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An Abstract of the Thesis of

Nizar Mortaja Bou Ezz for Master of Science

Major: Mathematics

Title: On the Geometry of the Koras–Russell Cubic Threefold

The Koras–Russel cubic threefold is a complex-affine manifold that is diffeo-

morphic to the three-dimensional complex-Euclidean space, but not algebraically

isomorphic to the three dimensional complex-affine space as an affine variety.

We analyze the topology of the Koras–Russel cubic threefold by means of Morse

theory.
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Chapter 1

Introduction

The Koras–Russell cubic threefold, first introduced by Russell (1992), then

studied by Koras and Russell later, is a smooth complex-affine manifold defined

by

{(x, y, z, w) ∈ C4 : x2y + x+ z2 + w3 = 0}.

The Koras–Russell cubic threefold was studied in several papers, being a C3-like

affine variety that is not C3, in the affine algebraic sense. Dimca (1992) showed

that the Koras–Russell cubic threefold is a contractible hypersurface in C4, and

proved that it is diffeomorphic to C3, see [Kraft, 1996]. Makar-Limanov (1994)

proved that the Koras–Russell cubic threefold is not isomorphic to C3 as an affine

variety, see [Kraft, 1996].

In this thesis we study by means of Morse theory that the topology of the

Koras–Russell cubic threefold. We wish to make the thesis as much self-contained

as possible in terms of basic definitions and main theorems. For that we present

the preliminaries needed from topology and bilinear algebra in the second chap-

ter.
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The third chapter gives a tour on the theory of smooth manifolds, being the

main objects under study in Morse theory, and extends to study complex mani-

folds highlighting some particular specializations that will be useful in the study

of the Koras–Russell cubic threefold.

We define the notion of Morse functions on smooth manifolds in the forth

chapter, prove the Lemma of Morse, and demonstrate the canceling of critical

points theorem.

In the fifth chapter, we demonstrate that the Koras–Russell cubic threefold

is not isomorphic to C3. For that we present basic definitions and properties of

affine varieties and define isomorphisms between affine varieties in the suitable

framework.

In the sixth chapter, we analyze the topology of the Koras–Russell cubic

threefold using Morse theory. We define a convenient Morse function on the

threefold, find its critical points, and study how the points are connected by the

Morse flow.
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Chapter 2

Background Theory

2.1 Topological Manifolds

Definition 2.1.1. Let X be a nonempty set. A collection τ of subsets of X is

said to be a topology on X if :

1. ∅ ∈ τ and X ∈ τ .

2. for any family of sets {Ai}i∈I ⊆ τ ,
⋃
i∈I
Ai ∈ τ .

3. for any finite family of sets {A1, ..., An} ⊆ τ ,
n⋂
i=1

Ai ∈ τ .

The pair (X, τ) is called a topological space. The elements of τ are called open

sets. For x ∈ X, an open set containing x is called a neighborhood of x.

Definition 2.1.2. A topological space (X, τ) is said to be a Hausdorff space if:

∀x, y ∈ X, (x 6= y ⇒ ∃U, V ∈ τ such that x ∈ U, y ∈ V, and U ∩ V = ∅).

Definition 2.1.3. A collection of open sets B is said to be a basis of the topology
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τ of X if:

∀x ∈ X, ∀U ∈ τ, (x ∈ U ⇒ ∃B ∈ B such that x ∈ B ⊆ U).

Definition 2.1.4. A topological space is said to be second-countable if it has a

countable basis for its topology.

Definition 2.1.5. Let (X, τ) and (X ′, τ ′) be two topological spaces. A map

f : X → X ′ is said to be continuous if :

∀U ∈ τ ′, f−1(U) ∈ τ

Moreover if f is bijective and f−1 is continuous we say that f is a homeomorphism

and X and X ′ are homeomorphic

Definition 2.1.6. A topological space (X, τ) is said to be locally Euclidean of

dimension n if ∀x ∈ X, there exists:

1. an open set U of X containing x.

2. an open set V of Rn (open with respect to the usual topology on Rn).

3. a homeomorphism ϕ : U → V .

Such a pair (U,ϕ) is called a coordinate chart.

Definition 2.1.7. (Topological Manifold). A topological space (X, τ) is said to be

a topological manifold of dimension n if (X, τ) is a Hausdorff, second-countable,

locally Euclidean space of dimension n.

Theorem 2.1.8. (Topological Invariance of Dimension). Let M and N be two

topological manifolds of dimensions n and m respectively. If M and N are home-
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omorphic, then m = n.

Proof. See Theorem 17.26 of [Lee, 2013].

2.2 Homotopy

The material of this section is from [Munkres, 2000].

Definition 2.2.1. (Homotopy) Let X and Y be two topological spaces. A con-

tinuous map F : X × [0, 1]→ Y is called a homotopy.

Definition 2.2.2. Let X and Y be two topological spaces, and f, g : X → Y be

two continuous maps. f and g are said to be homotopic if there exists a homotopy

F : X × [0, 1]→ Y such that: F (x, 0) = f(x) and F (x, 1) = g(x), for all x ∈ X.

We write f ' g.

Definition 2.2.3. Let X be a topological space and A ⊆ X. A deformation

retraction of X onto A is a homotopy F : X × [0, 1] → X with the following

properties:

1. F (x, 0) = x, for all x ∈ X,

2. F (X, 1) = A,

3. F (x, t) = x, for all t ∈ [0, 1], and all x ∈ A.

If such a homotopy exists, we say that X deformation retracts onto A.

Definition 2.2.4. A topological space X is said to be contractible if X deforma-

tion retracts onto a point.
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Remark 2.2.5. Let X be a topological space and A ⊆ X. A retraction of X

onto A is a continuous map r : X → X such that r(X) = A and r(x) = x for all

x ∈ A. It is clear that if X deformation retracts onto A then any retraction of

X onto A is homotopic to the identity map of X.

Definition 2.2.6. Let X and Y be two topological spaces. A continuous map

f : X → Y is said to be a homotopy equivalence if there a continuous map g : Y →

X such that g ◦f ' IX and f ◦g ' IY , where I is the identity map on each of the

corresponding spaces. In this case we say that X and Y are homotopy equivalent

or have the same homotopy type, and we write X ' Y . It is easy to check that

this relation is in fact an equivalence relation on topological spaces.

Remark 2.2.7. Let X and Y be two topological spaces. If X and Y are home-

omorphic, then it is follows easily that X ' Y , since every homeomorphism of

topological spaces is in fact a homotopy equivalence.

Definition 2.2.8. Let X be a topological space. Given a non-negative integer k,

we define the k-cell, denoted by ek, to be the closed unit ball in Rk,

ek = {x ∈ Rk : ‖x‖ ≤ 1}

where ‖ · ‖ is the standard Euclidean norm. The boundary of ek will be denoted

by ėk or Sk−1,

ėk = {x ∈ Rk : ‖x‖ = 1}

with the convention that e0 is a single point and ė0 = ∅.

Definition 2.2.9. Let X be a topological space, k be a non-negative integer, and

g : Sk−1 → X be a continuous map. We obtain the space X with a k-cell attached

by g, denoted by X∪gek, by taking the disjoint union of X and k-cell, X
∐
ek with
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the disjoint union topology, and then identifying each x ∈ Sk−1 with g(x) ∈ X.

X ∪g ek =
(
X
∐
ek
)
/ ∼, equipped with the quotient topology, where ∼ is the

equivalence relation defined on X
∐
ek by

x ∼ y ⇔ x = y or x = g(y) or y = g(x) ∀ x, y ∈ X
∐

ek

X with a 0-cell attached is just the disjoint union of X and a point.

See Chapter 2 Section 22 in [Munkres, 2000] for the definition of the quotient

topology.

2.3 Bilinear Algebra

In this section, K = R or K = C, will denote any of the two fields.

Definition 2.3.1. (Bilinear Map) Let V,W, S be vector spaces over K. A map

L : V ×W → S is said to bilinear if L is linear in each variable. That is for every

v1, v2 ∈ V , w1, w2 ∈ W , α ∈ K we have:

L(αv1+v2, w1) = αL(v1, w1)+L(v2, w1) and L(v1, αw1+w2) = αL(v1, w1)+L(v1, w2)

Definition 2.3.2. (Tensor Product) Let V,W, S be vector spaces over K, and

ϕ : V ×W → S be a bilinear map. The pair (S, ϕ) is called a tensor product of V

and W if for every vector space P over K, and every bilinear map L : V ×W → P ,

there exists a unique linear map L̃ : S → P that makes the following diagram

commute:
V ×W S

P

L

ϕ

L̃
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Proposition 2.3.3. Let V,W be vector spaces over K. If (S, ϕ) and (R,ψ) are

two tensor products of V and W , then S and R are isomorphic.

Proof. By the definition of tensor products there exist unique linear maps ψ̃ : S →

R and ϕ̃ : R→ S making the following diagram commute:

V ×W S

R

S

R

ϕ

ψ

ϕ

ψ

ψ̃

ϕ̃

ψ̃

Now ϕ̃ ◦ ψ̃ : S → S makes the below diagram commute:

V ×W S

S

ϕ

ϕ

ϕ̃◦ψ̃

Then by uniqueness of such map ϕ̃ ◦ ψ̃ = IS.

By a similar argument ψ̃ ◦ ϕ̃ = IR, so that ϕ̃ is a linear isomorphism. Therefore

S ∼= R.

Proposition 2.3.4. Let V and W be vector spaces over K. Then there exists a

unique tensor product of V and W (up to isomorphisms).

Proof. For the construction of a tensor product see Proposition 12.10 of [Lee,

2013]. Proposition 2.3.3 guarantees the uniqueness of a tensor product (up to

isomorphisms).

Remark 2.3.5. Let V,W be vector spaces over K. We will denote the tensor
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product of V and W by V ⊗W , with the corresponding bilinear map from V ×W

to V ⊗W denoted by (v, w) 7→ v ⊗ w. Elements of the form v ⊗ w ∈ V ⊗W are

called elementary tensors. The construction in Proposition 12.10 of [Lee, 2013]

shows that every element in V ⊗W can be expressed as a linear combination of

elementary tensors. When more than one field is considered, we write ⊗K to

denote the tensor product with respect to the field K.

Proposition 2.3.6. Let V,W be finite-dimensional vector spaces of dimensions

m,n, respectively. Let (E1, . . . , Em) be a basis for V , and (F1, . . . , Fn) be a basis

for W . Then the set:

{Ei ⊗ Fj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis for V ⊗W , and so V ⊗W has dimension mn.

Proof. See Proposition 12.8 of [Lee, 2013].

Remark 2.3.7. One particular application of tensor products, that we will refer

to in Chapter 3, is the complexification of a real vector space. Let V be a

vector space over R. Consider the tensor product V C : = V ⊗R C (where C is

viewed as a vector space over R). We can make V C a vector space over C, by

defining a scalar multiplication:

C× V C → V C

on elementary tensors of V C by λ(v⊗α) = v⊗ (λα), for all v ∈ V and λ, α ∈ C,

and extending it to elements of VC by:

λ
n∑
k=1

(vk ⊗ αk) =
n∑
k=1

(vk ⊗ λαk)

9



for v1, . . . , vn ∈ V , λ, α1, . . . , αn ∈ C. The C-vector space V C is called the com-

plexification of V .

If V and W are two vector spaces over R and L : V → W be a linear map. L

extends to a C-linear map L : V C → WC defined on elementary tensors by

L(v ⊗ α) = L(v)⊗ α

for all v ∈ V and α ∈ C.

Definition 2.3.8. (Dual Space) Let V be a vector space over K. The dual space

of V , denoted by V ∗, is the set of all linear maps from V to K.

V ∗ = {f : V → K : f is linear}

Elements of V ∗ are called covectors, or linear forms.

Proposition 2.3.9. Let V be a finite-dimensional vector space over K of dimen-

sion n, and let (v1, . . . , vn) be a basis for V . For i ∈ {1, . . . , n}, consider the

map:

λi : V → K

defined on the given basis of V by λi(vj) = δij, for j ∈ {1, . . . , n} (where δij is the

Kronecker delta symbol), and extended to a linear map on V . Then (λ1, . . . , λn)

is a basis for V ∗, and so dimV ∗ = dimV . This basis is called the dual basis of

V ∗ relative to the basis (v1, . . . , vn).

Proof. See Proposition 11.1 of [Lee, 2013].

Definition 2.3.10. Let V and W be two vector spaces over K, and L : V → W

be a linear map. We define the linear map L∗ : W ∗ → V ∗, called the dual map or

10



transpose of L, by

(L∗ω)v = ω(Lv) for ω ∈ W ∗, v ∈ V.

Definition 2.3.11. Let V be a vector space over K. A bilinear map from V ×V

to K is said to be a bilinear form on V . The set of all bilinear forms on V is

denoted by B(V ).

B(V ) = {L : V × V → K | L is bilinear}

B(V ) is in fact a vector space over K (with the usual scalar multiplication).

Remark 2.3.12. Let V be a vector space over K, and let α, β ∈ V ∗. Define the

map:

α⊗ β : V × V → K

by α ⊗ β(v, w) = α(v)β(w), ∀v, w ∈ V . α ⊗ β is clearly a bilinear form. The

choice of the tensor symbol will be justified in Remark 2.3.14.

Proposition 2.3.13. Let V,W be a finite dimensional vector space over K

of dimensions m and n respectively, and let (α1, . . . , αm) be a basis of V ∗ and

(β1, . . . , βn) be a basis of W ∗. Then then set:

{αi ⊗ βj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis for the space L(V,W ;K) = {f : V ×W → K | f is bilinear}.

Proof. See Proposition 12.4 in [Lee, 2013].

11



Remark 2.3.14. Let V be a finite dimensional vector space over K of dimension

n. Consider the linear map L : V ∗ ⊗ V ∗ → B(V ) defined by

L(α⊗ β) = α⊗ β

on elementary tensors of V ∗⊗V ∗. L is clearly an isomorphism since it maps the

basis of V ∗⊗V ∗ to the basis of B(V ). In what follows we will identify B(V ) with

V ∗ ⊗ V ∗. Elements of V ∗ ⊗ V ∗ will be regarded as bilinear forms on V , by the

action of elementary tensors on V × V :

α⊗ β(v, w) = α(v)β(w)

∀v, w ∈ V .

Remark 2.3.15. Let V be a finite dimensional vector space over K of dimension

n. Let (v1, . . . , vn) be a basis of V and (λ1, . . . , λn) be the dual basis of V ∗ relative

to the basis (v1, . . . , vn). The set {λi ⊗ λj : 1 ≤ i ≤ n, 1 ≤ j ≤ n} is a basis for

V ∗ ⊗ V ∗, then for every bilinear map L ∈ V ∗ ⊗ V ∗,

L =
n∑

i,j=1

aijλi ⊗ λj

for some coefficients aij ∈ K. The matrix (aij) is called the representative matrix

of the bilinear form L in the coordinates (v1, . . . , vn) of V .

Definition 2.3.16. Let V be a finite dimensional vector space over K. A bilinear

form L ∈ V ∗ ⊗ V ∗ is said to be symmetric if

L(v, w) = L(w, v) ∀v, w ∈ V

12



We denote by Σ2(V ) the set of all symmetric bilinear forms on V . Σ2(V ) is in

fact a subspace of V ∗ ⊗ V ∗, and the linear map Sym : V ∗ ⊗ V ∗ → Σ2(V ) defined

by

Sym(L)(v, w) =
1

2
(L(v, w) + L(w, v)) ∀v, w ∈ V

is a projection, i.e. Sym(L) = L, ∀L ∈ Σ2(V ).

Definition 2.3.17. Let V be a finite dimensional vector space over K. For

α, β ∈ V ∗, we define the symmetric product of α and β, denoted by αβ, by

αβ = Sym(α⊗ β) =
1

2
(α⊗ β + β ⊗ α).

The above procedure could be done in general for n variables by considering

multilinear maps instead of bilinear maps, one can also define antisymmetric (or

alternating) multilinear maps, and alternating product. However we are only

interested in symmetric bilinear forms in the thesis. See Chapter 12 in [Lee,

2013] for a general approach.

Definition 2.3.18. Let V be a finite dimensional vector space over K, and L ∈

Σ2(V ), then the map

q : V → K

defined by q(v) = L(v, v) for all v ∈ V is called the quadratic form associated to

the symmetric bilinear form L.

