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An Abstract of the Dissertation
of

Louma Ahmad Chaddad for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Thwarting Traffic Classification for Privacy Preservation

Research proved that supposedly secure encrypted network traffic is actually
threatened by privacy and security violations from many aspects. This is mainly
due to flow features leaking evidence about the user activity and data content.
With the increasing popularity of machine learning techniques, the traditional
means of encrypting packets are no longer feasible approaches from the privacy
perspective. A passive adversary can monitor traffic patterns that remain in-
tact after encryption, such as timing, size, direction, and count of packets in a
specific network flow. Using these features, he can build classifiers and detect
instances of application protocols. Hence, traffic analysis is considered a big
threat for the privacy of Internet users. In this thesis, we aim at understanding if
and how complicated it is to obfuscate the information leaked by traffic features.
We define a security model of the typical thwarting system against malicious
traffic analysis. Then, we propose practical techniques to prevent traffic feature
leaks. These methods consist of modifying the flow’s statistical characteristics
to mislead traffic classifiers. However, they could impose overhead in terms of
processing and memory resources. This fact is not acceptable for devices that
have limited means, nor is it acceptable for applications with interactive dynamic
nature. Thus, having efficient security is key while decreasing computation and
storage overhead on the devices, and reducing latency on the traffic. Addition-
ally, given that there are different types of heterogeneous apps, the obfuscation
system needs to be dynamic and scalable. For these reasons, we define the op-
timized privacy-leak thwarting technique resulting in a tradeoff between privacy
and complexity overhead. We propose a mathematical model for network obfus-
cation, and we formulate analytically a constrained optimization problem that
treats maximization of network obfuscation while minimizing overhead as a cost.

vi



The aim of our optimization is to decrease the security risks of statistical traffic
analysis attacks by optimally obfuscating an app traffic. We propose dynamic
algorithms to solve the optimization problem of traffic obfuscation by selecting
the target app and the length from the target app to mutate to. We analyze
the full privacy protection of our solutions using both analytical and experimen-
tal models. First, we suggest metrics for quantitative privacy measurement to
measure obfuscation system’s resilience to traffic analysis attacks. And then, we
assess their effectiveness through extensive simulations on real-world data traces.
Finally, we propose metrics based on information theory to explain the empirical
results of obfuscation models. We also suggest criteria for selecting tunable pa-
rameters to achieve best results of the obfuscation model. Our measures evaluate,
for any obfuscation system, the right choice of features to mutate, as well as the
right choice of target applications to mutate to.
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Chapter 1

Introduction

The explosive growth in network applications is perhaps the biggest technical
phenomena in recent years. In fact, featured applications have dramatically im-
pacted our societies and play an integral part in our daily lives answering those
I-want-to-know, I-want-to-do, I-want-to-go, and I-want-to-buy questions. Apps
are becoming the main practice of digital interaction mainly because they are
simple and easy to use, and they provide a multitude of new functionalities and
attractive features. On the other hand, network applications can easily boost
businesses by promoting them and increasing their visibility. Consumers in to-
day’s business environment are on the move and they rely on network application
platforms. Whether they use mobile phones, tablets, laptops or any other mobile
devices, they have all the information they want.

Over the past few years, internet-connected consumer devices have rapidly
increased in popularity and availability. It has been shown that the adoption of
mobile platforms is increasing at an exponential rate. The prevailing use of these
devices has been accompanied by the extensive use of apps. Also, the emergence
of the Internet of Things (IoT) networks has connected new types of devices and
applications. Therefore, new applications are evolving every day to connect our
private resources to the Internet.

The advent of network-based applications is leading to a huge growth and
to a tremendous amount of data traffic. Big-data scientists are processing these
large amounts of network traffic data to produce broad benefits. In fact, sta-
tistical traffic analysis is becoming nowadays an attractive tool of developing
algorithms in order to evaluate and manage Internet network traffic. Traffic
analysis is the process of extracting high level information from communica-
tions even when the actual message data cannot be read. By definition, it is
a network engineering technique that consists of examining statistical features of
flow packets (e.g., packet sizes, inter-arrival times, packet directions, etc.) and
building classifiers using machine-learning algorithms to infer traffic information.
Research proved that traffic classification is essential in network security to delin-
eate security strategies, monitor botnet propagation, filter traffic, etc. Network
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administrators take advantage of traffic analysis techniques for the purposes of
intrusion detection to detect abnormal traffic [1, 2, 3, 4], and to differentiate
malicious traffic flows [5, 6]. In addition, a proper deployment of traffic analysis
provides valuable insights for control and management of resources in TCP/IP
networks through capacity planning, allocation, diagnostic checking, and provi-
sioning [7, 8]. Traffic identification can be used for traffic engineering to optimize
the bandwidth allocation and routing plan among applications for different qual-
ity of service requirements. Other uses include imposing precise rules on users to
access the network in order to apply institutional strategies. Engineers can use
this information to build robust networks and avoid possible delays [9]. To this
end, traffic analysis is used to support Internet-based services including banking,
health, military, government, electrical systems, and transportation.

Traffic analysis can also be misused to launch attacks to infer knowledge on
network traffic by means of exploiting side-channel information leakage. The
popularity of apps has blurred the gap separating private and unrestricted in-
formation about individuals. People usually download applications in line with
their habits, religion, health, activities, etc. Accordingly, knowing the specific ap-
plications installed by a user can give much personal information about him. To
ensure privacy and anonymity in general, apps are implementing encryption and
people are resorting to use anonymous communication systems such as Tor [10],
JAP [11], etc. However even with the growing usage of these tools to protect
traffic content, traffic analysis has become a common attack threatening pri-
vacy, anonymity, and confidentiality. These types of attacks have been known
for decades causing major privacy breach on military systems, banking, health-
care, etc. In fact, an adversary can misuse traffic analysis in order to conclude
a user’s online activity, which is typically private and includes sensitive informa-
tion. These privacy breaches, also referred to as ‘side-channel information leaks’
range from predicting users’ locations [12], distinguishing the downloaded web
pages [13]; identifying language in an encrypted VoIP conversation [14]; obtain-
ing records of an encrypted VoIP chat [15]; or identifying critical information
about the underlying type of applications [16, 17, 18].

One of the biggest worries in networking is to provide perfect security, in
particularly user privacy. Accordingly, the security community nowadays is con-
cerned about using network traffic analysis to breach users’ privacy [19]. A typical
solution to these concerns is to simply encrypt networking data to hide it from
a potential attacker seizing the traffic. Yet, this alone is not sufficient; ciphering
does not hide all relevant information of a packetized flow. Numerous features of
the encrypted network traffic, such as packet lengths, inter-arrival times, direction
of packets, their count per flow, and many others, can still give information about
the traffic and the exact applications being used. Various studies [20, 21, 22] have
demonstrated that an attacker is able to disclose sensitive information about a
network application user even in the presence of strong encryption.

In brief, current implementations of network-based applications offer limited
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security assurances against traffic analysis. Traffic analysis nowadays is consid-
ered a major threat of confidentiality of network applications. Additionally, tools
for protecting information traffic privacy still fall short of what is required in
terms of strong privacy protection and low performance overhead.

In this Thesis, we take steps to fill this gap and we aim at investigating of pri-
vacy protection against traffic analysis to answer the question: can we optimally
protect users’ privacy without deteriorating the Internet traffic behavior? Our
goal is to guard against an eavesdropper monitoring the network and using statis-
tical traffic analysis to infer users’ sensitive data. We aim for a traffic obfuscation
system that strikes a good balance between efficiency in obstructing application
tracing and maintaining minimal performance impact. The proposed solution
needs to be efficient in the first place, to have low computational and storage
overhead, and to have reduced latency on the traffic. Additionally, it needs to
be dynamic, scalable, and able to deal with big data. Figure 1.1 depicts our
formal statement of the problem. Moreover, we aim to establish a structured and
comprehensive framework to measure and compare between obfuscation systems.

Figure 1.1: Problem Definition

1.1 Contributions

The contributions of this thesis can be summarized as follows:

1. Proving a passive traffic analysis attack is possible, involving only sparse
information. The attack involves the identification of specific applications
using machine learning on encrypted network traffic.
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2. Defining formally the problem of privacy against traffic classification, thus
finding what the ideal obfuscation system should do.

3. Proposing different obfuscation algorithms by exploring different concepts
of anonymization, mutation, morphing, etc.

4. Defining the mathematical formulation of network traffic obfuscation to find
an ideal masking algorithm that minimizes overhead cost.

5. Verifying the benefits achieved by an optimal solution. Our experimen-
tal evaluation on real dataset revealed that our technique is successful in
defending against the attack without degrading users’ quality of service.

6. Proposing new information theoretic metrics for quantitative privacy mea-
surement using entropy.

7. Suggesting criteria for selecting tunable parameters to achieve best results
of the obfuscation model.

8. Conducting a comparative study between obfuscation algorithms.
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Security, 2021.
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Privacy Protection for Network Traffic”, In review.

1.3 Thesis roadmap

This thesis consists of 5 chapters, besides the introduction chapter. These chap-
ters are organized as follows:

• Chapter 2 presents a comprehensive literature review on the traffic classifi-
cation and obfuscation techniques. In this chapter, we present the different
methods of classification. In addition, we review the existing traffic obfus-
cation techniques. Moreover, in this chapter, we include some necessary
background information on the main concepts needed for understanding
the rest of the chapters including network traffic properties, and concepts
of information theory.

• In Chapter 3, we present our problem definition and the attack scenario that
illustrates the need to thwart network traffic classification to provide secu-
rity. We demonstrate that activities of an application user can be inferred
from generated traffic volumes alone, even when the traffic is protected with
end-to-end encryption.

• Chapter 4 presents our preliminary algorithms for network obfuscation that
we evaluate against traffic analysis attacks in terms of privacy protection,
network delay, and traffic overhead.

• In Chapter 5, we present the mathematical formulation of the optimization
problem of traffic obfuscation. Then, we present our proposed optimal
solution using both analytical and solver packages.

• In Chapter 6, we consider new metrics based on entropy to enhance and
compare between obfuscation systems. In addition, we use these metrics to
conduct a quantitative privacy assessment of the proposed solution models.

• Finally, we conclude in Chapter 7, with an overall discussion on the findings
and limitations. Also, we open the floor for future research perspectives.
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Chapter 2

From Traffic Analysis to Traffic
Obfuscation

Statistical traffic analysis has gained considerable attention from the academic
and industrial research communities. It proved to be efficient in identifying secu-
rity threats and providing effective management of network assets. In fact, studies
proved it practical when used for applications identification [23, 24, 25], anomaly
detection [26, 27], user fingerprinting [28, 29, 30], etc. Using specific patterns of
the packets’ sizes and their timing, one can build a classifier based on machine
learning techniques to extract the needed information about the network traffic.
Yet, network traffic analysis could always be used by a passive adversary and is
considered nowadays a major threat with serious impact on users’ privacy [19].
In fact, one can use traffic analysis to infer app users’ activities from network app
traffic metadata. For instance, many features like traffic rates, source and des-
tination addresses, packet sizes, and interpacket times are easily accessible and
can be used to give out information about the traffic and the exact applications
being used. A typical solution to these concerns is to simply encrypt networking
data to hide it from a possible attacker capturing the traffic. However, this alone
is not enough; ciphering does not hide all relevant information of a packetized
flow. Despite broad adoption of transport layer encryption, traffic metadata of
packetized flow is sufficient for a passive network adversary to infer users’app sen-
sitive activities. The attack involves inferring times and types of user application
activity from app traffic patterns. Various studies [20, 21, 22] have validated that
an attacker is able to disclose sensitive information about a network application
user, even in the presence of strong encryption.

In this chapter, we review first Internet traffic analysis methods. A deep
understanding of the machine learning classification attack helps in designing a
solid security solution. We investigate next privacy protection against Traffic
Analysis and the need for the development of thwarting traffic analysis tools. We
term this Traffic Obfuscation. In Figure 2.1, we summarize techniques used in
both fields.
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Figure 2.1: Traffic Analysis versus Traffic Obfuscation techniques

2.1 Traffic Analysis: State of the Art

Over the last decade, internet traffic classification has been the subject of inten-
sive study given its use in network management and security. Many approaches
have been proposed and can be categorized into 4 types: port-based, payload-
based, statistical-based, and behavioral-based [31]. In addition, some studies
applied hybrid approaches in network traffic classification.

2.1.1 Port Based

Port based method is the oldest and most common method for traffic classifi-
cation. It consists of checking port numbers at the TCP/IP header to identify
applications. Then, traffic is classified according to the port used. This method
uses only packet headers (or flow identifiers). Essentially, well-known port num-
bers for specific services are assigned by the Internet Assigned Numbers Au-
thority (IANA) [32]. Port numbers can be easily retrieved and are usually not
encrypted, thus making flow classification fast. This method can be used for
applications that exploit particular protocols such as HTTP, ICMP, FTP, and
POP3. The implementation of a port based classification system is quite simple.
However, this method became unreliable and inaccurate because port numbers
can be altered and because many applications tend to use dynamic port numbers
allocation [33, 34]. In addition, the use of port-based method is very limited
especially because many applications do not have their ports registered to IANA.
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Additionally, this approach fails on tunnels where NATing process changes source
and destination port numbers in the packet header [35].

2.1.2 Payload Based

Payload based, known also as deep packet inspection (DPI), consists of inspecting
each packet individually to find specific signatures. DPI compares the information
extracted from the packets with a set of already known signatures. It entails
identifying string patterns of the application and performs classification on this
basis. For instance, the authors in [36] present FLOWR that can identify apps
with an accuracy of 86-95%. FLOWR learns information in HTTP header that
can be used as signature of mobile apps authors. In [37], the authors use raw based
features of the content of application layer payload to classify traffic into different
application protocols. Some of the well known deep packet inspection tools are
nDPI, L7-filter, Libprotoident, PACE, and NBAR, etc. This method is reliable
and lightweight and can be used dynamically because it does not include much
overhead in terms of processing and storage. Hence, it is widely implemented in
commercial products. However, payload-based classification techniques fail when
privacy policies and laws prevent accessing to the packet content. That would
be the case of encrypted traffic, NAT networks, and Virtual private networks.
Also, DPI tools need to be constantly updated and otherwise, they will fail in
the prediction of a new protocol. In addition, these methods touch users’ privacy.

2.1.3 Statistical Based

To overcome DPI and port-based limitations, classification using Machine Learn-
ing methods have been proposed [38, 39]. In fact, statistical classification ap-
proaches avoid issues related to access need to packet payloads by using payload-
independent parameters such as packet length, inter-arrival time, and flow dura-
tion. The main idea behind statistical-based methods is to find statistical varia-
tions between flows of different networking data classes. The literature presents
many classification techniques that identify encrypted traffic using machine learn-
ing [40]. These traffic analysis methods leverage the statistical features of network
flows and build classifiers based on metadata such as timing, traffic patterns, traf-
fic direction, and volume. The majority of these techniques rely on packet length
feature [41, 42, 43, 44, 45, 46, 47, 48]. In fact, packet length reveals characteristics
of the underlying class and as such is useful in discriminating between different
types of network traffic. In [31], the authors rely on features such as the count of
packets and bytes, the minimum, maximum, average and standard deviation of
the inter-arrival time of packets in a flow, and the transport layer protocol. Using
this technique, authors classify packets with 90% accuracy. However, the detec-
tion rate can be affected since inter-arrival time depends on the network. Crotti
et al. use in [49] statistical traffic characteristics such as packet size and inter-
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arrival time to classify traffic based on the used protocols: POP3, HTTP, and
SMTP. The authors in [50] compare five widely utilized machine-learning algo-
rithms (Adaboost, Näıve Bayes, C4.5, Bayesian Network and Näıve Bayes Tree)
to classify Internet traffic into different protocols (FTP, Telnet, SMTP, DNS,
and HTTP). In [51], the authors build four classification algorithms, namely J48,
Random Forest, k-NN, and Bayes Net with a set of 111 features to identify appli-
cations (Facebook, Twitter, and Skype). K-NN gives the best results with 93.94%
of accuracy with k= 1. In [52], the authors adopt an unsupervised traffic flow
classification using time interval based features. Singh et al. build in [53] 5 clas-
sifiers and test them on real Internet traffic. Bayes Net was the most successful
classifier with 88.13% of accuracy. In [54], the authors study different supervised
and unsupervised techniques for traffic classification. Supervised classifiers are
based on Naive Bayesian, Neural Networks, and Decision Trees. On the other
hand, the clustering techniques studied are DBSCAN, Expectation Maximiza-
tion based approach, and K-means. The authors in [55] classify encrypted traffic
using different machine learning algorithms including Naive Bayesian, Support
Vector Machine, C4.5, and Multilayer Perceptron. However, the features used by
the machine learning algorithms play the integral role in affecting their accuracy.
To address this, deep learning based methods can extract hidden features from
raw data packets using a neural network [56]. The authors in [57] present a bet-
ter Convolutional Neural Network model suitable for unlimited length dataset.
In [58], Lotfollahi et al. apply Stacked Auto Encoder machine and Convolutional
Neural Network to classify network traffic. Deep learning was applied for the first
time to classify Internet traffic by authors in [59] using Stacked Auto Encoder
(SAE) method. They analyze the contents of the captured packets of each TCP
session (1000 bytes) to discriminate traffic into different applications protocols.
The accuracy reaches 99% for some protocols. However, this solution needs a lot
of computation because it uses the whole flow payload to make the prediction.

2.1.4 Behavioral Based

Behavioral-based methods attempt to identify patterns among end-to-end com-
munications in a network. This technique calculates the statistical features that
characterize the behavior of an application, and then uses these features to build
classifiers or clustering methods to identify the class of the application. Behav-
ioral patterns are commonly represented through graph modeling. Graph theory
is used to discover connected hosts, number of connections, and ports, etc. [60].
The work in [61] demonstrates an overview of the state of the art in this area. For
instance, the work in [62] suggests a technique to find Peer-to-peer communities,
where the network connections are characterized using graphs. The nodes repre-
sented using their IP addresses and ports, and the connection are characterized by
the number of packets exchanged between nodes. Then, a multinomial classifier
is built to map a specific graph to known networks. The authors in [63] identify
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Peer-to-peer traffic by studying traffic behavior. First, they use K-means model to
cluster similar flows together. Then, they characterize the clusters using a Traffic
Dispersion Graph, where the nodes are symbolized using their IP addresses and
the link between them using the registered flows. At the end, the applications’
names are detected using specific rules based on features of the graph. On the
other hand, the authors in [64] use the Traffic Analysis Graphs to reveal the be-
havior of diverse applications. In the graph, the nodes are represented using their
IP addresses and the edges are the flows of interest that represent hosts traffic
activities for example. Reference [65] constructs bipartite graphs and calculates
their similarity matrix. Then, K-means clustering algorithm is built using this
matrix. This method can be used to detect traffic anomalies. The authors present
in [66] BLINC, a system that uses multi-level behavior of the traffic such as an-
alyzing interaction between hosts, protocol usage, and per-flow average packet
size. BLINC develops “graphlets” that describe the normal usage patterns of
a variety of network applications; these structures are then used in conjunction
with host information to predict the application associated with a given flow in-
dependently of the port numbers used. The results show an ability of classifying
80%-90% of the traffic with 95% accuracy. In [51], the authors build a profile of
an app using features from traffic traces that associate to an application. Exper-
imental results show that the suggested technique has high accuracy on two P2P
applications: BitTorrent and PPLive. Authors in [67] combine both host-level
identification and flow-level identification to classify applications using statistical
behavior analysis. BitTorrent, HTTP, SMTP, and FTP traffic traces are used in
the experiments demonstrating that the proposed technique based on Decision
tree can recognize the applications precisely and with small delay.

