of zeros is even and |1 − s/ρ| is increasing
then so is the product above. It follows that Λ(f, s) is increasing for s ≥ k

2
+ 1

2
. Further,

we have ∣∣∣∣1− k/2

ρ

∣∣∣∣ ≤ ∣∣∣∣1− k/2 + 1

ρ

∣∣∣∣,
and so Λ(f, k

2
) ≤ Λ(f, k

2
+ 1). In addition, the central value Λ(f, k

2
) is known to be

nonnegative by the work of Waldspurger [11].
When ε(f) = −1, we additionally have a zero of odd order at k

2
. In this case, we get

the additional factor of (
1− s

k/2

)
in the first product; and so(

1− k/2 + `

k/2

)
=
−2`

k
≤ 1

`+ 1

(
−2(`+ 1)

k

)
=

1

`+ 1

(
1− k/2 + (`+ 1)

k/2

)
for any ` ≥ 1. Adding this to what we did above, we get our result.

Lemma 2.2.2. If f ∈ Snew
k (Γ0(N)) and 0 < a ≤ b, then

L(f, k+1
2

+ a)

L(f, k+1
2

+ b)
≤ ζ(1 + a)2

ζ(1 + b)2

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function.
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Proof. First, we compute

−ζ
′

ζ
(s) = − d

ds
log(ζ(s)) = − d

ds
log
∏
p

(1− p−s)−1 =
∑
p

d

ds
log(1− p−s)

=
∑
p

log p

ps − 1
=
∑
p

log p
∞∑
m=1

p−ms =
∑
p,m

(pm)−s log p =
∞∑
n=1

Λ(n)

ns

where Λ(n) = log p for n = pk and Λ(n) = 0 otherwise. Similarly, we have that

−L
′

L
(f, s) =

∞∑
n=1

Λf (n)

ns

where |Λf (n)| ≤ 2n
k−1
2 Λ(n) for all n. It follows that

−L
′

L
(f, s) =

∞∑
n=1

Λf (n)

ns
≤

∞∑
n=1

2n
k−1
2 Λ(n)

ns
= −2

ζ ′

ζ

(
s− k − 1

2

)
.

Therefore, we have for a < b

L(f, k+1
2

+ a)

L(f, k+1
2

+ b)
= exp

(∫ b

a

−L
′

L
(f,

k + 1

2
+ t) dt

)
≤ exp

(
2

∫ b

a

−ζ
′

ζ

(
1 + t

)
dt

)
=
ζ(1 + a)2

ζ(1 + b)2
.

Remark. Period polynomials for weight 2 newforms f are constant multiples of L(f, 1).
Hence, we will consider k ≥ 4.

The weight 4 case is straightforward:

Theorem 2.2.2. For k = 4, Pf (z) + ε(f)Pf (1/z) has all its zeros on the unit circle.

Proof. Here m = (k − 2)/2 = 1, so Pf (z) = Λ(f, 2) + Λ(f, 3)z.
If ε(f) = −1, then the roots of Pf (z)− Pf (1/z) = Λ(f, 3)(z − 1/z) are at z = ±1, which
lie on the unit circle.
If ε(f) = 1, then for z = eiθ on the unit circle, Pf (z) +Pf (1/z) = 2Λ(f, 2) + Λ(f, 3)(eiθ +
e−iθ) = 2Λ(f, 2) + 2Λ(f, 3) cos(θ), which vanishes when cos(θ) = −Λ(f, 2)/Λ(f, 3). By
Lemma 2.2.1, Λ(f, 2) < Λ(f, 3), and so the equation has two solutions for θ ∈ [0, 2π).

For the weight 6 case, we will first need the following observation:

Lemma 2.2.3. Let a1, a2, b1, b2 and c1, c2 be all positive with ai ≥ max(bi, ci). If
ai + γci ≥ (1 + γ)bi, where γ > 0, then a1a2 + γc1c2 ≥ (1 + γ)b1b2.

Proof. Since b2(a1 + γc1) ≥ (1 + γ)b1b2, it suffices to show that

a1a2 + γc1c2 ≥ a1b2 + γc1b2;

or, rearranging, that a1(a2 − b2) ≥ γc1(b2 − c2).
Note that since a1 ≥ c1 and a2− b2 ≥ 0, we get a1(a2− b2) ≥ c1(a2− b2) ≥ c1(γb2− γc2),
as desired.

25



Theorem 2.2.3. For k = 6, Pf (z) + ε(f)Pf (1/z) has all its zeros on the unit circle.

Proof. Here m = 2, so Pf (z) = 3Λ(f, 3) + 4Λ(f, 4)z + Λ(f, 5)z2.
If ε(f) = −1, then Λ(f, 3) = 0 and so

Pf (z)− Pf
(

1

z

)
= 4Λ(f, 4)

(
z − 1

z

)
+ Λ(f, 5)

(
z2 − 1

z2

)
=

(
z − 1

z

)[
4Λ(f, 4) + Λ(f, 5)

(
z +

1

z

)]
.

Clearly X = ±1 are two solutions. Putting X = eiθ, we find that the other roots
are the solutions of cos θ = −2Λ(f,4)

Λ(f,5)
for θ ∈ [0, 2π). From Lemma 3.3.2, we have that

2Λ(f, 4) < Λ(f, 5) and so their are two more roots which also lie on the unit circle.
If ε(f) = 1, letting z = eiθ we have

Pf (z) + Pf

(
1

z

)
= 6Λ(f, 3) + 8Λ(f, 4) cos θ + 2Λ(f, 5) cos 2θ.

We want to show this has two zeros in [0, π) and thus four zeros in [0, 2π). Note that

d

dθ

[
Pf (e

iθ) + Pf (e
−iθ)
]

= −8 sin θ(Λ(f, 4) + Λ(f, 5) cos θ),

we have critical points at 0, π and the solution θ0 ∈ [0, π) to cos θ = −Λ(f,4)
Λ(f,5)

. To get two

roots in [0, π) we need Pf (e
iθ) + Pf (e

−iθ) to be positive at θ = 0 and π and negative at
θ = θ0. At θ = 0, Pf (e

iθ) + Pf (e
−iθ) = 6Λ(f, 3) + 8Λ(f, 4) + 2Λ(f, 5) > 0. Positivity at

θ = π is equivalent to
Λ(f, 5) + 3Λ(f, 3) > 4Λ(f, 4) (2.5)

while negativity at θ = θ0 is equivalent to

Λ(f, 5)2 + 2Λ(f, 4)2 < 3Λ(f, 3)Λ(f, 5). (2.6)

We use Lemma 2.2.3 suitably, together with the Hadamard factorization formulas (Eqs.
2.3 and 2.4), proceeding zero by zero. We use the Hadamard formula for Λ(f, 3), Λ(f, 4),
and Λ(f, 5); Note that by Lemma 2.2.1 all these values are non-negative, so we can
assume that the products are taken with absolute values. Note that all the zeros lie in
|<(s)− 3

2
| < 1

2
.

