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An Abstract of the Thesis of

Fatima Mohamad Allouch for Master of Science

Major: Mathematics

Title: Minimal Free Resolutions and Monomial Ideals of Projective Dimension ≤ 1

Let R = k[x1, x2, . . . , xn] be the polynomial ring in n variables and I an

ideal in R. We first define the notions of minimal free resolutions of algebras R/I

and multigraded minimal resolutions of monomial ideals I. We then discuss the

following established result in [6]:

projdim (I) ≤ 1 ⇐⇒ a graph tree supports the minimal free resolution of R/I
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Chapter 1

Introduction

Let R = k[x1, x2, . . . , xn] be the polynomial ring in n variables with maximal ideal

m, and let I be an ideal of R. A free resolution of R/I is an exact sequence of free

modules that describes relations on the generators of the ideal. The resolution is

minimal whenever the matrices representing the maps in the exact sequence have

entries in the maximal ideal m. Constructing minimal free resolutions of algebras

R/I has been of interests to many authors.

Suppose I is a monomial ideal i.e generated by monomials. Finding the

minimal free resolution of R/I known as the minimal monomial resolution, can be

quite complex despite the combinatorial structure that monomial ideals have. An

important tool in studying monomial resolutions is to find topological objects

whose chain maps can be homogenized to obtain free resolutions of these ideals.

This approach began with Diana Taylor in her thesis [11] in 1966. It consists of

labeling the faces of the simplex by the lcm of monomial generators of the ideal.

Many mathematicians tried to generalize Taylor’s approach by considering smaller

topological objects with the hope of obtaining minimal free resolutions.

vii



In this thesis, we first define the notions of minimal free resolutions of

algebras R/I of a general ideal I and multigraded minimal resolutions of monomial

ideals I. We then discuss the following established result by Hersey and Faridi

in [6] where they prove:

projdim(I) ≤ 1 ⇐⇒ a graph tree supports the minimal free resolution of R/I
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Chapter 2

Preliminaries

2.1 Notions on Commutative Rings

Let R be a commutative unitary ring. Here are some useful definitions on elements

of the ring R.

Definition 2.1. A zero divisor in R is an element x for which ∃ y 6= 0 such that

xy = 0.

Example 2.2. In M2(R), consider A and B to be the following matrices

A =

1 0

0 0

 and B =

0 0

1 0


their product AB is the zero matrix while A and B are not, so A and B are two

zero divisors.

A ring with no zero divisors 6= 0 (and in which 1 6= 0 ) is called an integral

domain, just like Z, k[x1, x2, . . . , xn], where k is a field and n ∈ N, are integral
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domains.

Definition 2.3. A unit in R is an element x which ”divides 1”, i.e an element x

such that xy = 1 for some y in R.

Note that the element y is then uniquely determined by x and is written

x−1, and the units in R form a (multiplicative) abelian group. For all r ∈ R , the

multiples rx of an element x ∈ R form a principal ideal, denoted by (x) or Rx .

Note that, (x) = R = (1) ⇐⇒ x is a unit , because rx = 1 ∀ r ∈ R. Note that the

zero ideal is usually denoted by 0.

Now, we can introduce Regular Sequences, that will be used as an

application afterwards.

Definition 2.4. Let R be a ring. Let M be an R-module. A sequence of elements

r1, r2, . . . , rn ∈ R is called a regular sequence on M (or M-sequence) if

1. (r1, r2, . . . , rn)M 6= M and

2. for i = 1, . . . , n , ri is a non zero divisor on M/(r1, r2, . . . , ri−1)M .

Example 2.5. Let M= R= k[x, y] , r1 = xy, r2 = x2 is not a regular sequence

since x2 is a zero divisor on R/(xy) as x2y = x(xy) = 0 in R/(xy) and y 6= 0.

Definition 2.6. A field is a ring R in which 1 6= 0 and every non-zero element is

a unit.

Example 2.7. R , C , GLn(R).

We note that every field is an integral domain but not conversely.

Proposition 2.8. Let R be a ring 6= 0, then the following are equivalent:

1. R is a field.
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2. The only ideals in R are 0 and (1)

3. Every non zero homomorphism Φ: R −→ R′ is injective for all rings R′ 6= 0.

Proof. 1 −→ 2) Let A 6= 0 be an ideal in R, then A contains a non-zero element x,

then x is a unit, hence A ⊇ (x) =(1) so A = 1.

2 −→ 3) Let Φ : R −→ R′ be a ring homomorphism , then ker(Φ) is an ideal 6= (1)

⊆ R, so ker(Φ)= 0 hence Φ is injective.

3 −→ 1) Let x ∈ R be a non-unit then (x) 6= (1) hence R′ := R/(x) is not a zero

ring . Let Φ: R −→ R′ be the natural homomorphism of R onto R′, its kernel is

(x). By hypothesis, Φ is injective, hence (x)= 0 so x = 0.

Now we pass on to a discussion of the following significant ideals,

Definition 2.9. An ideal P in R is prime if P 6= (1) and if xy ∈ P , then x ∈ P

or y ∈ P .

Example 2.10. pZ, where p is a prime number.

Proof. Let x, y ∈ p Z such that xy ∈ pZ =⇒ p | xy, and by Euclid’s Lemma since

p is prime then p | x or p | y =⇒ x ∈ pZ or y ∈ pZ.

Definition 2.11. An ideal M in R is maximal if M 6= (1) and if there is no ideal

A in R such that M ⊆ A ⊆ (1).

Example 2.12. 2Z is a maximal ideal of Z.

Proof. Suppose ∃ J ideal of Z so J = aZ such that 2Z ⊆ aZ ⊆ Z ,then a | 2 and 1

| a =⇒ a = 2 or a = 1 =⇒ aZ = 2Z or aZ= Z and thus 2Z is maximal.

Example 2.13. R= k[x1, x2, . . . , xn], where k is a field and n ∈ N. Let f ∈ R be

an irreducible polynomial. By unique factorization, the ideal (f) is prime.
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A principal ideal domain is an integral domain in which every ideal is

principal. In such a ring, every non-zero prime ideal is maximal. For if (x) 6= 0 is a

prime ideal and (y) ⊃ (x), we have x ∈ (y), say x = yz , so that yz ∈ (x) and y /∈

(x), hence z ∈ (x), say z = tx. Then x = yz = ytx so that yt = 1 and then (y)=

(1).

Proposition 2.14. Let P , M be ideals of R.

1. P is prime ⇐⇒ R/P is an integral domain.

2. M is maximal ⇐⇒ R/M is a field.

Hence a maximal ideal is prime but the converse is not true.

Proof. 1. ( =⇒ ) P is a prime ideal of R =⇒ P 6= (1) and if xy ∈ P , then

x ∈ P or y ∈ P =⇒ R/P 6= 0 and if x , y ∈ R/P st x y = 0 then x = 0 or y

= 0 =⇒ R/P has no zero divisors =⇒ R/P is an integral domain.

(⇐= ) Let a,b ∈ R/P st ab= 0, but R/P is an integral domain, so it has no

zero divisors, then a = 0, or b = 0 =⇒ a, b ∈ R with ab ∈ P st a ∈ P or

b ∈ P =⇒ P is a prime ideal of R.

2. ( =⇒ ) M is a maximal ideal of R =⇒ if J is an ideal in R such that

M ⊆ J ⊆ R then J = M or J = R =⇒ if J/M is an ideal in R/M such that

0 ⊆ J/M ⊆ R/M then J/M = 0 or J/M = R/M =⇒ the only ideals of

R/M are 0 and R/M =⇒ R/M is a field.

(⇐= ) R/M is a field =⇒ the only ideals of R/M are 0 and (1) =⇒ if

J/M is an ideal of R/M (J ⊆ R and M ⊆ J) then J/M = 0 or J/M = R/M
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=⇒ if J is an ideal of R such that M ⊆ J then J = M or J = R =⇒ M is

a maximal ideal of R.

Example 2.15. R= Z , every ideal in Z is of the form (m) for some m ≥ 0. The

ideal (m) is prime ⇐⇒ m = 0 or a prime number. All the ideals (p) where p is a

prime number are maximal and Z/(p) is the field of p elements.

Theorem 2.16. Every ring R 6= 0 has at least one maximal ideal.

Proof. Let Σ be the set of all ideals 6= (1) in R. Order Σ by inclusion, Σ is

non-empty since 0 ∈ Σ, to apply Zorn’s Lemma we have to show that every chain

in Σ has an upper bound in Σ , let ( Ai ) be a chain of ideals in Σ , so that for

each pair of indices i, j we have either Ai ⊆ Aj or Aj ⊆ Ai . Let A =∪i Ai, then

A is an ideal such that 1 /∈ A because 1 /∈ Ai ∀i. Hence, A ∈ Σ, and A is an

upper bound of the chain, by Zorn’s Lemma Σ has a maximal element .

Corollary 2.17. If A 6= (1) is an ideal of R, then there exists a maximal ideal of

R containing A.

Proof. Apply theorem 2.16 to R/A. we have that A 6= R, then R/A 6= 0, so R/A

has at least one maximal ideal, so ∃ M/A , M ideal of R containing A such that

M/A is maximal in R/A. We still have to prove that M maximal in R containing

A. Let J be an ideal of R such that A ⊆ J and M ⊆ J ⊆ R, then

M/A ⊆ J/A ⊆ R/A. But, M/A is maximal in R/A, so J/A = M/A or

J/A = R/A, therefore J = M or J = R and then M is maximal in R containing
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A.

Proposition 2.18. Every non-unit of R is contained in a maximal ideal.

Proof. Let m be a non-unit element of R, then (m) 6= R ( otherwise (m) = R = (1)

and m is a unit, contradiction!) , then by corollary 2.17 , ∃ M maximal ideal such

that (m) ⊆M ⊆ R , so (m) ⊆ M and 1 ∈ R so m ∈ (m) ⊆M , then m ∈M .

