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ABSTRACT 

OF THE DISSERTATION OF 

 

 

 

Georges Maroun Sfeir    for          Doctor of Philosophy 

              Major: Civil and Environmental Engineering  

 

 

 

Title: Integration of Machine Learning and Discrete Choice Models to Better Predict 

and Describe Decision Makers’ Choices with Applications to Travel Decisions 

 

This dissertation develops methods that combine the advantages of discrete choice 

models and machine learning methods into interpretable econometric models. The aim 

is to enhance the predictive power of discrete choice models and their flexibility in 

representing unobserved heterogeneity without weakening their behavioral and 

economic interpretability. Specifically, this dissertation focuses on bringing machine 

learning into the Latent Class Choice Models (LCCMs), which are widely used in the 

discrete choice modeling community to model the unobserved behavioral heterogeneity 

of a population through discrete segments (or latent classes). LCCM consists of two 

sub-components, a class membership model that formulates the probability of an 

individual belonging to a specific segment/class and a class-specific choice model that 

estimates the choice probabilities. 

 

The dissertation develops two new Latent Class Choice Models with a flexible class 

membership component. In each of the two proposed models, the latent classes are 

defined using a different machine learning clustering technique as opposed to the 

random utility specification of the LCCM. The first proposed model is titled Gaussian-

Bernoulli Mixture – Latent Class Choice Model (GBM-LCCM) while the second 

proposed model is called Gaussian Process – Latent Class Choice Model (GP-LCCM). 

 

The GBM-LCCM formulates the latent classes using model-based mixture models as an 

alternative approach to the traditional random utility specification with the aim of 

comparing the two approaches on various measures including prediction accuracy and 

representation of heterogeneity in the choice process. Mixture models are parametric 

model-based clustering techniques that have been widely used in areas such as machine 

learning, data mining and pattern recognition for clustering and classification problems. 

An Expectation-Maximization (EM) algorithm is derived for the estimation of the 

proposed model. Using two different case studies on travel mode choice behavior, the 

proposed model is compared to its traditional discrete choice model counterpart, the 

LCCM, on the basis of parameter estimate signs, values of time, statistical goodness-of-

fit measures, and cross-validation tests. Results show that mixture models improve the 

overall performance of LCCMs by providing better out-of-sample predication accuracy 

by around 3% in addition to better and more flexible representation of heterogeneity 
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and more reasonable parameter estimate signs without weakening the behavioral and 

economic interpretability of the choice models.  

 

The second model, the GP-LCCM, formulates the latent classes using Gaussian 

Processes (GPs), a nonparametric class of probabilistic machine learning. Gaussian 

Processes are kernel-based algorithms that incorporate expert knowledge by assuming 

priors over latent functions rather than priors over parameters, which makes them more 

flexible in addressing nonlinear problems. By integrating a Gaussian Process within the 

LCCM structure, we aim at improving discrete representations of unobserved 

heterogeneity. The proposed model would assign individuals probabilistically to 

behaviorally homogeneous clusters (latent classes) using GPs and simultaneously 

estimate class-specific choice models by relying on random utility models. Furthermore, 

we derive and implement an Expectation-Maximization algorithm to jointly 

estimate/infer the hyper-parameters of the GP kernel function and the class-specific 

choice parameters by relying on a Laplace approximation and gradient-based numerical 

optimization methods, respectively. The model is tested on three different mode choice 

applications and compared against the traditional LCCM and the proposed GBM-

LCCM. Results show that the GP-LCCM allows for a more complex and flexible 

representation of heterogeneity and improves both in-sample fit and out-of-sample 

predictive power by up to 7.6% and 8.8%, respectively. Moreover, behavioral and 

economic interpretability is maintained at the class-specific choice model level while 

local interpretation of the latent classes can still be achieved, although the 

nonparametric characteristic of GPs lessens the transparency of the class membership 

component. 

 

The two proposed models are also compared against the LCCM in terms of their 

forecasting capabilities. Results show that both the GBM-LCCM and GP-LCCM are 

capable of providing meaningful forecasts that are similar to the forecasts of the 

traditional LCCM, to some extent. A demand sensitivity analysis with respect to the 

cost of some travel mode alternatives is also conducted and similar order of changes are 

attained between the results of the proposed models and LCCM in terms of in-sample 

fit, out-of-sample prediction accuracy, and aggregate forecasts. The sensitivity analysis 

also highlights the advantage of the proposed models in identifying a higher number of 

classes than the LCCM by providing a more in-depth understanding of the behavioral 

heterogeneity within a population and the behavioral responses of the different classes 

to new policies.     
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CHAPTER 1 

INTRODUCTION 
 

This dissertation examines the possibility of combining Machine Learning (ML) 

and Discrete Choice Models (DCM) into interpretable economic frameworks. 

Specifically, it is concerned with the discrete representation of unobserved 

heterogeneity in behavioral models and how to benefit from the strengths of both DCM 

and ML to improve such representation without loss of economic and behavioral 

interpretability. 

This chapter presents the motivation behind this dissertation and provides the 

research objectives, contributions, and outline.   

 

1.1. Motivation 

Modeling and understanding human decision-making are crucial for estimating 

the impact of new policies or services, especially within the transportation field. All 

around the globe, there are concerns regarding the consequences of high levels of traffic 

congestion, parking demand, vehicular and greenhouse emissions, etc. Moreover, the 

digital revolution is reshaping every aspect of our life including the way we travel. New 

modes of transport, from car- and bike-sharing to Mobility on Demand (MOD) and 

Demand-Responsive Transit (DRT) services, are emerging as alternatives or feeders to 

classic public transportation systems with fixed routes and timetables. In addition, given 

the rapid growth rate at which the motor industry and its relevant technologies are 

evolving, autonomous and connected vehicles are expected to become commercially 

available in the near future. Predicting the impacts of such new modes on travel demand 
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and mobility patterns is of utmost concern to researchers, transportation planners, 

policymakers, and operators alike. Furthermore, changing people’s travel behavior 

towards more sustainable transportation modes is crucial to mitigate the negative 

impacts of the transportation system. In behavioral science, there is a distinction 

between theories of change and models of behavior. While theories of change show 

how behaviors can change over time, models of behavior help in identifying and 

understanding the underlying factors that affect the prediction and explanation of a 

specific behavior (Darnton, 2008). Both approaches have different yet complementary 

objectives. Indeed, changing any kind of behavior requires a thorough investigation of 

all the underlying factors that lead to the behavior or decision under investigation. As 

for the transportation sector and along the same lines of behavioral science, modeling 

behavioral patterns of commuters and their decision-making process is crucial to 

develop sustainable and effective transport policies, predict and forecast the travel mode 

choices of a certain population with respect to changes in some attributes or 

components of the transportation system (Bhat & Lawton, 2000), and determine the 

different sources of taste and preference heterogeneity (El Zarwi, 2017b). 

 

1.1.1. Discrete Choice Models 

Modeling and forecasting the demand for goods or services (e.g., travel modes) 

from a finite set of discrete alternatives are usually conducted through Discrete Choice 

Models (DCM), such as the multinomial logit model (MNL) (McFadden, 1974) and its 

variants, which are rooted in the traditional microeconomic theory of consumer 

behavior and random utility maximization (Bierlaire & Lurkin, 2017). These models 

assume that each decision-maker associates a utility to each available alternative and 
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then selects the one that maximizes his/her utility. The utility of an alternative is usually 

specified as a linear-in-the-parameters function of, but not limited to, the alternative 

attributes and socio-economic/demographic characteristics of the decision-maker, in 

addition to a random term that represents the effect of unobserved variables. Such 

models are known as “explanatory” models that target behavioral and economic 

interpretability. However, such explanatory models encounter some limitations and 

might not guarantee high prediction accuracy (Sifringer et al., 2020).  

Over the years, several advanced discrete choice models have been developed to 

overcome different problems such as the limitations of MNL, representation of 

unobserved taste/preference heterogeneity, and endogeneity, to name a few. The 

question of how best to model unobserved heterogeneity remains one of the most active 

research areas within demand modeling (Vij & Krueger, 2017). The mixed logit family, 

where choice probabilities are weighted average of standard logit probabilities over 

some mixing distribution (Train, 2009), is by far the most popular approach for 

capturing random heterogeneity. The literature is rich with studies and information on 

different types of mixing distributions (Yuan et al., 2015) with the main two categories 

being continuous and discrete. The former category assumes continuous distribution(s) 

with predefined forms (e.g., normal or lognormal) for the random parameters and can 

approximate any choice situation to a high degree of accuracy (McFadden & Train, 

2000). However, such models are constrained by the predefined forms and the choice of 

a proper distribution which can be a complicated and computationally expensive task 

(Train, 2016; Vij & Krueger, 2017). Instead, discrete nonparametric representation of 

unobserved random heterogeneity offers an alternative perspective by making fewer 

statistical assumptions concerning the distributions’ forms and eliminating the 
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problematic and time-consuming task of choosing the right parameters’ distributions. 

The Latent Class Choice Model (LCCM) remains the most famous and well-established 

example of discrete nonparametric mixing distribution and can be described as a mixed 

logit model with a finite mixing distribution (Train, 2008; Yuan et al., 2015). The 

LCCM is a random-utility model that is used whenever the modeler hypothesizes that 

the unobserved heterogeneity can be identified through discrete segments (or latent 

classes) of people that differ behaviorally from each other due to varying tastes, 

different decision protocols adopted by individuals and/or different choice sets 

considered by each individual  (Gopinath, 1995). The LCCM consists of two sub-

models, a class membership model that formulates the probability of an individual 

belonging to a specific segment/class and a class-specific choice model that estimates 

the choice probabilities. However, the linear-in-parameters utility specification of the 

latent classes may oversimplify and underestimate the extent of behavioral 

heterogeneity within a population (Vij & Krueger, 2017). 

 

1.1.2. Machine Learning in Choice Modeling 

Recently, due to the availability of advanced computer hardware and big data 

from mobile phones, social networks, and Internet-of-things, several studies have tried 

to apply machine learning (ML) algorithms to different transportation research areas 

such as traffic control, incident detection, traffic forecasting and mode choice modeling 

(Andrade et al., 2006; Hillel et al., 2020; Lee et al., 2018; Liang et al., 2018; Xie et al., 

2003;, to name a few). Machine learning algorithms, known as “predictive” models, are 

non/parametric approaches that try to learn from the data without imposing strict 

statistical assumptions and can be used to capture complex and unobserved patterns 
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such as taste and preference heterogeneity. Their main target is achieving high 

classification and prediction accuracy (e.g., prediction of transportation modes used) 

rather than behavioral interpretability. Such methods, unlike discrete choice models, 

cannot be used to directly infer marginal effects and economic indicators such as 

elasticities, willingness to pay, and consumer welfare measures, which are important 

measures used in transportation policy and project evaluation. This lack of 

straightforward interpretability and the missing link with economic theories (Brathwaite 

et al., 2017) are believed to be the main reasons that kept the choice modeling 

community from trusting machine learning.  

Given the different nature and purpose of DCM and ML, could we combine the 

strengths of both fields into hybrid frameworks in order to improve model prediction 

capabilities and model flexibility in representing unobserved heterogeneity without 

lessening the behavioral and economic interpretability? Could such hybrid frameworks 

be used by policymakers and transportation planners/operators for planning and policy 

analysis?  

 

1.2. Research Objectives 

The objective of this dissertation is to integrate different machine learning 

algorithms within discrete choice models without compromising the behavioral and 

economic interpretability of the choice models. This would create hybrid models that 

benefit from the predictive and explanatory powers of ML and DCM, respectively. 

Specifically, this dissertation brings machine learning into the Latent Class Choice 

Model (LCCM) structure to allow for more complex and flexible discrete representation 

of heterogeneity, which in turn we hypothesize would result in improving the overall 
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model fit and prediction power. The developed models would be consistent with 

McFadden’s four step principles of an appropriate econometric model (Manski, 2001; 

McFadden, 1974): 

i. The models should be consistent with random utility theory to ensure behavioral 

interpretability  

ii. The models must be able to forecast decision-makers’ choices under 

different/new conditions and/or in different populations 

iii. The models should account for the fact that some attributes of the alternatives 

and characteristics of the decision-makers may be missing from the data in-hand 

iv. The models should be computationally practical 

This dissertation focuses on the  

This dissertation has three specific objectives: 

 Embed Gaussian-Bernoulli mixture models, a model-based parametric clustering 

technique, in the traditional LCCM and investigate the impact of such practice 

on goodness-of-fit measures and out-of-sample prediction accuracy of the 

choice models. 

 Embed Gaussian Processes, a nonparametric clustering technique, in the 

traditional LCCM and compare the resulting model to both the LCCM with 

mixture models and traditional LCCM in terms of interpretability, goodness-of-

fit and out-of-sample prediction performance. 

 Explore the forecasting performance of the proposed models and whether they 

lead to reasonable and/or different policy implications as compared to the 

LCCM. 
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1.3. Research Contributions 

Integration of machine learning and discrete choice models is still relatively a 

recent area of research. Apart from the contrast studies that have compared the two 

fields, mostly in terms of prediction performance, there are few studies that have tried to 

combine the two fields simultaneously into econometric frameworks. This dissertation 

contributes to the existing body of literature on choice modeling by presenting two new 

models that enhance the traditional LCCM with two different machine learning 

techniques. The first model makes use of a model-based parametric clustering algorithm 

while the second model relies on Gaussian Processes (GPs), a popular nonparametric 

class of probabilistic machine learning (Rasmussen & Williams, 2006). 

 

1.3.1. Gaussian-Bernoulli Mixture – Latent Class Choice Model (GBM-LCCM) 

The first model formulates the class membership component of LCCMs as a 

mixture model, a method commonly used as a parametric probabilistic clustering 

technique in the machine learning community, to allow for more complex and flexible 

representation of unobserved heterogeneity. We hypothesize that this added flexibility 

may improve the goodness-of-fit and out-of-sample generalization (e.g., prediction 

accuracy) of the choice models. Specifically, the probability of a decision-maker 

belonging to a specific latent class/cluster is formulated as a mixture model with 

Gaussian and Bernoulli distributions instead of a random utility formulation. 

 

1.3.2. Gaussian Process – Latent Class Choice Model (GP-LCCM) 

Compared to other machine learning methods, Gaussian Processes are 

considered more attractive due to their flexible nonparametric nature and their 
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formulation in a full Bayesian framework, which guarantees probabilistic interpretation 

of the model outputs (Mackay, 1997). Moreover, GPs are kernel-based algorithms that 

assume priors over latent functions rather than priors directly over parameters, which 

makes GPs very powerful in addressing difficult nonlinear regression and classifications 

problems (Rasmussen & Williams, 2006; Seeger, 2004). 

Given the aforementioned advantages, the second model makes use of Gaussian 

Processes to replace the class membership component of the traditional LCCM. The 

proposed model would rely on GPs as a nonparametric probabilistic segmentation 

component to probabilistically divide the population into behaviorally homogenous 

classes while simultaneously relying on random utility models to develop class-specific 

choice models. To the author’s knowledge, this dissertation formulates the first 

Gaussian Process choice model within an LCMM framework, thereby allowing for 

more modeling flexibility and potentially higher prediction accuracy.  

 

1.3.3. Estimation and Application 

Moreover, this dissertation provides the formulation and implementation of two 

Expectation-Maximization (EM) based algorithms for the estimation of the two 

proposed models. The two algorithms would benefit from the EM iterative nature to 

jointly estimate/infer the hyper/parameters of the machine learning algorithms and the 

class-specific choice parameters. Using different mode choice applications, the 

proposed models are compared to their traditional LCCM counterpart on the basis of 

parameter estimate signs, value of travel time savings, statistical goodness-of-fit 

measures, and cross-validation tests. 
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1.4. Outline 

This dissertation is structured as follows. 

Chapter 2 presents the necessary background material. It starts by reviewing 

discrete choice models, the concept of taste heterogeneity and the problems facing its 

representation in behavioral models. It then reviews studies that have used machine 

learning techniques in travel mode choice modeling and the ones that have tried to 

combine machine learning with econometric models. Throughout, it highlights the 

limitations of both machine learning and discrete choice models to motivate the need 

for hybrid frameworks that combine the two fields. 

Chapter 3 provides the model structure of the proposed GBM-LCCM. It also 

provides the formulation and derivation of the corresponding Expectation-Maximization 

algorithm.  

Chapter 4 presents two mode choice applications to assess the proposed GBM-

LCCM and compare it with different benchmark models.  

Chapter 5 provides the model structure of the second proposed model (GP-

LCCM), as well as the formulation and derivation of the corresponding Expectation-

Maximization algorithm.  

Chapter 6 presents three mode choice applications to assess the proposed GP-

LCCM and compare it with different benchmark models in addition to the proposed 

GBM-LCCM. 

Chapter 7 comprises the development of a policy analysis using the American 

University of Beirut case study. It presents and compares the forecasting results of the 

two proposed models, GBM-LCCM and GP-LCM, as well as the traditional LCCM. 
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Chapter 8 concludes the dissertation. It provides a comprehensive summary of 

the research objectives, research contributions, proposed models, and findings. It then 

discusses limitations of this dissertation and future research directions.  
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CHAPTER 2 

LITERATURE REVIEW 
 

As previously discussed in Chapter 1, this dissertation attempts to improve the 

discrete representation of heterogeneity in behavioral models by combining discrete 

choice models and machine learning techniques. Therefore, this chapter presents the 

corresponding background material. It starts by reviewing discrete choice models based 

on random utility theory including the MNL formulation and its criticisms (Section 

2.1.1). It then discusses the concept of taste heterogeneity and the problems facing its 

representation in behavioral models (Section 2.1.2). Next, this chapter reviews the use 

of machine learning in choice modeling (Section 2.2). It presents the different aspects of 

machine learning (Section 2.2.1), studies that have used machine learning techniques in 

travel demand models (Section 2.2.2), and differences between machine learning and 

discrete choice models (Section 2.2.3). This chapter then reviews studies that have 

developed hybrid frameworks to combine the two fields (Section 2.3). Throughout, it 

discusses the advantages and disadvantages of each field in order to motivate the need 

for the hybrid models proposed by this dissertation (Section 2.4). 

 

2.1. Discrete Choice Model  

Econometric discrete choice models, derived from random utility maximization 

theory, have been widely used to model choices made by decision-makers among a 

finite set of discrete alternatives. These models are used in different fields such as 

transportation, economics, finance, marketing, medicine, psychology etc. Some studies 

tried to replace the theory of utility maximization from discrete choice models with 
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different behavioral concepts (Chorus, 2012). For instance, the random regret 

minimization model replaces the utility maximization theory with regret theory and as 

such assumes that an individual tries to minimize anticipated regret when choosing 

between alternatives instead of maximizing utility (Chorus et al., 2008). Although 

random regret minimization models allow for the possibility that choices might be 

driven by the wish to minimize regret or negative emotions, they violate, as opposed to 

random utility models, several microeconomic axioms that ensure complete economic 

and welfare analysis (e.g., disaggregate elasticities, willingness to pay, consumer 

welfare measures1) (Chorus, 2012; Dekker & Chorus, 2018). 

 

2.1.1. MNL Formulation 

Early forms of random utility maximization models were developed during the 

1960s by Marschak (1960) and Cox (1966). However, it was McFadden’s contribution 

to discrete choice analysis during the 1970s, the conditional logit model (1974), that 

received more attention from econometricians and researchers (Brathwaite et al., 2017; 

Manski, 2001). This is mainly due to the fact that he linked his MNL formulation to the 

classical consumer demand theory (McFadden, 2001). According to McFadden’s 

formulation, any econometric behavioral model should fulfil four main properties 

(Manski, 2001). First, the model should be consistent with utility theory, meaning that a 

decision-maker 𝑛 facing a finite set of alternatives would select the alternative that 

                                                 
1 Disaggregate elasticity is the change in the choice probability of an individual due to a change in the 

level of some attribute (Ben-Akiva & Lerman, 1985). Willingness to pay is the maximum amount of 

money a consumer is willing to spend on a service or good and is calculated as the ratio between the 

marginal utility of an attribute and the marginal utility of cost (e.g., value of time is the marginal utility of 

travel time divided by the marginal utility of travel cost) (Ben-Akiva & Lerman, 1985). Consumer 

welfare measures are the benefits an individual obtains from the consumption of goods or services. A 

common measure in transport demand modeling is consumer surplus or logsum which is equal to the 

utility, in monetary terms, that an individual receives in the choice situation (Train, 2009). 
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maximizes his/her utility. Second, researchers must be able to forecast decision-makers’ 

choices under different/new conditions and/or in different populations. This is achieved 

by defining the utility 𝑈𝑛𝑗, that a decision-maker 𝑛 might gain from choosing 

alternative 𝑗, as a function of some observed attributes of alternative 𝑗 (𝑋𝑛𝑗) and 

characteristics of decision-maker 𝑛 (𝑆𝑛). Third, the econometric analysis should 

account for the fact that the researcher will not be able to observe all aspects of the 

utility. Typically, some attributes of the alternatives and characteristics of the decision-

makers will be missing from the data in-hand. Therefore, utility 𝑈𝑛𝑗 is decomposed into 

two parts, a systematic utility 𝑉𝑛𝑗 and a random disturbance term 𝜀𝑛𝑗: 

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗  , (1) 

𝑉𝑛𝑗 = 𝛽1𝑋𝑛𝑗 + 𝛽2𝑆𝑛 . (2) 

The systematic utility 𝑉𝑛𝑗, also known as representative utility, relates the 

observed components 𝑋𝑛𝑗 and 𝑆𝑛 to two vectors of unknown parameters, 𝛽1 and 𝛽2, that 

need to be estimated statistically using the available data. The disturbance 𝜀𝑛𝑗, a random 

term with a specific density hypothesized by the modeler, accounts for the contribution 

of the unobserved factors. Once the probability distribution of 𝜀𝑛𝑗 is specified, the 

researcher can estimate the probabilities of the decision-makers’ choices. Finally, the 

econometric model should be computationally practical (Manski, 2001). Given the 

available technology during the 1970s, McFadden used a simple closed form for the 

conditional choice probability by assuming that the unobserved utility terms are 

independently, identically distributed (over individuals and alternatives) as Extreme 

Value Type I. This assumption allowed McFadden to develop the famous multinomial 

logit formulation (McFadden, 1974):  
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𝑃𝑛𝑗 =
𝑒𝑉𝑛𝑗

∑ 𝑒𝑉𝑛𝑗′𝐽
𝑗′=1

 , 
(3) 

where 𝑃𝑛𝑗 is the logit probability of choosing alternative 𝑗 from 𝐽 available alternatives. 

Researchers have trusted this MNL formulation due to its connection to 

consumer theory, closed form choice probabilities and simple interpretability. However, 

logit models suffer sometimes from strict statistical assumptions, such as the 

independence of irrelevant alternatives (IIA) which leads to proportional substitution 

patterns across alternatives (Train, 2009). While the IIA assumption captures people’s 

behavior accurately in some situations, it might generate biased demand estimates in 

many other applications. In addition, the logit model can only represent taste variations 

(differences in choice behavior among individuals) when heterogeneity in the choice 

process varies systematically and not randomly and can only deal with panel data (i.e., 

data collected from the same individuals over time) when unobserved factors are 

uncorrelated over time and individuals.  

During the last decades, different advanced discrete choice models have been 

developed to relax the behavioral limitations of the MNL model while concurrently 

satisfying the above four properties. Generalized Extreme Value (GEV) models (e.g., 

nested logit) relax the IIA assumption allowing for flexible substitution patterns. Probit 

models overcome the three main limitations of the logit but their disturbance terms are 

restricted to normal distributions while mixed logit has better flexibility and can embed 

any distribution (normal, log-normal, triangular, etc.) for the unobserved factors and/or 

the coefficients of the observed attributes (Train, 2009). Although these advanced 

models have higher flexibility and can better predict people’s choices, they still 

encounter difficulties when dealing with complex datasets with high degrees of 

nonlinear relationships between variables (Karlaftis & Vlahogianni, 2011; Lee et al., 



 

 26 

2018). Moreover, the field of discrete choice modeling still struggles with the question 

of how to better represent heterogeneity in the choice process (Vij & Krueger, 2017). 

 

2.1.2. Taste Heterogeneity  

Systematic/Random Specifications 

Heterogeneity is known as taste variation across decision-makers (i.e., different 

people have different sensitivities to the same attribute) and is usually captured through 

systematic or random specifications. When tastes vary systematically with observable 

variables, heterogeneity in the choice process is represented through interactions 

between socioeconomic characteristics related to the decision-makers and attributes of 

the alternatives. However, systematic specifications can lead to false conclusions, 

unreliable parameter estimates, and incorrect forecasts in case tastes vary randomly 

across decision-makers or are related to unobserved variables (Gopinath, 1995; Vij et 

al., 2013). Random taste heterogeneity is typically captured through mixed logit models 

which can approximate any random utility model (McFadden & Train, 2000). Mixed 

logit probabilities are defined as a weighted average of standard logit probabilities 

evaluated over a mixing distribution (density) of parameters. The probability of 

individual 𝑛 choosing alternative 𝑗 can then be expressed as follows: 

𝑃𝑛𝑗 = ∫
𝑒𝑉𝑛𝑗

∑ 𝑒𝑉𝑛𝑗′𝐽
𝑗′=1

𝑓(𝛽)𝑑𝛽 , (4) 

𝑉𝑛𝑗 = 𝛽𝑛1𝑋𝑛𝑗 + 𝛽𝑛2𝑆𝑛  , (5) 

where 
𝑒

𝑉𝑛𝑗

∑ 𝑒
𝑉𝑛𝑗′𝐽

𝑗′=1

 is the standard logit choice probability and 𝛽1𝑛 and 𝛽2𝑛 are two vectors 

of unknown coefficients that vary over decision makers with a predefined density 𝑓(𝛽). 
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This specification allows for different tastes/coefficients within the population. 

Most mixing distributions fall typically under two categories: parametric (also known as 

continuous mixed logit) and nonparametric distributions. Parametric distributions have 

predefined forms (e.g., normal, lognormal, etc.) with fixed parameters and usually 

provide great fit to the data. However, the choice of a proper distribution can be 

complicated and computationally expensive. Researchers have to make a prior 

assumption about the proper distribution or estimate different models with different 

distributions and then choose the best model based on statistical goodness-of-fit 

measures and behavioral interpretation of the parameter estimates (Vij & Krueger, 

2017). Moreover, parametric distributions have limited flexibility due to their 

predefined shapes that can be classified as bounded or unbounded. Bounded 

distributions can be adopted when the analyst has an a priori belief of obtaining an 

explicit sign for a specific coefficient. The most known bounded distribution is the 

lognormal, which has been adopted in some studies with great success (Bhat, 1998, 

2000; Train & Sonnier, 2004). However, the lognormal distribution can increase the 

estimation time significantly and overestimate the mean and standard deviation due to 

its long tail property  (Hess and Polak, 2004; Hess et al., 2005). The triangular 

distribution can avoid the issues of long tails of the lognormal distribution and the 

symmetrical shape of the normal distribution. However, it is rarely used due to its 

simple linear shape. Unbounded distributions (e.g., normal) can also be used since 

restricting some coefficients to be strictly positive or negative by using distributions 

with fixed bound at zero can limit the ability of the model to reveal some counter-

intuitive information contained in the dataset and lead to poorer model fit (Hess et al., 

2005). Several other parametric forms have been used in the literature (e.g., truncated 
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normal, Johnson’s 𝑆𝐵 etc.) but the choice of a proper distribution and the shapes that 

these distributions can fit are still considered as two major drawbacks in discrete choice 

modeling. Furthermore, most of the parametric models estimated in the literature are 

limited to univariate distributions although some studies have tried to use mixture of 

continuous distributions as a random taste parameter distribution (e.g., Fosgerau and 

Hess, 2009; Keane and Wasi, 2013).  

Nonparametric Distributions 

To overcome these constraints, researchers have relied on nonparametric 

distributions which do not have predefined shapes and do not require the researcher to 

make certain assumptions regarding the distributions of parameters across decision-

makers, meaning more flexibility can be guaranteed (Yuan et al., 2015). The LCCM 

remains the most known and used nonparametric distribution. It is a random utility 

model that extends the multinomial logit model by using the concept of latent class 

formulation and allows capturing heterogeneity in the choice process by allocating 

people probabilistically to a set of 𝐾 homogeneous classes that differ behaviorally from 

each other. It is typically used when the modeler postulates that the unobserved 

heterogeneity can be represented by discrete latent classes such as segments of the 

population with varying tastes, different decision protocols adopted by individuals, and 

choice sets considered which may vary from one individual to another (Gopinath, 

1995).  

Such model consists of two sub-components, a class membership model and a 

class-specific choice model (Figure 1). The class membership model formulates the 

probability of a decision-maker belonging to a specific class, typically as a function of 

his/her characteristics. Conditioned on the class membership of the decision-maker, the 
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class-specific choice model estimates the probability of choosing a specific alternative 

as a function of the observed exogenous attributes of the alternatives and characteristics 

of the decision-maker. This framework divides or segments decision-makers into 

homogeneous groups through a probabilistic model that uses observed exogenous 

variables as input. 

It is to be noted that any model that combines discrete choice models with 

continuous and/or discrete latent variable models, such as the LCCM, is considered as 

part of the Hybrid Choice Model (HCM) family (Abou-Zeid & Ben-Akiva, 2014; Ben-

Akiva, McFadden, et al., 2002).  

 

Figure 1: Latent Class Choice Model Framework (adapted from Walker and Li (2007)) 

LCCM vs Continuous Mixed Logit 

Several studies have tried to compare both continuous mixed logit and LCCM 

from theoretical and empirical perspectives (Andrews et al., 2002; Greene and Hensher, 

2003; Han, 2019; Hess et al., 2009, to name a few). To sum up, LCCM has some 
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advantages over the continuous mixed logit. First, LCCM makes fewer statistical 

assumptions regarding the parameters’ distribution form. Second, unobserved 

heterogeneity in continuous mixed logit models suffers from a lack of interpretability 

since it is not usually explained by explanatory variables, although it is possible (Greene 

et al., 2006), while discrete latent classes are easily explained and interpreted since the 

class membership model of LCCM is usually a function of socio-economic 

characteristics of decision-makers. Third, correlation between taste parameters and 

elasticities are two major differences between the two approaches. In continuous mixed 

logit models, correlation can be accounted for by specifying a joint distribution for taste 

parameters; however, most applications rely on independently distributed random taste 

parameters. As for LCCM, correlation between taste parameters is implicit in the model 

and it is a function of the class membership probabilities, which are a function of the 

socio-economic variables, and the class-specific taste parameters. The same rationale 

applies to the relationships between the elasticities and the socio-economic variables 

which are not easily determined in continuous mixed logit models but are directly 

inferred from the class membership probabilities of LCCM (Hess et al., 2009). One 

major shortcoming of LCCM is that the discrete latent representation may oversimplify 

the unobserved heterogeneity, especially when a small number of classes is estimated, 

since latent classes are defined as a linear-in-the-parameters function of the socio-

economic characteristics of the decision-makers. In general, the flexibility of LCCM 

increases with the number of classes. However, the computational complexity grows 

rapidly since the number of parameters increases with the number of classes as well 

(Yuan et al., 2015). Consequently, the computational burden that precludes the 

estimation of LCCMs with a high number of classes in addition to the linear-in-
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parameters specification of the latent classes may generate in practice simpler (less 

flexible) models than the LCCM framework can offer (Vij & Krueger, 2017). 

In order to loosen some of the restrictions of continuous mixed logit and LCCM, 

several studies have relied on mixture of distributions approaches. For example, Bujosa 

et al. (2010) developed a Latent Class-Random Parameter Logit model (LC-RPL) to 

combine the concepts of latent classes and random taste parameters. The model 

outperformed the traditional LCCM and continuous mixed logit models in terms of 

goodness-of-fit and in-sample predictions. However, the application was limited to two 

latent classes and a univariate normal distribution for one taste parameter. A similar 

approach was implemented by Greene and Hensher (2013). The proposed model had 

better goodness-of-fit measures than the traditional LCCM and continuous mixed logit 

model but was also limited to two latent classes and one univariate triangular 

distribution for a taste parameter. Fosgerau and Hess (2009) compared two mixture 

approaches against four continuous mixed logit models with different continuous 

distribution functions (normal, lognormal, triangular, and SB). The first approach uses a 

Mixture of Distributions (MOD) to define the distributions of random taste parameters 

while the second one uses the Normal distribution as a base for the random parameters 

and extends it by adding a series approximation of Legendre polynomials. The MOD 

approach had a slight advantage over the second approach and the traditional mixed 

logit models. However, it had computational problems and it was not possible to 

estimate more than a mixture of two normal distributions. Krueger et al. (2018) 

presented a Dirichlet process mixture multinomial logit (DPM-MNL) model where 

Dirichlet process is used as a flexible mixing distribution for the parameters. Such 

approach does not require the analyst to specify the number of mixtures a priori. 
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However, it generates unstructured representations of heterogeneity which affects the 

interpretability of the model. Train (2008) developed an Expectation-Maximization 

(EM) algorithm for the estimation of mixture of distributions in mixed logit models. 