Suppose first that ρ = 3 + z is a real zero, then 6 − ρ = 3 − z is also a real zero (if
ρ = 3, we get zeros of even multiplicity at the center, which may be paired). This pair of
zeros contributes to Λ(f, 5) the amount

a =

(
1− 5

3 + z

)(
1− 5

3− z

)
=

4− z2

9− z2
,

to Λ(f, 4) the amount b = 1−z2
9−z2 , and to Λ(f, 3) the amount c = z2

9−z2 (using here the

absolute value remark). Then with γ = 3 (and since |z| < 1
2

here), we have the inequality
a+ 3c ≥ 4b.
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Now consider a zero ρ = 3 + iy on the critical line, then ρ̄ = 3− iy is also a zero. This
pair of zeros contributes to Λ(f, 5) the amount

a =

(
1− 5

3 + iy

)(
1− 5

3− iy

)
=

4 + y2

9 + y2
,

to Λ(f, 4) the amount b = 1+y2

9+y2
, and to Λ(f, 3) the amount c = y2

9+y2
, and we check again

that a+ 3c ≥ 4b (and indeed equality holds).
Finally, consider a zero ρ = 3 + z not on the critical line, with z = x+ iy (i.e x 6= 0).

Then 6 − ρ = 3 − x − iy, ρ̄ = 3 + x − iy, 6 − ρ̄ = 3 − x + iy are also zeros. This set of
four zeros contributes to Λ(f, 5) the amount

a =

(
1− 5

3 + x+ iy

)(
1− 5

3 + x− iy

)(
1− 5

3− x+ iy

)(
1− 5

3− x− iy

)
=
|4− z2|2

|ρ|2|6− ρ|2
,

to Λ(f, 4) the amount

b =
|1− z2|2

|ρ|2|6− ρ|2
,

and to Λ(f, 3) the amount

c =
|z2|2

|ρ|2|6− ρ|2
.

We can check again that a+ 3c ≥ 4b.
Thus when grouped as above, each group of zeros appearing in the Hadamard formula

satisfies a version of 2.5. By Lemma 2.2.3, taking products of these groups of zeros we
again obtain a version of 2.5. Letting these products run over all zeros and taking the
limit, we obtain 2.5.

The proof of 2.6 is similar, appealing to Lemma 2.2.3 with γ = 2, and using Hadamard’s
formula and grouping zeros as above.

Using 2 cos(θ) = eiθ + e−iθ and 2 sin(θ) = eiθ − e−iθ, we have that for z = eiθ on the
unit circle

Pf (z) + Pf

(1

z

)
=

(
2m

m

)
Λ(f,

k

2
) + 2

m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
+ j) cos(jθ),

and

Pf (z)− Pf
(1

z

)
= 2

m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
+ j) sin(jθ).

Classical work of Pólya [12] and Szegö [13] considers trigonometric polynomials

u(θ) = a0 + a1 cos(θ) + a2 cos(2θ) + · · ·+ an cos(nθ),

v(θ) = a1 sin(θ) + a2 sin(2θ) + · · ·+ an sin(nθ).

They show that if 0 ≤ a0 ≤ a1 ≤ . . . an−1 ≤ an, then u and v both have exactly n zeros
in [0, π) (and therefore 2n zeros in [0, 2π)) and that these zeros are simple. Each interval

( l−1/2
n+1/2

π, l+1/2
n+1/2

π) for 1 ≤ l ≤ n has precisely one zero of u, and apart from θ = 0, each

interval ( l
n+1/2

π, l+1
n+1/2

π) for 1 ≤ l ≤ n−1 has exactly one zero of v. The proof is a simple
sign change argument using the positivity of the Fejér kernel. When the level is suitably
large, these results apply and provide a quick proof of our result.
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Theorem 2.2.4. For 8 ≤ k ≤ 14, Pf (z)+ε(f)Pf (1/z) has all its zeros on the unit circle.

Proof. For weight k, for the above to apply we must verify the criteria(
2m

m

)
Λ(f,

k

2
) ≤ 2

(
2m

m+ 1

)
Λ(f,

k

2
+ 1) (2.7)

and that for all 1 ≤ j ≤ m− 1(
2m

m+ j

)
Λ(f,

k

2
+ j) ≤

(
2m

m+ j + 1

)
Λ(f,

k

2
+ j + 1). (2.8)

The condition (2.7) can be written as

Λ(f,
k

2
) ≤ 2m

m+ 1
Λ(f,

k

2
+ 1).

Since Λ(f, k/2) ≤ Λ(f, k/2 + 1) by Lemma 2.2.1, (2.7) is then immediate for all k ≥ 4.
Now suppose k ≥ 6. Using the definition of Λ(f, s), (2.8) is equivalent to

√
N ≥ 2π

(k/2− j − 1)

L(f, k/2 + j)

L(f, k/2 + j + 1)

for all 1 ≤ j ≤ m− 1. By Lemma 2.2.2, it suffices to have

N ≥
(

2π

k/2− j − 1

)2
ζ(j + 1/2)4

ζ(j + 3/2)4
,

for all 1 ≤ j ≤ m− 1; since then we’ll get that for all 1 ≤ j ≤ m− 1

N ≥
(

2π

k/2− j − 1

)2
ζ(j + 1/2)4

ζ(j + 3/2)4
≥
(

2π

k/2− j − 1

L(f, k/2 + j)

L(f, k/2 + j + 1)

)2

as needed. Therefore, our criterion (2.8) is met if

N ≥ max
1≤j≤k/2−2

(
2π

k/2− j − 1

)2
ζ(j + 1/2)4

ζ(j + 3/2)4
. (2.9)

For any given k, we can compute the bound (2.9). Thus, for k = 8 it suffices to take
N ≥ 142; for k = 10 it suffices to have N ≥ 64; for k = 12 it suffices to have N ≥ 45; for
k = 14 it suffices to have N ≥ 42. We can use PARI to check (2.8) for those newforms
not covered by (2.9) for weights 8 ≤ k ≤ 14. The zeros of those newforms that do not
satisfy (2.8) still lie on |z| = 1/

√
N . The code we used is the following:

mf(k)=mfinit([N,k],0)

B(k)=mfbasis(mf(k))

P(k)=mfperiodpol(mf(k),B(k)[1])
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Z(k)=polroots(P(k))

default(parisizemax,1G)

ploth(t=0,100,apply(z->z+t*exp(I*t)/10^4,Z(k))~,4096)

Remark. Eventually, (2.9) cannot furnish a bound better than 4π2 for N , and so we
must turn to another approach for large k and small N .