Definition 2.3.19. Let V be a finite dimensional vector space over R, and L ∈

Σ2(V ). L is said to be positive-definite (respectively negative-definite) if

L(v, v) > 0 (respectively L(v, v) < 0) for every v ∈ V \ {0}.

A positive-definite symmetric bilinear form on V is called an inner product on

V .

13



Definition 2.3.20. (Nullity and Index) Let V be a finite dimensional vector space

over R of dimension n, and let L ∈ Σ2(V ). We define the null space of L,

denoted by kerL, by

kerL = {v ∈ V : L(v, w) = 0 ∀ w ∈ V }.

kerL is clearly a subspace of V . The dimension of the null space of L is called

the nullity of L. We define the index of L to be the maximum dimension of

a subspace of V on which L is negative-definite.

Theorem 2.3.21. (Sylvester’s Law of Inertia) Let V be a finite dimensional

vector space over R of dimension n, and let L ∈ Σ2(V ). Then there exists a basis

of V such that the representative matrix of the L in this basis is a diagonal matrix

with diagonal entries 1, 0,−1. Moreover for any such basis of V , the number of

each, 1’s, 0’s and −1’s on the diagonal entries, is invariant.

Proof. See Section 9.3.1 in [Carrell, 2017].

Remark 2.3.22. Let V be a finite dimensional vector space over R of dimension

n, and let L ∈ Σ2(V ). Let (v1, . . . , vn) be any basis of V for which the represen-

tative matrix of the L in (v1, . . . , vn) is a diagonal matrix with diagonal entries

1, 0,−1. It follows from this representation of L that number of 0’s in the diago-

nal entries of such representative matrix of L, is the nullity of L, and the number

of −1’s is the the index of L.

14



Chapter 3

Smooth Manifolds

In this chapter we establish the basic definitions and properties of smooth

manifolds. The material of this chapter is from [Lee, 2013] and [Forstnerič, 2017].

3.1 Smooth Structure

In this section we will define an additional structure on topological manifolds,

namely a smooth structure, that will enable us to define smooth maps between

manifolds.

Definition 3.1.1. Let V ⊆ Rn and W ⊆ Rm be two open sets, and F : V → W

be a map. F is said to be C∞ smooth if each of its component functions has

continuous partial derivatives of all orders. If in addition F is bijective and F−1

is C∞ smooth, F is called a diffeomorphism.

Throughout the thesis the word smooth will be used to denote C∞ smooth-

ness.

Remark 3.1.2. Let M be a topological manifold of dimension n and let (U,ϕ)

and (V, ψ) be two coordinate charts. Note that ϕ(U ∩ V ) and ψ(U ∩ V ) are open

15



subsets of Rn, and whenever U ∩V 6= ∅, the map ψ ◦ϕ−1 : ϕ(U ∩V )→ ψ(U ∩V )

is a homeomorphism. The map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is called the

transition map from ϕ to ψ.

Definition 3.1.3. Let M be a topological manifold of dimension n and let (U,ϕ)

and (V, ψ) be two coordinate charts. (U,ϕ) and (V, ψ) are said to be smoothly

compatible if either U ∩ V = ∅ or the map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is

smooth.

Definition 3.1.4. Let M be a topological manifold of dimension n. A collection

of coordinate charts {(Ui, ϕi)}i∈I is said to be an atlas for M if
⋃
i∈I
Ui = M .

An atlas A is called a smooth atlas if any two charts in A are smoothly com-

patible with each other.

Remark 3.1.5. Let M be a topological manifold of dimension n and A be a

smooth atlas for M . Let f : M → R. Suppose that there exists a chart (U,ϕ)

of A such that the map f ◦ ϕ−1 : ϕ(U) → R is smooth. Then for any coordi-

nate chart (V, ψ) of A with U ∩ V 6= ∅, f ◦ ψ−1 : ψ(U ∩ V ) → R is smooth, as

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1) in ψ(U ∩ V ).

Hence we would like to say that f is smooth whenever the maps f ◦ ϕ−1 are

smooth for (U,ϕ) ∈ A. However in general, there will be many possible smooth

atlases that determine the same collection of smooth functions on M . For this

reason we will define a maximal atlas, according to which we will define a smooth

structure on M .

Definition 3.1.6. Let M be a topological manifold. A smooth atlas A is said to

be maximal if for every smooth atlas B such that A ⊆ B, A = B. Equivalently,
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A is maximal if for any chart (U,ϕ) that is smoothly compatible with every chart

in A, (U,ϕ) ∈ A. We call a maximal smooth atlas for M a smooth structure.

Proposition 3.1.7. Let M be a topological manifold. Every smooth atlas A for

M is contained in a unique maximal smooth atlas.

Proof. Let A be a smooth atlas for M , and denote by Ã the set of all charts

that are smoothly compatible with every chart in A. It is clear that A ⊆ Ã. Let

(U,ϕ), (V, ψ) ∈ Ã and consider the map ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ).

Let x ∈ ϕ(U ∩ V ). ϕ−1(x) ∈ M then there exists a chart (W, ν) in A such that

ϕ−1(x) ∈ W . Since every chart in Ã is smoothly compatible with (W, ν), ν ◦ϕ−1

and ψ ◦ ν−1 are smooth in ϕ(U ∩ W ) and ν(V ∩ W ) respectively. ϕ−1(x) ∈

U ∩ V ∩W , then (ψ ◦ ν−1) ◦ (ν ◦ ϕ−1) is smooth in a neighborhood of x, thus

ψ ◦ ϕ−1 is smooth in a neighborhood of each point in ϕ(U ∩ V ). Therefore Ã is

a smooth atlas. Now to prove uniqueness, assume that B is a maximal smooth

atlas containing A, then each chart of B is compatible with each chart of A, so

B ⊆ Ã. By maximality of B, B = Ã.

We call the unique maximal smooth atlas containing A, the smooth structure

determined by A.

Proposition 3.1.8. Let M be a topological manifold. Two smooth atlases for M

determine the same smooth structure if and only if their union is a smooth atlas.

Proof. ⇒ Let A,B be two smooth atlases. Assume that A and B determine

the same smooth structure, namely Ã. Then A ∪ B ⊆ Ã, so for any two charts

(U,ϕ), (V, ψ) ∈ A ∪ B, (U,ϕ), (V, ψ) ∈ Ã so (U,ϕ) and (V, ψ) are smoothly

compatible. Therefore A ∪ B is a smooth atlas.

⇐ Let A,B be two smooth atlases. Now assume that A ∪ B is a smooth atlas,
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and let C be the smooth structure determined by A ∪ B. A ⊆ A ∪ B ⊆ C,

B ⊆ A∪B ⊆ C, and C is a maximal smooth atlas, then C is the smooth structure

determined by A and B.

Definition 3.1.9. (Smooth Manifold). Let M be a topological manifold and A

be a maximal smooth atlas for M . The pair (M,A) is called a smooth manifold.

Definition 3.1.10. Let (M,A) be a smooth manifold of dimension n. We say

that f : M → Rk is a smooth function if for every p ∈ M , there exists a smooth

chart (U,ϕ) ∈ A with p ∈ U such that f ◦ ϕ−1 is smooth in the open subset

ϕ(U) ⊆ Rn.

Remark 3.1.11. The set of all real-valued smooth functions f : M → R is de-

noted by C∞(M). Since sums and constant multiples of smooth functions are

smooth, C∞(M) is a vector space over R. Moreover the point-wise product of two

real-valued smooth functions is again a smooth function and hence (C∞(M),+, ·)

is a ring.

Remark 3.1.12. Let M be a smooth manifold and U ⊆ M be open. A map

f : U → R is said to be smooth if for every chart (V, ψ) with U ∩ V 6= ∅, the map

f ◦ ψ−1 : ψ(U ∩ V ) → R is smooth. The space of all smooth function f : U → R

is denoted by C∞(U).

Definition 3.1.13. Let (M,A), (N,B) be smooth manifolds. We say that F : M →

N is a smooth function if for every p ∈M , there exist smooth charts (U,ϕ) ∈ A,

(V, ψ) ∈ B such that p ∈ U , F (U) ⊆ V , and ψ ◦ F ◦ ϕ−1 is smooth from ϕ(U) to

ψ(V ).

Moreover if F is bijective and F−1 is smooth, we say that F is a diffeomorphism

and that M and N are diffeomorphic.
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3.2 The Tangent Space

In what follows we will define the tangent space to a smooth manifold at a

given point. We wish to give a definition independent of the coordinate charts.

The smooth manifold (M,A) will be simply denoted by M .

Definition 3.2.1. Let M be a smooth manifold and p ∈ M . A linear map

V : C∞(M) → R is said to be a derivation at p if for every f, g ∈ C∞(M),

V (fg) = f(p)V (g) + g(p)V (f).

Remark 3.2.2. For a general definition of derivations on maps between mod-

ules over the same ring, we also require that V (c) = 0 for any constant map c.

However this condition follows from the above definition in case of real valued

functions (see Proposition 3.2.7).

Remark 3.2.3. The sums and constant multiples of derivations at a point p are

also derivations at the point p, thus the set of all derivations at p is a vector space

over R.

Definition 3.2.4. (Tangent Space). Let M be a smooth manifold and p ∈ M .

We define the tangent space to M at point p, denoted by TpM , to be the space of

all derivations at p.

TpM = {V : C∞(M)→ R : V is a derivation at p}.

Remark 3.2.5. Note that for M = Rn, p ∈ Rn, the partial derivatives at

p, { ∂
∂x1
|p, ..., ∂

∂xn
|p} are derivations at p so that Span{ ∂

∂x1
|p, ..., ∂

∂xn
|p} ⊆ TpRn.

Moreover the vectors ∂
∂x1
|p, ..., ∂

∂xn
|p are linearly independent. To see this let

a1, ..., an ∈ R such that
∑n

i=1 ai
∂
∂xi
|p = 0. Apply the latter sum on the (smooth)
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projection maps xj, we get aj = 0,∀j = 1, .., n.

In what follows we will prove that { ∂
∂x1
|p, ..., ∂

∂xn
|p} is in fact a basis for TpRn.

Remark 3.2.6. Let M be a smooth manifold and p ∈ M . Define mp := {f ∈

C∞(M) : f(p) = 0}.

mp is clearly an ideal of the ring C∞(M), and m2
p is the ideal formed by taking

finite sums of elements the form fg, where f, g ∈ mp.

Proposition 3.2.7. Let M be a smooth manifold and p ∈ M . A linear map

V : C∞(M)→ R is a derivation at p if and only if:

1. V (c) = 0 for any constant function c ∈ C∞(M)

2. V (h) = 0 for all h ∈ m2
p

Proof. ⇒ Let V : C∞(M) → R be a derivation at p. V (1) = V (1 · 1) =

1(p)V (1) + 1(p)V (1) = 2V (1), and so V (1) = 0, thus V (c) = cV (1) = 0. Now

for all f, g ∈ mp, V (fg) = f(p)V (g) + g(p)V (f) = 0, therefore by linearity of V ,

V (h) = 0,∀h ∈ m2
p.

⇐ Let V : C∞(M)→ R be a linear map satisfying 1 and 2 . Let f, g ∈ C∞(M),

then f − f(p), g − g(p) ∈ mp and so V ((f − f(p))(g − g(p))) = 0 (by 2 ).

0 = V ((f − f(p))(g − g(p))) = V (fg − f(p)g − g(p)f + f(p)g(p)) = V (fg) −

V (f(p)g)− V (g(p)f) + V (f(p)g(p)).

Now V (f(p)g(p)) = 0 (by 1 ), therefore V (fg) = f(p)V (g) + g(p)V (f).

Proposition 3.2.8. { ∂
∂x1
|p, ..., ∂

∂xn
|p} forms a basis for the vector space TpRn.

Proof. By Remark 3.2.5, ∂
∂x1
|p, ..., ∂

∂xn
|p are linearly independent, so it is enough

to show that Span{ ∂
∂x1
|p, ..., ∂

∂xn
|p} = TpRn.
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Let V ∈ TpRn. Let f ∈ C∞(Rn). By Taylor’s theorem we can write

f(x) = f(p) +
n∑
i=1

∂f

∂xi
(p)(xi − pi)

+
n∑

i,j=1

(xi − pi)(xj − pj)
∫ 1

0

(1− t) ∂2f

∂xi∂xj
(p+ t(x− p))dt

with x = (x1, ..., xn), p = (p1, ..., pn).

Let g(x) =
∑n

i,j=1(xi − pi)(xj − pj)
∫ 1

0
(1− t) ∂2f

∂xi∂xj
(p+ t(x− p))dt, then g ∈ m2

p,

thus by Proposition 3.2.7, V (g) = 0.

Applying V to both sides of Equation (2.2.1) we get:

V (f) =
∑n

i=1
∂f
∂xi

(p)V (xi) =
∑n

i=1 V (xi)
∂
∂xi
|pf for all f ∈ C∞(Rn),

thus V =
∑n

i=1 V (xi)
∂
∂xi
|p, therefore V ∈ Span{ ∂

∂x1
|p, ..., ∂

∂xn
|p}.

We will prove next that if M is a smooth manifold of dimension n, p ∈M ,

then TpM is a finite dimensional vector space of dimension n. To achieve that we

will first prove that TpM could be determined locally by derivations of C∞(U)

at p, where U is any neighborhood of p in M .

Lemma 3.2.9. Let M be a smooth manifold, p ∈ M , and U ⊆ M be an open

neighborhood of p in M . Then there exists a smooth function ψ ∈ C∞(M) and

an open neighborhood Ũ of p compactly contained in U (Ũ b U) such that ψ = 1

on Ũ and supp(ψ) ⊂ U . Such a function is called a bump function.

Proof. See Proposition 2.25 of [Lee, 2013].

Proposition 3.2.10. Let M be a smooth manifold, p ∈M , and f ∈ C∞(M). If

f is identically zero in a neighborhood of p, then V (f) = 0.

Proof. Let U be a neighborhood of p such that f = 0 in U . Let ψ be a bump

function as in Lemma 3.2.9 and consider the function (1 − ψ)f defined on M.
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(1− ψ)f ∈ C∞(M), (1− ψ)(p) = f(p) = 0 then (1− ψ)f ∈ m2
p.

For x ∈ U , f(x) = 0 = (1− ψ)f(x).

For x ∈M \ U , ψ(x) = 0 so (1− ψ)f(x) = f(x).

Thus f = (1−ψ)f on M , and so V (f) = V ((1−ψ)f) = 0 (by Proposition 3.2.7).

Corollary 3.2.11. Let M be a smooth manifold, p ∈ M , and V be a derivation

at p. Then ∀f, g ∈ C∞(M) such that f = g in a neighborhood of p in M , we

have: V (f) = V (g).

Proof. Let f, g ∈ C∞(M) such that f = g in a neighborhood of p, then f − g ∈

C∞(M) and f − g = 0 in a neighborhood of p, thus by Proposition 3.2.10,

V (f − g) = 0. Therefore V (f) = V (g).

Remark 3.2.12. Let M be a smooth manifold, p ∈M , and U an open neighbor-

hood of p. Define the set TpU to be the set of all derivations on C∞(U).

TpU = {V : C∞(U)→ R : V is a derivation at p}.

Proposition 3.2.13. Let M be a smooth manifold, p ∈ M , and U an open

neighborhood of p. Then TpM ∼= TpU .

Proof. Consider the map i : TpU → TpM , for V ∈ TpU and f ∈ C∞(M),

i(V )(f) = V (f |U).

∀f ∈ C∞(M), f |U ∈ C∞(U), i(V ) : C∞(M) → R is a linear map, and for f, g ∈

C∞(M), i(V )(fg) = V (fg|U) = V (f |U · g|U) = f |U(p)V (g|U) + g|U(p)V (f |U) =

f(p)i(V )(g) + g(p)i(V )(f), thus i(V ) ∈ TpM . This shows that i is well-defined,
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and i is clearly linear.

Now let ψ be a bump function supported in U such that ψ = 1 in a neighbor-

hood of p. For f ∈ C∞(U) define the map f̃ to be ψf in U and identically zero

elsewhere. It is clear that f̃ ∈ C∞(M). Now consider the map r : TpM → TpU ,

for W ∈ TpM and f ∈ C∞(U), let r(W )f = W (f̃).

