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An Abstract of the Thesis of

Ahmad Maamoun Mustapha for Master of Engineering
Major: Electrical and Computer Engineering

Title: Unsupervised Deep Learning: Inter-model Interpretation and Deep Clustering

Deep Learning has risen recently as the de-facto machine learning approach for
complex and rich-data domains. However, this has been established so far mostly
in the setting of supervised learning. Supervised learning requires a tremendous
amount of labeled data that is expensive, time-consuming, and not scalable. To
overcome those limitations, researchers have invested recently in unsupervised
deep learning approaches which make use of the huge amount and easily avail-
able unlabeled data. In this dissertation, our work in the domain of unsupervised
deep learning was two-fold. We first apply a novel model interpretation technique
to study the learned concepts of different unsupervised deep learning approaches
and how they compare to each other. Second, we considered one of the proposed
approaches, Deep Cluster, proposing an explanation on why it works, support-
ing it with experiments, and following it by a series of ablation experiments to
understand some parameters-performance dynamics.
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Chapter 1

Introduction

Since Krizhevsky [1] first demonstrated the superiority of Deep Convolutional
Neural Networks in image classification tasks over the ImageNet dataset, and the
field of deep neural networks has been exponentially growing. Deep learning have
been proven to be highly performant in different complex and rich-data domains.
Such in computer vision, speech recognition, natural language processing , etc.
It have been able to mimic mappings of complex nature such in autonomous
vehicles, and robotics.

However, all this have been achieved through supervised learning in which
the deep model is fed with training data along with targets. Targets can be
of any form such as labels in image recognition, and bounding boxes in object
detection. Those targets are usually generated and crowd sourced by human
annotators which is a time consuming, expensive, and unscalable process.

Training of CNNs requires a considerable amount of labeled data. Collecting
such an amount of labeled data is exhaustively expensive, unscalable, unpractical
for individuals/organizations with limited resources, and it also doesn’t make use
of the massively large and easily available unlabeled data. This called for a new
unsupervised deep learning approach that learns strong hierarchical visual feature
representations with no need for labels.

Although the publicity of supervised Deep Learning has shadowed the unsu-
pervised deep learning movement, unsupervised deep learning has always existed
alongside supervised learning. While Yann Lecun [3] was working on applied su-
pervised deep learning using a convolutional neural network, Geoffrey Hinton [4],
[5] was working on learning representations without supervision using generative
models. When his student Krizhevsky was working on AlexNet for ImageNet,
Hinton was resistant to the idea as he thought that machines should learn labels
by themselves.

Since 2015 the domain of unsupervised deep learning has gained researchers’
attention and the number of research papers quickly increased. The approaches
tackling the domain started to form sub-domains each tackling it from a dif-
ferent perspective. We can divide the domain into 4 categories of research: (1)
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Clustering-Based, (2) Sample-Specificity-Based, (3) Self-Supervised, and (4) Gen-
erative Models. Note that those categories are not exclusive and they do overlap.
In recent years self-supervised deep learning approaches achieved competitive
results compared to supervised learning [6] casting previous unsupervised ap-
proaches out of favor.

Given the unsupervised nature, one would wonder what approach is used to
benchmark and compare different unsupervised deep learning approaches. The
current state of the art approach is to train models in an unsupervised context by
solving a challenge that make use of the unlabeled data (we will call this a pretext
task in what follows) resulting in a pretrained model. Then a simple machine
learning model will be trained over the frozen features of the pretrained model
in a supervised context over a given task (we will call this a downstream task
in what follows). The performance on the downstream task is considered as an
evaluation of the unsupervised training approach.

Summarizing performance by a couple of evaluation metrics such as accuracy
doesn’t tell so much about how two models are similar or different. A model
achieving a higher accuracy than another model on one downstream task might
perform poorer on another. In this manuscript we explored a complementary
approach that outputs fine grained details about the actual semantic concepts
learned by the model by directly inspecting the learned features. The approach
is rooted in the interpretable deep learning models domain and is based on a
recent model interpretation technique called Dissect [7]. We introduce the notion
of inter-model interpretation which studies how a group of models are similar
or different and whether they complement each other or not. Our experiments
allowed us to understand what type of concepts each downstream task requires.
And wether the models complement each other or not. This allows for the formu-
lation of better ensembles by utilizing the complementary nature of the models.

On the other hand, we investigated a recent Clustering-Based Unsupervised
Deep Learning technique called Deep Cluster [8]. The technique has shown to
be very competitive achieving a high transfer learning score on ImageNet [9] and
Places [10] Datasets and still competes with newer techniques. Deep Cluster
is end-to-end, scalable, and interestingly simple. It follows the mainstream su-
pervised learning setting, while different only in the fact that the labels, which
are not available, are generated through clustering the entire dataset and using
assignments as pseudo-labels.

We proposed an explanation of why Deep Cluster works based on the initial
alignment of the first pseudo-labels with ground-truth. We found that it is highly
sensitive to random initialization and to the number of clusters parameter. We
followed with a series of ablation studies to understand more the parameters-
performance dynamics. One of the main finding is that a key component in Deep
Cluster pipeline, which is clustering, doesn’t add value after a certain number of
epochs.

The rest of the dissertation is structured as the following: Chapter 2 positions
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the research and pass through related literature. Chapter 3 introduce the Dissect
interpretability technique and follows up with our experiments on self supervised
models and findings. Chapter 4 introduces Deep Cluster in details and follows
up with our experiments and findings. Chapter 5 concludes the manuscript.
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Chapter 2

Literature Review

2.1 Unsupervised Deep Learning Techniques

As previously mentioned in the introduction, we recognize four major directions
in the domain of Unsupervised Deep Learning. The movement started initially
with Restricted Boltzmann Machines (RBMs) [11] and Deep Belief Networks
(DBNs) [5, 12] as generative models to extract hierarchical representation of
data. Then by 2015 the Clustering-Based approaches followed along with Self-
Supervised movement happening in parallel. A handful of Sample-Specificity-
Based approaches have been published. The sample specificity approaches forked
a new self-supervised approach under the term of contrastive learning.