However, the application was also limited to mixture of two independent distributions 

for each randomly distributed parameter. Moreover, Train (2016) introduced a new 

logit-mixed logit model where he relied on logit specifications to define the mixing 

distribution of random parameters. The framework proved its capability to approximate 

the shape of any mixing distribution but placed additional burden on the analyst to 

specify the utility of the random parameters and the variables that represent the shape of 

their distributions.   

 

2.2. Machine Learning in Choice Modeling 

In recent years, the use of machine learning techniques has witnessed a major 

growth due to the exponentiation in the amount of data available (e.g., from mobile 

phones, social networks, internet-of-things, etc.), as well as incredible computing 

resources advances. Such methods are being applied to problems from different fields 

(speech processing, computational biology, finance, robotics, computer vision, natural 

language processing, etc.). As for transportation, researchers have been exploring the 

feasibility of applying machine learning techniques to different transportation research 

areas such as traffic control (Abdulhai et al., 2003; Bingham, 2001; Srinivasan et al., 

2006), incident detection (Jin et al., 2002; Srinivasan et al., 2004; Wang et al., 2008), 

traffic forecasting (Deshpande & Bajaj, 2017; Hong et al., 2011; Ma et al., 2018; 

Stathopoulos et al., 2008; Vlahogianni et al., 2008), prediction of transportation modes 

from raw GPS data and/or mobile phone sensors such as accelerometers and gyroscopes 
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(Dabiri & Heaslip, 2018; Gonzalez et al., 2010; Jahangiri & Rakha, 2015, 2014; X. Zhu 

et al., 2017) etc. Before discussing machine learning in mode choice modeling, we start 

by presenting an overview of machine learning and its main categories (Section 2.2.1). 

Next, we review comparative studies between machine learning and discrete choice 

models (Section 2.2.2) and discuss the differences between the two fields (Section 

2.2.3). 

 

2.2.1. General Description 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that is 

concerned with developing algorithms capable of finding or “learning” patterns in 

empirical data (Wittek, 2014) and generalizing well (maximizing their predictive 

accuracy) on unseen data that was not used for training/estimation. Machine Learning 

algorithms can be divided, according to the “learning” type, to three major categories: 

supervised learning, unsupervised learning, and reinforcement learning. Supervised 

learning requires labeled data to guide the learning algorithm. Labeled data means input 

data that has both independent (explanatory) variables/features and dependent variables 

(classes, targets, outputs, or labels) whose values need to be estimated and predicted. A 

supervised algorithm makes use of a labeled sample to build a classifier that would 

assign labels to both training and test samples. Training sample or dataset is the data 

used for training/estimating the model while test sample or dataset is a data that was not 

used during the training process and whose labels have to be predicted by the model.  

The supervised learning subcategory of ML includes several algorithms such as 

Decision Trees (DTs), Support Vector Machines (SVMs), Artificial Neural Networks 

(ANNs) etc. According to the type of labels, supervised problems can be divided into 
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two main sub-categories, classification and regression. In classification problems, the 

goal is to predict discrete labels (e.g., true or false, spam or not spam, travel modes) 

while the goal of regression problems is to predict continuous variables (e.g., home 

prices, vehicle miles traveled). In unsupervised settings, the labels or dependent 

variables are usually missing and the ML algorithms make use of only independent 

variables/features to identify underlying patterns or structures from an unlabeled 

dataset. The three main sub-categories of unsupervised machine learning are clustering, 

density estimation, and dimensionality reduction. Clustering methods are used to 

discover clusters (groups or classes) of similar characteristics within the data, density 

estimation methods focus on determining the distribution of data, and dimensionality 

reduction techniques project the data from a high dimensional space to lower-

dimensional representations of data. Finally, the third main category of machine 

learning, reinforcement learning, relies on rewards to discover the best decision or 

behavior an algorithm should perform. 

In ML terminology, discrete choice models for mode choice modeling can be 

considered as a supervised classification technique (Hillel et al., 2020) since the goal is 

to model decision-makers’ choices among a finite set of discrete alternatives (i.e., 

classes), given a set of independent variables (i.e., features). However, in this 

dissertation, we focus on unsupervised learning, mainly clustering, for reasons we 

discuss later. 

 

2.2.2. Comparative Studies  

Machine learning techniques, mainly supervised classification algorithms, are 

increasingly being used in mode choice modeling as alternative methods to traditional 
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econometric models. Nijkamp et al. (1996) explored the modal split between rail and 

road transport modes using Artificial Neural Networks and MNL models. Results 

showed that ANN has slightly better generalization performance (e.g., prediction 

accuracy) than the logit model. Xie et al. (2003) compared Decision Trees and Artificial 

Neural Networks with MNL models in the context of commuter mode choice. They 

showed that both DT and ANN provide better prediction accuracy. Vythoulkas and 

Koutsopoulos (2003) used fuzzy sets and concluded that MNL has a slightly worse rate 

of accurate predictions. Artificial Neural Networks have been also applied by Cantarella 

and de Luca (2005) to two case studies with different trip purposes (work vs. 

educational trips). Results showed that ANN has a significant edge over several 

econometric models (MNL, Nested Logit, and Cross-Nested Logit) especially when the 

mode shares are similar. Neural networks with neuro-fuzzy inference systems have been 

also used by Andrade et al. (2006) for shopping mode choice modeling and results 

demonstrated better predictive performance as compared to an MNL model. Several 

other studies have also used neural networks with different architectures in the context 

of travel mode choice analysis and showed that better generalization performance 

results are achieved compared to MNL and/or nested logit models (e.g., Hagenauer and 

Helbich, 2017; Lee et al., 2018; Omrani, 2015; Omrani et al., 2013; Xian-Yu, 2011; 

Zhang and Xie, 2008).  

Support vector machines have been also applied for travel mode choice 

applications. For instance, Zhang and Xie (2008) compared SVM, ANN, and MNL 

while Xian-Yu (2011) compared SVM, ANN and nested logit. Both studies found that 

SVM outperforms ANN and logit models in terms of prediction accuracy. On the other 
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hand, other studies (Omrani, 2015; Omrani et al., 2013) found that ANNs have higher 

accuracy than SVM and MNL models.  

Decision Trees and its variants have been also adopted by several studies. Xie et 

al. (2003) showed that DTs are more efficient than ANNs and guarantee some level of 

interpretability due to the if-then rules used while constructing the trees. People’s mode 

switching behavior when the choice is restricted between two modes only was 

investigated by Tang et al. (2015) using DT and MNL models. It was found that DT 

models achieve higher prediction accuracy especially in detecting switching to minority 

modes. Liang et al. (2018) chose Random Forest (RF), an ensemble of randomly 

constructed decision trees, to estimate households’ travel mode choices and compared 

the results with an MNL model using different sample sizes. First, the results showed 

that the prediction accuracy of the RF model was slightly higher. Second, both models 

achieved the highest accuracy with a sample size between 2,000 and 6,000 

observations. Finally, the accuracies of MNL and RF models fluctuated unsteadily with 

small samples and decreased as the sample size increased. Sekhar et al. (2016) showed 

the superior predictive capability of an RF (98.96%) to an MNL model (77.31%). 

Moreover, Hagenauer and Helbich (2017) compared the predictive performance of an 

MNL model with six machine learning techniques, Naïve Bayes (NB), ANN, SVM, and 

tree-based ensemble methods including Boosting, Bagging, and Random Forest. The 

study showed that MNL had the lowest prediction accuracy while tree-based ensemble 

techniques provided the highest accuracies with RF performing significantly better than 

Bagging and Boosting classifiers. Wang and Ross (2018) also used an ensemble tree-

based classifier called Extreme Gradient Boost (XGB). They showed that both XGB 

and MNL models performed poorly when predicting the choice of modes with small 
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shares. However, the XGB model significantly outperformed the MNL model in terms 

of prediction accuracy when the dataset is balanced. 

The literature is rich with many other studies that have compared discrete choice 

models and supervised machine learning algorithms, particularly classification 

techniques, in the context of mode choice modeling. For a more comprehensive and 

exhaustive review of such comparative studies, readers may refer to the following 

review papers (Hillel et al., 2020; Minal & Sekhar, 2014; Ratrout et al., 2014). The first 

two papers (Minal & Sekhar, 2014; Ratrout et al., 2014) reviewed studies that have used 

ANNs for mode choice modeling problems and concluded that ANNs are successful in 

such applications due to their flexibility and ability to handle large and nonlinear 

datasets. The third and most recent review paper (Hillel et al., 2020) reviewed 73 

studies that have used supervised machine learning algorithms to investigate passenger 

mode choice, including: Logistic Regression (LR), Artificial Neural Networks, Support 

Vector Machines, Decision Trees, and Ensemble Learning (EL). The study shows that 

half of the reviewed articles were published after 2014 while only 14% of the papers 

were published prior to 2007. This highlights the growing trend of using supervised 

machine learning techniques for mode choice modeling in the past few years and 

indicates that such trends are expected to continue in the future. Hillel et al. (2020) also 

argues that machine learning techniques do not provide straightforward behavioral 

interpretability and economic indicators to inform policy making decisions. Out of the 

73 reviewed studies, only four (Andrade et al., 2006; Ding et al., 2018; Subba Rao et 

al., 1998; S. Wang & Zhao, 2019) tried to extract behavioral indicators (e.g., aggregate 

point elasticities, VOT) by performing sensitivity or elasticity analysis while only five 

other studies (Errampalli et al., 2007; Kedia et al., 2015; Kumar et al., 2013; Lee et al., 
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2018; Pulugurta et al., 2013) estimated aggregate mode shares for different policy 

scenarios by changing the variables of  interest and re-estimating the models. 

A few studies in choice modeling considered applications other than travel mode 

choice. For instance, Mohammadian and Miller (2002) showed that ANN outperforms 

nested logit in terms of prediction of household automobile choices. Biagioni et al. 

(2009) developed an ensemble of conditional and unconditional classifiers to explore 

the mode choice at the tour level. First, the unconditional model predicts the mode of 

the first trip in a tour, then the conditional model makes predictions for the remaining 

trips. The best predictive performance was achieved by using Naïve Bayes and Decision 

Trees for the unconditional and conditional classifiers, respectively. Results showed that 

this two-step framework outperforms the traditional MNL model in terms of prediction 

accuracy. Golshani et al. (2018) compared the performance of ANNs with discrete, 

continuous, and discrete-continuous statistical models by modeling travel mode and 

departure time choices. Accelerated hazard model was used to model trip departure time 

as a continuous variable while MNL was used for travel mode choice modeling. 

Moreover, the copula-based approach (Bhat & Eluru, 2009) was employed to jointly 

model the discrete (travel mode) and continuous decisions (departure time). It was 

found that the ANN models have a significant edge over the three statistical models in 

terms of prediction accuracy and implementation.  

Contrary to the above-mentioned literature, few contrast studies have shown no 

clear advantage of machine learning over econometric models in terms of prediction 

power. For instance, Sayed and Razavi (2000) compared ANNs with MNL and MNP in 

the context of freight transport mode choice and reported similar accuracy for the three 
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approaches. Similarly, Hensher and Ton (2000) found no clear superior performance for 

ANN over nested logit. 

Beyond the comparison between the two fields and the use of supervised 

machine learning techniques, some recent studies have relied on generative 

(unsupervised) methods. For instance, Van Cranenburgh and Alwosheel (2019) 

investigated decision rule heterogeneity among decision-makers using deep learning 

networks while Wong et al. (2018) used a restricted Boltzmann machine to estimate 

latent (or unobserved) variables without relying on measurement indicators of the latent 

variables and attitudinal questions which are typically used in behavioral studies and 

hybrid discrete choice models (or Integrated Choice and Latent Variable (ICLV) 

models).  

 

2.2.3. Differences  

Although most of the aforementioned machine learning techniques have shown 

a superior prediction accuracy compared to econometric discrete choice models, 

econometricians and transportation researchers are still relying on traditional 

econometric models instead of machine learning algorithms. Moreover, researchers 

from both disciplines usually fail to communicate (Karlaftis & Vlahogianni, 2011) and 

make the most of both approaches. This may be due to the differences in the 

terminology, philosophy and goals, model evaluation, and assumptions/limitations of 

the two approaches as further explained below (Karlaftis & Vlahogianni, 2011).  

2.2.3.1. Terminology 

First, although some studies have made an effort to bridge the gap between the 

different concepts and terms used in machine learning and econometric models (Sarle, 
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1994), terminology remains a main source of confusion for researchers when trying to 

compare or relate the two approaches (Table 1).  

Table 1: Equivalent terminology between Machine Learning and Econometric Models 

(adapted from Sarle (1994); Karlaftis and Vlahogianni (2011); Hillel et al., (2020)) 

Machine Learning Econometric Models 

Targets, outputs, labels  Dependent variables 

Clusters Classes 

Classes Alternatives 

Input, features Independent variables, attributes 

Errors Residuals 

Training Estimation 

Error or cost function Estimation criterion 

Weights Parameter estimates or coefficients 

Functional links Transformations 

Intercept/bias Alternative Specific Constant (ASC) 

2.2.3.2. Philosophy and Goals  

Second, the main difference lies in the underlying philosophy and goals of the 

two approaches. Many machine learning algorithms are usually known as “black 

boxes”, in which highly complex non/parametric functions are used in order to improve 

the model prediction accuracy. The term “black box” is used since underlying causal 

relationships and inference from the explanatory variables are de-emphasized. 

Therefore, machine learning models can be referred to as “predictive” models that target 

high classification and prediction accuracy at the expense of interpretability, although 

few studies have shown that different techniques can be applied to extract some 

behavioral indicators (Andrade et al., 2006; Ding et al., 2018; Wang et al., 2020; Wang 

& Zhao, 2019). On the other hand, traditional discrete choice models are known as 

“explanatory” models that assume parametric relationships between the utility (or 
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desirability) of each alternative and its potential attributes. They can be used to directly 

infer marginal effects and economic indicators such as elasticities, willingness to pay, 

and consumer welfare measures. However, these explanatory models might not 

guarantee high prediction accuracy. Moreover, traditional DCMs are rooted in 

microeconomic theories of human decision-making behavior (Bierlaire & Lurkin, 

2017). It is believed that this connection is the main reason econometricians and 

transportation planners have heavily relied on discrete choice models and specifically 

the MNL formulation of McFadden (Brathwaite et al., 2017; McFadden, 2001). It is 

also believed that the main reason that kept econometricians from trusting machine 

learning is the missing link with economic theories (Brathwaite et al., 2017). 

2.2.3.3. Assumptions and Limitations 

Third, another difference is in the assumptions/limitations of the two 

approaches. Econometric models impose a priori and often strict statistical assumptions 

regarding the error term while machine learning techniques are more flexible since few 

assumptions to none are made. Furthermore, econometric models encounter difficulties 

when dealing with complex datasets with high degrees of nonlinearity (Karlaftis & 

Vlahogianni, 2011; Lee et al., 2018), outliers or noisy data, and correlated explanatory 

variables.  

2.2.3.4. Model Evaluation 

Finally, another main difference lies in the model evaluation and selection 

process of the best model. Machine learning models are mainly evaluated using 

performance (prediction) measures since the main goal is building a model with high 

prediction accuracy. Performance measures can be categorized as discrete and 

probabilistic metrics. The main discrete performance is “Confusion matrix”, a matrix 
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with four different combinations of predicted and actual values: True Positives (TP), 

True Negatives (TN), False Positives (FP), and False Negatives (FN). It is extensively 

used in computing the following discrete performance metrics: accuracy (proportion of 

total number of predictions that were correct), precision (proportion of predicted 

positive cases that were correct, TP/(TP + FP)), recall (proportion of positive cases that 

were correctly identified, TP/(TP + FN)), and F1-score (a harmonic mean of precision 

and recall). The main probabilistic metrics are: i) Receiver Operating Characteristic 

(ROC) curve, a plot of the True Positive rate against the False Positive rate at all 

classification thresholds; ii) Mean Absolute Error (MAE) or Mean Squared Error 

(MSE), the average difference between the actual observations and the predicted 

observations; iii) Logarithmic Loss defined as follows: −
1

𝑁
∑ ∑ 𝑦𝑛𝑗 log(𝑝𝑛𝑗)𝑀

𝑗=1
𝑁
𝑛=1  

where 𝑁 is the sample size, 𝑀 is the number of classes, 𝑦𝑛𝑗 indicates whether or not 

observation 𝑛 belongs to class 𝑗, and 𝑝𝑛𝑗 is the probability of observation 𝑛 belonging 

to class 𝑗; iv) Bayesian Information Criterion (BIC). Several other performance 

measures exist but the choice of the right one depends on the type of the application.  

Further, overfitting is a main concern in machine learning. A model might 

perfectly fit the training data but fail to make good predictions on future unseen 

datasets. Therefore, what matters in model evaluation is the generalization performance, 

i.e. the predictive performance of the developed model on unseen (or test) data. Several 

techniques can be used when evaluating the generalization performance. The simplest 

method is the holdout technique. First, the data is randomly divided into two sets, a 

training set and testing set. Second, the model is fitted using the training set only. 

Finally, the fitted model is applied to the testing set and performance measures are 

estimated. In practice, the most famous and used technique is the 𝑘-fold cross-
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validation. This technique requires dividing the data into 𝑘 equally sized sets (or folds). 

The model is then trained on 𝑘 − 1 folds and tested on the remaining one. This process 

is repeated 𝑘 times in order to test the generalization performance of the model on the 

entire data. Another technique is called leave-out method, a special case of 𝑘-fold cross 

validation technique where 𝑘 is equal to 𝑁 (number of observations).  

As for econometric discrete choice models, models are usually evaluated on the 

basis of parameter estimate signs and magnitudes, reasonableness of estimated 

economic measures (e.g., willingness to pay, elasticities), statistical goodness-of-fit 

measures such as the likelihood ratio test, the robust t-test, and the adjusted rho-square, 

and through comparison of information criteria such as Akaike Information Criteria 

(AIC) and Bayesian Information Criteria (BIC) etc. Econometric models can also be 

evaluated on their prediction capability although it is not as commonly practiced as in 

machine learning. 

To sum up, machine learning models are usually evaluated on the basis of their 

predictive power while the evaluation techniques in econometric analysis have 

traditionally mainly focused on the explanatory power of the models. Recently, some 

studies have used the concept of cross validation technique to evaluate and compare the 

predictive power of different discrete choice models (e.g., Robin et al., 2009; Robin and 

Bierlaire, 2012; Sfeir et al., 2020). They randomly divided the data into a train and test 

set. Then, they estimated the parameters of the model with the train set and calculated a 

measure of fit of the estimated model, typically the log-likelihood, on the test set. Other 

studies from the machine learning community have used different sensitivity analysis 

techniques to explore the effect of explanatory variables on dependent variables 

(outputs) (Golshani et al., 2018; Hagenauer and Helbich, 2017; Lee et al., 2018, to name 
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a few). However, most of the abovementioned comparative studies (section 2.2.2) have 

only compared the predictive power of the two approaches. Moreover, Hillel et al. 

(2020) found in their review paper that 60 out of the 73 reviewed studies used only 

discrete metrics to evaluate model performance. Relying on discrete metrics only and 

neglecting probabilistic metrics during the evaluation process is risky and will most 

likely lead to non-representative mode shares especially in the case of imbalanced 

datasets since discrete metrics will always assign observations to the classes 

(alternatives) with the highest probabilities (Hillel et al., 2020). Furthermore, any 

comparative study or hybrid framework which integrates both approaches has to 

investigate the explanatory power as well as the predictive power (mainly probabilistic 

metrics) of the developed models before rushing to conclusions as to which approach is 

better.  

 

2.3. Combining the Two Fields 

As previously mentioned, both approaches have their advantages and 

disadvantages. Recently, some studies have tried to connect the two fields through 

hybrid frameworks. For instance, a two-stage sequential logit-Artificial Neural 

Networks framework for choice modeling has been proposed by Gazder and Ratrout 

(2016). First, they developed several logit models for different existing and hypothetical 

mode choice situations. Second, they trained different ANN models to predict the mode 

choice using the logit probabilities as input. Finally, they compared the accuracy of the 

integrated approach with separate logit and ANN models. Results showed that the 

proposed model improves the generalization performance (prediction accuracy) in 

multinomial choice situations while logit models have marginally higher prediction 
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accuracies in binary choice situations. Sifringer et al. (2018) also developed a two-stage 

sequential model by adding an extra term, estimated through a Deep Neural Network 

(DNN), to the utilities of the logit model. The extra term was estimated separately by 

using all disregarded variables in the logit model as input to the DNN model. This 

approach improved the log-likelihood of the simple logit model by around 15% without 

weakening the statistical significance of the logit parameters. Along the same lines, 

Sifringer et al. (2020) have extended the MNL and nested logit by integrating a non-

linear representation arising from an ANN into the utilities to improve the specification 

of both logit models. Han et al. (2020) developed a TasteNet-MNL model by 

embedding a neural network into the utilities of a logit model to improve the systematic 

representation of heterogeneity. Both sub-components of the TasteNet-MNL, the neural 

network and the logit model, are estimated simultaneously and the overall model can be 

considered as an extension of the sequential model of Sifringer et al. (2018). Another 

choice model that combines neural networks and random utility models (Wong & 

Farooq, 2019) has been developed by using the concept of residual learning within a 

neural network architecture to allow for training of deep neural networks and as such 

identifying complex sources of unobserved heterogeneity.  

 

2.4. This Dissertation in Context 

Most of the previous studies have focused on applying supervised machine 

learning to classifications tasks such as mode choice modeling or on combining 

machine learning techniques (mostly Neural Networks) and discrete choice models in 

sequential or simultaneous frameworks. Furthermore, the majority of studies that have 

used machine learning methods as alternatives to discrete choice models for mode 
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choice modeling have mostly focused on supervised applications and prediction 

accuracy (Karlaftis and Vlahogianni, 2011; Wong and Farooq, 2019; Hillel et al., 2020) 

often at the expense of economic interpretability due to the disconnection of such 

techniques from economic principles and theories (Brathwaite et al., 2017). Some recent 

studies have however shown that machine learning techniques can provide practical 

economic information (Brathwaite et al., 2017; Wang et al., 2020).  

Most of the studies on machine learning for mode choice modeling have been 

related to classification tasks while clustering techniques have not yet been rigorously 

addressed in the literature, although few studies have addressed this clustering aspect of 

machine learning. For instance, Han (2019) developed a nonlinear-LCCM by using 

neural networks to specify the class membership model. The proposed model with 8 

latent classes outperformed the best LCCM with 6 latent classes in terms of prediction 

accuracy. However, the nonlinear-LCCM is less transparent and loses interpretability at 

the latent class level due to the “black-box” nature of neural networks. 

This dissertation aims at embedding unsupervised machine learning (clustering) 

in an econometric framework that satisfies McFadden’s vision of a proper choice 

model. Clustering methods are used to discover heterogeneous subgroups or latent 

classes within a population by allocating similar observations (e.g., individuals with 

similar socio-economic/demographic characteristics) to the same class/cluster. Different 

clustering techniques can be used including heuristics, hierarchical, k-means, model-

based clustering, etc. We opt to rely on two different clustering approaches, mixture 

model-based clustering and Gaussian Processes. In the former approach, each 

observation (e.g., socio-economic/demographic characteristics of a decision-maker) is 

assumed to be generated from a finite mixture of distributions where each distribution 
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represents a latent class/cluster (McLachlan et al., 2019). Most of the studies in Section 

2.1.2 have used mixtures of distributions to represent the random distribution of taste 

parameters. Moreover, the majority of research on random heterogeneity has focused on 

improving the flexibility of utilities and parameter estimates. Instead, in this 

dissertation, we present an alternative mixture approach which consists of using a 

mixture of distributions to formulate the latent classes (rather than the choice model 

parameters) and improve their flexibility. In other words, instead of defining more 

complex distribution functions, we use, in the first proposed model (GBM-LCCM), a 

mixture of distributions to cluster decision-makers. In the machine learning community, 

this is known as mixture models and it is widely used as an unsupervised technique to 

cluster data into homogeneous groups/clusters. We aim to compare this approach to its 

traditional discrete choice model counterpart, the LCCM, in terms of its ability to 

estimate different classes and improve prediction accuracy while keeping model 

interpretability and being useful for policy testing and inferring economic indicators. 

The rationale for using model-based clustering in this dissertation, as opposed to other 

techniques, is threefold. First, a probabilistic method is needed to estimate the proposed 

latent class – choice model framework simultaneously as opposed to a two-stage 

sequential approach. The simultaneous estimation usually provides more efficient 

estimates than the sequential estimation. Second, mixture models allow more flexibility 

than the utility specification of latent classes which is usually defined to be linear in 

parameters. Third, such techniques provide a framework for evaluating the clusters, 

meaning that interpretability can be maintained to a large extent (Biernacki et al., 2000). 

However, the Gaussian-Bernoulli Mixture Model assumes that continuous and 

categorical variables are uncorrelated and as such the relations between the different 
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variables used for clustering cannot be well determined. Moreover, Gaussian-Bernoulli 

Mixture Models as well as simple neural networks are parametric models. Such models 

assume specific functional form for the distribution (or mapping function) and as such 

have predefined numbers of parameters that once learned (estimated) would be used for 

predictions. On one hand, parametric assumptions make the learning process 

(estimation) easier, faster and in less need of training data to learn the parameters. On 

the other hand, parametric models are constrained to the functional forms they assume, 

which restricts the flexibility of the learning process and might lead to poor 

generalization or prediction accuracies (Ghahramani, 2015).  

In order to overcome the limitations of parametric clustering models while 

improving the flexibility and generalization performance of LCCM, nonparametric 

machine learning algorithms could be used instead. Such methods are data-driven, do 

not assume predefined functional forms and consequently are free to learn any 

functional form from the training data. These methods still contain parameters to 

control the complexity of the model rather than the functional form of the distribution 

(C. Bishop, 2006). Gaussian Process is one such method that avoids simple parametric 

assumptions and provides a fully Bayesian framework for modeling (Rasmussen & 

Williams, 2006). These characteristics make GPs very attractive for modeling 

uncertainties and complex nonlinear problems. Moreover, Gaussian Process can be 

mathematically equivalent to neural networks with very large number of hidden units 

(Neal, 1996). However, Gaussian Processes are generally easier to handle since the 

estimation of a neural network is usually complicated by the fact that the optimization 

problem might have several local optima while the posterior of the Gaussian Process for 

regression and classification is convex (Rasmussen & Williams, 2006). One 
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shortcoming of such models is that their nonparametric nature might make the LCCM 

less transparent at the class membership model. Note that, lately, Gaussian Processes 

have been receiving growing attention and are being applied to many regression and 

classification applications within transportation such as travel time prediction (Idé & 

Kato, 2009; Rodrigues et al., 2016), crowdsourced traffic data (Rodrigues et al., 2019; 

Rodrigues & Pereira, 2018), congestion and routing models (Liu et al., 2013), traffic 

volume forecasting (Xie et al., 2010), censored demand modeling (Gammelli et al., 

2020), etc. However, in this dissertation, GPs are used as clustering techniques for 

mode choice modeling. 

Finally, the two proposed models can be considered as new members of the 

Hybrid Choice Model (HCM) family since they deal with discrete latent 

variables/classes. The HCM was developed by several researchers (Ben-Akiva et al., 

2002a, 2002b; McFadden, 1986; Walker and Ben-Akiva, 2002, to name a few) by 

incorporating latent variables in discrete choice models to model unobserved 

heterogeneity, improve goodness-of-fit and efficiency, extend policy relevance, and 

enhance behavioral realism (Abou-Zeid & Ben-Akiva, 2014). Moreover, the HCM is 

widely used to deal with the problems of combining Revealed Preferences (RP) data, 

Stated Preferences (SP) data, and psychometric indicators. This paper focuses on the 

LCCM family of the HCM’s by defining the class membership model, first as a mixture 

model and second as a Gaussian Process. However, the problems of combining RP data 

with SP data and making use of attitudinal indicators to define latent variables are 

beyond the scope of this dissertation. 
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CHAPTER 3 

GAUSSIAN-BERNOULLI MIXTURE LATENT CLASS 

CHOICE MODEL 
 

In this chapter, we develop a hybrid model that consists of using Gaussian-

Bernoulli Mixture Models (GBMMs), a model-based clustering approach, as a first-

stage clustering tool to divide the population into homogenous groups/latent classes 

while utilizing discrete choice models to develop class-specific choice models.   

Gaussian Mixture Models (GMMs) are widely used in machine learning, 

statistical analysis, pattern recognition, and data mining and can be easily formulated to 

define discrete latent variables (C. Bishop, 2006). GMM is a combination of 𝐾 

Gaussian densities where each density is a component (latent class) of the mixture and 

has its own mean vector and covariance structure. These models are more flexible than 

other clustering techniques (e.g., k-means or hierarchical clustering) since the 

covariance matrix of GMM can account for correlation between explanatory variables 

and clusters using different structures (McNicholas & Murphy, 2010). Particularly, the 

covariance matrices of GMM can have different structures such as: full covariance 

structure wherein each latent class has its own general covariance matrix, a diagonal 

covariance structure wherein each latent class has its own diagonal covariance matrix, a 

spherical structure wherein each latent class has its own single variance regardless of 

the number of explanatory variables, or a constrained version of one of the three 

previous structures (e.g., a tied covariance structure wherein all latent classes share the 

same general covariance matrix). We believe this flexible approach would help capture 

underlying behavioral heterogeneity and complex behavioral patterns within the 

population. However, GMM can only deal with continuous variables. Therefore, we 
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rely on a joint Gaussian-Bernoulli Mixture Model to assign decision-makers 

probabilistically to different latent classes using both continuous and discrete socio-

economic characteristics while we make use of random utility models (e.g., logit 

models) for class-specific choice models. The full model is called Gaussian-Bernoulli 

Mixture - Latent Class Choice Models (GBM-LCCM). This is similar to the well-

known LCCM that allows capturing heterogeneity in the choice process by allocating 

people to a set of 𝐾 homogeneous classes.  

The next Section (3.1) presents the LCCM formulation while the subsequent 

Section (3.2) develops the formulation and estimation technique of the proposed 

Gaussian-Bernoulli Mixture Latent Class Choice Model. 

 

3.1. Latent Class Choice Model 

LCCM consists of two components, a class membership model and a class-

specific choice model. The class membership model estimates the probability that a 

decision-maker belongs to a specific class, typically as a function of his/her 

characteristics. The utility of belonging to latent class 𝑘 for decision-maker 𝑛 is defined 

as follows: 

𝑈𝑛𝑘 = 𝑆′𝑛𝛾𝑘 + 𝜈𝑛𝑘 , (6) 

with 𝑆𝑛 a vector of socio-economic/demographic variables of decision-maker 𝑛 

including a constant, 𝛾𝑘 the corresponding vector of unknown parameters that need to 

be estimated statistically using the available data, and 𝜈𝑛𝑘 a random disturbance term 

that is assumed to follow an independently and identically distributed (𝑖𝑖𝑑) Extreme 

Value Type I distribution over decision-makers and classes.  
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The probability of decision-maker 𝑛 belonging to latent class 𝑘 is then expressed 

as follows: 

𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛, 𝛾𝑘) =
𝑒𝑆𝑛

′ 𝛾𝑘

∑ 𝑒𝑆𝑛
′ 𝛾𝑘′𝐾

𝑘′=1

 , (7) 

with 𝑞𝑛𝑘 equal to 1 if decision-maker 𝑛 belongs to latent class 𝑘 and 0 otherwise. 

Conditioned on the class membership of the decision-maker, the class-specific 

choice model formulates the probability of choosing a specific alternative as a function 

of the exogenous attributes of the alternatives. As such, the utility of decision-maker 𝑛 

choosing alternative 𝑗 during time period / choice occasion 𝑡, conditional on him/her 

belonging to class 𝑘, is specified as: 

𝑈𝑛𝑗𝑡|𝑘 = 𝑋𝑛𝑗𝑡
′ 𝛽𝑘 + 𝜀𝑛𝑗𝑡|𝑘, (8) 

where 𝑋𝑛𝑗𝑡 is a vector of exogenous attributes related to alternative 𝑗 during time period 

𝑡 and including a constant, 𝛽𝑘 is the corresponding vector of unknown parameters that 

need to be estimated statistically using the available data, and 𝜀𝑛𝑗𝑡|𝑘 is a random 

disturbance term that is assumed to follow an 𝑖𝑖𝑑 Extreme Value Type I distribution 

over alternatives, decision-makers and classes.  