For f, g ∈ C∞(U), r(W )(fg) = W (f̃ g). Note that in a neighborhood of p,

ψ = 1 so the maps f̃ · g̃ and f̃ g are equal in a neighborhood of p, so by

Corollary 3.2.11, r(W )(fg) = W (f̃ g) = W (f̃ · g̃) = f̃(p)W (g̃) + g̃(p)W (f̃) =

f(p)r(W )(g) + g(p)r(W )(f). So r(W ) ∈ TpU, for all W ∈ TpM . So W is well-

defined, and W is clearly linear.

Now for V ∈ TpU and f ∈ C∞(U), r ◦ i(V )f = r(V (f |U)) = V (f̃ |U) = V (f) by

Corollary 3.2.11 and the fact that f and f̃ |U are equal in a neighborhood of p.

Thus r ◦ i(V ) = V for all V ∈ TpU .

Similarly, i ◦ r(W ) = W for all W ∈ TpM . Therefore i is an isomorphism of

vector spaces, and so TpM ∼= TpU .

We will usually identify TpU with i(TpU) = TpM .

Proposition 3.2.14. Let M be a smooth manifold of dimension n. Then for

every p ∈M , TpM is an n-dimensional vector space.

Proof. Let p ∈M and let (U,ϕ) be a chart such that p ∈ U . Define the map

ϕ∗ : TpU → Tϕ(p)ϕ(U)

by ϕ∗(V )f = V (f ◦ ϕ) for all V ∈ TpU and f ∈ C∞(ϕ(U)).
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ϕ∗ is well defined and linear, and ϕ∗ is invertible, with

(ϕ∗)
−1 = (ϕ−1)∗ : Tϕ(p)ϕ(U)→ TpU

defined by (ϕ−1)∗(W )f = W (f ◦ ϕ−1) for all W ∈ Tϕ(p)ϕ(U) and f ∈ C∞(U).

Thus ϕ∗ is an isomorphism, and so TpU ∼= Tϕ(p)ϕ(U). Therefore TpM ∼= Tϕ(p)Rn

by Proposition 3.2.13. and so TpM is an n-dimensional vector space by Proposi-

tion 3.2.8.

Remark 3.2.15. Let M be a smooth manifold of dimension n, p ∈ M , and

ϕ = (x̃1, . . . , x̃n) : U → Rn is a smooth coordinate chart in a neighborhood U

of p. The partial derivatives { ∂
∂x1
|ϕ(p), . . . , ∂

∂xn
|ϕ(p)} is a basis for Tϕ(p)Rn. Now

consider the linear isomorphism defined in the proof of Proposition 3.2.14:

(ϕ−1)∗ : Tϕ(p)ϕ(U)→ TpU

by (ϕ−1)∗(W )f = W (f◦ϕ−1) for all W ∈ Tϕ(p)ϕ(U) and f ∈ C∞(U). { ∂
∂x1
|ϕ(p), . . . , ∂

∂xn
|ϕ(p)}

is a basis for Tϕ(p)ϕ(U) (identified with Tϕ(p)Rn). For i ∈ {1, . . . , n}, define

∂

∂x̃i
|p := (ϕ−1)∗

(
∂

∂xi
|ϕ(p)

)
.

Then { ∂
∂x̃1
|p, . . . , ∂

∂x̃n
|p} is a basis for TpU . For each i ∈ {1, . . . , n}, we see that

∂
∂x̃i
|p acts on a function f ∈ C∞(U) by

∂

∂x̃i
|pf = (ϕ−1)∗

(
∂

∂xi
|ϕ(p)

)
f =

∂(f ◦ ϕ−1)
∂xi

(ϕ(p))
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so ∂
∂x̃i
|p acts on x̃k ∈ C∞(U) by

∂

∂x̃i
|px̃k =

∂(x̃k ◦ ϕ−1)
∂xi

(ϕ(p)) =
∂(xk)

∂xi
(ϕ(p)) = δik

for all i, k ∈ {1, . . . , n}.

Definition 3.2.16. Let M and N be two smooth manifolds, p ∈ M , and let

F : M → N be a smooth map. We define the differential (or push-forward) of F

at p, denoted by F∗ or DpF , by the linear map : F∗ : TpM → TpN ,

F∗(V )g = V (g ◦ F )

for all V ∈ TpM and g ∈ C∞(N).

Throughout the thesis, we will use F∗ and DpF interchangeably to denote the

same map.

Remark 3.2.17. (Calculating the Differential in Coordinates) Given M and N

two smooth manifolds of dimensions m and n respectively, p ∈M , and F : M →

N a smooth map, there exist charts (U,ϕ) and (W,ψ) on M and N respectively,

such that p ∈ U , F (U) ⊆ W and ψ ◦ F ◦ ϕ−1 is smooth. Set ϕ = (x̃1, . . . , x̃m)

and ψ = (ỹ1, . . . , ỹn). We call the map F̃ = ψ ◦ F ◦ ϕ−1 = (F̃1, . . . , F̃n) the

representative of F in the given coordinate charts. We consider the differential

of F at p, DpF : TpM → TF (p)N . { ∂
∂x̃1
|p, . . . , ∂

∂x̃n
|p} is a basis for TpM so it is

enough to find DpF ( ∂
∂x̃i
|p) for i = 1, ..,m. DpF ( ∂

∂x̃i
|p) ∈ TF (p)N , so DpF ( ∂

∂x̃i
|p) =∑n

j=1 aij
∂
∂ỹj
|F (p).

Applying both sides to the maps ỹk ∈ C∞(N), for k = 1, ..., n we get: aik =

DpF ( ∂
∂x̃i
|p)(ỹk).
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Now by definition DpF ( ∂
∂x̃i
|p)(ỹk) = ∂

∂x̃i
|p(ỹk ◦ F ) = ∂

∂xi
|ϕ(p)(ỹk ◦ F̃ ◦ ϕ−1) =

∂F̃k

∂xi
|ϕ(p) = aik, and the matrix of DpF with respect to the coordinate bases is


∂F̃1

∂x1
|x · · · ∂F̃1

∂xm
|x

...
. . .

...

∂F̃n

∂x1
|x · · · ∂F̃n

∂xm
|x


We call this matrix the Jacobian of F in the given coordinate charts.

3.3 The Tangent Bundle

Definition 3.3.1. (Tangent Bundle). Let M be a smooth manifold. We define

the tangent bundle of M , denoted by TM , to be the disjoint union of the tangent

spaces at all points of M :

TM =
∐
p∈M

TpM.

The tangent bundle is equipped with the natural projection map π : TM → M

which sends each vector in TpM to the point p at which it is tangent.

Remark 3.3.2. Given a smooth manifold of dimension n, we wish to define

a smooth structure on TM to transform it into a smooth manifold. For that

we start by defining a topology on TM . Consider the family τ , of subsets of

TM , τ = {π−1(U) : U is open in M }. We will see that τ is a topology on

TM ,and (TM, τ) is a topological manifold. Moreover for every chart (U,ϕ) of

M , ϕ = (x1, ..., xn), setting Ũ = π−1(U) and defining ϕ̃ : Ũ → R2n by

ϕ̃(p,
n∑
i=1

vi
∂

∂xi
|p) = (x1(p), .., xn(p), v1, .., vn)

we get that ϕ̃(Ũ) is open in R2n and ϕ̃ : Ũ → ϕ̃(Ũ) is a homeomorphism.
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Proposition 3.3.3. Let (M,A) be a smooth manifold of dimension n. Then

(TM, τ) is a topological manifold of dimension 2n, and the collection of charts

Ã = {(Ũ , ϕ̃)}(U,ϕ)∈A is a smooth atlas, hence defines a smooth structure for TM ,

where τ and (Ũ , ϕ̃) are as defined in Remark 3.3.2.

Moreover the natural projection π : TM →M is smooth.

Proof. See Proposition 3.18 of [Lee, 2013].

Definition 3.3.4. (Global Differential). Let M and N be smooth manifolds, and

let F : M → N be a smooth map. For every p ∈ M , consider the differential

of F at p, DpF : TpM → TN (TF (p)N viewed as a subset of TN). Then by the

universal property of the coproduct, there exists a unique map DF : TM → TN

whose restriction to each tangent space TpM is DpF . The map DF is called the

global differential of F .

Proposition 3.3.5. Let M and N be smooth manifolds of dimensions m and n

respectively, and let F : M → N be a smooth map. Then DF : TM → TN is

smooth.

Proof. Let v ∈ TM , we express DF with respect to local coordinate charts of

TM in a neighborhood of v and of TN in a neighborhood of DF (v).

DF (x1, .., xm, v1, .., vm) = (F1(x), .., Fn(x),
∑m

i=1
∂F1

∂xi
(x)vi, ...,

∑m
i=1

∂Fn

∂xi
(x)vi).

The latter is smooth since F is smooth.

3.4 Smooth Vector Fields

Definition 3.4.1. Let M be a smooth manifold. A vector field is a continuous

map X : M → TM with the property that π ◦X = IdM .
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Definition 3.4.2. (Smooth Vector Fields) Let M be a smooth manifold and

X : M → TM be a vector field. X is said to be a smooth vector field if X is

smooth map (between the corresponding manifolds).

Proposition 3.4.3. Let M be a smooth manifold, p ∈ M , and v ∈ Tp(M), then

there exists a smooth vector field X on M , such that X(p) = v. We call X an

extension of v.

Proof. See Proposition 8.7 of [Lee, 2013].

Proposition 3.4.4. Let M be a smooth manifold of dimension m and let X : M →

TM be a vector field. Let (U, (x1, ..., xm)) be a coordinate chart. Then the re-

striction of X to U is smooth if and only if its component functions with respect

to this chart are smooth.

Proof. Let (x1, .., xm, v1, .., vm) be the natural coordinates on π−1(U) associated

with the chart (U, (x1, ..., xm)).

X(x1, .., xm) = (x1, .., xm, X1(x), .., Xm(x))

where Xi denotes the ith component function of X in (x1, ..., xm) coordinates.

It follows directly that smoothness of X in U is equivalent to smoothness of its

component functions.

We will use the notation X(M) to denote the set of all smooth vector fields

on M . It is a vector space under point-wise addition and scalar multiplication:

(aX + bY )p = aXp + bYp.

28



In addition, smooth vector fields can be multiplied by smooth real-valued func-

tions: if f ∈ C∞(M) and X ∈ X(M), we define fX : M → TM by:

(fX)p = f(p)Xp.

By expressing fX in some coordinate charts and by Proposition 3.4.4, it is clear

that fX is a smooth vector field whenever f ∈ C∞(M) and X ∈ X(M). Thus

the above operation makes X(M) a module over the ring C∞(M).

Proposition 3.4.5. Let f ∈ C∞(M) and X ∈ X(M). Consider the function

Xf : M → R, defined by

(Xf)(p) = Xpf.

Then Xf is smooth.

Proof. For p ∈ M we can choose smooth coordinates (x1, .., xm) on a neighbor-

hood U of p, then for x ∈ U we can write

Xf(x) =

(
m∑
i=1

Xi(x)
∂

∂xi
|x

)
f =

m∑
i=1

Xi(x)
∂f

∂xi
(x).

Since the component functions Xi are smooth on U by Proposition 3.4.4, it follows

that Xf is smooth in U . Since this is true for all p ∈ M and U a neighborhood

of p, Xf is smooth on M .

As a consequence of the preceding proposition, every smooth vector field

X ∈ X(M) defines a map X : C∞(M) → C∞(M) by f 7−→ Xf . This map is

clearly linear and X(fg) = fXg + gXf for all f, g ∈ C∞(M).

Definition 3.4.6. (Lie bracket). Let M be a smooth manifold. For X, Y ∈

X(M), we define the Lie bracket of X and Y to be the operator [X, Y ] : C∞(M)→
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C∞(M)

[X, Y ]f = X(Y f)− Y (Xf)

Proposition 3.4.7. Let M be a smooth manifold, then the Lie bracket of two

smooth vector fields is a smooth vector field.

Proof. See Lemma 8.25 of [Lee, 2013].

Proposition 3.4.8. Let M be a smooth manifold, then the Lie bracket satisfies

the following identities for all X, Y, Z ∈ X(M) :

1. Bilinearity: For a, b ∈ R,

[aX + bY, Z] = a[X,Z] + b[Y, Z]

[Z, aX + bY ] = a[Z,X] + b[Z, Y ]

2. Antisymmetry:

[X,X] = 0

3. Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

4. For all f, g ∈ C∞(M),

[fX, gY ] = fg[X, Y ] + (fXg)Y − (gY f)X

Proof. See Proposition 8.28 of [Lee, 2013].
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Definition 3.4.9. Let M be a smooth manifold, and I ⊆ R be an open interval.

A smooth map γ : I →M is called a smooth curve.

If γ : I → M is a smooth curve, it is seen that Dγ : TI → TM is smooth.

In what follows we will simply write γ′(t) instead of Dtγ. Note that ∀t ∈ I,

γ′(t) ∈ Tγ(t)M .

Definition 3.4.10. Let M be a smooth manifold, and V ∈ X(M). A smooth

curve γ : I →M is said to be an integral curve of V if

γ′(t) = Vγ(t), ∀t ∈ I.

Definition 3.4.11. (Flow). Let M be a smooth manifold. A flow domain for

M is an open subset D ⊆ R ×M with the property that for each p ∈ M the set

D(p) = {t ∈ R : (t, p) ∈ D} is an open interval containing 0. A flow on M is a

continuous map θ : D → M , where D ⊆ R ×M is a flow domain, that satisfies

the following group laws: ∀p ∈M ,

θ(0, p) = p

and for all s ∈ D(p) and t ∈ Dθ(s,p) such that s+ t ∈ D(p),

θ(t, θ(s, p)) = θ(t+ s, p).

If θ is smooth, the infinitesimal generator of θ at p is defined by

Vp =
∂θ

∂t
(0, p).

If ∀p ∈ M , D(p) = R, θ is said to be a global flow on M (also called a
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one-parameter group action).

Proposition 3.4.12. Let M be a smooth manifold and θ : D → M be a smooth

flow, then the infinitesimal generator V of θ is a smooth vector field, and each

curve θ(·, p) : D(p) →M is an integral curve of V .

Proof. See Proposition 9.11 of [Lee, 2013].

Definition 3.4.13. A maximal integral curve is an integral curve that can-

not be extended to an integral curve on any larger open interval, and a maximal flow

is a flow that admits no extension to a flow on any larger flow domain.

Theorem 3.4.14. (Fundamental Theorem on Flows) Let M be a smooth mani-

fold and V be a smooth vector field. Then there exists a unique smooth maximal

flow θ : D → M whose infinitesimal generator is V . This flow has the following

properties:

1. For each p ∈M , the curve θ(·, p) : D(p) →M is the unique maximal integral

curve of V satisfying γ(0) = p.

2. If s ∈ D(p), then D(θ(s,p)) is the interval D(p) − s.

3. For each t ∈ R, the set Mt = {p ∈M : (t, p) ∈ D} is open and θ(t, ·) : Mt →

M−t is a diffeomorphism with inverse θ(−t, ·).

Proof. See Theorem 9.12 of [Lee, 2013].

Remark 3.4.15. We call the unique smooth maximal flow whose infinitesimal

generator is V , the flow generated by V . We say a vector field is complete if it

generates a global flow.

Theorem 3.4.16. Let M be a smooth manifold. Then every compactly supported

smooth vector field on M is complete.
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Proof. See Theorem 9.16 of [Lee, 2013].

3.5 Embedded Submanifolds

Definition 3.5.1. Let M and N be two smooth manifolds, p ∈M and F : M →

N be a smooth map. We define the rank of F at p to be the rank of the linear

map DpF : TpM → TF (p)N . If F has the same rank r at every point, we say that

it has constant rank and we write rankF = r.

Remark 3.5.2. Note that a rank of a smooth map F : M → N is at each point

is bounded above by the minimum of {dimM, dimN}. If the rank of F is equal

to this upper bound at some point p ∈M , we say that F has a full rank at p, and

if F has full rank everywhere, we say that F has full rank.

Definition 3.5.3. (Submersions and Immersions). Let M and N be two smooth

manifolds, F : M → N be a smooth map. F is called a smooth submersion if its

differential is surjective at each point, equivalently if F has a constant rank and

rankF = dimN . F is called a smooth immersion if its differential is injective at

each point, equivalently if F has a constant rank and rankF = dimM .