2.1.1 Clustering-Based Approaches

Clustering-Based Unsupervised Deep Learning simply extends traditional clus-
tering methods by adopting neural networks to learn clustering-friendly represen-
tations. We can see them as a neural network that incorporates two losses rather
than one, a Network Loss and a Clustering Loss. A hyper-parameter is usually
introduced to trade-off between the losses:

L = λLc + (λ+ 1)Ln

The choice of the network loss and the clustering loss leads to a variety of
approaches. Several clustering losses have been used, Yang et al [13] used k-means
loss, Xie et al [14] used clustering assignment hardening loss, Yang et al [15] used
agglomerative clustering loss, Haung et al [16] used locality-preserving loss and
group sparsity loss along with k-means, Chen et al [17] used non-parametric
maximum margin clustering, etc.

From the Network loss perspective the majority used Autoencoders recon-
struction loss (see Figure 2.1) [13, 16, 18, 19, 20], others used Variational Autoen-
coders (VAE) and Generative Adversarial Networks (GANs) losses [21, 22, 23, 24].
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Figure 2.1: Autoecnoder-Based Deep Clustering. Image from [1]

On the other hand, some neglected the network loss and used cluster assignments
to fine-tune the network [8, 25, 14, 15]

A comprehensive survey for clustering-based approaches can is provided by
Aljalbout et al [26, 27].

2.1.2 Self-Supervised Approaches

In a parallel community to Clustering-Based Approaches, Self-Supervised Deep
Learning Approaches have been also gaining attention and momentum. Rather
than introducing new losses to deep models, self-supervised approaches generate
pseudo labels for the models to be trained on. The idea is to propose a pretext
task – a task that doesn’t require human annotation (i.e. coloring) - for the net-
work to solve. By training the network on the proposed task objective functions
it learns features that are relevant for an actual downstream task.

To the date of writing this manuscript, several pretext tasks have been pro-
posed. Recently, Jing et al [1] have compiled a comprehensive survey on self-
supervised learning. As the range of proposed tasks varies considerably we will
stick to the tasks that solely depend on 3-channel Images. In other words, we will
ignore the ones that depend on videos, artificially generated data (using game-
engines), artificially generated labels (using hardcoded programs), and more-
than-3-channels images (e.g. images with depth).

Initially Doersch et al[28] have proposed to train the network to predict the
relative position between image patches (see Figure 2.3). Larsson et al [29] and
Zhang et al , [30] proposed coloring grayscale images. Pathak et al [31] pro-
posed in-painting occluded image patches. Hu et al [32] proposed in-variance
against augmentation. Zhange et al[33] proposed cross channel prediction (color
from grayscale and vice-versa). Wang et al [34] proposed preserving transitiv-
ity between instance inter-variance ( same class different instance ) and instance
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Figure 2.2: Self-supervised deep learning general workflow. Image from [1]

intra-variance ( same instance different viewpoints, illumination, . . . ). Noroozi
et al [35, 36] proposed solving a jigsaw puzzle and counting objects. Gidaris et
al [37] proposed predicting image rotation.

To evaluate the performance of an SSL algorithm, the learning goes as follow-
ing: (1) The model is pretrained in an unsupervised fashion over the pretext task.
(2) The learned features are frozen and then used in a supervised setting over
what is called a downstream task. The task is usually training a linear classifier
but other tasks such as object detection or segmentation are performed also. The
best SSL algorithm is the one that outperforms the others on a wide range of
downstream tasks. As in Figure 2.2.

2.1.3 Generative Models Approaches

Generative models were the first to be proposed in the domain of unsupervised
deep learning. Rather than learning by discrimination, the models are trained to
reproduce images and are penalized by the quality of generated images.

Earlier methods included Deep Belief Networks (DBNs) and Restricted Boltz-
mann Machines RBMs [12, 4, 38, 39, 40]. DBNs have fallen out of favor and
are rarely used [41] compared to other Generative Models such as Autoencoders
[42, 43], Variational Autoencoders [44], and Generative Adversarial Networks
(GANs) (see Figure 2.4) [45, 46, 47].
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Figure 2.3: Learning by context prediction. The network is trained to predict
the relative positions between image patches. Image from [1]

Figure 2.4: Generative Adversarial Network (GAN). Image from [1]

Although the motivation behind these approaches is to model the data and be
able to generate it, the representation learned during training generative models
can be exploited for downstream tasks.

2.1.4 Sample-Specificity Based Approaches

Sample-Specificity-Based approaches have gone with clustering to the extreme
where they consider each instance a class that the network should learn to dis-
criminate. The number of publications concerning this approach is small.

Initially Dosovitskiy et al [48] proposed Exemplar-CNN in which they ex-
tract patches from images and then create a surrogate class for each patch by
augmenting it. The model is trained to discriminate between those surrogate
classes. Bojanowski et al [49] proposed to map image instances to a fixed dis-

7



tribution of random vectors. Wu et al [50] directly transferred the supervised
learning approach by giving a label for each instance however they used a non-
parametric softmax alternative and approximated it using noise-contrastive es-
timation (NCE). This paper helped inspire a new self-supervised category of
approaches termed ”Contrastive Learning”.

2.2 Studying Self Supervised Models

The work we present in this manuscript doesn’t introduce a new unsupervised
representation learning approach but it analyses an existing one - Deep Cluster. It
aligns with the work of other researchers who also studied self-supervised models.
Asano et al [51] studied the effect of minimizing the dataset size and quality on
the performance of different approaches and found that it is possible to maintain
the same performance on the lower layers of the network while training on one
rich image. Caron et al [52] studied the performance of Deep Cluster itself on
non-curated data. Goyal et al [6] studied the effect of scaling datasets on different
approaches. Kolesnikov et al [53] studied the effect of different choices considered
in the learning pipeline like models and evaluation. Bansal et al [54] hinted at
the interesting small generalization gap between training and testing performance
that characterizes self-supervised models.