2.1.5 Hybrid methods

The authors in [68] apply a hybrid technique where they combine packet payload
signatures and well known port numbers. The main idea is to relate the un-
known traffic to known traffic using a co-clustering algorithm combining source
IP addresses, destination IP addresses, and destination port numbers. In [69], the
authors classify network traffic using hybrid mechanisms including the Extreme
Learning Machine, Feature Selection and Multi-objective Genetic Algorithms.
They achieve 96% accuracy by using Multi-objective Genetic Algorithms to op-
timize Extreme Learning Machine classifier and to choose the best feature selec-
tion algorithm. In [70], Dong et al. use port-based, payload-based, Bayesian and
SVMs methods to build a network classifier achieving over 95% average accuracy.
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2.2 Traffic Analysis Applications

The issue of identifying applications, by just investigating the generated network-
ing traffic, has been extensively researched over the past years. By identifying
patterns in the encrypted traffic, it is possible to conclude users’ actions such
as spoken phrases [71], web browsing [72, 73], identification [74], motion and
location [44], and behavior [43, 45].

At first sight, it appears that traffic analysis on different applications, devices,
and services are all the same. While there are some similarities, such as the use
of IP addresses/ports for end-to-end communication, there are distinctions in the
way and category of traffic. In the rest of this section, we look specifically at
traffic analysis methods/attacks on smartphones, and on websites.

2.2.1 Traffic Analysis Methods/Attacks on Smartphones

S. Dai et al. [47] present Android apps identification based on Deep Packet In-
spection (DPI). Their technique assumes that 70% of apps don’t use HTTPS
which is not accurate for existing apps in stores. Moreover, applying deep packet
analysis on the mobile device would consume battery and CPU resources. The
authors of [74] show that the identities of apps used on a smartphone can be
inferred by examining 3G/UMTS sidechannel information like volume of data
and their timing. In [75], the authors propose a model for classifying service
usages of mobile messaging apps by extracting features related to packet length
and time delay. In [42], the authors implement a Random Forest classifier using
timing and frame size based features to identify mobile apps from their encrypted
traffic. In [76], the authors propose to classify the mobile apps traffic based on
Convolutional Neural Networks (CNNs) by identifying the abstract app signature
from its traffic. Yet, their method is not scalable since it requires the app to use
HTTP, which is not the case for most apps. Authors in [17] present a promising
methodology for classification of mobile apps’ encrypted traffic and have recently
extended this work in [41]. They create AppScanner framework based on machine
learning algorithms to infer Android apps installed on a mobile device. They use
statistical properties of lengths of raw encrypted flows as features. For each flow,
they consider 3 series of packet lengths relative to incoming packets, outgoing
packets, and bi-directional. Then, they compute for the different series: mini-
mum, maximum, mean, median absolute deviation, standard deviation, variance,
skew, kurtosis, percentiles, and the count of elements in the series. This results
in 54 features for each flow that can be narrowed down to only 40 as discussed
in [17]. They build a random forest classifier and assessed 110 apps from Google
Play Store. The results show an average accuracy of 96% in identifying apps
outperforming state of the art methods. One drawback of this method is that it
uses a considerable number of features making it computationally expensive.
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2.2.2 Traffic Analysis Methods/Attacks on Websites

A lot of work in the literature aims at identifying the contents of websites using
traffic analysis. In this context, an attacker can identify web pages using their
side-channel information, and reveal sensitive information of a user, such as their
browsing histories. Cheng and Avnur carry out the first website fingerprinting
attack in 1998 [77]. They exploit the unique size of each downloaded object to
fingerprint the page visited by users. Bissias et al. [78] build profiles for well-
known webpage using the packet size and inter-arrival time distributions. Then,
they compare using cross correlation the degree of similarity between an observed
traffic and the profiles built. They realize a 25% accuracy. Herrmann et al. [13]
introduce multinomial naive bayes classifier that correctly identifies sites with an
accuracy of 90%. In [79], the authors represent a traffic trace by its cumulated
sum of packet sizes. Then, they use Support Vector Machine (SVM) built on
discriminative features of the traffic traces. The authors in [72] use packet timing
information only on the link. They apply DTW algorithm to classify between
traffic traces with time sequences and realize a success rate that exceeds 90%.

2.3 Traffic Obfuscation: State of The Art

As outlined previously, extensive experiments and research gave evidence that an
encrypted network traffic leaks information about the flow or about the user ac-
tivity to an observer through detectable features. Consequently, the proliferation
of smart networking applications presents unprecedented challenges for preserv-
ing user’s privacy. There is currently a new research direction focusing on traffic
masking to thwart classification in order to protect users’ security [80, 81, 82].
Known as traffic watermarking techniques or traffic obfuscation techniques, we
review in this section the proposed literature in this field.

Traffic analysis is considered in this case an attack that threats the user’s
privacy. Malicious adversaries can employ a passive traffic classification attack to
compromise privacy without even being detected by intrusion detection systems.
According to the literature, many practices can be used to obfuscate traffic and
hinder the ability of an adversary to learn from the network traffic. Different
systems have been developed in order to ensure confidentiality, performance, and
efficiency of networks. In the following, we group the classification-obfuscation
methods into four types: anonymization, mutation, morphing, and tunneling.
We classify some of the reviewed work in Table 3.1

2.3.1 Anonymization

Anonymization consists of hiding key information that provides important in-
formation for traffic classification such as IP addresses, port numbers, MAC ad-
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Table 2.1: Traffic obfuscation techniques

Authors Year Attacker Model
Accuracy
Before

Defense Method
Accuracy
After

Defense Ap-
proach

Fu et al. [83] 2003 Bayes 100% Dummy packets insertion 50% Anonymization

Dyer et al. [84] 2012
Liberatore and Levine Clas-
sifier

87%
Maximum Transmission
Unit (MTU) padding

41% Mutation

Dyer et al. [84] 2012 Herrmann et al. Classifier 98% Random padding 40% Mutation

Dyer et al. [84] 2012 Herrmann et al. Classifier 98% Random MTU padding 11% Mutation

Dyer et al. [84] 2012 Herrmann et al. Classifier 98% Linear 73% Mutation

Dyer et al. [84] 2012 Herrmann et al. Classifier 98% Exponential 61% Mutation

Qu et al. [85] 2012 Naive Bayes 65%
Elephants and mice
padding

28% Mutation

Wright et al. [86] 2009 Naive Bayes 98%
Morphing using convex op-
timization techniques

63% Morphing

Zhang et al. [48] 2013 SVM and NN 83% Traffic demultiplexing 44% Other

Juarez et al. [87] 2016 K-NN 91% Adaptive padding 20% Mutation

Imani et al. [88] 2018 CNN model 98% Random padding 60% Mutation

Lu et al. [89] 2018 Optimal attacker 94% DynaFlow 44%
Morphing & Mu-
tation

Sirinam et al. [90] 2018
Deep Fingerprinting based
on Deep learning

90% BuFLO 12% Mutation

Liberatore et
Levine [91]

2006 Naive Bayes classifier 98% packet padding to MTU 7% Mutation

Panchenko et al.
[92]

2011
Support Vector Machines
(SVM)

80% Camouflage 4% Anonymization

dresses. In this context, multi-path routing [93, 94] and NATing [95] can be used
for anonymizing the communicated traffic.

Also, TOR is a well-known system for anonymous communication based on the
second generation of the onion routing model [96]. The TOR process transmits
data between communicating peers via a cascade of Onion Routers. Initially, the
communication initiator creates shared secret keys with the proxies. The commu-
nication initiator encrypts the data in layers, beginning with the key shared with
the last node on path of proxies, then in a reverse successive order using the keys
shared with the in-between nodes and finally using the key shared with the first
node of the path. Then, the first node decrypts the encrypted messages to deter-
mine the next hop in the path and sends it the data. The second node repeats
this process and sends the data to the third node. This process is reiterated for
all the nodes along the path. At the end, the last node in the path decrypts the
first layer of encryption and sends the decrypted original data to their planned
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receiver. Hence, no node along the path can conclude both the original source and
the real intended destination of the data. This scheme is supposed to guarantee
anonymity against the peer as well as eavesdropping attackers that could snoop
on the traffic flow. However, in the recent past, it has been verified that even such
systems are vulnerable to detection by machine-learning techniques [97, 98, 99]
which have proved efficient in classifying TOR traffic. Recently, some efforts
have been made to improve TOR security by using TOR bridges and Pluggable
Transport Protocols [100, 101].

Other proposed anonymization techniques consist of inserting additional dummy
packets and transmitting them to conceal the real traffic. For instance, [83] pro-
poses the use of heavy traffic to hinder the adversary’s ability to tamper with the
links. Also, the proposed defenses in [102], [103], and [104] deliberately drop some
packets, known as defensive dropping, and in [105] inject artificial delay inten-
tionally. In these methods, the authors use dummy packets judiciously in their
defense model without drastically degrading performance. Their model detects
the packets “on-the-fly” and predicts the traffic characteristics such as throughput
and inter-packet arrival times, and consequently sets the rate of dummy traffic
injection.

2.3.2 Mutation

Traffic mutation relies on changing the flows’ statistical characteristics to con-
fuse a classifier and to make it difficult to identify the original traffic [106]. It
consists of properly modifying the packet sizes and/or the packet Inter-Arrival
Times (IAT); and consequently, the statistics of the overall conveyed traffic be-
come considerably dissimilar from the original one. Padding and fragmentation
are the techniques used to hide packet size information. On the other hand, traf-
fic shaping and buffering aim to hide the interarrival time information. These
methods have a great impact in reducing the accuracy of statistically based traffic
classifiers. For the packet size mutation, five methods are described as follows:

• Maximum Transmission Unit (MTU) padding: it is a well-known
mutation technique that consists of padding all the flow packets to the
maximum payload size MTU [84]. This method completely hides packet
size information but creates a huge bandwidth overhead.

• Random padding: this method consists of padding the packet to a size
randomly chosen to be between its current size and MTU [107].

• Random MTU padding: let L be the original length, the number of
added bytes is randomly selected from 1 to MTU- L [108].

• Linear padding: this technique consists of increasing each packet to the
nearest multiple of a system parameter [109].
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• Exponential padding: this technique consists of padding the packets to
the next largest power of two or the Maximum Transmission Unit (MTU),
whichever is smaller. In this case, the transformation graph will have a
plateau after a certain value of current length [109].

• Elephants and mice padding: this technique consists of padding the
packets to a certain value c, if their size is less than c, if not, they are
padded to the MTU [110].

The linear, exponential and mice/elephants techniques showed the worst re-
sults in privacy protection. Random MTU padding and Fixed-length have similar
results in privacy protection, but the former generates less overhead than the lat-
ter [84].

Techniques based on interarrival time mutation are summarized below as
listed in [111]:

• Constant Interarrival Time: this method consists of sending the pack-
ets at a fixed interarrival time. this method hides the information carried
in the packet interarrival time. However, it presents a very high overhead
in terms of latency.

• Variable Interarrival Time: this technique consists of sending the
packets at random time intervals chosen randomly from a uniform distri-
bution between two values.

We depict in Figure 2.2, 2 examples of mutation algorithms: Maximum Trans-
mission Unit (MTU) padding and Constant Interarrival Time.

The authors in [112, 113, 114, 115, 110] consider traffic masking using mu-
tation of packet sizes and interarrival times while realizing a tradeoff between
performance and security of the system.

2.3.3 Morphing

Morphing techniques aim at confusing the classifier into classifying the target ap-
plication traffic as another type. We illustrate the concept behind it in Figure 2.3.
Wright et al. proposed a morphing technique that consists of transforming one
class of traffic to look like another class by applying convex optimization tech-
niques [85, 86]. They evaluate their method against two traffic classifers for
websites [116] and VoIP [41]. Compared to the mutation technique, morphing
technique reduces the accuracy of the network traffic classifiers with much less
overhead. Nevertheless, there is an issue with the practicality of this method
given the needed computations and hence, it cannot be used in devices with re-
stricted resources. Also, it increases latency due to the generation of random
numbers for each input packet.
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Figure 2.2: Mutation techniques

Figure 2.3: Morphing technique

2.3.4 Tunneling

Tunneling hides packet-related features (IP addresses, port numbers etc.) by
the use of encryption and the creation of virtual networks. Virtual Private Net-
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work (VPN) is a well known tunneling service that ensures hiding the connection
metadata and consequently the users’ privacy. VPN relies on a set of security
protocols (e.g., IPSec, IKE, SSL, etc.) to build a tunnel between the VPN client
and server, and then the server forwards the client encrypted packets to the des-
ignated destination. The source IP address that appears at the destination is the
VPN server IP address. However, the work in [117] categorizes VPN traffic based
on the application name and traffic type.

2.3.5 Other Techniques

In [118], Apthorpe et al. describe a stochastic traffic padding framework to
protect smart homes against traffic analysis. It consists of shaping traffic to a
fixed traffic pattern, in intermittent periods, to limit the information exposed
about users’ activities through traffic analysis. Their method obfuscates traffic
originating from IoT devices. However, it could result in network latencies. In
addition, this technique is not scalable to other types of networking traffic because
it is a primarily dealing with analysis of user traffic patterns.

[48] suggests using virtualized MAC addresses to obscure the adversary’s anal-
ysis. Their model consists of creating multiple virtual MAC interfaces over a sin-
gle wireless card. Then, the packets over these interfaces are dynamically sched-
uled, and the packet features are reshaped over each virtual interface. However,
this solution is more appropriate for using a Wi-Fi connection on a computer.

Other techniques used in traditional networks could also be used for traffic
obfuscation such as: jamming [119, 120, 121], identifier-free [122, 123, 124], and
pseudonym [125, 126].

2.4 Website Traffic Anonymization

Most past studies for traffic anonymization against traffic analysis were specific
to defend against website fingerprinting [87, 88, 89, 127, 90]. In fact, one of the
first attempts to secure website users from privacy attacks was introduced by
Wagner and Schneier [128]. They suggest to apply random length padding on
all cipher modes of the SSL protocol. Buffered Fixed-Length Obfuscator [84]
is another well-known defense that sends packets at fixed sizes and times, and
uses dummy packets. However, it results in a high bandwidth overhead. More
advanced techniques have been suggested in [92] where they use camouflage to
change the patterns of the data traffic on purpose by loading several web pages
instead of the requested one. In [129], a traffic morphing technique (Glove) was
proposed. It consists of grouping websites, whose network flows are similar, into
clusters. Later, Glove uses minimum dummy traffic to shape websites in a cluster
to be the same. So, an attacker cannot classify a specific website, but only the
cluster to which it fits. The authors in [130] present the WeFDE technique to
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perform information leakage on a dataset. This technique estimates the bits of
information that are revealed by particular features of a website traffic.

Recent studies [131] have shown that the applicability of those paradigms are
sometimes limited to websites only. According to [132], website-based activities
differ from in-app user activities and consequently, the solution for obfuscating
the traffic could also be different. Hence, only few solutions of the previous works
in obfuscation security, using machine-learning practices, can be used to thwart
side channel information leakage specific to network applications.

2.5 Dicussion: Key Findings and Limitations

It has been well-established that traffic obfuscation is a necessity to preserve
network security. Defending against traffic analysis is a relatively young field of
research but already has a wide diversity of approaches and systems. Different
techniques have been proposed to preserve user privacy by thwarting traffic clas-
sification. Mutation and anonymization methods are currently dominant. Their
effectiveness is acceptable, however, the large added overhead is not practical
since it severely worsens the efficiency and performance of the original network
protocols. Padding encrypted packet sizes to their maximum transmission unit
(MTU) for example, could end up into more than doubling the amount of data
sent [114]. The cost associated with their use is a drastic overhead in terms of
the amounts of data being sent. This leads to performance degradation in terms
of delay and bandwidth consumption [133].

On the other hand, despite the efforts to obfuscate side-channel information
in recent years, it is still possible to conclude networking traffic flows even when
implementing these method. In [84], Dyer et al. reviewed techniques known in
the literature to defend against traffic analysis and revealed their key weaknesses.

Many works have been presented as promising to reduce the performance of a
traffic classifier but their impact on the actual performance degradation has been
ignored. To the best of our knowledge, there is no formal statement of the traffic
anonymization problem. Most suggested solutions were specific to certain types
of traffic such as mobile application, websites, IoT devices, etc. Also, no efficient
optimal solution to minimize the overhead cost and implementation complexity
to defeat classifiers has been suggested yet.

In brief, the literature lacks a robust yet accurate design for an obfuscation
system. Overhead in terms of memory space, computational complexity, and
processing time should also be considered as it is vital for real-time network
services.
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2.6 Network Traffic Modeling

The study of packet length distribution is a fundamental step for traffic modeling
[134]. A large body of work in the literature studies network traffic properties.
In [135], authors report packet size distribution for network flows at the Internet
layer, transport layer, and application layer. According to [136], Pareto Second
Kind distribution is best fit for network packet inter-arrival time distribution. In
[137], the authors find that lognormal and GEV models are the optimal statistical
models characterizing Internet traffic. According to [138], network traffic model
for non-congested Internet backbone links can be described as a Poisson short-
noise process. In [139], the authors demonstrate that models can be used to
approximate distribution of network traffic. They suggest a probability density
function model to fit packet lengths in computer networks. In addition, they
confirm that Exponential, Lognormal, Pareto of Weibull distributions can be
used for the same purpose. These clues to a conclusion that there are different
models with different characteristics that can capture network traffic. Hence,
there is not a single model that can be used. Standard goodness-of-fit tests
such as Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square [140] allow a
mathematical proof for the optimal fit.

2.7 Conclusion

Applying Machine Learning in the network domain would enable creative network
functions in addition to major threats to its security. Significant amount of
previous work has investigated the topic of Traffic Analysis countermeasures. The
proposed solutions were limited to specific uses and traffic types. Other network
obfuscation proposed solutions did not consider the limited resources aspect in
terms of processing and memory assets. Nor did they consider the interactive
dynamic nature of network applications traffic. In this chapter, we reviewed
traffic classification techniques, as well as the obfuscation methods designed to
evade traffic classification. After examining the literature, the question becomes
how to design a robust obfuscation framework that accounts for adversarial traffic
analysis attacks, while considering network performance concerns. We focus on
the accuracy, feasibility, and practicality of the defense model.
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Chapter 3

Classification Attack

There have been much effort towards designing and deploying trustworthy and
reliable network applications that ensure users’ privacy and anonymity. However,
recent publications have disclosed a variety of Traffic Analysis attacks, in the form
of machine learning classifiers that attempt to trace end-user application identifi-
cation through network traffic classification. In wireless LANs, eavesdropping is
easy due to the shared medium and hence, encrypted traffic samples that users
send over wireless links are practically exposed to sniffers monitoring the traffic.
Even worse, the attacker can have direct access to the encrypted data of a user
from the server. This adversary could be, for example, a powerful government
organization that gained access to an ISP. Hence, the adversary has the flow fea-
tures information like timing, size, direction, and count of packets in a specific
encrypted network flow. The adversary could use these leaks to induce sensitive
information from network contents. Our aim in this Chapter is to demonstrate
through experimental evaluation that the privacy of network users is at risk. In
the remainder of it, we explain models of network traffic classification based on
machine learning, and we present a methodology for the identification of applica-
tions using traffic analysis. We perform this attack using side-channel information
leakage in which we use the packet-level traffic analysis to infer the precise pat-
terns in the packets no matter they are encrypted or not. At the end, we give
the maximum success rate of the classification, and we describe the performance
evaluation of the classifiers built.