Proposition 3.5.4. Let M and N be two smooth manifolds of dimensions m and

n respectively, p ∈ M and F : M → N be a smooth map. If DpF is surjective,

then there exists a neighborhood U of p such that F |U is a submersion. If DpF is

injective, then there exists a neighborhood U of p such that F |U is an immersion.

Proof. Assume that DpF is surjective. Choose any smooth coordinates for M

near p and N near F (p) and consider the Jacobian matrix J of F in these coordi-

nates. The rank of the Jacobian matrix at p is n, then J has an n×n submatrix

A of nonzero determinant at p. det(A) is continuous near p, then there exists a
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neighborhood U of p such that det(A) 6= 0 on U . Thus the rank of J is n in U ,

so that the rank of F is n in U . Therefore F |U is a submersion. We use the exact

same argument to prove that if DpF is injective, then there exists a neighborhood

U of p such that F |U is an immersion.

Remark 3.5.5. Let M be a smooth manifold and p ∈M . A smooth chart (U,ϕ)

is said to be centered at p if p ∈ U and ϕ(p) = 0. It is always possible to choose

a smooth chart centered at p by starting from any chart (U,ϕ) containing p, and

defining the map ϕ̃ on U by ϕ̃(x) = ϕ(x)−ϕ(p) for all x ∈ U . (U, ϕ̃) is smoothly

compatible with all the coordinate charts on M and (U, ϕ̃) is centered at p.

Theorem 3.5.6. (Inverse Function Theorem for Smooth Manifolds). Let M

and N be two smooth manifolds, and F : M → N be a smooth map. If for some

p ∈ M , DpF is invertible, then there exist connected neighborhoods U0 of p and

V0 of F (p) such that F |U0 : U0 → V0 is a diffeomorphism.

Proof. Since DpF is invertible then TpM and TF (p)N have the same dimension, so

M and N have the same dimension, say n. Choose smooth charts (U,ϕ) centered

at p and (V, ψ) centered at F (p), with F (U) ⊆ V . Then F̃ = ψ ◦ F ◦ ϕ−1 is

a smooth map from an open set Ũ = ϕ(U) ⊆ Rn into Ṽ = ϕ(V ) ⊆ Rn, with

F̃ (0) = 0. Now D0F̃ = DF (p)ψ ◦DpF ◦D0(ϕ
−1), so D0F̃ is invertible, thus by the

inverse function theorem there exist open connected subsets Ũ0 ⊆ Ũ and Ṽ0 ⊆ Ṽ

containing 0 such that F̃ |Ũ0
: Ũ0 → Ṽ0 is a diffeomorphism. Then U0 = ϕ−1(Ũ0)

and V0 = ϕ−1(Ṽ0) are connected neighborhoods of p and F (p), respectively, and

it follows from composition that F |U0 is a diffeomorphism from U0 to V0.

Theorem 3.5.7. (Rank Theorem). Let M and N be smooth manifolds of di-

mensions m and n respectively, and F : M → N be a smooth map with constant

rank r. For each p ∈M there exist smooth charts (U,ϕ) for M centered at p and
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(V, ψ) for N centered at F (p) such that F (U) ⊆ V , in which F has a coordinate

representation of the form

F̃ (x1, ..., xr, xr+1, ..., xm) = (x1, ..., xr, 0, ..., 0)

In particular, if F is a smooth submersion this become

F̃ (x1, ..., xn, xn+1, ..., xm) = (x1, ..., xn)

and if F is a smooth immersion it becomes

F̃ (x1, ..., xm) = (x1, ..., xm, 0, ..., 0).

Proof. See Theorem 4.12 of [Lee, 2013].

Theorem 3.5.8. (Global Rank Theorem). Let M and N be smooth manifolds,

let F : M → N be a smooth map with constant rank.

1. If F is surjective, then it is a smooth submersion.

2. If F is injective, then it is a smooth immersion.

3. If F is bijective, then it is a diffeomorphism.

Proof. See Theorem 4.14 of [Lee, 2013].

Definition 3.5.9. (Embeddings). Let M and N be two smooth manifolds. We

say that a map F : M → N is a smooth embedding of M into N if F is a smooth

immersion and a topological embedding, i.e., a homeomorphism onto its image

F (M) ⊆ N .
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Definition 3.5.10. (Embedded Submanifold). Let M be a smooth manifolds. A

subset S ⊆ M is said to be an embedded submanifold of M if S is a topological

manifold in the subspace topology, endowed with a smooth structure that makes

the inclusion map ι : S ↪→M a smooth embedding.

If S is an embedded submanifold of M , dimS < dimM since the inclusion

map is a smooth embedding. The difference dimM -dimS is called the codimen-

sion of S in M .

Remark 3.5.11. Let M be a smooth manifold, and S ⊆ M be an embedded

submanifold, and let p ∈ S. The inclusion ι : S ↪→ M induces an injective linear

map:

Dpι : TpS ↪→ TpM

So that Dpι(TpS) ∼= TpS.

We will identify TpS with the subspace Dpι(TpS) ⊆ TpM .

Theorem 3.5.12. Let M be a smooth manifold of dimension n and S ⊆ M . S

is an embedded submanifold of M of dimension k if and only if for all p ∈ S

there exists a neighborhood U of p in M and a diffeomorphism ϕ : U → ϕ(U)

satisfying:

ϕ(U ∩ S) = ϕ(U) ∩ {(x1, ..., xk, 0, ..., 0) : (x1, ..., xk) ∈ Rk}

Proof. See Theorem 5.8 of [Lee, 2013].

Proposition 3.5.13. Let M be a smooth manifold of dimension n and S ⊆ M .

S is an embedded submanifold of M of dimension k if and only if for all p ∈ S

there exists a neighborhood U of p in M and a smooth submersion F : U → Rn−k
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such that U ∩ S = F−1({0}). We call such submersions local defining maps for

S.

Proof. See Proposition 5.16 of [Lee, 2013].

Proposition 3.5.14. Let M be a smooth manifold of dimension n, and S ⊆ M

be an embedded submanifold of dimension k, and let p ∈ S. If F : U → Rn−k is

a local defining map for S in some neighborhood U of p, then

TpS = kerDpF

where DpF : TpM → TF (p)Rn−k is the differential of F at p, and TpS is identified

with the subspace Dpι(TpS) ⊆ TpM by Remark 3.5.11.

Proof. See Proposition 5.38 in [Lee, 2013].

Theorem 3.5.15. (Whitney Embedding Theorem) Every smooth manifold of di-

mension n admits a smooth embedding into R2n.

Proof. See Theorem 5 of [Whitney, 1944].

3.6 The Cotangent Bundle

Definition 3.6.1. (The Cotangent Space) Let M be a smooth manifold and p ∈

M . We define the cotangent space at p, denoted by T ∗pM , to be the dual space to

TpM :

T ∗pM = (TpM)∗

Elements of T ∗pM are called tangent covectors at p.

If (x1, . . . , xn) is a smooth coordinate chart containing p, then
(

∂
∂x1
|p, . . . , ∂

∂xn
|p
)
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is a basis for TpM . This coordinate basis gives rise to a dual basis for T ∗pM ,

denoted by (dx1|p, . . . , dxn|p), such that

dxi|p
(

∂

∂xj
|p
)

= δij ∀i, j ∈ {1, . . . , n}

Definition 3.6.2. (The Cotangent Bundle) Let M be a smooth manifold. We

define the cotangent bundle of M , denoted by T ∗M , to be the coproduct:

T ∗M =
∐
p∈M

T ∗pM

with the natural projection map π : T ∗M →M that maps a covector ω ∈ T ∗pM to

p.

Remark 3.6.3. Let M be a smooth manifold of dimension n. Following the same

construction of Remark 3.3.2, we can define a smooth structure on T ∗M , which

turns T ∗M into a smooth manifold, on which π : T ∗M → M is a smooth map.

Given a smooth chart (U,ϕ) for M , with ϕ = (x1, . . . , xn), we obtain a smooth

chart (Ũ , ϕ̃) for T ∗M , with Ũ = π−1(U) and ϕ̃ : Ũ → R2n defined by:

ϕ(p,
n∑
i=1

ξidxi|p) = (x1(p), . . . , xn(p), ξ1, . . . , ξn)

See Proposition 11.9 of [Lee, 2013] for more details.

Definition 3.6.4. (Covector Field) Let M be a smooth manifold. A covector

field is a continuous map ω : M → T ∗M such that π ◦ ω = IdM . If moreover

ω : M → T ∗M is a smooth map (between the corresponding manifolds), we say

that ω is a smooth covector field.

Proposition 3.6.5. Let M be a smooth manifold and ω : M → T ∗M be a covector
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field, then the following are equivalent:

1. ω is smooth.

2. In every coordinate chart, the component functions of ω are smooth.

3. Each point of M is contained in some coordinate chart in which ω has

smooth component functions.

4. For every smooth vector field X ∈ X(M), the function ω(X) : M → R is

smooth on M .

5. For every open subset U ⊆ M and every smooth vector field X on U , the

function ω(X) : U → R is smooth on U .

Proof. See Proposition 11.11 of [Lee, 2013].

We will use the notation X∗(M) to denote the set of all smooth covector

fields on M . It is a vector space under point-wise addition and scalar multiplica-

tion. In addition, smooth covector fields can be multiplied by smooth real-valued

functions: if f ∈ C∞(M) and ω ∈ X∗(M), we define fω : M → T ∗M by:

(fω)p = f(p)ωp.

The above operation makes X∗(M) a module over the ring C∞(M).

Definition 3.6.6. Let M be a smooth manifold and f ∈ C∞(M). We define the

differential of f at p, dfp : TpM → R, by

dfp(v) = vf ∀v ∈ TpM
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and we define the differential map of f, df : M → T ∗M to be the unique map such

that

dfp(v) = vf ∀p ∈M and v ∈ TpM

Proposition 3.6.7. Let M be a smooth manifold and f ∈ C∞(M). Then

df : M → T ∗M is a smooth covector field.

Proof. For every p ∈M , dfp ∈ T ∗pM , df is a covector field. Now for every smooth

vector field X ∈ X(M), df(X) = Xf : M → R is smooth on M , hence df is a

smooth covector field by Proposition 3.6.5.

Remark 3.6.8. (Calculating the Differential in Coordinates) Let M be a smooth

manifold of dimension n, and p ∈M , and let (U,ϕ) be a smooth coordinate chart

containing p, with ϕ = (x1, . . . , xn). For f ∈ C∞(M), dfp ∈ T ∗pM , so expressing

dfp in the basis (dx1|p, . . . , dxn|p) of T ∗pM we get

dfp =
n∑
i=1

ai(p)dxi|p

for some maps ai : U → R. Applying both side to the coordinate basis of TpM ,

∂
∂xk

, for k ∈ {1, . . . , n} we get

ak = dfp

(
∂

∂xk

)
=

∂f

∂xk
(p)

so that dfp =
∑n

i=1
∂f
∂xk

(p)dxi|p.

3.7 Riemannian Metrics

Definition 3.7.1. Let M be a smooth manifold and p ∈M . Consider the space of

bilinear forms on TpM , T ∗pM⊗T ∗pM . We define the bundle of covariant 2-tensors
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on M by

T 2T ∗M =
∐
p∈M

(T ∗pM ⊗ T ∗pM)

with the natural projection map π : T 2T ∗M → M that maps a bilinear form

L ∈ T ∗pM ⊗ T ∗pM to p.

Remark 3.7.2. Let M be a smooth manifold of dimension n, p ∈M , and (U,ϕ)

be a smooth coordinate chart containing p, with ϕ = (x1, . . . , xn). A basis of

T ∗pM ⊗ T ∗pM is given by

{dxi|p ⊗ dxj|p : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

Remark 3.7.3. Let M be a smooth manifold of dimension n. Following the same

construction of Remark 3.3.2, we can define a smooth structure on T ∗M , which

turns T 2T ∗M into a smooth manifold, on which π : T 2T ∗M → M is a smooth

map. Given a smooth chart (U,ϕ) for M , with ϕ = (x1, . . . , xn), we obtain a

smooth chart (Ũ , ϕ̃) for T 2T ∗M , with Ũ = π−1(U) and ϕ̃ : Ũ → Rn×Rn2
defined

by:

ϕ̃(p,
n∑

i,j=1

µi,jdxi|p ⊗ dxj|p) = (x1(p), . . . , xn(p), µ1,1, µ1,2, . . . , µn,1, . . . , µn,n)

See the definition of (smooth) vector bundles, Chapter 10 in [Lee, 2013], for a

general approach, and refer to the proof of Proposition 3.3.3.

Remark 3.7.4. Let M be a smooth manifold. A covariant 2-tensor field is

a continuous map g : M → T 2T ∗M satisfying π ◦ g = IdM . Moreover if g is a

smooth map, we say that g is a smooth covariant 2-tensor field.

Proposition 3.7.5. Let M be a smooth manifold and let g : M → T 2T ∗M be a
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covariant 2-tensor field. Then the following are equivalent.

1. g is smooth.

2. In every smooth coordinate chart, the component functions of g are smooth.

3. Each point of M is contained in some coordinate chart in which g has

smooth component functions.

4. For every smooth vector fields X, Y ∈ X(M), the map g(X, Y ) : M → R ,

defined by

g(X, Y )(p) = gp(Xp, Yp)

is smooth.

5. For every U ⊆M and X, Y ∈ X(U), g(X, Y ) : U → R is smooth.

Proof. See Proposition 12.19 of [Lee, 2013].

Definition 3.7.6. (Riemannian Metric) Let M be a smooth manifold. A Rie-

mannian metric on M is a smooth symmetric covariant 2-tensor field on M that

is positive definite at each point; i.e. a Riemannian metric is a smooth map

g : M → T 2T ∗M such that for every p ∈ M , gp ∈ Σ2(TpM), and gp(v, v) > 0

∀v ∈ TpM \ {0}.

For each p ∈ M , gp is an inner product on TpM , so we often use the notation

〈v, w〉g to denote the real number gp(v, w) for v, w ∈ TpM .

Definition 3.7.7. (Riemannian Manifold) A Riemannian manifold is a pair

(M, g), where M is a smooth manifold and g is a Riemannian metric on M .

Remark 3.7.8. Let M be a smooth manifold of dimension n, g be a Riemannian

metric on M , p ∈M , and (U,ϕ) be a smooth coordinate chart containing p, with
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ϕ = (x1, . . . , xn). In the given coordinate chart, g can be written as

g =
n∑

i,j=1

gijdxi ⊗ dxj

where gij ∈ C∞(U) for every i, j ∈ {1, . . . , n}, and the matrix (gij(x)) is a

symmetric positive definite matrix for every point x ∈ U . Since gij = gji for all

i, j ∈ {1, . . . , n}, we can write g in terms of the symmetric products:

g =
n∑

i,j=1

gijdxi ⊗ dxj

=
1

2

n∑
i,j=1

(gijdxi ⊗ dxj + gjidxi ⊗ dxj)

=
1

2

n∑
i,j=1

(gijdxi ⊗ dxj + gijdxj ⊗ dxi)

=
n∑

i,j=1

gij
1

2
(dxi ⊗ dxj + dxj ⊗ dxi)

=
n∑

i,j=1

gijdxidxj

Proposition 3.7.9. Every smooth manifold admits a Riemannian metric.

Proof. See Proposition 13.3 of [Lee, 2013].

Definition 3.7.10. Let (M, g) be a Riemannian manifold, and p ∈ M . We

define the norm of a tangent vector v ∈ TpM by |v|g = 〈v, v〉
1
2
g .

Definition 3.7.11. Let (M, g) be a Riemannian manifold, and p ∈ M . We say

that two tangent vectors v, w ∈ TpM are orthogonal if 〈v, w〉g = 0.

Definition 3.7.12. Let (M, g) be a Riemannian manifold, and γ : [a, b]→M be
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a piecewise smooth curve. We define the length of γ to be

Lg(γ) =

∫ b

a

|γ′(t)|gdt.

Proposition 3.7.13. Let (M, g) be a Riemannian manifold, and γ : [a, b]→M be

a piecewise smooth curve. If γ̃ is a reparameterization of γ, then Lg(γ) = Lg(γ̃).

Proof. See Proposition 13.25 in [Lee, 2013].