Conditioned on class 𝑘, the probability of decision-maker 𝑛 selecting an 

alternative 𝑗 in time period 𝑡 can then be written as follows: 

𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘) =
𝑒𝑉𝑛𝑗𝑡|𝑘

∑ 𝑒𝑉𝑛𝑗′𝑡|𝑘𝐽
𝑗′=1

 , (9) 

with 𝐽 being the total number of alternatives.  

Assuming that the conditional choice probabilities (Equation 9) for decision-

maker 𝑛 over all time periods 𝑇𝑛 are conditionally independent, the conditional 

probability of observing a (𝐽 × 𝑇𝑛) matrix of choices 𝑦𝑛 can be expressed as follows:  
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𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘) = ∏ ∏ (𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡 , 𝑞𝑛𝑘 = 1, 𝛽𝑘))
𝑦𝑛𝑗𝑡

𝐽

𝑗=1

,

𝑇𝑛

𝑡=1

 (10) 

with 𝑋𝑛 being a matrix consisting of 𝐽 × 𝑇𝑛 vectors of 𝑋𝑛𝑗𝑡, 𝑦𝑛 a (𝐽 × 𝑇𝑛) matrix of all 

choices of individual 𝑛 during all time periods 𝑇𝑛 and consisting of choice indicators 

𝑦𝑛𝑗𝑡, and 𝑦𝑛𝑗𝑡 a choice indicator equal to 1 if decision-maker 𝑛 chooses alternative 𝑗 

during time period 𝑡 and 0 otherwise. 

The unconditional probability of the observed choice of decision-maker 𝑛 is 

then obtained by summing the product of the class membership probability (Equation 7) 

by the conditional choice probability (Equation 10) over all latent classes (we omit the 

dependencies on the left hand side of the equation to make the notation less cluttered): 

𝑃(𝑦𝑛) = ∑ 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛, 𝛾𝑘)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘)

𝐾

𝑘=1

. (11) 

Finally, the likelihood over a sample of independent decision-makers 𝑁 is: 

𝑃(𝑦) = ∏ ∑ 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛, 𝛾𝑘)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘)

𝐾

𝑘=1

𝑁

𝑛=1

. (12) 

 

3.2. Gaussian-Bernoulli Mixture Latent Class Choice Model 

We propose to replace the class membership model, 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛, 𝛾𝑘), by a 

Gaussian-Bernoulli Mixture Model (GBM), a probabilistic machine learning approach 

used for clustering (Figures 2 and 3) where a Gaussian Mixture Model (GMM) is used 

for continuous variables and a Bernoulli Mixture Model (BMM) for discrete/binary 

variables. We split the vector of characteristics of decision-maker 𝑛 (𝑆𝑛) into two sub-

vectors, 𝑆𝑐𝑛 and 𝑆𝑑𝑛. 𝑆𝑐𝑛  accounts for the continuous characteristics of decision-maker 

𝑛 with dimension 𝐷𝑐 equal to the number of elements in 𝑆𝑐𝑛  while 𝑆𝑑𝑛  accounts for the 
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discrete/binary characteristics of decision-maker 𝑛 with dimension 𝐷𝑑 equal to the 

number of elements in 𝑆𝑑𝑛. 

 

Figure 2: Gaussian-Bernoulli Mixture - Latent Class Choice Model (GBM-LCCM) 

 

 
Figure 3: Graphical Representation of the proposed Gaussian-Bernoulli Mixture Latent 

Class Choice Model (GBM-LCCM) for a set of N decision-makers 
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GMM is a combination of 𝐾 Gaussian densities where each density, 

𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘), is a component of the mixture and has its own mean 𝜇𝑐𝑘 (with 

dimension equal to the number of elements in 𝑆𝑐𝑛), covariance 𝛴𝑐𝑘, and mixing 

coefficient 𝜋𝑘 (the overall probability that an observation comes from component 𝑘) (C. 

Bishop, 2006). BMM is a combination of 𝐾 mixture components where each 

component 𝑘 is a product of 𝐷𝑑 independent Bernoulli probability functions and has its 

own mean vector 𝜇𝑑𝑘. 

Replacing the class membership probability by a GBM is not a straightforward 

task. The probability of decision-maker 𝑛 belonging to class 𝑘, 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛), is the 

posterior probability of the GBM and cannot be part of the likelihood function that 

needs to be maximized. Instead, we estimate the probability of observing decision-

maker 𝑛 with characteristics 𝑆𝑛 = {𝑆𝑐𝑛, 𝑆𝑑𝑛} given that he/she belongs to latent class 𝑘 

(Figure 2). Note that in Figure 2 the causality goes from the latent classes to the socio-

economic variables and not the other way around as in the traditional LCCM (Figure 1). 

This stems from the fact that Gaussian-Bernoulli Mixture Models are generative models 

that learn the joint probability of the features/characteristics (𝑆𝑛) and the labels/classes 

(𝑞𝑛𝑘) then make use of Bayes’ theorem to calculate the posterior probability 

𝑃(𝑞𝑛𝑘 = 1|𝑆𝑛) (C. Bishop, 2006). We follow the same steps to estimate the proposed 

GBM-LCCM. First, we estimate the joint probability of the model then we calculate the 

posterior and marginal probabilities by using Bayes’ rules. The graphical representation 

of the proposed model is shown in Figure 3.  

Given the conditional independence properties of the graphical model structure 

of the proposed model and assuming that the continuous and binary data of the 

Gaussian and Bernoulli distributions are independent, the joint probability of 𝑆𝑐𝑛, 𝑆𝑑𝑛, 



 

 56 

𝑦𝑛  and 𝑞𝑛𝑘  can be specified as the product of the class probability (first term on the 

right hand side below), the densities of 𝑆𝑐𝑛  and 𝑆𝑑𝑛  conditional on the class (second 

and third terms) and the choice probability conditional on the class (fourth term), as 

follows: 

𝑃(𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝑦𝑛, 𝑞𝑛𝑘 = 1|𝑋𝑛, 𝛽𝑘, 𝜋𝑘 , 𝜇𝑐𝑘, Σ𝑐𝑘, 𝜇𝑑𝑘)

= 𝑃(𝑞𝑛𝑘 = 1|𝜋𝑘)𝑃(𝑆𝑐𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑐𝑘, Σ𝑐𝑘)𝑃(𝑆𝑑𝑛|𝑞𝑛𝑘  =  1, 𝜇𝑑𝑘)   

× 𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘), 

(13) 

where: 

𝑃(𝑞𝑛𝑘 = 1|𝜋𝑘) =  𝜋𝑘 , (14) 

∑ 𝜋𝑘

𝐾

𝑘=1

= 1, (15) 

𝑃(𝑆𝑐𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑐𝑘, Σ𝑐𝑘) = 𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘)  

=
1

√(2𝜋)𝐷𝑐|Σ𝑐𝑘|
𝑒𝑥𝑝 (−

1

2
(𝑆𝑐𝑛 − 𝜇𝑐𝑘)′Σ𝑐𝑘

−1(𝑆𝑐𝑛 − 𝜇𝑐𝑘)), 
(16) 

𝑃(𝑆𝑑𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑑𝑘) = ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)

𝐷𝑑

𝑖=1

, (17) 

with |𝛴𝑐𝑘| the determinant of the covariance matrix, 𝑆𝑑𝑛𝑖 a binary characteristic of 

decision-maker 𝑛 and 𝜇𝑑𝑘𝑖 its corresponding mean.  

The joint probability of 𝑆𝑐𝑛, 𝑆𝑑𝑛 and 𝑦𝑛 can be then obtained by taking the 

marginal of Equation (13) over all components 𝐾: 

𝑃(𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝑦𝑛|𝑋𝑛 , 𝛽, 𝜋, 𝜇𝑐 , Σ𝑐 , 𝜇𝑑)

= ∑ 𝑃(𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝑦𝑛, 𝑞𝑛𝑘 = 1|𝑋𝑛, 𝛽𝑘 , 𝜋𝑘, 𝜇𝑐𝑘 , Σ𝑐𝑘 , 𝜇𝑑𝑘)

𝐾

𝑘=1

, 
(18) 

where 𝛽 is a matrix consisting of 𝐾 vectors of 𝛽𝑘, 𝜋 is a vector consisting of 𝐾 mixing 

coefficients 𝜋𝑘, 𝜇𝑐 is a matrix consisting of 𝐾 mean vectors of continuous variables 𝜇𝑐𝑘, 



 

 57 

𝛴𝑐 is a structure consisting of 𝐾 covariance matrices 𝛴𝑐𝑘, and 𝜇𝑑 is a matrix consisting 

of 𝐾 mean vectors of discrete variables 𝜇𝑑𝑘. 

Finally, the likelihood function of the proposed hybrid model for all decision-

makers 𝑁 is formulated as follows (we omit the dependencies on the left hand side of 

the equation to make the notation less cluttered): 

𝑃(𝑆𝑐, 𝑆𝑑, 𝑦) = ∏ 𝑃(𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝑦𝑛|𝑋𝑛, 𝛽, 𝜋, 𝜇𝑐, Σ𝑐, 𝜇𝑑)

𝑁

𝑛=1

 

= ∏ ∑ 𝜋𝑘𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘) ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)

𝐷𝑑

𝑖=1

𝐾

𝑘=1

𝑁

𝑛=1

 

× ∏ ∏ (
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

)

𝑦𝑛𝑗𝑡𝐽

𝑗=1

𝑇𝑛

𝑡=1

. 

(19) 

Usually, traditional discrete choice models are estimated using maximum 

likelihood estimation techniques which aim at maximizing the likelihood of the 

observed data given the model parameters. However, maximizing the log-likelihood of 

both LCMM and GBM-LCCM is a complex task due to the summation over 𝑘 that will 

appear inside the logarithm of Equations 12 and 19. Setting the derivatives of the log-

likelihood to zero will not lead to a closed-form solution (C. Bishop, 2006). Moreover, 

maximizing the log-likelihood of a discrete choice model with discrete latent variables, 

such as LCCM, becomes more difficult as the number of classes, and consequently the 

number of parameters, increases. With larger number of classes and parameters, the 

calculation of the gradient becomes slower and empirical singularity might arise at 

some iterations making the inversion of the Hessian matrix numerically challenging  

(Train, 2008).  
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The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is a two-

stage iterative maximization technique that overcomes the aforementioned 

complications by repeatedly maximizing an expectation or a lower bound function of 

the likelihood  (Train, 2008). Several studies have applied EM algorithms to discrete 

choice model applications with mixing distributions or discrete latent variables (Bhat, 

1997; El Zarwi, 2017b; Train, 2008, to name a few) and the results showed that such 

techniques are computationally attractive. The EM algorithm framework consists of two 

main steps, E (expectation) and M (maximization). In the former (E-step), the 

expectations of the latent variables conditioned on the current estimates of the unknown 

parameters and the observed variables are estimated, while in the latter (M-step), the 

expectation of the log-likelihood is maximized, conditioned on the observed variables 

and the expectations of the latent variables obtained from the E-step, to update the 

estimates of the unknown parameters. The algorithm alternates between these two steps 

until a predefined convergence criterion is satisfied. In this dissertation, an EM-based 

algorithm is derived and implemented for estimating the proposed GBM-LCCM. 

 

3.2.1. EM Algorithm 

The first step of the EM algorithm requires writing the joint likelihood function 

(Equation 19) assuming that the clusters (latent classes, 𝑞𝑛𝑘) are observed: 

𝑃(𝑆𝑐, 𝑆𝑑, 𝑦, 𝑞) = ∏ ∏ [𝜋𝑘𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘 , Σ𝑐𝑘) ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)

𝐷𝑑

𝑖=1

]

𝑞𝑛𝑘𝐾

𝑘=1

𝑁

𝑛=1

 

× ∏ ∏ ∏ ∏ [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝑦𝑛𝑗𝑡𝑞𝑛𝑘𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(20) 
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Taking the logarithm of the likelihood, the function breaks into two separate 

parts, one for each of the two sub-models (class membership model and class-specific 

choice model), as follows: 

𝐿𝐿 = ∑ ∑ 𝑞𝑛𝑘𝑙𝑜𝑔 [𝜋𝑘𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘) ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)

𝐷𝑑

𝑖=1

]

𝐾

𝑘=1

𝑁

𝑛=1

+ ∑ ∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝑞𝑛𝑘𝑙𝑜𝑔 [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(21) 

Now, the unknown parameters {𝜇𝑐𝑘, Σ𝑘, 𝜇𝑑𝑘, 𝜋𝑘 , 𝛽𝑘} of each component 𝑘 can be 

found by setting the derivatives of the above log-likelihood with respect to each of the 

unknown parameters to zero if and only if 𝑞𝑛𝑘 is known. To find the values of 𝑞𝑛𝑘, we 

estimate the expectation of 𝑞𝑛𝑘 (E-step) using Bayes’ theorem: 

𝑃(𝑞𝑛𝑘 = 1|𝑦𝑛, 𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝑋𝑛, 𝜇𝑐𝑘, Σ𝑐𝑘, 𝜇𝑑𝑘 , 𝜋𝑘, 𝛽𝑘) 

∝ 𝑃(𝑞𝑛𝑘 = 1|𝜋𝑘)𝑃(𝑆𝑐𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑐𝑘, Σ𝑐𝑘 )𝑃(𝑆𝑑𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑑𝑘 ) 

× 𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘) 

∝ 𝜋𝑘𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘) ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)

𝐷𝑑

𝑖=1

 

× ∏ ∏ [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒
𝑋

𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝑦𝑛𝑗𝑡𝐽

𝑗=1

𝑇𝑛

𝑡=1

, 

(22) 

𝐸[𝑞𝑛𝑘] = 𝛾𝑞𝑛𝑘

=

𝜋𝑘𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘) ∏ 𝜇𝑑𝑘𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘𝑖
)

(1−𝑆𝑑𝑛𝑖)𝐷𝑑
𝑖=1 ∏ ∏ [

𝑒𝑋𝑛𝑗𝑡
′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝑦𝑛𝑗𝑡

𝐽
𝑗=1

𝑇𝑛
𝑡=1

∑ [𝜋𝑘′𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘′, Σ𝑐𝑘′) ∏ 𝜇𝑑𝑘′𝑖

𝑆𝑑𝑛𝑖(1 − 𝜇𝑑𝑘′𝑖
)

(1−𝑆𝑑𝑛𝑖)𝐷𝑑
𝑖=1

∏ ∏ [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘′

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘′𝐽

𝑗′=1

]

𝑦𝑛𝑗𝑡

𝐽
𝑗=1

𝑇𝑛
𝑡=1 ]𝐾

𝑘′=1

 . 

(23) 
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It is to be noted that 𝜋𝑘 (Equation 14) is considered as the prior probability of 

𝑞𝑛𝑘 = 1 while 𝛾𝑞𝑛𝑘
 (Equation 23) is the corresponding posterior probability. 

Next, the likelihood should be maximized to find the unknown parameters. 

However, since Equation 21 cannot be maximized directly due to the presence of latent 

variables 𝑞𝑛𝑘, we consider instead the expected value of the log-likelihood, where the 

expectation is taken w.r.t. 𝑞𝑛𝑘. 

Making use of Equations 21 and 23, gives: 

𝐸[𝐿𝐿] = ∑ ∑ 𝛾𝑞𝑛𝑘
(𝑙𝑜𝑔𝜋𝑘 + 𝑙𝑜𝑔𝒩(𝑆𝑐𝑛|𝜇𝑐𝑘, Σ𝑐𝑘)

𝐾

𝑘=1

𝑁

𝑛=1

+ ∑[𝑆𝑑𝑛𝑖𝑙𝑜𝑔𝜇𝑑𝑘𝑖 + (1 − 𝑆𝑑𝑛𝑖)𝑙𝑜𝑔(1 − 𝜇𝑑𝑘𝑖)]

𝐷𝑑

𝑖=1

)

+ ∑ ∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝛾𝑞𝑛𝑘
𝑙𝑜𝑔 [

𝑒𝑋𝑛𝑗𝑡
′ 𝛽𝑘

∑ 𝑒
𝑋

𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

] 

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(24) 

Setting the derivatives of the expected log-likelihood with respect to the 

unknown parameters to zero, we obtain the solutions of the unknown parameters as 

follows: 

𝜇𝑐𝑘 =
1

𝑁𝑘
∑ 𝛾𝑞𝑛𝑘

𝑆𝑐𝑛

𝑁

𝑛=1

 , (25) 

Σ𝑐𝑘 =
1

𝑁𝑘
∑ 𝛾𝑞𝑛𝑘

(𝑆𝑐𝑛 − 𝜇𝑐𝑘)(𝑆𝑐𝑛 − 𝜇𝑐𝑘)′

𝑁

𝑛=1

 , (26) 

𝜇𝑑𝑘 =
1

𝑁𝑘
∑ 𝛾𝑞𝑛𝑘

𝑆𝑑𝑛

𝑁

𝑛=1

 , (27) 

𝜋𝑘 =
𝑁𝑘

𝑁
 , (28) 
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𝛽𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽𝑘
∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝛾𝑞𝑛𝑘

𝑙𝑜𝑔 [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝑁

𝑛=1

 , (29) 

where we have defined: 

𝑁𝑘 = ∑ 𝛾𝑞𝑛𝑘

𝑁

𝑛=1

 . (30) 

Equations 25 to 28 are the closed-form solutions of the Gaussian mean matrix, 

Gaussian covariance matrix, Bernoulli mean matrix, and mixing coefficients, 

respectively. As for the parameters 𝛽𝑘 (Equation 29), no closed-form solution can be 

obtained. Instead, we resort to the gradient-based numerical optimization method BFGS 

(Nocedal et al., 1999).  

To sum up, the EM algorithm alternates between the E-step and M-step until 

convergence is reached. First, we initialize the unknown parameters. Second, we 

estimate the expected values of the latent variables using Equation 23 (E-step). Next, 

we update the values of the unknown parameters using Equations 25 to 29 (M-step). 

Finally, we evaluate the log-likelihood using the current values of the unknown 

parameters and check for convergence. If the convergence criterion is not met, we 

return to the E-step. 

 

3.2.2. Final Likelihood 

After reaching convergence, we evaluate the marginal probability 𝑃(𝑦) of 

observing a vector of choices 𝑦 of all decision-makers 𝑁 as follows (we omit the 

dependencies on the left hand side of the equation to make the notation less cluttered): 
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𝑃(𝑦) = ∏ ∑ 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝜇𝑐𝑘, Σ𝑐𝑘, 𝜇𝑑𝑘, 𝜋𝑘)

𝐾

𝑘=1

𝑁

𝑛=1

 

× ∏ ∏ (𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘))
𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇𝑛

𝑡=1

 , 

(31) 

where 𝑃(𝑞𝑛𝑘 = 1|𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝜇𝑐𝑘, Σ𝑐𝑘, 𝜇𝑑𝑘 , 𝜋𝑘) is the posterior probability of vector 𝑆𝑛 =

{𝑆𝑐𝑛, 𝑆𝑑𝑛} being generated by cluster 𝑘. The posterior probability can be formulated 

using Bayes’ theorem: 

𝑃(𝑞𝑛𝑘 = 1|𝑆𝑐𝑛, 𝑆𝑑𝑛, 𝜇𝑐𝑘, Σ𝑐𝑘, 𝜇𝑑𝑘, 𝜋𝑘)

=
𝑃(𝑞𝑛𝑘 = 1|𝜋𝑘)𝑃(𝑆𝑐𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑐𝑘, Σ𝑐𝑘 )𝑃(𝑆𝑑𝑛|𝑞𝑛𝑘 = 1, 𝜇𝑑𝑘 )

∑ 𝑃(𝑞𝑛𝑘′ = 1|𝜋𝑘′)𝑃(𝑆𝑐𝑛|𝑞𝑛𝑘′ = 1, 𝜇𝑐𝑘′, Σ𝑐𝑘′ )
𝐾
𝑘′=1 𝑃(𝑆𝑑𝑛|𝑞𝑛𝑘′ = 1, 𝜇𝑑𝑘′ )

 . 
(32) 

The above marginal probability (Equation 31) is used for comparing the GBM-

LCCM with the traditional LCCM (Equation 12) and for calculating out-of-sample 

prediction accuracies. 

Note that, in case only continuous socio-economic characteristics are used, the 

proposed model becomes Gaussian Mixture - Latent Class Choice Model (GM-LCCM). 

The formulation would follow the same steps of section 3.2 but without the mixture of 

Bernoulli distribution functions (Equation 17). The same applies in case only discrete 

variables are used in the clustering stage. 
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CHAPTER 4 

GBM-LCCM APPLICATIONS 
 

In this chapter, we develop and present two applications of the proposed 

modeling approach (GBM-LCCM) using two different case studies on travel mode 

choice behavior. The chapter is organized as follows. Section 4.1 describes the two 

datasets that are used to compare the GBM-LCCM with different benchmark models. 

Section 4.2 discusses the implementation of the different models. Section 4.3 presents 

their formulation/specification and estimation results. Section 4.4 concludes. 

 

4.1. Data 

Two different datasets on travel mode choice behavior are used in this chapter in 

order to assess the proposed model. The first one is a Revealed Preferences (RP) dataset 

of individual daily trips (Section 4.1.1) while the second one is a Stated Preferences 

(SP) dataset of weekly travel choices (Section 4.1.2). 

 

4.1.1. London Dataset 

The first application is based on the “London” dataset which is available online 

as supplementary material to Hillel et al. (2018). The dataset combines individuals’ trip 

diaries of the London Travel Demand Survey (LTDS) from April 2012 to March 2015 

with their corresponding modes alternatives extracted from a Google directions 

application programming interface (API) and corresponding estimates of car operating 

costs and public transport fares. The dataset consists of 81,086 trips, four modes 

(walking, cycling, public transport, and driving), and different trip purposes (e.g., 
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Home-Based Work, Home-Based Education, etc.). In this chapter, we only consider 

Home-Based Work (HBW) trips and trips made by car and public transport in order to 

have a balanced sample. The first two years (7,814 trips) are used for 

estimation/training while the third year (3,883 trips) is used for testing/prediction. 

 

4.1.2. AUB Dataset 

The second application is based on a dataset from the American University of 

Beirut (AUB) in Lebanon, a major private university with about 8,094 students, 4,173 

staff, and 2,168 faculty members (“AUB Fact Book 2016-2017,” 2016). The university 

is located in a dense urban area within Municipal Beirut and its surrounding 

neighborhood suffers from high levels of congestion and parking demand. To overcome 

these problems, AUB was considering a few years ago two alternative sustainable 

transport modes for its population, shared-taxi and shuttle services. The shared-taxi 

would be a door-to-door service that provides on-demand transport between AUB gates 

and users’ residences (and vice versa) while the shuttle service would be a non-stop 

first/last mile service between AUB gates and satellite parking hubs (and vice versa) 

where commuters could park their cars just a few kilometers away from AUB. In order 

to investigate the willingness of the AUB population to use the new transport services if 

they were implemented, a web-based stated preferences commuting survey was 

designed and sent to all AUB students, faculty members, and staff in April of 2017. The 

survey collected information about each respondent’s daily travel to and from AUB, 

place of residence, and socio-economic characteristics. In addition, the stated 

preferences survey offered each respondent four hypothetical scenarios in which he/she 

had to state how many weekdays per week he/she is willing to use the two proposed 
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services in addition to his/her current mode of commute. An example of the 

hypothetical scenarios is shown in Figure 4. A sub-sample of car users who come five 

days per week to AUB is used in this application. The sub-sample consists of 650 

respondents and 2,600 choice observations. For more details about the dataset and the 

survey design, readers may refer to Sfeir et al. (2020). 

 

Figure 4: Hypothetical scenario and choice question example from the survey 

 

4.2. Implementation 

In addition to the proposed model, we estimate and present LCCM models to 

benchmark the proposed GBM-LCCM against its traditional discrete choice model 

counterpart. The proposed model (GBM-LCCM) is implemented in Python by using 

some blocks from: 1) the lccm package (El Zarwi, 2017a, 2017b), a python package that 
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implements an EM algorithm for estimating traditional Latent Class Choice Models; 2) 

and the Gaussian Mixture class of the Scikit-Learn library (Pedregosa et al., 2011). The 

code is publicly available on GitHub2. The traditional LCCMs are also estimated in 

Python using the lccm package (El Zarwi, 2017a, 2017b). Convergence of both EM 

implementations, the proposed model and the traditional LCCM, is assumed to be 

reached once the change in the log-likelihood function is smaller than 1x10-4.  

The EM algorithm has proved to be a powerful approach for estimating models 

with latent variables or missing data  (Bhat, 1997; Train, 2008). However, the algorithm 

is sensitive to starting values and might not guarantee convergence to the global 

maximum. Therefore, a good set of initial values is of great importance to assure proper 

convergence. Different approaches and heuristics have been used in the literature to 

overcome this limitation. The two most used approaches are random initialization and 

incremental initialization, where estimates of models with 𝐾 − 1 classes are used as 

starting values for models with 𝐾 classes. In this dissertation, we make use of both 

approaches (Table 2). In addition, the Gaussian-Bernoulli Mixture Models are 

initialized randomly and using 𝑘-means, a deterministic unsupervised machine learning 

approach. In total, each model is estimated 25 times and the log-likelihood variance of 

the different runs is reported to check if the model is converging to the same solution or 

not. 

  

                                                 
2 https://github.com/gsfeir/GBM-LCCM 
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Table 2: EM Initialization 

GBM-LCCM 

Class Membership Model Class Specific Choice Model Trials 

Random 0 5 

Random Random 5 

K-means 0 5 

K-means Random 5 

Random/K-means 
Estimates of K-1 model and 0/Random 

for the additional class 
5 

LCCM 

Class Membership Model Class Specific Choice Model Trials 

0 0 5 

0 Random 5 

Random 0 5 

Random Random 5 

Estimates of K-1 model and 0/Random for the additional class 5 

 

4.3. Applications  

We present the specification of the models and estimation results of the two 

datasets in Sections 4.3.1 and 4.3.2, respectively. 

 

4.3.1. London Case Study 

Using the first dataset, we test and present three different trials and, for the sake 

of brevity, we only present in this section summary statistics of the estimated models. 

Details of all the estimated models are presented in Appendix A. In each trial, we 

compare the new approach to the traditional LCCM with the same specification in order 

to ensure that any potential differences in results are not attributed to model 

specification. 
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4.3.1.1. First Trial 

Model Specification 

We assume that the latent classes of the GBM-LCCM are characterized by the 

available socio-economic variables age, gender, car ownership, and driving license, 

such that 𝑎𝑔𝑒𝑛 is a continuous variable representing the age of decision-maker 𝑛; 

𝑓𝑒𝑚𝑎𝑙𝑒𝑛 is a binary variable that equals to 1 if decision-maker 𝑛 is female and 0 

otherwise; 𝑐𝑎𝑟_𝑜𝑤𝑛𝑛1 a binary variable that equals to 1 if the number of cars in the 

household of decision-maker 𝑛 is more than 0 but less than one per adult and 0 

otherwise, 𝑐𝑎𝑟_𝑜𝑤𝑛𝑛2 equals to 1 if the number of cars in the household of decision-

maker 𝑛 is one or more per adult and 0 otherwise; and 𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑛 is a binary variable that 

equals to 1 if decision-maker 𝑛 has a driving license and 0 otherwise. Since only one 

continuous variable (age) is used for clustering, two covariance structures, full and tied, 

are tested. Regarding the class-specific choice models, we only consider alternative-

specific travel time and travel cost coefficients in addition to a constant in the utility of 

the car alternative.  

Results  

Table 3 presents summary statistics of the new approach and the traditional 

LCCM3. We show the average joint log-likelihood of the GBM-LCCM, the average 

marginal (i.e., choice) log-likelihood of the two models, the corresponding Akaike 

Information Criterion (AIC)4 and Bayesian Information Criterion (BIC)5, the predictive 

log-likelihood (for the test sample), and the variance of the marginal log-likelihood of 

                                                 
3 Several MNL and Mixed Logit models were also estimated for this application but showed no clear 

advantage over the GBM-LCCM in terms of predictive power and as such are not shown in this 

dissertation. 
4 𝐴𝐼𝐶 = 2𝑀 − 2 log 𝐿𝐿, where 𝑀 is the number of parameters and 𝐿𝐿 is the marginal choice log-

likelihood. 
5 𝐵𝐼𝐶 = 𝑀 log 𝐷 − 2 log 𝐿𝐿, where 𝐷 is the number of data points (observations). 
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the LCCM and GBM-LCCM to evaluate the stability of the EM solutions since these 

models are run multiple times with different starting values. 

We first look at the marginal log-likelihoods of all the estimated models. The 

LCCM (K = 3) has the best log-likelihood (-2,470.01). However, the log-likelihood 

variance of the LCCM with three latent classes is very high (190.64) meaning the model 

did not converge to the same solution and should be neglected. Moreover, the two 

LCCMs (K = 2 and K = 3) have positive public transport cost coefficients. Such models 

should be ignored since models with counter-intuitive coefficient signs cannot be used 

for meaningful predictions and policy analysis. For the LCCM approach, no more than 

three classes are estimated mainly due to identification problems (very high standard 

errors for the class-specific parameter estimates). Regarding the proposed GBM-

LCCM, the full covariance model with 5 latent classes has also a high variance and 

should be ignored. After eliminating all unstable models (i.e., high variance) and 

models with unexpected coefficient signs, the two GBM-LCCM with a tied and full 

covariance structure, respectively, and four latent classes can be selected as the best 

models since they have the best LL, AIC, BIC, and predictive power. However, it is to 

be noted that models with tied and full covariance structures have similar performance, 

with slightly better log-likelihood for the model with a full covariance structure and 

slightly better predictive power for the model with a tied structure. This is mainly due to 

the additional parameters from the full covariance structure of the GMM.  

Next, the latent classes of the tied-GBM-LCCM with four classes are described 

based on the mean matrix of the Gaussian-Bernoulli Mixture Model (Table 4). Note that 

the continuous variable age is standardized. Therefore, a negative value means the latent 
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class is characterized by young individuals while a positive value means individuals are 

older than the average (which is 40 years).  

K1: Licensed drivers in their forties 

The first latent class is characterized by individuals with an age near the 

population average (40 years) since the mean of age is around 0. Individuals belonging 

to this class are mostly licensed drivers (91.9%) and living in households with low car 

ownership.    

K2: Young with low car ownership 

The second latent class has the youngest individuals (µ𝑎𝑔𝑒 < 0) from both 

genders who are almost equally likely to be licensed (48.8%) or unlicensed drivers 

(51.2%). In addition, individuals belonging to this class live in households with no cars 

(55.1%) or less than one car per adult (42.4%). 

K3: Licensed elderly 

This class includes the oldest individuals (highest µ𝑎𝑔𝑒 across all classes) who 

are mostly males (72.1%), licensed drivers (94.5%), and belong to families with less 

than one car per adult (98.6%).  

K4: Licensed drivers with high car ownership 

The last latent class is characterized by old individuals from both genders. 

Moreover, individuals are licensed drivers (99%) who live in households with more 

than one car per adult (98.2%). 

The above analysis is a strong indication that the proposed model provides a 

simple interpretability at the class membership level, although the random utility 

formulation of the latent classes is replaced by a full mixture model. 
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Finally, Table 5 presents the class-specific parameter estimates of the tied-

GBM-LCCM model with four classes. All cost and travel time parameters have the 

expected negative sign. Individuals from the first, third, and fourth classes are 

insensitive to travel cost of public transport. 

4.3.1.2. Second Trial 

Model Specification 

In the second trial, we adopt the same class membership specification as in the 

first trial but a more complex class-specific choice utilities’ specification. In particular, 

public transport travel time is included in the utilities as three separate attributes: access 

travel time (walking time between origin and first public transport stage, and final 

public transport stage and destination), bus/rail travel time (travel time spent on rail and 

bus services), and interchange travel time (walking and waiting time at the stop for 

interchanges on public transport route). However, all five models generated positive 

public transport cost coefficients. A logarithmic specification of public transport cost 

was used in the class-specific choice utilities in order to resolve the issue of counter-

intuitive sign of cost coefficients.  