3.1 Traffic Analysis

When sensitive data is transmitted between 2 devices withing a network, it is
normally encrypted not to allow others to see it. This process conceals the infor-
mation within the packet, leaving only ciphertext visible to a possible adversary.
Supposing a strong encryption, no one should be able to understand the pro-
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tected information as it goes over the Internet. But even if the data is effectively
unseen, will the sender be able to preserve a full secrecy? Unfortunately, packet
header information must be left unencrypted to ensure successful routing. Those
packet sizes, inter-arrival times, and headers leave some information leakage to
potential attackers. Figure 3.1 shows the contents of a single packet captured
during an encrypted session using the well-known sniffing tool Wireshark. Even
if the data is encrypted, some information is still freely obtainable to a possible
adversary. Information that can be inferred from this packet are for instance:

• the source

• the destination

• the application-layer protocols in use (SSH, HTTPS, etc.)

• the amount of data enclosed

• the packet timings

Figure 3.1: Packet captured from an encrypted SSH session

Each of these bits of information, mainly when united with similar information
from additional packets in a flow, can be revealing about the data within a
ciphered message.

3.2 Machine Learning based Classification

Before the classification attack is presented, we briefly introduce the machine
learning techniques used. Machine learning is a growing branch of Artificial
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Intelligence (AI) that emulate human intelligence. Diverse fields have been using
machine learning in this new era of Big Data. In fact, it has been shown that it
helped in boosting different network activities including:

• Anomaly detection: data security and service availability are critically
important for operators and end users at the same time. Machine learning
techniques can be used for anomaly diagnosis to detect abnormal traffic
and to differentiate malicious traffic flows. That would isolate unwanted
behavior in the network, prevent malware, and avoid intrusion to sensitive
information.

• Troubleshooting tasks: the main goal is to find defective network devices,
software misconfigurations, trace network faults, and points of packet losses.

• Control and management of resources: machine learning can be used
in TCP/IP networks for traffic prediction, capacity planning, allocation,
bandwidth resource management, diagnostic checking, and provisioning.
That would boost maintenance and planning of networks.

• Trend analysis: the exact identification of user applications and the anal-
ysis of application popularity trends may give useful information, for net-
work administrators to help traffic engineering, and for providers to show
services based on user demand.

Machine learning consists of developing an automated system that processes
large amount of data to extract information. It creates models to be used later for
classification or regression. Some good references for Machine Learning and pat-
tern recognition can be found in [141, 142, 143]. There are three types of machine
learning algorithms: supervised, unsupervised, and semi-supervised. Supervised
algorithms deals with labeled data, whereas unsupervised algorithms try to dis-
cover relations between the inputs without earlier information of the outputs.
These relations can be similarities, statistical relationships, proximities, etc. In
Supervised learning, training data are paired with their corresponding labels and
classes. In Unsupervised learning, classes for each input data are not known. The
algorithm finds its own way from the training input data. Supervised techniques
are usually used to execute classification tasks, while the unsupervised ones are
performed to cluster inputs. In semi-supervised learning, a part of the data is
labeled and other parts are not. The labeled part is used to help the learning of
the unlabeled part.

A network traffic classification attack based on statistical traffic analysis is
a form of supervised machine learning [144]. Its implementation includes two
datasets, one for training and the other for testing. Every instance in both
datasets is represented by a set of features that have known labels or classes.
Four main phases are included in the classification process and illustrated below
in Figure 3.2 :

22



• Data preprocessing

• Features selection

• Learning algorithm

• Validation

Figure 3.2: Internet traffic classification process

Data preprocessing is the process of cleaning the training dataset from noisy
points, and filling the missing values.

Feature selection consists of extracting exact features from the flows of a
dataset traffic. By definition, a flow is the traffic exchanged between two IPs
with the same ports and protocol during a time period. Feature selection is one
of the most important steps where features are measured or calculated. This step
results in the computation of feature metrics that reflect specific properties of the
collected data. At the end of the feature selection process, a structured table could
be constructed where each row is a sample, and attributes are grouped in columns.
The class or current status of each sample is a another additional column. At
this stage, normalization or aggregation procedures can be applied to combine
several features into a single one that would be more expressive to the problem. In
addition, new attributes could be created using the original ones to better describe
a certain process. These steps are referred to Feature Selection and Reduction.
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They help in decreasing time consumption and the curse of dimentionality. They
are based on Filter, Wrapper and Embedded approaches [145, 146]. Moreover,
class-imbalance could be treated, at this stage, to avoid biasing in case one or
more classes are in significant greater amount of samples than the others.

Then, there is the choice of an appropriate learning algorithm to meet the
model objectives. This choice is directly related to the type of problem that we
are trying to solve. The set of aggregated features is used to build a machine
learning classifier, which is the core of the system. Classification methods can be
categorized into two types: parametric and non-parametric. For the parametric
category, the aim is to find a function f, such that Y = f(X), where Y is the
output (class label) and X is the features vector. The learning algorithm uses
a set of training examples of the form (x1, y1), ..., (xm, ym) for the expectation
of a function f(x). The x values are typically vectors of discrete values of the
form < xi1, xi2, ..., xin >. The y values are the projected outputs for the given x
values, and are normally drawn from a discrete set of classes. Accordingly, the
task of the parametric learning paradigm is the calculation of the function f(x)
to create a classifier. On the other side, the goal of non-parametric techniques
is to minimize the classification error without inferring the mapping between the
input and output.

Supervised learning needs early information of the sample labels, which are
necessary to validate the machine learning system. The typical methodology is
to divide the dataset into training and testing datasets. The machine learning
algorithms are constructed using the training set, while the testing set is used to
evaluate the prediction capabilities of the machine learning model. During the
training phase, the aim is to feed the classifier with collected data so that it would
recognize differentiating patterns, whereas the testing phase would validate the
algorithm and compute its performance metrics. Additionally, cross-validation
could be used during the training phase to better evaluate the learning model. It
consists of dividing the dataset in k subsets. One subset is used as the test set,
and the rest for training the model. The same process is repeated for the k folds,
and the overall performance would be the average of the evaluation score of each
test set.

Finally, in order to validate the performance of machine learning classifiers,
their classification capabilities could be measured in terms of the number of sam-
ples correctly and incorrectly assigned to classes. Common evaluation metrics
are Accuracy, Precision, Recall, F-score, etc.

We will present in what follows some background information on well-known
machine learning algorithms applied in the networking field and that we will use
later on in our empirical evaluation.
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3.2.1 Decision Trees

In 1986, Quinlan developed Decision trees models that can be used for both
classification and regression [147]. Decision trees define rules from training data
by answering a series of questions that lead to a class label (leaf of the tree) or
a value when applied to any observation. Given a set of collected data features,
to construct a decision tree, the feature of high importance is chosen to be at
the root of this tree. The feature differentiation can be measured using different
indexes such as entropy, Gini index, mutual information, etc. The total number
of branches to reach a leaf defines the tree depth. Decision Trees methods can be
used for numerical or categorical data [148]. They are very fast and perform well
on large datasets. However, decision trees do not always determine an optimal
choice at each node model. The best result chosen at each step is the global
optimum but not necessarily the optimal decision. Moreover, decision trees are
likely to over fit, especially when a tree is particularly deep. We could avoid this
problem by setting a max depth at the cost of error due to bias.

3.2.2 Random Forest

Random Forest (RF) is a strong modeling type of Ensemble machine learning al-
gorithms that combines multiple learner [149]. It is simply a collection of decision
trees whose results are combined into one outcome. RF is one of the techniques
that have high performance in traffic classification [150, 151]. Random Forests
have the advantage to limit over-fitting without having error due to bias. Also,
they decrease error due to variance by training many decision trees on diverse
data and feature samples. Another way consists of using a random subset of
features in each tree. If many trees are used in the forest, many features will be
included. Therefore, error due to bias variance will be decreased.

3.2.3 Support Vector Machine (SVM)

Support vector machine is a well-known machine learning method that was devel-
oped by Cortes and Vapnik [152] and has been widely used for traffic classification
[153, 154, 155, 156, 157]. The algorithm outputs a hyperplane that optimally sep-
arates the different classes. To create a hyperplane between two classes, SVM
solves a maximization problem of the distance separating instances that belong
to the different classes. The problem becomes more complex when there are
multi-dimensional feature vectors with multiple classes. In this case, multi-SVM
models are built using kernel-based techniques. Different Kernel functions can be
specified for the decision function e.g. polynomial, RBF, etc. Consequently, the
high computational complexity is a key challenge for SVM algorithms. Another
limitation si the high training time needed when the training data size is large.
However, SVM presents many advantages such as its applicability to different sort
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of classification problems. It is a sparse technique meaning that it does not use
the entire data, but it relies on only a subset of it (support vectors). Therefore,
it is less memory demanding. In addition, SVM is efficient in high dimensional
spaces.

3.2.4 K-nearest neighbor (k-NN)

K-nearest neighbor is a simple algorithm introduced by Fix and Hodges in 1951
[158] and can be used for both classification and regression. The principle behind
k-NN is to find a predefined number of training samples (k-nearest neighbor
learning), closest in distance to the new point, and predict the label from these.
The distance can be any metric measure e.g. standard Euclidean distance. K-
NN falls under the category of lazy learning, meaning that there is no training
phase before classification. The entire training set is kept in memory to perform
classifications. This would make the algorithm computationally expensive as it
passes through all data points for each classification. Therefore, nearest neighbors
tends to work best on smaller data sets that do not have many features. Despite
its simplicity, k-NN is easy to interpret and has been a successful algorithm used
especially in situations where the decision boundary is very irregular.

3.3 Threat Model

Before delving into the attack details, we argue the threat model for which we
claim that traffic analysis attacks are effective. Our primary focus is an attacker
who can induce a traffic flux in a targeted anonymity preserving channel and
observe it leaking a victim user’s online activity.

Figure 3.3 shows our threat model. We consider consumers using network-
based applications where the program used, or the data related, or both of them
reside on a network (often, but not always, the Internet). The adversary can sniff
the exchanged data that is usually encrypted between the node and the server.
Even worse, the adversary can have physical access to traces of encrypted traffic
stored in the data center where data resides. We consider that the adversary
cannot decrypt the packets, and aims to discover information about the network
users and the used applications. To this end, our adversary applies statistical
traffic analysis to find the precise application the user is running, although packet
payloads are not readable. In this context, the attacker examines side-channel
information (IP packet headers and metadata) from the encrypted mobile app
traffic, builds a classifier for several network applications and then, matches the
sample traffic captured to infer a user’s exact app. This attack is passive and
undetectable by users. Our goal is to thwart such information leakage.

Potential adversaries may be incentivized to discover a user behavior, his
installed applications, the timing of his application’s use. We divide our threat
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Figure 3.3: Threat Model

model into two different classes of attackers:

• Local attackers: these are attackers that can view and sniff traffic within
the same local area network. They include compromised home routers,
Wi-Fi eavesdropper by neighbors for example.

• External attackers: these are entities that can view the network traffic
created after leaving the local area network. Example external attackers
comprise government intelligence agencies, ISPs, and other on-path network
spotters.

3.4 Classifier Adversary Model

We illustrate in Figure 3.4 an example of traffic classification attacks. We con-
sider an adversary who monitors the Internet connection of a mobile user. The
information flow generated by the apps is ciphered and authenticated. The ad-
versary uses sniffer software (e.g. Wireshark) and does not have any knowledge
about the software or encryption schemes implemented. Usually, such eavesdrop-
ping on network traffic is a passive operation and does not have any directly
observable consequences. The classification system collects traffic traces of the
user and identifies which mobile network application he is running.

The proposed attack can be divided into two phases: the training and the
detection. The training phase consists of features extraction, and then of clas-
sifiers training. The detection phase consists of features extraction, and then of
detection attack. During features extraction, inputs are raw traces of network
traffic applications, and the output is feature vectors. The input and output for a
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Figure 3.4: Mobile Traffic Classification Attack

classifier training are feature vectors and trained classifiers respectively. Whereas
with respect to detection, the inputs are the victim’s raw sniffed packets, and fea-
ture vectors generated from a pool of raw network applications traces of interest.
The output of this step is the detection result.

3.5 Classification Attack Empirical Evaluation

In this Section, the traffic classification attack model is detailed. This includes
the dataset used, the classes definition, the features used for classification, and
the network classifier models.

3.5.1 Dataset

In our app identification experiment, we use a dataset provided by [159]. The
data was collected from different types of devices and applications, and consists
of descriptions of app traffic flows of six popular network applications collected
on Android smartphones and manually classified. Skype is considered for chat-
ting and video calling, Facebook for social media browsing, 8 ball pool for online
gaming, WhatsApp for chatting, Viber for VoIP, and YouTube for social media
browsing. Each packet in the dataset is defined by a set of attributes: the packet
number, timestamp, packet length, IAT, direction (IP source/IP destination),
and app label.

3.5.2 Feature selection

For each of the 6 applications, we extract traffic flows for a fixed time period
of 1 second between two IPs with the same protocol and ports. We list the
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applications and their differences in Table 3.1, and we label them from 1 to 6.
The class names, the size of each class, the actions executed while capturing their
traffic traces, their sample proportions, and the count of flows extracted are also
described.

Table 3.1: Experiment dataset
# App Type Actions packets/class % Packets # Flows
1 Skype Video Call Video Call 197,115 0.350 520

2 Facebook Interactive browsing
Browse,
Comment,
Like, Post

122,422 0.218 2,560

3 8 ball pool Game Play 121,663 0.217 2,064

4 WhatsApp Messaging
Texting,
Media
sharing

3,315 0.006 435

5 Viber VoIP Voice Call 82,662 0.147 475
6 YouTube Video streaming Play videos 35,027 0.062 813

After extracting the flows, we extract the apps’ features based on packet
lengths, IAT, and direction. According to Moore [160], every network traffic
consists of 249 attribute features. Since some features contribute less to the real-
time classification, and to avoid oversized number of features that would degrade
our classification, we choose to implement 27 features as described in [159]. These
features are selected based on Wrapper methods along with an analysis of dataset
properties and relationships among features [159]. These features are selected to
build 4 known supervised machine learning algorithms to construct a template
model. We show in Table 3.2 the set of features used in our experiment and their
denotation. We denote the incoming packets by PI and the outgoing packets by
PO, the packet length by L, and the inter-arrival time by IAT. We use, for each
classifier, different combinations of features to achieve the best results as detailed
in Table 3.3. The classification aims at identifying the application name, and our
goal is to find the model with the maximum accuracy.

3.5.3 Model Training and Classification Results

The feature extraction phase generates an imbalanced dataset where the classes
are not equally represented. Therefore, we up-sample the minority classes to
balance the data and get a total of 11,970 instances to build 4 machine learning
algorithms. Then, we split the data into 75% and 25% for the training and
testing sets, respectively. We use the ‘one versus one’ strategy for the multi-
classification problem, and we evaluate our models using 5 folds’ cross validation.
The accuracy of the different classifiers and their corresponding parameters are
shown in Table 3.4. The results show that the Random Forest (RF) model
achieves the highest accuracy. Table 3.5 shows the confusion matrices of the
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Table 3.2: Feature Set for statistical classification
# Feature Description
1 PO count Packets Out Count
2 PI count Packets In Count
3 PI/PO Ratio Packets Out/Packets In ratio
4 Bytes-out Count Bytes Out Count
5 Bytes-in Count Bytes In Count
6 Bytes out/in ratio Bytes Out/Bytes In ratio
7 Avg. diff. PI IAT Average difference of Inter-arrival time of incoming packets
8 Avg. diff. of PI L Average difference of Lengths of incoming packets
9 Avg. diff. of PO IAT Average difference of Inter-arrival time of outgoing packets

10 Avg. diff. of PO L Average difference of Lengths of outgoing packets
11 Median of PI IAT Median of Inter-arrival time of incoming packets
12 Median of PI L Median of Lengths of incoming packets
13 Median of PO IAT Median of Inter-arrival time of outgoing packets
14 Median L of PO Median of Lengths of outgoing packets
15 Variance diff. PI IAT Variance of difference of Inter-arrival time of incoming packets
16 Variance diff. of PI L Variance of difference of Lengths of incoming packets
17 Variance diff. PO IAT Variance of difference of Inter-arrival time of outgoing packets
18 Variance diff. of PO L Variance of difference of Lengths of outgoing packets
19 Avg. of PI IAT Average of Inter-arrival time of incoming packets
20 Avg. of PI L Average of Length of incoming packets
21 Avg. of PO IAT Average of Inter-arrival time of outgoing packets
22 Avg. of PO L Average of Length of outgoing packets
23 Variance of PI IAT Variance of Inter-arrival time of incoming packets
24 Variance of PI L Variance of Lengths of incoming packets
25 Variance of PO IAT Variance of Inter-arrival time of outgoing packets
26 Variance of PO L Variance of Lengths of outgoing packets
27 IAT of PI bursts Inter-arrival Time between incoming packets bursts

6 classes for Support Vector Machine (SVM), Bagged Trees (BT), K-Nearest
Neighbor (KNN), and RF models. The included numbers are percentages. Based
on our experimental results, we can draw the conclusion that the four algorithms
realize high classification accuracy and have high true positives for each individual
app.

3.6 Discussion

It seems intuitive that an adversary could potentially detect private sensitive
data using statistical traffic analysis. The empirical evaluation presented in this
chapter proved, using real world traces, that network security can be significantly
compromised by passive attackers using machine learning. These techniques can
be employed by attackers to mount their attacks without even being detected.

We implemented in this chapter techniques that leverage machine learning
and traffic analysis to automatically fingerprint and identify smartphone apps.
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Table 3.3: Features
# Feature SVM BT KNN RF
1 PO count x x x
2 PI count x x x
3 PI/PO Ratio x x x
4 Bytes-out Count x x x
5 Bytes-in Count x x x
6 Bytes out/in ratio x x x
7 Avg. diff. PI IAT x x
8 Avg. diff. of PI L x
9 Avg. diff. of PO IAT x x

10 Avg. diff. of PO L x x
11 Median of PI IAT x x
12 Median of PI L x x x x
13 Median of PO IAT x x x
14 Median L of PO x
15 Variance diff. PI IAT x x
16 Variance diff. of PI L x x x
17 Variance diff. PO IAT x x
18 Variance diff. of PO L x x
19 Avg. of PI IAT x x x
20 Avg. of PI L x x x
21 Avg. of PO IAT x
22 Avg. of PO L x x
23 Variance of PI IAT x x
24 Variance of PI L x x
25 Variance of PO IAT x
26 Variance of PO L x x x
27 IAT of PI bursts x x

Table 3.4: Dataset accuracy
Model Parameters Accuracy
SVM Quadratic Kernel 74.7 %
Bagged Trees Min Leaf Size= 2 90.0 %
KNN number of neighbors= 5

Distance Weight = Squared inverse
83.9 %

Random Forest Min Leaf Size=2 91.1 %

We adapted for this reason 4 different machine learning algorithms (SVM, BT,
KNN, and RF), and we performed traffic analysis attacks against users’ privacy.
We evaluated these methods using a real dataset collected over different types
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Table 3.5: Confusion matrices for SVM, BT, KNN, and RF
Class 1 2 3 4 5 6

1
90 94 4 1 1 < 1 4 5 < 1 0 0 <1

>99 96 0 1 <1 0 0 3 0 0 0 0

2
14 1 65 84 1 2 8 6 1 <1 10 6
6 3 76 82 <5 1 7 6 1 1 5 6

3
14 < 1 2 2 77 87 4 6 1 0 10 4
11 1 5 2 79 86 2 7 <1 0 2 4

4
25 <1 14 2 1 3 52 88 1 0 6 6
15 0 6 0 0 2 79 92 <1 0 0 4

5
6 0 2 <1 0 0 3 <1 89 99 0 0

<1 0 0 0 0 0 0 <1 >99 >99 0 0

6
8 <1 8 4 5 5 4 3 <1 0 74 88
6 1 23 4 1 6 1 2 <1 1 69 86

of devices, and from six popular network applications (Skype, Facebook, 8 ball
pool, WhatsApp, Viber, and YouTube). Then, we extracted 27 features from the
dataset to build our 4 machine learning classifiers. We split the data into 75%
and 25% for the training and testing sets, respectively. We used the ‘one versus
one’ strategy for the multi-classification problem, and we evaluated our models
using 5 folds’ cross validation. RF realized the highest accuracy of 91.1% followed
consecutively by BT, KNN, and finally SVM.

