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An Abstract of the Thesis of

Ashod Karkour Khederlarian for Master of Science
Major: Physics

Title: Morphological Study of Trichoplax Adhearens Using a Phase Field Model

Understanding the physics of free boundary dynamics and the kinetics of non-
equilibrium phase transformation was, and still is, essential to the advancement
of technology in terms of engineered materials. Even historically, said physics was
paramount during the industrial revolution because it facilitated the wide-scale
production of steel and other alloys. It did so because, at the critical points of
solidification and precipitation, dynamical free boundaries are formed, which are
often described by sharp interface models (e.g., the Stefan problem).

Despite current advances in computational physics, such models are difficult
to solve, even numerically. A more convenient model is a phase-field one, where
the interface is taken to be continuous rather than sharp. Mathematically, this
is achieved by introducing a field (order parameter), which assumes a constant
value in the bulk of each phase and varies continuously along the interface. One
then solves for this field, among others (temperature, strain, etc.), by writing
a free energy functional and minimizing it. The advantages this model provide
are illustrated in its application to the Grinfeld instability, where stress-induced
forces cause an instability at the interface between a uni-axially strained solid
and its melt. Naturally, this model is attractive when thinking about biological
systems because they can be thought of as materials with a free boundary and
elastic properties.

In this thesis, we propose to apply this model to study the dynamic morphol-
ogy of a peculiar little creature known as Trichoplax adhaerens (Placozoa). It
has a thin flat body composed of a few thousand cells of six types, and it moves
using cilia on its external surface. To do so, we numerically model its dynamics
as a 2D conserved phase field coupled to an elastic field and subject to a time de-
pendent external forcing. The behavior of an initial random surface is analyzed
for a linear and power-law decreasing dependence. This analysis is quantified
by introducing the structure factor S(q), defined as the Fourier transform of the

vi



height-height correlation function. Initial profiles of different Fourier modes are
also analyzed similarly. We find that the power-law dependence is much better
in mimicking the out-of-plane buckling observed in the creature. Lastly, we also
extend the model to 3D, but only briefly explore it due to time constraints.
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Chapter 1

Motivation

Moving boundary problems are abundant when studying dynamical systems
ranging from the biological to the physical. Often these problems are formulated
with partial differential equations (PDEs) alongside boundary conditions imposed
on an evolving interface (eg. the generalized Stefan problem [1]). Solving such
problems computationally can be quite challenging, mainly due to the need of
explicitly tracking the boundary.

The phase field method [2] offers an alternative approach by introducing a
new dynamical field φ which acts as a marker for different phases and which
varies continuously from one phase to the other. Having its origins in critical
phenomena [3], the term “phase” typically refers to the familiar notion of phases
in physics (e.g. a solid and its melt). However, specially in biological applications,
it should be understood in a much more broader sense 1. Typically, φ is coupled
to other fields, such as temperature, through a Ginzburg-Landau free energy, the
minimization of which results in a set of PDEs for the fields which can be solved
numerically, even in 3D [4].

The main appeal of the method stems from the fact that the boundary be-
tween the phases is tracked implicitly by the phase field itself, thus eliminating
the need for explicit boundary tracking. It has been successfully implemented on
a range of physical problems, such as dendrite growth, Grinfeld instability, and
spinodal decomposition [5–8], and a range of biological problems, such as cell mi-
gration, neural growth, and immune response [9–11]. Apart from this advantage,
the model is also favorable in some of the cases mentioned because of how easily
it incorporates surface tension as an energy cost for interfaces.

As mentioned above, besides the phase-field, there can be other fields which
greatly influence the morphological dynamics of materials and phase transforma-
tions, such as temperature and elasticity. One example of interest is Grinfeld
Instability, which refers to an instability at the surface of a uniaxially strained
solid in contact with its melt. In short, the instability is due to a feedback loop

1When modeling a cell, one phase can be ‘inside the cell’ and the other ‘outside the cell’.
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of stress-relief and groove formation. Valleys on the surface will be more stressed
than hills, which can be relieved via surface diffusion from valleys to hills, or
through phase change. These, in turn, cause valleys to grow further, increasing
the stress gradient and causing more diffusion/phase change. This phenomenon
has all the ingredients necessary for phase-field modeling, and indeed Muller and
Grant [6] have analyzed it using a phase-field coupled to an elastic field. Evi-
dently, similar effects due to elasticity are common in amorphous living creatures
with dynamic boundaries, suggesting some mapping with the Grinfeld problem.
However, the model suggested above can not immediately be applied on living
beings for 2 main reasons: 1) The dynamics of organisms is conserved2 2) any sort
of buckling instability is not really unstable in the sense of indefinite growth3.
We solve these issues by firstly modeling the phase field such that it is conserved,
and secondly by limiting the unstable growth through a time-dependent external
stress. The latter can be done in many ways; we explore the dynamics resulting
from a linear and power-law dependence.

The main motivation in doing so is the morphological dynamics of trichoplax
adhaerens, a flat multi-cellular organism in the phylum Placozoa [12]. Due to
a lack of sensory and muscle cells, it exhibits nearly random movements, which
result in some strange dynamics, namely out-of plane buckling and subsequent re-
laxation. We run numerical simulations in two and three dimensions, and recover
characteristic time and length scales of buckling and subsequent relaxation.

2Ultimately it is not really conserved because of eating food and using energy, but it definitely
is conserved within the time scales of modeling.

3In Grinfeld instability, a corrugation on the surface of a metal grows without bounds, as
long as it is far from the boundaries of the system.
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Chapter 2

Introduction

In this chapter, we start by laying the foundations and general notions upon
which discussions of out of equilibrium thermodynamics stand in section 2.1.
Then, in section 2.2, we move to a particular model of out of equilibrium dynam-
ics, which is the phase field model, starting with some historical background and
then providing examples of conserved and non-conserved dynamics. Afterwards,
we introduce the theory of elasticity in section 2.3. This is followed by section
2.4, where we formulate the Grinfeld instability problem before phase field mod-
eling, and show that it can also be formulated using a phase field coupled to an
elastic field. Finally, we end in section 2.5 with how all of this ties to the initial
motivation: Trichoplax adhaerens.

2.1 Out of Equilibrium Dynamics

Out of equilibrium systems are analyzed as coarse-grained systems, made up of
small mesoscopic counterparts which are assumed to be at local equilibrium1 [13].
Under this assumption, equilibrium thermodynamic variables such as entropy,
energy, and temperature can be used to define the system, given that they are
functions of time and position, and that common thermodynamic relations are
true only locally. These subsystems are not at equilibrium with each other, and so
the system as a whole is not in global equilibrium, allowing for fluxes of different
quantities between them. These fluxes in turn dictate the rates of change of the
quantities by the continuity equation

∂ci
∂t

= − ~∇ · ~Ji + ρ̇i, (2.1)

where ci is a scalar field (such as concentration), ~Ji is its flux, and ρ̇i is the rate
of production, which is zero if there are no sources or sinks. The fluxes are deter-

1the assumption of local equilibrium is based upon two characteristic time scales: the relax-
ation time of the mesoscopic subsystems, and the relaxation time of the system as a whole. If
the latter is much greater than the former, then the system is said to be in local equilibrium.
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mined by thermodynamic forces, which are generally gradients of thermodynamic
potentials2. Some well known examples are Fourier’s Law and Fick’s Law

~JQ = −K ~∇T, (2.2)

~Ji = −M ~∇µi, (2.3)

where T is the temperature that can be regarded as the potential for heat flow,
and µ is the chemical potential. It should be also noted that the potentials
themselves can be obtained through thermodynamic relations (e.g. µ = ∂F

∂N
).

It should be clear by now that fluxes and forces are explained through a phe-
nomenological theory expressing the intricate relations between different thermo-
dynamic conjugate variables [14]. As an example, take the conjugate pair con-
centration/chemical potential. The chemical potential is defined as the partial
derivative of the free energy with respect to concentration. In turn, the gradient
of this potential is the force that drives the flux of concentration. Finally, the
time evolution of concentration is proportional to this flux through equation 6.

The dynamics of order parameter fields (introduced below) are treated by
exact analogy. However, these fields can be either conserved or non conserved.