Results 

Table 6 presents summary statistics of the new approach and its LCCM 

counterpart. The logarithmic transformation of public transport cost did solve the issue 

of counter-intuitive signs for the GBM-LCCM with two and three latent classes but it 

had no impact on the remaining models. In addition, the LCCM and GBM-LCCM 

models with positive cost coefficients showed very high convergence instability (very 

high log-likelihood variances). After eliminating all models with counter-intuitive 

coefficient signs and high log-likelihood variances, we can select the tied-GBM-LCCM 
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with three latent classes as the best model since it has the best AIC, BIC, and predictive 

log-likelihood. Note that the results of this specification are consistent with that of 

section 4.3.1.1. The tied and full covariance structure models have similar performance 

with slight differences in goodness-of-fit and predictive measures due to the differences 

in the covariance structures of the GMM. 

4.3.1.3. Third trial 

Model Specification 

For the third and last attempt, we consider the same latent classes’ formulation 

and class-specific choice utilities’ specification as in the first trial (section 4.3.1.1). In 

addition, we include in the class-specific choice utilities four additional variables (start 

time, day of week, month, and traffic variability). Traffic variability is added to the 

utilities as a continuous variable while the remaining three variables are binned and 

included as dummy variables. We use the same bins that are defined by Hillel et al. 

(2019). The start time of the trips is grouped into four categories: AM peak (06:30-

09:29), inter-peak (09:30-16:29), peak (16:30-19:29), and night (19-30:06:29). The day 

of the week is divided into week days (Monday to Friday), Saturday, and Sunday. 

Finally, the trip month is grouped into winter season (December to February) and all 

other months (March to November).  

Results 

Table 7 presents summary statistics of all estimated models. The LCCM ran into 

identification issues (class-specific choice parameter estimates with very large standard 

errors) while the GBM-LCCM was able to determine only two latent classes. The 

Gaussian-Bernoulli mixture formulation of the latent classes showed a superior 
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clustering ability by determining two homogeneous groups within the sample while the 

traditional random utility formulation of the LCCM had computational problems. 
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Table 3: First trial 

 K Joint LLa LLb Variancec AIC BIC Pred. LL Notes 

LCCM 
2  -2,643.15 0 5,318.30 5,429.72 -1,234.47 𝛽𝑐𝑜𝑠𝑡_𝑝𝑡2= 0.0618 (p = 0.14) 

3  -2,470.01 190.64 4,994.02 5,182.04 -1,182.95 𝛽𝑐𝑜𝑠𝑡_𝑝𝑡2= 0.0748 (p = 0.57) 

GBM-LCCM 

Full Covariance 

2 -18,660.22 -2,920.92 0 5,887.84 6,048.00 -1,387.89  

3 -17,502.93 -2,807.87 0 5,685.74 5,929.47 -1,300.33  

4 -17,390.22 -2,703.27 0 5,500.54 5,827.83 -1,262.86  

5 -17,148.88 -2,671.04 27.45 5,460.08 5,870.94 -1,266.22 𝛽𝑐𝑜𝑠𝑡_𝑝𝑡1= 0.0258 (p = 0.86) 

GBM-LCCM 

Tied Covariance 

2 -18,662.68 -2,920.81 0 5,885.62 6,038.82 -1,387.40  

3 -17,505.89 -2,807.91 0 5,681.82 5,911.62 -1,300.17  

4 -17,393.78 -2,703.38 0 5,494.76 5,801.16 -1,260.08  

a: joint log-likelihood of the GBM-LCCM (Equation 21) 

b: marginal log-likelihood of the GBM-LCCM (Equation 31) and the LCCM (Equation 12) 

c: Marginal log-likelihood (LL) variance of the different runs 
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Table 4: Mean matrix of the class membership model (GBM) – Tied Covariance – K = 4 

Parameter Class 1 Class 2 Class 3 Class 4 

age** Continuous 0.034 -0.285 0.447 0.332 

female Yes 0.426 0.533 0.279 0.463 

No* 0.574 0.467 0.721 0.537 

license Yes 0.919 0.488 0.945 0.990 

No* 0.081 0.512 0.055 0.010 

car_own0 0* 0.056 0.551 0.014 0.018 

car_own1 ] 0 – 1 [ 0.944 0.424 0.986 0 

car_own2 ≥ 1 0 0.025 0 0.982 

*: base category 

**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Table 5: Parameter estimates of the class-specific choice models – Tied Covariance – K = 4 

Parameter Class 1 Class 2 Class 3 Class 4 

ASC (Car) 2.35 (0.00) -0.858 (0.00) 2.51 (0.00) 1.52 (0.00) 

Travel Time (PT) -0.178 (0.00) -0.0751 (0.00) -0.112 (0.00) -0.0646 (0.00) 

Travel Time (Car) -0.316 (0.00) -0.284 (0.00) -0.115 (0.00) -0.106 (0.00) 

Cost (PT) -0.102 (0.28) -0.267 (0.01) -0.106 (0.49) -0.0206 (0.63) 

Cost (Car) -0.492 (0.00) -0.181 (0.06) -0.207 (0.00) -0.153 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp)  
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Table 6: Second trial 

 K Joint LLa LLb Variancec AIC BIC Pred. LL Notes 

LCCM 
2  -2,633.56 880.40 5,307.12 5,446.39 -1,223.45 𝛽𝐿𝑜𝑔_𝑐𝑜𝑠𝑡_𝑝𝑡2= 0.0134 (p = 0.55) 

3  -2,458.11 750.66 4,982.22 5,212.02 -1,192.74 𝛽𝐿𝑜𝑔_𝑐𝑜𝑠𝑡_𝑝𝑡1= 0.188 (p = 0.00) 

GBM-LCCM 

Full Covariance 

2 -18,646.92 -2,906.82 0 5,867.64 6,055.66 -1,391.48  

3 -17,485.77 -2,790.88 0 5,663.76 5,949.27 -1,302.31  

4 -17,365.19 -2,684.59 2,712.20 5,479.18 5,862.18 -1,271.95 𝛽𝐿𝑜𝑔_𝑐𝑜𝑠𝑡_𝑝𝑡1= 0.0779 (p = 0.33) 

GBM-LCCM 

Tied 

Covariance 

2 -18,650.17 -2,907.00 0 5,866.00 6,047.06 -1,390.03  

3 -17,489.31 -2,791.21 0 5,660.42 5,932.00 -1,301.78  

4 -17,372.80 -2,684.57 95.95 5,473.14 5,835.25 -1,260.96 𝛽𝐿𝑜𝑔_𝑐𝑜𝑠𝑡_𝑝𝑡3= 0.0234 (p = 0.82) 

a: joint log-likelihood of the GBMLCCM model (Equation 21) 

b: marginal log-likelihood of the GBMLCCM (Equation 31) and the LCCM (Equation 12) 

c: Marginal log-likelihood (LL) variance of the different runs 

 

Table 7: Third trial 

 K Joint LLa LLb Variancec AIC BIC Pred. LL Notes 

LCCM        Identification Issues 

GBM-LCCM 

Full Covariance 
2 -18,506.50 -2,769.56 0.19 5,613.12 5,870.78 -1,336.19  

GBM-LCCM 

Tied Covariance 
2 -18,508.80 -2,769.17 0.61 5,610.34 5,861.03 -1,335.37  

a: joint log-likelihood of the GBMLCCM model (Equation 21) 

b: marginal log-likelihood of the GBMLCCM (Equation 31) and the LCCM (Equation 12) 

c: Marginal log-likelihood (LL) variance of the different runs 



 

 77 

4.3.2. AUB Case Study 

4.3.2.1. Model Specification 

In this application, we only consider continuous variables for clustering in order 

to investigate the impact of the different covariance structures of GMM. We model the 

weekly frequency of commuting by three different modes (shared-taxi ‘ST’, shuttle 

‘SH’, and current mode ‘Car’).  The choice variables are then multivariate counts of 

commuting by three modes during a week with the total count (total number of weekly 

trips) being fixed to five as the number of times an individual commutes to the 

university is expected to be rather exogenous than endogenous due to institutional 

constraints on schedule. Multivariate count data with a fixed total count can be modeled 

by using a full enumeration of all combinations approach (Sfeir et al., 2020) where the 

choice set contains all possible combinations of weekly mode frequencies. As such, an 

alternative is defined as the number of weekly trips an individual would conduct by 

each of the available modes. In such an approach, the universal choice set would consist 

of all possible combinations of weekly frequencies of using the three available modes. 

Knowing that three travel modes are available (ST, SH, and Car) and the sample 

contains people who commute five days per week to AUB, the choice set consists of 21 

alternatives. The systematic utility of an individual 𝑛 choosing a specific combination 

of weekly frequency of three modes (𝑆𝑇ℎ, 𝑆𝐻𝑖, 𝐶𝑎𝑟𝑗)6 during time period (or scenario) 

𝑡, conditional on her/him belonging to class 𝑘 can then be specified as follows: 

  

                                                 
6 For instance, (𝑆𝑇2, 𝑆𝐻1, 𝐶𝑎𝑟3) means that an individual chose to commute during a specific week, twice 

by shared taxi (ST), once by shuttle (SH), and three times by car. This combination corresponds to one 

alternative. There are 21 possible combinations, hence 21 alternatives. 
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𝑉𝑛(𝑆𝑇ℎ,𝑆𝐻𝑖,𝐶𝑎𝑟𝑗)𝑡|𝑘 = 𝐶𝑆𝑇ℎ,𝑘 + 𝐶𝑆𝐻𝑖,𝑘 + 𝐶𝐶𝑎𝑟𝑗,𝑘 

+ ℎ × (𝛽𝐶𝑜𝑠𝑡𝑆𝑇,𝑘𝐶𝑜𝑠𝑡𝑛,𝑆𝑇,𝑡 + 𝛽𝑇𝑇𝑆𝑇,𝑘𝑇𝑇𝑛,𝑆𝑇,𝑡) 

+ 𝑖 × (𝛽𝐶𝑜𝑠𝑡𝑆𝐻,𝑘𝐶𝑜𝑠𝑡𝑛,𝑆𝐻,𝑡 + 𝛽𝑇𝑇𝑆𝐻,𝑘𝑇𝑇𝑛,𝑆𝐻,𝑡 + 𝛽𝐻𝑒𝑎𝑑,𝑘𝐻𝑒𝑎𝑑𝑛,𝑆𝐻,𝑡) 

+ 𝑗 × (𝛽𝐶𝑜𝑠𝑡𝐶𝑎𝑟,𝑘𝐶𝑜𝑠𝑡𝑛,𝐶𝑎𝑟,𝑡 + 𝛽𝑇𝑇𝐶𝑎𝑟,𝑘𝑇𝑇𝑛,𝐶𝑎𝑟,𝑡), 

(33) 

where ℎ, 𝑖, and 𝑗 are values between 0 and 5 that represent the number of weekday trips 

by shared-taxi, shuttle and car, respectively. It is assumed that the impact of travel cost, 

travel time, and headway variables on the utility is proportional to the number of 

weekly trips by each mode (ℎ, 𝑖, and 𝑗). Moreover, the travel cost and travel time 

coefficients are specified as mode-specific. The 𝐶’s are constants related to the weekly 

frequency of the three modes and replace the traditional alternative-specific constants 

(ASCs) that are defined for each alternative (Ben-Akiva & Abou-Zeid, 2013; Sfeir et 

al., 2020). Six constants need to be defined for each of the three modes (ST, SH, and 

Car) since the number of times each mode can be selected per week varies between 0 

and 5. Finally, four constants (𝐶𝑆𝑇0
, 𝐶𝑆𝐻0

, 𝐶𝐶𝑎𝑟0
, 𝐶𝐶𝑎𝑟5

) are fixed to zero for 

identification purposes.  

The latent classes of the two models (LCCM and GM-LCCM) are characterized 

by socio-economic variables while the class-specific utility functions of each alternative 

are characterized by the corresponding travel time, travel cost and constants related to 

the frequency of using the available modes. Table 8 shows the explanatory variables 

used in the two components of the two models, LCCM and GM-LCCM. Several other 

variables such as income, household car ownership, and parking location were tested 

but they were insignificant. The coefficients of travel cost and travel time are specified 

as alternative (mode)-specific to account for variations in Values of Time (VOT) across 

users of different modes (Guevara, 2017).  
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Table 8: Explanatory variables used in the models 

Variable Type Description Sub-Model 

CostST Continuous variable Cost of a one-way trip by shared-ride taxi (in 1,000 L.L.)7 

Class-specific 

choice model 

CostSH Continuous variable 
Cost of a one-way trip by shuttle including parking cost at the satellite 

parking (in 1,000 L.L.) 

CostCar Continuous variable Fuel and parking cost of a one-way trip by car (in 1,000 L.L.) 

TTST Continuous variable Travel time of one-way trip by shared taxi (in hours) 

TTSH Continuous variable 
Travel time of one-way trip by shuttle including access time to the 

satellite parking (in hours) 

TTCar Continuous variable Travel time of one-way trip by car (in hours) 

Headway Continuous variable Shuttle headway (in hours) 

Age Continuous variable Age of the respondent (in years/10) 

Class         

membership model 

Grade Continuous variable 
A number between 1 and 16 used to specify the job, seniority, and salary 

of a staff member (Grade/10) 

C/D Continuous variable 
Ratio of number of cars available over number of licensed drivers per 

household 

Nb Continuous variable 
Number of people who are usually present in the car during the trip from 

home to AUB 

 

                                                 
7 1 USD = 1,500 Lebanese Lira (L.L.) at the time the survey was conducted. 
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4.3.2.2. Estimation Results 

Table 9 presents summary statistics of the LCCM and GM-LCCM. For the 

LCCM, it was not possible to increase the number of latent classes beyond three. In 

doing so, the LCCM generated very high standard errors for the class-specific 

parameter estimates. As for the GM-LCCM, there were no identification problems 

involved in increasing the number of latent classes up to five. However, GM-LCCM 

with higher number of latent classes (K > 2) resulted in positive travel cost and/or travel 

time coefficients, except for the spherical structure model with three latent classes, and 

thus these models are excluded from the comparison. Note that the full sub-sample, 

consisting of 650 respondents and 2,600 choice observations, is used for estimation. 

The predictive power of the models is compared using the 5-fold cross validation 

technique. The dataset is divided into 5 subsets and each model is trained 5 times. Each 

time, the models are trained on 4 different subsets and tested on the remaining one. 

Next, the log-likelihood of each of the test sets is calculated and the average value is 

reported. For the case of two latent classes (K = 2), results show that the tied structure 

model has similar marginal log-likelihood as the LCCM but a better prediction log-

likelihood. This suggests that the GM-LCCM performs better in terms of prediction 

accuracy although both models have similar goodness-of-fit measure (LL). The three 

other covariance structures (full, diagonal, and spherical) have also a better prediction 

accuracy than the LCCM.  

Tables 10 and 11 present estimates of the sub-models of LCCM and tied-GM-

LCCM with two classes in addition to the VOT estimates (values between parentheses 

are p-values). The covariance estimates are not shown for conciseness. Results show 

that the estimates of the class-specific choice models of the two approaches are almost 



 

 81 

the same. All travel cost and travel time parameters have the expected negative sign. 

Members of the second class seem to be more sensitive to travel time. Next, the latent 

classes are described. 

K1: old with high car ownership 

The class membership results of the LCCM reveal that members of the first 

class are more likely old individuals and staff with high grades who live in households 

with high car ownership. The signs of the means from the class membership model of 

the GM-LCCM lead to the same conclusion. 

K2: Young with low car ownership 

On the contrary, results of the class membership model of the LCCM reveal that 

members of the second class are more likely young people and staff with low grades 

who live in households with fewer cars, and do not share rides to AUB (although the 

C/D and Nb variables are insignificant). The signs of the means from the class 

membership model of the GM-LCCM also lead to the same conclusion.  

Members of the first class have similar VOT for car and shuttle, which is also a 

trip by car where a user parks his/her car in a parking garage and uses the shuttle as a 

first/last mile service to/from AUB, while members of the second class have higher 

VOT for car. In terms of log-likelihood, both models have the same fitted value. We 

believe that the improvement in prediction accuracy (Table 9) is due to the changes in 

the class membership model since the parameter estimates of both class-specific choice 

models are almost the same (Tables 10 and 11). 

Moreover, results of the GM-LCCM with three latent classes and a spherical 

covariance structure are presented in Table 12. Individuals from the third class appear to 
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be insensitive towards travel cost of car and travel time of shuttle, hence the high and 

low VOTs of car and shuttle, respectively. Next, the three latent classes are described. 

K1: The oldest 

The first class includes the oldest individuals (highest µ𝑎𝑔𝑒 across all classes) 

and staff with high grades who live in households with moderate car ownership. 

K2: Young with low car ownership 

The second class is characterized by young individuals (µ𝑎𝑔𝑒 < 0) and staff with 

low grades (µ𝐺𝑟𝑎𝑑𝑒 < 0) who belong to households with low car ownership.  

K3: The youngest with highest car ownership 

The third class has the youngest individuals (lowest µ𝑎𝑔𝑒 across the three 

classes) who live in households with high car ownership (highest µ𝐶/𝐷 across the three 

classes). 

Going back to Table 9, it is clear that the GM-LCCM with three latent classes 

has better joint LL, marginal LL, AIC, and average prediction LL, than both LCCM and 

GM-LCCM with two latent classes. However, it comes as no surprise that the LCCM 

with two latent classes has the lowest BIC. This is due to the nature of the GMM and its 

different covariance structures which result in higher number of parameters for the 

proposed GM-LCCM. Finally, details of all the estimated models are presented in 

Appendix B.  
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Table 9: Summary results of LCCM and GM-LCCM 

 Covariance 

Type 

Nb of  

Parameters 

Joint 

LLa 
LLb AIC BIC Pred. LL 

LCCM 

(K=2) 
 47  -4,910.92 9,915.84 10,191.41 -1,024.93 

GM-LCCM 

(K=2) 

Full 71 -8,476.35 -4,937.64 10,017.28 10,433.57 -1,018.10 

Tied 61 -8,533.22 -4,911.08 9,944.16 10,301.82 -1,012.62 

Diagonal 59 -8,564.64 -4,935.51 9,989.02 10,334.95 -1,017.87 

Spherical 53 -8,575.90 -4,927.54 9,961.08 10,271.83 -1,016.51 

GM-LCCM 

(K=3) 
Spherical 80 -7,042.21 -4,893.29 9,946.58 10,415.64 -998.41 

a: joint log-likelihood of the GBMLCCM model (Equation 21) 

b: marginal log-likelihood of the GBMLCCM (Equation 31) and the LCCM (Equation 12)
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Table 10: LCCM – K =2 

Parameter 
Class 1 Class 2 

Class-specific choice model 

Ccar1 -2.56 (0.00) 0.372 (0.00) 

Ccar2 -2.06 (0.00) 0.298 (0.01) 

Ccar3 -2.36 (0.00) 0.516 (0.00) 

Ccar4 -3.09 (0.00) -0.422 (0.01) 

CST1 -1.60 (0.03) -0.464 (0.00) 

CST2 -2.10 (0.00) -0.172 (0.24) 

CST3 -1.05 (0.03) -0.108 (0.61) 

CST4 -3.08 (0.00) -0.347 (0.25) 

CST5 -0.158 (0.53) -0.217 (0.53) 

CSH1 -2.256 (0.00) -0.280 (0.02) 

CSH2 -2.99 (0.00) 0.413 (0.00) 

CSH3 -2.26 (0.00) 0.678 (0.00) 

CSH4 -3.93 (0.00) 0.373 (0.09) 

CSH5 -1.52 (0.00) 0.378 (0.16) 

CostCar -0.0446 (0.00) -0.0456 (0.00) 

CostST -0.101 (0.00) -0.109 (0.00) 

CostSH -0.0400 (0.00) -0.0998 (0.00) 

TTCar -0.409 (0.00) -0.658 (0.00) 

TTST -0.372 (0.00) -0.646 (0.00) 

TTSH -0.252 (0.00) -0.387 (0.00) 

Headway -0.0423 (0.65) -0.565 (0.00) 

Parameter Class membership model 

ASC - 2.27 (0.00) 

Age - -0.587 (0.00) 

Grade - -0.569 (0.00) 

C/D  -0.267 (0.37) 

Nb - -0.0850 (0.26) 

Mode VOT ($/hr) 

Car 6.11 9.61 

ST 2.44 3.96 

SH 4.20 2.59 

Cost variables are in 1,000 L.L. 

Travel Time and Headway variables are in 

hours 

 

 

 

Table 11: GM-LCCM – K =2 

Parameter 
Class 1 Class 2 

Class-specific choice model 

Ccar1 -2.50 (0.00) 0.361 (0.00) 

Ccar2 -2.04 (0.00) 0.290 (0.01) 

Ccar3 -2.39 (0.00) 0.508 (0.00) 

Ccar4 -3.08 (0.00) -0.430 (0.00) 

CST1 -1.62 (0.04) -0.465 (0.00) 

CST2 -2.09 (0.00) -0.174 (0.24) 

CST3 -1.08 (0.03) -0.108 (0.61) 

CST4 -3.15 (0.00) -0.347 (0.25) 

CST5 -0.159 (0.53) -0.209 (0.55) 

CSH1 -2.30 (0.00) -0.286 (0.02) 

CSH2 -3.03 (0.00) 0.403 (0.00) 

CSH3 -2.29 (0.00) 0.661 (0.00) 

CSH4 -4.02 (0.00) 0.354 (0.11) 

CSH5 -1.52 (0.00) 0.379 (0.15) 

CostCar -0.0442(0.00) -0.0462 (0.00) 

CostST -0.101 (0.00) -0.110 (0.00) 

CostSH -0.0401 (0.00) -0.0993 (0.00) 

TTCar -0.409 (0.00) -0.653 (0.00) 

TTST -0.372 (0.00) -0.641 (0.00) 

TTSH -0.252 (0.00) -0.384 (0.00) 

Headway -0.0442 (0.64) -0.561 (0.00) 

Parameter Class membership model 

π 0.575 0.425 
µAge 0.303 -0.409 

µGrade 0.225 -0.303 

µC/D 0.0459 -0.062 

µNb 0.0513 -0.0693 

Mode VOT ($/hr) 

Car 6.16 9.42 

ST 2.45 3.90 

SH 4.19 2.58 

Cost variables are in 1,000 L.L. 

Travel Time and Headway variables are in 

hours 
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Table 12: GM-LCCM - K = 3 

Parameter 
Class 1 Class 2 Class 3 

Class-specific choice model 

Ccar1 -2.24 (0.00) 0.444 (0.00) -0.102 (0.78) 

Ccar2 -1.82 (0.00) 0.290 (0.02) 0.327 (0.25) 

Ccar3 -2.11 (0.00) 0.677 (0.00) -0.0412 (0.88) 

Ccar4 -2.90 (0.00) -0.224 (0.18) -1.26 (0.00) 

CST1 -1.61 (0.01) -0.331 (0.01) -1.11 (0.00) 

CST2 -2.31 (0.00) -0.00930 (0.95) -0.907 (0.03) 

CST3 -1.07 (0.02) 0.0262 (0.91) -0.938 (0.09) 

CST4 -3.23 (0.00) -0.073 (0.82) -1.78 (0.08) 

CST5 -0.181 (0.47) -0.284 (0.48) -0.24 (0.76) 

CSH1 -2.19 (0.00) -0.240 (0.07) -0.557 (0.08) 

CSH2 -3.17 (0.00) 0.556 (0.00) -0.535 (0.11) 

CSH3 -2.12 (0.00) 0.862 (0.00) -0.959 (0.03) 

CSH4 -4.38 (0.00) 0.627 (0.01) -1.63 (0.00) 

CSH5 -1.45 (0.00) 0.601 (0.04) -1.15 (0.05) 

CostCar -0.0451 (0.00) -0.0707 (0.00) -0.0172 (0.11) 

CostST -0.0991 (0.00) -0.107 (0.00) -0.123 (0.00) 

CostSH -0.0421 (0.00) -0.0832 (0.00) -0.120 (0.00) 

TTCar -0.410 (0.00) -0.717 (0.00) -0.614 (0.00) 

TTST -0.384 (0.00) -0.777 (0.00) -0.349 (0.01) 

TTSH -0.259 (0.00) -0.519 (0.00) -0.107 (0.26) 

Headway -0.0114 (0.91) -0.757 (0.00) -0.380 (0.06) 

Variable Class membership model 

π 0.570 0.339 0.091 

µAge 0.329 -0.314 -0.897 

µGrade 0.258 -0.172 -0.981 

µC/D 0.0456 -0.222 0.540 

µNb 0.0778 0.0861 -0.810 

Mode VOT ($/hr) 

Car 6.07 6.76 23.81 

ST 2.58 4.85 1.89 

SH 4.10 4.16 0.60 

Cost variables are in 1,000 L.L. 

Travel Time and Headway variables are in hours 
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4.4. Conclusion 

In this chapter, we investigated the feasibility of combining Gaussian-Bernoulli 

Mixture Models with Latent Class Choice Models. The model was tested and compared 

to the traditional LCCM using a revealed preferences case study on travel mode choice 

behavior. The model was also tested and compared to LCCM using a stated preferences 

case study on weekly frequencies of commuting by different modes. Results showed 

that the GBM-LCCM is capable of capturing more complex taste heterogeneity than the 

traditional LCCM by identifying a larger number of latent classes. This might be due to 

the fact that mixture models allow more flexibility than the linear-in-parameters utility 

specification of the latent classes. In addition, it is capable of improving the prediction 

accuracy of the choice models. These improvements are accomplished without any 

interpretability losses, neither at the class membership level nor at the class-specific 

choice model level. In fact, the latent classes can be easily interpreted and marginal 

effects in addition to economic indicators (e.g., willingness to pay) can be directly 

inferred from the model. To sum up, this new approach satisfies the main properties of 

an effective econometric behavioral model, as set by McFadden. 

However, the proposed model and the applications presented in this chapter are 

not devoid of limitations. There are several extensions that could be explored further. 

First, the Gaussian-Bernoulli mixture model assumes that the continuous-binary 

variables that are used for clustering are uncorrelated. Although the Gaussian part of the 

mixture model offers different covariance structures for the continuous set of variables, 

the proposed model should be extended to capture correlations between all continuous-

binary variables of the class membership model. This will be addressed by the second 

proposed model that will be presented in the next Chapter. A second straightforward 
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extension could be related to within-class heterogeneity. Previous studies have shown 

that individuals with similar socio-economic characteristics, and thus belonging to the 

same latent class, might not have the same preferences or taste homogeneity (Bujosa et 

al., 2010). Therefore, a natural extension of the GBM-LCCM is to integrate random 

distributions or mixture of random distributions of taste coefficients within the class-

specific choice models. Third, although two different types of datasets have been used 

and several specifications in addition to a logarithmic transformation have been tested, 

it would be worthwhile to investigate whether the findings of this chapter generalize to 

different applications, specifications, and attribute transformations.  
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CHAPTER 5 

GAUSSIAN PROCESS LATENT CLASS CHOICE MODEL 
 

This chapter develops a Gaussian Process – Latent Class Choice Model (GP-

LCCM) by incorporating a Gaussian Process (GP) into the LCCM structure to allow for 

more complex and flexible discrete representation of heterogeneity and as a result to 

improve the overall model fit and prediction accuracy compared to the standard LCCM. 

Moreover, Gaussian Processes allow us to overcome the continuous-binary limitation of 

the Gaussian-Bernoulli mixture model. The GP-LCCM framework makes use of 

Gaussian Processes to replace the class membership component of the traditional 

LCCM. The proposed model would rely on GPs as a nonparametric component to 

probabilistically divide the population into behaviorally homogenous classes while 

simultaneously relying on random utility models to develop class-specific choice 

models. We derive and implement an Expectation-Maximization (EM) algorithm for 

training a Gaussian Process classification approach as a clustering tool while 

concurrently learning the parameter estimates of the class-specific choice models. By 

doing so, we contribute to the discrete choice modeling literature by formulating, to the 

author’s knowledge, the first Gaussian Process choice model within an LCMM 

framework, thereby allowing for more modeling flexibility and higher prediction 

accuracy. We also develop a Gaussian Process model for clustering by incorporating the 

Laplace approximation approach (Williams & Barber, 1998), which is used for 

Gaussian process classification problems, in an iterative EM algorithm. 

We start by presenting the Gaussian Process formulation for classification 

problems (e.g., prediction of class labels) (Section 5.1). Next, we present different 
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covariance kernel functions for a Gaussian Process (Section 5.2). Finally, we combine 

the concepts of LCCM (Section 3.1), GP (Section 5.1) and kernels (Section 5.2) to 

define the Gaussian Process – Latent Class Choice Model and derive an Expectation-

Maximization (EM) algorithm for estimation (Section 5.3). 

 

5.1. Gaussian Process 

Gaussian Processes are a powerful and flexible probabilistic machine learning 

technique (Rasmussen & Williams, 2006) that instead of parameterizing the target 

variables (e.g., class labels) or placing priors over the unknown parameters of a 

predefined distribution (e.g., mean and variance of a normal distribution), define priors 

over latent functions directly (Mackay, 2003; Rasmussen & Williams, 2006). It can be 

considered as a generalization of a Gaussian distribution over a finite vector space to an 

infinite function space (Mackay, 2003). Therefore, a GP is specified by a mean function 

and a covariance function usually known as kernel.  

For the sake of simplicity and without loss of generality, we consider a binary 

case (𝐾 =  2) where the training data consists of 𝑆, a matrix of 𝑁 vectors 𝑆𝑛 (vector of 

characteristics of decision-maker 𝑛 with a dimension equal to 𝐷𝑆), and 𝑞𝑘 a vector of 𝑁 

target outputs 𝑞𝑛𝑘 (class label, equal to 1 or 0). The goal is to model the posterior 

distribution of the target outputs by defining a prior distribution over a latent function 𝑓 

by using a multivariate Gaussian distribution with a mean function 𝑚(𝑆𝑛), that 

represents the expected value for each latent variable 𝑓(𝑆𝑛), and a kernel (covariance 

function) 𝐶(𝑆𝑛, 𝑆𝑚) =  𝑐𝑜𝑣[𝑓(𝑆𝑛), 𝑓(𝑆𝑚)], that represents the variance between every 

pair of latent variables 𝑓(𝑆𝑛) and 𝑓(𝑆𝑚). Note that it is common to specify a GP with a 

zero mean function without loss of generality (Rasmussen & Williams, 2006). A GP 
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prior is therefore specified for the function values 𝑓, 𝑓 ~ 𝐺𝑃(𝑚(𝑆𝑛) = 0, 𝐶(𝑆𝑛, 𝑆𝑚)) 

such that: 

𝑝(𝑓|𝑆) = 𝒩(0, 𝐶), (34) 

where 𝑓 is a vector of 𝑁 latent variable values 𝑓𝑛, 𝑆 is a matrix of 𝑁 vectors of 

𝑆𝑛 and 𝐶 is a (𝑁 × 𝑁) covariance matrix defined by a covariance function (or kernel) 

such that 𝐶𝑛,𝑚  =  𝐶(𝑆𝑛, 𝑆𝑚). Note that 𝐶 could be a group of 𝐷𝑆 (𝑁 × 𝑁) matrices in 

case an Automatic Relevance Determination (ARD) covariance function is used (Refer 

to section 5.2). 

The next step is to specify an appropriate likelihood or link function for the 

classes to obtain a probabilistic classification since the target outputs are discrete (0 or 

1). The link function could be a sigmoid function or a cumulative density function of a 

standard normal distribution. We make use of a sigmoid function as follows: 

𝑃(𝑞𝑛𝑘|𝑓𝑛) =
1

1 + 𝑒𝑥𝑝(−𝑓𝑛)
 . (35) 

Then, the posterior over 𝑓 can be determined using Bayes’ theorem as follows: 

𝑃(𝑓𝑛|𝑞𝑛𝑘, 𝑆𝑛) =
𝑃(𝑞𝑛𝑘|𝑓𝑛)𝑃(𝑓𝑛|𝑆𝑛)

𝑃(𝑞𝑛𝑘|𝑆𝑛)
 . (36) 

The combination of a Gaussian Process prior with a non-Gaussian link function 

results in a non-Gaussian posterior that is analytically intractable. Nevertheless, the 

posterior can be approximated by a GP using different approximation techniques such 

as Markov Chain Monte Carlo (MCMC) (Neal, 1999), Variational Inference (VI) 

(Gibbs & Mackay, 2000) and Expectation Propagation (EP) (Minka, 2001; Opper & 

Winther, 2000). In this research, we make use of the Laplace approximation (C. Bishop, 

2006; Rasmussen & Williams, 2006; Williams & Barber, 1998) which approximates the 

posterior with a Gaussian by taking a second-order Taylor expansion of the logarithm of 
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the posterior around its maximum. For more details about the Laplace approximation, 

readers may refer to Rasmussen and Williams (2006, sec. 3.4) and Bishop (2006, sec. 