It is worth noting that some classification approaches performed better than
others in terms of accuracy, precision, recall, etc. Also, some apps themselves
performed better than others when being classified. In that case, these apps
reflect very distinct traffic flows that would characterize the specific app.

The presented frameworks are robust and scalable in the identification of
smartphone apps from their network traffic. Also, the smartphone landscape
offers exceptional challenges to the attack model, such as less available features,
and the requirement for scalability and automation. Based on the results of the
classification experiment presented, we confirmed that the privacy of the user is
at risk due to the usage of apps on smartphones.

3.7 Conclusion

In this chapter, we showed that traffic analysis attacks can greatly compromise
privacy of network applications. We presented a practical traffic analysis attack
against mobile applications, that relies on using machine learning algorithms.
Our experiments clearly validated that a malicious eavesdropper can identify the
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users’ apps, even if packets are encrypted, based only on examining the IP packet
headers and metadata, and using machine-learning techniques. We presented
classifier models created on training data that holds packet-level statistical infor-
mation of a defined number of applications. By using this method, we classified
specific apps with true positive rate of 91.1%. We believe that our experiments
exposed a real weakness in supposedly protected anonymity schemes. The clas-
sification techniques described in this chapter will be used later on through this
work to evaluate information leakage.
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Chapter 4

Obfuscation for Better Secrecy

We focused in the previous chapter on our traffic analysis attack to confirm the
identification of network applications within the anonymity set. In this Chap-
ter, we detail our preliminary proposed obfuscation models that provide secrecy
for an encrypted app’s network activities against traffic analysis. Our mutation
techniques would alter the traffic statistical features, making it very challenging
to know the original traffic type. Initially, we introduce AdaptiveMutate with 3
variations. The main idea behind this model is to mutate a packet feature from
the source app to protect, to its similar corresponding feature from a target app
that the source app will resemble. Next, we describe a system that regenerates
statistical modeling of an app packet length, and we suggest an obfuscation model
that mutates packet lengths of the incoming traffic to the regenerated ones. In
the final part, we discuss our third framework that mutates the packet lengths of
a source app to those lengths from the target app having similar bin probability.
Finally, we conclude this chapter with a brief discussion regarding the results,
highlighting the techniques that worked, and those that did not. We evaluate the
effectiveness of the proposed schemes on real traffic dataset and we refer to the at-
tack model described previously in Section 3.4 in all our obfuscation experiments.

4.1 AdaptiveMutate

As discussed previously, the key features of an encrypted traffic are the packet
sizes and the interarrival delay of successive packets. Hence, an efficient obfus-
cation system mainly needs to reproduce these characteristics for an encrypted
channel. Our design is focused on mutating both features. We aim to modify the
packet size (padding) and IAT (shaping), in such a way to hide any information
that serves for traffic detection or attack classification. First, we discuss mutating
each feature separately; and then, we combine the mutation of both features.
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Figure 4.1: Block scheme of mutation operation

4.1.1 Packet Length Mutation

The mutation covers the entire packet flow transported between two endpoints.
To confuse an app traffic, we change the flows generated by one app so that they
look like the flows generated by another app. This entails resampling the packet
lengths from the probability distributions of a target app traffic that are indepen-
dent of the original packet lengths generated by the source app. In other words,
our padding modifies the packet lengths in a way that the resultant lengths of the
packets seem as if they are generated by the target app probability distribution
function.

We assume a general setting illustrated in Figure 4.1. First, the user selects
the source app to defend, as well as the target app that the source app should
resemble. We get the probability distribution with respect to the packet lengths
of a flow from the target app traffic. We prove in Subsection 4.1.4 that flows of
the same app have similar length probability distribution. For each length in the
target app, we save its corresponding probability in “length probability tables”.

The algorithm consists of modifying, at each run, the first n packets of an
incoming flow from the source app. We store the fixed n packets from a flow
to modify them in a buffer. Based on the length probability distribution of the
target app calculated previously, we consider the smallest length as “l” in the
target app. We calculate the number m of packets among n that needs to be
modified to “l”. This number, m, is the probability of length “l” in the target
app multiplied by n. Then, we choose the smallest m packets among n and shape
them to “l”. Similarly, we mutate the remaining (n-m) packets to ensure that the
smallest packets of the source app are shaped to the smallest packets in the target
app. To mutate each incoming packet from the source app, we compare its size,
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s1, with the size, t1, that we need to mutate to. If s1 is less than t1, we proceed
by padding s1 with zeroes so that the resultant packet length is t1. Practically, in
real-time network applications, we set a flag F to indicate whether the packet is
padded (F = 1) or not (F = 0). The packet also contains a field member which the
receiving endpoint can use to determine the number of the added padding zeroes.
Otherwise (s1>t1), we fragment the packet into two parts: the first part has the
same size as t1, and the second one is considered as a new incoming packet. This
would guarantee that the length probability characteristics of the mutated source
app traffic is kept the same as that of the target app, which achieves the morphing
of lengths. From the analysis of the resultant packet stream, the estimation of the
packet length statistics shows that the probability distribution of the resultant
packet lengths is the same as that of the target app. It is worth noting that it is
preferable to choose a target app in such a way so that most of its packet lengths
are larger than those of the source app. Then, the algorithm would switch to
padding more than fragmenting. This ensures that this scheme is transparent
to the passive monitor since the traffic rate will be less affected. Our padding
mechanism acts as a proxy between the mobile apps and the access point, so that
it intercepts the data sent after the encryption is performed. Then, the modified
data is sent by the network encryption. Packets are deciphered at the end and
the padding is removed so that our system is transparent to the end-users. This
algorithm works in real-time, and reduces the resultant padding overhead and
effective classification by avoiding any leak of information about the source app
packet lengths.

We have considered the app traffic mutation to thwart traffic classification
by partially morphing the source app into a target app. We could consider the
app traffic mutation, without morphing, to only prevent any leak of information
about the source app packet lengths and hence to prevent effective classification.
This would reduce the resultant padding overhead. Another variation of the
algorithm is to modify the beginning of each flow from the source app, with the
altered packets constituting the first 10% of each flow. The difference between
these two versions is the number of packets mutated. As the number of mutated
packets decreases, the thwarting algorithm becomes less effective, but the traffic
overhead decreases significantly. This partial obfuscation allows to lessen the
amount of overhead and delay at the cost of leaking some information about the
network flow content. Any one of these models can be selected based on the
preference of the user for more security or less overhead.

4.1.2 Inter-arrival time mutation

Even though the primary goal of our work is to make the output of mutation
converge in distribution to that of the target app, it considers only the lengths of
packets of the encrypted traffic in the previous subsection. We neglect one key
element of the encrypted traffic from our design scope, namely, the Inter-Arrival
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Time (IAT) between consecutive packets. The same approach elaborated in Sub-
section 4.1.1 is applied for the mutation, but the inter-packet delay becomes now
the design focus. We aim to achieve the same goal of confusing an app traffic
by changing the IAT between packets. Our scheme starts from a set of mobile
network traffic packets that represent the typical flow of a target app. We find
the probability distribution with respect to the IAT of the target app traffic. For
each IAT in the target app, we save its corresponding probability in the “IAT
probability tables”. The algorithm consists of modifying at each run the first
n IAT of an incoming flow from the source app. We hold the first n packets
from a flow to modify them in a buffer for a sufficient amount of time. Based on
the inter-packet delay probability distribution of the target app, we consider the
smallest inter-packet delay as “l” in the target app. We calculate the number m
of the time intervals among n that needs to be modified to “l”. This number, m,
is the probability of IAT of “l” in the target app multiplied by n. Then, we choose
the smallest m IAT among n and shape them to “l”. Similarly, we mutate the
remaining (n-m) time intervals to ensure that the minimum IAT of source app
is shaped to the minimum IAT in target app. At every run, we hold n packets
for a sufficient time equal to the maximum IAT, IATmax, multiplied by n. Each
incoming packet from the source app is sent with the corresponding calculated
inter-packet delay. This guarantees that the inter-packet delay probability char-
acteristics of the mutated source app traffic is kept the same as that of the target
app, which achieves morphing of inter-packet delays. This scheme is transparent
to the receiver since the information will not be padded.

4.1.3 Lengths and IAT mutation

This scheme extends our algorithm to fully represent the characteristics of the
encrypted networking traffic by combining both lengths and IAT mutation. Our
goal is to make the target traffic less distinguishable from the source traffic by
leading the classifiers to misidentify the traffic as a class of our choosing. This
achieves the morphing of a source class to a target class. The same approaches
of mutating length and IAT, discussed in Subsections 4.1.1 and 4.1.2 are applied
consecutively.

4.1.4 Practical considerations

We aim to identify, for each app, the most dissimilar app corresponding to it
to maximize the confusion between apps after mutation. The cosine similarity
measure is a classical measure to represent the relationship between two sets, and
it is widely used as a measure of similarity. It is defined as the inner product
of two vectors divided by the product of their lengths. Its geometric meaning is
the cosine of the angle between the two vectors. The cosine similarity measure
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Figure 4.2: Lengths in bytes of the first 100 packets of 20 different flows in app
traffic

between 2 sets A and B is defined as:

Cos(A,B) =
A.B

|A||B|
=
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where Ai and Bi are components of vector A and B, respectively.
The resulting cosine similarity ranges from 1, indicating the same, to -1,

meaning the opposite; while the value of 0 indicates decorrelation, and in-between
values represent intermediate similarity or dissimilarity.

First, we demonstrate that all flows in a specific app are similar and follow
the same distribution. Figure 4.2 and Figure 4.3 show, respectively, the lengths
in bytes and IAT in seconds of the first 100 packets in each flow for 20 different
flows in each app. Most of the graphs depict how closely the flows distribution
are similar, both for packet lengths and for IAT. In fact, dense samples indicate
that lengths and IAT are taking precise overlap values. Hence, each flow in each
app is similar to the other flows in the same app as mentioned in [161, 162, 163].
To calculate the cosine similarity between apps, we pick a random flow from each
app. Lenghs’ graphs of WhatsApp, Game, and YouTube show relatively higher
scatter than other apps. This could lead to a higher obfuscation, no matter which
flow is chosen, since the range of lengths to mutate is bigger and can therefore
confuse the classifier further.

Table 4.1 represents cosine similarity measures between the lengths’ vectors
of flows from two different apps. Similarly, Table 4.2 cosine similarity measures
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Figure 4.3: IAT in seconds of the first 100 packets of 20 different flows in app
traffic

Table 4.1: Cosine similarity of length vectors
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype 1 0.4597 0.4484 0.3846 0.6185 0.5153
Facebook 0.4597 1 0.4540 0.3374 0.5869 0.4987

Game 0.4484 0.4540 1 0.4176 0.667 0.5247
WhatsApp 0.3846 0.3374 0.4176 1 0.5509 0.3915

Viber 0.6185 0.5869 0.667 0.5509 1 0.6478
YouTube 0.5153 0.4987 0.5247 0.3915 0.6478 1

Table 4.2: Cosine similarity of inter-arrival time vectors
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype 1 0.00012 0.00007 0.00007 0.00004 0.6740
Facebook 0.00012 1 0.0714 0.00016 0.0040 0.00084

Game 0.00007 0.0714 1 0.000001 0.004 0.00008
WhatsApp 0.00007 0.00016 0.000001 1 0.00026 0.00037

Viber 0.000042 0.0040 0.004 0.00026 1 0.00019
YouTube 0.6740 0.00084 0.00008 0.00037 0.00019 1

between the vector of IAT of flows from two apps. Cosine values that are most
dissimilar, with respect to the designated feature, are highlighted in boldface.
To maximize its efficiency, our algorithm can dynamically adjust the mutation
process. Given the source app, it chooses the corresponding most dissimilar app
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suitable to mutate in terms of lengths or IAT.

4.1.5 Obfuscation experiment and results

In this part, we empirically evaluate the efficiency of our thwarting technique,
AdaptiveMutate, against the four traffic classifiers discussed in the previous Chap-
ter. We present three experiments corresponding to three different obfuscation
models supported by AdaptiveMutate, where we first apply the mutation of packet
lengths, then the mutation of IAT, and finally the mutation of both features at
the same time. Our evaluation focuses on the ability of our tool to reduce the
accuracy of the classifiers.

In what follows, we conduct a comprehensive simulation where we mutate
each of the 6 apps to the 5 other apps using different modes of mutation. In
this first experiment, where we mutate lengths, we consider 2 versions of the
algorithm. For each mutation of a source app to a target app, we start from a
set of mobile network traffic packets that represent the typical flow of a target
app. We calculate their lengths probability distribution. For each n = 1000
packets of an incoming flow from the source app, we run the algorithm. Based on
the length probability distribution table, our algorithm selects successively the
smallest lengths among n that need to be mutated to the corresponding smallest
ones in the target app. We compare the new packet size with the old one, and
accordingly, we proceed by either padding zeroes or fragmenting. In the second
version of this algorithm, we only mutate the first 100 packets of every flow. The
results of the 2 versions of length mutation are shown in Table 4.3 and Table 4.4.
In these tables, the cells corresponding to an app mutated to itself denotes that
no mutation has happened.

Table 4.3: AdaptiveMutate results using first version of packet length mutation
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype
30.5 % 14.2 % 18.6 % 15.7 % 17.2 % 14.1 % 30.2 % 17.1 % 19.9 % 15.4 %
28.2 % 16.9 % 22.5 % 17.6 % 24.6 % 17.4 % 21.8 % 20.3 % 22.8 % 16.8 %

Facebook
26.6 % 15.8 % 18.9 % 15.6 % 17.1 % 13.8 % 29.4 % 16.0 % 19.8 % 16.2 %
23.9 % 17.9 % 24.1 % 17.7 % 23.9 % 17.4 % 25.6 % 18.2 % 24.3 % 17.9 %

Game
18.9 % 15.6 % 19.0 % 15.4 % 18.8 % 14.3 % 31.1 % 17.9 % 19.8 % 15.7 %
23.5 % 17.2 % 24.9 % 17.5 % 23.9 % 17.1 % 28.1% 20.5% 22.7% 16.4%

WhatsApp
17.3 % 14.2 % 17.2 % 13.6 % 18.7 % 14.4 % 20.1 % 15.6 % 17.1 % 14.1 %
24.2 % 17.1 % 23.7 % 17.5 % 23.7 % 17.2 % 22.8% 16.9% 24.4% 17.6%

Viber
30.1 % 17.3 % 29.4 % 16.1 % 31.0 % 17.9 % 20.2 % 15.5 % 30.9 % 17.7%
21.9 % 20.4 % 25.4% 18.1 % 28.2 % 20.7 % 22.9% 16.8% 28.0% 19.8%

YouTube
19.8 % 15.3 % 19.9 % 16.1 % 19.8 % 15.7% 17.1 % 14.1 % 31.1 % 17.6%
22.9 % 16.7 % 24.5% 17.8 % 22.7 % 16.4 % 24.4% 17.6% 27.8% 19.9%

In our second experiment, we apply AdaptiveMutate using IAT mutation to
mutate each one of the 6 apps to another app. For each mutation, we calculate
the IAT probability distribution of a flow from the target app. At each run, we
buffer 1000 packets for a time equal to 1000 times the maximum IAT among
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Table 4.4: AdaptiveMutate results using second version of packet length mutation
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype
31.4 % 36.2 % 31 % 37.6 % 30.8 % 35.4 % 32.2 % 37.5 % 30.5% 37.8 %
43.2 % 31.8 % 45.8 % 35.1 % 43.3 % 36.8 % 45.9 % 39.2 % 42.3 % 33.9 %

Facebook
31.3% 36.3 % 31.1 % 36.6 % 30.6 % 34.9 % 31.9 % 37.9 % 31.7 % 36.8%

43.2 % 31.7 % 45.9 % 35.0 % 43.2 % 32.5 % 42.3 % 34.1 % 42.1 % 32.6 %

Game
31.1 % 37.7% 31.0 % 36.7 % 30.8 % 35.8 % 34.2 % 38.1 % 31 % 37.6 %
45.7 % 35.0 % 45.9% 35.1 % 46.5 % 32.9 % 43.1% 35.4% 42.4% 34.0%

WhatsApp
30.6 % 35.3 % 30.7 % 34.8 % 30.7 % 35.9 % 31.8 % 38.0 % 32.1 % 38.1 %
43.0 % 36.5 % 43.1 % 32.4 % 46.6 % 32.7 % 42.5% 34.0% 42.4% 34.0%

Viber
32.1 % 37.3% 31.8 % 37.8 % 34.1 % 38.3 % 31.8 % 38.0 % 34.3 % 38.2%
45.8 % 39.3% 42.4% 34.2 % 43.2 % 35.3 % 42.5% 34.0% 43.0% 35.6%

YouTube
30.6 % 37.7 % 31.9 % 36.7 % 31.1 % 37.7% 32.2 % 38.0 % 34.2 % 38.2%
42.2 % 34.0 % 42.2% 32.5 % 42.2 % 34.1 % 42.5% 34.1% 43.1% 35.7%

the 1000 IAT. Based on the IAT probability distribution table, our algorithm
selects successively the minimum IATs among n that need to be mutated to the
corresponding ones in the target app. Then, each packet is sent according to the
calculated IAT. The results are illustrated in Table 4.5.

Table 4.5: AdaptiveMutate results using mutation of IATs
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype
58.1 % 65.8 % 52.4 % 65.1 % 51.8 % 63.5 % 51.7 % 66.2 % 58.1% 69.9 %
51.2 % 60.4 % 54.8 % 62.3 % 54.3 % 62.5 % 54.2 % 62.8% 55.7 % 65.3 %

Facebook
58.0% 65.9 % 53.6 % 65.3 % 51.9 % 66.2 % 51.9 % 68.1 % 52.0 % 66.9%

51.3 % 60.2 % 55.0 % 62.3 % 54.4 % 63.0 % 54.3 % 62.7 % 54.8 % 62.4 %

Game
53.3 % 65.1% 52.5 % 65.0 % 51.6% 66.1 % 51.8 % 66.3 % 52.2 % 66.0 %
55.2 % 62.2 % 54.9% 62.5 % 54.2 % 54.1 % 54.2% 62.9% 54.6% 62.3%

WhatsApp
51.9 % 63.5 % 51.9 % 66.3 % 51.8 % 66.0 % 53.6 % 67.1 % 53.2 % 66.2 %
54.4 % 62.7 % 54.6 % 63.1 % 54.3 % 54.0 % 55.8% 62.5% 54.2% 63.2%

Viber
51.8% 66.3% 51.9 % 68.0 % 51.9 % 66.5 % 53.7 % 67.0 % 51.9 % 65.9%

54.1 % 62.9% 54.0% 62.6 % 54.3 % 62.8 % 55.5% 62.7% 54.3% 61.3%

YouTube
58.3 % 69.8 % 52.1 % 66.7 % 52.1 % 66.1% 53.1 % 66.1 % 51.7 % 65.8%
55.6% 65.2 % 54.9% 62.5 % 54.5 % 62.5 % 54.3% 63.4% 54.1% 61.5%

In our third experiment, we apply AdaptiveMutate using both lengths and
IAT mutation to mutate each app among the 6 apps to another one. Using our 4
model classifiers, we show in Table 4.6 the prediction accuracy for the modified
traffic. Also, we calculate the overhead resulting from padding in Table 4.7.
In Table 4.8, we calculate the performance time delay parameter resulting from
mutating the IAT. This parameter is defined as the ratio of the difference between
the sum of resulting IAT after and before mutation, and the sum of IAT before
mutation.