2.2 Phase-Field Model

2.2.1 Order Parameters

Historically, order parameters were first introduced by Lev Landau [15] to
explain second order phase transitions, where state variables such as energy (ob-
tained as first derivatives of the free energy) change continuously from one phase
to the other, while second derivatives (susceptibilities) change discontinuously.
The order parameter described a type of order in the system, for example mag-
netization in the context of paramagnetic-ferromagnetic phase transformation.
Landau treated the order parameter as a state variable itself, which takes on
one value in the bulk of one phase and another value in the bulk of the other
phase. Such a treatment permits one to express the thermodynamic potential of
the system as a function of the order parameter φ, among other state variables
depending on the chosen ensemble (e.g. temperature and volume)

F = F (V, T, φ). (2.4)

This potential can be expanded in a Taylor series around the transition point:

F (V, T, φ) = F0 + c1φ+ c2φ2 + c3φ3 +O(φ4), (2.5)

2This is analogous to classical mechanics, where the force on a particle in a potential is
proportional to the gradient of that potential. This ensures that the force which pushes on the
particle (causing a ’flux’) is such that at equilibrium the potential energy is minimized.
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where F0 is the potential at the transition point, and the coefficients of expansion
depend on temperature and volume. One can obtain the order parameter at
equilibrium by the condition

∂F

∂φ

∣∣∣∣
T,V

= 0. (2.6)

Such a model allows only the study of bulk thermodynamics, where phases
are assumed to be infinite in extent and uniform. For a more general analysis,
which takes into account the finiteness of the phase, multiple coexisting phases,
and even the interface separating them, the state variables are considered as
functions of position. Then, it is possible to define a free energy density, and the
free energy as an integral over space of this density

F =

∫
V

f(φ(~r), T (~r))d3~r. (2.7)

However, when studying dynamics out of equilibrium, and in particular coexisting
phases, such a functional can lead to unphysical systems composed of many
sharp boundaries separating many phases. That is because equation 4 does not
incorporate interfacial energy, which was later added by Cahn and Hilliard [16]
[17].

F =

∫
V

[
fbulk(φ(~r), T (~r)) +

1

2
|W0∇φ|2

]
d3~r. (2.8)

In the language of order parameters, interfaces take on the meaning of large
gradients in the parameter, and so adding this term acts as a penalty for them,
preventing instabilities solely by the fact that the system wants to reduce the free
energy. W0 is a parameter of units [J/m]

1
2 related to surface tension.

The order parameter itself can either be conserved or non-conserved, leading
to different dynamics labeled Model B and A, respectively.

2.2.2 Model B: Conserved Field

As discussed above, the dynamics of a conserved order parameter field (known
as model B in the literature [3]) can be obtained by first defining the chemical po-
tential as a variational derivative of the free energy, since the latter is a functional
of the order parameter (eq. 2.8)

µ =
δF [φ]

δφ
. (2.9)

The gradient of this potential gives the thermodynamic “force”, which generates
the flux:

~J = −M ~∇µ, (2.10)

5



where M is known as the mobility. The negative sign is there to ensure that fluxes
are directed from high potential to low potential. Finally, the rate of change of
the order parameter field is given by the continuity equation

∂φ

∂t
= −~∇ · ~J . (2.11)

It should be noted that this is only the flux due to thermodynamics, which
tries to minimize the free energy. Other kinetic terms should be added as other
fluxes, as is done in [10], where a neutrophil was modeled as a phase field chasing
a parasite. In that case, there are two fluxes entering equation 11. One is of
thermodynamic origin, and it is due to the neutrophil itself ( ~J1 = −M ~∇µ), and
the other is due to the fact that the neutrophil wants to chase the parasite with
a velocity V ( ~J2 = φ~V ) generated from chemical cues.

An example of model B dynamics is spinodal decomposition below a critical
temperature, where a mixture of two species separates into domains where only
one species is present. In this situation, the Landau free energy expansion takes
on the following form:

f(φ) = a(T ) +
a2(T )

2
φ2 +

a4(T )

4
φ4 +O(φ6), (2.12)

where the order parameter φ takes on the meaning of concentration of one
species relative to its initial homogeneous concentration, and the expansion is
done around the critical temperature, so T is actually T − Tc. Odd terms are
omitted because the free energy is symmetric in the two states corresponding
to the two species, e.g. f(φ) = f(−φ). a(T ) corresponds to the free energy at
the critical point (which does not matter because it vanishes when taking deriva-
tives), and a2(T ) along with a4(T ) determine the potential of φ, the minima of
which correspond to stable equilibrium states. Above the critical temperature,
T > Tc, a2(T ) > 0 and a4(T ) > 0, which corresponds to only a single minimum
at φ = 0. Below the critical temperature, T < Tc, a2(T ) < 0 and a4(T ) > 0,
which corresponds to two symmetric minima (figure 2.1).

(a) f(φ) = φ2

2 + φ4

4 . (b) f(φ) = −φ2

2 + φ4

4 .

Figure 2.1: The landau free energy expansion for a) T > Tc and b) T < Tc.

6



With this free energy density, the equation of motion for φ (eq. 2.11) becomes

∂φ

∂t
= M∇2(−W0∇2φ+ a2φ+ a4φ

3). (2.13)

For a2 = −1 and a4 = 1, an initial homogeneous configuration with 〈φ〉 = 0
becomes unstable. This can be simulated by initiating the phase-field as a random
variable on each grid point obtained from a Gaussian distribution of average zero
and standard deviation 0.001 (figure 2.2).

(a) The phase field at t = 0, where each
grid point is a random variable sampled
from a Gaussian of average 0 and stan-
dard deviation 0.001.

(b) The phase field at t = 3. Different
domains of φ = 1 and φ = −1 start
appearing.

(c) The phase field at t = 10. The
domains are well separated with clear
boundaries between them.

(d) The phase field at t = 40. The dif-
ferent domains keep growing and even-
tually connect. The dynamics here is
slower.

Figure 2.2: Spinodal decomposition of an initial mixture of two species. Here
the order parameter is the concentration of one species relative to the initial
homogeneous concentration. M = W0 = 1. Yellow corresponds to φ = 1 and
blue corresponds to φ = −1. Coarsening is clearly observed, albeit it slows down
with time.
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2.2.3 Model A: Nonconserved Field

For nonconserved fields (known as model A), one needs not to worry about
fluxes in order to ensure local conservation of the field. Therefore, the simplest
dynamics is due to the variational derivative itself, which is the force that drives
the dynamics towards equilibrium, given by:

∂φ

∂t
= −MδF [φ]

δφ
. (2.14)

This ensures that locally φ changes in such a manner as to reduce the overall free
energy, eventually reaching equilibrium, where the field doesn’t evolve anymore
since δF [φ]

δφ

∣∣
eq

= 0. An example of model A dynamics is magnetic domain growth

below a critical temperature, where a homogeneous state of zero average mag-
netization becomes unstable. In this case, the same free energy of equation 2.12
can be used, but now φ is the magnetization of the system, and the odd terms
are zero because the system is symmetric under a 180◦ rotation. The equation of
motion becomes

∂φ

∂t
= M(W0∇2φ− a2φ− a4φ

3). (2.15)

For a2 = −1 and a4 = 1, an initial homogeneous configuration with 〈φ〉 = 0
becomes unstable. This can be simulated by initiating the phase-field as a random
variable on each grid point obtained from a Gaussian distribution of average zero
and standard deviation 0.001 (figure 2.3).

Both models do not include effects due to stresses and strains, unless a relevant
term is added to the bulk free energy. Such a term, along with its implications
and meaning, is introduced in the next section.
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(a) The phase field at t = 0, where each
grid point is a random variable sampled
from a Gaussian of average 0 and stan-
dard deviation 0.001.

(b) The phase field at t = 3. Different
domains of φ = 1 and φ = −1 start
appearing.

(c) The phase field at t = 10. The
domains are well separated with clear
boundaries between them.

(d) The phase field at t = 40. The dif-
ferent domains keep growing and even-
tually connect. The dynamics here is
slower.

Figure 2.3: The evolution of an initial field of zero average magnetization with
seeds on a 200x200 grid with periodic boundary conditions. M = W0 = 1. Yellow
corresponds to φ = 1 and blue corresponds to φ = −1.