Definition 3.7.14. Let (M, g) be a connected Riemannian manifold. For p, q ∈

M , denote by S(p, q) the set of all piecewise smooth curves on M whose start point

is p and end point is q. We define the Riemannian distance function dg : M ×

M → R by

dg(p, q) = inf
γ∈S(p,q)

Lg(γ)

We will see in the following theorem that the above function is in fact a distance

function on M .

Theorem 3.7.15. Let (M, g) be a connected Riemannian manifold. Then M is

a metric space with the Riemannian distance function, and the metric topology is

the same as the original manifold topology.

Proof. See Theorem 13.29 in [Lee, 2013].

Corollary 3.7.16. Every smooth manifold is metrizable.

Proof. Let M be a smooth manifold. By Proposition 3.7.9, M admits a Rieman-

nian metric, say g. If M is connected then M is metrizable by Theorem 3.7.15.

For the general case, let {Mi} be the connected components of M , and choose a

point pi ∈Mi for each i. For x ∈Mi and y ∈Mj, we define the distance between

x and y, d(x, y), as follows:
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� If i = j, let d(x, y) = dg(x, y) be the Riemannian distance function defined

on the connected component Mi.

� If i 6= j, let

d(x, y) = dg(x, pi) + 1 + dg(pj, y)

It follows directly that d : M ×M → R is a distance function, and hence M is

metrizable.

Remark 3.7.17. The above corollary can be proved alternatively by using the

Whitney embedding theorem, see Theorem 3.5.15. Given M a smooth manifold

of dimension n, there exists a smooth embedding i : M → R2n. By restricting the

metric of R2n to i(M), we get that i(M) is metrizable, thus so is M .

Proposition 3.7.18. Let (M, g) be a Riemannian manifold. We define the map

ĝ : TM → T ∗M as follows. For each p ∈M and v ∈ TpM we let ĝ(v) ∈ T ∗pM be

the covector defined by

ĝ(v)(w) = gp(v, w) ∀ w ∈ TpM.

Then ĝ is a diffeomorphism, and for all p ∈ M , ĝ(v) : TpM → T ∗pM is an iso-

morphism.

Proof. See Chapter 13 in [Lee, 2013]. In fact ĝ is a smooth bundle isomorphism,

see Chapter 10 of [Lee, 2013] for the definition.

Remark 3.7.19. Let (M, g) be a Riemannian manifold. Let p ∈ M , and let

(U,ϕ) be a smooth coordinate chart containing p, with ϕ = (x1, . . . , xn). Then

we can write g =
∑n

i,j=1 gijdxidxj where gij ∈ C∞(U) for every i, j ∈ {1, . . . , n}.
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For X =
∑n

i=1Xi
∂
∂xi
, Y =

∑n
i=1 Yi

∂
∂xi
∈ X(U), we have

ĝ(X)(Y ) =
n∑

i,j=1

gijXiYj

so the covector field ĝ(X) has the coordinate expression

ĝ(X) =
n∑

i,j=1

gijXidxj

So for every q ∈ U , the matrix of the linear isomorphism ĝ : TqM → T ∗qM is

the transpose of the matrix of g, but because (gij(q)) is symmetric, we conclude

that (gij(q)) is the matrix of ĝ relative to the basis ( ∂
∂x1
|q, . . . , ∂

∂xn
|q) of TqM and

(dx1|q, . . . , dxn|q) of T ∗qM . This shows that (gij(q)) is invertible. Letting (hij(q))

be the inverse of (gij(q)) at every point q ∈ M ( hij are smooth maps defined

on U , by the smoothness of ĝ−1 ) the map ĝ−1 : T ∗qM → TqM has (hij(q)) as a

matrix representation in the given basis, i.e. for every ω =
∑n

i=1 ωidxi ∈ X∗(U),

ĝ−1(ω) =
n∑

i,j=1

hijωj
∂

∂xi
.

Definition 3.7.20. (The Gradient) Let (M, g) be a Riemannian manifold, and

f ∈ C∞(M), we define the gradient of f to be the vector field

grad f = ĝ−1(df).

Remark 3.7.21. Let (M, g) be a Riemannian manifold, and f ∈ C∞(M). For

X ∈ X(M) we have

〈grad f,X〉g = ĝ(grad f)(X) = df(X) = Xf
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Now assume that Y is a vector field satisfying 〈Y,X〉g = Xf , ∀X ∈ X(M), then

ĝ(Y )(X) = df(X) for all X ∈ X(M), so the covector fields df and ĝ(Y ) are

equal, thus Y = ĝ−1(df), so grad f can be characterized as the unique vector field

satisfying

〈grad f, ·〉g = df

In a smooth coordinate chart (x1, . . . , xn), we have

grad f = ĝ−1(df) =
n∑

i,j=1

hij
∂f

∂xj

∂

∂xi
.

In particular this shows that grad f is smooth.

3.8 Complex Manifolds

In this section we will define complex manifolds and formulate some of their

properties. The material of this section is taken from [Forstnerič, 2017]. We will

begin by defining the notion of holomorphicity, or complex differentiability. Let

z = (z1, . . . , zn) denote the complex coordinates on Cn. For j ∈ {1, . . . , n}, write

zj = xj + i yj, where xj, yj ∈ R. Then xj = 1
2
(zj + z̄j) and yj = 1

2 i
(zj − z̄j), where

z̄j = xj − i yj is the complex conjugate of zj. The coordinate map

ϕ : Cn → R2n

defined by ϕ(z1, . . . , zn) =
(
1
2
(z1 + z̄1),

1
2 i

(z1 − z̄1), . . . , 12(zn + z̄n), 1
2 i

(zn − z̄n)
)

is

a homeomorphism, where Cn is equipped with the usual topology. Then Cn is

a topological manifold of dimension 2n, and the atlas A = {(Cn, ϕ)} is smooth

since it contains only one chart, so A determines a smooth structure on Cn, mak-
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ing Cn a smooth manifold of dimension 2n.

For j ∈ {1, . . . , n} we define the following differential operators on a smooth

function f : Cn → C

∂f

∂zj
=

1

2

(
∂f

∂xj
− i

∂f

∂yj

)
,

∂f

∂z̄j
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)

and the corresponding forms

dzj = dxj + i dyj, dz̄j = dxj − i dyj

It is easy to verify that

dzj

(
∂

∂zk

)
= δjk, dz̄j

(
∂

∂zk

)
= 0

dzj

(
∂

∂z̄k

)
= 0, dz̄j

(
∂

∂z̄k

)
= δjk

for all j, k ∈ {1, . . . , n}, and

df =
n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z̄j
dz̄j

Definition 3.8.1. Let D ⊆ Cn be a domain, and f : D → C be a smooth function.

We say that f is holomorphic if the differential dfz is C-linear at every point

z ∈ D. Equivalently, f is holomorphic if and only if

∂f

∂z̄j
= 0, for j ∈ {1, . . . , n}

Remark 3.8.2. Let D ⊆ Cn be a domain, and f : D → C be a smooth function.
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Writing f = f1 + i f2, where f1 is the real part of f and f2 is the imaginary part

of f , we see that f is holomorphic if and only if

∂f1
∂xj

=
∂f2
∂yj

and
∂f2
∂xj

= −∂f1
∂yj

for all j ∈ {1, . . . , n}. The above system is called the Cauchy–Riemann equations.

Definition 3.8.3. Let D ⊆ Cn be a domain, and f = (f1, . . . , fm) : D → Cm be

a smooth function. We say that f is holomorphic if each component fj : D → C

is holomorphic. When n = m, we say that f is biholomorphic onto its image

D′ = f(D) if f : D → D′ is holomorphic, bijective, and its inverse f−1 : D′ → D

is holomorphic.

Remark 3.8.4. An injective holomorphic map of a domain D ⊆ Cn to Cn is

always biholomorphic onto its image; see Chapter I, Theorem 2.14 of [Range,

1986].

Definition 3.8.5. (Complex Manifolds) Let M be a topological manifold of di-

mension 2n. A complex atlas on M is a collection A = {(Uα, ϕα)}α∈I , where

{Uα}α∈I is an open cover of M and ϕα is a homeomorphism onto an open set of

Cn such that for every α, β ∈ I, the transition map

ϕα ◦ ϕ−1β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

is biholomorphic.

Two complex atlases on M are said to be holomorphically compatible if their union

is also a complex atlas. Each complex atlas A is contained in a unique maximal

complex atlas, called the complex structure determined by A. Two complex atlases

determine the same complex structure if and only if they are holomorphically
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compatible.

A complex manifold of complex dimension n is a topological manifold of dimension

2n equipped with a complex structure.

Definition 3.8.6. Let M be a complex manifold of dimension n. A function

f : M → C is said to be holomorphic if for any chart (U,ϕ) of the complex

structure on M , the function

f ◦ ϕ−1 : ϕ(U)→ C

is holomorphic on the open set ϕ(U) ⊆ Cn.

Definition 3.8.7. Let M and N be complex manifolds of dimensions m and n,

respectively. A function f : M → N is said to be holomorphic if for any p ∈ M

there exist complex charts (U,ϕ) on M , (V, ψ) on N such that p ∈ U , f(U) ⊆ V ,

and the map

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) ⊆ Cn

is holomorphic on the open set ϕ(U) ⊆ Cm. The choice of the charts is unim-

portant in the definition since the charts in a complex atlas are holomorphically

compatible. If f is holomorphic, bijective, and f−1 : N → M is holomorphic,

then we say that f is biholomorphic. By Remark 3.8.4, every bijective holomor-

phic map between complex manifolds is biholomorphic. A biholomorphic map

f : M → M is called a holomorphic automorphism of the complex manifold M ,

and we denote the collection of all automorphisms on M by Aut(M). (Aut(M), ◦)

is a clearly group, we call Aut(M) the holomorphic automorphism group of M .

Definition 3.8.8. Let D ⊆ Cn be a domain, and f = (f1, . . . , fm) : D → Cm be

a holomorphic map. We define the complex rank of f at a point p ∈ D, denoted
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by rankp f , to be the rank of the m× n Jacobian matrix

Jpf =

(
∂fj
∂zk

)

Clearly rankp f ≤ min{n,m}. f is called a holomorphic immersion at p if

rankp f = n, and f is called a holomorphic submersion at p if rankp f = m.

A holomorphic immersion that is a topological embedding is called a holomor-

phic embedding. These notions, being local, extend to holomorphic maps between

complex manifolds.

Definition 3.8.9. Let M be a complex manifold of dimension n. A subset S

of M is said to be a complex submanifold of dimension k ∈ {0, 1, . . . , n}, and

codimension n−k, if every point p ∈ S admits an open neighborhood U ⊂M and

a holomorphic chart ϕ : U → U ′ ⊂ Cn such that ϕ(U∩S) = ϕ(U)∩(Ck×{0}n−k).

Definition 3.8.10. Let M be a complex manifold of dimension n. A subset

A of M is said to be a complex (analytic) subvariety of M if for every point

p ∈ A there exist an open neighborhood U ⊂ M of p and holomorphic functions

f1, . . . , fd : U → U ′ ⊂ Cn such that

A ∩ U = {x ∈ U : f1(x) = · · · = fd(x) = 0}.

Definition 3.8.11. (The Tangent Bundle) Let M be a complex manifold of di-

mension n. The complex structure on M defines in particular a (real) smooth

structure making M a (real) smooth manifold of dimension 2n. Let TM be the

real tangent bundle of the smooth manifold M . The complexification of TM ,

CTM = TM ⊗C ∼=
∐

p∈M TpM ⊗C, is called the complexified tangent bundle of

M , and a map from M to CTM = TM ⊗C that send every point in p ∈M to a
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vector in TpM ⊗ C are called a complex vector field on M .

There exists a unique real linear map J : TM → TM , called the almost complex

structure operator (see Section 1.6 in [Forstnerič, 2017] ), which is given in any

local holomorphic coordinate chart (z1, . . . , zn), with zj = xj + i yj, by

J
∂

∂xj
=

∂

∂yj
, J

∂

∂yj
= − ∂

∂xj

J extends to a C-linear map on CTM by J(v ⊗ α) = J(v)⊗ α for v ∈ TM and

α ∈ C. Since J2 = −Id, the eigenvalues of J are i and − i. Hence we have the

decomposition

CTM = T 1,0M ⊕ T 0,1M

where T 1,0M is the i eigenspace and T 0,1M is the − i eigenspace of J . In any

holomorphic coordinates (z1, . . . , zn) on an open set U ⊂M we have

T 1,0M = SpanC{
∂

∂z1
, . . . ,

∂

∂zn
}, T 0,1M = SpanC{

∂

∂z̄1
, . . . ,

∂

∂z̄n
}

where

∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
We have an R-linear isomorphism φ : TM → T 1,0M given by

φ(v) =
1

2
(v − i J(v))

for every v ∈ TM . In any local holomorphic coordinates φ is given by

n∑
j=1

(
aj

∂

∂xj
+ bj

∂

∂yj

)
7→

n∑
j=1

(aj + i bj)
∂

∂zj
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Remark 3.8.12. For z ∈ Cn, using the isomorphism TzCn ∼= T 1,0
z Cn ∼= Cn, we

identify a tangent vector at z, v =
∑n

i=j vj
∂
∂zj
∈ T 1,0

z Cn with (v1, . . . , vn) ∈ Cn.

Definition 3.8.13. Let M be a complex manifold. A real vector field V : M →

TM is said to be holomorphic if φ(V ) is a holomorphic section of T 1,0M . Equiva-

lently V is holomorphic iff in any local holomorphic coordinate chart (z1, . . . , zn),

with zj = xj+i yj, and V =
∑n

j=1

(
aj

∂
∂xj

+ bj
∂
∂yj

)
, the functions aj+i bj : M → C

are holomorphic.

Proposition 3.8.14. Let M and N be complex manifolds, and let JM and JN be

the almost complex structure operators on M and N respectively. A smooth map

f : M → N is holomorphic if and only if the differential of f commutes with the

almost complex structure operators on M and N :

df ◦ JM = JN ◦ df

In this case df respects the decomposition CTM = T 1,0M⊕T 0,1M and dfp : T 1,0
p M →

T 1,0
f(p)N is C-linear for every p ∈M .

Proof. See Proposition 1.6.3 of [Forstnerič, 2017].

Definition 3.8.15. Let M be a complex manifold of dimension n. T ∗M is the

(real) cotangent bundle; i.e. the real dual of the tangent bundle TM . The R-linear

map J of CTM induces the dual linear map J∗ of the complexified cotangent

bundle CT ∗M with (J∗)2 = −Id so we have the decomposition

CT ∗M = T ∗1,0M ⊕ T ∗0,1M

into the i and − i eigenspaces of J∗. In any holomorphic coordinates (z1, . . . , zn)

on an open subset U ⊂ M and a point p ∈ U , the forms dz1, . . . , dzn at p are
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complex a basis of T ∗1,0p M , while dz̄1, . . . , dz̄n are a complex basis of T ∗0,1p M .

Moreover T ∗1,0M and T ∗0,1M are the complex dual spaces of T 1,0M and T 0,1M ,

respectively.

Definition 3.8.16. Let M be a complex manifold and denote by D the open

unit disc in C; D = {z ∈ C : |z| < 1}. An upper semicontinuous function

u : M → [−∞,+∞] which is not identically −∞ on any connected component of

M is said to be plurisubharmonic if for every continuous map f : D→ M which

is holomorphic in D we have the submeanvalue property

u (f(0)) ≤
∫ 2π

0

u
(
f(ei θ)

) dθ
2π
.

Definition 3.8.17. Let z = (z1, . . . , zn) ∈ Cn, and let ρ : U → C be a C2

function, where U be an open neighborhood of z in Cn. We define the complex

Hessian of ρ at z to be the Hermitian bilinear form Hρ,z : TzCn×TzCn → C given

by

Hρ,z(v, w) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)vjw̄k

for v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ TzCn ∼= Cn.

The associated Hermitian quadratic form is called the Levi form of ρ at z:

Lρ,z(v) = Hρ,z(v, v)

Remark 3.8.18. Given z ∈ Cn, and ρ as in the above definition, the Levi form

of ρ at z is

Lρ,z(v) = Hρ,z(v, v) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)vj v̄k =

∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

ρ(z + ζv)
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the latter equals one quarter of the Laplacian ∆ = ∂2

∂x2
+ ∂2

∂y2
of the function

ζ = x+ i y 7→ ρz,v(ζ) = ρ(z + ζv) at ζ = 0:

Lρ,z(v) =
1

4
∆ρz,v(0).