Definition 2.19. The Jacobson Radical J of R is the intersection of all

maximal ideals of R.

Proposition 2.20. x ∈ J ⇐⇒ 1− xy is a unit in R for all y ∈ R.

Proof. =⇒ ) Suppose 1− xy is a non-unit, by Proposition 2.18 it belongs to some

maximal ideal m of R, but x ∈ J ⊆M , hence xy ∈ M and therefore 1 ∈M , which

is absurd.

⇐= ) Suppose x /∈ M , for some maximal ideal M . Then, M and x generate the

unit ideal (1), so that we have u+ xy = 1, for some u ∈M and some y ∈ R.

Hence, 1− xy ∈M and is therefore not a unit .

Definition 2.21. R is a local ring iff R has a unique maximal ideal.

Example 2.22. For every field k, its 0 is a maximal ideal, because by proposition

2.8, the only ideals of a field are 0 and (1),i.e.and there is no ideals in between, so

the zero ideal is a maximal ideal and it’s unique as (1) can’t be a maximal ideal by

definition.

2.2 Modules

Let R be a commutative ring.
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Definition 2.23. An R-module is an abelian group M (written additively) on

which R acts linearly, i.e. it’s a pair (M ,µ), where M is an abelian group and µ is

a mapping of R × M into M such that if we write rx for µ(r, x), with r ∈ R and

x ∈M , then the following axioms are true:

1. r(x+ y) = rx+ ry

2. (r + r′)x = rx+ r′x

3. (rr′)x = r(r′x)

4. 1x = x

Example 2.24. An ideal A of R is an R-module . In particular, R is an

R-module.

Example 2.25. R is a field ”k”, then any R-module is a k-vector space .

Example 2.26. If R = Z, then Z-module = abelian group (where nx defined to be

x+ x+ . . .+ x, n-times).

Example 2.27. R = k[x], the polynomial ring with one variable is a k-module.

Definition 2.28. Let M , N be R-modules. A mapping f: M −→ N is an

R-module homomorphism if :

1. f(x+ y) = f(x) + f(y)

2. f(rx) = rf(x) ∀r ∈ R , ∀x, y ∈M .

If R is a field , then an R-module homomorphism is the same as a linear

transformation of vector spaces.

8



Definition 2.29. A submodule M ′ of M is a subgroup of M which is closed

under multiplication by elements of R .

Definition 2.30. The abelian group M/M ′ inherits an R-module structure from

M defined by r(x+M) = rx+M . The quotient module of M by M ′ is the

R-module M/M ′ with the above multiplication. The natural map of M onto

M/M ′ is an R-module homomorphism. There is a 1-1 order-preserving

correspondence between the submodules of M which contain M ′, and submodules

of M/M ′.

Definition 2.31. If f : M −→ N is an R-module homomorphism , then the

kernel of f is the set ker(f) = {x ∈M : f(x) = 0} and is a submodule of M . The

image of f is the set Im(f)= f(M) and is a submodule of N .

The cokernel of f is coker(f)= N/Im(f) which is a quotient module of N .

If M ′ is a submodule of M such that M ′ ⊆ ker(f) , then f gives rise to a

homomorphism f : M/M ′ −→ N , defined as follows ; if x ∈ M/M ′ is the image of

x ∈M , then f (x) = f(x), and the kernel of f is ker(f)/ M ′. The homomorphism

f is said to be induced by f . In particular, taking M ′= ker(f) , we have an

isomorphism of R-modules M/ker(f) ∼= Im(f).

2.2.1 Direct Sum and Product

Definition 2.32. If M and N are R-modules, then their direct sum M ⊕ N is the

set of all pairs (x, y) such that x ∈M, y ∈ N .

It’s an R-module as we define addition and scalar multiplication as follows:

• (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

9



• r(x, y) = (rx, ry)

More generally, if (Mi)i∈I is any family of R-modules, we can define then

direct sum ⊕
i∈I
Mi, its elements are families (xi)i∈I such that xi ∈Mi ∀i ∈ I and

almost all x′is are zeros. If we drop the restriction on the number of non-zero x′is

we have the direct product
∏
i∈I
Mi. Direct sum and direct product are then the

same if I is finite, but not otherwise in general.

Suppose that the ring R is a direct product
n∏
i=1

Ri, then the set of all elements of

the form (0, . . . , 0, ri, 0, . . . , 0); ri ∈ Ri,∀i ∈ I is an ideal Ai of R. It’s not a subring

of R except in trivial cases, because it does not contain the identity element of R.

The ring R, considered as an R-module, is the direct sum of ideals A1,A2, . . . ,An.

Conversely, given a module decomposition R= A1⊕A2⊕ . . .An of R as a direct

sum of ideals, we have R ∼=
n∏
i=1

R/bi; where bi = ⊕
j 6=i
Aj. Each ideal Ai is a ring

isomorphic to R/bi. The identity element ei of Ai is an idempotent in R and

Ai=ei; i.e. ei ei= ei.

2.2.2 Finitely Generated Modules

Let M be an R-module.

Definition 2.33. If x is an element of M , the set of all multiples rx; r ∈ R, is a

submodule of M denoted by Rx or (x). If M= Σ
i∈I
Rxi , the x′is are said to be a set

of generators of M ; this means that every element of M can be expressed (not

necessarily uniquely) as a finite linear combination of the x′is with coefficients in R.

Definition 2.34. An R-module M is said to be finitely generated if it has a

finite set of generators.

10



Example 2.35. C = (1, i) is a finitely generated R-module.

Definition 2.36. A free R-module is one which is isomorphic to an R-module of

the form ⊕
i∈I
Mi, where each Mi

∼= R as an R-module. The notation RI is some

times used. A finitely generated free R-module is therefore isomorphic to R ⊕ R

⊕ . . .⊕R (n summands); which is denoted by Rn .

Conventionally, R0 is the zero module, denoted by 0.

Proposition 2.37. M is a finitely generated R-module ⇐⇒ M is isomorphic to

a quotient of Rn for some integer n > 0.

Proof. =⇒ ) Let x1, . . . , xn generate M . Define Φ: Rn −→ M such that

Φ(r1, . . . , rn) = r1x1 + . . .+ rnxn. Then, Φ is an R-module homomorphism onto

M , therefore M ∼= Rn/ker(Φ) .

⇐= ) we have an R-module homomorphism Φ of Rn onto M . If

ei = (0, . . . , 0, 1, 0, . . . , 0), then {ei} for i = 1, . . . , n generate Rn hence {Φ(ei)} for

i = 1, . . . , n generate M .

Proposition 2.38. Let M be a finitely generated R-module , let A be an ideal of

R and let Φ be an R-module endomorphism of M such that Φ(M)⊆ AM . The Φ

satisfies an equation of the form: Φn + a1Φn−1 + . . .+ an=0 ; where

ai ∈ A,∀i = 1, . . . , n.

Proof. Let x1, x2, . . . , xn be a set of generators of M , then each Φ(xi) ∈ AM so

Φ(xi) =
n

Σ
j=1
aijxj (1 ≤ i ≤ n; aij ∈ A) i.e.

n

Σ
j=1

(δijΦ− aij)xj = 0 where δij is the

kronecker delta.

By multiplying on the left by the adjoint of the matrix (δijΦ− aij) it follows that

11



det(δijΦ− aij) annihilates each xi , hence is the zero endomorphism of M .

Expanding out the determinant, we will have the above equation.

Corollary 2.39. Let M be a finitely generated R-module , A be an ideal of R such

that AM= M , then ∃ x ≡ 1 (mod A) such that xM = 0.

Proof. take Φ = Identity , x = 1 + a1 + . . .+ an in Proposition 2.38.

Proposition 2.40. ( Nakayama’s Lemma)

Let M be a finitely generated R-module and A an ideal of R contained in the

Jacobson Radical J of R , then AM = M =⇒ M = 0.

Proof. First way:

By corollary 2.39 we have xM = 0 for some x ≡ 1 (modJ ) . By

Proposition 2.38 x is a unit in R, hence M = x−1xM = 0.

Second way:

Suppose M 6= 0, and let u1, .., un be a minimal set of generators of M ,

then un ∈ AM as AM = M , hence we have an equation of the form

un = a1u1 + . . .+ anun; ai ∈ A hence (1− an)un = a1u1 + . . .+ an−1un−1, since

an ∈ J , it follows that 1− an is a unit in R. Hence, un belongs to the submodule

of M generated by u1, . . . , un−1, contradiction!

Corollary 2.41. Let M be a finitely generated R-module, N a submodule of M ,

A ⊆ J an ideal. Then, M = AM +N =⇒ M = N .

Proof. Apply Proposition 2.40 to M/N , observing that A(M/N)=

(AM +N)/N .

12



Remark 2.42. Let R be a local ring, m its maximal ideal, k = R/m its

residue field. Let M be a finitely generated R-module. M/mM is annihilated by

m, hence is naturally an R/m-module, i.e. a k-vector space, and as such is

finite-dimensional.

Proposition 2.43. Let xi for i = 1, .., n be elements of M whose images in

M/mM form a basis of this vector space. Then, the xi generate M .

Proof. Let N be the submodule of M generated by the xi . Then the composite

map N −→M −→M/mM maps N onto M/mM ,then N/mM ∼= M/mM , so

N + mM = M, hence M = N (by Corollary 2.41).

2.2.3 Algebras

Let f : R −→ R′ be a ring homomorphism. If r ∈ R, r′ ∈ R′, define a product

rr′ = f(r)r′.

This definition of scalar multiplication makes the ring R′ into an R-module (it’s a

particular example of restriction of scalars).Thus R′ has an R-module structure as

well as a ring structure, and these two structures are compatible in a sense which

the reader will be able to formulate for himself.

Definition 2.44. The ring R′, equipped with this R-module structure is said to

be an R-algebra. Thus, an R-algebra is by definition a ring R′ with a ring

homomorphism f : R −→ R′.