2.3 Elasticity

2.3.1 Deforming a Continuous Body

When a body is deformed, for whatever reason, all parts of the system get
displaced by a certain amount. The body is treated as a continuous medium,
with xi (i ranging from 1 to 3 in 3 dimensions) being the position of a point in
the body. Let the position of this same point be x′i after the deformation. It
follows by definition that the displacement of this point is given by a vector ~u
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with components:
ui = x′i − xi, (2.16)

which is called a displacement vector.
Now consider two points infinitesimally close to each other, separated by a

distance dl2 = dx2
1 + dx2

2 + dx2
3. After a deformation, the new separation along

each direction is dx′i = dxi + dui, and so the new distance between the points
becomes:

dl′2 = (dxi + dui)
2 = dl2 + 2

∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl, (2.17)

where the chain rule has been used for dui, and repeated indices are summed over
(Einstein summation convention). The second term can be equally written in a
symmetric form

(
∂ui
∂xk

+ ∂uk
∂xi

)
dxidxk, which leads to

dl′2 = dl2 + 2uikdxidxk, (2.18)

where uik is the strain tensor, defined as

uik =
1

2

( ∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
. (2.19)

Clearly, along with deformations arise internal forces that try to bring the
body back to equilibrium. The forces acting on a small portion of the body can
be written as the sum of forces acting on its counterparts,

∫
FidV , with Fi being

the ith component of the force per unit volume. However, it is clear from Newton’s
third law that the internal forces should cancel, so any non-zero contribution to
this integral must come from forces acting on this body from the outside, i.e.
forces acting on its surfaces. Therefore, the integral over the volume can be
written as an integral over the surface enclosing the volume if the integrand Fi is
the divergence of a second rank tensor, σik, which is called the stress tensor:∫

FidV =

∮
σikdfk =

∫
∂σik
∂xk

dV. (2.20)

2.3.2 Why is Stress a Tensor?

It is clear that strain is a tensor because displacement is a vector of three
components, with each component generally being a function of all coordinates.
First derivatives with respect to these coordinates results in nine elements that
define the strain tensor. However, the fact that stress is also a tensor is not that
straightforward.

The stress tensor, more formally known as the Cauchy stress tensor [18], is
used to indicate the state of stress at any point in a continuous body, e.g. what
are the forces per unit area acting on each point due to the rest of the body.
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Why are nine components needed to define this state? Why isn’t three enough?
The key to understand this is the fact that the stress tensor aims to identify the
forces acting on a point inside a body caused by other parts of the body.
Even though the net force acting on a point has three components, one needs
many more to specify which parts of the body are exerting which forces. For a
better understanding, consider figure 2.4.

Figure 2.4: Forces T ei acting on 3 sides of a cube. For each side, one needs 3
components to completely specify the force per unit area, which are labeled as
σij, where i is the index of the surface and j goes from 1 to 3, indicating the 3
components of the force T ei acting on surface i.

How many components are needed to indicate the state of stress of a cube of
volume V? If there are three forces T ei acting on three surfaces, then three com-
ponents are needed for each surface, totaling nine, and justifying the number of
elements in the stress tensor. However, this picture is misleading, because there
might be more forces acting on the remaining surfaces of the cube. So, in to-
tal, one needs to account for six forces acting on six different surfaces, requiring
6 × 3 = 18 components. So why doesn’t the stress tensor have 18 components?
Again, it has to do with the purpose of the stress tensor; it indicates the state
of stress at a point, not a volume. Therefore, to apply this picture for a point,
the limit V → 0 has to be taken, which makes the opposite surfaces of the cube
collapse onto one surface. Indeed, one can only define three orthogonal surfaces
passing through a point (figure 2.5).
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Figure 2.5: Only 3 orthogonal surfaces can be defined passing through point P.
These surfaces have directions determined by the unit vectors ei. On each surface,
a force T ei is exerted.

In this framework, the component σij is defined as:

σij = lim
dA→0

T
ej
i

dA
, (2.21)

which is the ratio of the ith component of the force acting on surface j to the area
of the surface, in the limit of vanishing area. To emphasize, one thinks of three
forces acting on a point in the sense that these forces result from different parts
of the body. The force T e3 is exerted by the parts of the body just above and
below point P , the force T e2 is exerted by the parts of the body just to the right
and left of P , etc. This can be related to the definition in equation 2.20 firstly
by noting that the i-th component of the net force acting on point P is:

Ti = T e1i + T e2i + T e3i , (2.22)

which is simply the statement that the net force acting on P is the sum of forces
acting from different parts of the body. The force per unit volume F (used in the
definition of stress in equation 2.20) can be easily obtained as

Fi =
dTi
dV

=
∂T e1i
∂x1dA

+
∂T e2i
∂x2dA

+
∂T e3i
∂x3dA

. (2.23)

In the limit of vanishing volume, this reduces to:

Fi =
∑
j

∂σij
∂xj

. (2.24)

At mechanical equilibrium, the net force on any point inside the body must
be zero:

Fi =
∑
j

∂σij
∂xj

= 0, (2.25)
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which can be solved (along with similar equations for the other components of
the force) to obtain the stress tensor, if the boundary conditions are specified,
which are simply given by the net forces being applied on the surface of the body.
If these forces do not result in a net torque on the system, then it can be shown
that the stress tensor will be symmetric (σij = σji).

2.3.3 The Thermodynamics of Deformation

Consider some deformed body, and suppose that the deformation is changed
in such a way that the displacement vector is changed by an infinitesimal amount
δui. The work done by the internal stresses in this change can be expressed as
the integral over the volume of force times displacement∫

δWdV =

∫
∂σik
∂xk

δuidV , (2.26)

which, after integrating by parts and setting the surface term to 0, leads to the
work done (per unit volume)

δW = −σikδuik, (2.27)

which can be used to find the infinitesimal change in the free energy per unit
volume 3

dF = −SdT + σikduik. (2.28)

This shows that the stress and strain tensors are conjugate thermodynamic vari-
ables (like entropy and temperature), related by

σik =
∂F

∂uik
. (2.29)

2.3.4 Hooke’s Law

In order to apply these formulae, the free energy as a function of these elastic
tensors must be known. For small displacements4, it can be expanded in a Taylor
series up to first non-vanishing terms (the linear term vanishes because σik =
∂F
∂uik

= 0 for an underformed body)

F = µ(uik −
1

3
δikull)

2 +
1

2
Ku2

ll, (2.30)

which is basically Hooke’s law in tensorial form. The first term is pure shear,
meaning that this term causes the body to change its shape while preserving its

3Starting from this equation and onwards, the letter F is used for the free energy, not to be
confused with the force in the previous section.

4also in this case, the second order terms in equation 2.19 are ignored.
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volume and so µ is called the shear modulus. The second term represents com-
pression, meaning that the body preserves its shape, while changing its volume,
and so K is called the modulus of compression. With this expression for the free
energy, the stress tensor is given by

σik = Kullδik + 2µ(uik −
1

3
δikull). (2.31)

Representing the elastic effects of a body through a free energy allows for the
incorporation of said effects in the Phase-Field model, which was first done to
explain the Grinfeld Instability.

2.4 Grinfeld Instability

2.4.1 Traditional Approach

Elastic effects can strongly influence the morphology of materials and conse-
quently influence material properties and phase transformations. An extensively
studied phenomenon that shows such influence is the surface instability of a uni-
axially strained solid in contact with its melt, known as Grinfeld instability [19].
A schematic diagram of a typical experimental setup is shown in figure 2.6.

Figure 2.6: A uniaxially stressed solid in contact with its melt. The surface of
the solid is corrugated.

Qualitatively speaking, the valleys on the surface will be more stressed than
the hills, which can be relieved through diffusion from valleys to hills and phase
transformation from solid to liquid. These, in turn, cause the grooves to grow
further, increasing the stress gradient and allowing for more diffusion. This feed-
back loop is the source of the instability. More precisely, there is a difference in
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chemical potential between the solid and its melt, given by:

∆µ =
1− ν2

2E
(σtt − σnn)2 + γκ̃, (2.32)

where σo is the external stress, ν is the Poisson ratio, E = 9κµ
µ+3κ

is Young’s modu-
lus, σtt and σnn are the stresses along the tangential and normal directions of the
surface, γ is the surface tension, and κ̃ is the curvature. This difference drives
mass transport by diffusion and condensation/evaporation, the latter being gov-
erned by an equation relating the growth of the surface to this chemical potential
difference

vn = −Γ∆µ, (2.33)

where vn is the growth velocity of the surface (normal to itself) and Γ is a kinetic
coefficient. It is possible to rewrite this equation in terms of the profile of the
surface h(x)

∂h

∂t
= Γ

1√
1 + h2

[
γκ̃+

1− ν2

2E
(σtt − σnn)2

]
. (2.34)

On the other hand, if the transport is surface diffusion, then the equation gov-
erning it stems from a continuity equation

vn = −∇sjs = −∇s(−D∇sµ) = D∇2µ. (2.35)

Or, in terms of the surface profile

∂h

∂t
= D

1√
1 + h2

∂2µ

∂s2
. (2.36)

For a given surface profile, it is possible (in essence) to obtain the stress tensor
as a function of this profile by imposing mechanical equilibrium:

∂σij
∂xj

= 0, (2.37)

along with the boundary conditions σijnj=0 (no mechanical force normal to the
surface because the solid and its melt are at equilibrium), and the conditions for
uniaxial strain: as z →∞, σzz = 0 and σxx = σo.