Proposition 2.2.2. Pf (z) can be written as

Pf (z) = (2m)!

(√
N

2π

)2m+1

L(f, 2m+ 1)Qf (z)

where

Qf (z) = zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j
L(f, 2m+ 1− j)
L(f, 2m+ 1)

+
1

2(m!)2

(
2π√
N

)2m+1 Λ(f, k
2
)

L(f, 2m+ 1)
.

Proof.

Pf (z) =
1

2

(
2m

m

)
Λ(f,

k

2
) +

m∑
j=1

(
2m

m+ j

)
Λ(f,

k

2
+ j)zj

= (2m)!

(√
N

2π

)2m+1
[

1

2(m!)2

(
2π√
N

)2m+1

Λ(f,
k

2
)

+
m∑
j=1

1

(m+ j)!(m− j)!

(
2π√
N

)2m+1

zj
(√

N

2π

)k/2+j

(k/2 + j − 1)!L(f,
k

2
+ j)

]

= (2m)!

(√
N

2π

)2m+1
[

1

2(m!)2

(
2π√
N

)2m+1

Λ(f,
k

2
) +

m∑
j=1

1

(m− j)!

(
2π√
N

)m−j
zjL(f,

k

2
+ j)

]

= (2m)!

(√
N

2π

)2m+1
[

1

2(m!)2

(
2π√
N

)2m+1

Λ(f,
k

2
)

+ zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j
L(f, 2m+ 1− j)

]
(substituting j → m− j)

= (2m)!

(√
N

2π

)2m+1

L(f, 2m+ 1)Qf (z).

Therefore, we need to study the zeros of

Pf (z) + ε(f)Pf

(
1

z

)
= (2m)!

(√
N

2π

)2m+1

L(f, 2m+ 1)

(
Qf (z) + ε(f)Qf

(
1

z

))
.
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Note that for z = eiθ on the unit circle,

Qf (z) =
m−1∑
j=0

1

j!

(
2π√
N

)j
ei(m−j)θ

L(f, 2m+ 1− j)
L(f, 2m+ 1)

+
1

2(m!)2

(
2π√
N

)2m+1 Λ(f, k
2
)

L(f, 2m+ 1)

=
m−1∑
j=0

1

j!

(
2π√
N

)j
cos(m− j)θL(f, 2m+ 1− j)

L(f, 2m+ 1)
+

1

2(m!)2

(
2π√
N

)2m+1 Λ(f, k
2
)

L(f, 2m+ 1)

+ i
m−1∑
j=0

1

j!

(
2π√
N

)j
sin(m− j)θL(f, 2m+ 1− j)

L(f, 2m+ 1)
.

Hence for z = eiθ we have that

Qf (z)−Qf

(
1

z

)
= eimθ

m−1∑
j=0

1

j!

(
2π

eiθ
√
N

)j
L(f, 2m+ 1− j)
L(f, 2m+ 1)

− e−imθ
m−1∑
j=0

1

j!

(
2π

e−iθ
√
N

)j
L(f, 2m+ 1− j)
L(f, 2m+ 1)

=
m−1∑
j=0

1

j!

(
2π√
N

)j (
ei(m−j)θ − e−i(m−j)θ

) L(f, 2m+ 1− j)
L(f, 2m+ 1)

= 2
m−1∑
j=0

1

j!

(
2π√
N

)j
L(f, 2m+ 1− j)
L(f, 2m+ 1)

sin(m− j)θ

= 2=
(
Qf (z)

)
,

and similarly

Qf (z) +Qf

(
1

z

)
= 2<

(
Qf (z)

)
.

We wish to show that on the unit circle |z| = 1, the real and imaginary parts of Qf (z)
have exactly 2m zeros.

Theorem 2.2.5. For k ≥ 16, the real and imaginary parts of Qf (z) have all their zeros
on the unit circle.

Proof. Since

exp

(
2π

z
√
N

)
=
∞∑
j=0

1

j!

(
2π

z
√
N

)j

,

We can write

Qf (z) =
1

2(m!)2

(
2π√
N

)2m+1 Λ(f, k
2
)

L(f, 2m+ 1)
+ zmexp

(
2π

z
√
N

)
− zm

∞∑
j=m

1

j!

(
2π

z
√
N

)j

− zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j

+ zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j
L(f, 2m+ 1− j)
L(f, 2m+ 1)

= zmexp

(
2π

z
√
N

)
+ S1(z) + S2(z) + S3(z),
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with

S1(z) = zm
m−1∑
j=1

1

j!

(
2π

z
√
N

)j (
L(f, 2m+ 1− j)
L(f, 2m+ 1)

− 1

)
,

S2(z) = −zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j

,

and

S3(z) =
1

2(m!)2

(
2π√
N

)2m+1 Λ(f, k
2
)

L(f, 2m+ 1)
.

For z = eiθ on the unit circle,

zmexp

(
2π

z
√
N

)
= exp

(
2π√
N

cos θ + i
(
mθ − 2π√

N
sin θ

))
.

The real and imaginary parts of zmexp(2π/(z
√
N)) both have exactly 2m zeros. To see

this, consider first the real part

<

(
zmexp

(
2π

z
√
N

))
= exp

(
2π√
N

cos θ

)
cos

(
mθ − 2π√

N
sin θ

)
.