In Table 4.3, the simulation results show that AdaptiveMutate, using the first
version of length mutation algorithm from Skype to Game, for example, decreases
SVM classifier’s accuracy from 74.7% to 18.6%, Bagged Trees classifier’s accu-
racy from 90% to 15.7%, KNN classifier’s accuracy from 83.9% to 22.5%, and
Random Forest classifier’s accuracy from 91.1% to 17.6%. AdaptiveMutate, using
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Table 4.6: AdaptiveMutate results using mutation of lengths and IATs of packets
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype
18.2% 6.5 % 17.8 % 6.3 % 17.5 % 6 % 18.9 % 7.1 % 18.8% 7 %

15.8 % 7.9 % 15.5 % 7.2 % 15.6 % 7.1 % 16.4 % 7.9% 16.2 % 7.8 %

Facebook
18.3% 6.4 % 17.8 % 6.5 % 17.2 % 6.1 % 18.7 % 7.1 % 17.8 % 6.5%

15.7 % 7.9 % 15.7 % 7.2 % 15.5 % 7.0 % 16.2 % 7.9 % 15.8 % 7.3 %

Game
17.9 % 6.1% 17.9 % 6.4 % 17.7% 6.4 % 19.1 % 7.5 % 18.9 % 7.2 %
15.4 % 7.0 % 15.7% 7.1 % 15.6 % 7.1 % 16.5% 8.2% 16.2% 7.9%

WhatsApp
17.4 % 6.1 % 17.1 % 6.2 % 17.8 % 6.5 % 18.9 % 7.1 % 17.6 % 6.1 %
15.7 % 7.2 % 15.6 % 7.1 % 15.5 % 7.2 % 16.3% 7.8% 15.7% 7.2%

Viber
18.8% 7.0% 18.5% 7.3 % 19.0 % 7.6 % 18.8 % 7.0 % 18.9 % 7.3%

16.1 % 7.5% 16.6% 7.8 % 16.6% 8.3 % 16.4% 7.9% 16.5% 8.1%

YouTube
18.9 % 7.1 % 17.6 % 6.3 % 18.7 % 7.1% 17.4 % 6.2 % 18.8 % 7.2%
16.3% 7.7 % 15.5% 7.1 % 16.0 % 7.6 % 15.6% 7.3% 16.5% 8.0%

Table 4.7: Overhead resulting from padding
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype 0% 18.4% 11.2% 9.5% 3.2% 39.7%
Facebook 4.8% 0% 4.1% 12.6% 4.3% 24.1%

Game 4.6% 3.5% 0% 1.0% 2.1% 34.2%
WhatsApp 0.2% 0.3% 5.7% 0% 0.2% 21.2%

Viber 53.4% 59.7% 55.6% 53.2% 0% 67.6%
YouTube 0.2% 0.3% 0.2% 0.006% 0.002% 0%

Table 4.8: Performance Time Delay Resulting from Mutating the IATs
``````````````̀Source app

Target app
Skype Facebook Game WhatsApp Viber YouTube

Skype 0% 80% 201% 257% 39% 37%
Facebook 4% 0% 84.2% 406% 75% 72%

Game 153% 112% 0% 552% 97% 92
WhatsApp 166% 461% 571% 0% 172% 176

Viber 85% 95% 99% 164% 0% 3%
YouTube 82 91% 99% 177% 3% 0%

Table 4.9: Confusion of Skype Traffic Mutated to Game by RF Classifier
Classifier 1 2 3 4 5 6
Mutation 10.8% 0.6% 80.3% 0.5% 6.4% 1.4%

the second version of the length mutation algorithm from Skype to Game, can
decrease SVM classifier’s accuracy from 74.7% to 31%, Bagged Trees classifier’s
accuracy from 90% to 37.6%, KNN classifier’s accuracy from 83.9% to 45.8%,
and Random Forest classifier’s accuracy from 91.1% to 35.1% with only 4.29%
average overhead. It could be used when less overhead is required than higher
evasion defense. The cost is less, with results of acceptable attack evasion.
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Simulation results, presented in Table 4.5, show that AdaptiveMutate with
IAT mutation is not efficient in reducing the classifier’s accuracy. This could be
related to the fact that the classifiers we build in our experiments have a weak
relevance with features built around IAT. Other classifiers that rely on IAT as a
strong feature can be more vulnerable to IAT mutation. However, when IAT mu-
tation is combined with lengths mutation, the best results are achieved as shown
in Table 4.6. For example, mutating Skype to Game decreases SVM classifier’s
accuracy from 74.7% to 17.8%, Bagged Trees classifier’s accuracy from 90% to
6.3%, KNN classifier’s accuracy from 83.9% to 15.5%, and Random Forest clas-
sifier’s accuracy from 91.1% to 7.2% with only 11.2% average padding overhead
and 201% of time delay. Full confidentiality can be reached with a cost of in-
creasing traffic volume by a factor of 1.11, which is acceptable, especially when
considering that full privacy could be essential for sensitive apps. In this case,
the time needed for Skype to operate is triple the usual time, which could not
be acceptable for some apps in which delay is not tolerated. Table 4.8 could be
used to choose a suitable target app to mutate to with less performance degra-
dation, especially when considering that using AdaptiveMutate ensures slightly
different results when the target app is changed. This proves the robustness of
our algorithms. For instance, mutating Skype to Viber is more suitable in this
case. It reduces SVM classifier’s accuracy from 74.7% to 18.9%, Bagged Trees
classifier’s accuracy from 90% to 7.1%, KNN classifier’s accuracy from 83.9% to
16.4%, and Random Forest classifier’s accuracy from 91.1% to 7.9% with only
3.2% average padding overhead and 39% of time delay. According to Table 4.9,
80.3% of the Skype traffic is confused as Game traffic by the RF classifier. This
demonstrates the efficiency of our algorithm to convert the Skype traffic class into
a Game class.

To maximize AdaptiveMutate’s efficiency, a user can choose the corresponding
most dissimilar app suitable to mutate to in terms of lengths or IAT. By compar-
ing the results in Table 4.3, Table 4.4, Table 4.5, and Table 4.6 with the cosine
similarities of lengths and IAT in Table 4.1 and Table 4.2, respectively, we can
notice that mapping a source app to the most dissimilar app achieves the highest
efficiency of AdaptiveMutate. Furthermore, our algorithms are robust in a way
that they can achieve relatively similar results for every mapping of the source
app to the target app. Also, our countermeasures optimally balance efficiency
and privacy. They are suitable for mobile devices with limited plans, since they
do not introduce much overhead in terms of data and bandwidth. Unlike other
approaches, the methods presented in this section are very appropriate for mobile
app flows, where an excessive overhead is not acceptable as it affects the users’
experience. Moreover, they reduce the required processing and computing, and
as such, they are feasible for constrained networking equipment. Another advan-
tage of these methods is that they are operated in a dynamic online way with
minimal latency.
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4.1.6 Validation on MTU quantization

To assess the efficiency of our scheme, we compare it to another common approach
for mitigating traffic analysis threats, “MTU Quantization” [84]. As mentioned
previously, ciphered mobile traffic flows leak information through the range of
packet lengths. In fact, packet length is among the most significant characteristics
for mobile app traffic classification [86]. One obvious way to terminate such
side information is by fixing all packets at maximum transmit unit (MTU). We
evaluate our evasion method by examining the effectiveness of AdaptiveMutate
and comparing it to MTU quantization. We run the same experiment on MTU
quantization scheme to predict the classes of Skype mutated app traffic for the
sake of example. Then, we predict using our 4 classifiers classes of the mutated
traffic using MTU quantization.

The MTU quantization scheme decreases SVM classifier’s accuracy from 76.7%
to 32.9%, Bagged Trees classifier’s accuracy from 90% to 21.3%, KNN’s classifier
from 83.9% to 26.2%, and Random Forest classifier’s accuracy from 91.1% to
22.3%. AdaptiveMutate achieves better results in terms of reducing the classi-
fiers’ accuracy. Also, MTU quantization scheme results in an overhead of 216.6%;
which is inefficient. Padding packets to their maximum sizes degrades the perfor-
mance of the network due to excessive padding that induces big amount of data
sent. This approach is not practical, especially in case of mobile traffic because
it involves such a large overhead.

4.1.7 Validation on AppScanner

For further evaluation, we conduct an experiment to test AdaptiveMutate on
AppScanner, a well-known recent mobile apps classification approach presented
in [17, 41]. First, we implement the AppScanner classification model: for each
of the 6 applications of our dataset, we extract the flows that are defined as
the sequence of packets within a burst of 1 s with the same destination IP and
port addresses. We derive 40 features for each flow as described in [17], and
we implement Random Forest with 150 estimators. Our traffic flow extraction
results in 6867 flows that are divided into 75% for training and 25% for testing.
We use the ‘one versus one’ strategy for the multi-classification problem and we
evaluate it using 5 folds’ cross validation. AppScanner method achieves an overall
accuracy of 94.8% in our test set of 6 apps.

To test the impact of thwarting, we choose Skype as the source app and Game
as the target app. We modify Skype’s packet lengths using our three different
algorithms as described before. Then, we predict using AppScanner classifier
classes of the mutated traffic. The simulation results show that AppScanner ’s
accuracy drops from 94.8% to 18.19% when using AdaptiveMutate with the first
version of lengths mutation, to 38.4% when using AdaptiveMutate with the sec-
ond version of lengths mutation, and to 17.9% using AdaptiveMutate with both
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Figure 4.4: AdaptiveMutate scheme

lengths and IAT mutations. This proves the competence of AdaptiveMutate’s
algorithms to thwart AppScanner classification.

4.1.8 Adaptive real-time approach

It offers traffic mutation service using three options: lengths mutation, interar-
rival time mutation, lengths & inter-arrival time mutation. In this section, we
elaborate the adaptive capability of AdaptiveMutate that presents a viable ap-
proach to counter the unnecessary computation overhead. Based on the specific
app analysis, AdaptiveMutate would autonomously determine the feature to mu-
tate. Our adaptive selection structure is smart enough to adaptively select an
optimal model to be used for mutation. For example, according to our experi-
ments, to obscure the YouTube traffic, Viber app is the most suitable target app.
Using AdaptiveMutate, with lengths and IAT mutations, decreases SVM classi-
fier’s accuracy from 74.7% to 18.8%, Bagged Trees classifier’s accuracy from 90%
to 7.2%, KNN classifier’s accuracy from 83.9% to 16.5%, and Random Forest clas-
sifier’s accuracy from 91.1% to 8% with only 0.002% average padding overhead
and 3% of time delay.

Additionally, based on the classifier to defend against and the features used to
build it, AdaptiveMutate would choose the ultimate feature to mutate. One can
never guess which classifier an attacker uses to threaten a smartphone’s privacy.
Using AdaptiveMutate is like establishing an immune system to prevent from
information leak due to the use of apps. For example, if the user wants to protect
his privacy against classifiers built around length features, AdaptiveMutate would
switch to mutating only the lengths. Otherwise, when the user needs to thwart
against classifiers based on the IAT feature, the mutation of IAT is considered.
Else, when the user needs to maximize his protection against classifiers that
could rely on both IAT and lengths of packets, both features are considered in
the mutation.
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4.2 Anonymization Through Probabilistic Dis-

tribution

In this section, we develop a simpler and more scalable system to tackle the
problem of network app traffic anonymization without the need of another app’s
model traffic. This could happen using probabilistic distribution of packet sizes.
We propose first a scheme that regenerates statistical modeling of app packet
lengths. Then, we present a privacy preserving technique that mutates packet
lengths of the incoming traffic to the regenerated ones.

4.2.1 System Overview

Modeling app traffic plays an important role in network design and planning.
In addition, these models can be used to create synthetic traffic. Authors in
[164] show that any Internet traffic has self-similarity property. This implies
that different parts of Internet traffic are either exactly the same or similar.
Consequently, we use captured sessions of mobile app traffic communication to
conduct our experiment. Initially, we identify a proper model that fits packet
lengths of different apps traffic and distributions that do not fit correctly. It is
worth noting that there is no single model that can describe efficiently traffic
in all types of networks [136]. In fact, there are various number of probability
distribution models that capture correct features and characteristics of traffic. We
will prove the optimal model mathematically using Kolmogorov-Smirnov standard
goodness-of-fit test, which represents the maximum absolute difference between
distribution and experimental curves. Lesser KS indicates the better is the fit.
Once the proper distribution fit is determined, packet lengths of an application
traffic are regenerated accordingly.

Our goal is to protect against statistical traffic analysis by confusing an app
traffic. In our first model, we mutate flows generated by the source app to defend
so that their distribution becomes similar to regenerated packet lengths of another
target app. For each incoming packet from the source app, we compare its size
s1 to the size t1 of the regenerated length in the target app. If s1 is less than t1,
we proceed by padding s1 with zeroes such that the resultant packet length is the
same as t1. Otherwise, we fragment the packet into 2 fragments: first fragment
has the same size as t1, second fragment is considered as a new incoming packet
where its size is compared to the next generated packet length of the target app.

We have considered app traffic mutation to thwart traffic classification by
mutating a source app into a different target app. We could consider app traffic
mutation of an app to itself without the need of a target app by only changing
the distribution of its lengths. This would make our model more scalable. It
rejects the need for a second app, especially if the type of the app that we are
trying to evade is unknown. Therefore, in our second model, we only need to
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Figure 4.5: App traffic packet sizes distribution

study the distribution of the app’s packet lengths and change it to a different
one. To realize this, we identify a distribution model that does not fit packet
lengths of the app traffic in consideration, and we regenerate packet lengths from
it. Lengths of regenerated packets are considered as ‘target’ app traffic lengths.
We apply the mutation method explained previously to mutate a source packet
length to the target packet length.

4.2.2 Experiment Evaluation

In our experiment, we use network traffic traces of the 6 apps of the dataset
described in Subsection 3.5.1.

Mobile Apps Probability Distribution Profiling

First, we examine the distribution of packet lengths across all instances in each
app traffic set, and we estimate its probability distribution. Graphs in Figure 4.5
show the statistical analysis results of app traffic packet sizes distribution for the
6 apps of our dataset.

Next, we examine the best-fit function for each app packet sizes distribution.
We model different distributions for the 6 different apps traffic. We consider
Normal, Poisson, Rician, and Weibull as they are used in computer network traffic
modeling. Normal is described by location and scale parameters. Poisson uses
mean parameter. Rician is characterized by non-centrality and scale parameters.
Weibull uses shape parameter and scale parameter.

We model these distributions for packet lengths of Skype and Viber in Fig-
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Figure 4.6: Distribution fits with respect to Skype packet lengths

ure 4.6 and Figure 4.7, respectively. We also specify the parameters used in
Table 4.10. Param 1 and Param 2 represent the first and second parameter
of distribution, respectively. Each class among Normal, Poisson, Rician, and
Weibull hardly fit the data distribution perfectly. However, by visual examina-
tion of the fitted curves displayed in Figure 4.6, Normal is perceived to be the
best-fit distribution over Skype traffic. Viber is observed to be closer to Poisson
distribution in Figure 4.7. By simply plotting the 4 distributions fits for the
remaining 4 apps, we notice that neither distribution matches.

Next, we evaluate, using goodness-of-fit function, which distribution-fit accu-
rately describes traffic in our traces. At this purpose, we use Kolmogorov-Smirnov
test to prove that a Normal process accurately describes traffic in Skype, and that
a Poisson process accurately identifies Viber traffic. In fact, Normal showed the
lowest KS parameter in case of Skype, and Poisson has the lowest KS parameter
in case of Viber as presented in Table 4.10.

Obfuscation Experiments and Results

To evaluate our evasion defense algorithms, we use the app classification experi-
ment discussed in Chapter 3. Next, we describe two experiments corresponding
to two different obfuscation techniques. The difference between the 2 models is
the target app used in mutation.

In our first experiment, we calculate the mean and standard deviation of
real Skype packet lengths to regenerate them from normal distribution. We also
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Figure 4.7: Distribution fits with respect to Viber packet lengths

Table 4.10: Packet lengths Distribution Fit Parameters and Goodness-of-fit
App Distribution Param 1 Param 2 KS

Skype

Normal Location= 478.3 Scale= 469.9 0.217
Poisson Mean= 478.3 - 0.944
Rician Noncentrality= 27.8 Scale=473.8 0.375

Weibull Shape=483.4 Scale=1.0 0.329

Viber

Normal Location= 143.3 Scale= 49.3 0.485
Poisson Mean= 143.3 - 0.116
Rician Noncentrality= 132.5 Scale= 52.0 0.526

Weibull Shape= 159.2 Scale= 2.9 0.583

calculate the mean of Viber packet lengths to regenerate them from Poisson
distribution. The regeneration of Skype packet lengths from Normal distribution
comes at the cost of 1.6% overhead only in comparison with the original Skype
traffic. Also, regenerating Viber packet sizes from Poisson distributions costs
0.259% only when we compare it to the original Viber traffic.

Packets of our dataset are transferred one after the other and several flow
sessions of these packets occur at the same time. We sort packets for each flow
session between two communicating entities. Applying our first obfuscation tech-
nique, we mutate, for each flow session, the source app traffic to regenerate packet
lengths from Normal distribution of Skype. We pad with zeroes each incoming
packet from the source app to a generated packet length in case it is smaller.
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Otherwise, we proceed by fragmenting it.
We test the 6 apps consecutively as source apps to mutate. Using our 4 model

classifiers, we predict the classes of the modified traffic. Results of prediction for
Quadratic SVM, Bagged Tree, Fine KNN, and Random Forest are shown in
Table 4.11, Table 4.12, Table 4.13, Table 4.14 respectively for the six different
apps. We present the resulting overhead from mutating each source app packet
lengths to Normal distribution of Skype packet sizes in Table 4.15.

Simulation results show for example that mutating Game packet lengths to
Normal distribution of Skype packet sizes can decrease SVM classifier’s accuracy
from 76.7% to 0.4% as shown in Table 4.11, Bagged Trees classifier’s accuracy
from 90% to 0.7% as shown in Table 4.12, KNN classifier’s accuracy from 83.9%
to 2.76% as shown in Table 4.13, and Random Forest classifier’s accuracy from
91.1% to 0.9% as shown in Table 4.14 with only 12.51% average overhead as
presented in Table 4.15. Hence, drastic drop of the accuracy is achieved with
a minimal cost of traffic volume increase, by a factor 1.12. Also, 80.96% of the
Game traffic was confused by Bagged Tree as Skype traffic as shown in Table 4.12.
This proves the efficiency of our algorithm to morph a Game traffic class into
Skype class.

Table 4.11: Confusion of Source app mutated to Normal distribution of Skype
packet sizes by Quadratic SVM
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 35.47% 43.59% 0.47% 3.09% 7.5% 9.88%
Facebook 49.42% 39.49% 0.15% 1.84% 2.86% 6.25%

Game 43.22 34.25% 0.4% 4.37% 6.67% 11.09%
Whatsapp 32.84 28% 0.42% 1.89% 11.37% 25.47%

Viber 42.07% 40.71% 0.74% 3.32% 3.57% 9.59%
Youtube 35.47% 43.59% 0.47% 3.09% 7.5% 9.88%

Table 4.12: Confusion of Source app mutated to Normal distribution of Skype
packet sizes by Bagged Tree
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 55.71% 30.77% 0% 6.35% 0.19% 6.92%
Facebook 16.84% 68.32% 0.35% 6.37% 1.33% 6.8%

Game 80.96% 10.56% 0.7% 3.18% 0.48% 4.12%
Whatsapp 47.13% 24.6% 0% 15.17% 0.69% 12.41%

Viber 32.84% 24% 0% 2.32% 10.53% 30.32%
Youtube 62.36% 15.25% 0.74% 4.31% 1.23% 16.11%

Similarly, we mutate in each session the source app traffic to regenerated
packet lengths from Poisson distribution of Viber. Using our 4 model classifiers,
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Table 4.13: Confusion of Source app mutated to Normal distribution of Skype
packet sizes by Fine KNN
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 47.89% 22.23% 1.8% 8.09% 3.75% 16.25%
Facebook 55.72% 23.45% 2.13% 3.05% 2.03% 13.61%

Game 40.46% 23.68% 2.76% 14.25% 2.53% 16.32%
Whatsapp 35.16% 25.26% 1.05% 13.68% 9.68% 15.16%

Viber 51.41% 20.3% 3.32% 5.9% 1.35% 17.71%
Youtube 47.89% 22.23% 1.8% 8.09% 3.75% 16.25%

Table 4.14: Confusion of Source app mutated to Normal distribution of Skype
packet sizes by Random Forest
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 57.23% 28.21% 0% 5.73% 0.15% 8.64%
Facebook 22.24% 58.91% 0.71% 5.98% 2.13% 9.8%

Game 76.12% 9.23% 0.9% 5.90% 0.58% 7.19%
Whatsapp 49.2% 28.69% 0% 17.78% 0.71% 3.41%

Viber 34.51% 36% 0% 1.12% 10.11% 18.24%
Youtube 59.9% 17.79% 0.81% 5.12% 1.76% 13.51%

Table 4.15: Overhead resulting from mutating to Normal distribution of Skype
packet sizes

XXXXXXXXXXXXTarget
Source app

Skype Facebook Game WhatsApp Viber YouTube

Normal distribution of Skype 1.6% 5.28% 12.51% 35.26% 63.34% 13.37%

we predict the classes of the modified traffic. Results of prediction for Quadratic
SVM, Bagged Tree, Fine KNN, and Random Forest are shown in Table 4.16,
Table 4.17, Table 4.18, and Table 4.19, respectively for the six different apps.
We present the resulting overhead from mutating each source app packet lengths
to Poisson distribution of Viber packet sizes in Table 4.20. Simulation results
show for example that mutating Game packet lengths to Poisson distribution of
Skype packet sizes can decrease SVM classifier’s accuracy from 76.7% to 2.66%
as shown in Table 4.16, Bagged Trees classifier’s accuracy from 90% to 0.48% as
shown inTable 4.17, KNN classifier’s accuracy from 83.9% to 48.89% as shown
in Table 4.18, and Random Forest classifier’s accuracy from 91.1% to 1.43% as
shown in Table 4.19 with only 14.33% average overhead as presented in Table 4.20.
Hence, drastic drop of the accuracy is achieved with a minimal cost of traffic
volume increase, by a factor 1.14.

In our second experiment, we evaluate another obfuscation technique where
we change the distribution of packet lengths of an app into a dissimilar one. We
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Table 4.16: Confusion of Source app mutated to Poisson distribution of Viber
packet sizes by Quadratic SVM
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 30.00% 42.31% 0% 1.35% 24.81% 1.54%
Facebook 36.54% 38.65% 0% 1.54% 21.73% 1.54%

Game 9.11% 64.24% 2.66% 0.15% 23.3% 0.53%
Whatsapp 22.99% 66.67% 0.46% 2.3% 7.13% 0.46%

Viber 6.53% 9.05% 0% 0.21% 84.21% 0%
Youtube 6.89% 64.21% 0.25% 0.62% 27.18% 0.86%

Table 4.17: Confusion of Source app mutated to Poisson distribution of Viber
packet sizes by Bagged Tree
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 52.69% 22.61% 0% 5.38% 18.85% 0.38%
Facebook 17.81% 68.2% 0% 7.15% 6.8% 0%

Game 7.56% 83.72% 0.48% 7.27% 0.97% 0%
Whatsapp 24.6% 53.79% 0% 18.39% 3.22% 0%

Viber 1.68% 6.58% 0% 3.16% 88.58% 0%
Youtube 10.95% 71.96% 0% 12.67% 4.18% 0.25%

Table 4.18: Confusion of Source app mutated to Poisson distribution of Viber
packet sizes by Fine KNN
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 45.00% 31.15% 1.92% 2.12% 19.42% 0.38%
Facebook 21.13% 49.49% 11.56% 5.04% 11.95% 0.82%

Game 20.45% 20.54% 48.89% 2.76% 4.75% 2.62%
Whatsapp 25.98% 40.46% 7.82% 20.69% 3.45% 1.61%

Viber 1.47% 7.79% 0.21% 2.32% 88.21% 0%
Youtube 13.65% 53.38% 10.95% 8.73% 3.94% 13.65%

Table 4.19: Confusion of Source app mutated to Poisson distribution of Viber
packet sizes by Random Forest
``````````````̀Source app