2.3 Deep Learning Models Interpretability

After Deep Learning applications spurred in safety-critical applications, concerns
have risen about neural networks’ black box nature and lack of interpretability. In
response to these concerns, the neural network’s interpretability domain started
to form. The domain has grown significantly and diverse in recent years.

The mainstream interpretability are: a) feature visualization which tries to
generate examples that maximally activate a part of the network let it be a unit, a
channel, a layer, or class probability [55, 56, 57]. b) feature attribution which tries
to explain which part of the image contributed mostly to the network decision
[58, 59, 60]. A survey on visual interpretation of CNNs is presented by Zhang et
al [61]. And Olah et al provided an interactive toolbox [62]

Other researchers went on to explain predictions by case, i.e. by proposing a
case that is believed by the targeted neural network to be closest to a query case
[63, 64]. Or by generating textual explanation [65, 66]. A comprehensive survey
is presented by [67].

As far as we know we are the first to consider inter-model interpretability.
However, we made use of the recent interpretability technique ”Dissect” [7].
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Chapter 3

Inter-model Interpretation:
Self-Supervised As a Use Case

3.1 Motivation

The current established approach for evaluating Deep Learning algorithms is to
measure how they perform on certain task based on metrics such as accuracy or
precision. While such metrics are useful they doesn’t capture the full picture of
how two models are similar or different. In other words two models that per-
forms similarly from accuracy perspective might have learned different different
complementary concepts. Knowing such information will help us build better en-
sembles or understand what combinations of concepts (objects, materials, colors,
etc) different downstream tasks or dataset requires. For instance, recently it have
been shown that increased performance on ImageNet doesn’t add any value to
performance over a medical set when transferred. This means that the medical
dataset requires different nature of learned concepts [68].

To address this problem we hereby introduce the notion of inter-model in-
terpretability. Unlike the traditional interpretability efforts that studies how a
model makes it’s decision, what are the learned concepts, or what fraction of
the input that drives the decision [67], inter-model interpretability studies how a
group of models relates to each other. Have the models learned similar concepts?
Does the learned concepts complement each other or redundant?

To investigate this interpretability we build upon a recent approach called
”Dissect” [7]. Dissect scalably inspects each unit (neuron) in a given network to
understand the semantic concept it has learned and assign it to it. Concepts such
as objects like horses and cars or materials such as fur and skin. It is possible to
aggregate all the concepts learned by units in the final layer to come up with a
learned concepts profile. We made such information for use by projecting models
into a Learned Concepts Embedding (LCE) that reveals the dissimilarities and
similarities between the models from the learned concepts perspective.
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Figure 3.1: The Learned Concepts Embedding (LCE) space of the 13 top per-
forming self-supervised models based on their dissect profile. Each dot represents
a model. Three main groups emerges in the space.

3.2 Dissect

Dissect [7] is a model interpretation technique that directly inspects the semantic
knowledge a certain filter (unit) in a given network holds. To understand what
activates a unit a current practice in the literature is to feed the network a set of
random images and manually inspect the images that highly activated it. This
qualitative approach is useful but not scalable as it needs human interaction.
The approach presented by Dissect scales this out by using a pretrained image
segmentation model to replace humans inspection.

Consider the input image in figure 3.2 and the corresponding up-scaled acti-
vation of a certain neuron on this image. It is evident that the neuron is looking
for tree-like structures. But how would Dissect know that? It uses a pretrained
image segmentor that segments the input image into different concepts, in the
figure it is segmenting the tree concept. It then computes the intersection over
union (IoU) ratio between the neuron activation and the segmentor segmenta-
tion. To avoid chance scenarios it applies the same procedure to a large number
of images in a validation dataset. If the IoU ratio is high over many images then
this neuron is probably looking for the corresponding concept. Dissect computes
the IoU ratio against 1,825 concepts available by the segmentor. And designate
the concept that has the highest ratio to the neuron. If the highest ratio is under
a certain value, an IoU threshold hyperparameter, the neuron is reported to not
belong to any concept. Check Appendix A.0.1 to see concepts that achieved top
IoU for each considered model with images showing activations.

What we care about in this paper, is that given a certain layer in a certain
pretrained network, Dissect will output all the concepts that it captured in this
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Figure 3.2: Dissect Basic Building Block

Figure 3.3: Example of unites activating over different concept categories from
left to right: airplane(object), leg(object part), brick(material), red(color)

layer along with the number of units that corresponds to each concept. The
Dissect version we used in this paper captures concepts of 4 classes: (1) Objects
such as horse and person. (2) Object parts such as mountain-top and person-left.
(3) Materials such as fur and skin. (4) Colors.

3.3 Experiment Setup

In our experiment, we applied Dissect on 13 models pretrained using top-performing
Self Supervised algorithms. All the models use ResNet50 [69] as a backbone and
are pretrained over ImageNet. We also considered a ResNet model trained in
supervised fashion over ImageNet for comparison and a random one. We used
Dissect authors code as is including the validation Places dataset [10], the Unified
Perceptual Parsing image segmentation network [70], and the IoU threshold as
0.04. We considered in our experiment only the final layer in ResNet50 of size
2048 in all models.

The models used in our experiment are InsDis [50], Moco V1/V2 [71], PIRL
[72], SimCLR V1/V2 [73], InfoMin [74], and BYOL [75] as contrastive SSL. PCL
V1/V2 [76], SeLa V1/V2 [77], DeepCluster V2 [78], and SwAV [78] as Clustering
SSL.
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To enrich our data we crossed the generated Dissect profiles of the mod-
els with there performance on a set of different downstream tasks and datasets
from [79]. The Datasets used are: FGVC Air-craft [80], Stanford Cars [81], Ox-
ford 102 Flowers [82], Food-101 [83], and Oxford-IIIT Pets [84] as many-shots
fine-grained object classification. ImageNet, Caltech-101 [85], CIFAR-10 [86],
CIFAR-100 [86], and Pascal VOC2007 [87] as many-shots coarse-grained object
classification. DTD [88] as many-shot texture classification. And SUN397 [89] as
many-shot scene classification. CropDiseases [90], EuroSAT [91], ISIC2018 [92]
and ChestX [93] as few-shots classification reporting on 5-10-50 shots for each.
Pascal VOC2007 [94] as detection reporting Ap, 50AP, 75AP with and without
fine-tuning. NYUv2 [95] as dense prediction of surface normal estimation. The
reader is forwarded to [79] for detailed training procedures.