For cos(mθ − 2π√
N

sin θ) = 1, we should have mθ − 2π√
N

sin θ = 2kπ, for k ∈ Z. As m ≥ 7,

d

dθ

(
mθ − 2π√

N
sin θ

)
= m− 2π√

N
cos θ ≥ m− 2π√

N
> 0

and so mθ − 2π√
N

sin θ is monotone increasing as θ varies from 0 to 2π, and changes by

2πm overall. Therefore, there are m values of θ with cos(mθ − 2π√
N

sin θ) = 1. Similarly,

there are m interlacing values of θ with cos(mθ − 2π√
N

sin θ) = −1. Between two such
interlacing values, there must be a zero of the real part. And thus the real part has
exactly 2m zeros. Further, because exp(2π cos θ/

√
N) ≥ exp(−2π/

√
N) for all θ, if∣∣∣S1(z) + S2(z) + S3(z)

∣∣∣ < exp

(
−2π√
N

)
(2.10)

then the real part of Qf (z) will also have sign changes and thus a zero in these intervals.
That is because

<
(
Qf (z)

)
= <

(
zmexp

(
2π

z
√
N

))
+ <

(
S1(z) + S2(z) + S3(z)

)

≤ exp

(
2π√
N

cos θ

)
cos

(
mθ − 2π√

N
sin θ

)
+
∣∣∣S1(z) + S2(z) + S3(z)

∣∣∣
< exp

(
2π√
N

cos θ

)[
cos

(
mθ − 2π√

N
sin θ

)
+ 1

]
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and similarly,

<
(
Qf (z)

)
= <

(
zmexp

(
2π

z
√
N

))
+ <

(
S1(z) + S2(z) + S3(z)

)

≥ exp

(
2π√
N

cos θ

)
cos

(
mθ − 2π√

N
sin θ

)
−
∣∣∣S1(z) + S2(z) + S3(z)

∣∣∣
> exp

(
2π√
N

cos θ

)[
cos

(
mθ − 2π√

N
sin θ

)
− 1

]
.

A similar argument applies to the imaginary part of Qf (z), and so it suffices to check the
criterion (2.10). By Lemma 2.2.2, we see that

L(f, 2m+ 1− j)
L(f, 2m+ 1)

≤
ζ(1

2
+m− j)2

ζ(1
2

+m)2
≤ ζ

(
1

2
+m− j

)2

.

So that

|S1(z)|+ |S2(z)| ≤
m−1∑
j=1

1

j!

(
2π√
N

)j (
ζ

(
1

2
+m− j

)2

− 1

)
+
∞∑
j=m

1

j!

(
2π√
N

)j

=
m−2∑
j=1

1

j!

(
2π√
N

)j
2m−j

2m−j

(
ζ

(
1

2
+m− j

)2

− 1

)

+
1

(m− 1)!

(
2π√
N

)m−1(
ζ

(
3

2

)2

− 1

)
+
∞∑
j=m

1

j!

(
2π√
N

)j

By direct computation, we see that ζ(3/2)2 − 1 ≤ 35
6

. Moreover, 2x(ζ(1
2

+ x)2 − 1) is
decreasing for x ≥ 2 and so may be bounded by 4(ζ(5/2)2 − 1)) ≤ 16

5
. Using the former

bound for the term j = m− 1, and the latter bound for smaller values of j, we obtain

|S1(z)|+ |S2(z)| ≤ 16

5

m−2∑
j=1

1

j!

(
2π√
N

)j

2j−m +
35

6

1

(m− 1)!

(
2π√
N

)m−1

+
∞∑
j=m

1

j!

(
2π√
N

)j

2j−m

≤ 16

5
2−m

m−1∑
j=1

1

j!

(
4π√
N

)j

+
17

4

1

(m− 1)!

(
2π√
N

)m−1

+
16

5
2−m

∞∑
j=m

1

j!

(
4π√
N

)j

=
16

5
2−m

(
exp

(
4π√
N

)
− 1

)
+

17

4

1

(m− 1)!

(
2π√
N

)m−1

.
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To bound S3(z), note that Λ(f, k
2
) ≤ Λ(f, k

2
+ 1) =

(√
N

2π

)m+2
(m+ 1)!L(f,m+ 2), hence

|S3(z)| ≤ m+ 1

2m(m− 1)!

(
2π√
N

)m−1
L(f,m+ 2)

L(f, 2m+ 1)

≤ m+ 1

2m(m− 1)!

(
2π√
N

)m−1

ζ

(
3

2

)2

≤ 41(m+ 1)

12m

(
2π√
N

)m−1

≤ 4

(m− 1)!

(
2π√
N

)m−1

,

where we have used the bounds we utilized earlier, and the fact that 41(m+1)
12m

≤ 4 for
m ≥ 7 (i.e. for k ≥ 16). Now combining the bounds for the Si’s, we conclude that

|S1(z)|+ |S2(z)|+ |S3(z)| ≤ 16

5

1

2m

(
exp

(
4π√
N

)
− 1

)
+

33

4

1

(m− 1)!

(
2π√
N

)m−1

.

Thus, to verify the condition (2.10), we need only to ensure that

16

5

1

2m

(
exp

(
4π√
N

)
− 1

)
+

33

4

1

(m− 1)!

(
2π√
N

)m−1

< exp

(
− 2π√

N

)
. (2.11)

For values of m at least as large as the figure in the first row, the table below gives a
bound N(m) such that the estimate (2.11) holds for all N ≥ N(m):

m 7 8 9 10 11 12 13 14 16 18 21 29
N(m) 28 20 14 11 9 7 6 5 4 3 2 1

For the finitely many newforms missed by (2.11), we can use PARI to confirm the result.

Therefore, we have finally proved:

Theorem 2.2.6. Let N ∈ N and k ≥ 4. If f ∈ Snew
k (Γ0(N)), then rf (z) has all its zeros

on the circle |z| = 1/
√
N .
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Chapter 3

RHPP of Hilbert Modular Forms

In this chapter, we prove that the zeros of period polynomials of any parallel weight
Hilbert modular eigenform on the full Hilbert modular group lie on the unit circle.

3.1 Algebraic Detour

We start by reviewing some basic algebraic concepts. For more details, refer to [14].

Let Q ⊂ K ⊂ C be a field. We can consider K as a vector space over Q. K is called
an algebraic number field if the dimension of this vector space is finite. This dimension
is called the degree of K and denoted by

n = [K : Q] := dimQK.

In this case, K is called a finite extension of Q. The elements of algebraic number fields
are always algebraic numbers and each algebraic number is contained in some algebraic
number field K. The smallest K which contains a is denoted by

K = Q(a).

An embedding of a number field K in C is an injective field homomorphism of K into C.