Example 2.45. Let R = k(x, y, z),and I = (x2, yz) an ideal of R, then R/I is an

R-algebra.

Definition 2.46. Let R′, R′′ be two rings. An R-algebra homomorphism

13



h : R′ −→ R′′ is a ring homomorphism which is also an R-module homomorphism.

2.3 Complexes

Let R be a commutative ring.

Definition 2.47.

A finite complex E is a sequence of homomorphisms of R-modules of the form:

0 −→ E0 d0−→ . . .
dn−→ En+1 −→ 0

where di : Ei −→ Ei+1 such that di+1 ◦ di = 0 for all i. Thus, Im(di) ⊆ ker(di+1).

Definition 2.48. The Homology H i of the complex is defined to be H i = ker

(di+1)/Im(di). By definition, H0 = E0 and Hn = En/Im(dn).

Definition 2.49. Let E and F be two complexes. A homomorphism f : E −→ F ,

is a sequence of homomorphisms di : Ei −→ F i making the diagram commutative

for every i.

. . . −→ Ei Ei+1 −→ . . .

. . . −→ F i F i+1 −→ . . .

diE

f i f i+1

diF

.

2.3.1 Exact Sequences

Most important kind of a complex is the exact sequence.

Definition 2.50. A sequence of R-modules and R-homomorphisms

. . . −→Mi−1
fi−1−→Mi

fi−→Mi+1 −→ . . .
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is said to be exact at Mi if Im(fi) = ker(fi+1). The sequence is exact if it’s

exact at each Mi.

In particular,

1. 0 −→M ′ f−→M . is exact ⇐⇒ f is injective.

2. M
g−→M ′′ −→ 0 is exact ⇐⇒ g is surjective.

3. 0 −→M ′ f−→M
g−→M ′′ −→ 0 is exact ⇐⇒ f is injective and g is

surjective.

And g induces an isomorphism of coker(f)= M/f(M ′) = M/ker(g) onto M ′′. A

sequence of last type is called short exact sequence.

2.4 Chain Conditions

Let Σ be a set partially ordered by a relation ≤ . (i.e. ≤ is reflexive , transitive,

and is such that x ≤ y and y ≤ x =⇒ x = y.

Proposition 2.51. The following conditions on Σ are equivalent:

1. Every increasing sequence x1 ≤ x2 ≤ . . . in Σ is stationary.

2. Every non-empty subset of Σ has a maximal element

Proof. 1 =⇒ 2) Suppose (2) is false, then there is a non-empty subset T of Σ

with no maximal element, and we can construct inductively a non-terminating

strictly increasing sequence in T which contradicts 1.

2 =⇒ 1) The set {xi}i>0 has a maximal element , say xn as it is a

non-empty subset of Σ, then this increasing sequence is stationary.
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Definition 2.52. If Σ is the set of submodules of a module M , ordered by the

relation(⊆), then the first is called the ascending chain condition (acc), and the

second is called the maximal condition.

Definition 2.53. A module M satisfying either of these equivalent conditions is

said to be Noetherian.

Definition 2.54. If Σ is ordered by (⊇), then the first is called the descending

chain condition (dcc) and the module is called artinian.

Example 2.55. A finite abelian group (as Z-module) satisfies both acc and dcc.

Example 2.56. The ring Z satisfies acc but not dcc, because if a ∈ Z , a 6= 0, we

have (a) ⊃ (a2) ⊃ . . . ⊃ (an) ⊃ . . . (these are strict inclusions).

Proposition 2.57. M is a Noetherian R-module ⇐⇒ every submodule of M is

finitely generated.

Proof. =⇒ ) Let N be a submodule of M , and let Σ be the set of all finitely

generated submodules of N , then Σ is non-empty (0 ∈ Σ ) and therefore has a

maximal element, say N0. If N0 6= N , consider the submodule N0 +Rx where

x ∈ N and x /∈ N0, now this is finitely generated and strictly contains N0,

contradiction! Hence, N = N0 and so N is finitely generated.

⇐= ) Let M1 ⊆ M2 ⊆ . . . be an ascending chain of submodules of M .

Then, N= ∪∞n=1Mn is a submodule of M , hence is finitely generated, say by

x1, . . . , xr, say xi ∈Mni
and Let n =max

i=1,..,r
ni, then each xi ∈Mn, hence Mn = N ,

so the chain is stationary.

Proposition 2.58. Let 0 −→M ′ α−→M
β−→M ′′ −→ 0, be an exact sequence of

R-modules. Then, M is Noetherian ⇐⇒ M ′ and M ′′ are Noetherian.
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Proof. =⇒) An ascending chain of submodules of M ′ (or M ′′) gives rise to a chain

in M , hence is stationary.

⇐=) Let (Ln)n≥1 be an ascending chain of submodules of M ,

then(α−1(Ln)) is a chain in M ′, and (β(Ln)) is a chain in M ′′, for a large enough n

both these chains are stationary, and it follows that the chain (Ln) is

stationary.

Corollary 2.59. If Mi (1 ≤ i ≤ n) are Noetherian R-modules so is
n
⊕
i=1
Mi .

Proof. Apply induction and (Proposition 2.58) to the exact sequence:

0 −→Mn −→
n
⊕
i=1
Mi −→

n−1
⊕
i=1
Mi −→ 0

Definition 2.60. A ring is said to be Noetherian if it is Noetherian as

R-module, that is it satisfies the following three equivalent conditions:

1. Every non-empty set of ideals in R has a maximal element.

2. Every ascending chain of ideals in R is stationary.

3. Every ideal in R is finitely generated.

Proof. Equivalence follows from (Propositions 2.51 and 2.57)

Example 2.61. Any field is Noetherian, so is the ring Z/(n), n 6= 0.

Example 2.62. The ring Z is Noetherian.

Example 2.63. Any principal ideal domain is Noetherian (by proposition 2.57),as

every ideal is finitely generated.
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Proposition 2.64. Let R be a Noetherian ring. If M is a finitely generated

R-module, then M is Noetherian.

Proof. M is a quotient of Rn for some n, then apply (Propositions 2.58 and

corollary 2.59)

Proposition 2.65. Let R be Noetherian, and A be an ideal of R , then R/A is a

Noetherian ring.

Proof. By (Proposition 2.58) R/A is Noetherian as an R-module , hence also an

R/A-module.

Proposition 2.66. If R is a Noetherian ring and Φ is a homomorphism of R onto

a ring R′, then R′ is Noetherian.

Proof. This follows from (Proposition 2.65) since R′ ∼= R/A, where A= ker(Φ).

Proposition 2.67. Let R be a subring of R′, suppose that R is Noetherian and R′

is finitely generated as an R-module. Then, R′ is a Noetherian ring.

Proof. By (Proposition 2.64) R′ is Noetherian as an R-module, hence also as

R′-module.

Theorem 2.68. ”Hilbert Basis Theorem”. If R is Noetherian , then the

polynomial ring R[x] is so.

Proof. Let A be an ideal in R[x]. The leading coefficients of the polynomials in A

form an ideal I in R. Since R is Noetherian, then I is finitely generated, say by

a1, a2, . . . , an. For all i ∈ 1, . . . , n, ∃fi ∈ R[x] of the form fi = aix
ri + (lower

terms). Let r = max
1≤i≤n

ri. The {fi}’s generate an ideal A′ ⊆ A in R[x].
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Let f = axm + (lower terms) be any element of A, we have a ∈ I. If

m ≥ r , we write a =
n

Σ
i=1
uiai, ui ∈ R ; then f −Σuifix

m−ri is in A and has a degree

< m. Proceeding this way, we can go on subtracting elements of A′ from f until

we get a polynomial g, say of degree < r, that is we have f = g + h, h ∈ A′.

Let M be the R-module generated by 1, x, . . . , xr−1, then what we have

proved is that A= (A∩M) +A′. Now, M is finitely generated R-module, hence is

Noetherian by Proposition 2.64, and A ∩M is finitely generated as an R-module

by Proposition 2.57. If g1, . . . , gm generate A∩M , it is clear that the fi and the gi

generate A. Hence, A is finitely generated and so R[x] is Noetherian.

Corollary 2.69. If R is Noetherian, so is R[x1, . . . , xn].

Proof. By induction on n.

Example 2.70. R = k[x, y, z] is Noetherian.

Corollary 2.71. Let R′ be a finitely generated R-algebra. If R is Noetherian, then

so is R′. In particular, every finitely generated ring and every finitely generated

algebra over a field, is Noetherian.

Proof. R′ is a homomorphic image of a polynomial ring R[x1, . . . , xn] which is

Noetherian by (Corollary 2.69).

2.5 Tensor Product

Definition 2.72. Let M,N, and P be R-modules, define a bilinear map from

M ×N to P to be a map of sets ψ : M ×N −→ P satisfying the condition of
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bilinearity:

ψ((am+a′m′)×(bn+b′n′)) = abψ(m×n)+a′bψ(m′×n)+ab′ψ(m×n′)+a′b′ψ(m′×n′)

Definition 2.73. Define the tensor product M ⊗R N to be the module with

generators {m⊗ n | m ∈M,n ∈ N} and relations

(am+ a′m′)⊗ (bn+ b′n′) = ab(m⊗ n) + a′b(m′ ⊗ n) + ab′(m⊗ n′) + a′b′(m′ ⊗ n′)

Remark 2.74. In particular, we have r(m⊗ n) = (rm)⊗ n = m⊗ (rn).

When the ring R is clear from context, we often write M ⊗N for M ⊗R N .

Note that the map m× n −→ m⊗ n is a bilinear map from M ×N to

M ⊗R N . Thus, if φ : M ⊗R N −→ P is a homomorphism, then the map

ψ : M ×N −→ P defined by ψ(m× n) = φ(m⊗ n) is bilinear. Conversely, since

no relations other than the bilinear relations were imposed on M ⊗R N , if

ψ : M ×N −→ P is bilinear then there is a unique homomorphism

φ : M ⊗R N −→ P satisfying ψ(m× n) = φ(m⊗ n).