Predicted as
Skype Facebook Game WhatsApp Viber YouTube

Skype 53.48% 24.31% 0% 4.21% 17.54% 0.38%
Facebook 19.84% 65.3% 0% 6.54% 6.41% 1.01%

Game 5.09% 84.92% 1.43% 8.05% 0.71% 0%
Whatsapp 21.6% 55.39% 0% 16.99% 4.51% 0%

Viber 1.58% 7.32% 0% 4.88% 85.87% 0%
Youtube 9.06% 72.57% 0% 13.28% 5.09% 0.14%
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Table 4.20: Overhead resulting from mutating to Poisson distribution of Viber
packet sizes

XXXXXXXXXXXXTarget
Source app

Skype Facebook Game WhatsApp Viber YouTube

Normal distribution of Viber 19.87% 7.72% 14.33% 9.87% 0.0259% 3.81%

discussed earlier in Section 4.2.2 that apps other than Skype or Viber do not
fit correctly into Normal or Poisson distributions. Therefore, we mutate packet
lengths of Facebook, Game, WhatsApp, and YouTube to regenerated Normal or
Poisson distributions of their packet sizes. We concentrate on Normal distribution
and Poisson distribution for simple modeling. Prediction results of classes of the
modified app traffic of Facebook, Game, WhatsApp, and YouTube using our 4
classifiers are presented in Table 4.21, Table 4.22, Table 4.23, and Table 4.24,
respectively.

This obfuscation technique results in less but acceptable attack evasion out-
comes compared to our first one presented earlier. For example, when predicting
Game class after mutating its packet sizes to Normal distribution, SVM classi-
fier’s accuracy decreases from 76.7% to 0.68%, Bagged Trees classifier’s accuracy
from 90% to 0.19%, KNN classifier’s accuracy from 83.9% to 4.55%, and Ran-
dom Forest classifier’s accuracy from 91.1% to 0.28% with only 7.73% average
overhead. Also, when predicting Game class after mutating its packet sizes to
Poisson distribution, SVM classifier’s accuracy decreases from 76.7% to 2.23%,
Bagged Trees classifier’s accuracy from 90% to 1.7%, KNN classifier’s accuracy
from 83.9% to 12.16%, and Random Forest classifier’s accuracy from 91.1% to
1.9% with only 29.1% average overhead.

Table 4.21: Prediction of mutated Facebook packet lengths to itself using Normal
or Poisson distributions

Algorithm SVM BT KNN RF Overhead
Original Facebook accuracy 76.7% 90% 88.9% 91.1% -
Facebook Mutated to Facebook with lengths
generated from Normal distribution

46.56% 68.48% 46.91% 65.2% 7.33%

Facebook Mutated to Facebook with lengths
generated from Poisson distribution

52.93% 59.65% 50.27% 58.3% 29.90%
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Table 4.22: Prediction of mutated Game packet lengths to itself using Normal or
Poisson distributions

Algorithm SVM BT KNN RF Overhead
Original Game accuracy 76.7% 90% 88.9% 91.1% -
Game Mutated to Game with lengths gener-
ated from Normal distribution

0.68% 0.19% 4.55% 0.28% 7.73%

Game Mutated to Game with lengths gener-
ated from Poisson distribution

2.23% 1.7% 12.16% 1.9% 29.10%

Table 4.23: Prediction of mutated WhatsApp packet lengths to itself using Nor-
mal or Poisson distributions

Algorithm SVM BT KNN RF Overhead
Original WhatsApp accuracy 76.7% 90% 88.9% 91.1% -
WhatsApp Mutated to WhatsApp with
lengths generated from Normal distribution

11.72% 15.63% 18.62% 16.11% 32.62%

WhatsApp Mutated to WhatsApp with
lengths generated from Poisson distribution

3.68% 15.86% 30.34% 0.97% 21.75%

Table 4.24: Prediction of mutated YouTube packet lengths to itself using Normal
or Poisson distributions

Algorithm SVM BT KNN RF Overhead
Original YouTube accuracy 76.7% 90% 88.9% 91.1% -
YouTube Mutated to YouTube with lengths
generated from Normal distribution

37.88% 13.78% 9.59% 12.86% 6.77%

YouTube Mutated to YouTube with lengths
generated from Poisson distribution

1.11% 4.18% 5.04% 4.89% 4.52%

4.3 Mutation for Similar Probability Distribu-

tion

4.3.1 Model Overview

In this model, we mutate each packet in the flows generated by the source app to
protect such that their distribution becomes similar to packet lengths of another
target app. This requires resampling packet lengths from probability distribution
of a target app traffic that is different from the original packet lengths generated
by the source app. In other words, we chop and pad network protocols packets
so that the modified flow resembles a pre-defined target distribution.

Figure 4.8 illustrates our traffic mutation technique. Given a pair of appli-
cations A and B, where A is the source app to protect, and B is the target app
that the source app should look like, we choose a bin size w for packet lengths.
We derive the probability distribution PA and PB with respect to bins of packet
lengths of A and B, respectively. For each incoming packet p of A of size Lp
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Figure 4.8: Mutation Algorithm

having a probability Pp, we find the most similar probability Pp’ in target app B.
Then, and to reduce overhead, we find the smallest size Lp’ among the sizes in
the bin of probability Pp’ in B.

To find the most similar Pp’ to Pp, we consider the vector PB of probabilities
for the different bins of packet lengths of target app. We find Pp’ among the
values in vector PB satisfying (4.2)

min |Pp − P ′
p| (4.2)

Then, we compare Lp’ and Lp. If Lp’ > Lp, we pad the packet from A with
zeroes such that the resultant packet length is Lp’ and we send the padded packet.
Otherwise, the algorithm splits the data into multiple packets. We send L′

i bytes
of the original packet and continue sampling from PB until all bytes of A are
sent. Packet lengths that are output onto the network seem to be drawn from
the target application distribution.

Using our algorithm, we actually mutate the smallest probabilities of packet
lengths of A to the smallest probabilities of packet lengths of B and the largest
ones from A to the largest in B. As long as the source process creates a necessarily
big number of packets from a source distribution A, the output will converge in
distribution to that of the target B realizing morphing of A into B. Hence, the
classifier confuses an incoming packet from A of a length specific to B and classifies
it in target app category. This method realizes morphing, but it can introduce
large overhead in terms of padding depending on the choice of the target app for
each source app.

One can argue that in spite of applying this technique, a user’s behavioral
patterns still leak. To obfuscate his behavior, a user may choose the target app
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Figure 4.9: App Traffic Packet Sizes Distribution

that he does not usually use. Many apps can be appropriate in this case. The
user can choose the target app that is the most dissimilar to his normal behavior
for better obfuscation. Also, it would be beneficial to change the target app at
each run to prevent the attacker from knowing the mapping of source app to
target app.

Also, it is possible to generate matrices mapping each bin of a source packet
to a size in another target app offline before the algorithm is used, and so the
entire process becomes more practical inducing minimal latency, especially for
dynamic applications.

4.3.2 Experimental Evaluation

In the following, we present an experiment as proof of concept of the above
explained obfuscation algorithm. Our first step in this context is studying the
packet size probability profiling for the used apps. Then, we present a compre-
hensive evaluation of our method using the different combinations of app traffic
in our dataset. We rely in our evaluation on the mobile traffic classification attack
experiment detailed in Chapter 3.

Mobile Apps Packet Size Probability

First, we divide the traces in each app traffic set into bins of size w of 50 bytes. We
study the probability of each bin of packet lengths across all instances. Graphs
in Figure 4.9 show the statistical analysis results of packet sizes distribution for
the 6 apps of our dataset.
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Obfuscation Experiment and Results

We choose the source app to confuse and the target app to resemble. We save the
probability of each packet length bin for the source and target apps. Then, for
each incoming packet from source app, we find the probability of its correspond-
ing bin size. We find the most similar length probability in target app and its
corresponding bin. We pad or chop the incoming packet length to the smallest
length inside the designated target bin.

Using our 4 model classifiers, we predict the classes of the mutated traffic. We
present, in Table 4.25, Table 4.26, Table 4.27, Table 4.28, Table 4.29, Table 4.30
comprehensive simulation results of mutation using our algorithm of each appli-
cation in our dataset to the 5 other different apps, respectively. Mutating Skype
and Facebook was not as effective as mutating the other apps. For the sake of
simplicity, we will explain in what follows the inefficiency of Skype mutation,
and the efficiency of Game mutation. The other apps’ results can be explained
similarly.

In case of Game mutated to Skype, first bins of Game are mutated to bin
numbered 2 of Skype, and last bins of Game are also mutated to bin numbered
2 of Skype because it is the most similar one. However, bin numbered 2 is
representative for Skype because it has the highest probability of 0.32. Hence, the
overall probability distribution of mutated Game was changed and the classifier
identifying Game would confuse it as Skype. The same explanation clarifies the
effectiveness of Game mutated to Facebook, and Game mutated to Viber.

When mutating Game to WhatsApp, the first bins of Game are mutated to
the first bins of WhatsApp and the last bins of Game to the last bins of What-
sApp. So, the probability distribution of mutated Game would fit into probability
distribution of WhatsApp confusing the classifier to classify the mutated Game
traffic as WhatsApp.

When applying Game to YouTube using our algorithm, the first bins of Game
are mutated to the last bins of YouTube and the last bins of Game to the first
bins of YouTube. Therefore, the probability distribution of mutated source traffic
is completely modified into that of the target app. Consequently, the classifier
would classify the mutated Game traffic as YouTube.

The simulation results presented in Table 4.27, for example, show that mutat-
ing Game to Viber using our algorithm can decrease SVM classifier’s accuracy
from 76.7% to 0.48 %, Bagged Trees classifier’s accuracy from 90% to 0.19%,
KNN classifier’s accuracy from 83.9% to 2.18%, and Random Forest classifier’s
accuracy from 91.1% to 0.22% with only 11.86% average overhead. According
to Table 4.31, 69.23% of the Game traffic was confused as Viber traffic. This
demonstrates the efficiency of our algorithm to Morph one class of Game traffic
into the Viber class.
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Table 4.25: Results of Skype Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of Skype mutated to Facebook 47.31 53.08 40.00 51.2 8.24%

% Accuracy of Skype mutated to Game 47.88 54.62 42.88 53.87 15.7%
% Accuracy of Skype mutated to WhatsApp 47.88 54.52 42.88 54.1 20.48%

% Accuracy of Skype mutated to Viber 49.62 58.46 45 57.98 2.64%
% Accuracy of Skype mutated to YouTube 47.31 53.08 40 52.55 49.85%

Table 4.26: Results of Facebook Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of Facebook mutated to Skype 44.3 58.95 47.81 57.4 85.21%
% Accuracy of Facebook mutated to Game 45.59 59.1 47.89 58.23 32.02%

% Accuracy of Facebook mutated to WhatsApp 44.57 58.09 47.31 57.5 27.7%
% Accuracy of Facebook mutated to Viber 45.43 58.01 49.96 56.2 10.51%

% Accuracy of Facebook mutated to YouTube 44.45 58.48 47.5 58.9 19.2%

Table 4.27: Results of Game Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of Game mutated to Skype 0.39 0.34 2.23 0.56 80%

% Accuracy of Game mutated to Facebook 0.19 0.24 2.13 0.44 21.37%
% Accuracy of Game mutated to WhatsApp 0.24 0.29 2.33 0.24 71%

% Accuracy of Game mutated to Viber 0.48 0.19 2.18 0.22 11.86%
% Accuracy of Game mutated to YouTube 0.53 0.15 1.74 0.18 36.33%

Table 4.28: Results of WhatsApp Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of WhatsApp mutated to Skype 5.52 14.02 11.3 13.4 70.76%

% Accuracy of WhatsApp mutated to Facebook 7.13 14.48 14.25 13.26 25.11%
% Accuracy of WhatsApp mutated to Game 5.06 14.02 10.34 14.01 21.73%
% Accuracy of WhatsApp mutated to Viber 3.22 14.94 11.95 13.29 7.76%

% Accuracy of WhatsApp mutated to YouTube 5.29 15.4 13.33 14.32 39.89%

4.4 Discussions

We explored so far the feasibility and effectiveness of several strategies to de-
fend against traffic analysis attacks. With the reported experiments, we have
investigated the security and performance of the different obfuscation systems.
In all cases, corresponding to these mechanisms, a supposed adversary failed to
correctly distinguish the victim apps on different identification rates.

Our first proposed system relied on modifying the packet lengths, and/or
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Table 4.29: Results of Viber Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of Viber mutated to Skype 5.26 33.26 9.68 32.42 94.92%

% Accuracy of Viber mutated to Facebook 7.79 33.68 6.95 32.22 70.43%
% Accuracy of Viber mutated to Game 9.68 34.73 11.79 34.3 49.88%

% Accuracy of Viber mutated to WhatsApp 8 34.74 8.84 33.29 76.85%
% Accuracy of Viber mutated to YouTube 9.89 32.84 10.53 33.1 89.81%

Table 4.30: Results of YouTube Mutation
Algorithm SVM BT KNN RF Overhead

Original % accuracy 76.7 90 88.9 91.1 -
% Accuracy of YouTube mutated to Skype 9.86 8.61 17.22 10.1 27.48%

% Accuracy of YouTube mutated to Facebook 9.95 8.61 17.22 9.93 85.34%
% Accuracy of YouTube mutated to Game 9.76 8.61 17.22 10.4 5.69%

% Accuracy of YouTube mutated to WhatsApp 9.84 11.81 19.19 9.72 8.3%
% Accuracy of YouTube mutated to Viber 9.96 11.32 20.54 9.82 1.68%

Table 4.31: Confusion of Game mutated into Viber using Our Algorithm
Skype Facebook Game WhatsApp Viber YouTube

Game (%) 13.87 12.94 0.22 1.73 69.23 2.01

the IAT information of the source app so that the lengths or IAT of the output
packets seem as if they are coming from the target app probability mass function.
We mapped the smallest values of packet lengths or IAT of the original app to
the corresponding smallest ones in the target app with the aim of minimizing
the overhead. Our study proved that the impact of a such thwarting system has
significant effects on the general detection accuracy of the models in question,
where the percentage dropped from 91.1% to 7% with 11.2% overhead.