If the surface profile is initially h = hosin(qx), with a small amplitude, then
it is possible to do a linear stability analysis and see the behavior at short times.
Such an analysis results in two dynamic equations for the profile obtained from
equations 2.34, 2.36, and 2.37

∂h

∂t
= −Γ

[
γq2 − 2

1− ν2

E
σ2
oq
]
h, (2.38)

∂h

∂t
= −Γ

[
γq4 − 2

1− ν2

E
σ2
oq

3
]
h, (2.39)
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both of which show the existence of a critical wavenumber qc = 21−ν2
E

σ2
o

γ
below

which the profile is unstable, and above which it is stable. Therefore, there is a
range of wavelengths [0, qc] which are unstable due to the external stress.

This problem contains all the ingredients necessary to model it as a phase-field
coupled to an elastic field, which is described below.

2.4.2 Phase Field Modeling

Another way of modeling this instability is through the phase field model [6].
As previously mentioned, the phase field model is a convenient way to simulate
free-boundary problems, however it does not inherently contain elastic effects
besides surface tension. This issue is resolved by defining an elastic field uij and
coupling it to the phase field through a free energy:

F (φ, uij) =

∫ [
ft(φ, uij) +

l2

2
|∇φ|2

]
, (2.40)

where ft is the bulk free energy density, given by

ft(φ, uij) =
1

a
φ2(φ2 − 1)2 +

ε2

2κ
g2(φ) + εg(φ)~∇.~u+ fel(φ, uij). (2.41)

The first term is the potential well of the phase field, the second term is a shift in
the reference energy due to the fact that the strain reference is that of a uniaxially
strained solid (with g(φ) = φ2/2− φ4/4), the third term is a coupling term, and
finally the forth term is the elastic contribution to the free energy:

fel(φ, uij) =
κ

2
(~∇.~u)2 + g(φ)µ

∑
ij

(uij −
δij
d
~∇.~u)2. (2.42)

By definition, the stress tensor is given by

σmn =
δF

δumn
, (2.43)

where indices m and n have been used in order to avoid confusion with the dummy
indices found in the free energy itself. The terms contributing to this variational
derivative are those containing ~∇.~u and the one proportional to µ. First, to vary
with respect to umn it is best to separate these terms in the following manner:

εg(φ)~∇.~u = εg(φ)
∑
i

uii = εg(φ)
∑
ij

uijδij

= εg(φ)
[
umnδmn +

∑
i 6=m,j 6=n

uijδij
]
,

(2.44)

16



κ

2
(~∇.~u)2 =

κ

2

[∑
i

uii

]2

=
κ

2

[∑
ij

uijδij

]2

=
κ

2

[
umnδmn +

∑
i 6=m,j 6=n

uijδij
]2

=
κ

2

[
(umnδmn)2 + (

∑
i 6=m,j 6=n

uijδij
)2

+ 2umnδmn
∑

i 6=m,j 6=n

uijδij],

(2.45)

g(φ)µ
∑
ij

(
uij −

δij
d
~∇.~u
)2

= g(φ)µ
∑
ij

(
uij −

δij
d
umnδmn −

δij
d

∑
ij 6=mn

uijδij
)2

= g(φ)µ
(
umn −

δmn
d
umnδmn −

δmn
d

∑
ij 6=mn

uijδij
)2

+ g(φ)µ
∑
ij 6=mn

(
uij −

δij
d
umnδmn −

δij
d

∑
ij 6=mn

uijδij
)2
.

(2.46)

Now the variation becomes straightforward:

δ
(
εg(φ)~∇.~u

)
= εg(φ)δmn δumn , (2.47)

δ[
κ

2
(~∇.~u)2] =

κ

2
(2umnδmnumnδmn + 2δmnδumn

∑
i 6=m,j 6=n

uijδij)

= (κ~∇.~u)δmnδumn,

(2.48)

δ

[
g(φ)µ

∑
ij

(
uij −

δij
d
~∇.~u
)2
]

= 2g(φ)µ
(
umn −

δmn
d

∑
ij

uijδij
)
(δumn −

δmn
d
δumnδmn)

+ 2g(φ)µ
∑
ij 6=mn

(
uij −

δij
d

∑
ij

uijδij
)
(−δij

d
δumnδmn)

= 2g(φ)µ
(
umn −

δmn
d
~∇.~u)δumn,

(2.49)

which finally results in (after changing the dummy indices mn to ij)

σij = (εg(φ) + κ~∇.~u)δij + 2µg(φ)
[
uij −

δij
d
~∇.~u
]
. (2.50)

The equilibrium equation for the elastic field is:∑
j

∂σij
∂xj

= ε
∂g(φ(r))

∂xi
+ κ

∑
j

∂

∂xi

∂uj
∂xj

+ 2µ
∑
j

∂

∂xj
g(φ)

[
uij −

δij
d
~∇.~u
]

= 0.

(2.51)
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This equation is solved perturbatively in µ/κ. The zeroth order term, after
multiplying it by

∑
i
∂
∂xi

, gives:

ε∇2g(φ) + κ
∑
ij

∂

∂xi

∂

∂xj

∂uj
∂xi

= 0. (2.52)

The solution of which is a trick first introduced by Onuki [20]:

∂uj
∂xi

= − ε
κ

∂dj
∂xi

, (2.53)

with the vector d defined by:

∇2dj =
∂g

∂xj
or dj = ∇−2 ∂g

∂xj
, (2.54)

where ∇−2 is the inverse Laplacian. This allows for the rewriting of equation 34
as a Poisson equation:

∇2 ∂ui
∂xj

= − ε
κ
∇i∇jg. (2.55)

The right hand side is symmetric in i and j, and so uij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) = ∂ui
∂xj

.

Expanding the trace of the strain as a function of µ/κ, ~∇.~u = fo + µ
κ
f1...

5,
and replacing it in equation 2.51 (while again multiplying by

∑
i
∂
∂xi

) gives the
equation first order in µ/κ:

∇2f1 = −2
∑
ij

∂

∂xi

∂

∂xj

[
g(uij +

δij
d

ε

κ
g)

]
. (2.56)

Finally the equation for the phase field is given by ∂φ
∂t

= −Γ δF
δφ

, which can be

cast into dimensionless form by rescaling x→ x/λ, where λ is some characteristic
length scale, such as the wavelength of the perturbation, t → tΓ/λ2, β = λ2/a,
ε′ = l

√
a/λ, c = µaε2/κ2:

∂φ

∂t
= −β

[
(1− φ)(2φ− 4φ2)− ε′2∇2φ+ cg′(φ)h(φ)

]
, (2.57)

with

h(φ) = [f1 +
∑
ij

(uij +
δij
d
g)2]. (2.58)

Numerically, equation 2.55 is solved first by the relaxation method, the solution is
then used to solve equation 2.56 again by the relaxation method, and finally both
solutions are used to solve equation 2.57 using Euler’s Method. Throughout, due

5f0 = uxx + uyy is easily obtained from equation 2.55 as − ε
κg.
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to the rapidly varying functions involved, the isotropic Laplacian was used [2].
Numerical details can be found in appendix A.

As it stands, this model is not appropriate for modeling biological creatures,
due to the two main reasons mentioned in the introduction: 1) Biological crea-
tures should be modeled by a conservative phase-field (at least within the time
frame of interest), and 2) The instability should not grow indefinitely; it should
be limited. The motivation behind these adjustments is obtained from a peculiar
little creature known as Trichoplax adhaerens.

2.5 Trichoplax Adhaerens

Trichoplax Adhaerens is a flat multi cellular creature in the phylum Placozoa,
which lacks any organs or internal structure. Lacking sensory and muscle cells, it
moves using cilia on its external surface, which are leg-like organelles that more or
less fire randomly and independently, with the occasional coordinated motion in
the presence of food [12]. This results in some peculiar morphological dynamics,
buckling being of particular interest; when close sections of the creature move
towards each other, one can observe buckling on the surface, akin to pinching
one’s skin. We propose that this is due to a build up of stress in the creature
that is released in the form of an instability similar to Grinfeld’s instability (see
figure 2.7).

Figure 2.7: The buckling at the surface can be explained by the fact that opposite
moving parts of the creature impose a stress between them that results in an
instability resembling Grinfeld’s Instability.