One point about this construction requires some care: Not every element of

M ⊗R N may be written in the form m⊗ n. mi ∈M and ni ∈ N .

Rather, every element is expressible as a finite sum Σmi ⊗ ni. For any

R-module M we have M ⊗R R = R⊗RM = M by isomorphisms sending 1⊗m

and m⊗ 1 to m. Also, M ⊗R N ∼= N ⊗RM by a map sending m⊗ n to n⊗m.

Proposition 2.75. The tensor product is functorial in the sense that if

α : M ′ −→M and β : N ′ −→ N are homomorphisms, then there is an induced

homomorphism called α⊗ β : M ′ ⊗R N ′ −→M ⊗R N that sends m′ ⊗ n′ to

α(m′)⊗ β(n′).

Proposition 2.76. The tensor product preserves direct sums in the sense that if
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M =
⊕
i

Mi, then M ⊗R N =
⊕
i

Mi ⊗R N .

Proposition 2.77. The tensor product preserves cokernels in the sense that if

α : M ′ −→M is a map with cokernel coker(α) = M ′′, then for any module N the

cokernel of the induced map α⊗ 1 : M ′ ⊗R N −→M ⊗R N is M ′′ ⊗R N .

2.6 Graded Rings and Modules

Definition 2.78. A graded ring is a ring R together with a family (Rn)n≥0 of

subgroups of the additive group R, such that R=
∞
⊕
n=0

Rn and

RmRn ⊆ Rm+n∀m,n ≥ 0. Thus, R0 is a subring of R, and each Rn is an

R0-module.

Definition 2.79. Let R is a graded ring, a graded R-module is an R-module M

together with a family (Mn)n≥0 of subgroups of M such that M=
∞
⊕
n=0

Mn and

RmMn ⊆Mm+n∀m,n ≥ 0. Thus each Mn is an R0-module.

Definition 2.80. An element x of M is homogeneous if x ∈Mn for some n that

is said to be the degree of x. Any element y ∈M can be written uniquely as a

finite sum Σ
n
yn, where yn ∈Mn, ∀n ≥ 0, and all but a finite number of the yn are 0.

Example 2.81. Let R = k[x1, x2, . . . , xn]. R is a graded ring, because R0= K, R1

is the set of all linear forms, R2 is the k-space of all quadrics, etc.

In k[x, y], the polynomial x3y2 − 2xy4 is homogeneous because all of its

terms have the same degree 5.

Definition 2.82. If M ,N are graded R-modules, a homomorphism of graded

R-modules is an R-module homomorphism f : M −→ N such that

f(Mn)⊆ Nn,∀n ≥ 0.
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Definition 2.83. An ideal I in R is called graded or homogeneous if I has a

system of homogeneous generators.

Remark 2.84. We have seen in example 2.81, that the polynomial ring is a graded

ring. This polynomial ring can be considered as a local ring, and ideals as

homogeneous ideals.

Maximal ideals of R = k[x1, x2, . . . , xn] are of the form

(x1 − a1, . . . , xn − an) = m. Hence, R/k[x1, x2, . . . , xn] ∼= k. Since m is

homogeneous, then a1, . . . , an are all zeros. Therefore m = (x1, . . . , xn) is

considered to be the homogeneous maximal ideal of R.

Definition 2.85. Let M= ⊕
d∈Z

Md be a finitely generated graded R-module with

d-th graded component Md. Denote by M(a) the module M shifted (or twisted

by a: M(a)d = Ma+d.

Example 2.86. If x has degree 1 in R = R[x] then x has degree 1 +m in R(−m),

because when x ∈ R(−m)1+m then x ∈ R1.

Definition 2.87. Let Φ : R −→ R be an R-homomorphism that assigns Φ(x) to

every x ∈ R. It is said to homogeneous homomorphism if deg(x)=

degree(Φ(x)) ∀x ∈ R. These maps are also called degree-0 maps.
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Chapter 3

Graded Free Resolutions

Let R = k[x0, . . . , xn] and m denote the homogeneous maximal ideal in R.

Definition 3.1. A free resolution of a finitely generated R-module M is a

sequence of homomorphisms of R-modules

F : . . . −→ Fi
δi−→ Fi−1 −→ . . . −→ F1

δ1−→ F0

such that

1. F is a complex of finitely generated free R-modules Fi

2. F is exact

3. M ∼= F0/Im(δ1).

Sometimes, for convenience, we write

F : . . . −→ Fi
δi−→ Fi−1 −→ . . . −→ F1

δ1−→ F0
δ0−→M −→ 0.
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In the literature the map δ0 is called an augmentation map.

Example 3.2. Let R = k[x, y, z], and M = (xy, yz). A resolution of R/M is:

0 −→ R


−z

x


−→ R2

xy yz


−→ R −→ R/M −→ 0

The resolution can continue to different steps like:

0 −→ R


−y

1


−→ R2


−z −zy

x xy


−→ R2

xy yz


−→ R −→ R/M −→ 0

But we study the minimal ones in the next section. Sometimes resolutions are also

presented as follows

0 −→ R


−z

x


−→ R2

xy yz


−→ M −→ 0

A resolution is graded if M is graded, F is a graded complex, and the

isomorphism F0/Im(δ1) ∼= U has degree 0. Fix a homogeneous basis of each free

module Fi. Then the differential δi is given by a matrix Di, whose entries are

homogeneous elements in R. These matrices are called differential matrices

(note that they depend on the chosen basis).

Construction 3.3. Given homogeneous elements mi ∈M of degree ai that
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generate M as an R-module, we will construct a graded free resolution of M by

induction on homological degree. First, set M0 = M . Choose homogeneous

generators m1, ...,mr of M0. Let a1, . . . , ar be their degrees, respectively. Now set

F0 = ⊕
1≤i≤r

R(−ai) We may define a map from the graded free module F0 onto M by

sending the i-th generator fi of R(−ai) to mi. (In this text a map of graded

modules means a degree-preserving map, and we need the shifts ai to make this

true). Next, let M1 ⊂ F0 be the kernel of this map F0 −→M . By the Hilbert Basis

Theorem, M1 is also a finitely generated module. The elements of M1 are called

syzygies on the generators mi, or simply syzygies of M .

Choosing finitely many homogeneous syzygies that generate M1, we may define a

map from a graded free module F1 to F0 with image M1. Continuing in this way we

construct a sequence of maps of graded free modules, to obtain a graded free

resolution of M :

. . . −→ Fi
δi−→ Fi−1 −→ . . . −→ F1

δ1−→ F0

But each module Fi is a free finitely generated graded R-module, then we can write

it as ⊕
p∈Z
R(−p)ci,p Therefore, a graded complex of free finitely generated modules

has the form

. . . −→ ⊕
p∈Z

R(−p)ci,p δi−→ ⊕
p∈Z

R(−p)ci−1,p −→ . . . −→ R

It is an exact sequence of degree-0 maps between graded free modules such that the

cokernel of δ1 is M . Note that the numbers ci,p are the graded Betti numbers of
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the complex.

Example 3.4. As first example, we take one of the simplest family of graded free

resolutions that are called Koszul complexes. They resolve an ideal generated by a

regular sequence. Take the following ideal I = (x0, x1, x2) ∈ k[x0, x1, x2]

0 −→ R(−3)



x0

x1

x2


−→ R3(−2)



0 x2 −x1

−x2 0 x0

x1 −x0 0


−→ R3(−1)

x0 x1 x2


−→ R

Theorem 3.5. Hilbert Syzygy Theorem

Any finitely generated graded R-module M has a finite graded free

resolution: 0 −→ Fm
δm−→ Fm−1 −→ . . . −→ F1

δ1−→ 0.

Moreover, we have m ≤ r + 1, the number of variables in R.

3.1 Minimal Graded free resolutions

Let R = k[x1, . . . , xn], let M be a graded R-module. Here we define minimal

graded free resolutions.

Definition 3.6. A complex of graded R-modules

. . . −→ Fi
δi−→ Fi−1 −→ . . .

is called minimal if for each i the image of δi is contained in mFi−1.

The above definition implies that the entries of the matrices representing
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the differential maps are elements of the maximal ideal m.

Construction 3.7. Minimal graded free resolutions can be described as

follows:

Given a finitely generated graded module M , choose a minimal set of

homogeneous generators mi. Map a graded free module F0 onto M by sending a

basis for F0 to the set of mi. Let M0 be the kernel of the map F0 −→M , and repeat

the procedure, starting with a minimal system of homogeneous generators of M0.

Example 3.8. Given the polynomial ring R= k[x, y, z, w], and the ideal

M = (xy, yz, zw) of a regular sequence, and we want to construct the minimal

graded free resolution of R/M . We start by mapping F0 onto M .

• Step 1: Set F0 = R our graded free k-module, and δ0 : R −→ R/M .

• Step 2: The elements xy, yz, zw are homogeneous generators of Ker(δ0), each

of degree 2. So, set F1 = R3(−2), and denote by fi the 1-generator of each

R(−2) with i ∈ {1, 2, 3}. And we construct δ1 : F1 −→ F0 by having

Im(δ1) = ker(δ0) = M , and we obtain the beginning of the resolution

R3(−2)
δ1−→ R −→ R/M .

• Step 3: First, we need to find homogeneous generators of Ker(δ1) that

requires some computation:

(
xy yz zw

)

c1

c2

c3

 = 0
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with c1, c2, c3 ∈ R being the unknowns. Then we can easily see three

generators: R1 =

(
−z x 0

)
, R2 =

(
0 −w y

)
, R3 =

(
−wz 0 xy

)
.