Hence, for a domain Ω ⊂ Cn, and a C2 function ρ : Ω→ R, ρ is plurisubharmonic

if and only if its Levi form is positive semi-definite for every point z ∈ Ω; i.e.

Lρ,z(v) ≥ 0 for every z ∈ Ω and v ∈ TzCn.

Definition 3.8.19. Let Ω be a domain in Cn, and ρ : Ω → R be a C2 function.

ρ is said to be strongly plurisubharmonic if its Levi form, Lρ,z, is positive definite

for every z ∈ Ω.
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Chapter 4

Morse Theory

The material of this chapter is from [Milnor, 1963].

4.1 Definitions and Lemmas

Definition 4.1.1. Let M be a smooth manifold, p ∈ M , and f : M → R be a

smooth map. p is said to be a critical point of f if the differential map of f at

p, f∗ : TpM → Tf(p)R is the zero map. Equivalently if the differential of f at p,

dfp : TpM → R is the zero linear form. In that case, the real number f(p) is said

to be a critical value of f .

Remark 4.1.2. Let M be a smooth manifold, p ∈ M , and f : M → R be a

smooth map. For every smooth coordinate chart (U,ϕ) containing p, with ϕ =

(x1, . . . , xn), p is a critical point of f if and only if ∂f
∂xk

(p) = 0 for every k ∈

{1, . . . , n}. In fact this follows directly from the coordinate representation of the

differential map with respect to a given coordinate chart. See Remark 3.2.17.

Remark 4.1.3. Let M be a smooth manifold, p ∈ M , and f : M → R be a

smooth map. Assume that p is a critical point of f . By Proposition 3.4.3, every
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vector v ∈ TpM extends to a smooth vector field ṽ ∈ X(M), such that ṽ(p) = v.

We define the Hessian of f at p,

f∗∗ : TpM × TpM → R

by f∗∗(v, w) = ṽp(w̃(f)) for any v, w ∈ TpM and any extensions ṽ and w̃ of v

and w respectively. We will show that f∗∗ is a well defined map (independent of

the choice of extensions of vectors) that is a symmetric bilinear form on TpM .

For any X, Y ∈ X(M), Xp(Y (f)) − Yp(X(f)) = [X, Y ]p(f), where [X, Y ] is the

Lie bracket of X and Y . By Proposition 3.4.7, [X, Y ] is again a smooth vector

field. Expressing [X, Y ] with respect to some smooth coordinate charts (x1, . . . , xn)

in a neighborhood of p, [X, Y ] =
∑n

i=1 ξi
∂
∂xi

, we get

[X, Y ]p(f) =
n∑
i=1

ξi(p)
∂f

∂xi
(p)

∂

∂xi
|p

the latter is zero by Remark 4.1.2, so Xp(Y (f)) = Yp(X(f)). Then for any

v, w ∈ TpM , and any extensions ṽ and w̃ of v and w respectively, we have

ṽp(w̃(f)) = w̃p(ṽ(f)). This shows that f∗∗ is symmetric.

Now for v, w ∈ TpM , f∗∗(v, w) = ṽp(w̃(f)) = v(w̃(f)) is independent of the choice

of ṽ, and f∗∗(v, w) = w̃p(ṽ(f)) = w(ṽ(f)) is independent of the choice of w̃. This

shows that f∗∗ is well defined.

For α ∈ R, v1, v2, w ∈ TpM , f∗∗(αv1 + v2, w) = (αv1 + v2)(w̃(f)) = αv1(w̃(f)) +

v2(w̃(f)) = αf∗∗(v1, w) + f∗∗(v2, w), so f∗∗ is linear in the first variable, so f∗∗ is

bilinear since f∗∗ is symmetric.

In a smooth coordinate chart (x1, . . . , xn) defined in some neighborhood of p, for
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v =
∑n

i=1 ai
∂
∂xi
|p, w =

∑n
i=1 bi

∂
∂xi
|p ∈ TpM , choosing w̃ =

∑n
i=1 bi

∂
∂xi

with bi are

constant functions in a neighborhood of p, we have

f∗∗(v, w) =
n∑

i,j=1

aibj
∂2f

∂xi∂xj
(p)

Thus the matrix representation of f∗∗ with respect to the coordinate basis ( ∂
∂x1
|p, . . . , ∂

∂xn
|p)

is
(

∂2f
∂xi∂xj

(p)
)

.

Definition 4.1.4. Let M be a smooth manifold, p ∈ M , and f : M → R be

a smooth map. Assume that p is a critical point of f . We say that p is a

non-degenerate critical point of f if the nulity of the Hessian of f at p is

zero. The index of f at p is the index of the Hessian of f at p.

Definition 4.1.5. Let M be a smooth manifold. A smooth function f : M → R

is said to be a Morse function if all the critical points of f are non-degenerate.

Lemma 4.1.6. Let V be a convex neighborhood of 0 in Rn, and f : V → R

be a smooth function such that f(0) = 0. Then there exist smooth functions

g1, . . . , gn : V → R with

f(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn),

gi(0) = ∂f
∂xi

(0), and ∂gi
∂xj

(0) = 1
2

(
∂2f

∂xi∂xj
(0)
)

for every i, j ∈ {1, . . . , n}.

Proof. Let (x1, . . . , xn) ∈ V , and consider the curve γ : [0, 1] → Rn defined by

γ(t) = (tx1, . . . , txn). Since γ(0) = 0, γ(1) = (x1, . . . , xn) and V is convex,

we have γ([0, 1]) ⊆ V . Now f ◦ γ : [0, 1] → R is a smooth map, hence by the
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fundamental theorem of calculus

f ◦ γ(1)− f ◦ γ(0) =

∫ 1

0

d(f ◦ γ)

dt
dt =

∫ 1

0

d(f(tx1, . . . , txn))

dt
dt

so that

f(x1, . . . , xn) =

∫ 1

0

n∑
i=1

xi
∂f

∂xi
(tx1, . . . , txn)dt

setting gi(x1, . . . , xn) =
∫ 1

0
∂f
∂xi

(tx1, . . . , txn)dt for i ∈ {1, . . . , n}, we get that

f(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn),

and by the Leibniz Integral Rule it follows that for every i, j ∈ {1, . . . , n}, gi ∈

C∞(V ) and

gi(0) =

∫ 1

0

∂f

∂xi
(0, . . . , 0)dt

=
∂f

∂xi
(0)

∫ 1

0

dt

=
∂f

∂xi
(0)

and

∂gi
∂xj

(x1, . . . , xn) =

∫ 1

0

∂

∂xj

(
∂f

∂xi
(tx1, . . . , txn)

)
dt

=

∫ 1

0

t

(
∂2f

∂xi∂xj
(tx1, . . . , txn)

)
dt
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so that

∂gi
∂xj

(0) =

∫ 1

0

t

(
∂2f

∂xi∂xj
(0, . . . , 0)

)
dt

=

(
∂2f

∂xi∂xj
(0)

)∫ 1

0

tdt

=
1

2

(
∂2f

∂xi∂xj
(0)

)

Lemma 4.1.7. Let V be an open neighborhood of 0 in Rn, hij : V → R be smooth

functions for i, j ∈ {1, . . . , n}, and q : V → R

q(x1, . . . , xn) =
n∑

i,j=1

xixjhij(x1, . . . , xn).

If the matrix (hij(0)) is symmetric and non-singular, then there exists a smooth

coordinate chart (U,ϕ), around 0 in V , ϕ = (z1, . . . , zn), such that

q(z1, . . . , zn) = ±(z1)
2 ± · · · ± (zn)2

Proof. We will show by induction that for all r, 1 ≤ r ≤ n+1, there exist smooth

coordinates (u1, . . . , un) (that depends on r), in a neighborhood Ur of 0 in V such

that

q = ±(u1)
2 ± · · · ± (ur−1)

2 +
∑
i,j≥r

uiujH
r
ij(u1, . . . , un)

on Ur, and the (n− r + 1)× (n− r + 1) matrix


Hr
rr(u1, . . . , un) Hr

rn(u1, . . . , un)

. . .

Hr
nr(u1, . . . , un) Hr

nn(u1, . . . , un)
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is symmetric on Ur, and non-singular at 0, and the maps Hr
ij : V → R are smooth.

For r = 1, let (H1
ij) =

(
1
2
(hij + hji)

)
, (u1, . . . , un) = (x1, . . . , xn), and U1 = V .

(H1
ij) is symmetric on U , and (H1

ij(0)) = (hij(0)) is non-singular, and

q(u1, . . . , un) =
n∑

i,j=1

uiujH
1
ij(u1, . . . , un).

Now assume that the above holds for order r,

q = ±(u1)
2 ± · · · ± (ur−1)

2 +
∑
i,j≥r

uiujH
r
ij(u1, . . . , un). (∗)

Since the matrix 
Hr
rr(0) Hr

rn(0)

. . .

Hr
nr(0) Hr

nn(0)


is non-singular, we can assume after a linear change in the last n − r + 1 co-

ordinates that Hr
rr(0) 6= 0, so by continuity, Hr

rr(u1, . . . , un) is of constant sign

on a neighborhood Vr+1 ⊆ Ur of 0. Let g(u1, . . . , un) be the the square root of

|Hr
rr(u1, . . . , un)|. g is smooth and nonzero on Ur+1. Now we define the new

coordinates (v1, . . . , vn) by

vi = ui for i 6= r

vr(u1, . . . , un) = g(u1, . . . , un)

[
ur +

∑
i>r

ui
Hr
ir(u1, . . . , un)

Hr
rr(u1, . . . , un)

]
.

The Jacobian matrix of (v1, . . . , vn) with respect to the coordinate chart (u1, . . . , un)

is non-singular at zero, so by the inverse function theorem, (v1, . . . , vn) is a dif-

feomorphism in a neighborhood Ur+1 ⊆ Vr+1 of 0 onto its image, and by direct
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computation:

±(vr)
2 = Hr

rr

(
ur +

∑
i>r

ui
Hr
ir

Hr
rr

)2

= (ur)
2Hr

rr + 2
∑
i>r

uruiH
r
ir +

∑
i,j>r

uiuj

(
Hr
ij

)2
Hr
rr

=
∑
i,j≥r

uiujH
r
ij +

∑
i,j>r

uiuj

(
Hr
ij

)2
Hr
rr

.

Substituting for
∑

i,j≥r uiujH
r
ij in (∗):

q = ±(u1)
2 ± · · · ± (ur−1)

2 ± (vr)
2 −

∑
i,j>r

uiuj

(
Hr
ij

)2
Hr
rr

= ±(v1)
2 ± · · · ± (vr−1)

2 ± (vr)
2 +

∑
i,j>r

vivj

(
−
(
Hr
ij

)2
Hr
rr

)

=
∑
i≤r

±(vi)
2 +

∑
i,j>r

vivjH
r+1
ij (v1, . . . , vn)

where (Hr+1
ij ) = −

(
Hr
ij

)2
Hr
rr

for i, j > r are smooth functions on Ur+1 satisfying the

above assumptions.

Thus the above holds for all 1 ≤ r ≤ n+ 1, in particular for r = n+ 1 we obtain

the desired result.

Lemma 4.1.8. (Lemma of Morse) Let M be a smooth manifold of dimension n,

and f : M → R be a smooth function. Let p ∈ M be a non-degenerate critical

point of f . Then there exists a smooth coordinate chart (U,ϕ) containing p, with

ϕ = (y1, . . . , yn), such that ϕ(p) = 0 and

f(x) = f(p)− (y1(x))2 − · · · − (yλ(x))2 + (yλ+1(x))2 + · · ·+ (yn(x))2

62



for all x ∈ U , where λ is the index of f at p.

Proof. Let λ by the index of f at p. We will prove first that if

f(x) = f(p)− (y1(x))2 − · · · − (yk(x))2 + (yk+1(x))2 + · · ·+ (yn(x))2

for a smooth coordinate chart (y1, . . . , yn) in a neighborhood of p, and some

k ∈ {0, 1, . . . , n}, then k = λ. In fact if f can be represented as above in

some smooth coordinate chart (y1, . . . , yn), then the matrix representation of the

Hessian of f at p with respect to the coordinate basis ( ∂
∂y1
|p, . . . , ∂

∂yn
|p) is the

diagonal matrix



−2

. . .

−2

2

. . .

2


where the number of −2’s on the diagonal is k and the number of 2’s is n − k.

Hence the index of the Hessian of f is k, so that k = λ.

It remains to prove that f can be represented as above in some smooth coordinate

chart. We first assume that f(p) = 0. Let (W, ψ̃) be a smooth coordinate chart

containing p, and set ψ : W → Rn, defined by ψ(x) = ψ̃(x)− ψ̃(p). The map ψ is

a diffeomorphism onto its image, and ψ is compatible with the charts of M , then

(W,ψ) is a smooth coordinate chart and ψ(p) = 0. Let V be an open ball in Rn

centered at 0, with V ⊆ ψ(W ). Write ψ = (x1, . . . , xn). Let f̃ = f ◦ψ−1 : V → R

be a representation of f in the smooth coordinates (x1, . . . , xn). f̃ is smooth and
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f̃(0) = 0, then by Lemma 4.1.6, there exist smooth functions gi : V → R such

that

f̃(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn)

and gi(0) = ∂f̃
∂xi

(0) = ∂f
∂xi

(p) = 0 for every i ∈ {1, . . . , n}. By applying again

Lemma 4.1.6 on the smooth maps gi : V → R, there exist smooth functions

hij : V → R such that for every i ∈ {1, . . . , n},

gi(x1, . . . , xn) =
n∑
j=1

xjhij(x1, . . . , xn)

and hij(0) = ∂gi
∂xj

(0) = 1
2

∂2f̃
∂xi∂xj

(0) = 1
2

∂2f
∂xi∂xj

(p) for every i, j ∈ {1, . . . , n}, so that

f̃(x1, . . . , xn) =
n∑

i,j=1

xixjhij

on V , and the matrix (hij(0)) is
(

1
2

∂2f
∂xi∂xj

(p)
)

, which is symmetric and non-

singular since p is a non-degenerate critical point of f . Then by Lemma 4.1.7,

there exists a smooth coordinate chart (Ũ , ϕ̃), with 0 ∈ Ũ ⊆ V , ϕ̃ = (z1, . . . , zn),

and

f̃(z1, . . . , zn) = ±(z1)
2 ± · · · ± (zn)2.

Setting U = ψ−1(Ũ) and ϕ = ϕ̃ ◦ψ : U → Rn is a diffeomorphism onto its image,

so in the smooth chart (U,ϕ), writing ϕ = (y1, . . . , yn), we get that

f(x) = ±(y1(x))2 ± · · · ± (yn(x))2
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so after a suitable rearrangement of the maps (y1, . . . , yn),

f(x) = −(y1(x))2 − · · · − (yk(x))2 + (yk+1(x))2 + · · ·+ (yn(x))2

Now for the general case, apply the above result on the smooth function f −f(p)

so that

f(x) = f(p)− (y1(x))2 − · · · − (yk(x))2 + (yk+1(x))2 + · · ·+ (yn(x))2.

This ends the proof.

Remark 4.1.9. Let M be a complex manifold of dimension n, and f : M → R be

a smooth function. M could be regarded as a smooth manifold of (real) dimension

2n, so for a non-degenerate critical point p of f , the index of f at p belongs to

the set {0, 1, . . . , 2n}.

Theorem 4.1.10. Let p ∈ Cn and ρ be a strongly plurisubharmonic function

defined on an open neighborhood of p. Assume that p is a non-degenerate critical

point of ρ, then the index of ρ at p belongs to the set {0, 1, . . . , n}.

Proof. See Lemma 3.10.1 of [Forstnerič, 2017].

Remark 4.1.11. (Local Extrema) Let M be a smooth manifold of dimension n

and f : M → R. Assume f has a local minimum (respectively local maximum) at a

point p ∈M . Then for every smooth coordinate (U,ϕ) around p, f ◦ϕ−1 : Rn → R

has a local minimum (respectively local maximum) at ϕ(p), so ϕ(p) is a critical

point for f ◦ ϕ−1, and so p is a critical point for f .