Therefore, it is possible to model this instability using a phase-field coupled
to an elastic field, where the phase-field’s two minima have the meaning of “cell”
(φ = 1) and “outside of cell” (φ = 0). Of course, with such an understanding, no
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phase transformation can occur, which implies that the dynamics is conservative:

∂φ

∂t
= β∇2

(δF
δφ

)
, (2.59)

where F is the free energy used for Grinfeld’s instability, so:

δF

δφ
= (1− φ)(2φ− 4φ2)− ε′2∇2φ+ cg′(φ)h(φ). (2.60)

To limit the growth of the instability, we consider the parameter c, which
is related to the external forcing, to be dependent on time, c = c(t). Actually,
it should be decreasing with time, i.e. the external stress should be decreasing.
This will limit the growth in different ways, depending on the actual form of the
function. We study linear and power-law decay.
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Chapter 3

Methods and Results

3.1 Grinfeld Instability Results

As a check for our algorithm, we reproduce results found in [6]. We apply
equation 2.57 for a system with parameters δx = 0.01, δt = 0.05, β = 1, ε = 0.01,
Lx = Ly = 256 (in units of δx), and c = 6.2. First we set up a corrugation at
position y = 0.73Ly, of the form h(x) = (0.02Ly) cos(qx), with q = 3 2π

δxLy
. The

boundary conditions are periodic in the horizontal direction and no-flux in the
vertical direction. We observe a growing instability, shown in the figures below

(a) The only non-zero component of
the strain tensor, uyy. In the bulk
of the solid (lowest point along the
y-direction), it is equal to −g(φ) =
−0.25, meaning the solid is uniaxially
strained along the y-direction.

(b) The only non-zero component of
the stress tensor, σxx. In the bulk
of the solid (lowest point along the
y-direction), it is equal to g(φ)/2 =
0.125. It is also clear that valleys in
the profile are more stressed than hills.

Figure 3.1: The stress and strain fields with parameters Lx = Ly = 256, c = 6.2,
and ε = 0.01 for the initial profile h(x) = (0.02Ly) cos(qx).
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(a) The phase field at t = 0, which
shows the initial surface profile h(x) =
(0.02Ly) cos(qx).

(b) The phase field at t = 20. The am-
plitude of the profile grows and grooves
begin to form.

(c) The phase field at t = 70. The
grooves have gotten deeper due to the
instability.

(d) The phase field at t = 100. The
simulation stops before the grooves
reach the boundary.

Figure 3.2: The evolution of the phase field with parameters Lx = Ly = 256,
c = 6.2, and ε = 0.01.

For a more quantitative check, it is possible to do a numerical linear stability
analysis for different Fourier modes and see how they evolve for small times.
In [6] it was found that modes grow independently and exponentially, obeying
exp(w(q)t), with w(q) given by the dispersion relation

w(q) = Aq −Bq2 (3.1)

with A ≈ 28.2 and B ≈ 1. We found a very similar result, with A ≈ 42 and
B ≈ 1.4, shown in figure 3.3
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Figure 3.3: Dispersion relation obtained numerically for short times. The inset
shows w/q vs q. The system has parameters Lx = Ly = 256, c = 6.2, and
ε = 0.01.

There is some discrepancy which can be attributed to the fact that different
modes quickly start interacting with each other, making a numerical stability
analysis quite difficult. To accurately obtain the dependence of the amplitudes
as a function of time, one needs to fine-tune different parameters and see for how
long modes grow independently, in order to get a proper exponential dependence,
and from it obtain the dispersion relation.

3.2 Extracting Data From Video

The motivation behind the suggested model is mainly due to a video of Placo-
zoa captured in its center of mass frame of reference. With no food source nearby,
the creature just moves randomly in all directions, stretching and contracting in
many different ways. Sometimes, due to this random motion, it is observed that
small parts buckle out of plane, as if to relieve stress. Some snapshots from the
video are shown in figure 3.4.

From these snapshots, it is possible to obtain an actual phase field using any
image processing tool. The phase field is defined as φ = 1 if the intensity of a
pixel is greater than zero, and φ = 0 if the intensity is zero (an example is shown
in figure 3.6). This phase field can be used to obtain the position of the center of
mass of the creature at all times, along with the area A defined as the total sum
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of the field:

A =
∑
i

∑
j

φ(i, j), (3.2)

Xcm =

∑
i iφ(i, j)

A
, (3.3)

Y cm =

∑
j jφ(i, j)

A
. (3.4)

These can be plotted as a function of time to get some idea of the motion of the
creature along with the magnitude of its fluctuations. These plots are shown in
figure 3.5.

(a) A snapshot from the video (frame
1840).

(b) A snapshot from the video (frame
1895). The creature looks more circu-
lar. Also, two instances of out-of-plane
behavior are observed.

(c) A snapshot from the video (frame
1915). The small buckled part on the
left side has relaxed, whereas the other
one is still out-of-plane.

(d) A snapshot from the video (frame
1960). More random motion. The re-
maining out-of-plane buckling is still
sustained.

Figure 3.4: Some snapshots from the video of the creature. They show random
motion in all directions and out of plane buckling.
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(a) The position of the center of mass
along the horizontal direction as a func-
tion of time. As expected, it barely
moves at all because the video was cap-
tured in the center of mass frame.

(b) The position of the center of mass
along the vertical direction as a func-
tion of time. As expected, it barely
moves at all because the video was cap-
tured in the center of mass frame.

(c) The area of the creature as a func-
tion of time. It fluctuates about 5-10%
around the average due to random mo-
tion, most of which is in-plane stretch-
ing and deformation, but some of which
is caused by out-of-plane buckling.

Figure 3.5: The position of the center of mass as a function of time (a and b),
along with the area as a function of time (c).

As expected, the center of mass barely moves at all due to the fact that the
videos were captured in the center of mass frame. Also, the area of the creature
fluctuates about 5-10% around the mean value, because of random motion, most
of which is in-plane stretching and deformation, but some of which is caused by
out-of-plane buckling.

25



Figure 3.6: A phase field obtained from one frame. Yellow is φ = 1, which
corresponds to pixels in the frame that have a non-zero intensity. Dark blue is
φ = 0, which corresponds to pixels that have zero intensity.

3.3 Conserved Field With Time-Varying Exter-

nal Forcing

We now move to the analysis of a conserved phase-field with a time-varying
external stress. The conserved dynamics is governed by the equation:

∂φ

∂t
= ∇2[(1− φ)(2φ− 4φ2)− ε′2∇2φ+ cg′(φ)h(φ)], (3.5)

and the time-varying external forcing is applied through the parameter c = c(t).
Two types of functions are studied: linearly decreasing and power-law decay.

3.3.1 Linear Time Dependence

First the external forcing is decreased linearly as a function of time, starting
with an initial value c0 = 8 and α = 0.1, 0.2:

c(t) = −αt+ c0. (3.6)

If c reaches zero, it stays zero for the rest of the simulation. The evolution of the
phase field for α = 0.1 is shown in figure 3.7.
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(a) The phase field at t = 0, which
shows a random initial configuration
produced by random seeds near the in-
terface.

(b) The phase field at t = 10. A rough
interface is formed.

(c) The phase field at t = 50. The in-
terface has grown slightly, and at this
point c = 3.

(d) The phase field at t = 200. The
interface flattens out. c reached zero at
t = 80.

Figure 3.7: Evolution of the phase field with parameters Lx = Ly = 200,
c = −0.1t+ 8, and ε = ∆x = 0.3.

Quantitatively, the evolution of the interface can be tracked by obtaining the
structure factor S(q, t) at each time step, which is defined as the Fourier transform
of the height-height correlation function:

H(x′) = 〈[h(x+ x′)− h(x)]2〉x. (3.7)

Details of how the structure factor is obtained is given in appendix B. The time
evolution of the structure factor is shown in figure 3.8. The initial random seeds
quickly form a rough interface with a dominant wavenumber q ≈ 0.9. It grows
fast and reaches a peak at about t ≈ 50, after which it starts decaying and flattens
out at about t ≈ 100.
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Figure 3.8: The evolution of the structure factor for an initial random surface
and c = −0.1t+ 8.

For a better understanding, we analyze individual Fourier modes by starting
with the interface h = h0sin(qx) and tracking the amplitude of that mode as
a function of time. The results are shown in figure 3.9 for several modes, with
wavenumbers qn = n 2π

∆xLx
= n(0.1047), up to n = 7.

Figure 3.9: Tracking the amplitudes of different Fourier modes for c = −0.1t +
8. The first 2 modes, blue and orange, barely grow and take a very long time
to decay. This explains why the surface takes a very long time to flatten out
completely. Higher modes grow rapidly and reach a peak at roughly the same
time tpeak ≈ 50.
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Figure 3.10: The width, defined as root mean squared deviation from the peak
position, for different wavenumbers. It defines a natural timescale for the system.
α = −0.1.