But, xR2 +R3 = wR1, so the minimal set of generators of the solution

(c1, c2, c3) is {R1, R2}. Therefore, −zf1 + xf2 and −wf2 + yf3 are

homogeneous generators of ker( δ1). Their degrees are 3 = deg(−z) + deg(f1)

and 3 = deg(−w) + deg(f2). Set F2 = R2(−3), and denote by g1, g2 the

1-generators of R(−3) and R(−3). Hence deg(g1) = 3 and deg(g2) = 3.

Defining δ2 by g1 7→ −zf1 + xf2, g2 7→ −wf2 + yf3 we obtain the next step in

the resolution : δ2: R2(−3)



−z 0

x −w

0 y


−→ R3(−2), satisfying Im( δ2)= ker( δ1).

• Step 4: Now Im(δ3) = ker(δ2) has no non-trivial solutions, hence F3 = 0 and

δ3 : 0 −→ R2(−3).

Therefore, we get the following minimal graded free resolution:

0
0−→ R2(−3)



−z 0

x −w

0 y


−→ R3(−2)

xy yz zw


−→ R −→ R/M −→ 0

Next we show that two minimal free resolutions of the same module are

isomorphic. In order to do that, we prove the below results.

Lemma 3.9. (Nakayama) Suppose M is a finitely generated graded R-module and

m1, . . . ,mn ∈M generate M/mM . Then m1, . . . ,mn generate M .
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Proof. Let M̄ = M/ΣRmi. If the mi generate M/mM then M̄/mM̄ = 0 so

mM̄ = M̄ . If M̄ 6= 0, since M̄ is finitely generated, there would be a nonzero

element of least degree in M̄ ; this element could not be in m M̄ . Thus, M̄ = 0, so

M is generated by the mi.

Corollary 3.10. A graded free resolution

F : . . . −→ Fi
δi−→ Fi−1 −→ . . .

is minimal as a complex if and only if for each i the map δi takes a basis of Fi to a

minimal set of generators of the image of δi.

Proof. Consider the right exact sequence Fi+1 −→ Fi −→ Im(δi) −→ 0. The above

graded free resolution is minimal ⇐⇒ δi+1(Fi+1) ⊂ mFi for each i

⇐⇒ Fi+1 −→ Fi/mFi is the zero map ⇐⇒ the induced map

δi+1 : Fi+1/mFi+1 −→ Fi/mFi is the zero map. This holds if and only if the

induced map Fi/mFi
δ̄i−→ Im(δi)/mIm(δi) is an isomorphism. If {f1, . . . , fn} is a

basis ( a minimal set of generators) of Fi, then f̄1, . . . , f̄n is a set of generators of

Fi/mFi and it is minimal by Nakayama’s Lemma. Therefore, δ̄(f̄i) = m̄i is a

minimal set of generators of Im(δi)/m Im(δi) and again by Nakayama’s Lemma mi

is a minimal set of generators of Im(δi) .

On the other hand, suppose δi takes a basis of Fi to a minimal set of

generators of Im(δi). By Nakayama’s Lemma, we have {f̄1, . . . , f̄n} is a minimal

set of generators of Fi/mFi (a basis of that vector space) as well as {mi} a basis of

Im(δi)/mIm(δi) of the same dimension as Fi/mFi. Therefore,there is an
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isomorphism between Fi/mFi and Im(δi)/mIm(δi). By Nakayama’s Lemma, this

occurs if and only if a basis of Fi maps to a minimal set of generators of Im(δi).

Considering all the choices made in the construction, it is perhaps

surprising that minimal graded free resolutions are unique up to isomorphism:

Theorem 3.11. Let M be a finitely generated graded R-module. If F and G are

minimal graded free resolutions of M , then there is a graded isomorphism of

complexes F −→ G inducing the identity map on M .

Proof.

F : . . . F1 −→ F0
d0−→ M

↓idM
−→ 0.

G : . . . G1 −→ G0
δ0−→M −→ 0

We first start by constructing the identity map on M . We have that idM ◦ d0 maps

F0 to M , then since δ0 is surjective, F0 is free and every free module is a projective

module i.e there exists a map f0 : F0 −→ G0 such that the diagram commutes,

that is idM ◦ d0 = δ0 ◦ f0.

Now, we need to show that f0 is an isomorphism. To do so, we tensor

both F and G with k= R/m and we show that f0⊗ id is an isomorphism.

F : . . . F1 ⊗ k −→ F0 ⊗ k
d0⊗id−→ M ⊗ k

↓idM⊗k
−→ 0.

G : . . . G1 ⊗ k −→ G0 ⊗ k
δ0⊗id−→ M ⊗ k −→ 0.

Since F and G are minimal, F0 ⊗ k ∼= F0/mF0 and G0 ⊗ k ∼= G0/mG0

which are k-vector spaces then d0 ⊗ id and δ0 ⊗ id are isomorphisms, then so is

f0 ⊗ id. We will show that f0 is an isomorphism. Let f0 = (aij), then f0 ⊗ id=

(aij ⊗ 1) =(a′ij) is invertible. Hence, det(a′ij) is a unit in k and det(aij) is not in M ,
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which implies that det(aij) is a unit in R and the matrix is invertible. So, f0 is an

isomorphism. Now, to construct f1 we proceed the same way. f0 induces an

isomorphism between ker(d0) and ker(δ0).

As we have seen earlier in the construction of the a minimal graded free

resolution, we map F1 onto ker(d0), so we obtain a surjective map : F1 −→ ker(d0).

Similarly, with G1 and ker(δ0). We then follow the same procedure as above.

Definition 3.12. If M is a finitely generated graded R-module then the

projective dimension of M is the minimal length of a projective resolution of

M , that is equal to the length of the minimal graded free resolution, and is

denoted by pdR(M).

Example 3.13. Let R = k[x, y, z], and following example 3.2 taking I = (xy, yz),

the projective dimension pdR(I) is equal to 1 in the minimal resolution of I:

0 −→ R


−z

x


−→ R2

xy yz


−→ I −→ 0

Also, the projective dimension pdR(R/I) is equal to 2 in the minimal resolution of

R/I:

0 −→ R


−z

x


−→ R2

xy yz


−→ R −→ R/I −→ 0
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Chapter 4

Monomial Resolutions

Let M be a monomial ideal that is by definition an ideal that can be generated by

monomials. In this chapter we discuss free resolutions of monomial ideals; we call

them monomial resolutions. Describing the minimal free resolution of a monomial

ideal is quite complex despite the helpful combinatorial structure of monomial

ideals. But, here we will introduce beautiful and easy proofs.

4.1 Multigrading

Along with the above standard grading, R can also be multigraded mainly

Nn-graded by the multidegree of xi being mdeg(xi)= the i’th standard vector in

Nn. Now for any vector in Nn; a = (a1, a2, . . . , an) , it is an exponent vector for

some monomial x in R such that xa = xa11 x
a2
2 . . . xann , and we say multidegree xa.

Here, R has a direct sum decomposition over monomials, before it was a

summation over elements of same degree. In this case, every monomial has a

unique degree. Therefore, R= ⊕
m
Rm as a k-vector space and RmR

′
m = Rm+m′∀
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m,m′ monomials in R, the equality can be easily seen since the product of

monomials is a monomial of mdeg= mdeg(m)+mdeg(m′). An R-module T is

called multigraded, if it has a direct sum decomposition T =⊕
m
Rm, m is a

monomial, as a k-vector space and RmTm ⊆ Tmm′ ∀ monomials m,m′. Denote by

R(xa) the free R-module with one generator in multidegree xa.

4.2 Multigraded Free Resolutions

Note that every monomial ideal is homogeneous with respect to the multigrading,

so the construction in 3.3 works in the multigraded case. There exists a minimal

free resolution FM of R/M over R which is multigraded. We denote by δ the

differential in FM . Similar to the 3.3 construction, the resolution can be written as

. . . −→ ⊕
m
Rci,m δi−→ ⊕

m
Rci−1,p −→ . . . −→ R, where every sum runs over all

monomials.

Example 4.1. let R = k[x, y] and M be generated by the monomials xy and y2, a

multigraded free resolution of R/M is:

0 −→ R(xy2)


−y

x


−→ R(xy)⊕R(y2)

xy y2


−→ R

4.3 Homogenization

From now on, denote by M the monomial ideal in R minimally generated by

monomials m1, . . . ,mr, and by LM the set of the least common multiples of subsets
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of {m1, . . . ,mr}. By convention, 1 ∈ LM considered as the lcm of the empty set.

Note that M is homogeneous with respect to the standard grading on R and with

respect to the multigrading. We are going to form a monomial free resolution from

a complex of vector spaces through homogenization by referring to Peeva [8].

Definition 4.2. Let U be a complex of finite k-vector spaces {Ui} such that:

1. Ui = 0, ∀i ≤ −1 and Ui= 0 for a large i.

2. U0= k.

3. U1= kr for a given r.

4. ∀wi a basis vector in U1, δ(wi)= 1.

then, U is said to be an r-frame having δ as the differential map.

Example 4.3. 0 −→ k



1

1

1


−→ k3



−1 0 1

1 −1 0

0 1 −1


−→ k3

1 1 1


−→ k, is the 3-frame.

Definition 4.4. Let G be a multigraded complex of finitely generated free

multigraded R-modules {Gi} such that:

1. Gi = 0, ∀i ≤ −1 and Gi = 0 for a large i.

2. G0= R.

3. G1= R(m1)⊕R(m2)⊕ . . .⊕R(mr).

4. ∀wi a basis element of G1, d(wi) = mi.
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Then G is said to be an M-complex with differential d and a fixed homogeneous

basis with multidegrees in LM .