Theorem 3.1.1. Let K be a number field of degree n. Then there are exactly n different
embeddings of K in C.

We usually arrange the embeddings in a certain order and denote them by

K → K(j) ⊂ C
a→ a(j), j = 1, . . . , n.

We put the n embeddings together into a single Q-linear injective mapping

K → Cn, a→ (a(1), a(2), . . . , a(n)).

An embedding is called real if its image is contained in R. K is called totally real if it
admits only real embeddings.
The trace and norm of an element a ∈ K over Q are given, respectively, by

Tr(a) = TrK/Q(a) =
n∑
j=1

a(j), N(a) = NK/Q(a) =
n∏
j=1

a(j).
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Definition 3.1.1. Let K be an algebraic number field. The ring of integers of K is
defined as

OK = K ∩ Z,

where Z is the algebraic closure of Z.

The group of units (invertible elements) of OK is denoted by O∗K .

Theorem 3.1.2. Let K be a number field of degree n. Then OK is a free Z-module of
rank n.

Write OK = 〈a1, a2, . . . , an〉Z and let

A =


a

(1)
1 a

(2)
1 . . . a

(n)
1

a
(1)
2 a

(2)
2 . . . a

(n)
2

. . .

. . .

a
(1)
n a

(2)
n . . . a

(n)
n

 .

Then the discriminant DK of K is given by DK = (detA)2.

Theorem 3.1.3. (Minkowski’s bound)
Let K be a number field of degree n, then

DK ≥
(
nn

n!

)2

.

A subset a ⊂ K is called an ideal of K if a is an OK-submodule of K. An ideal a
is said to be integral if a ⊂ OK . It is said to be principal if there is an a ∈ K with
a = 〈a〉OK

. Further, we say a is fractional if there exists a non-zero r ∈ OK such that
ra ⊂ OK . For a fractional ideal a of K, let

a+ = {x ∈ a : x(j) > 0 for j = 1, . . . , n}.

Namely, a+ is the set of all totally positive elements of a.
The product of two ideals is defined by

a.b =

{∑
i∈I

ajbj : aj ∈ a, bj ∈ b, I is finite

}
.

The set of all fractional ideals of K is a group under this multiplication. The neutral
element of this group is the ideal OK , and the inverse of a fractional ideal a is given by

a−1 := {x ∈ K | xa ⊂ OK} .

An ideal p of K is called prime if it is integral and satisfies for a, b ∈ OK :

a.b ∈ p⇒ a ∈ p or b ∈ p.

Theorem 3.1.4. Every non-zero fractional ideal of K can be factored uniquely into a
product of prime ideals.
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Definition 3.1.2. Let a be an integral ideal of K. We define the Norm a as

N(a) := |OK/a|.

By convention, the norm of the zero ideal is taken to be zero. Note that if a = 〈a〉 is
principal, then N(a) = |N(a)|. Moreover, the norm is completely multiplicative i.e. if a
and b are ideals of K, then

N(a.b) = N(a)N(b).

Thus, by the above theorem, we can define the norm for all fractional ideals of K.

Finally, we define the different ideal dK of K to be the inverse of

e = {x ∈ K : Tr(xy) ∈ Z for all y ∈ OK} ,

i.e. dK := e−1. Note that if K is totally real, then dK = 〈DK〉 and so N(dK) = |DK |.

3.2 Hilbert Modular Forms

We now give a brief introduction to theory of Hilbert modular forms. For more details
on the general theory, we refer the reader to the survey of Bruinier in [15].

Let K be a totally real number field of degree n.
If we attach to the matrix

M =

(
a b
c d

)
∈ GL2(K)

the tuple (M1, . . . ,Mn) where

Mj =

(
a(j) b(j)

c(j) d(j)

)
, j = 1, . . . , n

we obtain an embedding of groups

GL2(K) ↪→ GL2(R)n.

The group

GL+
2 (K) =

{
γ =

(
a b
c d

)
∈ GL2(K) : detγj > 0 for j = 1, . . . , n

}
acts on Hn by coordinate linear fractional transformations, i.e. for z = (z1, . . . , zn) ∈ Hn

z → γz = (γizi)i =

(
a(i)zi + b(i)

c(i)zi + d(i)

)
i=1,...,n

=

(
a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)
.

For z ∈ Hn and

(
a b
c d

)
∈ GL+

2 (K), we write

N(cz + d) =
n∏
i=1

(
c(i)zi + d(i)

)
det(γi)

−1
2 .
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We then have that

=(γz) =
=(z)

|N(cz + d)|2
,

and so the action preserves Hn. If a is a fractional ideal of K, we define the Hilbert
modular group corresponding to a as

Γ(OK ⊕ a) :=

{(
a b
c d

)
∈ GL+

2 (K) : a, d ∈ OK , b ∈ a−1, c ∈ a

}
.

Moreover, we define the full Hilbert modular group to be

ΓK := Γ(OK ⊕OK) = GL+
2 (OK).

Definition 3.2.1. A holomorphic function f : Hn → C is called a holomorphic Hilbert

modular form of weight (k1, k2, . . . , kn) ∈ Zn for ΓK, if for all

(
a b
c d

)
∈ ΓK

f(γz) =
n∏
i=1

det(γi)
−ki/2

(
c(i)zi + d(i)

)ki
f(z).

If k1 = k2 = · · · = kn := k then f is said to have parallel weight, and is simply called a
holomorphic Hilbert modular form of weight k ∈ Z.

We denote the space holomorphic Hilbert modular forms of weight k on ΓK by
Mk(ΓK). Moreover, If f ∈ Mk(ΓK) vanishes at the cusps of ΓK , we call it a cusp form
and denote this space by Sk(ΓK) as usual.

Note that if OK has a unit of negative norm, then Mk(ΓK) = {0} for k odd (this is
because of the action of matrices of the form diag(u, u−1), where u is the unit of negative
norm). Hence we will suppose that k is even.