The first two modes barely grow and take a very long time to decay, whereas
higher modes grow rapidly and reach a peak at roughly the same time of tpeak ≈
50. The mode that we start off with stays the dominant mode throughout the
simulation (it always has a much larger amplitude than the rest), which means
that the profile is not coarsening. It is also interesting to note that the width of
the curves, defined as root mean squared deviation from the position of the peak,
depends on q as w(q) ≈ 14.3q−2.1±0.2. This is shown in figure 3.10. The widths
for the first two wavenumbers could not be extracted because of the length of
time required to reach a flat surface. Indeed, one can get sense of this time scale
by using the fit for w(q). For example, this gives w(0.2) = 462, which means that
one has to reach t ≈ 2000 (about 4w) in order to flatten out the profile starting
with wavenumber q = 0.2.

It is clear from the above discussion that the width of each curve defines a
natural time scale for the system starting out with a given wavenumber. The
same analysis but for α = −0.2 leads to w(q) ≈ 9.46q−2.3±0.1, which means that
for a larger (negative) slope, the time scales are shorter. Indeed, for α = −0.2, c
decreases more rapidly and reaches zero at t = 40. Also, for this slope, tpeak ≈ 20.

3.3.2 Power-Law Dependence

A more interesting time-dependence for the parameter c is a power law:

c(t) = c0(t+ 1)−α, (3.8)
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where c0 is the initial value of c, and α is the characteristic exponent of decay. The
motivation behind this approach is to find a functional dependence on time such
that an initial random profile will grow up to a certain amplitude and then stop
growing, resembling a “steady state”, at least within a small (but not too small)
time interval. A linearly decreasing parameter did not achieve this, because the
growth and decay happened quickly. The first trial was done for c0 = 8 and
α = 0.25, which leads quickly to a near-flat interface (figure 3.11).

(a) The phase field at t = 0, which
shows a random initial configuration
produced by random seeds between the
two phases.

(b) The phase field at t = 50. A rough
interface is formed.

(c) The phase field at t = 200. The in-
terface has neither flattened nor grown.
However, the amplitude is very small,
and complete flattening takes a lot of
time due to conservative dynamics.

(d) The phase field at t = 6000. The
interface is still not completely flat, but
is less rough than at t = 50. The dom-
inant wavenumber has decreased.

Figure 3.11: Evolution of the phase field with parameters Lx = Ly = 200,
c = 8(t+ 1)−0.25, and ε = ∆x = 0.3.

Quantitatively, the evolution can be tracked by again following the structure
factor S(q) shown in figure 3.12.
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Figure 3.12: The evolution of an initial random configuration with
c(t) = 8(t+ 1)−0.25 as seen through the structure factor.

Initially, at t = 10, there are many wavenumbers with low amplitudes (black).
With time, the surface coarsens, and less wavenumbers contribute with larger
amplitudes. Eventually, starting t ≈ 15000, the dominant wavenumber is the
lowest one, and it has a relatively large amplitude (green). At even larger times,
the first wavenumber remains the dominant one, however its amplitude decreases
very slowly (magenta). It is clear that, if ran long enough, the profile will become
flat.

Again, for a better understanding, we analyze individual Fourier modes by
starting with the interface h = h0sin(qx) and tracking the amplitude of that
mode as a function of time. The results are shown in figure 3.13 for several
modes, with wavenumbers qn = n(0.1047), up to n = 7. The first mode (blue)
grows very slowly. The second mode (orange) grows much faster and reaches a
peak before decaying. The simulation is not long enough for it to flatten out.
The rest of the modes grow fast, reach a peak, and decay slower than the speed
with which they grew, eventually turning flat. It should be noted that the peaks
for different modes have different heights, and are reached at different times.
Also, the fact that the first mode grows very slowly explains why it is the only
one surviving in the structure factor at long times in figure 3.12 (by the time it
reaches its peak, all the other modes have decayed to zero). Lastly, it looks as
if the shapes of the curves for different wavenumbers look similar, suggesting a
universal function on which they should collapse after rescaling. Indeed, rescaling
the time axis by t−tp

w
, where tp is the position of the peak and w is the root mean

squared deviation from that position, along with rescaling the vertical axis by y
yp

results in a descent, although not perfect, collapse, shown in figure 3.14.
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Figure 3.13: Tracking the amplitudes of different Fourier modes for
c = 8(t + 1)−0.25. The first mode (blue) grows very slowly. The second mode
(orange) grows much faster and reaches a peak before decaying. The rest of the
modes grow fast, reach a peak, and decay slower than the speed with which they
grew, eventually turning flat.

Figure 3.14: Scaled graph of different Fourier modes. The decay-part collapses
near perfectly on a Gaussian centered around zero with standard deviation σ =
1.155.

Next, we study the effect of changing c0 for the given exponent α = 0.25.
Needless to say, the behavior of the profile is roughly the same, but with even
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less growth because of a smaller c. The best way to see the quantitative difference
is to also track the Fourier modes, and plot the peak height yp, peak position tp,
and curve width w as a function of q for c0 = 6, 8. The results are shown in figure
3.15.

(a) Peak heights as a function of
wavenumber for c0 = 8 (orange) and
c0 = 6 (red). The fits are power-laws of
the form yp = 1.22q−1.21±0.01 for c0 = 8
and yp = 1.1q−0.34±0.01 for c0 = 6.

(b) Peak positions as a function of
wavenumber for c0 = 8 (orange) and
c0 = 6 (red). The fits are power-laws
of the form tp = 0.6q−4.5±0.2 for c0 = 8
and yp = 0.135q−4.40±0.02 for c0 = 6.

(c) Widths as a function of wavenum-
ber for c0 = 8 (orange) and c0 = 6
(red). The fits are power-laws of the
form yp = 2q−3.50±0.03 for c0 = 8 and
yp = 1q−3.60±0.01 for c0 = 6.

Figure 3.15: Comparing peak position, peak height, and width of curve for c0 =
6, 8 as a function of wavenumber.

The net result is that reducing c0 to 6 results in qualitatively similar behavior,
but with smaller time and length scales. It is interesting to note that yp, tp, and
w all exhibit power-law dependence on wavenumber, and the exponents for the
widths and peak positions are roughly the same for the different c0’s.

Now, we study c0 = 8 and α = 0.15. It is expected that an initial random

33



profile will grow much more than the previous cases. Indeed, the evolution is
shown in figure 3.16. The growth of the profile is much faster than desired, and
the reason for this becomes clear when different Fourier modes are analyzed. It is
observed that, for q = 6q1 and q = 7q1, the initial wavenumber does not remain
the dominant one; the profile coarsens well before the growth stops (figure 3.17).
This means that for an initial random profile, large wavenumbers will, in a sense,
boost the growth of smaller ones due to fast coarsening, which will lead to a
speedy growth of smaller wavenumbers, and eventually the smallest wavenumber
q = q1 will dominate, as seen in figure 3.16d.

(a) The phase field at t = 10. A rough
interface has formed composed of many
wavenumbers.

(b) The phase field at t = 200. Grooves
begin to form.

(c) The phase field at t = 700. The
interface starts to coarsen as grooves
become deeper.

(d) The phase field at t = 2000. A
dominant groove has appeared which
reaches the boundary of the system.

Figure 3.16: Evolution of the phase field with parameters Lx = Ly = 200,
c = 8(t+ 1)−0.15, and ε = ∆x = 0.3.
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(a) The phase field at t = 0. The profile
is h = 0.01cos(q7x).

(b) The phase field at t = 200. The ini-
tial profile has grown and grooves have
formed.

(c) The phase field at t = 1000. Differ-
ent grooves combine together to form
larger grooves and an overall profile of
a smaller dominant wavenumber. This
is coarsening.

(d) The phase field at t = 3000.
The new dominant Fourier mode keeps
growing while the remaining ones
shrink.

Figure 3.17: Evolution of the phase field with parameters Lx = Ly = 200,
c = 8(t + 1)−0.15, ε = ∆x = 0.3, and initial profile h = 0.01cos(q7x). Coarsening
is observed; the initial wavenumber of the profile does not stay the dominant one
at longer times.

So far, an analysis of exponents α = 0.15, 0.25 have shown that one is too
large, and the other too small. Therefore, it is natural now to study α = 0.2,
with c0 = 8. This also fails to provide a “steady state”, but it is much better
than α = 0.15. The evolution of an initial random profile is shown in figure 3.18.
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(a) The phase field at t = 10. A rough
interface has formed.

(b) The phase field at t = 500. The ini-
tial profile has grown and grooves have
formed.

(c) The phase field at t = 1500. The
profile has coarsened. The dominant
wavenumber is clearly q2.

(d) The phase field at t = 10000.
The profile is still coarsening, but very
slowly. The dominant wavenumber is
q1. By this time, the deepest groove
has reached the boundary of the box.

Figure 3.18: Evolution of the phase field with parameters Lx = Ly = 200,
c = 8(t+1)−0.2, ε = ∆x = 0.3, and initial random profile. Coarsening is observed,
but it is slow.