Definition 4.5. Let U be an r-frame. The M-homogenization of U is sequence

of free R-modules constructed by induction as follows: G0 = R and G1 =

R(m1)⊕ . . .⊕R(mr). Let u1, . . . , uq be the basis of Gi−1 = Rq chosen on the

previous step of the induction. Denote by v1, . . . , vp the given bases of Ui, and by

u1, . . . , uq the given bases of Ui−1, and we are going to find v1, . . . , vp that will be a

basis of Gi = Rp. If δ(vj) = Σ
1≤s≤q

αs,jus, with coefficients αs,j ∈ k, then set

• mdeg(vj)= lcm{ mdeg(us) | αs,j 6= 0 } , note that lcm(φ)= 1.

• Gi = ⊕
1≤j≤p

R(mdeg(vj))

• d(vj) =
∑
1≤s≤q

αs,j
mdeg(vj)

mdeg(us)
us

is homogeneous by construction. Note that, Coker(d1) = R/M from the 4th

condition. We will show that the G is an M -complex of free R-modules with

differential d, and say that the complex G is obtained from U by

M -homogenization.

Example 4.6. Let R= k[x, y], M = (x3, xy, y2), and consider the 3-frame U , then

the M-homogenization of U is:

G : 0 −→ R(x3y2)



y

x2

1


−→ R(x3y)⊕R(xy2)⊕R(x3y2)



−y 0 y2

x2 −y 0

0 x −x3


−→ R(x3)⊕R(xy)⊕R(y2)



x3

xy

y2


−→ R

Proposition 4.7. If G is the M-homogenization of a frame U , then G is an
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M-complex.

Proof. Let

• v1, . . . , vp be given basis of Ui

• u1, . . . , uqbe given basis of Ui−1

• w1, . . . , wt be given basis of Ui−2

and let

• v1, . . . , vp be given basis of Gi

• u1, . . . , uq be given basis of Gi−1

• w1, . . . , wt be given basis of Gi−2

Fix 1≤ j ≤ p. Since U is a complex, we have that

0 = δ2(vj) = δ(
∑
1≤s≤q

αs,jus) =
∑
1≤s≤q

αs,j(
∑
1≤l≤t

βl,swl) =
∑
1≤l≤t

(
∑
1≤s≤q

αs,jβl,s)wl

with αs,j, βl,s ∈ k.Hence,
∑

1≤s≤q
αs,jβl,s = 0∀1 ≤ l ≤ t. Now, the term under

consideration is

d2(vj) = d(
∑

1≤s≤q
αs,j

mdeg(vj)

mdeg(us)
us)

=
∑

1≤s≤q
αs,j

mdeg(vj)

mdeg(us)
(
∑

1≤l≤t
βl,s

mdeg(us)
mdeg(wl)

wl)

=
∑

1≤l≤t
(
∑

1≤s≤q
αs,jβl,s

mdeg(vj)mdeg(us)

mdeg(us)mdeg(wl)
)wl

=
∑

1≤l≤t
(
∑

1≤s≤q
αs,jβl,s)

mdeg(vj)

mdeg(wl)
wl

= 0.

Remark 4.8. We note that we can dehomogenize by setting

U = G⊗R/(x1 − 1, . . . , xn − 1), being the frame of G. And, U is a finite complex
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of finite k-vector spaces with fixed basis and its differential matrices are obtained by

setting x1 = 1, . . . , xn = 1 in the differential matrices of G. But we only care about

homogenization.

A fruitful approach for constructing minimal monomial resolutions is

based on the fact that the minimal free resolution of any monomial ideal can be

encoded in any of its frames; this was proved in [9][Theorem 4.14]:

Theorem 4.9. The M-homogenization of any frame of the minimal multigraded

free resolution F of R/M is F .

4.4 Subresolutions

Here we provide a helpful criterion.

Definition 4.10. Let G be an M -complex, and m ∈M be a monomial. We

denote by G(≤ m) the subcomplex of G that is generated by the homogeneous

basis elements of multidegrees dividing m.

Example 4.11. Following the example 4.6, let m = x2y2, so the monomials

generating M that divide m = x2y2, are xy and y2, then

G(≤ x2y2) : 0 −→ R(xy2)


−y

x


−→ R(xy)⊕R(y2)

xy y2


−→ R

Proposition 4.12. Let m ∈M be a monomial. Set m′ = lcm {mi | mi divides

m}. Then, G(≤ m) = G(≤ m′)

Proof. By 4.4, all the basis elements of G have multidegrees in LM , so none of the

m′is excluded in G(≤ m) will be considered in G(≤ m′), otherwise some mj will
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divide m′ the lcm and won’t divide m that is supposed to be divisible by m′,

contradiction.

Definition 4.13. Let F be a graded complex. Since each Fi is graded we write

Fi = ⊕
j
Fi,j. The differential has degree 0, therefore d(Fi,j) ⊆ Fi−1,j for each i, j.

Thus, the complex can be written as the following where the first is the (j)’th row,

and the second is the (j − 1)’st row:

. . . −→

...
⊕

Fi+1,j
⊕
−→

...
⊕
Fi,j
⊕
−→

...
⊕

Fi−1,j
⊕
−→ . . ..

. . . −→ Fi+1,j−1
⊕
...

→ Fi,j−1
⊕
...

→ Fi−1,j−1
⊕
...

−→ . . ..

The (j)’th row is called the (j)’th graded component of F . It is the

sequence of k-vector spaces . . . −→ Fi+1,j −→ Fi,j −→ Fi−1,j −→ . . .. The complex

is the direct sum of its components. Often, it is very useful to study a complex by

studying its graded components.

Theorem 4.14. Let G be an M-complex and m ∈M be a monomial. The

component of G of multidegree m is isomorphic to the frame of the complex

G(≤ m).

Proof. Note that Gm has basis of the form { m
mdeg(g)

g | g is in the fixed basis of G,

and mdeg(g) divides m }. Therefore the component of G of multidegree m is

isomorphic to the frame of the complex G(≤ m).

Now consider the following theorem which represents a very useful

criterion for exactness.

Theorem 4.15. An M-complex G is a free multigraded resolution of R/M if and

only if for all monomials m 6= 1 ∈ LM the frame of the complex G(≤ m) is exact.
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Proof. Note that G0/d(G1) = R/M . Since the complex G is multigraded, it

suffices to check exactness in each multidegree, because a graded complex F is

exact if and only if each of its graded components is an exact sequence of k-vector

spaces such as (Gi)m = 0 for i > 0 and m /∈M . It suffices to check exactness in

each multidegree m ∈M . By 4.14, it suffices to check exactness of the frames

G(≤ m) for all monomials m ∈M . Fix a monomial m ∈M , and set m′ = lcm

{mi | mi divides m} and apply 4.12. Hence, G(≤ m) = G(≤ m′). Therefore, it

suffices to consider only the multidegrees in LM .

Now we will show that the minimal free resolution of R/M contains as

subcomplexes the minimal free resolutions of certain smaller monomial ideals.

Proposition 4.16. Let u ∈M be a monomial, and consider the monomial ideal

(M≤u) generated by the monomials {mi | mi divides u}. Fix a multi-homogeneous

basis of a multigraded free resolution FM of R/M .

1. The subcomplex FM(≤ u) is a multigraded free resolution of R/(M≤u).

2. If FM is a minimal multigraded free resolution of R/M , then FM(≤ u) is

independent of the choice of basis.

3. If FM is a minimal multigraded free resolution of R/M , then the resolution

FM(≤ u) is minimal as well.

Proof. 1. Set v = lcm{mi | mi divides u} and apply 4.12. Hence, FM(≤ u) =

FM(≤ v). Clearly, (M≤u)= (M≤v). Therefore, we can replace u by v. By

4.15, we see that we have to show that for every monomial m 6= 1 ∈ L(M≤v)

the frame of the complex (FM(≤ v))(≤ m) is exact. The frame of
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(FM(≤ v))(≤ m) is equal to the frame of FM(≤ w), where w is the maximal

monomial that divides both v and m, and is in the set LM . Since FM is

exact, by 4.15 it follows that the frame of FM(≤ w) is exact.

2. Note that the multidegrees of the basis elements in FM are determined by

the multigraded Betti numbers. Therefore, they are independent of the

choice of basis.

3. holds by construction.

4.5 Taylor’s Resolution

One important construction is the Taylor′s resolution TM that resolves all R/M

for any monomial ideal M . However, it is usually highly non-minimal, but very

useful because of its simple structure.

Definition 4.17. Let f1, . . . , fq be elements in R. Let E be the exterior algebra

over k on basis elements e1, . . . , eq ; this means that E is the following quotient of

a free algebra E = k〈e1, . . . , eq〉/({ei2 | 1 ≤ i ≤ q}, {eiej + ejei | 1 ≤ i < j ≤ q}).

Denote by TM the R-module R⊗ E graded homologically by

hdeg(ej1 ∧ . . . ∧ eji) = i and equipped with the differential:

d(ej1 ∧ . . . ∧ eji) =
∑
1≤p≤i

(−1)p−1 lcm{mj1
,...,mji

}
lcm{mj1

,...,m̂jp ,...mji
}ej1 ∧ . . . ∧ êjp ∧ . . . ∧ eji

where êjp and m̂jp mean that ejp and mjp are omitted respectively.

The standard grading of TM is given by deg(ej1 ∧ . . . ∧ eji ) =

deg(lcm(mj1 , . . . ,mji )), and the multigrading is given by mdeg(ej1 ∧ . . . ∧ eji) =
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lcm(mj1 , . . . ,mji).

Example 4.18. Let R = k[x, y]. The Taylor’s resolution of R/(x3, xy, y2) is:

0 −→ R



y

x2

1


−→ R3



−y 0 y2

x2 −y 0

0 x −x3


−→ R3

x3 xy y2


−→ R
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Chapter 5

Simplicial Complexes

Definition 5.1. A finite simplicial complex 4 is a finite set of N, called the

set of vertices V = v1, . . . , vp (or nodes) of 4, and a collection F of subsets of V ,

called the faces of 4, such that if A ∈ F is a face and B ⊂ A then B is also in F .

Maximal faces are called facets.