Each f ∈Mk(ΓK) has a Fourier expansion of the form

f(z) = a0 +
∑

µ∈(d−1
K )+

aµe
2πiTr(µz) (3.1)

where Tr(µz) =
∑n

i=1 µ
(i)zi. Since µ ∈ d−1

K , each ideal n = µdK is integral. When the
forms have parallel weight, a(µ) = a(uµ) for any totally positive unit u ∈ (OK)+ and we
may rewrite (3.1) as

f(z) = a0 +
∑
n∈OK
n 6=0

a(n)
∑

ν∈(O∗K)+

e2πiTr(µνz),

and we may identify each modular form by the coefficients a(n).
Therefore, f ∈ Sk(ΓK) has an associated L-function given by

L(f, s) :=
∑

µ∈(d−1
K /O∗K)+

a(µ)

N(µ)s
=
∑
n∈OK
n 6=0

a(n)

N(n)s
.
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If U = (O∗K)+ is the group of totally positive units of K, then letting f(z) = f(z1, . . . , zn),
N(z) = z1 . . . zn and dz = dz1 . . . dzn, we can define the completed L-function by

Λ(f, s) :=

∫
(R+)n/U

f(iy)N(y)s−1 dy,

which satisfies

Λ(f, s) =

(
DK

(2π)n

)s
Γ(s)nL(f, s) (3.2)

and the functional equation

Λ(f, s) = ε(f)Λ(f, k − s)

where ε(f) ∈ {±1}.
We further define the period polynomial of a parallel weight k Hilbert modular eigen-

form f as

rf (X) :=

∫
i((R+)n/U)

f(τ)(N(τ)−X)k−2 dτ.

In analogy with the classical case, we have that rf is the generating function for the
critical values of the L-function:

Theorem 3.2.1. The period polynomial rf of f satisfies

rf (X) =
k−2∑
`=0

(−1)`in(k−`−1)

(
k − 2

`

)
X`Λ(f, k − `− 1).

Proof. Using the binomial expansion, we get

rf (X) =

∫
i((R+)n/U)

k−2∑
l=0

(
k − 2

l

)
N(τ)`(−X)k−2−`f(τ) dτ

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−2−l

∫
i((R+)n/U)

N(τ)`f(τ) dτ

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−2−l

∫
(R+)n/U

in(`+1)N(y)`f(iy) dτ (substituting τ = iy)

=
k−2∑
l=0

(
k − 2

l

)
(−X)k−l−2in(l+1)Λ(f, l + 1)

=
k−2∑
`=0

(−1)`in(k−`−1)

(
k − 2

`

)
X`Λ(f, k − `− 1) (substituting `→ k − `− 2).

Corollary 3.2.1. The period polynomial rf of f satisfies

rf (X) = (−1)n(k−2)!

(
DK

2πi

)k−1 k−2∑
`=0

(−1)`(n+1)Γ(k − `− 1)n−1

`!

(
(2πi)nX

DK

)`
L(f, k−`−1).
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Proof. From (3.2), we have that

Λ(f, k − `− 1) =

(
DK

(2π)n

)(k−`−1)

Γ(k − `− 1)nL(f, k − `− 1).

Substituting this in the expression we got in Theorem 3.2.1, the result follows.

3.3 Zeros of Period Polynomials

Recall the result we used for determining whether a polynomial has all of its roots on the
unit circle (this is Lemma 2.1.2 from before):

Lemma 3.3.1. A necessary and sufficient condition for all the zeros of a polynomial
P (z) =

∑d
j=0 ajz

j ∈ C[z] to lie on the unit circle is that there exists a polynomial Q(z)
of degree ` ≤ d, with all of its zeros inside or on the unit circle, such that

P (z) = zmQ(z) + εz`Q

(
1

z

)
,

where m = d− ` and ε ∈ C with |ε| = 1.

In order to use this lemma, let K be a number field of degree n and f be a paral-
lel weight k Hilbert modular eigenform. Put m := k−2

2
and define the two important

polynomials Pf (X) and Qf (X) by

Pf (X) =
1

2

(
2m

m

)
Λ(f,

k

2
) +

m∑
j=1

(
2m

m+ j

)
Λ

(
f,
k

2
+ j

)
Xj

and

Qf (X) =
1

Λ(f, 2m+ 1)
Pf (X).

Then, similarly as before, we can show the following:

Proposition 3.3.1. rf (i
n+2X) is self-inversive and can be written as

rf (i
n+2X) = in(2m+1)ε(f)Λ(f, 2m+ 1)Xm

[
Qf (X) + ε(f)Qf

(
1

X

)]
.

Then, by the above Lemma, rf (X) would have all its zeros on the unit circle if and
only if Qf (X) has all its zeros inside the unit circle. For that purpose, we will need the
following results that we proved in the previous chapter, which hold in the case of Hilbert
modular forms mutatis mutandis :

Lemma 3.3.2. Let f ∈ Snew
k (ΓK). Then the function Λ(f, s) is monotone increasing for

s ≥ k
2

+ 1
2
. Moreover, we have

0 ≤ Λ(f,
k

2
) ≤ Λ(f,

k

2
+ 1) ≤ Λ(f,

k

2
+ 2) ≤ . . .

If ε(f) = −1, then Λ(f, k
2
) = 0 and

0 ≤ Λ(f,
k

2
+ 1) ≤ 1

2
Λ(f,

k

2
+ 2) ≤ 1

3
Λ(f,

k

2
+ 3) ≤ . . .
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Lemma 3.3.3. If f ∈ Snew
k (ΓK) and 0 ≤ a ≤ b, then

L(f, k+1
2

+ a)

L(f, k+1
2

+ b)
≤ ζ(1 + a)2n

ζ(1 + b)2n
.

Remark. Period polynomials for Hilbert modular eigenforms f of parallel weight 2, are
constant multiples of L(f, 1). Hence, we will consider k ≥ 4.

Theorem 3.3.1. For k = 4 and k = 6, Pf (X) + ε(f)Pf (1/X) has all its zeros on the
unit circle.

Proof. For k = 4, we have m = 1 so Pf (X) = Λ(f, 2) + Λ(f, 3)X. If ε(f) = −1, then
Λ(f, 2) = 0 and so

Pf (X)− Pf
(

1

X

)
= Λ(f, 3)

(
X − 1

X

)
,

which clearly has roots at X = ±1. If ε(f) = 1, then for X = eiθ on the unit circle,

Pf (X) + Pf

(
1

X

)
= 2Λ(f, 2) + Λ(f, 3)

(
X +

1

X

)
= 2Λ(f, 2) + 2Λ(f, 3) cos θ.