Conversely assume that p is a non-degenerate critical point of f , then f has
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a local minimum (respectively local maximum) at p if and only if the index of f

at p is 0 (respectively n). In fact this follows from Lemma 4.1.8, since p is non-

degenerate, there exist smooth coordinates (y1, . . . , yn) in an open neighborhood

U of p such that

f(x) = f(p)− (y1(x))2 − · · · − (yλ(x))2 + (yλ+1(x))2 + · · ·+ (yn(x))2

in U , where λ is the index of p in f . Thus it follows directly from the above

representation of f that f has a local minimum (respectively local maximum) at

p if and only if λ = 0 (respectively λ = n).

Corollary 4.1.12. Let M be a smooth manifold, and f : M → R be a Morse

function. Then the critical points of f are isolated.

Proof. Let p be a critical point of f , and let λ be the index of f at p. p is non-

degenerate, then by Lemma 4.1.8 there exist smooth coordinates ϕ = (y1, . . . , yn)

defined on a neighborhood U of p, such that ϕ(p) = 0 and

f(x) = f(p)− (y1(x))2 − · · · − (yλ(x))2 + (yλ+1(x))2 + · · ·+ (yn(x))2

for all x ∈ U . Thus the differential of f in the coordinate basis relative to

(y1, . . . , yn) is

Df = −2y1
∂

∂y1
− · · · − 2yλ

∂

∂yλ
+ 2yλ+1

∂

∂yλ+1

+ · · ·+ 2yn
∂

∂yn

in U , so that Df = 0⇔ yi = 0 for all i, hence p is the only critical point of f in

U .
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4.2 Morse Theory

Definition 4.2.1. Let M be a topological manifold and f : M → R be a real

valued function. For a ∈ R we define the set Ma ⊆M by

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}

Theorem 4.2.2. Let M be a smooth manifold and f : M → R be a smooth

function. Let a < b and suppose that f−1[a, b] is compact and contains no critical

points of f . Then Ma is diffeomorphic to M b. Furthermore Ma is a deformation

retract of M b, so that the inclusion map Ma ↪→M b is a homotopy equivalence.

Proof. Let 〈·, ·〉 be a Riemannian metric on M (recall that by Proposition 3.7.9

every smooth manifold admits a Riemannian metric). Consider the gradient of

f , characterized by the identity

〈grad f,X〉 = df(X) = X(f) for all X ∈ X(M).

Note that the vector field grad f vanishes precisely at the critical points of f . Let

ψ : M → R be a non-negative (smooth) bump function that is identically 1 on

the compact set f−1[a, b], and vanishes outside a compact neighborhood of this

set, not containing any critical point of f . Define ρ : M → R by

ρ = ψ/〈grad f, grad f〉.

ρ is well defined since 〈grad f, grad f〉 > 0 in the support of ψ, and ψ is smooth.

67



Define the vector field X : M → TM by

Xp = ρ(p)(grad f)p ∀p ∈M,

then X is smooth and compactly supported, and thus by Theorem 3.4.16, X is

complete. Let ϕ : R ×M → M be the global flow generated by X. For t ∈ R

and x ∈M we will write ϕt(x) to denote ϕ(t, x). For a fixed q ∈M consider the

smooth function t 7→ f(ϕt(q)) defined for every t ∈ R.

d f(ϕt(q))

dt
= df

(
dϕt(q)

dt

)
=

〈
grad f,

dϕt(q)

dt

〉
= 〈grad f,X〉 = ψ(ϕt(q))

the latter is non-negative so t 7→ f(ϕt(q)) is non-decreasing, and if ϕt(q) ∈

f−1(a, b), then
d f(ϕt(q))

dt
= 1 in an open neighborhood of t, so f(ϕ(t, q)) =

t + f(ϕ(0, q)) = t + f(q) as long as a < f(ϕ(t, q)) < b, and the equality ex-

tends, by continuity, for a ≤ f(ϕ(t, q)) ≤ b. We consider the diffeomorphism

ϕb−a : M →M . We will show that ϕb−a(M
a) = M b, thus ϕb−a carries Ma diffeo-

morphically to M b. Let x ∈Ma, and suppose to the contrary that ϕb−a(x) /∈M b

i.e. f(ϕb−a(x)) > b. Now f(ϕ0(x)) = f(x) ≤ a, f(ϕb−a(x)) > b, and t 7→ f(ϕt(x))

is continuous and non-decreasing, then by Intermediate Value Theorem there ex-

ists t1, t2 ∈ [0, b − a] such that t1 < t2, f(ϕt1(x)) = a, f(ϕt2(x)) = b, and

f(ϕt(x)) ∈ [a, b] for all t ∈ [t1, t2]. Thus for all t ∈ [t1, t2], f(ϕt(x)) = t+ f(x), in

particular

a = f(ϕt1(x)) = t1 + f(x)

b = f(ϕt2(x)) = t2 + f(x)

hence t2 − t1 = b − a, and so t2 = b − a (since [t1, t2] ⊆ [0, b − a]). How-
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ever f(ϕb−a(x)) > b = f(ϕt2(x)), a contradiction. So ϕb−a(x) ∈ M b whenever

x ∈Ma.

Now for y ∈ M b, let x = ϕa−b(y), then ϕb−a(x) = y and a similar argument as

above shows that x ∈Ma.

Now for the second part of the theorem, we define the homotopy rt : [0, 1]×M b →

Ma by

rt(x) =


x if f(x) ≤ a

ϕt(a−f(x))(x) if a < f(x) ≤ b

It is clear that rt is continuous, r0 is the identity of M b, and r1 is a retraction

from M b to Ma. Therefore Ma is a deformation retract of M b.

Theorem 4.2.3. Let M be a smooth manifold and f : M → R be a smooth

function. Let p be a non-degenerate critical point of f with index λ. Set f(p) = c.

Suppose that there exists δ > 0 such that f−1[c− δ, c+ δ] is compact and contains

no critical point of f other than p. Then for all sufficiently small ε > 0, the set

M c+ε has the same homotopy type of M c−ε with a λ-cell attached.

Proof. See Theorem 3.2 of [Milnor, 1963].

Theorem 4.2.4. (Reeb Sphere Theorem) Let M be a compact manifold of di-

mension n and f : M → R be a smooth function with only 2 critical points, both

of which are non-degenerate, then M is homeomorphic to the n-sphere, Sn.

Proof. M is compact and f is continuous then the maximum and minimum of f

on M are attained. Hence by Remark 4.1.11 f attains its minimum at one of the

two critical points, say p, and its maximum at the other, say q. Set a = f(p) and

b = f(q). p is non-degenerate, and the index of f at p is 0, then by Lemma 4.1.8,
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there exist smooth coordinates (y1, . . . , yn) in an open neighborhood U of p such

that

f(x) = a+ (y1(x))2 + · · ·+ (yn(x))2.

Since M is compact, there exists δ > 0 such that f−1[a, a+ δ] ⊂ U , thus

x ∈ f−1[a, a+ δ]⇔ (y1(x))2 + · · ·+ (yn(x))2 < δ

so the map (y1/
√
δ, . . . , yn/

√
δ) : f−1[a, a+ δ]→ en defines a diffeomorphism, so

f−1[a, a + δ] is diffeomorphic to the n-cell, en. Similarly there exists ε > 0 such

that f−1[b − ε, b] is diffeomorphic to the the n-cell, en. Now f has no critical

points in f−1[a + δ, b − ε] (assuming that δ and ε are taken small enough), and

f−1[a+ δ, b− ε] is compact, so by Theorem 4.2.2, Ma+δ = f−1[a, a+ δ] and M b−ε

are diffeomorphic. In particular we get that f−1[a, b− ε] is homeomorphic to en

and f−1[b − ε, b] is homeomorphic to en, where f−1{b − ε} is mapped to the ėn

by both homeomorphisms. Therefore M is homeomorphic to two n-cells glued at

their boundaries which is homeomorphic to Sn.

Remark 4.2.5. M in the above theorem need not be diffeomorphic to Sn with its

usual smooth structure, see [Milnor, 1956] for a counterexample.

Definition 4.2.6. (Upper disk and lower disk) Let M be a Riemannian manifold

and f : M → R be a Morse function. Assume that f has m critical points,

p1, p2, . . . , pm, with f(pi) = ci, such that c1 < c2 < · · · < cm. For ε > 0, consider

the set M[ci−1+ε,ci+ε] = {x ∈M : ci−1 + ε ≤ f(x) ≤ ci + ε} = f−1[ci−1 + ε, ci + ε].

We define the lower disk (resp. upper disk) corresponding to the critical point

pi to be the set of all points in M[ci−1+ε,ci+ε] that converge to the critical point pi

along the integral curves of grad f as the parameter t tends to +∞, (resp. −∞).
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The lower and upper disks associated to pi will be denoted by Dl(pi) and Du(pi)

respectively.

Remark 4.2.7. Given a Riemannian manifold M of dimension n and a Morse

function f : M → R. Assume that pi ∈ M is a critical point of f (the critical

points of f are indexed as in the above definition), ci = f(pi), and let λi be the

index of f at pi. Since pi is a critical point of f , then grad f(pi) = 0, thus

pi is fixed by the integral curves of grad f , so pi ∈ Dl(pi) ∩ Du(pi). By the

Lemma of Morse (Lemma 4.1.8), we can choose local coordinates (x1, . . . , xn) in

a neighborhood U of pi such that f = ci − x21 − · · · − x2λi + x2λi+1 + · · ·+ x2n in U ,

thus for ε small enough we have:

Dl(pi) ∩M[ci−ε,ci+ε] = {(x1, . . . , xn) : x21 + · · ·+ x2λi ≤ ε, xλi+1 = · · · = xn = 0}.

And since f has no critical points in M[ci−1+ε,ci− ε
2
], then Dl(pi)∩M[ci−1+ε,ci− ε

2
] is

carried diffeomorphically along the integral curves of grad f to Dl(pi)∩M[ci−ε,ci− ε
2
],

see page 113 of [Matsumoto, 2002] and the proof of Theorem 4.2.2. Writing Dl(pi)

as the union of the two sets, we see that Dl(pi) is diffeomorphic to the λi-cell,

eλi.

Similarly Du(pi) is diffeomorphic to the (n− λi)-cell.

Definition 4.2.8. Let M be a smooth manifold of dimension n, and A and B be

submanifolds of M of dimensions k and n − k, respectively. We say that A and

B intersect transversely at a point p ∈ M if there exist an open neighborhood U

of p in M , and local coordinates (x1, . . . , xn) defined in U such that:

A ∩ U = {(x1, . . . , xn) ∈ U : xk+1 = · · · = xn = 0}
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and

B ∩ U = {(x1, . . . , xn) ∈ U : x1 = · · · = xk = 0}.

(From here we see that x1(p) = · · · = xk(p) = xk+1(p) = · · · = xn(p) = 0, and

that A ∩B ∩ U = {p}.)

Theorem 4.2.9. Let M be a smooth manifold and f : M → R be a Morse func-

tion with at least two critical points. Arrange the critical points of f as in Defi-

nition 4.2.6. For a subscript i, we consider the set M[ci−2+ε,ci+ε], containing the

two consecutive critical points pi−1 and pi. Assume the following conditions hold:

1. The index of pi is one larger than the index of pi−1.

2. For some ε > 0, ∂Dl(pi) and ∂Du(pi−1) intersect transversely at a single

point in the level surface f−1(ci−1 + ε).

Then there exists a Morse function g : M → R such that:

1. g has no critical points in the interior of M[ci−2+ε,ci+ε].

2. g coincides with f near the boundary and outside of M[ci−2+ε,ci+ε].

Proof. See Theorem 3.28 of [Matsumoto, 2002].

Remark 4.2.10. Let M be a smooth manifold of dimension n, f : M → R be a

Morse function, and pi−1, pi be two consecutive critical points of f of indices λ−1

and λ respectively. The dimension of f−1(ci−1 +ε) as a smooth manifold is n−1.

The dimension of ∂Dl(pi) is λ−1, and that of ∂Du(pi−1) is n−(λ−1)−1 = n−λ,

so that

dim f−1(ci−1 + ε) = dim ∂Dl(pi) + dim ∂Du(pi−1)

which makes it possible that ∂Dl(pi) and ∂Du(pi−1) intersect transversely, viewed

as embedded submanifolds of f−1(ci−1 + ε). The above theorem is referred to as
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cancellation of critical points, since g can be viewed as a perturbance of f , with

2 less critical points.
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Chapter 5

On The Koras–Russell Cubic

Threefold

In this chapter we will give basic definitions from algebraic geometry and prove

that the Koras–Russell cubic threefold is not isomorphic to the complex affine

3-space.

5.1 Algebraic Geometry

This section is from Chapter 1 of [Hartshorne, 1977]. In what follows K denotes

an algebraically closed field.

Definition 5.1.1. We define the affine n-space over K, denoted by An
K or

simply An, to be the set of all n-tuples of elements of K. An element P ∈ An

will be called a point, and if P = (a1, . . . , an) with ai ∈ K, then ai will be called

the coordinates of P .

K[x1, . . . , xn] will denote the polynomial ring in n variables over K. Elements of

K[x1, . . . , xn] will be interpreted as functions from An to K, by defining f(P ) =
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f(a1, . . . , an), where f ∈ K[x1, . . . , xn] and P ∈ An. Thus for f ∈ K[x1, . . . , xn],

we can define the zeros of f as a subset of the affine n-space, Z(f) = {P ∈

An : f(P ) = 0}. More generally, if T is a subset of K[x1, . . . , xn], we define the

zero set of T to be the common zeros of all elements of T ,

Z(T ) = {P ∈ An : f(P ) = 0 for all f ∈ T}

Clearly if I is the ideal of K[x1, . . . , xn] generated by T , then Z(I) = Z(T ).

Furthermore, since K[x1, . . . , xn] is a noetherian ring, any ideal I has a finite set

of generators f1, . . . , fr. Thus Z(T ) can be expressed as the common zeros of the

finite set of polynomials {f1, . . . , fr}.

Definition 5.1.2. A subset Y of An is called an algebraic set if there exists a

subset T ⊆ K[x1, . . . , xn] such that Y = Z(T ).

Proposition 5.1.3. The union of two algebraic sets is an algebraic set. The

intersection of any family of algebraic sets is an algebraic set. The empty set and

the whole space are algebraic sets.

Proof. See Proposition 1.1 of [Hartshorne, 1977].

Definition 5.1.4. We define the Zariski topology on An by taking open sets

to be the complements of the algebraic sets. This defines a topology on An due to

Proposition 5.1.3.

Definition 5.1.5. A nonempty subset Y of a topological space X is said to be

irreducible if it cannot be expressed as the union of two proper subsets each of

which is closed in Y .

Definition 5.1.6. An affine algebraic variety (or simply affine variety) is an
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irreducible closed subset of An (with the Zariski topology). An open subset of an

affine variety is called a quasi-affine variety.

Definition 5.1.7. Let Y be a subset of An. We define the ideal of Y in K[x1, . . . , xn],

denoted by I(Y ), by

I(Y ) = {f ∈ K[x1, . . . , xn] : f(P ) = 0 for all P ∈ Y }

Theorem 5.1.8. (Hilbert’s Nullstellensatz) Let K be an algebraically closed field,

let J be an ideal in K[x1, . . . , xn], and let f ∈ K[x1, . . . , xn] be a polynomial which

vanishes at all points of Z(J). Then f r ∈ J for some integer r > 0.

Proof. See page 85 in [Atiyah and Macdonald, 1969].

Definition 5.1.9. Let R be a commutative ring. Let J be an ideal in R. We

define the radical of J , denoted by
√
J as

√
J = {f ∈ R : f r ∈ J for some integer r > 0}

If J =
√
J we say that J is a radical ideal.

Proposition 5.1.10. The following properties hold:

a) If T1 ⊆ T2 are two subsets of K[x1, . . . , xn], then Z(T1) ⊇ Z(T2).

b) If Y1 ⊆ Y2 are two subsets of An, then I(Y1) ⊇ I(Y2).

c) For any two subsets Y1 and Y2 of An we have I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

d) For any ideal J of K[x1, . . . , xn], I(Z(J)) =
√
J .

e) For any subset Y ⊆ An, Z(I(Y )) = Y , the closure of Y in An endowed with

the Zariski topology.
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Proof. See Proposition 1.2 of [Hartshorne, 1977].

Corollary 5.1.11. There is a one-to-one inclusion-reversing correspondence be-

tween algebraic sets in An and radical ideals in K[x1, . . . , xn] given by Y 7→ I(Y )

and J 7→ Z(J). Furthermore, an algebraic set is irreducible if and only if its ideal

is a prime ideal.