6.4.6). 

 

5.2. Kernels 

The choice of a suitable covariance function (kernel) is a crucial step in learning 

a Gaussian Process that generalizes beyond the training data since the kernel can shape 

the distribution we wish to learn in different ways and determine the characteristics of 

the fitted function (such as smoothness, periodicity, stationarity and isotropy). Different 

kernels or combinations (addition or multiplication) of kernels can be used to generate 

more complex structures and improve the GP flexibility. We present next the most 

common kernels and the ones that are used in our applications (Chapter 6).  

 

5.2.1. Squared Exponential Kernel (SE) / Radial Basis Function (RBF) 

The most common choice of kernel is the Squared Exponential kernel (SE), also 

known as Radial Basis Function (RBF), which is defined as follows: 

𝑘𝑆𝐸(S𝑛, 𝑆𝑚) = 𝜆2𝑒𝑥𝑝 (
𝑟2

2ℓ2
) , (37) 

where 𝑟 =  |𝑆𝑛 – 𝑆𝑚| is the Euclidean distance between two observations 𝑆𝑛 and 𝑆𝑚 

(e.g., characteristics of two individuals 𝑛 and 𝑚), 𝜆2 is the variance of the distance 

between two observations and ℓ is the length-scale which determines the smoothness of 

the kernel function and the importance of the features (independent variables).  

The SE kernel is a stationary kernel that is infinitely differentiable (mean square 

derivatives of all orders) and as such is very smooth. However, it is believed that such 
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strong smoothness is unrealistic for some applications and the Matérn kernel is instead 

recommended (Stein, 1999). 

 

5.2.2. Matérn Kernel 

The Matérn kernel is a stationary kernel that can be considered as a 

generalization of the SE kernel. It is defined as follows: 

𝑘𝑀𝑎𝑡𝑒𝑟𝑛(S𝑛, 𝑆𝑚) =
21−𝜈

Γ(𝜈)
(

√2𝜈𝑟

ℓ
)

𝜈

𝐾𝜈 (
√2𝜈𝑟

ℓ
) , (38) 

where 𝑟 =  |𝑆𝑛 – 𝑆𝑚| is the Euclidean distance between two observations 𝑆𝑛 and 𝑆𝑚 

(e.g., characteristics of two individuals 𝑛 and 𝑚), 𝜈 is a positive parameter that controls 

the smoothness of the function (lower values result in less smooth functions), ℓ is the 

length-scale of the kernel, Γ is the gamma function, and 𝐾𝜈 is a modified Bessel 

function (Abramowitz & Stegun, 1965; Mackay, 1998). 

The most interesting and commonly used cases for machine learning are 𝜈 = 3/2 

and 𝜈 = 5/2. 

It is to be noted that both of the above kernels could be used with Automatic 

Relevance Determination (ARD) by specifying the length-scale as a vector of 

dimension 𝐷𝑆 equal to the dimension of 𝑆𝑛 (Rasmussen and Williams, 2006). Large 

length-scale values mean the function values are uncorrelated and the corresponding 

feature(s) should be removed from the model (Rasmussen and Williams, 2006). 

Other kernel functions can be used such as periodic, exponential, radial 

quadratic, or piecewise polynomial, to name a few. For more details, readers may refer 

to Rasmussen and Williams (2006, sec. 4). 
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5.3. Gaussian Process – Latent Class Choice Model 

We now present the formulation of the Gaussian Process – Latent Class Choice 

Model (GP-LCCM). Similar to the traditional LCCM, the GP-LCCM consists of two 

components, a class membership model and a class-specific choice model. The former 

is defined as a Gaussian Process that probabilistically assigns decision-makers to 

behaviorally homogeneous latent classes/clusters, while the latter formulates class-

specific choice probabilities using typical discrete choice models (e.g., MNL). Figure 5 

shows the graphical representation of the proposed model. Hatched circles represent 

observed variables and choices while white circles symbolize unknown parameters and 

latent variables. 

 

Figure 5: Graphical representation of the proposed Gaussian Process – Latent Class 

Choice Model (GP-LCCM) for a set of N decision-makers and K clusters/latent classes 

 

5.3.1. Proposed Model 

Given the conditional independence properties of the graphical model structure 

of the GP-LCCM (Figure 5), the joint probability of 𝑓𝑛, 𝑦𝑛, and 𝑞𝑛𝑘 can be formulated 
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as the product of the Gaussian prior (Equation 34 and first term on the right hand side 

below), the link function or the likelihood of 𝑞𝑛𝑘 conditional on the latent function 𝑓𝑛 

(Equation 35 and second term on the right hand side below) and the choice probability 

conditional on the class (Equation 10 and third term on the right hand side below), as 

follows: 

𝑃(𝑓𝑛, 𝑦𝑛, 𝑞𝑛𝑘 = 1|𝑆𝑛, 𝑋𝑛, 𝛽𝑘) = 𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘). (39) 

The joint probability of 𝑓𝑛 and 𝑦𝑛 is then obtained by summing Equation (39) 

over all classes 𝐾 (we omit the dependencies on the left hand side of the equation to 

make the notation less cluttered): 

𝑃(𝑓𝑛, 𝑦𝑛) = ∑ 𝑃(𝑓𝑛, 𝑦𝑛, 𝑞𝑛𝑘 = 1|𝑆𝑛, 𝑋𝑛, 𝛽𝑘)

𝐾

𝑘=1

 

= ∑ 𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘)

𝐾

𝑘=1

. 

(40) 

Finally, the joint likelihood function of the GP-LCCM model for a sample of 𝑁 

decision-makers is given by: 

𝑃(𝑓, 𝑦) = ∏ 𝑃(𝑓𝑛, 𝑦𝑛)

𝑁

𝑛=1

= ∏ ∑ 𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)

𝐾

𝑘=1

𝑁

𝑛=1

 

× ∏ ∏ 𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘)
𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇𝑛

𝑡=1

 , 

(41) 

To learn the parameters 𝛽𝑘 and the hyper-parameters of the kernel, the log of the 

above likelihood should be maximized and evaluated over the unknown parameters. 

Similarly to the GBM-LCCM, an EM-based algorithm is derived and implemented for 

estimating the proposed GP-LCCM.  
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5.3.2. EM Algorithm 

The EM algorithm requires writing the likelihood function (Equation 41) 

assuming that the class assignments (𝑞𝑛𝑘) are no longer latent: 

𝑃(𝑓, 𝑦) = ∏ ∏[𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)]𝑞𝑛𝑘

𝐾

𝑘=1

𝑁

𝑛=1

 

× ∏ ∏ ∏ ∏ 𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘)
𝑦𝑛𝑗𝑡𝑞𝑛𝑘

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(42) 

The logarithm of the above likelihood is then the sum of the two sub-

components of the model, the class membership component (first term on the right-hand 

side below) and the class-specific choice component (second term), as follows: 

𝐿𝐿 = ∑ ∑ 𝑞𝑛𝑘𝑙𝑜𝑔[𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)]

𝐾

𝑘=1

𝑁

𝑛=1

+ ∑ ∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝑞𝑛𝑘𝑙𝑜𝑔[𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘)]

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(43) 

Next, the unknown choice model parameters (𝛽𝑘) can be estimated by setting 

the derivatives of the log-likelihood (Equation 43) with respect to the unknown 

parameters to zero if and only if 𝑞𝑛𝑘’s are known. Similarly, the hyper-parameters of 

the GP kernel function can be found using the Laplace approximation method if and 

only if 𝑞𝑛𝑘’s are known. Therefore, the expectation of 𝑞𝑛𝑘 (E-step) is calculated using 

Bayes’ theorem as follows: 

𝑃(𝑞𝑛𝑘 = 1|𝑦𝑛, 𝑆𝑛, 𝑓𝑛, 𝑋𝑛, 𝛽𝑘) ∝  𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛, 𝑆𝑛)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘 ), (44) 

𝐸[𝑞𝑛𝑘] = 𝛾𝑞𝑛𝑘
=

𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛, 𝑆𝑛)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘 )

∑ 𝑃(𝑞𝑛𝑐 = 1|𝑓𝑛, 𝑆𝑛)𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑐 = 1, 𝛽𝑐 )𝐾
𝑐=1

 . (45) 
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Then, the expected value of the log-likelihood w.r.t 𝑞𝑛𝑘 is maximized instead of 

Equation 43, due to the unknown values of the latent variables 𝑞𝑛𝑘, to find/update the 

unknown hyper/parameters (M-step). The expected log-likelihood function is given by: 

𝐸[𝐿𝐿] = ∑ ∑ 𝛾𝑞𝑛𝑘
𝑙𝑜𝑔[𝑃(𝑓𝑛|𝑆𝑛)𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛)]

𝐾

𝑘=1

𝑁

𝑛=1

+ ∑ ∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝛾𝑞𝑛𝑘
𝑙𝑜𝑔[𝑃(𝑦𝑛𝑗𝑡 = 1|𝑋𝑛𝑗𝑡, 𝑞𝑛𝑘 = 1, 𝛽𝑘)]

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝐾

𝑘=1

𝑁

𝑛=1

. 

(46) 

Setting the derivative of the above expected log-likelihood with respect to 𝛽𝑘 to 

zero, we can find the updated solution of 𝛽𝑘 as follows: 

𝛽𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽𝑘
∑ ∑ ∑ 𝑦𝑛𝑗𝑡𝛾𝑞𝑛𝑘

𝑙𝑜𝑔 [
𝑒𝑋𝑛𝑗𝑡

′ 𝛽𝑘

∑ 𝑒𝑋𝑛𝑗′𝑡
′ 𝛽𝑘𝐽

𝑗′=1

]

𝐽

𝑗=1

𝑇𝑛

𝑡=1

𝑁

𝑛=1

. (47) 

Note that closed-form solutions cannot be obtained for Equation 47. Instead, we 

rely on the gradient-based numerical optimization method BFGS (Nocedal & Wright, 

2006) or the constrained version L-BFGS-B (C. Zhu et al., 1997).  

As for estimating the hyper-parameters of the Gaussian Process kernel, a 

Laplace approximation method is applied. However, the target variables (class labels) 

should be known since the Laplace approximation is applied to classification 

applications. For the sake of simplicity and without loss of generality, we consider the 

case of two classes (𝐾 =  2). After calculating the expectations of 𝑞𝑛𝑘’s in the E-step 

(which are continuous values between 0 and 1), class labels are generated using hard 

clustering/assignment as follows: if 𝐸[𝑞𝑛0]  >  𝐸[𝑞𝑛1], then individual 𝑛 belongs to 

class 0, otherwise individual 𝑛 belongs to class 1. Next, a Laplace approximation is 

applied and the hyper-parameters of the kernel are estimated.  
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The steps of the EM estimation of the proposed GP-LCCM with two classes 

(𝐾 =  2) are: 

1. Initialize the parameters 𝛽𝑘 and assign each individual to a class (0 or 1) 

randomly 

2. Select a kernel function and initialize the corresponding hyper-

parameters 

3. E-step: Estimate the expectations of 𝑞𝑛𝑘’s using Equation 45 

4. M-step:  

i. Re-estimate/update the parameters 𝛽𝑘 using Equation 47 and the 

expectations from the E-step 

ii. Assign each individual to one class (0 or 1) using the expectations 

from the E-step as follows: if 𝐸[𝑞𝑛0]  >  𝐸[𝑞𝑛1], then individual 𝑛 

belongs to class 0, otherwise individual 𝑛 belongs to class 1 

iii. Re-estimate/update the hyper-parameters of the kernel function 

using the Laplace approximation method and the class labels from 

the previous step (ii) 

5. Evaluate the log-likelihood using the current values of the 

hyper/parameters and check if the convergence criterion is satisfied. If, 

not return to step 3 

6. Finally, after convergence is reached, estimate the marginal probability 

of observing a vector of choices 𝑦, 𝑃(𝑦), for all decision-makers 𝑁 as 

follows:  

𝑃(𝑦) = ∏ ∑ 𝑃(𝑞𝑛𝑘 = 1|𝑓𝑛, 𝑆𝑛)

𝐾

𝑘=1

𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘)

𝑁

𝑛=1

. (48) 
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The marginal probability (Equation 48) is calculated in order to compare the 

GP-LCCM with the traditional LCCM (Equation 12) and assess out-of-sample 

prediction accuracies. For multi-class problems (𝐾 =  2), 𝐾 binary one-versus-rest 

classifiers are estimated to classify each class against all the rest using the Laplace 

approximation method. The implementation of the multi-class case is based, within 

each EM iteration, on Algorithms 3.1, 3.2, and 5.1 from Gaussian Processes for 

Machine Learning (GPML) by Rasmussen and Williams (2006). 
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CHAPTER 6 

GP-LCCM APPLICATIONS 
 

We present three different mode choice applications of the proposed GP-LCCM 

approach. We benchmark the proposed model against the traditional LCCM and the 

proposed GBM-LCCM/ GM-LCCM by using the same specifications for all models. 

Section 6.1 presents the datasets. Section 6.2 describes the implementation of the 

different models. Section 6.3 presents the model formulations/specifications and 

estimation results. Section 6.4 concludes. 

 

6.1. Data 

Three different datasets are used to evaluate the GP-LCCM approach. We make 

use of the AUB dataset (Section 4.1.2), London dataset (Section 4.1.1) and Swissmetro 

dataset which is presented in Section 6.1.1. 

 

6.1.1 Swissmetro Dataset 

The third application is based on the famous Swissmetro dataset which consists 

of SP survey data collected in Switzerland during March of 1998 to assess the potential 

demand for the formerly proposed Swissmetro, a maglev underground transport system 

(Bierlaire et al., 2001). Each respondent was offered nine hypothetical scenarios with 

the following alternatives: Train, Swissmetro (SM) and Car (only for car owners). Each 

alternative was described by its corresponding attributes such as travel time and travel 

cost/fare, etc. Socio-economic/demographic information was also collected. For more 

information, readers may refer to Bierlaire (2018) and Bierlaire et al. (2001). The 
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original dataset contains 10,728 observations corresponding to 1,192 respondents (751 

car users and 441 rail-based travelers). However, observations with missing age, 

unknown choices and “other” trip purposes are removed. As a result, the used sample 

consists of 10,692 observations corresponding to 1,188 respondents. The sample is 

randomly divided into 80% (950 respondents and 8,550 observations) for 

training/estimation and 20% (238 respondents and 2,142 observations) for 

testing/prediction. 

 

6.2. Implementation 

The GP-LCCM is implemented in Python by using some blocks from: 1) the 

Gaussian Process Classifier (GPC) of the Scikit-Learn library (Pedregosa et al., 2011), 

which is based on Laplace approximation by Rasmussen and Williams (2006); 2) and 

lccm (El Zarwi, 2017a, 2017b), a python package that implements an EM algorithm for 

estimating traditional latent class choice models. The code is publicly available on 

GitHub8. The GBM-LCCM/GM-LCCM and traditional LCCM are implemented as 

mentioned in Section 4.2. Convergence of the three different models is assumed to be 

reached once the change in the log-likelihood function between two successive EM 

iterations is smaller than 1x10-4. The GP-LCCMs are estimated five times with 

different random initialization to assess the stability of the models. All runs are 

performed on a machine with a core i7 CPU @ 2.40 GHz, 8GB of RAM and a GeForce 

GT 730M. Note that the socio-economic variables entering the class membership 

component of the GP-LCCMs are standardized (mean = 0 and standard deviation = 1) 

prior to the estimation. 

                                                 
8 https://github.com/gsfeir/GP-LCCM 
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6.3. Applications  

We present in this section the model specifications and estimation results of the 

AUB, London, and Swissmetro applications in Sections 6.3.1, 6.3.2, and 6.3.3, 

respectively.  

 

6.3.1. AUB Case Study 

6.3.1.1. Model Specification  

The LCCM and GM-LCCM are specified as in Section 4.3.2. A tied covariance 

is selected for GM-LCCM with two latent classes and a spherical covariance for GM-

LCCM with three latent classes since those specifications proved to generate the best 

results (Chapter 4 – Table 9). The latent classes and class-specific utility functions of 

the GP-LCCM are also characterized similarly to LCCM and GM-LCCM (Chapter 4 – 

Table 8). As for the choice of the kernel function of GPs, and knowing that kernel 

functions affect the generalization performance of the model, different kernels and 

combinations of kernels were tested and models with better generalization performance, 

better in-sample goodness-of-fit measures (LL, AIC, and BIC), and reasonable 

parameter estimate signs and magnitudes were selected. For the GP-LCCM with two 

classes, a Matérn kernel with a smoothness parameter (𝜈) of 2.5 is used while for three 

latent classes, a combination of a constant and a Matérn kernel with a smoothness 

parameter of 2.5 is selected. A constant had to be added since a single Matérn kernel 

resulted in high standard errors for some class-specific parameter estimates. 

6.3.1.2. Estimation Results 

Summary statistics for the LCCM, GM-LCCM and GP-LCCM are shown in 

Table 13. The LCCM was only able to identify two latent classes. Increasing the 
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number of classes beyond two resulted in class-specific estimates with very high 

standard errors (identification issues). On the other hand, the GM-LCCM and GP-

LCCM were able to identify higher number of classes (up to 5). However, such models 

with more than three latent classes generated positive travel cost and/or travel time 

coefficients and as such are excluded from the comparison (Table 13).  Results show 

that the GP-LCCM with two classes has better goodness-of-fit measures (Joint LL, LL, 

AIC, and BIC) and better prediction accuracy in terms of log-likelihood (Pred. LL) than 

the two other models with two classes. Moreover, the GP-LCCM with three latent 

classes has better goodness-of-fit and prediction measures than all other models. It is to 

be noted that, compared to the LCCM with two latent classes, the GP-LCCM with three 

latent classes improves the in-sample goodness-of-fit (LL) and the out-of-sample 

prediction accuracy (Pred. LL) by 4.5% and 8.8%, respectively. As for the GM-LCCM 

with three latent classes, the improvement over the LCCM is less significant with 0.4% 

for the LL and 2.6% for the Pred. LL (Table 13). It is believed that the superiority of the 

GP-LCCM stems from the nonparametric nature of GPs, which allows for more 

flexibility than the parametric structure of the Gaussian mixture models and the linear-

in-parameters utility specification of the class membership model of the traditional 

LCCM. Note that the 5-fold cross validation technique is used to assess the predictive 

power of the models. Furthermore, the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) are derived as follows: 

𝐴𝐼𝐶 = 2𝑀 − 2 log 𝐿𝐿 , (49) 

𝐵𝐼𝐶 = 𝑀 log 𝐷 − 2 log 𝐿𝐿 , (50) 

where 𝑀 is the number of parameters, 𝐿𝐿 is the estimated marginal choice log-

likelihood, and 𝐷 is the number of data points (observations). For the LCCM and GM-
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LCCM, the number of parameters 𝑀 is equal to the number of unknown parameters that 

are statistically estimated using the available data. As for the GP-LCCM, the 

complexity of the model grows with the amount of data used for estimation since 

Gaussian Processes are nonparametric models. The true number of parameters would be 

equal to the number of data points (2600 observations for this application) in addition to 

the number of choice parameters (𝛽𝑘) from the class-specific choice models (42 choice 

parameters for the case of 2 classes). However, such number would be unreasonable for 

the estimation of AIC and BIC. Instead, it is common to assume that the number of 

parameters in a GP model is equal to the number of kernel hyper-parameters (Lloyd et 

al., 2014; Richter & Toledano-Ayala, 2015). Therefore, for the sake of comparison with 

other models, we assume that the number of parameters 𝑀 for a GP-LCMM is equal to 

the number of kernel hyper-parameters (𝜈 and ℓ in case of a Matérn kernel) in addition 

to the number of class-specific choice parameters (𝛽𝑘). 

Table 13: Summary results of the AUB application 

K Model 
Nb of 

parameters 

Joint 

LLa 
LLb AIC BIC 

Average 

Pred. LL 

2 

LCCM 47  -4,910.92 9,915.84 10,191.41 -1,024.93 

GM-LCCM 61 -8,533.22 -4,911.08 9,944.16 10,301.82 -1,012.62 

GP-LCCM 44 -4,905.31 -4,877.73 9,843.46 10,101.44 -995.76 

3 
GM-LCCM 80 -7,042.21 -4,893.29 9,946.58 10,415.64 -998.41 

GP-LCCM 72 -4,480.70 -4,691.25 9,526.50 9,948.66 -935.23 

a: joint log-likelihood of the GM-LCCM (Equation 21) and GP-LCCM (Equation 44) 

b: marginal choice log-likelihood of the LCCM, GM-LCCM (Equation 31) and GP-

LCCM (Equation 49) 

Estimates of the class-specific choice models of the three LCCMs with two 

latent classes in addition to the corresponding Values of Time (VOTs) are presented in 

Table 14 (values between parentheses are p-values). Travel time and travel cost 

parameter estimates have the expected negative sign. In addition, all parameter 
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estimates are similar in magnitude and sign with the ones related to LCCM and GM-

LCCM being almost the same. The second class is characterized by higher VOT for car 

while individuals from both classes have, to some extent, similar VOTs for shared-taxi 

and shuttle. Table 15 shows the estimates of the class-specific choice models and VOTs 

of the GM-LCCM and GP-LCCM with three latent classes. All travel time and travel 

cost coefficients have the same order of magnitude and expected negative sign. 

Moreover, according to the GM-LCCM, individuals belonging to the third class seem to 

be insensitive towards travel cost of car (p-value = 0.11) and travel time of shuttle (p-

value = 0.26) while the same variables are highly significant according to the GP-

LCCM (p-values = 0). This insignificance of certain level of service variables in the 

third class of the GM-LCCM results in very high and low VOTs of car and shuttle, 

respectively. However, compared to previous mode choice studies of AUB students 

(Al-Ayyash et al., 2016; Sfeir et al., 2020), the GP-LCCM generates more reasonable 

estimates of Values of Time than the GM-LCCM. This previous discussion shows that 

the behavioral and economic interpretability of the class-specific choice models were 

not jeopardized by the introduction of Gaussian Processes to the LCCM framework. 

Furthermore, the GP-LCCM is capable of improving the prediction accuracy, capturing 

more complex heterogeneity than the LCCM since a higher number of classes is 

identified, and generating more seemingly reliable VOT estimates than the GM-LCCM. 



 

 105 

Table 14: Class-specific choice models and VOT (K = 2) 

Parameter 
LCCM GM-LCCM GP-LCCM 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Ccar1 -2.56 (0.00) 0.372 (0.00) -2.50 (0.00) 0.361 (0.00) -2.69 (0.00) 0.351 (0.00) 
Ccar2 -2.06 (0.00) 0.298 (0.01) -2.04 (0.00) 0.290 (0.01) -1.92 (0.00) 0.282 (0.01) 
Ccar3 -2.36 (0.00) 0.516 (0.00) -2.39 (0.00) 0.508 (0.00) -2.64 (0.00) 0.483 (0.00) 
Ccar4 -3.09 (0.00) -0.422 (0.01) -3.08 (0.00) -0.430 (0.00) -2.77 (0.00) -0.449 (0.00) 
CST1 -1.60 (0.03) -0.464 (0.00) -1.62 (0.04) -0.465 (0.00) -1.96 (0.00) -0.475 (0.00) 
CST2 -2.10 (0.00) -0.172 (0.24) -2.09 (0.00) -0.174 (0.24) -1.83 (0.00) -0.211 (0.15) 
CST3 -1.05 (0.03) -0.108 (0.61) -1.08 (0.03) -0.108 (0.61) -1.46 (0.02) -0.0979 (0.63) 
CST4 -3.08 (0.00) -0.347 (0.25) -3.15 (0.00) -0.347 (0.25) -2.24 (0.03) -0.434 (0.15) 
CST5 -0.158 (0.53) -0.217 (0.53) -0.159 (0.53) -0.209 (0.55) -0.0556 (0.83) -0.169 (0.62) 
CSH1 -2.26 (0.00) -0.280 (0.02) -2.30 (0.00) -0.286 (0.02) -2.83 (0.00) -0.326 (0.01) 
CSH2 -2.99 (0.00) 0.413 (0.00) -3.03 (0.00) 0.403 (0.00) -2.86 (0.00) 0.350 (0.01) 
CSH3 -2.26 (0.00) 0.678 (0.00) -2.29 (0.00) 0.661 (0.00) -2.47 (0.00) 0.595 (0.00) 
CSH4 -3.93 (0.00) 0.373 (0.09) -4.02 (0.00) 0.354 (0.11) -3.95 (0.00) 0.282 (0.19) 
CSH5 -1.52 (0.00) 0.378 (0.16) -1.52 (0.00) 0.379 (0.15) -1.54 (0.00) 0.367 (0.15) 
CostCar -0.0446 (0.00) -0.0456 (0.00) -0.0442(0.00) -0.0462 (0.00) -0.0425 (0.00) -0.0474 (0.00) 
CostST -0.101 (0.00) -0.109 (0.00) -0.101 (0.00) -0.110 (0.00) -0.105 (0.00) -0.108 (0.00) 
CostSH -0.0400 (0.00) -0.0998 (0.00) -0.0401 (0.00) -0.0993 (0.00) -0.0399 (0.00) -0.0971 (0.00) 
TTCar -0.409 (0.00) -0.658 (0.00) -0.409 (0.00) -0.653 (0.00) -0.420 (0.00) -0.630 (0.00) 
TTST -0.372 (0.00) -0.646 (0.00) -0.372 (0.00) -0.641 (0.00) -0.380 (0.00) -0.629 (0.00) 
TTSH -0.252 (0.00) -0.387 (0.00) -0.252 (0.00) -0.384 (0.00) -0.255 (0.00) -0.375 (0.00) 
Headway -0.0423 (0.65) -0.565 (0.00) -0.0442 (0.64) -0.561 (0.00) -0.0556 (0.56) -0.562 (0.00) 

Mode VOT ($/hr) 

Car 6.11 9.61 6.16 9.42 6.59 8.87 

ST 2.44 3.96 2.45 3.90 2.42 3.87 
SH 4.20 2.59 4.19 2.58 4.26 2.58 

Cost variables are in 1,000 L.L. 

Travel Time and Headway variables are in hours  
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Table 15: Class-specific choice models (K = 3) 

Parameter 
GM-LCCM GP-LCCM 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Ccar1 -2.24 (0.00) 0.444 (0.00) -0.102 (0.78) -3.54 (0.29) 0.397 (0.00) 0.746 (0.33) 
Ccar2 -1.82 (0.00) 0.290 (0.02) 0.327 (0.25) -2.83 (0.57) -0.0479 (0.77) 1.56 (0.01) 
Ccar3 -2.11 (0.00) 0.677 (0.00) -0.0412 (0.88) -2.52 (0.62) 0.140 (0.48) 1.90 (0.00) 
Ccar4 -2.90 (0.00) -0.224 (0.18) -1.26 (0.00) -5.20 (0.20) -1.34 (0.00) 0.347 (0.16) 
CST1 -1.61 (0.01) -0.331 (0.01) -1.11 (0.00) -1.33 (0.73) 0.285 (0.07) -1.45 (0.00) 
CST2 -2.31 (0.00) -0.00930 (0.95) -0.907 (0.03) -2.85 (0.57) 0.915 (0.00) -1.90 (0.00) 
CST3 -1.07 (0.02) 0.0262 (0.91) -0.938 (0.09) -1.40 (0.78) 1.09 (0.00) -1.41 (0.03) 
CST4 -3.23 (0.00) -0.073 (0.82) -1.78 (0.08) -1.71 (0.61) 0.863 (0.05) -1.06 (0.23) 
CST5 -0.181 (0.47) -0.284 (0.48) -0.244 (0.76) -0.141 (0.60) 2.69 (0.00) -1.20 (0.06) 
CSH1 -2.19 (0.00) -0.240 (0.07) -0.557 (0.08) -3.59 (0.267) 0.987 (0.00) -0.838 (0.00) 
CSH2 -3.17 (0.00) 0.556 (0.00) -0.535 (0.11) -3.48 (0.49) 2.08 (0.00) -0.812 (0.08) 
CSH3 -2.12 (0.00) 0.862 (0.00) -0.959 (0.03) -1.84 (0.71) 2.18 (0.00) 0.285 (0.68) 
CSH4 -4.38 (0.00) 0.627 (0.01) -1.63 (0.00) -4.36 (0.27) 2.45 (0.00) -0.231 (0.80) 
CSH5 -1.45 (0.00) 0.601 (0.04) -1.15 (0.05) -1.64 (0.00) 3.17 (0.00) 0.555 (0.35) 
CostCar -0.0451 (0.00) -0.0707 (0.00) -0.0172 (0.11) -0.0451 (0.00) -0.0645 (0.00) -0.0524 (0.00) 
CostST -0.0991 (0.00) -0.107 (0.00) -0.123 (0.00) -0.102 (0.00) -0.132 (0.00) -0.101 (0.00) 
CostSH -0.0421 (0.00) -0.0832 (0.00) -0.120 (0.00) -0.0411 (0.00) -0.118 (0.00) -0.150 (0.00) 
TTCar -0.410 (0.00) -0.717 (0.00) -0.614 (0.00) -0.404 (0.00) -0.466 (0.00) -0.680 (0.00) 
TTST -0.384 (0.00) -0.777 (0.00) -0.349 (0.01) -0.360 (0.00) -0.619 (0.00) -0.856 (0.00) 
TTSH -0.259 (0.00) -0.519 (0.00) -0.107 (0.26) -0.226 (0.00) -0.319 (0.00) -0.752 (0.00) 
Headway -0.0114 (0.91) -0.757 (0.00) -0.380 (0.06) -0.0551 (0.59) -0.381 (0.00) -0.783 (0.00) 

Mode VOT ($/hr) 

Car 6.07 6.76 23.81 5.96 4.82 8.65 

ST 2.58 4.85 1.89 2.34 3.13 5.64 
SH 4.10 4.16 0.60 3.67 1.80 3.35 

Cost variables are in 1,000 L.L. 

Travel Time and Headway variables are in hours 
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Results of the class membership model of the LCCM and GM-LCCM with two 

latent classes are presented in Table 16. According to both the LCCM parameter 

estimates and the GM-LCCM mean estimates, members of the first class are more likely 

to be older people and staff with high grades who belong to households with high car 

ownership and have tendency to share rides to AUB.  

Table 16: Class membership estimates of LCCM and GM-LCCM (K = 2) 

Parameter 
LCCM GM-LCCM 

Class 1 Class 2  Class 1 Class 2 

ASC - 2.27 (0.00) π 0.575 0.425 

Age - -0.587 (0.00) µAge 0.303 -0.409 

Grade - -0.569 (0.00) µGrade 0.225 -0.303 

C/D - -0.267 (0.37) µC/D 0.0459 -0.0620 

Nb - -0.0850 (0.26) µNb 0.0513 -0.0693 

 

As for the GP-LCCM, the introduction of the nonparametric Gaussian Processes 

makes the model less transparent at the class membership level. However, the latent 

classes can still be interpreted although in a different manner than in traditional DCMs 

and parametric models where interpretability is based on the parameter estimates. 

Recently, interpretability of machine learning models has become a fundamental area of 

research and many studies have shown that different techniques can be used for model 

interpretation (Doshi-velez and Kim, 2017; Ribeiro et al., 2016b, 2016a; Wang et al., 

2020, to name a few). One approach to interpret “black box” machine learning models 

is using model-agnostic techniques that infer explanations from the estimated/trained 

model by treating it as a black box (Ribeiro et al., 2016b). In this application, we rely on 

the Local Interpretable Model-agnostic Explanations (LIME) technique to interpret the 

class membership component of the GP-LCCM. LIME (Ribeiro et al., 2016a) learns an 

interpretable model on top of the original machine learning model with the aim of 

interpreting individual predictions. First, LIME generates a new dataset by shuffling the 
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original observations (the socio-economic variables used for clustering). Second, LIME 

weights the new observations by their closeness to the original dataset. Finally, LIME 

fits an interpretable model (e.g., linear regression) by using the new shuffled-weighted 

observations and their associated predictions (class labels) from the original model (GP-

LCCM). Figure 6 explains the class predictions of the GP-LCCM with two latent 

classes. Several individual predictions have been investigated. However, for the sake of 

brevity, only three observations are presented. The bar charts in Figure 6 portray the 

importance of each variable, with the value next to each bar being the corresponding 

weight, while the colors (blue for class 1 and orange for class 2) specify which class the 

variables contribute to. In the three bar charts of Figure 6, LIME assigns positive and 

blue weights to Age and Grade while the weights of C/D (ratio of number of cars 

available over number of licensed drivers per household) and Nb (number of people 

who are usually present in the car during the trip from home to AUB) are close to zero. 