3.3.1 Downstream Tasks

We hint below to the definition of the four different downstream tasks considered.
Many Shot Classification. The widely targeted learning setting in which

a model learns to classify a set of inputs into two or more classes while having
an abundance of labeled inputs. They are usually trained by minimizing the
cross-entropy between predictions and ground truth.

Few Shot Classification. A learning setting in which a model learns to
classify a set of inputs into two or more classes while having a very limited set
of labeled inputs usually ranges between 5 to 50 for each class. It considers the
concept that reliable algorithms should be made to perform well using a small
amount of training data. Here we consider prototypical networks in which pre-
trained models are used as a non-linear mapping of the input into an embedding
space and take a class’s prototype to be the mean of its support set (training set
for each class) in the embedding space. Prediction is done, given an embedded
query point (an unlabeled input), by simply finding the nearest class prototype.

Object Detection. A learning setting in which a model learns to not only
classify objects in images but also detect their bounding box. Different evaluation
metrics exist each gives different priority for classification and localization.

Surface Normal Estimation. A learning setting in which a model learns to
assign the normal for each pixel in an image. Given, for example, a 2-dimensional
image of a table. The tabletop pixels will be assigned a normal perpendicular to
the x-y plane.

3.4 Learned Concepts Embedding

In order to compute the LCE, we first found the super-set of all concepts found by
Dissect in all aforementioned models. We then represent each model by a vector
where each dimension represent a concept in the super-set and its value represents
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the number of units Dissect matched to the concept in the model’s last layer. We
call this vector for each model a Dissect Profile. We finally normalized the values
with the total number of concept found for each category. The super-set included
144 concepts distributed as following 67 objects, 54 object parts, 16 materials and
8 colors. Formally consider that we have a set of models M := (m1,m2, .., ), a
super-set of concepts C := (c1, c2, ..). Let D(mi, cj) be the number of units
found by Dissect in model mi that is matched to concept ci. Let (to, tp, tm, tc) be
the total number of objects, object parts, materials, and colors respectively that
composes the super-set C. Let cat(ci) be a mapping to the concept ci category.
Then the LCE will be computed over the following matrix:

D(m1,c1)
tcat(c1)

.. .. ..

.. .. .. ..

.. ..
D(mi,cj)

tcat(ci)
..

.. .. .. ..


We computed a LCE through Principle Component Analysis (PCA) and con-

sidered only the first three components. The components explained 88% of the
total variance. The scatter plot of the embedding can be seen in Figure 3.1 along
with the different models considered in our experiment.

3.5 Results

3.5.1 Dissect Profiles

The abstracted Dissect profile of the considered models can be seen in figure3.4.
The Random model has a simple profile composed of a handful of concepts.

However, visually inspecting corresponding unites activations shows that they are
random and don’t hold any semantics. Those random activations tend to intersect
with segments of frequently occurring concepts such as sky, floor, and person.
This points out a major weakness in Dissect algorithm. On the other hand,
SimCLR models have yet a smaller profile than a random model. Again with
found concepts being of coincidence. It seems that SimCLR encodes information
in a different way than the other models. For the rest of the models, the number of
unique concepts found doesn’t vary a lot across the majority of models. MoCoV2
and SeLaV2 are leading. Insdis, PCLV1, and SeLaV1 are trailing.

The models differed more in the total number of concepts assigned to units.
Multiple units can be assigned the same concept. This doesn’t necessarily mean
that all those units capture only the corresponding concept. It means that those
have an activation pattern that mostly intersect with the concept but might also
capture other concepts. For example, consider a unit that activates for blue flat
surfaces. The unit will activate for swimming pool as well as for pool (the game)
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Figure 3.4: The number of unique/all concepts in each category found by Dissect
for each model

tables. However Dissect end up assigning the concept to the swimming pool as
it intersects mostly with it possibly due to the fact that it appears more in the
validation dataset or that the segmentor doesn’t have pool table concept. As far
as we are applying the same procedure on all models the comparison is still valid.
The less redundancy (multiple units for a concept) a model’s Dissect profile has,
the more the model units are specialized and hold more abstract detectors.

3.5.2 Explaining The Embedding

To understand the semantics of the three main axes of variance. We computed
the correlation between each axis (the principal components) and an abstracted
Dissect profile. The abstracted profile aggregates the concepts into their cate-
gories. The aggregations are the unique number of concepts in a category, and
the total number of units in a category. The results are found in figure3.5.

The first component is highly correlated with the total number of materials
and to the total number of object parts with a lesser degree. The same pattern
occurs for the second component but it considers objects and color. On these
axes, the number of unique concepts found by Dissect doesn’t matter as much as
how many units represents a given concept. The lower the number of units that
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Figure 3.5: Correlation between abstracted Dissect profile and principal compo-
nents

tackle a unique concept the model will be placed on the lower region. Moreover,
the second component have a negative correlation with color which means the
lower it is the more the model has color information. The third component
correlates mostly with the number of unique materials found. Unlike the first
two components, it considers the number of unique concepts to a certain degree.

In summary, the first component looks for materials and object parts and the
second component looks for objects and colors. The variance on both axes rep-
resents how many units are matched to the corresponding categories of concepts.
The third axis looks for the number of unique concepts found with more emphasis
on materials.