It is clear that the evolution is closer to the desired “steady-state” regime, but
the initial large value of c has caused the deepest groove to reach the boundary
of the simulation before the onset of this regime. Therefore, all that is required is
a qualitatively similar behavior, but with a shorter time scale and smaller length
scale. As discussed above, this can be achieved by changing c0 to a smaller value.
Indeed, the evolution of the phase field for c(t) = 6(t+1)−0.2 is shown in in figure
3.19.

Again, for a more quantitative analysis, it is possible to follow the structure
factor, shown in figure 3.20. The initial random configuration coarsens until
the first wavenumber is left as the dominant one at t ≈ 2000. Afterwards, the
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evolution is just a slow growth, resembling a “steady state” within a small time
interval.

(a) The phase field at t = 10. A rough
interface has formed.

(b) The phase field at t = 2000. The
profile has coarsened, with a slight in-
crease in amplitude.

(c) The phase field at t = 10000. After
more coarsening, the dominant wave-
length is q = q1, and it is growing
slowly.

(d) The phase field at t = 20000. The
amplitude is still increasing, but very
slowly.

Figure 3.19: Evolution of the phase field with parameters Lx = Ly = 200,
c = 6(t + 1)−0.2, ε = ∆x = 0.3, and initial random profile. The desired “steady
state” is achieved; an initial random profile coarsens and eventually leads to a
very slow growing profile with dominant wavenumber q = q1
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Figure 3.20: The evolution of an initial random configuration with
c(t) = 6(t + 1)−0.25 as seen through the structure factor. The profile coarsens
until the first wavenumber is left as the dominant one, which grows very slowly.

3.4 3D simulations

Another advantage of the phase field model is that the equations can be easily
generalized to 3 dimensions. However, the simulations can take a very long time,
because the speed is of the order N3, N being the size of the box. In addition to
this, the strain tensor now becomes a 3x3 tensor, with 6 unique elements (due to
symmetry), which means that 3 additional Poisson equations (eq. 2.55) need to
be solved. To start with, we first ran a simulation of a box size L = 100 with a
random surface at the height z = 60 and under constant uniaxial strain (c = 8).
The results are shown in figure 3.21. To properly see the interface, the isosurface
φ = 1/2 is plotted. The initial random seeds form an interface which grows and
grooves begin to form. The system is symmetric in x and y because for uniaxial
strain, σxx = σyy 6= 0. This simple and short simulation took about 24 hours on
a high-performance computer.

Alternatively, it is possible to impose a uniaxial stress along one direction,
say y, while having no stresses in the other directions. This should break the
symmetry between x and y. Indeed, the results are shown in figure 3.22. Since
the stress is only along one direction, grooves form along that direction, but not
along the other one. This causes stripes to form. This can also be understood by
treating each cross section as a 2D system under uniaxial strain with a different
initial condition. After they evolve and coarsen, different cross sections will have
almost the same Fourier modes active, but with different phases.
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(a) The isosurface φ = 1/2 at t = 0,
showing a random initial surface at z =
60.

(b) The isosurface φ = 1/2 at t = 100.
Grooves have formed at all parts of the
interface, and there is no difference be-
tween x and y directions because uni-
axial strain implies σxx = σyy 6= 0.

(c) The isosurface φ = 1/2 at t = 100
from a birds eye view.

(d) The phase field at t = 100, showing
the bulk of the phases φ = 1 and φ = 0
separated by an interface from a certain
viewing angle.

Figure 3.21: Evolution of the phase field in 3d with parameters Lx = Ly = Lz =
100, c = 8, ε = ∆x = 0.3, and initial random profile under uniaxial strain. The
best way to see the interface is to surface plot the isosurface φ = 1/2, which is
essentially the definition of it.
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(a) The isosurface φ = 1/2 at t = 100.
Grooves have formed mostly along the
y direction, because σyy 6= 0 whereas
σxx = σzz = 0.

(b) The isosurface φ = 1/2 at t = 100
from a birds eye view. It is a clearer
view of the stripes.

(c) The phase field at t = 100, show-
ing the bulk of the phases φ = 1 and
φ = 0 separated by an interface from a
certain viewing angle. Here the differ-
ence between x and y directions is very
clear.

Figure 3.22: Evolution of the phase field in 3d with parameters Lx = Ly = Lz =
100, c = 8, ε = ∆x = 0.3, and initial random profile under uniaxial stress along
the y direction. The best way to see the interface is to surface plot the isosurface
φ = 1/2, which is essentially the definition of it. Stripes form because of the
asymmetry between x and y directions.
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Chapter 4

Conclusion and Future Work

The advantage phase field modeling has in solving interfacial problems is
mainly its simple numerical implementation, due to the fact that the boundary
separating different phases is tracked implicitly by the phase field itself. Another
advantage is the ability to couple it to other fields, such as temperature and elastic
fields, to incorporate their influence on interface dynamics. Both of these advan-
tages are highlighted in modeling Grinfeld instability by using a non-conserved
phase field coupled to an elastic field.

Naturally, such a model is attractive when thinking about biological systems,
which have a clear boundary separating them from the outside world, and the dy-
namics of which is greatly influenced by elasticity. However, a direct application
is not adequate for two reasons: 1) A conserved phase field must be used for living
beings, and 2) The instability can not grow indefinitely, it has to be limited. We
solve these inconveniences by first using conservative dynamics, and second by
limiting the growth of the instability through a time-dependent external stress.
This is accomplished via a parameter c(t) that decreases with time. We study a
linearly decreasing function and power-law decay, and conclude that the latter is
much better for mimicking the out-of-plane buckling observed in Placozoa. To
be precise, when the parameter depends on time as c = 6(t + 1)−0.2, an initial
random surface will grow and coarsen. Eventually, there will be only one groove
that keeps growing, but very slowly. For short enough time intervals, it resembles
the steady state observed in videos of Placozoa. We also explore how different
parameters in these functions account for different time and length scales. Lastly,
we extend the model to 3 dimensions, but unfortunately, due to time limitations,
it was not possible to study time-dependent behavior.

The work done in this thesis sets the stage for exciting future explorations,
which can happen on two fronts: computational/theoretical and experimental.

On the first front, it is possible to completely model the creature as a whole
(not just a part of it) in 3D, which might be quite challenging. One challenge
is the fact that the equilibrium configuration for a phase field model in 3D is
a sphere, whereas the equilibrium configuration for the creature is a disk. This
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can be resolved by introducing an anisotropic surface tension that makes the disk
energetically favorable over the sphere. Another challenge is how to introduce the
elastic terms along with their appropriate boundary conditions. Doing this is not
trivial, but one possible route is to introduce a random velocity field that models
the motion of the creature, and couple the elastic field to it, causing stress to be
generated if the creature moves in a certain way. Needless to say, many more
challenges may appear along the way. Finally, another possibility is to use phase
field crystal modeling, which incorporates elasticity more naturally. However,
this model is used more for solids, and it is not adequate in modeling amorphous
creatures. This also might be solved by introducing a velocity field explicitly.

On the second front, more experiments need to be done with this creature,
and better videos must be produced. For complete modeling, one needs to exper-
imentally obtain the elastic moduli of the creature, and a side-view rather than a
birds eye view will immensely help in clearly defining some characteristics of this
buckling, such as how long it lasts and how large is the out-of-plane deformation.
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Appendix A

Numerical details

The equations are solved using the finite differences method. The time deriva-
tive is approximated as

∂φ

∂t
=
φ(t+ ∆t)− φ(t)

∆t
, (A.1)

and the simplest way to approximate the Laplacian is to use the 5-point stencil

∇2φ =
φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)− 4φ(i, j)

∆x2
. (A.2)

However, this only includes nearest-neighbor terms, which makes the operator
unstable when φ is varying quickly (unless a really small ∆x is chosen). A better
form of the Laplacian operator is given by the 9-point stencil that includes next
nearest neighbors

∇2φ = 4[φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)]

+ φ(i+ 1, j + 1) + φ(i+ 1, j − 1) + φ(i− 1, j + 1) + φ(i− 1, j − 1)

− 20φ(i, j)/(6∆x2).

(A.3)

In order to check for optimal values for ∆x and ∆t, it is always a good
idea to do a Von Neumann Stability analysis on the equations, which basically
means analyzing the stability of fourier modes, φ = c(t)eikxxeekyy (which are
eigenvectors of the Laplacian operator, with negative eigenvalues). Applying the
above Laplacian gives

∇2φ =
c(t)

6∆x2

[
4(2cos(ky∆x) + 2cos(kx∆x))

+ 4cos(ky∆x)cos(kx∆x)− 20
]
eikxxeekyy

=
λ

6∆x2
φ.