Our second countermeasure relied on statistical modeling and mutating in-
coming packet lengths to regenerating ones from a predefined model. The main
advantage of this system is that it doesn’t require the need of another real app
traffic especially if the type of the app that we are trying to evade is unknown.
To realize this, we elaborated a method to identify a distribution model that
fits packet lengths of the app traffic in consideration. Then, we mutated flows
generated by the source app to defend so that their distribution becomes simi-
lar to regenerated packet lengths of another target app. Using this method, the
targeted misclassification was reduced from 91.1% to 0.9% with 12.1% overhead.

Third countermeasure consisted of mutating source app packet lengths to
target app packet lengths with similar bin probability. The results showed the
effectiveness of the proposed method where classification accuracy dropped from
91.1% to 0.22% using the first algorithm with 11.86% of overhead.

The 3 thwarting systems considered so far attempted to obfuscate leaked
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features of the traffic via padding, fragmenting, traffic shaping, etc. The test
results showed the effectiveness and robustness of the different proposed models
to protect vulnerable traffic. Despite the very promising results achieved by our
different obfuscation systems, it is clear that such these approaches exhibits some
intrinsic limitations. For instance, countermeasures that present a big overhead
in terms of bandwidth, time, and computational cost are not practical since such
overhead directly result in added monetary charge, poorer user experience, and
bigger battery consumption.

After several successful defense models, the question becomes how to optimize
the solution to realize balance between required quality of service and efficiency.
This will be considered in the next chapter. Also, the challenge becomes harder to
find an analytical explanation of the results of the different obfuscation systems
and to compare between them.

4.5 Conclusion

In this chapter, we developed different anonymity techniques to thwart classifica-
tion and avoid detection in the sake of user privacy. The numerical investigations
presented give merit to our simple obfuscation approaches. In fact, the results
show the effectiveness of the proposed method to cause an attacker to fail his
classification. While there is an amount of overhead with respect to padding,
as expected since no optimization is tried, however our techniques eliminate in-
formation that could be misused by the classification adversary. Also, most of
the methods presented so far conserve implementation simplicity, and acceptable
overhead.

After protecting insecure traffic, the challenge becomes harder when obfus-
cation systems need to abide to better performance requirements, have small
computational needs, and confine minimal incurred overhead. Obviously, that
would reinforce the necessity for optimal adequate countermeasures.
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Chapter 5

Obfuscation Optimization

While we investigated earlier a handful of obfuscation algorithms resulting in
significant outcomes, still there has not been a formal definition of our security
problem leading to an ideal robust defense model against Traffic Analysis attacks.
No mathematical solution has been assessed yet to optimally balance both effi-
ciency and performance for a solid obfuscation algorithm. In this chapter, we
state an optimization problem to find the full obfuscation algorithm that mini-
mizes the average overhead within the set of ideal algorithms. We aim at finding
the sufficient padding or fragmentation that guarantees good secrecy while opti-
mizing the overhead.

Information leakage of the flow content is provided typically from traffic fea-
tures like packet lengths, inter-packet times, traffic direction, etc. To achieve
maximum protection, we formulate mathematically an optimization problem that
yields a constructive solution for an algorithm achieving maximum obfuscation,
while minimizing the overhead and subject to traffic constraints. We modify each
packet in the flows, created by the source app to defend, such that their distri-
bution becomes similar to packet sizes of a different target app. To this end, we
consider one source app to protect and a number of N target apps to mutate to.

5.1 Problem Statement

At a high-level, our optimization problem is defined as follows. Given a source
application, our goal is to mutate its traffic such that it resembles and is confused
as some target application (i.e., a different application) with respect to a given
set of features. The user chooses first the source application that he would like
to defend, as well as a set of target applications that he would like to make the
source application look like. Of course, we need to ensure that the implemented
mutation is the most effective, for some measure of efficiency, such as the number
of overhead bytes added. The user applies the optimization technique that dic-
tates how each packet size from the source application should be mutated such
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that the resulting distribution resembles the target with a minimum of overhead.
Naturally, after the mapping of the packet sizes is performed offline, the mutation
algorithm captures the data to be conducted across the network before headers
are calculated or encryption is applied. The mutated traffic is then sent to the
network stack, encrypted, and transmitted across the network as usual. Our
objective is to maximize network traffic anonymization (i.e. minimize the accu-
racy of a classifier detecting certain applications) and to minimize the overhead
resulting from padding. This would be realized by means of:

1. selecting the optimum target app,

2. and determining the optimum packet size to mutate to.

As such, the mutation algorithm can be formulated as an optimization problem
to mutate a source application into a target application.

An application i can be defined by [mi, Li, Pi]:

• The number of possible packet size ranges of width w is denoted by mi.

• The vector Li = [L1
i , L

2
i , . . . , Lmi

i ] of smallest lengths in each bin of size
w. For example, Lmi

i is the smallest length in the last bin of application
i and having a total number mi of bins. The average of Li is denoted by
Avg(Li).

• The probability distribution characteristic denoted by Pi= [P 1
i , P 2

i ,.., Pmi
i ]

represents the vector of length probabilities for bins of size w. For example,
Pmi
i is the probability of length Lmi

i for application i.

An incoming packet from the source application can be defined by its size l
and the probability p of the bin to which l belongs. We define a binary variable
for each application that indicates whether the app is selected as target app or
not; xi denotes the variable for the ith app. Given a set of N applications, the
vector X (of length N ) represents [x1, x2, ..., xN ]. Also, we delineate a binary
variable for each bin of an application i that indicates whether the packet bin is
selected to be mutated to or not. It is worth noting that the smallest size in a
bin is used for mutation. yji denotes the variable for the jth bin of application i.
Given a set of mi ranges, the vector yi (of length mi) designates [y1i , y2i , ..., ymi

i ].
In order to minimize the accuracy of the classifier, we need to find the probability
of a packet length in a bin of a target app such that it is similar to p. At the
same time, to minimize the overhead, the selected packet length must be similar
to l. In case the difference between p and the designated probability is too small
(less than 0.1 in our case), the difference between the selected length and l needs
to be checked to be less than the average difference. This would guarantee that
the overhead does not reach a large value. The obfuscation optimization problem
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for mutating an incoming packet from a source app is as follows: Find the vector
X (of length N ), and the vector yi (of length mi), and minimize:

Min

N∑
i=1

xi(

√√√√ mi∑
j=1

yji (| P
j
i − p |2 × | Lj

i − l |2)

Subject to:

1.
P j
i ∈ [0, 1]; i = 1, ..., N

2.
| Lj

i − l | < | Avg(Li)− l | for | P j
i − p | <0.1

3.
N∑
i=1

xi = 1; xi = 0 or 1; i = 1, ..., N

4.

∀i ∈ [1, N ],

mi∑
j=1

yji = 1; yji = 0 or 1; j = 1, ...,mi

In the following, we will present 2 solutions for the optimization problem:

• An analytical solution.

• A practical solution Opriv provided by an optimization modeling software.

5.2 Analytical Solution

The ultimate mutation solution for our optimization problem is to identify for
each length probability from source app the most similar ones from target apps.
Then, we mutate the length from source app to the smallest corresponding length
of these similar probabilities from target apps.

Figure 5.1 depicts our solution. We consider a source application S to protect
and a set of target applications to mutate to, numbered from 1 to N. For each
incoming packet of S of size l having a probability p, we find the bins of pack-
ets within the N applications with similar size probabilities [p1, p2, ..., pN ] using
Equation (4.2). We mark these bins in red in Figure 5.1. Then, we find their
corresponding smallest lengths [l1, l2, ..., lN ] in the bin they belong to. We choose
to mutate l to the smallest length among [l1, l2, ..., lN ].

The classifier would notice specific lengths from the N target apps and then,
it would classify the incoming packets in their corresponding target app rather
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Figure 5.1: Camouflage Scheme

than random classification. The use of optimization ensures minimum padding
overhead when mutating the source packets.

Additionally, the generation of the matrices mapping each bin of a source
packet to a size in another target app can be done offline, and therefore the
whole method becomes more practical resulting in minor latency, mainly for the
dynamic type of applications.

By applying this algorithm, the user’s behavior is obfuscated by design be-
cause each single source app is mutated to several target apps at once. This
would cause a confusion for the classifier, and the attacker would not be able
to discriminate efficiently a single app. Hence, applying our analytical optimal
solution would increase the unpredictability of the source as well as the target
app, and ultimately the user’s behavior.

5.3 Opriv

In this part, we present Opriv, a practical solution to the optimization problem.
The model has constraints including a quadratic term and therefore it is a Mixed
Integer Quadratically Constrained Program (MIQCP) problem. As a practical
result, we deploy and solve the problem deciding on Mixed-Integer Quadratic
Problem MIQP linearization using the IBM ILOG CPLEX Optimization Studio
Version: 12.9.0.0 software. CPLEX was chosen for its robustness in solving
large-scale, real-world problems. The coding in CPLEX is depicted in Figure 5.2
and Figure 5.3 . The result for one iteration is vector X to identify the target
app for mutation, and the corresponding Y to specify the packet bin to mutate
to in target app.

The proposed method, implemented using IBM’s CPLEX optimization pack-

64



Figure 5.2: OPL 12.9.0.0 Model
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Figure 5.3: OPL 12.9.0.0 Data

age (ILOG), required 1–4 minutes to solve with a dual-core Intel i7 processor.
To solve several instances of the same problem, we define our model in Java and
call Cplex Java API on Eclipse to solve it. We record in Table 5.1 the average
execution time needed to execute each instance of optimization for the different
applications.

Table 5.1: Average Execution Time for each instance of optimization for the
different applications

Application Average Execution Time in seconds
Skype 0.16

Facebook 0.36
Game 0.2

WhatsApp 0.14
Viber 0.36

YouTube 0.19

5.4 Experimental Evaluation

In what follows, we empirically evaluate the efficiency of our solutions. We find
the probability distribution with respect to packet lengths of the source app
and those of the target apps traffic as depicted in Chapter 4 in Figure 4.9. To
evaluate both solutions, we use our 4 model classifiers described in Chapter 3,
and we predict the classes of the mutated traffic.
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5.4.1 Analytical Solution Implementation

For each incoming packet from a source app, we implement the analytical solution
of the optimization problem to select the optimal target app and packet size to
mutate to. Table 5.2 to Table 5.7 present, for each bin size of a source app from
our dataset described in Chapter 3, the corresponding optimum target app and
optimum packet size to mutate to, using our obfuscation model.

Table 5.8 presents mutation results using our analytical solution for each app
in our dataset. For example, mutating Game using analytical solution algorithm
can decrease SVM classifier’s accuracy from 76.7% to 0.24%, Bagged Trees clas-
sifier’s accuracy from 90% to 0.001%, KNN classifier’s accuracy from 83.9% to
1.89%, and Random Forest classifier’s accuracy from 91.1% to 1.76% with only
0.73% average overhead.

We also assess our results in terms of the f1-score. The highest possible value
of f1-score is 1, indicating perfect precision and recall, and the lowest possible
value is 0, if either the precision or the recall is zero. Table 5.9 presents f1-score
results using our analytical solution of each app in our dataset.

5.4.2 Opriv Evaluation

For each incoming packet from the source app, we implement Opriv to select
the optimal target app and packet size to mutate to. First, we select the unique
values of lengths and their corresponding probabilities of a certain app in our
dataset, as input to our code in IBM ILOG CPLEX. The output results are
the optimal packet size to mutate to. We generate tables mapping each length
source packet to its corresponding optimal target size offline, and so the entire
process becomes more practical inducing minimal latency, especially for dynamic
applications. Skype, Facebook and Game have around 1400 unique values of sizes.
While, WhatsApp and Viber have around 200 unique values. As for YouTube,
the number is 1000. For the sake of simplicity, we show only a sample of seven
mapping values in Table 5.10 to Table 5.15. Then for each incoming packet, Opriv
matches its packet length and probability using our offline tables, and infers the
corresponding optimum packet size that we need to mutate to. We pad or chop
the incoming packet length to the corresponding optimum length.

We present, in Table 5.16, comprehensive simulation results of mutation using
Opriv of each application in our dataset. As expected using optimization, Opriv
realizes a good balance between efficiency and overhead especially for Game,
WhatsApp, Viber, and YouTube. We will explain in Chapter 6 the reason why
Skype and Facebook obfuscation were less efficient.
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Table 5.2: Optimization Results of Skype Source App using Analytical Solution
Source Bin Number Optimum Target App Optimum Length to mutate to

1 Game 104
2 YouTube 54
3 Game 104
4 Game 104
5 Game 104
6 Game 104
7 Game 104
8 Game 104
9 Game 104

10 Viber 100
11 Viber 100
12 Viber 100
13 Game 104
14 Game 104
15 Viber 100
16 Game 104
17 Game 104
18 Game 154
19 Game 154
20 Viber 210
21 Viber 210
22 Viber 210
23 Viber 120
24 Viber 120
25 Game 204
26 Viber 220
27 Viber 62
28 Game 104

5.4.3 Discussion

We presented in this chapter, realistic and precise obfuscation approaches to
implement in real world practice. Our analytical approach is systematic and
achieves maximum obfuscation with minimum padding overhead. OPriv is dif-
ferential from other past studies by the way it is coded in an optimization software
so that it could be immediate and practical. In addition, the mapping of values
between original and mutated is realized length to length and not bin to bin. This
would imply better precision of OPriv than that of previous works. Also, OPriv
is suitable for all types of network devices and does not need much processing
requirements.

The results presented show the effectiveness and robustness of the proposed
obfuscation models in balancing performance and security. They ensure privacy
protection, and reduce data and bandwidth overhead at the same time. Our
models are well intended to both secure traffic and preserve the computational
requirements. They are appropriate for network devices with limited plans es-
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Table 5.3: Optimization Results of Facebook Source App using Analytical Solu-
tion

Source Bin Number Optimum Target App Optimum Length to mutate to
1 YouTube 54
2 Viber 50
3 Viber 100
4 Viber 50
5 Game 104
6 Viber 230
7 YouTube 154
8 Viber 250
9 YouTube 154

10 Game 104
11 YouTube 154
12 Viber 240
13 Viber 260
14 Viber 270
15 Viber 260
16 Viber 240
17 Viber 240
18 Viber 110
19 Viber 270
20 Viber 270
21 Viber 270
22 Viber 260
23 Viber 270
24 Viber 240
25 Viber 270
26 Viber 270
27 Viber 270
28 Viber 260
29 Viber 50
30 YouTube 54

pecially that they reduce overhead in terms of data and bandwidth. Another
advantage of these methods is that matrices mapping the mutation needed to
modify incoming length into optimal length can be realized offline. Accordingly,
our schemes can run in a dynamic online manner and the entire process induces
minimal latency. The mapping of packet lengths from a source app to the corre-
sponding optimal lengths in target app using OPriv presented in tables Table 5.10
to Table 5.15, and the obfuscation results in Table 5.16 are very compatible with
the same mapping in Table 5.2 to Table 5.7 and obfuscation results in Table 5.8
of using the analytical model. This would prove the solidarity of our analytical
model without the need to use of an optimization software. However, OPriv could
be more hands-on in terms of easiness to use an available commercial software.
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Table 5.4: Optimization results of Game Source App using Analytical Solution
Source Bin Number Optimum Target App Optimum Length to mutate to

1 Facebook 54
2 WhatsApp 154
3 Viber 210
4 YouTube 104
5 Viber 120
6 Viber 210
7 Viber 110
8 YouTube 154
9 YouTube 154

10 Viber 240
11 Viber 260
12 Viber 260
13 Viber 250
14 YouTube 154
15 Viber 260
16 Viber 260
17 Viber 270
18 Viber 260
19 Viber 260
20 Viber 260
21 Viber 270
22 Viber 270
23 Viber 260
24 YouTube 154
25 Viber 270
26 Viber 270
27 Viber 280
28 Viber 270
29 Viber 280
30 Facebook 54

5.5 Conclusion

Common techniques for defending against traffic analysis attacks, do not suffi-
ciently conceal user activities with reasonable data overhead. In this chapter,
we developed optimized models to prevent the adversary’s ability to precisely
distinguish genuine user activities. The optimum masking solutions shall shape
the packet flow so that full privacy at minimal overhead cost is guaranteed. For
this reason, we formulated network obfuscation of the traffic analysis attack as
a mathematical optimization problem. Then, we proposed an analytical solution
to solve the problem of selecting the optimal target app as well as the optimal
target packet length to mutate to. We also provided a practical solution Opriv
designed and deployed to yield for a constructive solution achieving maximum
obfuscation and minimum padding overhead. We demonstrated the effectiveness
and robustness of the proposed models both in theory and empirically by per-
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Table 5.5: Optimization Results of WhatsApp Source App using Analytical So-
lution

Source Bin Number Optimum Target App Optimum Length to mutate to
1 Facebook 54
2 Viber 73
3 Game 104
4 Viber 73
5 Viber 100
6 Viber 100
7 Viber 230
8 Viber 240
9 Viber 250

10 Viber 73
11 Viber 250
12 Viber 260
13 Viber 280
14 YouTube 154
15 Viber 270
16 Viber 300
17 Viber 120
18 Viber 270
19 Viber 592
20 Viber 592
21 Viber 592
22 Viber 592
23 Viber 592
24 Viber 270
25 Viber 290
26 Viber 290
27 Viber 270
28 YouTube 54

forming our defense models on real traffic traces. These 2 optimal approaches
outperform the other state-of-the-art defense solutions against traffic analysis.
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Table 5.6: Optimization Results of Viber Source App using Analytical Solution
Source Bin Number Optimum Target App Optimum Length to mutate to

1 Game 104
2 Game 104
3 Game 104
4 WhatsApp 884
5 Game 104
6 WhatsApp 408
7 Game 254
8 Game 104
9 Skype 53

10 Skype 53
11 Skype 53
12 Game 104
13 Game 104
14 Game 104
15 Game 104
16 Game 254
17 Game 204
18 Facebook 304
19 WhatsApp 408
20 Facebook 404
21 Game 554
22 WhatsApp 809
23 WhatsApp 1060
24 Skype 1253
25 WhatsApp 884
26 WhatsApp 884
27 WhatsApp 884
28 WhatsApp 884
29 WhatsApp 1060
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Table 5.7: Optimization Results of YouTube Source App using Analytical Solu-
tion

Source Bin Number Optimum Target App Optimum Length to mutate to
1 Facebook 54
2 Game 204
3 Viber 250
4 Viber 100
5 Game 104
6 Viber 100
7 Viber 230
8 Viber 120
9 Game 104

10 Viber 100
11 Viber 270
12 Viber 270
13 Viber 260
14 Viber 260
15 Viber 270
16 Viber 260
17 Viber 250
18 Viber 240
19 Viber 110
20 Viber 250
21 Viber 270
22 Viber 250
23 Viber 250
24 Game 204
25 Viber 270
26 Viber 260
27 Viber 270
28 Viber 290
29 Game 104
30 Facebook 54

Table 5.8: Results of Apps Mutation using Analytical Solution
Algorithm SVM BT KNN RF Overhead

Original % Accuracy 76.7 90 83.9 91.1 -
% Accuracy of Skype Mutated 41.93 53.48 42.68 41.24 4.28%

% Accuracy of Facebook Mutated 46.31 70.21 48.57 45.92 7.91%
% Accuracy of Game Mutated 0.24 0.001 1.89 1.76 0.73%

% Accuracy of WhatsApp Mutated 4.72 13.53 12.62 11.91 0.106%
% Accuracy of Viber Mutated 13.12 32.05 12.61 13.19 0.57%