This implies that the first class (blue color) is characterized by higher age and grade 

values which is in line with the corresponding positive parameters from the LCCM and 

GM-LCCM (Table 16). Moreover, the order of magnitude of the weights, which 

represent the importance of each variable, is similar to the order of parameter 

magnitudes from the LCCM and GM-LCCM. Both models from Table 16 have high 

parameter/mean estimates for Age and Grade while the ones related to C/D and Nb are 

lower and insignificant according to the LCCM (high p-values). Finally, the first two 

individuals (Figures 6.a and 6.b) are more likely to belong to the second class (class 

probabilities higher than 0.5) while the third individual (Figure 6.c) is more likely to 

belong to the first class (class probability = 0.75). This shows that although Gaussian 

Processes make the class components less transparent, local interpretability can still be 
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achieved by relying on model-agnostic techniques. It is to be noted that local 

interpretability is sometimes much more relevant for model explainability than abstract 

global interpretation techniques (Montavon et al., 2018), especially given that the 

former targets individual explanations that can offer better in-depth realization of 

features contribution/importance in smaller groups of individuals (Kopitar et al., 2019). 

As for the computational times, the LCCM and GM-LCCM took on average less 

than a minute to converge while the GP-LCCMs with two and three classes took around 

5 and 35 minutes, respectively. This difference in runtime is expected due to the 

nonparametric nature of GPs whose inference requires inverting the covariance matrix 

with cost of scale 𝑂(𝑁3). However, it is to be noted that all runs were performed on a 

machine with a single core, meaning the implementation was not optimized to take full 

advantage of modern computational hardware (e.g., GPU) which could make 

computational overheads less relevant.   
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a) Individual 1: Age = 24, Grade = 0, C/D = 0.5, Nb = 0 

 

b) Individual 2: Age = 24, Grade = 0, C/D = 0.67, Nb = 5 

 

c) Individual 3: Age = 45, Grade = 16, C/D = 1, Nb = 4 

Figure 6: Explaining three individual class predictions of the GP-LCCM with two 

classes (K = 2) using LIME 

 

6.3.2. London Case Study 

6.3.2.1. Model Specification  

The same model specification as in the first trial of section 4.3.1 is assumed. The 

latent classes of both models, GBM-LCCM and GP-LCCM, are characterized by the 

available socio-economic variables 𝑎𝑔𝑒𝑛 (continuous variable representing the age of 

decision-maker 𝑛), 𝑓𝑒𝑚𝑎𝑙𝑒𝑛 (binary variable that equals to 1 if decision-maker 𝑛 is 

female and 0 otherwise), 𝑐𝑎𝑟_𝑜𝑤𝑛𝑛1 (binary variable that equals to 1 if the number of 
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cars in the household of decision-maker 𝑛 is more than 0 but less than one per adult and 

0 otherwise), 𝑐𝑎𝑟_𝑜𝑤𝑛𝑛2 (binary variable that equals to 1 if the number of cars in the 

household of decision-maker 𝑛 is one or more per adult and 0 otherwise), and 𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑛 

(binary variable that equals to 1 if decision-maker 𝑛 has a driving license and 0 

otherwise). The class-specific choice models are characterized by alternative-specific 

travel time and travel cost coefficients in addition to a constant in the utility of the car 

alternative. The class membership component of the GBM-LCCM is characterized by a 

full covariance structure. As for the kernel function of the GP-LCCM, a Matérn kernel 

with a smoothness parameter (𝜈) of 1.5 is selected since, compared to other kernel 

functions, it generated better in-sample goodness-of-fit measures, better out-of-sample 

prediction accuracy, and reasonable parameter estimate signs and magnitudes. 

6.3.2.2. Estimation Results 

Summary statistics of the GBM-LCCM and GP-LCCM are shown in Table 17. 

The LCCM is not considered since it was shown in Chapter 4 (Section 4.3.1.1) to 

generate positive cost coefficients. As discussed in Chapter 4, the GBM-LCCM was 

able to identify up to four latent classes. The proposed GP-LCCM was also able to 

identify four latent classes. However, the GP-LCCM models with three and four classes 

generated positive and significant travel cost coefficients and as such are ignored since 

models with counter-intuitive cost coefficients cannot be used for meaningful 

predictions and policy analysis. Moreover, the GP-LCCMs with three and four classes 

improved the joint LL drastically (greater than -270). This vast improvement in the joint 

LL (more than 87%) of these two models is a clear case of overfitting.  

Comparing the models with two latent classes, the GP-LCCM improves the in-

sample goodness-of-fit (LL) and the out-of-sample prediction accuracy (Pred. LL) by 
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7.6% and 8.2%, respectively. The two-class GP-LCCM also outperforms the three-class 

GBM-LCCM in terms of marginal choice log-likelihood and prediction accuracy by 

3.8% and 2.1%, respectively. Comparing the two-class GP-LCCM and the four-class 

GBM-LCCM, the former shows slightly better marginal choice log-likelihood while the 

later exhibits slightly better prediction accuracy.  

Table 18 presents the class-specific choice estimates of the GBM-LCCM and 

GP-LCCM with two latent classes (values between parentheses are p-values) as well as 

the corresponding VOTs. Note that we are presenting the results of the two-class GBM-

LCCM and not the four-class model for consistency of comparison with the two-class 

GP-LCCM. All travel time and travel cost parameter estimates have the expected 

negative sign. According to the GBM-LCCM, individuals from the second class are 

highly insensitive towards travel cost of PT (p-value = 0.94) and individuals from the 

first class seem to be slightly insensitive towards travel cost of car (p-value = 0.15). 

However, according to the GP-LCCM, individuals form both classes seem to be highly 

insensitive towards travel cost of PT (p-value = 0.99 and 0.98). In addition, both models 

indicate that the first class is characterized by higher VOT of car than the second class. 

These values are in line with a previous study by Hillel et al. (Hillel et al., 2019) which 

showed that the VOT of car is 36.61 £/hr. Note that most of VOTs of PT are not 

estimated due to the high insignificance of the corresponding travel cost estimates.  

Next, the latent classes of the two-class GBM-LCCM are described based on the 

mean matrix of the class membership component (i.e., the Gaussian-Bernoulli Mixture 

Model) (Table 19). Note that, for the GBM-LCCM, the continuous variable age is 

standardized. Therefore, a negative value means the latent class is characterized by 
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young individuals while a positive value means individuals are older than the average 

(which is 40 years).  

First Class: Young with low car ownership 

The first class is characterized by young individuals (𝜇𝑎𝑔𝑒 < 0) from both 

genders (52.3% are males and 47.7% are females) and who belong to households with 

no cars (43.6%) or less than one car per adult (51.6%). Individuals from this class are 

almost equally likely to be licensed (54.7%) or unlicensed drivers (45.3%). 

Second Class: Licensed drivers with high car ownership 

The second class includes individuals above 40 years old (𝜇𝑎𝑔𝑒 > 0) who are 

mostly licensed drivers (94.5%) and belong to families with moderate to high car 

ownership (only 7.6% have no cars). The percentage of males (58.7%) is somewhat 

higher than females (41.3%).  

As previously mentioned in Chapter 4, the aforementioned analysis is a strong 

indication that the proposed GBM-LCCM guarantees a simple interpretation of the 

latent classes, although the random utility formulation of the class membership 

component is replaced by a full mixture model. 

Next, similarly to the previous application (Section 6.3.1), the two latent classes 

of the GP-LCCM are locally interpreted using the model-agnostic technique LIME. 

Figure 7 explains the class predictions of two individuals. The bar charts represent the 

contribution of each variable to the class prediction and the values next to the bars 

denote the corresponding weights. The blue and orange colors represent the first and 

second class, respectively. The second class seems to be characterized by licensed 

drivers who belong to households with high car ownership per adult since LIME assigns 

orange and positive weights to the variables car_own2, car_own1 and license. 
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Individuals form the second class are likely to be males above 40 years old since Lime 

associates the variable age with an orange color and the variable female with a blue 

color. However, the contribution of age and female variables to the predictions seems to 

be limited due to the corresponding low weight values. This class interpretation is 

consistent, to high extent, with the characteristics of the classes of GBM-LCCM. The 

first individual (Figure 7.a) is a 32-year-old unlicensed female driver from a household 

with no cars. This individual belongs to the first class with a probability of 98%. The 

second individual is a 61-year-old licensed male driver who lives in a household with 

high car ownership (car_own2 = 1). This individual can be assigned to the second class 

with a probability of 85%. 

Table 17: Summary results of the London application 

K Model Joint LLa LLb Variancec AIC BIC Pred. LL 

2 
GBM-LCCM 

Full Covariance 

-18,660.22 -2,920.92 0 5,887.84 6,048.00 -1,387.89 

3 -17,502.93 -2,807.87 0 5,685.74 5,929.47 -1,300.33 

4 -17,390.22 -2,703.27 0 5,500.54 5,827.83 -1,262.86 

2 GP-LCCM -2,193.04 -2,700.54 0.03 5,425.08 5,508.64 -1,273.24 

a: joint log-likelihood of the GBM-LCCM (Equation 21) and GP-LCCM (Equation 44) 

b: marginal choice log-likelihood of the GBM-LCCM (Equation 31) and the GP-LCCM 

(Equation 49) 

c: variance of the marginal choice log-likelihood (LL) 
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Table 18: Class-specific choice estimates of GBM-LCCM and GP-LCCM (K = 2) 

Parameter 
GBM-LCCM GP-LCCM 

Class 1 Class 2 Class 1 Class 2 

ASC (Car) -0.00350 (0.99) 1.83 (0.00) -0.672 (0.98) 2.32 (0.00) 

Travel Time (PT) -0.0879 (0.00) -0.0831 (0.00) -0.0914 (0.00) -0.0916 (0.00) 

Travel Time (Car) -0.381 (0.00) -0.121 (0.00) -0.258 (0.00) -0.130 (0.00) 

Cost (PT) -0.428 (0.00) -0.00270 (0.94) -0.119 (0.99) -0.0868 (0.98) 

Cost (Car) -0.211 (0.15) -0.196 (0.00) -0.207 (0.04) -0.210 (0.00) 

 𝑽𝑶𝑻 (£/𝒉𝒓) 

PT 12.32 - - - 

Car 108.34 37.04 72.22 37.10 

Values within parentheses are p-values. 

Travel Time variables are in minutes. 

Cost variables are in Pound Sterling (£ gbp). 

 

Table 19: Mean matrix of the class membership model of GBM-LCCM (K = 2) 

Parameter Class 1 Class 2 

age** Continuous -0.261 0.264 

female Yes 0.523 0.413 

No* 0.477 0.587 

license Yes 0.547 0.959 

No* 0.453 0.041 

car_own0 0* 0.436 0.076 

car_own1 ] 0 – 1 [ 0.516 0.495 

car_own2 ≥ 1 0.048 0.429 

*: base category 

**: continuous variable that is standardized to have a mean of 0 and standard deviation 

of 1 
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a) Individual 1: age = 32, female = 1, license = 0, car_own1 = 0, car_own2 = 0 

 

b) Individual 2: age = 61, female = 0, license = 1, car_own1 = 0, car_own2 = 1 

Figure 7: Explaining two individual class predictions of the GP-LCCM with two classes 

(K = 2) using LIME 

  

6.3.3. Swissmetro Case Study 

6.3.3.1. Model Specification  

In this application, we only compare GP-LCCM to LCCM. GBM-LCCM is not 

considered since no continuous variables are used for clustering. The latent classes of 

the two models are characterized by the categorical variables AGE, MALE, INCOME, 

FIRST, LUGGAGE and PURPOSE as shown in Table 20. As for the class-specific 

choice models, the utilities of the three alternatives are specified using generic travel 

time and travel cost coefficients in addition to alternative-specific constants for the 

Train and Car alternatives. We make use of the L-BFGS-B optimizer (C. Zhu et al., 

1997) to constrain the signs of the travel time and travel cost parameters since both 

models generated counter-intuitive positive signs for travel cost and/or travel time 
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coefficients when using the unbounded optimizer BFGS (Nocedal & Wright, 2006). 

The number of latent classes is varied from 2 to 10 and the models are estimated 5 times 

with different random initializations to assess the stability of the models.  

Table 20: Variables used to define the latent classes 

Variable Description Levels 

AGE The age class of respondents 
Age ≤ 24*; 24 < Age ≤ 39; 39 < Age ≤ 54; 54 < 
Age ≤ 65; Age > 65 

MALE The respondent’s gender 1: Male; 0: Female 

INCOME 
The respondent’s income per 
thousand CHF per year 

INCOME < 50*; 50 ≤  INCOME ≤ 100; INCOME > 
100; M_INCOME: unknown income 

FIRST First class traveler 0: no; 1: yes 

LUGGAGE 
Number of luggage the 
respondent carries during a trip 

0: none; 1: one piece; 2: more than one piece* 

PURPOSE Purpose of the trip 
1: Commuter; 2: Shopping; 3: Business; 4: 
Leisure* 

*: level kept as a base 

6.3.3.2. Estimation Results 

Table 21 shows the summary statistics of LCCMs and in particular the Log-

Likelihood (LL), Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC) and log-likelihood of the test sample (Pred. LL). Increasing the number of latent 

classes beyond 5 for LCCM resulted in some travel time and travel cost parameters with 

a zero value while other parameter estimates from both sub-components (i.e., the class 

membership model and the class-specific choice model) had very high standard errors. 

It is clear that 5 is the optimal number of classes for LCCM since the corresponding 

model has the lowest LL, AIC, BIC and Pred. LL.  
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Table 21: Summary results of LCCM 

K 
Nb of  

Parameters 

 
LL AIC BIC Pred. LL 

2 23  -5,930.76 11,907.52 12,069.75 -1,490.62 

3 42  -5,202.71 10,489.41 10,785.67 -1,329.94 

4 61  -4,870.51 9,863.02 10,293.29 -1,245.18 

5 80  -4,687.99 9,535.99 10,100.28 -1,233.69 

 

Table 22 presents the same measures shown in Table 21 in addition to the joint 

LL of the GP-LCCMs. Estimating models with 8 or more classes generated zero values 

for some of the constrained parameters (travel time and/or travel cost). Similarly to the 

previous case studies, a manual search was conducted to find the optimal kernel 

function or combination of kernels. Consequently, a Matérn kernel with a smoothness 

parameter (𝜈) of 1.5 was used for all GP-LCCMs. Results show that the 7-class model 

has the lowest joint LL, LL, AIC, BIC and Pred. LL. Compared to the GP-LCCMs with 

the same number of classes, the LCCMs have better LL (for K = 4 and 5) and better 

prediction accuracy (for K = 2, 3, 4 and 5). However, the optimal GP-LCCM with 7 

classes outperforms the optimal LCCM with 5 classes over all statistical measures. 

Results show that the proposed GP-LCCM has the ability to improve the representation 

of unobserved heterogeneity by identifying a higher number of latent classes, thus 

improving the model fit and generalization performance. Compared to the best LCCM 

(K = 5), the best GP-LCCM (K = 7) improves the in-sample goodness-of-fit (LL) and 

the prediction accuracy (Pred. LL) by 1% and 2%, respectively. Finally, the 7-class GP-

LCCM generates VOTs between 0.01 and 8.96 CHF/min. In a previous study by Han 

(2019), a nonlinear-LCCM with 6 classes generated VOTs between 0.03 and 6.86 

CHF/min while Bierlaire et al. (2001) showed, using different MNL and Nested Logit 

specifications, that the VOT is around 1.2 CHF/min. Given that a relatively high 
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number of classes (seven) is estimated, it is expected to have few classes with high or 

low Values of Time due to the insignificance of some parameter estimates of travel time 

and/or travel cost. Details of the best LCCM (K = 5) and best GP-LCCM (K = 7) are 

presented in Appendix C. 

Finally, all LCCMs (K = 2 to 5) took less than a minute to converge, while the 

computational time of the GP-LCCMs varied between 5 and 55 minutes. As previously 

mentioned, the implementation was not optimized to take full advantage of modern 

computational hardware which could make computational overheads less relevant.  

Table 22: Summary results of GP-LCCM 

K 
Nb of  

Parameters 
Joint LLa LLb AIC BIC Pred. LL 

2 10 -5,930.02 -5,916.43 11,852.86 11,923.39 -1,493.52 

3 18 -4,879.78 -5,176.06 10,388.11 10,515.08 -1,354.44 

4 24 -4,260.21 -4,878.84 9,805.68 9,974.97 -1,263.21 

5 30 -3,872.87 -4,825.55 9,711.11 9,922.72 -1,256.62 

6 36 -3,564.44 -4,742.13 9,556.26 9,810.19 -1,237.09 

7 42 -3,346.24 -4,649.20 9,382.39 9,678.65 -1,213.44 

a: joint log-likelihood of the GP-LCCM (Equation 44) 

b: marginal choice log-likelihood of the GP-LCCM (Equation 49) 

 

6.4. Conclusion  

This chapter applied the proposed GP-LCCM to three different mode choice 

applications and compared it to the GBM-LCCM and/or traditional LCCM. The 

findings of two case studies (AUB and Swissmetro) indicate that the GP-LCCM allows 

for a higher degree of flexibility by estimating more latent classes than the benchmark 

models Moreover, it is capable of improving the in-sample goodness-of-fit measures 

and the out-of-sample predictive power by up to 7.6% and 8.8%, respectively. This is 

due to the fact that GPs rely on a nonparametric structure that lessens the restrictive 
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parametric assumptions of GBM-LCCM and allows more flexibility than the linear 

specifications of the class membership utilities of traditional LCCMs. As for the 

London case study, the proposed GP-LCCM generated the same number of classes as 

the proposed GBM-LCCM. However, GP-LCCMs with more than two classes were 

prone to overfitting. This may be due to the fact that nonparametric models are capable 

of achieving a high degree of flexibility that may eventually result in overfitting (Nisbet 

et al., 2017). Nevertheless, the GP-LCCM with just two latent classes outperformed the 

GBM-LCCM with two and three classes and resulted in similar goodness-of-fit and 

generalization measures as the GBM-LCCM with four classes. Results of the three 

applications also showed that the use of Gaussian Processes did not compromise the 

economic and behavioral interpretation of the class-specific choice models. In fact, 

marginal effects and economic indicators such as VOTs can be easily derived from the 

model. 

Three limitations can be identified. First, the interpretation of the latent classes 

becomes less transparent. However, latent classes can still be interpreted locally by 

means of model-agnostic techniques such as LIME. Second, the use of GPs places 

additional burden on the modeler to select an appropriate kernel function or a 

combination of kernel functions. Future work could explore ways to automate this task 

by automatically searching for the kernel structure that would maximize the marginal 

choice log-likelihood of the overall model. Third, the nonparametric nature of GPs 

make the estimation process computationally expensive, especially for large datasets. 

Such limitation could be overcome by using Sparse Gaussian Processes that 

significantly reduce the time complexity (Titsias, 2009). Finally, although three 

different mode choice applications have been considered in this chapter, the proposed 
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model should be applied to different type of datasets to examine whether the same 

findings could be reached or not. 
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CHAPTER 7 

POLICY ANALYSIS 
 

In this chapter, we compare the forecasts of different policies given by the 

traditional LCCM and the two proposed models, GBM-LCCM and GP-LCCM. We 

consider the case study of the American University of Beirut to compare the market 

shares predicted by each of the three models. Section 7.1 discusses the forecasting 

capabilities of theory- and data-driven methods. Section 7.2 describes the forecasting 

application. Section 7.3 presents the corresponding results. Section 7.4 elaborates on the 

issue of calibrating the constants. Section 7.5 concludes. 

 

7.1. Discrete Choice Models and Machine Learning for Policy Analysis 

Discrete choice models are usually used for purposes of forecasting and policy 

analysis to predict behavior of decision-makers in counterfactual settings and answer 

what-if questions. Counterfactual settings include, but are not limited to, changes in the 

choice set (e.g., existing alternatives become unavailable, new alternatives become 

available), changes in some attributes of the available alternatives, changes in some 

characteristics of decision-makers, new decision-makers, etc. (Manski, 2013). This is 

possible with discrete choice models since they are based on random utility theory that 

defines a decision-maker’s utility as a function of his/her characteristics and attributes 

of the available alternatives. With such approach, a researcher can easily predict a 

decision-maker’s choices in new settings by simply changing the corresponding values 

of his/her characteristics and/or alternatives’ attributes assuming stability of preferences 

(i.e., of the values of parameter estimates) over time. A transportation researcher can 
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then answer questions such as “what if we raise taxes on cars or decrease public 

transport fares?”. 

Any model used for policy analysis must be interpretable and provide 

meaningful extrapolations (Aboutaleb et al., 2021; Manski, 2013). Figure 8 (Aboutaleb 

et al., 2021) shows the demand 𝑦 for a product or service as a function of its price 𝑋. 

The target is to build a model that can estimate the demand as a function of price, 

𝑃(𝑦|𝑋), then use this model to predict the demand in case of price changes and, more 

importantly, to extrapolate the demand 𝑦 for values of 𝑋 beyond the range of 

historically observed prices. A theory is most needed to extrapolate beyond the range of 

observed values (Varian, 1993). Econometric models such as discrete choice models are 

theory-driven models that rely on statistical assumptions to enable meaningful 

extrapolations. For instance, the researcher’s a priori assumption regarding the problem 

presented in Figure 8 is that an increase in price 𝑋 should affect the demand 𝑦 

negatively. The estimated linear econometric model with a negative slope (blue trend) 

confirms the researcher’s a priori assumption and, consequently, the model can be used 

for meaningful extrapolations. Similarly for mode choice modeling, a model should 

generate reasonable parameter estimates that can be used for meaningful forecasts. A 

model with counter-intuitive parameter estimate signs (e.g., positive travel cost 

coefficient) cannot be used for policy analysis even if the model guarantees high 

goodness of fit.  

On the other hand, machine learning models are mostly data-driven methods that 

target maximizing fit and prediction accuracy. Regarding the problem presented in 

Figure 8, a supervised machine learning model, most probably of the second polynomial 

order, is selected to model the non-linearity of the data. The fitted model (red trend) 
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predicts perfectly the demand with respect to price changes as long as the changes are 

within the range of historically observed prices. This stems from the fact that models 

that only consider maximizing fit without relying on a priori theory do not guarantee 

meaningful extrapolations (Aboutaleb et al., 2021). 

 

Figure 8: Demand for a product or service as a function of its price (Aboutaleb et al. 

(2021)) 

As for the two models that are proposed in this dissertation, the GBM-LCCM 

and GP-LCCM, we believe that they should provide meaningful forecasts and 

extrapolations, similarly to the traditional econometric LCCM as we will justify why 

shortly. The two proposed models are also econometric LCCMs with a more flexible 

class membership component. The class-specific choice components of both the GBM-

LCCM and GP-LCCM are based on random utility theory, similarly to the traditional 

LCCM, which guarantees meaningful forecasts and extrapolations as long as the class-

specific parameter estimates conform to a priori expectations and have the right 

intuitive signs. In other words, the three models have the same class-specific choice 

formulation, 𝑃(𝑦𝑛|𝑋𝑛, 𝑞𝑛𝑘 = 1, 𝛽𝑘), while the main difference is the formulation of the 

latent classes / clusters. Consequently, we hypothesize that the three models should 
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provide meaningful forecasts even for historically unobserved values (e.g., prices not 

available in the train dataset), since the class-specific choice components of the three 

models are based on the same random utility theory.    

 

7.2. Application 

A policy analysis application is developed using the case study of the American 

University of Beirut to compare the forecasting performance of the two proposed 

models and the traditional LCCM. The sample enumeration method, which averages the 

choice probabilities for a sample of individuals, is used to forecast the demand (i.e., 

aggregate predictions) for the proposed services, Shared Taxi (ST) and Shuttle (SH). 

The utilities and probabilities of all alternatives are estimated using the three models 

developed in Chapters 4 and 6 (LCCM, GBM-LCCM, and GP-LCCM), and expansion 

factors9 are used to weigh up to the total population. We define a base case scenario for 

the two potential services (shared-taxi and shuttle). This scenario is presented in Table 

23 and includes the defined fare of a one-way trip by shared-taxi, fare of a one-way trip 

by shuttle, travel time by shared-taxi, access and in-shuttle travel times of shuttle, and 

headway (inversely related to shuttle frequency) between shuttles. For the shuttle 

service, we assume a reasonable location near AUB for the satellite parking. The travel 

time and cost of commuting by car are those reported by the respondents in the survey. 

For the other modes, travel time and cost vary by region of residence (A, B, C). For 

more details about the base case scenario, readers can refer to Sfeir et al. (2020). 

  

                                                 
9 For students and faculty samples: gender distribution is used. For staff sample: grade distributions is 

used. 
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Table 23: Attributes of the shared-taxi and shuttle options (adapted from Sfeir et al. 

(2020)) 

Attributes Shared-Taxi Shuttle 

One-Way Fare  

(L.L.) 

4,000 (A) 

5,000 (B) 

8,000 (C) 

3,000 

Travel Time 

(Shared-Taxi) 

1.3*TC (A) 

1.25*TC (B) 

1.2*TC (C) 

- 

Access Travel Time  

(Shuttle) 
- 

1*TC (A) 

0.9*TC (B) 

0.85*TC (C) 

In-Shuttle Travel Time 

(minutes) 
- 15 

Shuttle Headway 

(minutes) 
- 20 

A: Region A is within 5 km from AUB 

B: Region B is 5 km to 10 km away from AUB 

C: Region C is 10 km or more away from AUB but within Greater Beirut Area (GBA) 

Tc: Travel time by car as reported by the respondents in the survey 

 

7.3. Results  

In this section, we present the forecasts of different models under the base case 

scenario (Section 7.3.1). The five models that were developed and presented in Section 

6.3.1 are considered. Namely, the models are: LCCM (K = 2), GM-LCCM (K = 2), 

GM-LCCM (K = 3), GP-LCCM (K = 2), and GP-LCCM (K = 3). Next, we perform a 

sensitivity analysis to investigate further the forecasting performance of the different 

models (Section 7.3.2). 

 

7.3.1. Base Case Scenario 

Figure 9 shows the variability of individuals’ mode choices in a given week 

under the base case scenario. The five models generate similar forecasts. This might be 

due to the fact that the class-specific choice components of all the models are based on 

the same random utility theory, have the same specifications, and generated similar 



 

 127 

results in terms of parameter estimate signs and magnitudes (Section 6.3.1). It is 

apparent that the AUB population is willing to use the proposed services occasionally 

rather than regularly. Around 41% of individuals would vary their mode of commute in 

a given week, 42% to 44% would keep only using their cars while only 5% and 10% 

would be willing to shift completely to the shared-taxi and shuttle services, respectively. 

Four different multimodality groups can be defined (ST and SH; ST and Car; SH and 

Car; ST, SH, and Car) with the car-based group (SH and Car) having the highest share 

(16.5% to 18.6%) among these four groups. 

 

Figure 9: Expected weekly mode share of individuals under the base case scenario 

 

Figure 10 shows the percentage of trips made by each mode in a given week 

under the base case scenario. Again, the five models produce the same forecasts. 

Although around 41% of individuals are expected to use multiple modes of travel per 

week under the base case scenario (Figure 9), only 14% and 25% of the trips are 

expected to be made by shared-taxi and shuttle, respectively, while 61% would be car 

trips (Figure 9). 
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Figure 10: Expected weekly trips per mode under the base case scenario 

 

To better understand the behavioral differences under the base case scenario of 

the different classes identified, we present the class-specific choices of the LCCM (K = 

2) and GP-LCCM (K = 3). The three-class GP-LCCM is selected since it proved in 

Chapter 6 to be the best model in terms of in-sample and out-of-sample log-likelihood.   

Figures 11 and 12 show respectively the per class variability of individuals’ 

mode or combination of mode choices and per class percentage of trips made by each 

mode in a given week as predicted by the LCCM with two classes. The first class can be 

labeled as “unimodal” users who are almost entirely reliant on one mode (Figure 11) in 

a given week. More than 95% of individuals from the first class are expected to rely on 

one mode for all their weekly trips to AUB with the majority (68.94%) using only their 

cars (Figure11). Overall, around 70% of all the trips from the first class are expected to 

be made by car (Figure 12). The second class can be labeled as “multimodal” users who 

would use a combination of different modes in a given week (Figure 11). Although 

81.75% of individuals from the second class are expected to have a multimodal style, 
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almost half of the trips from this class are expected to be car trips (Figure 12). It is to be 

noted that the first class comprises 53.71% of the population under consideration while 

the second class comprises the remaining 46.29%. 

 

Figure 11: Expected weekly mode share of individuals per class under the base case 

scenario of LCCM (K = 2) 

 

 

Figure 12: Expected weekly trips per mode and class under the base case scenario of 

LCCM (K = 2) 
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Figures 13 and 14 show respectively the per class variability of individuals’ 

mode choices and per class percentage of trips made by each mode in a given week as 

predicted by the GP-LCCM with three classes. Figure 13 supports the concept of 

different modality styles (Vij et al., 2013). Similarly to the LCCM, the first class can be 

labeled as “unimodal” users who are almost entirely reliant on one mode (Figure 13) in 

a given week. More than 97% of individuals from the first class are expected to rely on 

one mode for all their weekly trips to AUB with the majority (70.69%) using only their 

cars (Figure13). The second and third classes comprise “multimodal” users who would 

use a combination of different modes in a given week. However, the two “multimodal” 

classes have different modality compositions. Individuals from the second class are 

expected to rely more on the two proposed services, shared-taxi and shuttle, than on 

their own private cars. Around 70% of all the trips from the second class are expected to 

be made by shared-taxi or shuttle. On the contrary, and although the third class can be 

also labeled as “multimodal”, around 70% of the trips are expected to be made by car 

(Figure 14). Moreover, Figure 13 shows that individuals from the third class are mainly 

expected to keep relying on their cars (33.57%) or a combination of their cars and one 

of the new modes (25.64% belong to the “ST and car” group while 31.10% to the “SH 

and car” group). Almost no one from the third class will use only the two proposed 

services in a given week (“ST and SH” group) compared to 14.59% of individuals from 

the second class who will only rely on the shared-taxi and shuttle services (Figure 13). 

Moreover, 35.41% of individuals form the second class are expected to use the three 

different modes in a given week (“ST, SH, and Car” group) compared to only 8.11% of 

individuals form the third class. Consequently, the third class can be more precisely 

labeled as “quasi-multimodal with a high reliance on cars”. Finally, the first class 
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comprises 47.91% of the population, the second class 24.36%, and the third class the 

remaining 27.73%. 

 

Figure 13: Expected weekly mode share of individuals per class under the base case 

scenario of GP-LCCM (K = 3) 

 

 

Figure 14: Expected weekly trips per mode and class under the base case scenario of 

GP-LCCM (K = 3) 
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7.3.2. Sensitivity Analysis 

7.3.2.1. General Sensitivity Analysis  

To investigate further the forecasting performance of the models and whether 

they provide reasonable extrapolations/forecasts, we performed a sensitivity analysis of 

the demand for the potential services, shared-taxi and shuttle, with respect to their one-

way fares. We varied, separately, the one-way fare of each service by multiplying the 

values of the base case scenario (Table 23) by a factor between 0 and 5. We raised the 

multiplier factor 0.1 point at a time and after each incremental increase, we predicted 

the number of weekly trips by each of the two proposed services using the different 

models (LCCM, GM-LCCM, and GP-LCCM). All models generated similar results, to 

some extent. For instance, the difference between the number of weekly shared-taxi 

trips predicted by the GM-LCCM and GP-LCCM with two latent classes and the 

LCCM did not exceed 3.5%. However, the main and consistent difference was 

highlighted by the three-class GP-LCCM. Therefore, the percent difference between the 

forecasts of LCCM (K = 2) and GP-LCCM (K = 3) are presented below. 

One-way fare of shared-taxi 

Figures 15 and 16 display, respectively, the percent difference between the 

weekly shared-taxi and shuttle forecasts of the traditional LCCM (K = 2) and the 

proposed GP-LCCM (K = 3) with respect to changes in the one-way fare of shared-taxi. 

The differences are estimated with respect to the LCCM forecasts. The two figures 

show exponential trends with opposite directions. For the case of free shared-taxi 

(multiplier factor = 0), the GP-LCCM predicts more shared-taxi trips than the LCCM by 

1.8% (Figure 15) and less shuttle trips than the LCCM by 8% (Figure 16). The GP-

LCCM would predict less shared-taxi trips for a multiplier factor higher than 2.8. As for 
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shuttle trips, the GP-LCCM predicts more trips than the LCCM if the fares are 

multiplied by a factor higher than 1.3. Finally, for a multiplier factor of 5, the GP-

LCCM forecasts 6.7% less shared-taxi trips and around 4% more shuttle trips than the 

LCCM. 