Definition 5.2. A simplex is a simplicial complex in which every subset of N is

a face, that is it have only one facet: v1, . . . , vp. For any vertex set V we may form

the void simplicial complex, which has no faces at all. But if 4 has any faces

at all, then the empty set φ is necessarily a face of 4. By contrast, we call the

simplicial complex whose only face is φ the irrelevant simplicial complex on N .

Definition 5.3. The dimension of a face σ is | σ | −1. The dimension of 4 is the

maximum of the dimensions of its faces, or −∞ if 4 is the void complex. By

convention, φ irrelevant simplicial complex has dimension −1. Throughout this

section, 4 stands for a finite simplicial complex.

Example 5.4. The simplicial complex on the set of vertices {v1, v2, v3} is 4 = {
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φ, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}.

Example 5.5. Let {{a, b, c} be the set of nodes of 4 and the sets of faces be

{{a, b, c}, {a, b}, {a, c}, φ},is a non-simplicial complex as 4 doesn’t contain the face

{c, b} which is a subset of the face {a, b, c}.

Example 5.6. Also,this is not a simplicial complex:

2

3

01 4 =

{{0, 1, 2, 3}, {1, 2, 3}, {2, 3, 0}, {1, 2, 0}, {1, 2}, {2, 0}, {2, 3}, {1, 3}, {0, 3}, {0}, {1}, {2}, {3}, φ}

misses {1, 0}.

5.1 Simplicial Resolutions

Simplicial resolutions of M = (m1, . . . ,mr) are free resolutions that are supported

on simplicial complexes 4. Before we define them, we introduce the augmented

chain complexes on 4.

Let 4 be a simplicial complex on vertices the monomials {m1, . . . ,mr},

and denote by τ the face of 4 in homological degree | τ | −1. In order to construct

the chain complex we have to define an incidence function.

Definition 5.7. Let τ ′ be a facet of τ , define an incidence (orientation)

function [τ, τ ′] := (−1)i if τ \τ ′ is the (i+ 1)’st element in the sequence of the

vertices of τ written in increasing order.

Example 5.8. Let 4 be the simplicial complex on the vertices m1,m2,m3. Take τ

to be {m1,m2,m3}, and take as a facet τ ′ to be the edge {m1,m3}, then

[τ, τ ′] = (−1)1 = −1 because τ \τ ′ = m2 which is the second vertex so our i is equal

to 1.
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Definition 5.9. The augmented oriented simplicial chain complex of 4

over k is C̃(4; k) = ⊕
τ∈4

keτ , where eτ denotes the basis element corresponding to

the face τ , and the differential δ acts as δ(eτ ) =
∑

[τ, τ ′]e′τ
τ ′ is a facet of τ

Example 5.10. Consider the simplicial complex 4= { φ, {x2}, {xy}, {x2, xy}}.

We have that C̃(4; k) = ⊕
τ∈4

keτ , so as a first step, φ ∈ 4 has dimension −1 and

we get C̃ = 0. Next, for the vertices m1 = x2, and m2 = xy we get k2, and finally

for the edge we get k. Note that the first map δ1 is zero and the second

δ2 =

−1

1

, finally, C̃(4; k): k
δ2−→ k2 δ1−→ 0.

Definition 5.11. After shifting C̃(4; k) in homological degree, we get that

C̃(4; k)[−1] is a frame. Denote by F4 the M -homogenization of C̃(4; k)[−1], and

we say that F4 is supported on 4, or 4 supports F4. The complex F4 is a

simplicial resolution if it is exact.

For each vertex mi of 4, we set that mi has multidegree mdeg(mi)= mi.

We define that a face τ has multidegree mdeg(τ )= lcm(mi | mi ∈ τ). By

convention, mdeg(φ) = 1. And think of 4 as a simplicial complex with labeled

faces: each face is labeled by its multidegree.

Theorem 5.12. For each face τ of dimension i the complex F4 has the generator

eτ in homological degree i+ 1. We have

1. mdeg(eτ) = mdeg(τ).

2. The differential in F4 is δ(eτ )=
∑

τ ′is a facet ofτ

[τ, τ ′] mdeg(τ)
mdeg(τ ′)

eτ ′

=
∑

τ ′is a facet ofτ

[τ, τ ′] lcm(mi|mi∈τ)
lcm(mi|mi∈τ ′)eτ ′

Proof. 1. The first is done by induction on homological degree.
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xy

x3

y2

x3y

xy2

x3y2

x3y2

Figure 5.1: The labeled simplicial complex on the vertices x3, xy, y2

Note that mdeg(emi
) = mi holds for each vertex mi of 4.

Since δ(eτ )=
∑

τ ′is a facet ofτ

[τ, τ ′]eτ ′ , by definition 4.5 it follows that:

mdeg(eτ )= lcm{ mdeg(eτ ′)| τ ′ is a facet of τ}

= lcm{ mdeg(τ ′)| τ ′ is a facet of τ}

= lcm{lcm{mi | mi ∈ τ ′} | τ ′ is a facet of τ}

= lcm{mi | mi ∈ τ}= mdeg(τ).

2. The second follows from the first and the fact that the differential is

multihomogeneous.

Example 5.13. As an example, we take the Taylor comlplex that is supported on

the whole simplex. Consider the triangle 4 with vertices x3, xy, y2 that are the

monomials generating M . We label each edge by the least common multiple of its

vertices, so we get labels x3y, xy2, x3y2 on the edges. We label the simplicial

complex by x3y2 the least common multiple of its vertices.

The augmented oriented chain complex of this simplicial complex is the

3-frame intoduced in example 4.3, and the corresponding M-homogenized complex

is
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TM : 0 −→ R(x3y2)



y

x2

1


−→ R(x3y)⊕R(xy2)⊕R(x3y2)



−y 0 y2

x2 −y 0

0 x −x3


−→

R(x3)⊕R(xy)⊕R(y2)

x3 xy y2


−→ R.

And TM is a simplicial resolution, which is non-minimal, and in fact it is

the taylor resolution.
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Chapter 6

Monomial Ideals of Projective

Dimension ≤ 1

Recall the definition 5.1. It is easy to see that a simplicial complex 4 can be

described completely by its facets, since every face is a subset of a facet and every

subset of every facet is in a simplicial complex. So, if 4 has facets F0, . . . , Fq, we

use the notation 〈F0, . . . , Fq〉 to describe 4. In this section, our main theorem is

theorem 6.13. In order to do so, we consider the following definitions.

Definition 6.1. If W ⊆ V , we define the induced subcomplex of 4 on W ,

denoted 4W , to be the simplicial complex on W given by

4W = {F ∈ 4 | F ⊆ W}. A subcollection of 4 is a simplicial complex whose

facets are also facets of 4.

Definition 6.2. The dimension of a simplicial complex 4 is dim(4) =

max{dim(F ) | F ∈ 4}, where the 0-dimensional faces are the vertices of 4 and

the face φ has dimension −1.
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Definition 6.3. A leaf of 4 is either the only facet of 4 or the facet F for which

there is another facet τ of 4, called a joint such that (F ∩H) ⊆ τ for every facet

H 6= F .

Example 6.4.

2

3

01 (6.1)

The facets are F1 = {1, 2}, F2 = {2, 3}, F3 = {0, 2}. Here every facet is a leaf with

any other facet can be a joint, because the intersection is the vertex 2 which is

common in all facets.

Definition 6.5. A free vertex of a simplicial complex 4 is a vertex

belonging to exactly one facet of 4. If F is a leaf of a simplicial complex, then F

necessarily has a free vertex. For the sake of clarity, follow example 6.4 where the

vertices 1, 3 and 0 are free vertices.

Definition 6.6. A simplicial complex 4 is a simplicial forest if every nonempty

subcollection of 4 has a leaf. We say 4 is connected if ∀vi, vj ∈ V, ∃ a sequence

of faces F0, . . . , Fk such that vi ∈ F0, vj ∈ Fk and Fi ∩ Fi+1 6= φ for i = 0, . . . , k − 1.

A connected simplicial forest is called a simplicial tree.

Remark 6.7. One of the properties of simplicial trees that we will make particular

use of is that whenever 4 is a simplicial tree we can always order the facets

F1, . . . , Fq of 4 so that Fi is a leaf of the induced subcollection 〈F1, . . . Fi〉. Such an

ordering on the facets is called a leaf order and it is used to make the following

definition.

Definition 6.8. A quasi-forest is a simplicial complex 4 who has a leaf order. A
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connected quasi-forest is called a quasi-tree.

Example 6.9. Consider the simplicial complex in example 6.4, it is a quasi-tree,

because F2 is a leaf of {F1, F2}, and F3 is a leaf of {F1, F2, F3}.

Definition 6.10. If 4 = 〈F1, . . . , Fq〉 is a simplicial complex on vertex set V ,

then the complement of 4 is the simplicial complex 4c = 〈F1
c, . . . Fq

c〉, where

Fi
c = V \Fi.

Now we can construct square-free monomial ideals by means of simplicial

complexes.

Definition 6.11. Let 4 be a simplicial complex whose vertices are labeled with

the variables x1, . . . , xn in the ring R. Then the square-free monomial ideal

I = (xi1 , . . . , xir | {xi1 , . . . , xir} is a facet of 4) is called the facet ideal of 4,

denoted by F(4), and 4 is called the facet complex of I, denoted by F(I).

Example 6.12.

4 = x1

x2

x3 (6.2)

let I = (x1, x2, x3), then 4 = F(I)

We get to our main theorem.

Theorem 6.13. A monomial ideal M has pd(M) ≤ 1 if and only if R/M has a

minimal resolution supported on a (graph) tree.

Proof. The sufficient condition is easy, because geometrically the complex will only

contain vertices and edges. So following the construction of simplicial resolutions,

the homological degree of the free modules will not exceed 1, so the length of the
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free resolution that is the projective dimension of M will be atmost 1.