By Lemma 3.3.2 we know that Λ(f, 2) < Λ(f, 3), then the equation

cos(θ) = −Λ(f, 2)

Λ(f, 3)

has two solutions with θ ∈ [0, 2π).
For k = 6, we have m = 2 so Pf (X) = 3Λ(f, 3)+4Λ(f, 4)X+Λ(f, 5)X2. If ε(f) = −1,

then Λ(f, 3) = 0 and so

Pf (X)− Pf
(

1

X

)
= 4Λ(f, 4)

(
X − 1

X

)
+ Λ(f, 5)

(
X2 − 1

X2

)
=

(
X − 1

X

)[
4Λ(f, 4) + Λ(f, 5)

(
X +

1

X

)]
.

Clearly X = ±1 are two solutions. Putting X = eiθ, we find that the other roots
are the solutions of cos θ = −2Λ(f,4)

Λ(f,5)
for θ ∈ [0, 2π). From Lemma 3.3.2, we have that

2Λ(f, 4) < Λ(f, 5) and so their are two more roots which also lie on the unit circle. If
ε(f) = 1, letting X = eiθ we have

Pf (X) + Pf

(
1

X

)
= 6Λ(f, 3) + 8Λ(f, 4) cos θ + 2Λ(f, 5) cos 2θ.

We want to show this has two zeros with θ ∈ [0, π) and thus four zeros with θ ∈ [0, 2π).
Note that

d

dθ

[
Pf (e

iθ) + Pf (e
−iθ)
]

= −8 sin θ (Λ(f, 4) + Λ(f, 5) cos θ) ,

we have critical points at 0, π and the solution θ0 ∈ [0, 2π) to cos θ = −Λ(f,4)
Λ(f,5)

. To get two

roots in [0, π) we need Pf (e
iθ) + Pf (e

−iθ) to be positive at θ = 0 and π and negative at
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θ = θ0. At θ = 0, Pf (e
iθ) + Pf (e

−iθ) = 6Λ(f, 3) + 8Λ(f, 4) + 2Λ(f, 5) > 0. Positivity at
θ = π is equivalent to

3Λ(f, 3) + Λ(f, 5) > 4Λ(f, 4)

while negativity at θ = θ0 is equivalent to

2Λ(f, 4)2 + Λ(f, 5)2 < 3Λ(f, 3)Λ(f, 5).

The last two inequalities can be proved similarly as we did in Theorem 2.2.3 from before.

We now move to the case of large weights. We will compare Qf (X) to Xm and use
Rouchés Theorem to show Qf (X) has all its zeros inside the unit circle. On |X| = 1,
using equation (3.2), we have

Qf (X)−Xm =
1

2

Γ(m+ 1)n−2

Γ(2m+ 1)n−1

(
(2π)n

DK

)m
L(f,m+ 1)

L(f, 2m+ 1)

+
m−1∑
j=1

1

(m− j)!

(
(2π)n

DK

)m−j (
Γ(m+ 1 + j)

Γ(2m+ 1)

)n−1
L(f,m+ 1 + j)

L(f, 2m+ 1)
Xj

=
1

2

Γ(m+ 1)n−2

Γ(2m+ 1)n−1

(
(2π)n

DK

)m
L(f,m+ 1)

L(f, 2m+ 1)

+
m−1∑
j=1

1

j!

(
(2π)n

DK

)j (
Γ(2m+ 1− j)

Γ(2m+ 1)

)n−1
L(f, 2m+ 1− j)
L(f, 2m+ 1)

Xm−j.

(3.3)

where the last equality follows by substituting j → m − j in the sum. Using Lemma
3.3.3, the fact that ζ(1/2)2 ≤ 11

5
, and Minkowski’s bound, we obtain

|Qf (X)−Xm| ≤ 1

2

Γ(m+ 1)n−2

Γ(2m+ 1)n−1

(
(2π)n

DK

)m(
ζ(1/2)

ζ(1/2 +m)

)2n

+
m−1∑
j=1

1

j!

(
(2π)n

DK

)m(
Γ(2m+ 1− j)

Γ(2m+ 1)

)n−1(
ζ(1/2 +m− j)
ζ(1/2 +m)

)2n

≤ 1

2

Γ(m+ 1)n−2

Γ(2m+ 1)n−1

(
(2π)n(n!)2

n2n

)m(
11

5

)n
+

m−1∑
j=1

1

j!

(
(2π)n(n!)2

n2n

)j (
Γ(2m+ 1− j)

Γ(2m+ 1)

)n−1(
ζ(1/2 +m− j)
ζ(1/2 +m)

)2n

=: Tn(m).

Therefore, we need to show that Tn(m) < |Xm| = 1 for n ≥ 2 and m big enough. Since
we then get by Rouchés Theorem that Xm and Qf (X)−Xm +Xm = Qf (X) both have
m zeros inside the unit circle; and thus, Qf (X) would have all of its zeros inside the unit
circle, as required.
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The numbers Tn(m) are decreasing as n increases because each individual term is
decreasing. We want to show that Tn(m) is also decreasing in m. Therefore, once we
have T2(m0) < 1 for some m0, we then automatically get that Tn(m) < 1 for any n ≥ 2
and m ≥ m0. We will do this by showing the following:

Theorem 3.3.2. Tn(m+ 1)− Tn(m) ≤ 0 for n ≥ 2 and m big enough.

Proof. We can write Tn(m+ 1)− Tn(m) as

1

2

Γ(m+ 1)n−2

Γ(2m+ 1)n−1

(
(2π)n(n!)2

n2n

)m(
11

5

)n [
(2π)n(n!)2

2n−1(m+ 1)(2m+ 1)n−1n2n
− 1

]
+

m−2∑
j=1

1

j!

(
(2π)n(n!)2

n2n

)j (
Γ(2m+ 1− j)

Γ(2m+ 1)

)n−1(
ζ(1/2 +m− j)
ζ(1/2 +m)

)2n

×

[(
(2m+ 2− j)(2m+ 1− j)

(2m+ 2)(2m+ 1)

)n−1(
ζ(1/2 +m)ζ(3/2 +m− j)
ζ(3/2 +m)ζ(1/2 +m− j)

)2n

− 1

]

+
1

(m− 1)!