% Accuracy of YouTube Mutated 15.26 6.09 16.77 14.99 0.93%

73



Table 5.9: f1-score of Apps Mutation using Analytical Solution
Algorithm SVM BT KNN RF

Skype Mutated 0.42 0.56 0.41 0.45
Facebook Mutated 0.41 0.68 0.52 0.44

Game Mutated 0.001 0 0.001 0.012
WhatsApp Mutated 0.03 0.01 0.02 0.02

Viber Mutated 0.02 0.03 0.01 0.01
YouTube Mutated 0.01 0.05 0.01 0.04

Table 5.10: Sample of length mapping of Skype App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

85 0.0086 54
103 0.0072 154
120 0.008 154
134 0.00623 154
145 0.004064 104
760 0.00031 804

1440 0.000431 1354

Table 5.11: Sample of length mapping of Facebook App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

66 0.33539 54
74 0.00487 104

122 0.00015 154
187 0.00030 205
384 0.000335 320
898 0.00014 854

1514 0.27281 1504

Table 5.12: Sample of length mapping of Game App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

74 0.01562 104
78 0.01908 154

102 0.00757 355
544 0.00286 704
363 0.00113 554
732 0.00105 804

1210 0.00186 1307
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Table 5.13: Sample of length mapping of WhatsApp App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

66 0.43874 104
74 0.01267 254

192 0.00694 154
292 0.00815 304
308 0.00724 355
914 0.00663 1057

1514 0.26705 1354

Table 5.14: Sample of length mapping of Viber App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

50 0.0628 154
63 0.04657 104
65 0.04173 304

150 0.02118 205
155 0.02219 254
160 0.02028 154
592 0.00119 654

Table 5.15: Sample of length mapping of YouTube App using OPriv
Original Length Original Length Probability Optimum Length to mutate to

66 0.33381 62
78 0.01202 104

500 0.00562 592
514 0.00668 240
548 0.00616 300

1484 0.01667 804
1514 0.43893 1354

Table 5.16: Results of apps mutation using OPriv
Algorithm SVM BT KNN RF Overhead

Original 76.7% 90% 83.9% 91.1% -
Skype 40.90% 51.21% 43.68% 40.92% 3.45 %

Facebook 42.2% 47.77% 47.54% 41.12% 4.41%
Game 0.85% 1.45% 1.83% 1.42% 0.17%

WhatsApp 11.25% 12.93% 10.8 % 10.83% 0.93%
Viber 13.2% 12.58% 11.74% 11.78% 0.84%

YouTube 8.97% 2.58% 8.49% 9.1% 1.58%

75



Chapter 6

Metrics to compare and enhance
obfuscation efficiency

Based on the results in previous chapters, we provided so far different obfuscation
systems realizing our goal to defend against Traffic Analysis attacks. Our em-
pirical obfuscation solutions were efficient in reducing the accuracy of classifiers.
However, the validation accuracy does not always imply best testing results. A
main issue for the robustness of those techniques is to check how much effort do
they require, and how much overhead do they induce. In this context, our aim
in this Chapter is to have a measure that reflects the model performance as a
function of the amount of overhead and secrecy realized. On the other hand,
there is an urge to explain the empirical results of obfuscation models by explor-
ing metrics that reflect their efficiency. What is needed is a criteria for selecting
tunable parameters to achieve best results of the obfuscation model. The con-
cept of measure function would help in explaining and predicting theoretically
the obfuscation results for a specific defense system.

6.1 Comparison Criteria and Methodology

To compare between two obfuscation methods for protecting against statistical
traffic analysis and to estimate the success of the proposed obfuscation scheme,
different aspects have to be considered:

• First, the impact on the classifier’s performance of the considered obfus-
cation method. This includes the performance characteristics of a network
flow that could be affected such as data and bandwidth overhead, delay,
throughput degradation, etc.

• Second, model robustness is key when comparing different obfuscation meth-
ods. The model robustness is related to its capability of protecting different
data types.
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• Third, the computational overhead comprehending the complexity created
by the obfuscated program in terms of resource requirements such as com-
pilation time, memory, and processing. The obfuscation process needs to
be lightweight, especially when applied in real-time processing mode.

• Fourth, the practicality and dynamicity. This measures how much handful
and easy to use is the algorithm.

6.1.1 Defense Evaluation

We propose in this subsection a measure to evaluate obfuscation techniques
against traffic analysis attacks. This measure would describe how good a certain
obfuscation model is and would compare between different defense systems. We
name it Obfuscation Effectiveness and we define it using 2 metrics: the attacker
confidence, and the data overhead.

The attacker confidence is defined as the estimated ratio of correct app infer-
ences to attempted app inferences, by an attacker, with no previous knowledge
if an obfuscation technique is already deployed. Lesser attacker confidence in-
dicates that the technique is more efficient at defending user privacy. With no
protection, attack confidence could reach 1.

Data overhead is the ratio of network data sent with and without a certain
obfuscation technique. For instance, a bandwidth overhead of 1.5 indicates that
applying the technique ends up with 1.5 times as much bytes traffic sent on
unprotected network traffic. This ratio is generally greater than 1. Of course, a
smaller data overhead is desirable because additional traffic leads to more network
congestion.

Eventually, the Obfuscation Effectiveness is the product of attacker confidence
and data overhead. Some obfuscation models have a fixed product, but others
are adjustable to users’ preferences for privacy versus data expenses.

We present in table Table 6.1, Obfuscation Effectiveness of Random For-
est classifier for some obfuscation algorithms suggested through our work. The
smaller is Obfuscation Effectiveness, the more the defense model has a good per-
formance in terms of secrecy realized and resulting data overhead.

6.2 Information Theory

Information entropy is a mathematical concept that measures how much infor-
mation there is in an event [165]. It was widely implemented in security systems
to detect traffic anomalies [166, 167], or for systems of DDoS defense [168]. Most
of these measures have never found any application in machine learning and net-
work obfuscation systems. We aim to provide a better understanding of the
implementation of entropy-based methods in obfuscation systems against traffic
analysis attacks.
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Table 6.1: Obfuscation effectiveness

Obfuscation Model Version
Obfuscation
Effectiveness

AdaptiveMutate
Packet length mutation (2nd
version)

0.369

AdaptiveMutate Inter-arrival time mutation 0.071
AdaptiveMutate Lengths and IAT mutation 0.084
Anonymization through prob-
abilistic distribution

First alg. (Mutation to Nor-
mal distribution of Skype)

0.087

Anonymization through prob-
abilistic distribution

First alg. (Mutation to Pois-
son distribution of Viber)

0.137

Anonymization through prob-
abilistic distribution

Second algorithm 0.16

Mutation To similar probabil-
ity distribution

- 0.002

Optimal Analytical Solution - 0.019
Opriv - 0.015

For instance, Shannon entropy and Kullback-Leibler divergence (also known
as information divergence or relative entropy) are the two most important quan-
tities in information theory and its applications. In the attempt to explain the
efficiency of our obfuscation systems, we present in what follows metrics of infor-
mation to test their performance namely: degree of traffic masking effectiveness,
Kullback-Leibler divergence, traffic divergence.

6.2.1 Degree of traffic masking effectiveness

Given a random variable X which takes values of the finite set of M values x1,
x2,. . . , xM and pi := P(X = xi) is the probability of occurrence of xi; hence, the
Shannon entropy is:

H = −
M∑
i=1

pilog(pi)

The conditional entropy of a variable Y given X of M values is defined by:

H(Y/X) =
M∑
i=1

p(X = i)H(Y/X = i)

Consider a traffic network and its set of p features X = X1, X2, . . . , Xp,
the degree of traffic masking effectiveness using a certain obfuscation algorithm
that mutates any of the p features, can be studied in terms of conditional entropy.
Most traffic analysis attacks use information derived from the sequences of packet
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lengths, and/or from interarrival times as input. This motivates our definition of
degree of traffic masking effectiveness to measure how much the adversary can
learn about a certain network application given the observed packet lengths or
gap times leaked by the traffic.

Let Φ be the set of packets that refer to a specific application, and let Ψ
the side information on Φ gained by the adversary by observing the encrypted
traffic. The degree of masking effectiveness is measured by the conditional en-
tropy H(Φ/Ψ) to denote how much information an adversary can learn about
the identification of a certain application given the observed traffic features. Ac-
cordingly, the smaller is H(Φ/Ψ), the more likely Φ is a function of Ψ. This
means that mutating or modifying any pattern of Ψ would sincerely affect the
identification of Φ. Moreover, a high H(Φ/Ψ) indicates that Φ is less dependent
on Ψ. Hence, no matter how much the obfuscation algorithm mutates Ψ, that
would not significantly affect the fingerprinting of Φ.

As a proof of concept, we study the degree of masking effectiveness H(Φ/Ψ)
for the apps in our dataset. We evaluate H(Φ/Ψ) for variables of side information
being packet lengths, and packet interarrival time IAT. We present the results in
Table 6.2.

Table 6.2: Degree of traffic masking effectiveness
HH

HHHHΦ
Ψ

Lengths IAT

Skype 0.3776 0.9336
Facebook 0.4374 0.7545

Game 0.1168 0.7530
WhatsApp 0.0451 0.3511

Viber 0.1862 0.6020
YouTube 0.2635 0.4362

According to Table 6.2, the values of H(Φ/Ψ) with Ψ=packet lengths, are
relatively low indicating a high dependency of our apps on their packet lengths.
In this case, any security algorithm that would mutate the lengths effectively,
would obfuscate the adversary knowledge of the exact application using traffic
analysis. The impact of mutation of lengths of Game, WhatsApp, Viber, YouTube
would be foreseen and tangible as H(Φ/Ψ) for those apps are relatively minor
in comparison to those of Skype and Facebook. This could explain results in
Table 5.16, where OPriv appeared to be less efficient in cases of Skype and
Facebook in comparison to the other apps.

The values of H(Φ/Ψ) with Ψ=packet IAT, are relatively high. This means
that in our case of traffic traces, the knowledge of the exact type of application
does not mainly depend on IATs. Any obfuscation algorithm that modifies the
IAT would be less effective in obscuring the application identity.
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This is proved by simulation of our previously proposed method in Chap-
ter 4, AdaptiveMutate, in which we mutate packet lengths, or inter-arrival time
information separately. Simulation results showed a significant efficiency of Adap-
tiveMutate when applied using lengths mutation. However, IAT mutation was
not efficient enough in reducing the classifier’s accuracy.

6.2.2 Kullback-Leibler divergence

We presented in Sections 4.1 and 4.2, algorithms that mutate a source app to
a target app in the aim to defend against network application fingerprinting
against traffic analysis. We used a trial-and-error process where we mutated
comprehensively using our algorithm each application to all the other apps in
order to decide on the best target app to mutate to. We will present instead
in this part the Kullback-Leibler divergence, a mathematical defined metric to
decide on which target app is best to mutate to.

Given two complete discrete probability distributions P=(p1, p2, . . . , pn), and
Q=(q1, q2, . . . , qn) where pi, qi ∈ [0,1] and

∑n
i=1 pi =

∑n
i=1 qi =1 . The Kullback-

Leibler divergence is a measure of divergence between P and Q. According to
[169], the Kullback-Leibler D(P || Q) is obtained using the formula:

D(P || Q) =
n∑

i=1

(pilog(
pi
qi

)

The Kullback-Leibler divergence can be used as a decision function to decide
on which network application in a dataset to mutate to. In our context of network
obfuscation assessment, we denote by P the probability distribution of a feature
in the source app, and by Q that of the destination app to mutate to. The
smaller D(P || Q) is, the closer the distributions P and Q are, and vice versa. A
better obfuscation efficiency would be realized in cases where Q is chosen in a way
such that D(P || Q) is large. Since more the source and destination app feature
probability distributions are different, the more there is changeable features of
the source app, and consequently would confuse it as the destination app by the
classifier. The changeable features make the accurate identification of network
application more difficult. Whereas, in case P and Q are similar, the mutation of
P would not change much its distribution making the confusion less significant.

Table 6.3 presents KL divergence for lengths probabilities of the different apps
and explains results of the obfuscation algorithms presented in Sections 4.1 and
4.2 where mutation to target apps with higher KL values of length probabilities
lead to better obfuscation results.

According to Table 6.4, KL divergence for IAT probabilities estimation of
the different apps are close to zero and therefore are very similar. Hence, there
is no changeable features in case of IAT mutation making the confusion of a
classifier less significant. This is proved in results of AdaptiveMutate when we try
to mutate IATs.
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Table 6.3: Kullback-Leibler divergence of packet lengths probabities
H
HHH

HHP
Q

Skype Facebook Game WhatsApp Viber YouTube

Skype 0 1.7775 2.5947 2.5188 2.2243 2.6258
Facebook 1.9620 0 4.2658 3.1426 4.2831 3.2296

Game 2.3262 4.1728 0 3.0878 2.3356 2.1204
WhatsApp 2.9386 3.1240 3.1057 0 3.8656 4.2221

Viber 2.6613 2.7377 3.6844 3.1471 0 2.3251
YouTube 2.6019 3.1697 2.1257 4.2374 2.8794 0

Table 6.4: Kullback-Leibler divergence of IAT probabilities
HHH

HHHP
Q

Skype Facebook Game WhatsApp Viber YouTube

Skype 0 0.0006 0.0002 0.0226 0.0655 0.0017
Facebook 0.0009 0 0.0018 0.0194 0.0617 0.0006

Game 0.0002 0.0009 0 0.0231 0.0665 0.0019
WhatsApp 0.0727 0.0512 0.0797 0 0.0500 0.0324

Viber 0.2863 0.2154 0.3529 0.073 0 0.1933
YouTube 0.0033 0.0011 0.0039 0.0158 0.0592 0

6.2.3 Traffic divergence

Traffic divergence TD(P || Q) between the original and mutated traffic could
be expressed in terms of Kullback-Leibler divergence. P denotes in this case the
probability distribution of a certain side information before mutation, and Q that
after mutation. Hence, TD(P || Q) measures to which extent a certain obfusca-
tion algorithm can modify the probability distribution of a side information of
an app traffic. TD reflects on the efficiency of the obfuscation algorithm, and on
the amount of overhead resulting from it. A high TD indicates a high change
of the probability distribution of the specified side information feature. If this
feature brings small degree of traffic masking (detailed in 6.2.1 of this section),
that would result in an efficient protection against traffic analysis. However, a
high traffic divergence could be reflected in a higher overhead. TD could be used
to compare between obfuscation algorithms. It gives an insight of how much the
algorithm causes modification and overhead. The finest obfuscation algorithm
is the one that mutates a side information with least degree of traffic masking
and results in least TD at the same time. Table 6.5 presents traffic divergence
between original traffic of our app dataset, and the mutated traffic using OPriv.
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Table 6.5: Length Traffic Divergence TD between original and mutated traffic
using OPriv

App Length TD
Skype 4.9948

Facebook 6.5112
Game 3.2843

WhatsApp 4.2030
Viber 3.8317

YouTube 4.8685

6.3 Conclusion

In this Chapter, we were able to come up with a metric that characterizes a
defense model as a function of the amount of overhead and protection realized.
Also, we provided novel metrics based on entropy to evaluate, for any obfuscation
system, the right choice of features to mutate, as well as the right choice of target
applications to mutate to. Our metrics based on concepts of information theory
are namely: degree of traffic masking effectiveness, Kullback-Leibler divergence,
traffic divergence. The information metrics presented in this research proved for
the first time the obfuscation results of our work and of other previous works. This
would give a significant understanding of obfuscation results for any thwarting
technique.
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Chapter 7

Conclusion

An increasing amount of research is centered nowadays on network traffic classi-
fication, since it can be convenient for the enforcement of management policies,
traffic filtering, and QoS support mechanisms. Mainly, techniques of classifica-
tion based on machine learning and statistical traffic analysis have been vali-
dated. These methods extract some features of the flows (e.g. packet lengths,
inter-arrival times, direction) and exploit it to conclude the class of application
or service running the traffic, among some potential alternatives. This type of
privacy violation is also threatening other supposedly end-to-end secure networks
such as web pages identification, and voice communication detection.

Security is a challenging concern and a key requirement for network design-
ers. With network applications, security implications are well pronounced since
the impact of attacks is drastic. This is mainly because those applications are
central to our life including a wide variety of them, from simple location aware-
ness to very critical healthcare uses. In fact, current implementations of network
applications still reveal traffic features out of encrypted traffic. These can be
exploited by machine learning techniques to obtain leakage on the information
carried compromising their anonymity and secrecy. Published studies to date
have not come up with an ideal solution to prevent such attacks. In this thesis,
we addressed the privacy protection of network communication against side in-
formation based inferential attacks. We aimed at investigating optimal methods
to secure a network traffic under the scrutiny of an adversary who uses statistical
traffic analysis. Our goal was to find an optimum masking that shapes the packet
flow, and sends it over the insecure network.

To do so, we started by defining the security model highlighting the threat,
and we evaluated empirically a method for the identification of mobile apps us-
ing traffic analysis. Our results provided tangible information to speculate the
accuracy of a powerful adversary, that is equipped to take over on a victim’s
encrypted traffic, and to de-anonymize the identify of the actual source app.
Then, we presented practical implementable methods for obfuscation. In this
context, we considered techniques such as mutation and morphing. Mutation
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aims at modifying the traffic characteristics in the aim of confusing the classi-
fier by padding and shaping the traffic. On the other hand, morphing aims at
imitating the traffic characteristics to make a flow look like another flow.

We presented 3 models as preliminary obfuscation techniques to mitigate the
problem. First, AdaptiveMutate,a generalized method that has 3 variations and
included mutating packet lengths, and/or inter-arrival time information. Next,
we proposed a confusion system based on the probabilistic distribution of packet
sizes and does not require another app’s model traffic. We regenerated an app
packet sizes from its best-fitted distribution model. Then, we mutated packet
lengths of a source app that we are trying to protect to regenerated packet sizes
of another target app. Also, we undertook this problem by defining a model that
mutates the packet lengths of an app to protect to those lengths from another
app having similar bin probability.

However, the proposed methods do not prevent adversarial attacks totally
and would create sometimes large overhead. And, thus an optimal obfuscation
system should account for such problems yielding a trade-off between privacy and
overhead/complexity of the masking algorithm. Also, it would offer a theoretical
proof on the amount of overhead necessary to achieve perfect secrecy. For this
reason, we defined a mathematical model for network obfuscation. We formulated
analytically the problem of selecting the target app and the length from the target
app to mutate to to optimize the anonymization accuracy while minimizing the
overhead. Then, we proposed two methods to solve it: an analytical solution, and
Opriv. These techniques outperform the other state-of the art defense solutions
against traffic analysis and ensure minor information leak.

Last but not least, we suggested quantitative metrics to compare the char-
acteristics and feasibility of an obfuscation strategy. In this aim, we relied on
information theory and entropy to propose new measures for our obfuscation
system’s resilience to traffic analysis attacks.

As a future work, we plan to devise a traffic morphing technique that con-
fuses a classifier of one class of traffic by making it look like another class. A
mathematical formulation of the morphing problem could be provided to obtain
an optimal solution. Moreover, we will focus on doing more measurements to
validate our defense models against traffic analysis attacks. For the sake of com-
prehensiveness and to obtain a better understanding of the defense mechanisms
effectiveness, we perhaps need to obtain more results from experiments and to
test our proposed techniques on different applications and types of traffic. Also,
we could test our defense mechanisms against different classifier models. Besides,
we plan to integrate and implement our designs in a general network architec-
ture. We firmly believe that our proposed solutions will have a huge impact on
the privacy of network communications.
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