Conversely, suppose the pd(M) = 0, then M = (m) is a principal ideal,

hence the minimal free resolution of R/M is supported on the graph with a single

vertex and no edges.

Now, assume that pd(M) = 1. Then R/M has a minimal resolution of the

form:

0 −→ Rt ψ−→ Rr φ−→ R −→ 0

where φ(ei) = mi for the basis elements ei of Rr, and ψ(gj) = fj where the gj form

a basis of Rt and the fj form a minimal generating set of ker(φ).

But (see [5], Corollary 4.13), ker(φ) can be generated (though not

necessarily minimally) by the elements:
lcm(mi,mj)

mi
ei -

lcm(mi,mj)

mj
ej. Now let f1, . . . , ft

be a minimal generating set of ker(φ) which have this form. This gives us a

complete description of the map ψ as a matrix with exactly two non-zero monomial

entries in each column with coefficients corresponding to those appearing in the fi

(i.e one column entry has coefficient 1 and the other has coefficient −1).

Dehomogenizing this resolution, gives us the sequence of vector spaces:

0 −→ kt
A−→ kr

1 1 . . . 1


−→ k −→ 0 (6.3)

which is exact and where A is a matrix in which every column has exactly one

entry which is 1, one entry which is −1, and the rest equal to zero. If we consider

each basis element of kr as a vertex and each basis element of kt as an edge

between the two vertices determined by the basis elements of kr, we may construct
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a graph G for which C(G; k) is the chain complex in (6.3). Since this chain

complex is exact the graph G is acyclic (graph with no holes). Hence, a tree (this

would also imply that t = r − 1). We show that the homogenization of C(G; k) is

minimal in the next proposition.

Proposition 6.14. If M is a monomial ideal such that R/M has a resolution

supported on a tree T , then that resolution is minimal.

Proof. If m1, . . . ,mr are the minimal generators of M then T would have to have r

vertices and r − 1 edges. When we regard T as a simplicial complex we get the

simplicial chain complex:

C(T, k) : 0 −→ kr−1 δ2−→ kr

1 1 . . . 1


−→ k −→ 0

where δ2 is a matrix in which every column has one entry equal to 1, one entry

equal to −1, and the rest equal to zero, because the boundary map of an edge will

have 2 non-zero entries corresponding to the vertices making this edge.

Following definition 4.5 about homogenization, fix a basis to C(T, k) given

by m1, . . . ,mr as a basis of kr, and v1, . . . , vp that of kr−1, note that we had the

following δ(vj) = Σ
1≤s≤r

αs,jms, with coefficients αs,j ∈ k. The M -homogenization

would then give a resolution of M of the form

0 −→
r−1⊕
j=1

R(−αj)
d2−→

r⊕
j=1

R(−βj)
d1−→ R −→ 0

with βj = mdeg(mj), and αj = mdeg(vj). We call v1, . . . , vp the basis of Rr−1,

where vj= lcm{ mdeg(ms) | αs,j 6= 0 } for the α′s occuring in the boundary map δ
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where for each j, exactly 2 of the αs,j 6= 0. So the multidegrees of the vj’s are

actually of the form mdeg(vj) = mdeg(lcm(mi1 ,mi2)) where mi1 ,and mi2 are

minimal generators of M . Considering the boundary map of the M -complex,

d2(vj) =
∑
1≤s≤r

αs,j
mdeg(vj)

mdeg(ms)
ms, the matrix representation of d2 has entries: [d2]s,j=

αs,j
mdeg(vj)

mdeg(ms)
.

If αs,j = 0 then [d2]s,j= 0. If αs1,j, αs2,j 6= 0 then we have that mdeg(vj ) =

lcm(ms1 ,ms2). Since ms1 , and ms2 are minimal generators of M we know that ms1 ,

and ms2 strictly divide mdeg(vj ) = lcm(ms1 ,ms2), so that [d2]s,j ∈ m for all s, j.

By construction, all entries of d1 are in m and we can conclude that this resolution

is minimal.

We next construct the tree. WLOG, we may consider square-free

monomial ideals, since the polarization of M gives a square-free monomial ideal. It

was also shown that the minimal free resolution of R/M , and that of Rpol/Mpol are

homogenizations of the same frame see [9]. We will not discuss polarization

process in this thesis.

Construction 6.15. Consider M a square-free monomial ideal of R such that its

projective dimension pdR(M) ≤ 1. To construct a tree starting from the minimal

generating set {mi}i≤q of M , one has to follow the steps below:

1. Consider the facet complex of M , then take its complement and call it 4.

Now order the facets of 4 by F1, F2, . . . , Fq such that Fi is a leaf of

4i = 〈F1, . . . , Fi〉.

2. Start with one vertex v1 equivalently it’s a vertex tree T1 = (V1, E1), where

V1 = {v1} and E1 = φ.
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3. For each i > 1, let τ(i) be such that Fτ(i) is the joint of Fi in 4i. Initially set

τ(1) = 1, and for i = 2, . . . , q:

• Pick u < i, such that Fu is a joint of Fi in 4i. Now set τ(i) = u;

• Set Vi = Vi−1 ∪ {vi};

• Set Ei = Ei−1 ∪ {(vi, vu)};

4. That results in a tree T = (Vq, Eq) with q vertices. Now label the vertex vi of

T with the monomial mi =
∏
xt /∈Fi

xt.

And note that the monomials m1, . . . ,mq form a minimal generating set of

M ordered as step one in this construction.

Remark 6.16. In the final step of construction 6.15, note that Fi is a leaf of 4i,

so the free vertex x ∈ Fi doesn’t belong to any Fj such that j < i. Symbolically, to

see it easily consider the complement of the facets, then x /∈ Fic and x ∈ Fjc for all

j < i. Therefore, ∀x ∈ {1, . . . , q} there is a variable x ∈ {x1, . . . , xn} such that

x - mi and x | mj for all j < i.

Example 6.17. 1. Let M = (x1x2, x2x3, x3x4), consider the facet complex

F (M) of facets {x1, x2}, {x2, x3}, {x3, x4}, then construct its complement

4 = F (M)c, its facets are {x3, x4}, {x1, x4}, {x1, x2}. Faridi and Hersey

proved that we can order the facets of this simplicial complex as its a

quasi-tree, then:

F1 F2 F3

x3 x4 x1 x2

Such that Fi is a leaf of 4i = 〈F1, . . . , Fi〉 with i = 2, 3.
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2. Following the same procedure of the construction 6.15, we have τ(2) = 1, and

τ(3) = 2.

3. Starting with F1, construct inductively a graph with vertices labelled

F1, F2, F3, and with edges {Fτ(i), Fi} for i = 2, 3.

4. Label each vertex of Fi with the monomial mi = the product of all variables

that are not in Fi.

m1 = x1x2,m2 = x2x3,m3 = x3x4.

5. Label each edge with the lcm of the vertex labels.

The labelled tree G for this example is the graph supporting the minimal

free resolution of M = (x1x2, x2x3, x3x4) :

x1x2 x3x4

x2x3

x1x2x3 x2x3x4

The minimal free resoluion of M = (x1x2, x2x3, x3x4) is then :

0 −→ R(x1x2x3)⊕R(x2x3x4)
δ−→ R(x1x2)⊕R(x2x3)⊕R(x3x4).

Considering the bases e1, e2, e3 corresponding to the three vertices, and

e12, e23 corresponding to the two edges joining, the map is:

δ(e12) = x1x2x3
x2x3

e2 − x1x2x3
x1x2

e1 = x1e2 − x3e1

δ(e23) = x2x3x4
x3x4

e3 − x2x3x4
x2x3

e2 = x2e3 − x4e2.

Example 6.18. We compare the Taylor resoluion of M = (x1x2, x2x3, x3x4) to

that in example 6.17 , we have to add the basis element e13 corresponding to the

3rd edge that joins x1x2 with x3x4, along with e123 the facet, because the Taylor

resolution considers the simplex that contains all possible faces, so starting from
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the figure it is :

x1x2x3x4x1x2 x3x4

x2x3

x1x2x3 x2x3x4

0 −→ R(x1x2x3x4)
δ2−→ R(x1x2x4)⊕R(x2x3x4)⊕R(x1x2x3x4)

δ1−→ R(x1x2)⊕R(x2x3)⊕R(x3x4).

where

δ1(e12) = x1x2x3
x2x3

e2 − x1x2x3
x1x2

e1 = x1e2 − x3e1

δ1(e23) = x2x3x4
x3x4

e3 − x2x3x4
x2x3

e2 = x2e3 − x4e2

δ1(e13) = x1x2x3x4
x3x4

e3 − x1x2x3x4
x1x2

e1 = x1x2e3 − x3x4e1

δ2(e123) = x1x2x3x4
x1x2x4

e12 + x1x2x3x4
x2x3x4

e23 − x1x2x3x4
x1x2x3x4

e13 = x3e12 + x1e23 − e13.

See that in the last equation, the −1 preceding e13 is an entry of the matrix

corresponding to δ2, therefore we can see that −1 /∈ m, so our Taylor resolution is

very non-minimal.

Example 6.19. Consider the ideal

M = (x1x3x6, x1x4x6, x1x2x4, x4x5x6) ⊂ k[x1, . . . , x6], and the labeled simplicial

complex:

x1x3x6 x1x2x4

x1x4x6

x4x5x6

x1x3x4x6 x1x2x4x6

x1x4x5x6

From this labeled simplicial complex we construct the complex of

R-modules:

55



0 −→
R(−x1x2x4x6)

⊕

R(−x1x3x4x6)
⊕

R(−x1x4x5x6)



x6 0 0

0 x4 0

−x2 −x3 x5

0 0 −x1


−→

R(−x1x2x4)
⊕

R(−x1x3x6)
⊕

R(−x1x4x6)

⊕
R(−x4x5x6)

x1x2x4 x1x3x6 x1x4x6 x4x5x6


−→ R→ 0

which is the minimal multigraded free resolution of R/M .
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