(A.4)

This is used in the linearized form of equation 2.59

φ(t+ ∆t)− φ(t)

∆t
= β∇2(φ− ε2∇2φ), (A.5)
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and the final result is:

c(t+ ∆t) =

{
1 +

∆tλ

6∆x2

[
1− ε2

6∆x2
λ
]}
c(t). (A.6)

This fourier mode is stable as long as the term in the curly brackets is less than
1 in magnitude. The worse case scenario is when λ = −32, which gives an upper
bound on ∆t

1− 32∆t

6∆x2

[
1− 32ε2

6∆x2

]
> −1, (A.7)

∆t <
72∆x4

32(6∆x2 − 32ε2)
. (A.8)

A similar equation can be obtained in 3D, using a 27-point stencil that is the
simple extension of the 9-point stencil [21]. It should be noted that if the 5-point
stencil was used instead of the 9-point one, then the upper bound on ∆t would
be significantly lower.

Besides the phase-field and its partial derivatives, there is one more term in
the dynamical equation, which is the last term due to elasticity:

∂φ

∂t
= β∇2

[
(1− φ)(2φ− 4φ2)− ε′2∇2φ+ cg′(φ)h(φ)

]
, (A.9)

where h(φ) is obtained from the strain tensor and its trace

h(φ) = [f1 +
∑
ij

(uij +
δij
d
g)2]. (A.10)

In turn, f1 and uij are obtained for a given phase field φ by imposing mechanical
equilibrium, which results in the following equations:

∇2uij = − ε
κ
∇i∇jg, (A.11)

∇2f1 = −2

κ

∑
ij

∂

∂xi

∂

∂xj

[
g(uij +

δij
d

ε

κ
g)

]
. (A.12)

These are Poisson equations which can be solved using the relaxation method.
Therefore, for each time step, 4 Poisson equations need to be solved (3 for the
strain tensor because it’s symmetric, and one for f1) in 2D, or 7 in 3D.

Firstly, to better understand the relaxation method and why it works, consider
a simple 1D equation

∂2u(x)

∂x2
= s(x), (A.13)

where s(x) is some function, sometimes called a source function. The first step
is to write it as a finite difference equation (FDE):

u(i+ 1) + u(i− 1)− 2u(i) = ∆x2s(i). (A.14)
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Writing it this way actually changes the initial differential equation to a set of
linear equations, one equation for each lattice point i. Such a set can be written
in matrix form

Au = S. (A.15)

Therefore, the solution can be obtained by any method used to solve similar
matrix equations, like LU decomposition [22]. We use an iterative approach
(Jacobi Method), the reasons for which will become clear later. This method is
based on rewriting equation A.14 in the following way:

u(i) =
u(i+ 1) + u(i− 1)−∆x2s(i)

2
, (A.16)

which basically says that the value of the function u at a given point i is given by
a combination of its nearest neighbors and the source function. The idea behind
the Jacobi Method is to start with an initial guess for the solution u(x), and use
equation A.16 iteratively to converge to the real solution. let the index k denote
the kth iteration. The value of the function at each lattice point i at the next
iteration is given by:

uk+1(i) =
uk(i+ 1) + uk(i− 1)−∆x2s(i)

2
. (A.17)

To see if this will converge to the real solution, rewrite the above equation in
matrix form:

uk+1 = Buk + c, (A.18)

with B being a tridiagonal matrix with diagonal elements zero and nearest off-
diagonal elements 1/2:

B =


0 1/2

1/2 0 1/2

1/2
. . . . . .
. . . . . . 1/2

1/2 0

 .

Suppose that the initial guess is the vector u0, and the actual answer is u, which
satisfies u = Bu + c. The difference between the value at the kth iteration and
the real solution is given by:

uk − u = B(uk−1 − u) = Bk(u0 − u). (A.19)

Now B is a matrix which can be diagonalized. Denote its eigenvalues as λ and
eigenvectors as v. The difference between the first guess and the actual solution
can be expanded in this basis:

u0 − u = α1v1 + α2v2 + · · ·+ αnvn. (A.20)
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Inserting this in equation A.19, and using the fact that Bk+1vi = λivi results in:

uk − u = α1λ
k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn. (A.21)

Therefore, as k → ∞, the difference between the kth iteration and the actual
result, a.k.a. the error, will go to zero only if:

|λi| < 1 for all i = 1, 2, . . . , n. (A.22)

This argument can be easily generalized to higher dimensions. It should be noted
that first, the source function is irrelevant when considering convergence of the
solution, and second, for the Poisson equation, the matrix B does satisfy the
criterion for convergence. Lastly, the efficiency of this method is based upon how
good of a guess is the initial vector.

The final ingredient for the Jacobi method is to decide when to stop iterating,
because numerically it is impossible to take the limit k →∞ to obtain the exact
solution. This decision is made based on a small parameter δ that dictates error
tolerance. The iteration is stopped if, for every i, the next iteration does not
change the value of the function by more than this tolerance:∣∣uk+1(i)− uk(i)

∣∣ ≤ δ for all i. (A.23)

For all the simulations, the error tolerance was set at δ = 10−6.
Going back to the equations for the strain tensor, first A.11 must be solved,

because the solutions form the source function for A.12. Consider A.11 for i =
j = 1, which we denote as the x-component (ignore the prefactors for simplicity):

∇2uxx = −∂
2g

∂x2
. (A.24)

The source function ∂2g
∂x2

is calculated beforehand numerically. Denote it by gxx
and write the equation as an FDE (with the nine-point stencil):

∇2uxx = 4[uxx(i+ 1, j) + uxx(i− 1, j) + uxx(i, j + 1) + uxx(i, j − 1)]

+ uxx(i+ 1, j + 1) + uxx(i+ 1, j − 1) + uxx(i− 1, j + 1) + uxx(i− 1, j − 1)

− 20uxx(i, j)/(6∆x2)

= −gxx(i, j).
(A.25)

This is also a system of equations which can be solved using the Jacobi method.
At the start of a simulation, the random initial guess for uxx is set as a matrix of
zeros. However, afterwards, the solution obtained after relaxation is used as the
initial guess for the relaxation at the next time step. This is a good initial guess
because after one time step the phase field does not change drastically, so neither

46



will the strain tensor, and this is what makes the Jacobi method very efficient for
this problem. After the complete strain tensor is obtained, the source function
for f1 can be calculated and equation A.12 can be solved similarly.

Finally, the boundary conditions need to be specified such that the phase field
is uniaxially stressed along the horizontal direction in the solid phase, and there
is no stress in the liquid phase. This can be achieved by the following conditions
for a simulation box of size L (these will be written without prefactors because
eventually all of them will be factored out and absorbed in the parameter c):

uyy(x, y = 0, L) = −g(x, y = 0, L), (A.26)

uxx(x, y = 0, L) = 0, (A.27)

uxy(x, y = 0, L) = 0, (A.28)

f1(x, y = 0, L) = g2(φ(x, y = 0, L)). (A.29)

Equation 2.50 can be used to show that these conditions imply σxx = 2g2, and
σyy = σxy = 0 at the vertical boundaries. Along with these, periodic boundary
conditions are imposed along the horizontal direction.
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Appendix B

Surface Profile and
Height-Height Correlation

To obtain all the results, one needs to extract the profile of the interface as
a function of position from a given phase-field φ(x, y). This can be done by first
obtaining the function φ(x, y)(1 − φ(x, y)), which will be 0 in the bulk of each
phase (φ = 1 and φ = 0), and a maximum at the interface defined by φ = 1/2.
For a given phase-field, this function is shown in figure B.1

(a) A certain phase-field with φ = 0, 1
corresponding to the different phases,
separated by a smooth interface.

(b) The function φ(1−φ), which is 0 in
the bulk of both phases and maximum
at the interface defined by φ = 1/2.

Figure B.1: The first step for extracting the profile of the interface for a given
phase field.

Now, all that’s required is to loop over the horizontal axis (x), and store the value
on the vertical axis (yi) that correspond to the maximum of φ(xi, y), for a given
xi. For the above phase field, this results in the surface profile shown in figure
B.2
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Figure B.2: The profile obtained by the above method.

Once the profile is obtained, the height-height correlation function can be
calculated from the definition

H(x′) = 〈[h(x+ x′)− h(x)]2〉x. (B.1)

For a given distance x′ (here ranging from 0 to 200), one loops over the profile
and averages the difference in heights h(x+ x′)− h(x) over all possible values of
x (ranging from 0 to 199 for a total of 200 points). The Fourier transform of this
function can be easily obtained using a Fast Fourier Transform (FFT). The zero
order amplitude in Fourier space corresponds to the average value of the function
in real space, and since that is irrelevant, it is removed from the function before
doing the FFT.
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