Reading The Embedding

The projection of the different model’s Dissect profiles resulted in a space of three
clusters. The first cluster (A) resides in the lower region of the two principal
components. Those models maintain their proximity to the third component.
The second cluster (B) residing in the higher end of the first component and the
lower end of the second component. These models are rich with low-level features
suitable to detect low-level concepts such as materials. (C) residing in the higher
end of the second component and the lower end of the first component. These
models are rich with mid-level features suitable to detect high-level concepts such
as objects. Nonetheless, both regions fall short for high-level abstract features
that are available in region (A). The models in (A) have less redundancy which
can be explained in light of Dissect as having more abstract semantic features.

Redundancy is a Dissect artifact however it reflects certain types of feature
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Figure 3.6: How the number of food and car unites varies with the 1st & 2nd
components respectively.

detectors. To emphasis on this more, consider the concept of car(object) and
food(material). In figure 3.6 we plot how the number of neurons matched to the
food and car concepts varies with respect to the first and second components
respectively. Some models have more units that detect cars because the model
hasn’t matured to a certain level of abstraction. In other words, units that detect
wheels, smoothed edges, mirrors, or geometric shapes will end up being matched
by Dissect to car concept for they mostly intersect with car concept. The same
is true for the food concept on the second component.

From an algorithmic perspective Cluster (A) is dominated by clustering-based
approaches mainly SeLaV2, SwAV, and DeepClusterV2. It also contains BYOL
and Supervised. All these models learn by grouping instances despite the nature
of grouping (clusters, labels, or augmentation) without using negative samples.
The other approaches spread in clusters (B) and (C) are contrastive approaches
that do use negative samples. Except for SeLaV1 which is clustering-based and
precursor to SeLaV2. All the V2 models are derived from V1 models mainly by
adding projection heads, more augmentations, and more training epochs. This
operation has moved SeLa from the cluster (C) to cluster (A), MoCo from cluster
(B) to (C), and has moved PCL mostly on the third component.

3.5.3 What combination of concepts each task require?

We computed the correlation between the three principal components and models’
performance over different learning tasks and datasets. The goal of this experi-
ment is to understand the importance of each embedding axis on different types
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Figure 3.7: Correlation between embedding directions and performance

of tasks. In other words, to what combination of concepts each task require. The
result are as in 3.7.

For Many Shot classification tasks performance has a negative correlation with
the first component mainly. For such tasks, low-level features are not of impor-
tance. When the task is fine-grained such as in Aircraft and Cars, performance
becomes less correlated with the first component and more correlated with the
second component.

For detection, however, an interesting insight emerges. When we are training
with an emphasis on classification more than on localization i.e. using AP50
metric, performance is correlated negatively with the first component. However,
when we give more importance to localization using stricter metrics such as AP
and AP75 performance become positively correlated with the second and third
component. In other words, precise localization requires mid-level features. When
we consider fine tuning low-level and mid-level features become less important.

On contrary to many shot classification, few-shot classification is more nega-
tively correlated with the second component. For such tasks, mid-level features
result in lower performance. ISIC dataset in particular has a weak positive corre-
lation with the first component. The means low-level features are important for
the dataset. This is expected for the ISIC dataset, skin lesion images, is visually
very different from natural images in ImageNet.

Performance on surface normal estimation has a weak correlation with all
components. This task requires certain features that are not captured by Dissect.
Features such as edges and depth of field.
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3.5.4 How components complement each other

In this section, we try to find whether we can use the LCE to derive ensemble
selection. For each couple of models, we build a weighted soft voting ensemble.
The models’ probability predictions are weighted based on the performance of
individual models. Let a, and b with a > b be the performance of models m1 and
m2 respectively. Then the prediction of models ensemble

Em1,m2(X) = (0.5 + |a− b|)m1(x) + (0.5− |a− b|)m2(x)

. We build an ensemble for each couple of models and tested their performance
on DTD, Aircraft, and Caltech101 datasets. In figure 3.8 we report the results.
The ensemble’s performances are aggregated over the corresponding groups A,
B, and C. In other words, all the possible ensembles between group A models
and group B models are built and the corresponding change in performance is
computed for each. We then report the average of change into the cell (A, B).

The results are as in figure 3.8.

Figure 3.8: The Performance Gain/Loss After Ensemble

Interestingly the models in (B) and (C) apparently result in increased perfor-
mance over the three datasets. This is means that the features in the two groups
complements each other. For the Aircraft dataset, which is a fine-grained one, the
ensembles between models in group A and group B increases performance too.
This means that for fine-grained datasets mid-level features tends to be useful.
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Chapter 4

Revisiting Deep Cluster

4.1 Motivation

Deep Learning has been topping benchmarks leader boards across different do-
mains. Domains such as image recognition [96], speech recognition [97], activity
recognition [98], image generation [99], etc. In computer vision, this success has
been charged by ImageNet [9]. When an application dataset is limited and small,
practitioners bootstrap their learning routines with pretrained models trained
over ImageNet.

However, pretrained models over ImageNet holds features that are limited to
the classes present in the dataset and don’t generalize to non-natural images -
except for the lower layers that learn generic Gabor filters [100, 68]. Moreover,
settling this problem by pretraining on larger datasets is not efficient as labeled
data is expensive, especially if domain expert annotators are needed. On the
other hand, unlabeled data is cheap and freely available. Is it possible to have
scalable unsupervised pertaining of models?

Unsupervised deep learning has been recently gaining researchers’ attention.
A recent approach is Deep Cluster [8]. Deep Cluster is significant for its simplic-
ity and scalability. However, as far as we know, no one has tried to do analysis
regarding why Deep Cluster works and what is the effect of different hyperparam-
eters on its performance. In this manuscript, we try to understand the internals
of Deep Cluster and how different hyper-parameters effect performance. This is
important, especially that several concerns have been raised regarding the lack of
ablation studies or hyperparameters optimization in the field of Deep Learning
[101]. Moreover, answering those questions will: a) Deepen our understanding of
Deep Cluster. b) Allow us to separate it’s core elements from auxiliary ones. c)
Give us the tools to optimize both its learning and computational efficiencies.

19



Figure 4.1: Deep Cluster pipeline

4.2 Deep Cluster

Deep Cluster is a very simple pipeline for deep unsupervised representation learn-
ing. It follows the same pipeline of supervised learning except for the labels being
unavailable and generated on the go.