 

Figure 15: Percent difference of weekly shared-taxi trips as forecasted by LCCM (K = 

2) and GP-LCCM (K = 3) with respect to changes in the one-way fare of shared-taxi 

 

 

Figure 16: Percent difference of weekly shuttle trips as forecasted by LCCM (K = 2) 

and GP-LCCM (K = 3) with respect to changes in the one-way fare of shared-taxi  
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One-way fare of shuttle 

Similarly, Figures 17 and 18 display, respectively, the percent difference 

between the weekly shared-taxi and shuttle forecasts of the LCCM (K = 2) and GP-

LCCM (K = 3) with respect to changes in the one-way fare of shuttle. For shuttle fares 

higher than the base case value (Table 23), the GP-LCCM predicts less shuttle trips 

(Figure 18) and more shared-taxi trips per week (Figure 17) than the LCCM. On the 

contrary, for low shuttle fares (multiplier factor less than 1), the GP-LCCM predicts 

more shuttle trips (Figure 18) and less shared-taxi trips per week (Figure 17). For 

instance, if shuttle trips between satellite parking hubs and AUB gates are offered for 

free (multiplier factor = 0), the GP-LCCM would predict 2.8% more shuttle trips and 

around 6% less shared-taxi trips per week than the LCCM.  

 

Figure 17: Percent difference of weekly shared-taxi trips as forecasted by LCCM (K = 

2) and GP-LCCM (K = 3) with respect to changes in the one-way fare of shuttle 

 

-10%

-5%

0%

5%

10%

15%

0 1 2 3 4 5

%
 d

if
fe

re
n

ce
 o

f 
w

ee
kl

y 
ST

 t
ri

p
s

Multiplier factor of one-way SH fare



 

 135 

 

Figure 18: Percent difference of weekly shuttle trips as forecasted by LCCM (K = 2) 

and GP-LCCM (K = 3) with respect to changes in the one-way fare of shuttle 
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These statistics are consistent with the in-sample and out-of-sample log-likelihood 

improvements of the GP-LCCM10.  

7.3.2.2. Class-Specific Sensitivity Analysis 

Sensitivity analysis of the class-specific demand for the potential services with 

respect to the one-way fare of shared-taxi is also conducted to better understand the 

behavioral heterogeneity of the different classes. Four scenarios are tested: 

a) Free shared-taxi 

b) 50% discount on the base shared-taxi fare 

c) Base shared-taxi fare (Table 23) 

d) 50% increase of the base shared-taxi fare 

Figures 19 and 20 show respectively the per class variability of individuals’ 

mode or combination of mode choices and per class percentage of trips made by each 

mode in a given week as predicted by the LCCM with two classes under the four above-

mentioned scenarios. Changing the one-way fare of shared-taxi does not affect the 

extent of multimodality of each class. Under the four scenarios, individuals from the 

first class adopt a weekly unimodal behavior while those belonging to the second class 

adopt a weekly multimodal behavior (Figure 19). The percentage of ST users from the 

first class increases from 8% in the base case scenario to around 23% and 53% in 

scenarios a and b, respectively. Increasing the shared-taxi fare by 50% (scenario d) 

decreases the ST users from the first class to less than 3% (Figure 19). As for the second 

class, offering free shared-taxi rides (scenario a), increases the shares of the three 

multimodal ST-based groups (“ST and SH”; “ST and Car”; “ST, SH and Car”) with the 

                                                 
10 Sensitivity analysis with respect to other factors such as travel time and shuttle headway was performed 

and results (i.e., % difference of forecasted trips) were also consistent with the LL improvements of the 

GP-LCCM. 
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“ST and Car” group having the highest increase from around 16% in scenario c to 31% 

in scenario a (Figure 19). Moreover, the percentage of ST trips from the second class 

increases from 18% to 41% while the percentage of car trips decreases from 50% to 

37% (Figure 20). 

  

a) Free shared-taxi b) 50% discount 

  

c) Base case shared-taxi fare d) 50% increase 

Figure 19: Expected weekly mode(s) share of individuals per class under different one-

way shared-taxi fares - LCCM (K = 2) 
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a) Free shared-taxi b) 50% discount 

  

c) Base case shared-taxi fare d) 50% increase 

Figure 20: Expected weekly trips per mode and class under different one-way shared-

taxi fares – LCCM (K = 2) 
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Figures 21 and 22 show respectively the per class variability of individuals’ 

mode or combination of mode choices and per class percentage of trips made by each 

mode in a given week as predicted by the GP-LCCM with three classes under four 

different scenarios. Similarly to the LCCM, changing the one-way fare of shared-taxi 

does not affect the extent of multimodality of the classes. As previously mentioned, the 

first class of the GP-LCCM can be labeled, under the four different scenarios, as 

“unimodal”, the second class as “multimodal”, and the third class as “quasi-multimodal 

with a high reliance on cars” (Figure 21). Similarly to the first class of the LCCM, the 

percentage of ST users from the first class of the GP-LCCM increases from 9% in the 

base case scenario to around 25% and 55% in scenarios a and b, respectively. Increasing 

the shared-taxi fare by 50% (scenario d) decreases the ST users from the first class to 

less than 3% (Figure 21).  

As for the second class, offering free shared-taxi rides (scenario a), slightly 

increases the shares of the three multimodal ST-based groups (“ST and SH”; “ST and 

Car”; “ST, SH and Car”) with the “ST and SH” group having the highest increase from 

around 15% in scenario c to 23% in scenario a (Figure 21). However, the percentage of 

ST trips from the second class increases from 22% to 50% while the percentage of car 

trips decreases from 31% to 19% (Figure 22). This significant increase in the percentage 

of shared-taxi trips from the second class, although the changes in the shares of the 

three multimodal ST-based groups are less significant, can be attributed to the fact that 

individuals from those ST-based groups are more willing to use the free shared-taxi 

option than the car and/or shuttle without switching to another group. For instance, 

someone from the “ST and Car” group who under the base case scenario is willing to 
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use the shared-taxi twice per week and the car three times per week might switch to 

using the shared-taxi four times per week and the car once per week.  

On the contrary, offering free shared-taxi rides (scenario a) to the third class, 

increases significantly the share of the “ST and Car” group form 25% to 50% while the 

shares of the other two ST-based groups (“ST and SH”; “ST, SH, and Car”) remain 

constant (Figure 21).  The percentage of ST trips from the third class increases from 

around 15% to 35% while the percentage of car trips decreases from 69% to 55% 

(Figure 22). This high percentage of car trips and the high shares of car-based groups, 

although the shared-taxi is offered for free, justify the classification of the third class as 

“quasi-multimodal with high reliance on cars” and the different multimodality behavior 

between the second and third class. 

To sum up, the first class of both the LCCM and GP-LCCM seems to be 

characterized with the same unimodal behavior. However, multimodal individuals from 

the second class of the LCCM can be further decomposed in the GP-LCCM into 

multimodal individuals who are more open to use the new services and multimodal 

individuals who demonstrate a strong bias towards relying on their private cars. These 

findings can have important implications for the policies aimed at changing travel 

behavior since individuals with different behavioral characteristics or modality styles 

tend to respond differently to such policies.   
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a) Free shared-taxi b) 50% discount 

  

c) Base case shared-taxi fare d) 50% increase 

Figure 21: Expected weekly mode(s) share of individuals per class under different one-

way shared-taxi fares – GP-LCCM (K = 3) 
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a) Free shared-taxi b) 50% discount 

  

c) Base case shared-taxi fare d) 50% increase 

Figure 22: Expected weekly trips per mode and class under different one-way shared-

taxi fares – GP-LCCM (K = 3) 
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7.4. Calibration of the Constants 

The estimated alternative-specific constants in choice models based on stated 

preferences data must be recalibrated to reflect the real market shares of the forecast 

area (Cherchi and de Dios Ortúzar, 2006; Glerum et al., 2014; Liu et al., 2019; Train, 

2009, to name a few). Usually, real market data is used to correct the constants. Next, 

the recalibrated model is used to test different policy scenarios and predict the changes 

in the demand due to changes in some explanatory variables. 

However, for this application, we believe the constants cannot be recalibrated. 

The proposed modes, shared-taxi and shuttle, do not exist in the real life context in 

Beirut. As for the car option, there are a few studies on the real market shares of the 

available modes (car and public transport) within the Greater Beirut Area (GBA). 

However, there is no information on the real weekly frequencies of using these modes. 

Therefore, recalibrating the constants related to the frequency of using the available 

modes (𝐶𝑆𝑇ℎ,𝑘, 𝐶𝑆𝐻𝑖,𝑘 and 𝐶𝐶𝑎𝑟𝑗,𝑘), which are used in the class-specific choice models 

instead of the traditional alternative-specific constants (Equation 33), would be a very 

complicated and tricky task. 

Nevertheless, as an indication, we compared the forecasting results of the base 

case scenario to the actual modes reported by the respondents in the survey. We assume 

that the percentage of respondents who would shift from commuting by car to the 

proposed services (shared-taxi and shuttle), if they were implemented, should be similar 

to the percentage of respondents who currently commute by jitney or private taxi in real 

life. The ratio of respondents who commute by car to those who commute by jitney or 

private taxi is equal to 2.7311 while the ratio of respondents who are expected to keep 

                                                 
11 This ratio is estimated from the AUB dataset. 
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commuting by car only to those who are expected to commute by shared-taxi or shuttle 

only varies between 2.77 and 2.82 for the five models that were presented in Section 

7.3.1. Although this is an indirect validation, we believe it is an indication that the 

forecasts are within expectations. 

 

7.5. Conclusion 

We postulated that the two proposed models should generate meaningful 

forecasts and extrapolations since the class-specific choice components of the GBM-

LCCM and GP-LCCM are, similarly to the traditional LCCM, based on the same 

random utility theory. To test this hypothesis, we conducted a policy analysis study, 

using the case of the American University of Beirut. A base case scenario was 

developed and results showed that the three different models generate similar 

meaningful forecasts. Results also showed that around 41% of individuals would have a 

multimodal travel behavior in a given week under the base case scenario. However, 

only 14% and 25% of the weekly trips are expected to be made by shared-taxi and 

shuttle. It is acknowledged that these forecasts, which are based on a demand model 

derived from a stated preferences survey, may not fully materialize as respondents to SP 

surveys express their intention or preference which may not translate into actual market 

behavior. However, the models could not be calibrated to real market conditions since 

there is no information on the real weekly travel frequencies by different modes. As 

such, the forecasting results are indicative but not necessarily completely representative 

of the true ridership expected on the new modes. 

Moreover, a sensitivity analysis of the demand for the potential services, with 

respect to their one-way fares, was conduct to investigate further the forecasting 
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performance of the different models. All models resulted in similar forecasts, to some 

extent. However, the main difference was depicted in the forecasts of the three-class 

GP-LCCM and the two-class LCCM. Overall, the GP-LCCM predicted higher (lower) 

number of weekly trips than the LCCM for low (high) fares. This difference in the 

forecasts might be attributed to the higher number of classes and/or the nonparametric 

nature of the class membership component of the GP-LCCM. Results also showed that 

the proposed models provide greater insights to the underlying behavioral heterogeneity 

within a population by identifying a larger number of latent classes that respond 

differently to new policies. 

This policy analysis application has three main limitations. First, only one base 

case scenario was considered and a sensitivity analysis with respect to the one-way 

fares of the shared-taxi and shuttle was performed. Future work could explore whether 

the findings of this policy analysis application generalize to different applications or 

scenarios and different types of datasets. Second, since the LCCM and the two proposed 

models, GBM-LCCM and GP-LCCM, are characterized by similar utility-based class-

specific choice models but different class membership models (i.e., different latent class 

models), future work could explore the impact of changes in the socio-economic 

variables that shape the latent classes on the forecasting performance of the different 

models. Finally, the GP-LCCM, which was able to estimate a higher number of classes 

than the LCCM, showed that the three identified classes have different modality styles. 

Consequently, different policies that take into consideration the different characteristics 

and behaviors of each class could be tested, rather than applying one general policy to 

the entire population. 

  



 

 146 

CHAPTER 8 

CONCLUSION 
 

This chapter concludes the dissertation. Section 8.1 summarizes the dissertation 

topic, contributions, and main findings. Section 8.2 discusses limitations and directions 

for future research. Finally, Section 8.3 concludes. 

 

8.1. Summary 

This dissertation investigated the feasibility of combining the strengths of 

machine learning methods and discrete choice models within hybrid econometric 

models. These strengths consist of the predictive power of unsupervised machine 

learning algorithms and their flexibility in detecting unobserved patterns, and the 

explanatory power and behavioral realism of discrete choice models. More specifically, 

the main objective of this dissertation was to integrate unsupervised machine learning 

algorithms into the Latent Class Choice Model structure to improve the overall model 

flexibility and discrete representation of heterogeneity without lessening the economic 

and behavioral interpretability of the choice models. We contributed to the literature by 

developing two hybrid models that satisfy the previously mentioned objective.  

The first proposed model is a Gaussian-Bernoulli Mixture – Latent Class Choice 

Model (GBM-LCCM) that, similarly to traditional LCCM, consists of two components, 

a class membership model and a class-specific choice model. The class membership 

component, which predicts the probability of a decision-maker belonging to a specific 

latent class/cluster, is formulated as a parametric model-based mixture model with 

Gaussian and Bernoulli distributions instead of a random utility formulation. 
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Conditioned on the class assignments, the class-specific choice component formulates 

the probability of a particular alternative being chosen by a decision-maker using 

random utility models. An Expectation-Maximization (EM) algorithm was derived to 

estimate the proposed model. The model was evaluated using two different revealed and 

stated preferences datasets and was also compared to its traditional LCCM counterpart. 

Results showed that the GBM-LCCM has the capability to capture more complex 

discrete representation of heterogeneity than the LCCM (i.e., higher number of latent 

classes) and to improve the in-sample goodness of fit as well as the out-of-sample 

prediction accuracy without any economic or behavioral interpretability losses. 

Marginal effects and economic indicators can be easily inferred from the model and the 

latent classes (clusters) can be easily interpreted. 

The second model is a Gaussian Process – Latent Class Choice Model (GP-

LCCM) that also consists of two components, a class membership model and a class-

specific choice model. The former is constructed as a Gaussian Process to model 

unobserved heterogeneity as discrete constructs (latent classes) while the latter 

estimates, similarly to the GBM-LCCM and traditional LCCM, the corresponding 

choice probabilities using random utility models. An EM algorithm was also derived 

and implemented to estimate/infer the parameters of the choice models and the hyper-

parameters of the GP kernel function. The iterative nature of the EM algorithm enabled 

the use of the Laplace approximation method to infer the GP posterior for clustering 

purposes. The model was evaluated using three different datasets (two stated 

preferences and on revealed preferences) and benchmarked against the GBM-LCCM as 

well as the traditional LCCM. The proposed GP-LCCM outperformed the two 

benchmark models, LCCM and GBM-LCCM, in terms of in-sample goodness of fit and 
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out-of-sample generalization performance without compromising the economic and 

behavioral interpretability of the class-specific choice models. The model also 

demonstrated a higher degree of flexibility by capturing more complex discrete 

representation of heterogeneity.  

A policy analysis was also conducted to explore the forecasting capabilities of 

the proposed models. Results showed that the two proposed models are capable of 

providing meaningful forecasts that are similar, to some extent, to the forecasts of the 

traditional LCCM. Results also showed similar order of change between the results of 

the proposed models and LCCM in terms of in-sample LL, out-of-sample LL, and 

forecasts. Finally, the results of a class-specific sensitivity analysis of the demand for 

different travel modes underlined the importance of the proposed models in identifying 

a higher number of classes than the LCCM, something that provides a more in-depth 

understanding of the different modality styles and behavioral heterogeneity within a 

population.   

 

8.2. Limitations and Future Directions 

Both models displayed better flexibility and generalization performance than the 

LCCM. However, each has its advantages and drawbacks. The parametric nature of the 

model-based Gaussian-Bernoulli Mixture component of the GBM-LCCM guarantees a 

transparent interpretation of the latent classes, similarly to the random utility 

specification of the LCCM. However, the model assumes that the continuous and binary 

variables entering the class membership component are uncorrelated. On the contrary, 

the nonparametric nature of the Gaussian Process component of the GP-LCCM 

surpasses the correlation limitation of the GBM-LCCM, lessens the restrictive 
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parametric assumptions of both the LCCM and GBM-LCCM, and ensures higher 

flexibility and prediction accuracy. Nevertheless, the GP-LCCM has some drawbacks. 

First, the nonparametric nature of GP might lead to overfitting issues. This might be 

addressed by conducting a thorough investigation for a more suitable kernel or 

combination of kernels function. Second, finding an appropriate kernel(s) function 

imposes an additional burden on the modeler. Future work could explore ways to 

automate this task. Third, the nonparametric nature of GP affects the overall 

transparency of the latent classes. However, the interpretation of the classes can be 

locally achieved by means of model-agnostic techniques such as LIME. Finally, the 

Gaussian Process increases the computational cost of the model significantly. This 

limitation could be addressed by relying on Sparse Gaussian Processes (Titsias, 2009) 

and modern computational hardware (e.g., GPU).  

In addition to model-specific limitations, several extensions can be considered to 

enhance the two models. First, although three different types of datasets with different 

sample sizes were used to evaluate the two proposed models, it would be worthwhile to 

investigate whether the findings of this dissertation generalize to different applications, 

specifications, and attribute transformations. Second, the two models account for 

discrete representations of heterogeneity. A natural extension is to incorporate random 

parameter distributions or mixture of distributions into the class-specific choice models 

to account for another layer of within-class random heterogeneity. Moreover, the two 

models can be extended to account for different aspects of heterogeneity such as 

systematic and random taste variations and variations in choice sets considered by 

decision-makers in addition to market segmentation (i.e., latent classes). This can be 

achieved by integrating within the two proposed models more machine learning 
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algorithms (e.g., artificial neural networks and decision trees), Bayesian nonparametrics 

(e.g., Dirichlet process mixtures models), and/or traditional statistics (e.g., mixture of 

distributions). Third, feedback from the class-specific choice models could be 

incorporated in the class membership model (e.g., through consumer surplus also 

known as logsum term) to account for preference endogeneity and the fact that 

preferences might be sensitive to changes in some alternative attributes (Vij & Walker, 

2014). Fourth, future work can benchmark the two proposed models against a variety of 

advanced discrete choice models or other hybrid models that combine machine learning 

with behavioral theory. Fifth, ensemble learning could be applied by combining the 

predictions of the two proposed models in an ensemble with the aim of improving the 

prediction performance further. Sixth, the two models were able to identify a larger 

number of latent classes than the LCCM in the three applications considered in this 

dissertation. To better exploit such advantage, class-specific policy analysis might be 

tested instead of general policies as in Chapter 7. This would allow to develop different 

policies that account for the different characteristics, preferences, and behavior of each 

market segment. It could also lead to a higher degree of success in case the policies are 

implemented. Finally, future work can explore the benefits of using Bayesian 

Variational Inference (VI) estimation techniques as opposed to the Expectation-

Maximization approach that was adopted in this dissertation. Discrete choice models are 

usually estimated using maximum likelihood strategies such as maximum simulated 

likelihood estimation and Expectation-Maximization techniques. However, relying on a 

fully-Bayesian approach as an alternative estimation strategy can guarantee several 

advantages such as the ability of generating the entire posterior distributions of all 

model parameters, performing automatic model specification (Rodrigues et al., 2020), 
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and dealing with missing data. However, Bayesian inference relies on approximate 

inference methods with Markov-chain Monte Carlo (MCMC) being the most used 

approximation method in the econometric literature (Danaf et al., 2019). Although 

MCMC methods are powerful sampling approaches for approximate posterior 

inference, they still suffer from high computational costs and several difficulties in 

assessing convergence especially when dealing with large and complex datasets (Bansal 

et al., 2020). More recently, variational inference methods that are arising in machine 

learning and Bayesian inference have been applied to a few mixed logit models (Bansal 

et al., 2020; Rodrigues, 2020). Variational inference methods transform the Bayesian 

inference approximation problem to an optimization problem and in doing so 

outperform the shortcomings of MCMC by reducing the computational time 

significantly without jeopardizing the model accuracy. Nevertheless, VI methods are 

still limited to mixed logit models with simple normal mixing distributions and still 

encounter several limitations such as the ability to approximate high complex posterior 

distributions and the scalability to large and complex datasets (Bansal et al., 2020). 

Future work can focus on estimating the GBM-LCCM and GP-LCCM through 

Bayesian VI techniques and on providing solutions to overcome the corresponding 

limitations of such methods. 

 

8.3. Conclusion 

This dissertation has contributed to the efforts aiming at bridging the gap 

between machine learning and discrete choice models all while retaining the basic 

aspects of McFadden’s original work to ensure a transparent behavioral and economic 

interpretation of the developed models. Finally, though the focus of the three 
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applications in this dissertation was on travel mode choice, the models can be applied to 

different scientific areas related to behavioral science such as economics, marketing 

research, and psychology, in addition to any application with a finite discrete choice set 

where it is believed that taste heterogeneity exists among decision-makers. It is hoped 

that these models and the abovementioned extensions (Section 8.2) could provide a 

stronger evidence base for the potential merits of the proposed models to the choice 

modeling and transportation planning communities. 
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APPENDIX A: LONDON DATASET 
 

This appendix provides all estimation results of the LCCM and GBM-LCCM 

models related to the London dataset presented in Chapters 4. Section A.1 presents the 

results of the first trial, Section A.2 presents the results of the second trial, and Section 

A.3 presents the results of the third trial. The specifications of the different trials are 

described in Section 4.3.1 of Chapter 4. 

 

A.1. London Dataset – First Specification 

This part of the appendix presents the results of the first specification of the 

London dataset. Section A.1.1 presents the LCCM results and Section A.1.2 presents 

the GBM-LCCM results. 

  

A.1.1. Latent Class Choice Models 

Tables A.1 and A.2 show the parameter estimates of the LCCM with two and 

three classes, respectively.  

  



 

 154 

Table A.1: Estimation results of the first specification of the LCCM with two classes 

based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) -0.904 (0.00) 2.34 (0.00) 

Travel Time (PT) (minutes) -0.0757 (0.00) -0.0888 (0.00) 

Travel Time (Car) (minutes) -0.250 (0.00) -0.127 (0.00) 

Cost (PT) (£ gbp) -0.205 (0.01) 0.0618 (0.14) 

Cost (Car) (£ gbp) -0.182 (0.08) -0.209 (0.00) 

Parameter Class Membership Model 

ASC  -5.40 (0.00) 

age  0.174 (0.00) 

female  -0.287 (0.01) 

license  2.04 (0.00) 

car_own1  3.34 (0.00) 

car_own2  4.72 (0.00) 

Values within parentheses are p-values 

 

Table A.2: Estimation results of the first specification of the LCCM with three classes 

based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) -4.72 (0.00) 3.99 (0.00) 1.88 (0.00) 

Travel Time (PT) (minutes) -0.0530 (0.00) -0.171 (0.00) -0.134 (0.00) 

Travel Time (Car) (minutes) -0.0493 (0.00) -0.177 (0.00) -0.249 (0.00) 

Cost (PT) (£ gbp) -0.0970 (0.25) 0.0748 (0.57) -0.0413 (0.51) 

Cost (Car) (£ gbp) -0.0421 (0.32) -0.260 (0.00) -0.373 (0.00) 

Parameter Class Membership Model 

ASC  -11.85 (0.00) -3.60 (0.00) 

age  0.241 (0.00) 0.0358 (0.52) 

female  -0.738 (0.01) 0.166 (0.26) 

license  3.01 (0.00) 1.64 (0.00) 

car_own1  8.06 (0.00) 2.57 (0.00) 

car_own2  10.23 (0.00) 4.03 (0.00) 

Values within parentheses are p-values  



 

 155 

A.1.2. Gaussian-Bernoulli Mixture - Latent Class Choice Models 

This section presents the estimation results of the GBM-LCCMs with two, three, 

and four classes for both full and tied covariance structures. First, Section A.1.2.1 

presents the models with a full covariance structure, then Section A.1.2.2 presents the  

models with a tied covariance structure. 

A.1.2.1. Full Covariance 

 

This section presents the estimation results of the full-GBM-LCCMs with two, 

three, and four classes. 

Table A.3: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with two classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) -0.00350 (0.00) 1.83 (0.00) 

Travel Time (PT) (minutes) -0.0879 (0.00) -0.0831 (0.00) 

Travel Time (Car) -0.381 (0.00) -0.121 (0.00) 

Cost (PT) (£ gbp) -0.428 (0.00) -0.00270 (0.94) 

Cost (Car) (£ gbp) -0.211 (0.15) -0.196 (0.00) 

Values within parentheses are p-values 

 

  



 

 156 

Table A.4: Class membership mean estimates of the first specification of the GBM-

LCCM with two classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous -0.261 0.264 

female Yes 0.523 0.413 

No* 0.477 0.587 

license Yes 0.547 0.959 

No* 0.453 0.041 

car_own0 0* 0.436 0.076 

car_own1 ] 0 – 1 [ 0.516 0.495 

car_own2 ≥ 1 0.048 0.429 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

Class 1, age: 0.880 

Class 2, age: 0.983 

 

Mixing coefficients: 

 𝜋1 = 0.503 

 𝜋2 = 0.497 
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Table A.5: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with three classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) -0.774 (0.00) 1.59 (0.00) 1.87 (0.00) 

Travel Time (PT) (minutes) -0.0783 (0.00) -0.0661 (0.00) -0.0875 (0.00) 

Travel Time (Car) (minutes) -0.283 (0.00) -0.110 (0.00) -0.132 (0.00) 

Cost (PT) (£ gbp) -0.272 (0.00) -0.0288 (0.50) -0.0323 (0.50) 

Cost (Car) (£ gbp) -0.208 (0.04) -0.154 (0.00) -0.210 (0.00) 

Values within parentheses are p-values 

 

 

Table A.6: Class membership mean estimates of the first specification of the GBM-

LCCM with three classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 

age* Continuous -0.288 0.342 0.182 

female Yes 0.528 0.465 0.382 

No* 0.472 0.535 0.618 

license Yes 0.514 0.992 0.933 

No* 0.486 0.008 0.067 

car_own0 0* 0.525 0 0.044 

car_own1 ] 0 – 1 [ 0.451 0 0.956 

car_own2 ≥ 1 0.025 1 0 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

Class 1, age: 0.866 

Class 2, age: 0.961 

Class 3, age: 0.986 

 

Mixing coefficients: 

 𝜋1 = 0.464 

 𝜋2 = 0.226 

 𝜋3 = 0.310  
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Table A.7: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with four classes and a full covariance based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

ASC (Car) -0.905 (0.00) 2.33 (0.00) 1.49 (0.00) 2.52 (0.00) 

Travel Time (PT) 

(minutes) 
-0.0730 (0.00) -0.193 (0.00) -0.0647 (0.00) -0.105 (0.00) 

Travel Time (Car) 

(minutes) 
-0.268 (0.00) -0.340 (0.00) -0.106(0.00) -0.110 (0.00) 

Cost (PT) (£ gbp) -0.257 (0.01) -0.157 (0.12) -0.0241 (0.57) -0.121 (0.41) 

Cost (Car) (£ gbp) -0.192 (0.05) -0.548 (0.00) -0.154 (0.00) -0.209 (0.00) 

Values within parentheses are p-values 

 

Table A.8: Class membership mean estimates of the first specification of the GBM-

LCCM with four classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

age* Continuous -0.291 0.070 0.330 0.379 

female Yes 0.534 0.419 0.463 0.296 

No* 0.466 0.581 0.537 0.704 

license Yes 0.487 0.936 0.989 0.920 

No* 0.513 0.064 0.011 0.080 

car_own0 0* 0.551 0.047 0.020 0.017 

car_own1 ] 0 – 1 [ 0.425 0.953 0 0.983 

car_own2 ≥ 1 0.024 0 0.980 0 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

Class 1, age: 0.883 

Class 2, age: 0.878 

Class 3, age: 0.967 

Class 4, age: 1.157 

 

Mixing coefficients: 

 𝜋1 = 0.435 

 𝜋2 = 0.248 

 𝜋3 = 0.232 

 𝜋4 = 0.086  
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A.1.2.2. Tied Covariance 

 

This section presents the estimation results of the tied-GBM-LCCMs with two, 

three, and four classes. 

Table A.9: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with two classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) 1.84 (0.00) 0.00460 (0.98) 

Travel Time (PT) (minutes) -0.0840 (0.00) -0.0872 (0.00) 

Travel Time (Car) (minutes) -0.122 (0.00) -0.375 (0.00) 

Cost (PT) (£ gbp) -0.00870 (0.81) -0.407 (0.00) 

Cost (Car) (£ gbp) -0.197 (0.00) -0.210 (0.14) 

Values within parentheses are p-values 

 

Table A.10: Class membership mean estimates of the first specification of the GBM-

LCCM with two classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous 0.261 -0.257 

female Yes 0.413 0.524 

No* 0.587 0.476 

license Yes 0.960 0.546 

No* 0.040 0.454 

car_own0 0* 0.076 0.435 

car_own1 ] 0 – 1 [ 0.495 0.516 

car_own2 ≥ 1 0.429 0.049 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

age: 0.933 

 

Mixing coefficients: 

 𝜋1 = 0.496 

 𝜋2 = 0.504  
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Table 11: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with three classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) 1.88 (0.00) 1.60 (0.00) -0.735 (0.00) 

Travel Time (PT) 

(minutes) 
-0.0886 (0.00) -0.0663 (0.00) -0.0784 (0.00) 

Travel Time (Car) 

(minutes) 
-0.132 (0.00) -0.110 (0.00) -0.285 (0.00) 

Cost (PT) (£ gbp) -0.0144 (0.77) -0.0260 (0.55) -0.263 (0.00) 

Cost (Car) (£ gbp) -0.210 (0.00) -0.154 (0.00) -0.207 (0.04) 

Values within parentheses are p-values 

 

Table A.12: Class membership mean estimates of the first specification of the GBM-

LCCM with three classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 

age* Continuous 0.176 0.342 -0.284 

female Yes 0.382 0.465 0.528 

No* 0.618 0.535 0.472 

license Yes 0.934 0.992 0.513 

No* 0.066 0.008 0.487 

car_own0 0* 0.044 0.000 0.524 

car_own1 ] 0 – 1 [ 0.956 0.000 0.451 

car_own2 ≥ 1 0.000 1.000 0.025 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

age: 0.927 

 

Mixing coefficients: 

 𝜋1 = 0.310 

 𝜋2 = 0.226 

 𝜋3 = 0.464  
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Table A.13: Class-specific choice parameter estimates of the first specification of the 

GBM-LCCM with four classes and a tied covariance based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

ASC (Car) 2.35 (0.00) -0.858 (0.00) 2.51 (0.00) 1.52 (0.00) 

Travel Time (PT) 

(minutes) 
-0.178 (0.00) -0.0751 (0.00) -0.112 (0.00) -0.0646 (0.00) 

Travel Time (Car) 

(minutes) 
-0.316 (0.00) -0.284 (0.00) -0.115 (0.00) -0.106 (0.00) 

Cost (PT) (£ gbp) -0.102 (0.28) -0.267 (0.01) -0.106 (0.49) -0.0206 (0.63) 

Cost (Car) (£ gbp) -0.492 (0.00) -0.181 (0.06) -0.207 (0.00) -0.153 (0.00) 

Values within parentheses are p-values 

 

Table A.14: Class membership mean estimates of the first specification of the GBM-

LCCM with four classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

age* Continuous 0.034 -0.285 0.447 0.332 

female Yes 0.426 0.533 0.279 0.463 

No* 0.574 0.467 0.721 0.537 

license Yes 0.919 0.488 0.945 0.990 

No* 0.081 0.512 0.055 0.010 

car_own0 0* 0.056 0.551 0.014 0.018 

car_own1 ] 0 – 1 [ 0.944 0.424 0.986 0 

car_own2 ≥ 1 0 0.025 0 0.982 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

age: 0.923 

 

Mixing coefficients: 

 𝜋1 = 0.254 

 𝜋2 = 0.431 

 𝜋3 = 0084 

 𝜋4 = 0.231  
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A.2. London Dataset – Second Specification 

This part of the appendix presents the results of the second specification of the 

London dataset. Section A.2.1 presents the LCCM results and Section A.2.2 presents 

the GBM-LCCM results. 

 

A.2.1. Latent Class Choice Models 

Tables A.15 and A.16 show the parameter estimates of the LCCM with two and 

three classes, respectively.  