(
(2π)n(n!)2

n2n

)m−1(
Γ(m+ 2)

Γ(2m+ 1)

)n−1(
ζ(3/2)

ζ(1/2 +m)

)2n

×

[
(2π)n(n!)2

mn2n

(
m+ 2

(2m+ 1)(2m+ 2)

)n−1(
ζ(1/2 +m)

ζ(3/2 +m)

)2n

+

(
(m+ 3)(m+ 2)

(2m+ 2)(2m+ 1)

)n−1(
ζ(1/2 +m)ζ(5/2)

ζ(3/2 +m)ζ(3/2)

)2n

− 1

]

=: An,m +
m−2∑
j=1

Bn,m,j + Cn,m

where we have paired the extra j = m factor of the sum in Tn(m + 1) with the two
j = m− 1 terms. We see that An,m ≤ 0 for m ≥ 1 and any n ≥ 3 and as soon as m ≥ 4
for n = 2. Moreover, we can use the facts that

1

ζ(3/2 +m)
≤ 1,

ζ(1/2 +m)

ζ(1/2 +m− j)
≤ 1, ζ(3/2 +m− j)2 ≤ 8

5
2j−m + 1

to show that Bn,m,j ≤ 0 once(
(2m+ 2− j)(2m+ 1− j)

(2m+ 2)(2m+ 1)

)n−1(
8

5
2j−m + 1

)n
≤ 1. (3.4)

This expression is decreasing in j, so it suffices to show (3.4) only for the j = 1 term.

This case is equivalent to
(

m
m+1

)n−1 (16
5

2−m + 1
)n ≤ 1 which one can check is true once

m ≥ 6 for any n ≥ 2. Once we know the inequality is satisfied for m ≥ 6, we can go back
to Bn,,m,j and check the remaining values of m directly. We find that Bn,m,j ≤ 0 for any
m ≥ 1 for n ≥ 2. It remains to find when is Cn,m ≤ 0. In this case, we must show that

(2π)n(n!)2

mn2n

(
m+ 2

(2m+ 1)(2m+ 2)

)n−1(
ζ(1/2 +m)

ζ(3/2 +m)

)2n

+

(
(m+ 3)(m+ 2)

(2m+ 2)(2m+ 1)

)n−1(
ζ(1/2 +m)ζ(5/2)

ζ(3/2 +m)ζ(3/2)

)2n

≤ 1,
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which occurs once m ≥ 3 for n = 2 and m ≥ 2 for n ≥ 3.

We have shown that Tn(m) is decreasing in both n and m; so we just need to find
an m0 such that T2(m0) < 1. A computer calculation shows this first occurs for m = 8.
For higher degrees we can run this calculation again to reduce the number of cases that
need to be checked explicitly. For example, T3(m) < 1 once m ≥ 5; and Tn(m) < 1 for
m ≥ 3 once n ≥ 5. We further reduce the number of remaining cases by allowing the
discriminant to vary. For n = 2, we have the following table that shows the inequality is
satisfied once m is big enough depending on the discriminant:

DK 5 8 12 13 17 21 24 29 33 ≥ 35
m ≥ 7 6 5 5 4 4 4 4 4 3

Similarly, for n = 3 the inequality is satisfied for m ≥ 3 once we have DK ≥ 84. The
only other case we need to check is n = 4. The inequality is true for m ≥ 3 once we have
DK ≥ 209, and the totally real quartic field K with smallest discriminant has DK = 725.

3.3.1 Remaining Cases

There are finitely many remaining cases from the previous section to check. These are
totally real quadratic fields (n = 2) with discriminant DK < 35, and totally real cubic
fields (n = 3) with DK < 84. Note that in the cubic case, we only need to consider the
two totally real fields with discriminants 49 and 81, and the only special case is m = 3.
We check these cases computationally using Magma [17].

The main ingredient for our computations consist of obtaining eigenbases for subspaces
of cusp forms and creating L-functions for these forms. Once these are obtained, we check
that the roots are on the unit circle by testing the inequality |Qf (X)−Xm| < 1 as in Equa-
tion (3.3) from the previous section. All the codes we used can be found in the GitHub
repository https://github.com/ababei/HilbertModularFormsCubic maintained by An-
gelica Babei.

The main function is rfx(f:Precision; Embedding), where f is the Hilbert modu-
lar form, Precision is the precision in C of the coefficients, and Embedding is a choice of
complex embedding F ↪→ C, where the Fourier coefficients of f are defined over F . We
obtain the various complex embeddings via the function CompEmb(f:Bound). Another
important function is Lam(f,s:Precision; Embedding), the completed L-function of
the Hilbert modular form at s, again given a precision in C and an embedding F ↪→ C.
The function CheckRoots(f:Prec;Emb) checks that the Equation (3.3) holds, which is
sufficient for the roots to be on the unit circle.

For the quadratic fields case, there already is a Hilbert Modular Forms framework in
Magma, see https://magma.maths.usyd.edu.au/magma/handbook/hilbert_modular_

forms. Although there is already an L-series function LSeries implemented in Magma,
it only takes one complex embedding F ↪→ C, so we defined a new function
LSeriesH(f:Precision;Emb) defined in “Elements.m” in the repository above, where
we did a small adjustment to the preexisting code in Magma to incorporate any given
complex embedding.
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The code in “PeriodPolynomialsHMF.m” gives two lists, one of which is PerPolys

and contains all the period polynomials needed to be checked, and another list called
RemainingPerPolys. We first verify that the inequality |Qf (X)−Xm| < 1 holds, using
CheckRoots. The inequality holds for all but 11 polynomials. In such cases, we check
that the trigonometric polynomial Pf (X) + ε(f)Pf( 1

X
) with X = eiθ have the necessary

number of roots on the interval [0, π) as in Theorem 3.3.1.

For the cubic fields case, their is an algorithm described in [5] for reconstructing
full spaces of weight k for a cubic field K. The only source of Hilbert modular forms
for cubic fields at that point was via Eisenstein series, which we access with the function
EisensteinSeries(M,N,eta,psi,k) defined in “Elements.m”, and which takes the space
of Hilbert modular forms, the level N , two Hecke characters η and ψ , and a sequence
k = [k1, k1, k1] of parallel even weights. One can then find the subspace of cusp forms,
extract a basis of eigenforms by finding matrices of Hecke operators, and then construct
the L-series. To check that the period polynomials have roots on the unit circle, we only
needed to check that Equation (3.3) holds. Since it does in all our cases, we did not need to
compute the trigonometric polynomials, or the roots of the period polynomial themselves.

We finally note that there is a newer and more complete framework for quadratic
fields with more functionality, which can be found in the GitHub repository: https:

//github.com/edgarcosta/hilbertmodularforms.
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