Figure 4.1 introduce the pipeline of Deep Cluster. The pipeline mainly iterates
between (A) generating pseudo-labels and (B) training on these pseudo-labels.
We denote Nc to be the number of cycles deep cluster run and Ne to be the
number of epochs to train the network on pseudo-labels in each deep cluster
cycle. The original authors found Ne = 1 to perform well in practice.

To generate pseudo-labels, (1) the entire dataset is fed forward to the net-
work and a feature vector is got for each sample. In other words, the input is
projected from Euclidean space into ConvNet feature space. (2) The vectors’
dimensions are reduced using principal component analysis and then whitened
and L2-normalized. A clustering algorithm - KMeans is used - is then applied
to the processed feature space to assign each group of samples into a cluster.
The assignments of samples are considered to be the pseudo-labels on which the
model will be trained on. The reader is referred to the original paper [8] for more
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details.
Statistical learning based computer vision requires a mapping that maps im-

ages from their raw space into a space that performs well with training. A space
that holds images semantics. Convolutions networks are found to be useful as
such mapping and outperform other approaches. Let fθ be a ConvNet that maps
images with θ being it’s parameters. The goal of training such networks is to
find θ that makes fθ generates decent general purpose features. Given a set of
n images X = {x0, x1, ..., xn} with a label yi for each image xi. Let Y = yi for
i ∈ {0, 1, ..., n} . The network is trained by predicting labels using a parameter-
ized classifier gw over fθ. The parameters θ and W are jointly learned through a
loss function.

In Deep Cluster the labels are not available but presumed by clustering the
ConvNet feature space. In other words for each xi we compute vi = fθ(xi), and
the clustering is performed on V = vi for i ∈ {0, 1, .., n}. For each xi we generate
a pseudo-label ypi being the cluster assignment of the sample. Let Y p = ypi for
i ∈ {0, 1, .., n}. For each Deep Cluster cycle c a pseud-label vector Y p

c is generated
and the network is trained upon it.

To study the learned feature space quality evolution 2 metrics have been pro-
posed. Both metrics depend on Normalized Mutual Information (NMI), which is
a value that is bounded by [0, 1] and represents the dependence between two sets,
zero means no dependence and one means that we can predict one set from the
other. The metrics are as follows: (1) NMI(Y p

c−1, Y
p
c ) which is the normalized

mutual information between the cluster assignments of two consecutive cluster-
ing. This metrics tells us how much two consecutive clustering assignments are
dependent to each other. If this metric converges to a certain value during train-
ing, this means that the model didn’t collapse. (2) NMI(Y p

c , Y ) which is the
NMI between pseudo-labels and ground-truth labels. This metric hints whether
Deep Cluster is learning class level features or not. If the dependence between
the two groupings (pseudo-labels and ground-truth) is increasing as the model
is trained then it must be learning class level features. Note that those metrics
are used as a proof of concept as in real-world applications of Deep Cluster the
ground-truth is not available. Deep Cluster authors found that as the algorithm
executes NMI(Y p

c , Y ) increases which means that class related features are being
learned. Also they found that NMI(Y p

c−1, Y
p
c ) converge to a certain value after

a number of cycles.
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Figure 4.2: The projection of MNIST and CIFAR10 datasets through randomly
initialized LeNet and AlexNet respectively. t-SNE [2] is used for dimensionality
reduction. Each point represents an image an its color correspond to its ground-
truth.

4.3 Why Deep Cluster Works

As far as we know no one have tried to understand why Deep Cluster works
out. Intuitively what Deep Cluster do is grouping samples in proximity together
and train the model to discriminate between different groups. According to the
authors Deep Cluster make use of the randomly initialized filters of the convolu-
tional layers to work as a strong prior to the input signal due to their convolutional
structure [102]. It makes sense to think less of the randomly initialized weights of
a convolutional layer as numerical matrices, and think more of them as random
convolutional filters that hold loose spatial signal.

However, this raises the question on how much does the random filters quality
effects the final results of Deep Cluster on downstream tasks or on it’s represen-
tation learning capabilities and what does the role the number of clusters plays
in this process. In this manuscript we argue that Deep Cluster success strongly
depends on both the random filters quality and to the choice of the number of
clusters. The more the random filters are suitable for the images domain the
more projected samples in proximity hold similar semantics. The more number
of clusters we use the more feature consistent clusters we get.

Consider the following illustrative example. (A) We fed a sample of MNIST
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dataset into a randomly initialized LeNet network. (B) We feed a sample of
CIFAR10 dataset into a randomly initialized AlexNet network. In figure 4.2 we
plot the final convolutional layer activations for both networks reduced using t-
SNE [2] along with the ground truth. The random filters are pretty good for
digit images domain as we can see that similar digits fell in the same regions
in the features space. This is not the case for CIFAR10, however while similar
classes of images doesn’t fell in wide regions we can see a handful of them near
each other. The number of clusters chosen can then resolve the weakness in the
random filters suitability for CIFAR10 classes. Hereby we introduce the notion
of initial alignment which quantify how much the initial pseudo-labels align with
the ground truth. This alignment depends on both the chosen number of clusters
and the random initialization of the network weights.

This proposal explains why the original authors found that Deep Cluster
performed better on downstream tasks when choosing 10k clusters then when
choosing 1k clusters over the ImageNet dataset (which contain 1k classes). And
why transforming images using Sobel filter also performed better - it is because
the random filters are better as shape detectors than in pattern detectors. We
further support this claim with a set of experiments.