Table A.15: Estimation results of the second specification of the LCCM with two 

classes based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) -1.23 (0.00) 2.51 (0.00) 

Travel Time – Access (PT) -0.142 (0.00) -0.0773 (0.00) 

Travel Time – Rail/Bus (PT) -0.0624 (0.00) -0.0804 (0.00) 

Travel Time – Interchange (PT) -0.144 (0.00) -0.109 (0.00) 

Travel Time (Car) -0.267 (0.00) -0.128 (0.00) 

Log Cost (PT) -0.0542 (0.03) 0.0134 (0.55) 

Cost (Car) -0.246 (0.18) -0.208 (0.00) 

Parameter Class Membership Model 

ASC  -5.30 (0.00) 

age  0.178 (0.00) 

female  -0.298 (0.01) 

license  2.02 (0.00) 

car_own1  3.24 (0.00) 

car_own2  4.59 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 
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Table A.16: Estimation results of the second specification of the LCCM with three 

classes based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) -4.12 (0.00) 5.24 (0.00) 1.38 (0.00) 

Travel Time – Access (PT) -0.0831 (0.00) -0.0618 (0.19) -0.130 (0.00) 

Travel Time – Rail/Bus (PT) -0.0380 (0.00) -0.174 (0.00) -0.121 (0.00) 

Travel Time – Interchange (PT) -0.144 (0.00) -0.176 (0.00) -0.150 (0.00) 

Travel Time (Car) -0.0360 (0.00) -0.203 (0.00) -0.240 (0.00) 

Log Cost (PT) 0.188 (0.00) -0.256 (0.03) -0.101 (0.03) 

Cost (Car) -0.00970 (0.79) -0.300 (0.00) -0.363 (0.00) 

Parameter Class Membership Model 

ASC  -16.24 (0.00) -3.56 (0.00) 

age  0.338 (0.00) 0.0426 (0.43) 

female  -0.800 (0.01) 0.165 (0.25) 

license  3.70 (0.00) 1.58 (0.00) 

car_own1  11.28 (0.01) 2.58 (0.00) 

car_own2  13.48 (0.00) 4.07 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 
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A.2.2. Gaussian-Bernoulli Mixture - Latent Class Choice Models 

This section presents the estimation results of the GBM-LCCMs with two, three, 

and four classes for both full and tied covariance structures. First, Section A.2.2.1 

presents the models with a full covariance structure, and then Section A.2.2.2 presents 

the models with a tied covariance structure. 

A.2.2.1. Full Covariance 

 

This section presents the estimation results of the full-GBM-LCCMs with two, 

three, and four classes. 

Table A.17: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with two classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) 1.76 (0.00) -1.02 (0.00) 

Travel Time – Access (PT) -0.0801 (0.00) -0.172 (0.00) 

Travel Time – Rail/Bus (PT) -0.0770 (0.00) -0.0609 (0.00) 

Travel Time – Interchange (PT) -0.102 (0.00) -0.172 (0.00) 

Travel Time (Car) -0.121 (0.00) -0.374 (0.00) 

Log Cost (PT) -0.0229 (0.20) -0.160 (0.00) 

Cost (Car) -0.197 (0.00) -0.219 (0.17) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 
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Table A.18: Class membership mean estimates of the second specification of the GBM-

LCCM with two classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous 0.266 -0.261 

female Yes 0.413 0.524 

No* 0.587 0.477 

license Yes 0.958 0.550 

No* 0.042 0.450 

car_own0 0* 0.076 0.434 

car_own1 ] 0 – 1 [ 0.494 0.517 

car_own2 ≥ 1 0.429 0.049 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

Class 1, age: 0.991 

Class 2, age: 0.872 

 

Mixing coefficients: 

 𝜋1 = 0.495 

 𝜋2 = 0.505 
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Table A.19: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with three classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) -1.76 (0.00) 1.27 (0.00) 2.01 (0.00) 

Travel Time – Access (PT) -0.145 (0.00) -0.0736 (0.00) -0.0667 (0.00) 

Travel Time – Rail/Bus (PT) -0.0645 (0.00) -0.0660 (0.00) -0.0730 (0.00) 

Travel Time – Interchange (PT) -0.124 (0.00) -0.0656 (0.00) -0.146 (0.00) 

Travel Time (Car) -0.286 (0.00) -0.110 (0.00) -0.130 (0.00) 

Log Cost (PT) -0.139 (0.00) -0.0463 (0.03) -0.0276 (0.26) 

Cost (Car) -0.208 (0.04) -0.156 (0.00) -0.211 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.20: Class membership mean estimates of the second specification of the GBM-

LCCM with three classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 2 

age* Continuous -0.291 0.343 0.183 

female Yes 0.529 0.465 0.382 

No* 0.471 0.535 0.618 

license Yes 0.514 0.992 0.931 

No* 0.486 0.008 0.069 

car_own0 0* 0.525 0.000 0.045 

car_own1 ] 0 – 1 [ 0.450 0.000 0.955 

car_own2 ≥ 1 0.025 1.000 0.000 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 
Class 1, age: 0.860 

Class 2, age: 0.962 

Class 3, age: 0.990 

 

Mixing coefficients: 

 𝜋1 = 0.463 

 𝜋2 = 0.226 

 𝜋3 = 0.311  
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Table A.21: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with four classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 Class 4 

Class-Specific Choice Model 

ASC (Car) 
3.41  

(0.00) 

1.18  

(0.00) 

-1.81  

(0.00) 

1.00  

(0.02) 

Travel Time – Access (PT) 
-0.0430 

(0.26) 

-0.0769 

(0.00) 

-0.123 

(0.00) 

-0.204 

(0.00) 

Travel Time – Rail/Bus (PT) 
-0.0526 

(0.00) 

-0.0654 

(0.00) 

-0.0533 

(0.00) 

-0.315 

(0.00) 

Travel Time – Interchange 

(PT) 

-0.214 

(0.00) 

-0.0639 

(0.00) 

-0.112 

(0.00) 

-0.344 

(0.00) 

Travel Time (Car) 
-0.0761 

(0.00) 

-0.106 

(0.00) 

-0.208 

(0.00) 

-0.488 

(0.00) 

Log Cost (PT) 
0.0779 

(0.33) 

-0.0368 

(0.07) 

-0.0832 

(0.00) 

-0.430 

(0.00) 

Cost (Car) 
-0.210 

(0.00) 

-0.159 

(0.00) 

-0.227 

(0.02) 

-1.15 

(0.06) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.22: Class membership mean estimates of the second specification of the GBM-

LCCM with four classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

age* Continuous 0.274 0.326 -0.300 0.151 

female Yes 0.351 0.463 0.535 0.388 

No* 0.649 0.537 0.465 0.612 

license Yes 0.858 0.987 0.492 0.993 

No* 0.142 0.013 0.508 0.007 

car_own0 0* 0.028 0.028 0.543 0.010 

car_own1 ] 0 – 1 [ 0.972 0 0.436 0.990 

car_own2 ≥ 1 0 0.972 0.022 0 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age Mixing coefficients: 

 𝜋1 = 0.097 

 𝜋2 = 0.234 

 𝜋3 = 0.453 

 𝜋4 = 0.216 

Class 1, age: 1.265 

Class 2, age: 0.967 

Class 3, age: 0.862 

Class 4, age: 0.846 
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A.2.2.2. Tied Covariance 

 

This section presents the estimation results of the full-GBM-LCCMs with two, 

three, and four classes. 

Table A.23: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with two classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) 1.84 (0.00) -0.902 (0.00) 

Travel Time – Access (PT) -0.0813 (0.00) -0.169 (0.00) 

Travel Time – Rail/Bus (PT) -0.0779 (0.00) -0.0600 (0.00) 

Travel Time – Interchange (PT) -0.103 (0.00) -0.172 (0.00) 

Travel Time (Car) -0.122 (0.00) -0.368 (0.00) 

Log Cost (PT) -0.0115 (0.53) -0.142 (0.00) 

Cost (Car) -0.198 (0.00) -0.217 (0.16) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.24: Class membership mean estimates of the second specification of the GBM-

LCCM with two classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous 0.261 -0.256 

female Yes 0.412 0.524 

No* 0.588 0.476 

license Yes 0.959 0.549 

No* 0.041 0.451 

car_own0 0* 0.076 0.434 

car_own1 ] 0 – 1 [ 0.495 0.516 

car_own2 ≥ 1 0.429 0.050 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age Mixing coefficients: 

 𝜋1 = 0.494 

 𝜋2 = 0.506 
age: 0.933 
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Table A.25: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with three classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-Specific Choice Model 

ASC (Car) -1.64 (0.00) 2.11 (0.00) 1.29 (0.00) 

Travel Time – Access (PT) -0.144 (0.00) -0.0686 (0.00) -0.0736 (0.00) 

Travel Time – Rail/Bus (PT) -0.0638 (0.00) -0.0738 (0.00) -0.0663 (0.00) 

Travel Time – Interchange (PT) -0.126 (0.00) -0.147 (0.00) -0.0653 (0.00) 

Travel Time (Car) -0.287 (0.00) -0.131 (0.00) -0.110 (0.00) 

Log Cost (PT) -0.128 (0.00) -0.0114 (0.65) -0.0449 (0.04) 

Cost (Car) -0.207 (0.04) -0.211 (0.00) -0.156 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.26: Class membership mean estimates of the second specification of the GBM-

LCCM with three classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 2 

age* Continuous -0.285 0.176 0.343 

female Yes 0.529 0.381 0.465 

No* 0.471 0.619 0.535 

license Yes 0.513 0.933 0.992 

No* 0.487 0.067 0.008 

car_own0 0* 0.525 0.045 0.000 

car_own1 ] 0 – 1 [ 0.450 0.955 0.000 

car_own2 ≥ 1 0.025 0.000 1.000 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 
age: 0.926 

 

Mixing coefficients: 

 𝜋1 = 0.463 

 𝜋2 = 0.312 

 𝜋3 = 0.226  



 

 170 

Table A.27: Class-specific choice parameter estimates of the second specification of the 

GBM-LCCM with four classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 Class 3 Class 4 

Class-Specific Choice Model 

ASC (Car) 
2.04 

(0.00) 

-1.84 

(0.00) 

3.46 

(0.00) 

1.20 

(0.00) 

Travel Time – Access (PT) 
-0.120 

(0.00) 

-0.141 

(0.00) 

-0.0560 

(0.25) 

-0.0764 

(0.00) 

Travel Time – Rail/Bus (PT) 
-0.171 

(0.00) 

-0.0589 

(0.00) 

-0.0907 

(0.00) 

-0.0649 

(0.00) 

Travel Time – Interchange (PT) 
-0.251 

(0.00) 

-0.114 

(0.00) 

-0.226 

(0.00) 

-0.0635 

(0.00) 

Travel Time (Car) 
-0.329 

(0.00) 

-0.271 

(0.00) 

-0.106 

(0.00) 

-0.106 

(0.00) 

Log Cost (PT) 
-0.199 

(0.00) 

-0.124 

(0.00) 

0.0234 

(0.82) 

-0.0356 

(0.09) 

Cost (Car) 
-0.563 

(0.01) 

-0.189 

(0.05) 

-0.223 

(0.00) 

-0.156 

(0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.28: Class membership mean estimates of the second specification of the GBM-

LCCM with four classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 Class 3 Class 4 

age* Continuous 0.053 -0.294 0.415 0.331 

female Yes 0.428 0.535 0.277 0.463 

No* 0.572 0.465 0.723 0.537 

license Yes 0.922 0.487 0.939 0.989 

No* 0.078 0.514 0.061 0.011 

car_own0 0* 0.051 0.554 0.015 0.021 

car_own1 ] 0 – 1 [ 0.949 0.421 0.985 0.000 

car_own2 ≥ 1 0.000 0.025 0.000 0.979 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age Mixing coefficients: 

 𝜋1 = 0.250 

 𝜋2 = 0.430 

 𝜋3 = 0.089 

 𝜋4 = 0.231 

age: 0.926 
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A.3. London Dataset – Third Specification 

This part of the appendix presents the results of the third specification of the 

London dataset. Section A.3.1 presents the GBM-LCCM results. 

 

A.3.1. Gaussian-Bernoulli Mixture - Latent Class Choice Models 

This section presents the estimation results of the GBM-LCCMs with two 

classes for both full and tied covariance structures. First, Section A.2.2.1 presents the 

GBM-LCCM with a full covariance structure, and then Section A.2.2.2 presents the 

GBM-LCCM with a tied covariance structure. 

A.3.1.1. Full Covariance 

 

Table A.29: Class-specific choice parameter estimates of the third specification of the 

GBM-LCCM with two classes and a full covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) 0.144 (0.73) 4.54 (0.00) 

AM Peak (Car) 0.838 (0.00) 0.923 (0.00) 

Inter Peak (Car) 0.702 (0.02) 1.72 (0.00) 

Peak (Car) 1.48 (0.00) 0.978 (0.00) 

Week Days (Car) -0.234 (0.54) -2.01 (0.01) 

Saturday (Car) 0.375 (0.41) -0.957 (0.22) 

Winter (Car) -0.562 (0.02) 0.166 (0.25) 

Variability (Car) -5.51 (0.00) -5.15 (0.00) 

Travel Time (PT) -0.0674 (0.00) -0.0658 (0.00) 

Travel Time (Car) -0.277 (0.00) -0.0886 (0.00) 

Cost (PT) -0.454 (0.00) -0.0428 (0.23) 

Cost (Car) -0.129 (0.46) -0.145 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 
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Table A.30: Class membership mean estimates of the third specification of the GBM-

LCCM with two classes and a full covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous -0.270 0.247 

female Yes 0.534 0.409 

No* 0.467 0.591 

license Yes 0.526 0.958 

No* 0.474 0.042 

car_own0 0* 0.439 0.091 

car_own1 ] 0 – 1 [ 0.517 0.495 

car_own2 ≥ 1 0.044 0.415 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 

 

Covariance age 

Class 1, age: 0.881 

Class 2, age: 0.247 

 

Mixing coefficients: 

 𝜋1 = 0.478 

 𝜋2 = 0.522 
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A.3.1.2. Tied Covariance 

 

Table A.31: Class-specific choice parameter estimates of the third specification of the 

GBM-LCCM with two classes and a tied covariance based on the London dataset 

Parameter 
Class 1 Class 2 

Class-Specific Choice Model 

ASC (Car) 0.156 (0.71) 4.55(0.00) 

AM Peak (Car) 0.829 (0.00) 0.931 (0.00) 

Inter Peak (Car) 0.681 (0.02) 1.74 (0.00) 

Peak (Car) 1.46 (0.00) 0.983 (0.00) 

Week Days (Car) -0.225 (0.55) -2.00 (0.01) 

Saturday (Car) 0.386 (0.39) -0.954 (0.22) 

Winter (Car) -0.553 (0.02) 0.161 (0.26) 

Variability (Car) -5.46 (0.00) -5.17 (0.00) 

Travel Time (PT) -0.0671 (0.00) -0.0662 (0.00) 

Travel Time (Car) -0.274 (0.00) -0.0887 (0.00) 

Cost (PT) -0.430 (0.00) -0.0338 (0.35) 

Cost (Car) -0.125 (0.45) -0.146 (0.00) 

Values within parentheses are p-values 

Travel Time variables are in minutes 

Cost variables are in Pound Sterling (£ gbp) 

 

Table A.32: Class membership mean estimates of the third specification of the GBM-

LCCM with two classes and a tied covariance matrix based on the London dataset 

Parameter Class 1 Class 2 

age* Continuous -0.266 0.243 

female Yes 0.534 0.409 

No* 0.466 0.591 

license Yes 0.526 0.959 

No* 0.474 0.041 

car_own0 0* 0.439 0.091 

car_own1 ] 0 – 1 [ 0.517 0.495 

car_own2 ≥ 1 0.044 0.414 

*: base category 
**: continuous variable that is standardized to have a mean of 0 and standard deviation of 1 
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Covariance age 

age: 0.935 

 

Mixing coefficients: 

 𝜋1 = 0.478 

 𝜋2 = 0.522 
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APPENDIX B: AUB DATASET 
 

This appendix provides all estimation results of the GBM-LCCM models related 

to the AUB dataset presented in Chapter 4. Sections B.1, B.2, B.3, and B.4 present the 

results of the models with full, tied, diagonal, and spherical covariance structures, 

respectively. 

 

B.1. Full Covariance 

Table B.1: GBM-LCCM with two classes and a full covariance based on the AUB 

dataset 

Parameter 
Class 1 Class 2  

Parameter 
Class 1 Class 2 

Class-specific choice model  Class membership model 

Ccar1 -1.91 (0.02) 0.315 (0.01)  π 0.573 0.427 

Ccar2 -1.84 (0.00) 0.257 (0.02)  µAge 0.231 -0.310 

Ccar3 -2.22 (0.00) 0.467 (0.00)  µGrade 0.055 -0.074 

Ccar4 -2.32 (0.01) -0.613 (0.00)  µC/D 0.336 -0.452 

CST1 -1.41 (0.12) -0.512 (0.00)  µNb 0.067 -0.090 

CST2 -1.80 (0.00) -0.201 (0.17)     

CST3 -1.24 (0.01) -0.111 (0.59)     

CST4 -3.54 (0.00) -0.339 (0.26)     

CST5 -0.198 (0.43) -0.109 (0.75)     

CSH1 -2.94 (0.00) -0.194 (0.11)     

CSH2 -3.41 (0.00) 0.445 (0.00)     

CSH3 -2.61 (0.00) 0.680 (0.00)     

CSH4 -4.79 (0.00) 0.367 (0.08)     

CSH5 -1.53 (0.00) 0.499 (0.0465)     

CostCar -0.0427 (0.00) -0.0504 (0.00)     

CostST -0.0988 (0.00) -0.113 (0.00)     

CostSH -0.0393 (0.00) -0.107 (0.00)     

TTCar -0.411 (0.00) -0.625 (0.00)     

TTST -0.370 (0.00) -0.615 (0.00)     

TTSH -0.258 (0.00) -0.334 (0.00)     

Headway -0.0455 (0.63) -0.508 (0.00)     

Values within parentheses are p-values 

Cost variables are in 1,000 L.L 

Travel Time and Headway variables are in hours 

 



 

 176 

 

Table B.2: Full covariance matrix of the GBM-LCCM with two classes based on the 

AUB dataset 

Covariance Age Grade C/D Nb 

Class 1, Age 0.114 0.902 0.040 -0.035 

Class1, Grade 0.036 0.040 1.096 -0.180 

Class 1, C/D 1.075 0.114 0.036 0.127 

Class 1, Nb 0.127 -0.035 -0.180 1.116 
     

Class 2, Age 0.451 0.965 0.022 -0.149 

Class 2, Grade 0.033 0.022 0.862 -0.224 

Class 2, C/D 0.543 0.451 0.033 -0.027 

Class 2, Nb -0.027 -0.149 -0.224 0.830 

 

B.2. Tied Covariance 

Table B.3: GBM-LCCM with two classes and a tied covariance based on the AUB 

dataset 

Parameter 
Class 1 Class 2  

Parameter 
Class 1 Class 2 

Class-specific choice model  Class membership model 

Ccar1 -2.50 (0.00) 0.361 (0.00)  π 0.575 0.425 

Ccar2 -2.04 (0.00) 0.290 (0.01)  µAge 0.303 -0.409 

Ccar3 -2.39 (0.00) 0.508 (0.00)  µGrade 0.225 -0.303 

Ccar4 -3.08 (0.00) -0.430 (0.00)  µC/D 0.0459 -0.062 

CST1 -1.62 (0.04) -0.465 (0.00)  µNb 0.0513 -0.0693 

CST2 -2.09 (0.00) -0.174 (0.24)     

CST3 -1.08 (0.03) -0.108 (0.61)     

CST4 -3.15 (0.00) -0.347 (0.25)     

CST5 -0.159 (0.53) -0.209 (0.55)     

CSH1 -2.30 (0.00) -0.286 (0.02)     

CSH2 -3.03 (0.00) 0.403 (0.00)     

CSH3 -2.29 (0.00) 0.661 (0.00)     

CSH4 -4.02 (0.00) 0.354 (0.11)     

CSH5 -1.52 (0.00) 0.379 (0.15)     

CostCar -0.0442(0.00) -0.0462 (0.00)     

CostST -0.101 (0.00) -0.110 (0.00)     

CostSH -0.0401 (0.00) -0.0993 (0.00)     

TTCar -0.409 (0.00) -0.653 (0.00)     

TTST -0.372 (0.00) -0.641 (0.00)     

TTSH -0.252 (0.00) -0.384 (0.00)     

Headway -0.0442 (0.64) -0.561 (0.00)     

Values within parentheses are p-values 

Cost variables are in 1,000 L.L 

Travel Time and Headway variables are in hours 
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Table B.4: Tied covariance matrix of the GBM-LCCM with two classes based on the 

AUB dataset 

Covariance Age Grade C/D Nb 

Age 0.270 0.932 0.036 -0.078 

Grade 0.041 0.036 0.997 -0.197 

C/D 0.876 0.270 0.041 0.070 

Nb 0.070 -0.078 -0.197 0.996 

 

B.3. Diagonal Covariance 

Table B.5: GBM-LCCM with two classes and a diagonal covariance based on the AUB 

dataset 

Parameter 
Class 1 Class 2  

Parameter 
Class 1 Class 2 

Class-specific choice model  Class membership model 

Ccar1 -1.95 (0.02) 0.312 (0.01)  π 0.569 0.431 

Ccar2 -1.90 (0.00) 0.251 (0.02)  µAge 0.330 -0.436 

Ccar3 -2.51 (0.00) 0.477 (0.00)  µGrade 0.244 -0.321 

Ccar4 -2.74 (0.00) -0.506 (0.00)  µC/D 0.049 -0.065 

CST1 -1.54 (0.09) -0.473 (0.00)  µNb 0.064 -0.085 

CST2 -1.97 (0.00) -0.167 (0.252)     

CST3 -1.12 (0.02) -0.106 (0.61)     

CST4 -3.66 (0.00) -0.314 (0.299)     

CST5 -0.183(0.47) -0.120 (0.72)     

CSH1 -2.65 (0.00) -0.260 (0.03)     

CSH2 -3.27 (0.00) 0.405 (0.00)     

CSH3 -2.54 (0.00) 0.653 (0.00)     

CSH4 -4.69 (0.00) 0.342 (0.11)     

CSH5 -1.53 (0.00) 0.460 (0.07)     

CostCar -0.0431 (0.00) -0.0479 (0.00)     

CostST -0.0993 (0.00) -0.113 (0.00)     

CostSH -0.0401 (0.00) -0.0999 (0.00)     

TTCar -0.406 (0.00) -0.641 (0.00)     

TTST -0.368 (0.00) -0.626 (0.00)     

TTSH -0.250 (0.00) -0.369 (0.00)     

Headway -0.0521 (0.59) -0.542 (0.00)     

Values within parentheses are p-values 

Cost variables are in 1,000 L.L 

Travel Time and Headway variables are in hours 
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Table B.6: Diagonal covariance matrix of the GBM-LCCM with two classes based on 

the AUB dataset 

Covariance Age Grade C/D Nb 

Class 1 1.067 0.901 1.087 1.122 

Class 2 0.577 0.949 0.877 0.827 

 

B.4. Spherical Covariance 

Table B.7: GBM-LCCM with two classes and a spherical covariance based on the AUB 

dataset 

Parameter 
Class 1 Class 2  

Parameter 
Class 1 Class 2 

Class-specific choice model  Class membership model 

Ccar1 -2.17 (0.00) 0.332 (0.00)  π 0.572 0.428 

Ccar2 -1.92 (0.00) 0.261 (0.02)  µAge 0.318 -0.425 

Ccar3 -2.47 (0.00) 0.490 (0.00)  µGrade 0.242 -0.323 

Ccar4 -2.94 (0.00) -0.463 (0.00)  µC/D 0.052 -0.069 

CST1 -1.57 (0.06) -0.466 (0.00)  µNb 0.058 -0.078 

CST2 -2.02 (0.00) -0.168 (0.25)     

CST3 -1.08 (0.02) -0.117 (0.57)     

CST4 -3.32 (0.00) -0.331 (0.275)     

CST5 -0.171 (0.50) -0.180 (0.60)     

CSH1 -2.51 (0.00) -0.270 (0.02)     

CSH2 -3.17 (0.00) 0.404 (0.00)     

CSH3 -2.42 (0.00) 0.652 (0.00)     

CSH4 -4.41 (0.00) 0.342 (0.11)     

CSH5 -1.52 (0.00) 0.413 (0.11)     

CostCar -0.0434 (0.00) -0.0480 (0.00)     

CostST -0.100 (0.00) -0.111 (0.00)     

CostSH -0.0404 (0.00) -0.0995 (0.00)     

TTCar -0.408 (0.00) -0.644 (0.00)     

TTST -0.369 (0.00) -0.635 (0.00)     

TTSH -0.252 (0.00) -0.374 (0.00)     

Headway 0.0486 (0.61) -0.554 (0.00)     

Values within parentheses are p-values 

Cost variables are in 1,000 L.L 

Travel Time and Headway variables are in hours 

 

Covariance  

Class 1 1.042 

Class 2 0.814 
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Table B.8: GBM-LCCM with three classes and a spherical covariance based on the 

AUB dataset 

Parameter 
Class 1 Class 2 Class 3 

Class-specific choice model 

Ccar1 -2.24 (0.00) 0.444 (0.00) -0.102 (0.78) 
Ccar2 -1.82 (0.00) 0.290 (0.02) 0.327 (0.25) 
Ccar3 -2.11 (0.00) 0.677 (0.00) -0.0412 (0.88) 
Ccar4 -2.90 (0.00) -0.224 (0.18) -1.26 (0.00) 
CST1 -1.61 (0.01) -0.331 (0.01) -1.11 (0.00) 
CST2 -2.31 (0.00) -0.00930 (0.95) -0.907 (0.03) 
CST3 -1.07 (0.02) 0.0262 (0.91) -0.938 (0.09) 
CST4 -3.23 (0.00) -0.073 (0.82) -1.78 (0.08) 
CST5 -0.181 (0.47) -0.284 (0.48) -0.24 (0.76) 
CSH1 -2.19 (0.00) -0.240 (0.07) -0.557 (0.08) 
CSH2 -3.17 (0.00) 0.556 (0.00) -0.535 (0.11) 
CSH3 -2.12 (0.00) 0.862 (0.00) -0.959 (0.03) 
CSH4 -4.38 (0.00) 0.627 (0.01) -1.63 (0.00) 
CSH5 -1.45 (0.00) 0.601 (0.04) -1.15 (0.05) 
CostCar -0.0451 (0.00) -0.0707 (0.00) -0.0172 (0.11) 
CostST -0.0991 (0.00) -0.107 (0.00) -0.123 (0.00) 
CostSH -0.0421 (0.00) -0.0832 (0.00) -0.120 (0.00) 
TTCar -0.410 (0.00) -0.717 (0.00) -0.614 (0.00) 
TTST -0.384 (0.00) -0.777 (0.00) -0.349 (0.01) 
TTSH -0.259 (0.00) -0.519 (0.00) -0.107 (0.26) 
Headway -0.0114 (0.91) -0.757 (0.00) -0.380 (0.06) 

Parameter Class membership model 

π 0.570 0.339 0.091 

µGrade 0.258 -0.172 -0.981 
µC/D 0.0456 -0.222 0.540 

µAge 0.329 -0.314 -0.897 

µNb 0.0778 0.0861 -0.810 

Values within parentheses are p-values 

Cost variables are in 1,000 L.L 

Travel Time and Headway variables are in hours 

 

Covariance  

Class 1 1.044 

Class 2 0.889 

Class 3 0 
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APPENDIX C: SWISSMETRO DATASET 
 

This appendix provides the estimation results of the best models related to the 

Swissmetro dataset presented in Chapter 6. Section C.1 presents the best LCCM and 

Section C.2 presents the best GP-LCCM. 

C.1. Latent Class Choice Model 

This section shows the estimation results of the LCCM with five latent classes. 

Table C.1: Class-specific choice parameter estimates of the LCCM with five classes 

based on the Swissmetro dataset 

Parameter Class 1 Class 2 Class 3 Class 4 Class 5 

ASC (Train) 0.811 

(0.00) 

1.19 

(0.00) 

-1.64 

(0.00) 

-0.254 

(0.00) 

-2.35 

(0.00) 

ASC (Car) 
4.38 

(0.00) 

-0.126 

(0.41) 

-4.52 

(0.11) 

1.72 

(0.00) 

-1.27 

(0.00) 

Travel Time 
-2.61 

(0.08) 

-0.0734 

(0.00) 

-0.129 

(0.00) 

-4.09 

(0.17) 

-4.36 

(0.00) 

Travel Cost 
-1.42 

(0.00) 

-1.04 

(0.00) 

-0.502 

(0.00) 

-3.43 

(0.00) 

-3.63 

(0.00) 

Values within parentheses are p-values 
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Table C.2: Class membership parameter estimates of the LCCM with five classes based 

on the Swissmetro dataset 

Parameter Class 2 Class 3 Class 4 Class 5 

ASC 

-3.02 

(0.00) 

-2.32 

(0.06) 

-3.73 

(0.08) 

-3.30 

(0.00) 

24 < AGE ≤ 39 

1.22 

(0.00) 

2.13 

(0.00) 

2.98 

(0.00) 

3.05 

(0.00) 

39 < AGE ≤ 54 

0.00680 

(0.99) 

1.17 

(0.04) 

2.09 

(0.00) 

2.20 

(0.00) 

54 < AGE ≤ 65 1.28 

(0.01) 

0.667 

(0.37) 

1.95 

(0.00) 

2.56 

(0.00) 

AGE > 65 

2.15 

(0.00) 

0.658 

(0.49) 

1.54 

(0.02) 

1.98 

(0.01) 

50 ≤  INCOME ≤ 100 

-1.13 

(0.00) 

-0.397 

(0.38) 

-0.325 

(0.27) 

-0.379 

(0.20) 

INCOME > 100 

-1.37 

(0.01) 

-0.590 

(0.28) 

-0.258 

(0.39) 

-0.381 

(0.21) 

M_INCOME 

0.00250 

(0.99) 

-0.345 

(0.55) 

-0.486 

(0.31) 

-0.406 

(0.36) 

MALE 

-0.775 

(0.01) 

-0.580 

(0.08) 

0.261 

(0.31) 

0.179 

(0.48) 

FIRST 

0.196 

(0.53) 

0.258 

(0.47) 

0.626 

(0.00) 

0.985 

(0.00) 

LUGGAGE : 0 piece 

1.26 

(0.21) 

-1.01 

(0.33) 

2.80 

(0.18) 

1.47 

(0.05) 

LUGGAGE : 1 piece 

1.55 

(0.11) 

-0.411 

(0.67) 

2.03 

(0.33) 

0.599 

(0.43) 

PURPUSE: Commuter 

3.28 

(0.00) 

4.76 

(0.00) 

1.15 

(0.00) 

2.65 

(0.00) 

PURPUSE: Shopping 

3.55 

(0.00) 

4.66 

(0.00) 

1.68 

(0.00) 

2.07 

(0.00) 

PURPUSE: Business 

2.25 

(0.00) 

2.01 

(0.00) 

0.398 

(0.00) 

1.05 

(0.00) 

Values within parentheses are p-values 
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C.2. Gaussian Process - Latent Class Choice Model 

This section shows the estimation results of the GP-LCCM with seven latent 

classes. 

Table C.3: Class-specific choice parameter estimates of the GP-LCCM with seven 

classes based on the Swissmetro dataset 

Parameter Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

ASC (Train) 1.71 

(0.00) 

-0.575 

(0.00) 

0.281 

(0.00) 

0.625 

(0.00) 

-2.06 

(0.00) 

-3.38 

(0.00) 

2.15 

(0.00) 

ASC (Car) -1.31 

(0.00) 

-3.59 

(0.00) 

2.27 

(0.00) 

5.29 

(0.00) 

-0.292 

(0.00) 

-2.39 

(0.00) 

1.85 

(0.00) 

Travel Time -1.97 

(0.00) 

-5.55 

(0.00) 

-4.61 

(0.00) 

-3.02 

(0.00) 

-5.54 

(0.00) 

-0.096 

(0.00) 

-0.0810 

(0.00) 

Travel Cost -0.605 

(0.00) 

-0.619 

(0.00) 

-3.38 

(0.00) 

-1.45 

(0.00) 

-3.53 

(0.00) 

-7.92 

(0.00) 

-1.61 

(0.00) 

Values within parentheses are p-values. 
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