4.4 Effects of Initial Alignment

The number of clusters and random initialization of wights (k, θ) plays together
regarding the performance of Deep Cluster - θ represents the randomly initialized
parameters of a given model. We formulated a metric to measure the suitability
of this (k, θ) combination for the targeted dataset. The metric works as follow-
ing. Let fθ(x) be a mapping representing a fully convolutional neural network
initialized using θ. Let L be the ground-truth labels of the dataset samples - L
is not used during Deep Cluster iterations but we use it here for analytical pur-
poses. Let P be the pseudo-labels obtained by applying KMeans over the dataset
features, produced by feeding the dataset into fθ(x), using k clusters and consid-
ering assignments as pseudo-labels. Note that L takes values between 0 and C
where C is the number of classes in the dataset while P take values between 0
and K. Then the metric IA is:

IA(θ, k) = NMI(L, P )

where NMI is the Normalized Mutual Information. The higher this metric
is, the more the clusters are consistent and align with the ground-truth labels.
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Figure 4.3: Initial alignment score distribution over CIFAR10 using a randomly
initialized Al vexNet with k=2000

4.4.1 Changing θ

In this experiment, we measure the effect of changing θ while fixing k on Deep
Cluster performance. We considered the CIFAR10 dataset and AlexNet model.
We fixed all hyper-parameters with k = 2000 except for θ. The model parameters
are initialized randomly as following. For convolutional layers weights are chosen

from a normal distribution with mean 0 and standard deviation
√

2
n

where n is

the layer size height ∗ width ∗ channels. Linear layers weights are chosen from
a normal distribution with mean 0 and standard deviation 0.01. In case Batch
Normalization layers are used there weights are set to 1. All biases are set to 0.

We first inspected the initial alignment score distribution of 100 randomly
initialized models. The results are present in figure 4.3. The distribution is right-
skewed with the majority of models achieving a score between 0.14 and 0.15. To
correlate score with downstream task performance we selected 10 different models
that collectively span the entire initial alignment score distribution range. We
then measured each selected model downstream task performance by running
Deep Cluster for 100 epochs and then evaluating performance over the CIFAR10
dataset as a downstream task. Figure 4.4 shows the results. The higher the
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Figure 4.4: Space Quality vs. Deep Cluster Performance

initial alignment is the better Deep Cluster performs. This experiment provides
concrete evidence that supports our claim. The take-away of this experiment is
that Deep Cluster should be performed multiple times to get an accurate estimate
of performance mean and standard deviation. It also calls for heuristics to choose
better performing initialization as running Deep Cluster multiple times is very
time and resources consuming.

4.4.2 Changing k

In this experiment, we study the effect of changing the chosen number of clusters
over performance. For this we considered both FMNIST [103] and SVHN [104]
datasets to train a LeNet-5 model and a down-scaled AlexNet model respectively.
For FMNIST we varied the number of clusters through (5, 7, 10, 12, 20, 200, and
500) for each number of clusters we run 30 experiments fixing everything except
for the random seed. For SVHN we varied the number of clusters through (10, 50,
100, and 500) for each number of clusters we run 5 experiments fixing everything
but the random seed. Note that both datasets contain 10 classes of images. The
results can be seen in Figure 4.5.

For FMNIST - which is a dataset of down-sampled grayscale images of 10
apparel items like shoes, pullovers, coat, etc - increasing the number of clusters
doesn’t contribute a lot to the final performance. It is also better to choose a
small number of clusters even below the number of classes. This is because of
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Figure 4.5: Number of Clusters vs. Deep Cluster Performance

the simple nature of the images. Even if different items are grouped together
the model is still able to learn meaningful representation and learn the different
modalities of the group.

The good performance when using a lower number of clusters is also related to
another factor. In the experiment, we run Deep Cluster 30 times for each number
of clusters and report the median in the figure. For a smaller number of clusters,
the performance variance of the 30 runs is small while for higher numbers it gets
larger (This is true for SVHN also). This fact drags the median of performance
in a higher number of clusters lower.

The small variance in performance when choosing a lower number of clusters
is related to the random nature of k-means. When we have a small number of
clusters no matter what random seeds we used the k-means output will converge
to a couple of identical groupings. However, when we have a larger number of
clusters the output will converge to a much more possible grouping (we can say
that using a larger number of clusters degrades k-means to a proximity preserving
space partitioning routine). This diversity of groupings will then lead to diverse
initial alignment scores and in turn diverse performance. This again hints at
Deep Cluster sensitivity to random initialization.

On the contrary to FMNIST, to increase performance on SVHN we need to
choose a higher number of clusters. As the number of clusters increases the
performance significantly increases. SVHN is a dataset of RGB images of street
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Halt Clustering Position Downstream Task Accuracy
15 62.00
30 64.06
50 65.18
100 66.98

Table 4.1: Clustering Contribution

view house numbers distributed over 10 digits from 0 to 9. The nature of SVHN
is much more complex than FMNIST.

This experiment reinforces more the claim that Deep Cluster performance
is sensitive to the initial alignment score that is based on both the parameters’
initialization and the choice of the number of clusters. It also proves that we
should choose the number of clusters based on the images’ nature complexity
and not the number of ground-truth classes in the first place.

4.5 Clustering Contribution

According to the original authors Deep Cluster converge after some iterations.
This convergence is measured by the fact that the mutual information between
consecutive pseduo-labels become constant through Deep Cluster iterations af-
ter a certain number of iterations. This fact raises a question about clustering
contribution in Deep Cluster performance.

To measure this contribution we run multiple Deep Cluster experiments on
CIFAR10 Dataset using AlexNet while fixing everything including the random
seed. The only difference was halting Deep Cluster clustering part at different
cycles. In other words after a certain number of cycles we fix pseudo-labels and
only the training part is reserved. After halting Deep Cluster degrades to normal
supervised learning setting while using pseudo-labels as ground-truth. We ran
Deep Cluster for 150 epochs and halted clustering at 15, 30, 50 and 100. Table
4.1 shows the results.

It turns our that continuous clustering only added about five degrees of accu-
racy. This finding significantly decrease the computational requirements of Deep
Cluster. This is because Deep Cluster performs a full feed forward of the entire
dataset and then apply clustering over the features each cycle. Considering Im-
ageNet this means feeding the network approximately 1 million images and then
perform k-means over them in each cycle. Further more, the authors reported
that the majority of Deep Cluster execution time was in the clustering phase.
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PCA Downstream Task Accuracy
32 64.97
64 64.80
128 65.50
256 65.47

Table 4.2: PCA effect on performance

4.6 Better Performance with Less Computation

In this description we present the experiments we performed in order to quantify
the effect of different parameters on Deep Cluster. Although the accuracy im-
provement might seem small, a 1 percent improvement is considered significant.

4.6.1 Principal Component Analysis

The output feature size of modern ConvNets is relatively large. For example in
case for AlexNet the output dimension is 2048. It is very expensive to perform
Clustering over such height dimensional space especially that the clustering is be-
ing performed over the entire dataset. To resolve this problem the dimensionality
reduction technique Principal Component Analysis (PCA) is used. This raise a
new hyper-parameter.

To measure the effect of PCA on performance we run deep cluster over CI-
FAR10 using ALexNet. We set k = 2000 and fixed all other parameters except
for PCA which is varied between 32, 64, 128, and 256. Table 4.2 show the re-
sult. The PCA effect on downstream task accuracy is negligible. A reduction
from a 256-dimensions space into a 32-dimensions space significantly speeds up
clustering.

4.6.2 Fitting KMeans

In Deep Cluster the clustering module is trained on the entire dataset. This is
expensive and to reduce it, is is possible to train the clustering module on a partial
number of data and then predict other data labels - in KMeans this means to
find the centroids using a small number of data points and then assign the other
points using the learned centroides. We performed an experiment to study the
effect of fitting KMeans using portion of the data on Deep cluster performance.
We found that training the clustering module on significantly small portion of
the entire data actually performed better.

The experiment is performed on CIFAR10 using AlexNet with k = 2000 while
varying only the percentage of data to train KMeans on between 5,10,20, ..., and
100.
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Figure 4.6: Data Percentage for Fitting KMeans vs Deep Cluster Performance

Figure 4.6 show the results. Interestingly the data percentage used to train
KMeans is inversely proportional to Deep Cluster Performance. Using 10% of the
data achieves the best results with a difference of approx. 2 degrees of accuracy
with the least performing value which is 70%.

This finding can also be related to the aforementioned performance variance
under large number of clusters due to the random nature of k-means. By fitting k-
means over a much more smaller number of samples decreases the randomization
effect while preserving the number of clusters benefit.
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Chapter 5

Conclusion and Future Work

In this dissertation, we tackled two question in the domain of unsupervised deep
learning for visual data.

First we introduced the notion of inter-model interpretability to understand
how top performing self-supervised deep learning models are similar or dissimilar.
We achieved this by projecting the models into a Learned Concepts Embedding
(LCE) that reveals their similarities and dissimilarities form learned concepts
perspective. The embedding was computed by representing each model by a
vector learned concepts through utilizing the recent interpretability approach
”Dissect”.

We find that the models can be divided into three main groups. And that
the embedding axes can be explained by a combination of concepts categories.
Crossing the embedding with models performance over a range of different down-
stream tasks and datasets allowed us to figure out what combination of concepts
each task requires. We finally find that two groups constantly complement each
other and can be used to formulate better ensembles.

Though Dissect has captured important axes of difference between different
models it still a partial representation of the entire concept spectrum learned by
the deep learning model. In particular, it focuses on semantic concepts. An inter-
esting future work direction would be to increase Dissect coverage by including
more semantic concepts and to include non-semantic concepts such as blur, depth
of field, style, etc. A better-balanced validation dataset must be assembled to
prevent coincidence matching to frequently occurring objects. On the other side
applying Dissect on a larger pool of models with different training procedures,
architectures, training data, and training task is interesting. This will enhance
the LCE quality and give more insights into the interaction between performance
and learned concepts space. It is also of interest to study the effect of different hy-
perparameters on the placement in the LCE. Hyperparameters such as dropout,
normalization, capacity, activation functions, and others.

Second we studied a recent self supervised algorithm called Deep Cluster.
Deep Cluster follows the same pipeline of conventional supervised learning ex-

30



cept for the labels being generated every cycle by applying k-means over the
entire dataset after projecting it into the network feature space and using clus-
tering assignments as pseudo-labels. We proposed an explanation about why
Deep Cluster works and we supported the proposal by a set of experiments that
validates it. The proposal validation revealed Deep Cluster’s high sensitivity to
random initialization and to the choice of the number of cluster.

We followed the explanation by a series of ablation studies to understand the
effect of different parameters such as:

• The importance of continuous clustering which we found to marginally im-
portant. We recommended to halt clustering after a couple of early itera-
tions to reduce Deep Cluster computational resources consumption.

• The effect of reducing the number of components used after reducing the
feature space through PCA. We found that we can reduce the chosen num-
ber of components by 8 folds with negligible effect on performance while
benefiting form computational resources reduction.

• The percentage of samples to fit the k-means over. We found that consider-
ing much smaller sample than the entire dataset lead to better performance.

Now that we know that Deep Cluster is sensitive to random initialization,
a future work direction would be to investigate possible ways to decrease this
effect and to formulate heuristics or procedures to select random initialization
that leads to the highest possible accuracy over the downstream task.
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Appendix A

Dissect
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A.0.1 Top Matching Unites

Below we report the top 5 matching units along with the concept they were
matched to and the IoU value using dissect for each model. Random and SimCLR
models units tend to be matched coincidentally.
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A.0.2 Exemplary Activations

The first row of images below corresponds to a unit in the supervised model. The
unit is matched to the swimming pool concept. The second row corresponds to
a unit in PCLV1 model. The unit is matched to no concept by Dissect.

A.0.3 Principal Components Coefficients

After applying Principal Component Analysis on normalized vectors of Dissect
concepts we consider the top three components which represent 87% of data
variance. The below figure represents the detailed concept composition of each
component. As you can see the first component has the materials fur and skin as
major concepts along with other object parts. While the second component has
more emphasis on objects. The best performing models tend to minimize both
components balancing between different abstractions.

Figure A.1: The Detailed Composition Of Dissect Main Axes Of Variance
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