Proof. See Corollary 1.4 of [Hartshorne, 1977].

Remark 5.1.12. Since the correspondence in Corollary 5.1.11 is inclusion-reversing,

every maximal ideal M of K[x1, . . . , xn] corresponds to a minimal irreducible

closed subset of An, which must be a point. Thus an n-affine space can be iden-

tified by the set of maximal ideals of K[x1, . . . , xn]. We call this set the maximal

spectrum of the ring K[x1, . . . , xn] and denote it by Specmax(K[x1, . . . , xn]). For

an ideal J in K[x1, . . . , xn], letting VJ be the set of all maximal ideals containing

J , one can check that the collection of subsets

{S ⊆ Specmax(K[x1, . . . , xn]) : Sc = VJ for some ideal J of K[x1, . . . , xn]}

defines a topology on Specmax(K[x1, . . . , xn]), called the Zariski topology as well.

In fact Specmax(K[x1, . . . , xn]) is homeomorphic to the affine n-space, and thus

An could be identified with Specmax(K[x1, . . . , xn]) as a topological space.

Definition 5.1.13. Let Y ⊆ An be an affine algebraic set. We define the affine

coordinate ring A(Y ) of Y to be K[x1, . . . , xn]/I(Y ).

Definition 5.1.14. A topological space X is said to be noetherian if it satisfies

the descending chain condition for closed subsets: for any sequence Y1 ⊇ Y2 ⊇ ...

of closed subsets, there exists a positive integer r such that Yr = Yr+1 = ...
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Remark 5.1.15. An is a noetherian topological space. Indeed, if Y1 ⊇ Y2 ⊇ ...

is a descending chain of closed subsets, then I(Y1) ⊆ I(Y2) ⊆ ... is an ascending

chain of ideals in K[x1, . . . , xn], which is a noetherian ring, then the chain of

ideals is eventually stationary. Note that for all i, Yi is closed, so Yi = Yi =

Z(I(Yi)), so the chain Yi is also stationary.

Proposition 5.1.16. Let X be a noetherian topological space, then every nonempty

closed subset Y of X can be expressed as a finite union of irreducible closed sub-

sets Yi. Moreover if we require that no one of the subsets Yi is contained in the

other, then the Yi are uniquely determined.

Proof. See Proposition 1.5 of [Hartshorne, 1977].

Definition 5.1.17. Let X be a topological space, we define the dimension of X to

be the supremum of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ ... ⊂ Zn

of distinct irreducible closed subsets of X. We define the dimension of an affine

or quasi-affine variety to be its dimension as a topological space.

Definition 5.1.18. Given a ring R, we define the height of a prime ideal p to

be the supremum of all integers n such that there exists a chain p1 ⊂ p2 ⊂ ... ⊂

pn = p of distinct prime ideals. We define the dimension (or Krull dimension) of

R to be the supremum of the heights of all prime ideals.

Proposition 5.1.19. If Y is an affine algebraic set, then the dimension of Y is

equal to the dimension of its affine coordinate ring A(Y ).

Proof. See Proposition 1.7 of [Hartshorne, 1977].

Definition 5.1.20. Let Y be a quasi-affine variety in An. We say that a function

f : Y → K is regular at a point P ∈ Y if there exist an open neighborhood U of
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P in Y , and polynomials g, h ∈ K[x1, . . . , xn] such that h is nowhere zero on U ,

and f = g/h on U . We say that f is regular on Y if it is regular at every point

of Y .

Definition 5.1.21. Let X and Y be two affine varieties. A morphism ϕ : X →

Y is a continuous map such that for every open set V ⊆ Y , and for every regular

function f : V → K, the function f ◦ ϕ : ϕ−1(V )→ K is regular.

Remark 5.1.22. Clearly the composition of two morphisms is a morphism, and

IdX : X → X is a morphism when X is an affine variety, thus we have a category

whose objects are affine varieties over a fixed algebraically closed field K. In

particular, we have the notion of isomorphisms. Given two affine varieties X and

Y over K, an isomorphism ϕ : X → Y is a morphism which admits an inverse

morphism ψ : Y → X with ψ ◦ ϕ = IdX and ϕ ◦ ψ = IdY . An automorphism of

an affine variety X is an isomorphism from X to X.

Definition 5.1.23. A subset of a topological space is locally closed if it is an

open subset of its closure. If X is an affine variety and Y is an irreducible locally

closed subset of X, then Y is also an affine variety. We call Y a subvariety of

X.

Definition 5.1.24. Let X and Z be two affine varieties. An embedding ϕ : X →

Z is an injective morphism whose image is closed, and which induces an iso-

morphism between X and ϕ(X). Two embeddings ϕ1, ϕ2 : X → Z are said to be

equivalent if there exists an automorphism φ of Z such that φ ◦ ϕ1 = ϕ2.

Definition 5.1.25. Two subvarieties X1 and X2 of an affine variety Z are said

to be equivalent if there exists an automorphism φ of Z such that φ(X1) = X2.
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5.2 The Koras–Russell Cubic Threefold

In this section we will define the Koras–Russell cubic threefold, and prove that

it is not isomorphic to the affine 3-space over C.

Let A4 be the affine 4-space over C and consider the polynomial h ∈ C[x, y, z, w]

h = x2y + x+ z2 + w3

and consider the algebraic affine variety of A4, Z(h) = {P ∈ A4 : h(P ) = 0},

of dimension 3. When A4 is identified with C4, h : C4 → C is a holomorphic

map, whose (complex) Jacobian is never zero, thus h is a complex submersion

and so h−1({0}) is a complex submanifold of C4 of codimension 1, i.e. of complex

dimension 3. In particular h−1({0}) can be viewed as a six dimensional smooth

(real) manifold. We will denote by the Koras–Russell cubic threefold the set

X = {(x, y, z, w) ∈ C4 : x2y + x + z2 + w3 = 0} regarded as an object in any of

the above categories accordingly.

The Koras–Russell cubic threefold belongs to the family Xd,k,l of affine hypersur-

faces in A4
C, where d ≥ 2, 2 ≤ k < l with k and l relatively prime, and Xd,k,l is

the zero set of the polynomial Pd,k,l = xdy + zk + wl + x. Those varieties were

first introduced by Koras and Russell, see [Kraft, 1996], when they were proving

that all algebraic actions of C∗ on the affine 3-space are linearizable; i.e. given

a group action ϕ : C∗ × A3 → A3 of the multiplicative group (C∗, ·) on the set

A3, that is also a morphism between the corresponding affine varieties, then in a

suitably chosen coordinates for A3, ϕ is linear. For this purpose it was necessary

to show that none of the varieties Xd,k,l are isomorphic to A3. For some of these

varieties, this could be done with geometric invariants. However the problem was

difficult for the Koras–Russell cubic threefold. In 1994, Makar-Limanov proved
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the result using the Makar-Limanov invariant,

ML(Y ) =
⋂

δ∈LND(Y )

ker δ

where Y is an affine variety and LND(Y ) is the set of all locally nilpotent deriva-

tions on the ring of regular functions on Y , see [Kraft, 1996]. Makar-Limanov

showed that ML(X) 6= C whereas ML(A3) = C. It has been shown later by

Makar-Limanov and Kaliman in [Kaliman and Makar-Limanov, 1997] that all

members of the family of varieties Xd,k,l defined above have non-trivial Makar-

Limanov invariant, and therefore not isomorphic to A3.

In what follows we will demonstrate a simpler proof for the fact that the Koras–

Russell cubic threefold is not isomorphic to A3. The proof is from [Dubouloz

et al., 2010]. X will denote the Koras–Russell cubic threefold.

Lemma 5.2.1. If φ is an algebraic automorphism of A4 which restricts to an

automorphism of X, then φ fixes the point (0, 0, 0, 0).

Proof. See Proposition 2.5 in [Dubouloz et al., 2010].

Lemma 5.2.2. Every automorphism of X extends to an automorphism of A4.

Proof. See Theorem 4.3 in [Dubouloz et al., 2010].

Corollary 5.2.3. Every automorphism of X fixes the point (0, 0, 0, 0).

Proof. Let ψ be an automorphism of X, then by Lemma 6.2 ψ extends to an

an automorphism of A4, namely φ. φ|X = ψ, then by Lemma 6.1 φ(0, 0, 0, 0) =

(0, 0, 0, 0) = ψ(0, 0, 0, 0).

Theorem 5.2.4. X is not isomorphic to A3.
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Proof. A3 will be identified with the affine variety {(x, y, z, w) ∈ A4 : w = 0}.

Suppose to the contrary that X is isomorphic to A3. Let ψ : X → A3 be an

isomorphism. The mapping φ : A3 → A3 given by (x, y, z, 0) 7→ (x, y, z + 1, 0) is

an isomorphism, then the map

ψ−1 ◦ φ ◦ ψ : X → X

is an automorphism of X, thus by Corollary 5.2.3, ψ−1 ◦ φ ◦ ψ(0, 0, 0, 0) =

(0, 0, 0, 0), so that φ ◦ψ(0, 0, 0, 0) = ψ(0, 0, 0, 0). Setting ψ(0, 0, 0, 0) = (a, b, c, 0),

we get that (a, b, c + 1, 0) = φ(a, b, c, 0) = (a, b, c, 0). A contradiction. This ends

the proof.
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Chapter 6

Main Result

In this chapter we will denote by X the Koras–Russell Cubic Threefold, and

by h the defining function of X; i.e. h : C4 → C, defined by h(x, y, z, w) =

x2y + x + z2 + w3 and X = {(x, y, z, w) ∈ C4 : h(x, y, z, w) = 0}. It was proven

by Dimca (1992) that X is diffeomorphic to R6, see [Kraft, 1996]. The proof was

based on a theorem by Dimca that states that every smooth contractible affine

variety (over C) of dimension d ≥ 3 is diffeomorphic to Cd. In what follows we

will study the Koras–Russell Cubic Threefold using Morse Theory. For that we

will define a suitable smooth function, f : C4 → R, whose restriction to X is a

Morse function; i.e. the critical points of f restricted to X are nondegenerate.

Rigorously, f̃ = f ◦ ι : X → R is a Morse function, where ι is the inclusion map

X ↪→ C4. It is clear that p ∈ X is a critical point of f̃ if and only if the complex

differential, df̃ |p of f̃ at p is zero, which is equivalent to say that there exist

µ, λ ∈ C (Lagrange multipliers) such that df |p = λ dh |p + µ dh̄ |p. We will prove

that in this case, µ and λ should be complex conjugates.

Lemma 6.1. Let f : C4 → R be a smooth function, p ∈ X, and µ, λ ∈ C such

that df |p = λ dh |p + µ dh̄ |p, then λ = µ̄.
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Proof. f is a real valued function, then f = f̄ , hence df = df̄ = df . So we have

df |p = df |p

λ dh |p + µ dh̄ |p = λ̄ dh̄ |p + µ̄ dh |p

(λ− µ̄) dh |p = (λ̄− µ) dh̄ |p

Now suppose to the contrary that λ 6= µ̄, then dh |p =
λ̄− µ
λ− µ̄

dh̄ |p. By Propo-

sition 3.8.14, and since h is holomorphic, dh |p = 0 on T 0,1
p C4 and dh̄ |p = 0 on

T 1,0
p C4. But dh |p =

λ̄− µ
λ− µ̄

dh̄ |p, so dh |p = 0 on T 1,0
p C4, hence h is singular at p,

a contradiction, since dh = (2xy + 1) dx+x2 dy+2z dz+3w2 dw never vanishes.

Therefore λ = µ̄.

Lemma 6.2. Let a ∈ R, and let f : C4 → R be defined as f(x, y, z, w) = |x −

a|2 + |y|2 + |z|2 + |w|2, and f̃ : X → R be the restriction of f on X. Then for

a = 0, f̃ is not a Morse function, and for any other value of a, f̃ has at least 9

critical points.

Proof. Let ζ = (x, y, z, w) ∈ C4. ζ is a critical point of f̃ if and only if ζ ∈ X, and

df |ζ = λ dh |ζ + µ dh̄ |ζ , for some µ, λ ∈ C. This reduces to solving the following

system: 
h(ζ) = 0

df |ζ = λ dh |ζ + µ dh̄ |ζ

If ζ = (x, y, z, w) is a solution for the above system, then by Corollary 6.1, λ = µ̄,

so the system becomes:


h(ζ) = 0

df |ζ = λ dh |ζ + λ̄ dh̄ |ζ
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Writing f as f = (x− a)(x̄− a) + yȳ + zz̄ + ww̄, we get that

df = (x− a) dx̄+y dȳ+z dz̄+w dw̄+(x̄− a) dx+ȳ dy+z̄ dz+w̄ dw

so the system becomes:



x2y + x+ z2 + w3 = 0

x̄− a = λ(2xy + 1)

ȳ = λx2

z̄ = 2λz

w̄ = 3λw2

For a = 0, we note that for every λ ∈ ∂D = {t ∈ C : |t| = 1}, the point (−1
λ
, λ, 0, 0)

solves the above system, and hence f̃ is not a Morse function in this case, since

the critical points of a Morse function are isolated.

For a 6= 0, we can deduce directly that λ 6= 0 (if λ = 0 then x = a and

y = z = w = 0, so it follows from the defining equation that a = 0). Multi-

plying the third equation by y, the forth by z, the fifth by w, and substituting in

the defining equation we get

|y|2 + λx+
|z|2

2
+
|w|2

3
= 0

|y|2 +
|z|2

2
+
|w|2

3
= −λx (∗)

so λx is a (nonpositive) real number, hence either x = 0, or λ = −rx̄, for some

r > 0. If x = 0, then by the above equation |y|2+ |z|2
2

+ |w|2
3

= 0,so y = z = w = 0,
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and λ = −a, thus (0, 0, 0, 0) is a critical point. Now if x 6= 0, then λ = −rx̄ for

some r > 0, we substitute for λ in the initial system to get:



x2y + x+ z2 + w3 = 0

x̄− a = −rx̄(2xy + 1)

ȳ = −rx̄x2

z̄ = −2rx̄z

w̄ = −3rx̄w2

from the second and third equation we get

x̄(1− 2r2|x|4 + r) = a

then x ∈ R, and so by the third equation, y ∈ R as well. Knowing that x and y

are real numbers the system becomes:



x2y + x+ z2 + w3 = 0

x− a = −rx(2xy + 1)

y = −rx3

z̄ = −2rxz

w̄ = −3rxw2

from the forth equation it follows that z(1−4r2x2) = 0, hence z = 0 or 2rx = ±1.

Suppose that z 6= 0, then 2rx = ±1, with the third and forth equation, we get a
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system of equations in x and r:


−1
2
x3 + x+ rx = a

rx = ±1
2

with the constraint that |z|
2

2
+ |w|2

3
> 0, so substituting for λ and y in (∗) we get

that rx4 < 1. For a wise choice of a, the above system has no real solution in x

and r.

Now for z = 0, we study the equation in w. w̄ = −3rxw2 implies that w(1 +

(3rxw)3) = 0, so either w = 0 or w3 =
−1

27r3x3
. If w = 0, the system reduces to

3 equations in x,y,r: 
x2y + x = 0

x− a = −rx(2xy + 1)

y = −rx3

since x 6= 0, then xy = −1, substituting for y we get 2 equations in r and x:


rx4 = 1

x− a = rx

which reduces to a forth degree equation in x,

x4 + ax− 1 = 0

the above equation admits 2 real nonzero roots for all values of a, every solution x,

determines one critical point (x, −1
x
, 0, 0), thus this case yields two critical points.

Finally if w 6= 0(z = 0 here), then w3 =
−1

27r3x3
, substituting for w3 in the
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defining equation, we obtain 3 equations in x, y and r:


x2y + x− 1

27r3x3
= 0

x− a = −rx(2xy + 1)

y = −rx3

substituting for y we get 2 equations in x and r:


x− a = 2r2x5 − rx

27r3x4 − 27r4x8 − 1 = 0

for all values of a the above system has at least 2 solutions in R∗2, each solution

(r, x) gives 3 critical points (x,−rx3, 0, −1

3rx
ui), with i = 1, 2, 3, where u1, u2, u3

are the cubic roots of the unity, thus this case yields at least 6 critical points.

Therefore for any choice of a 6= 0, f̃ has at least 9 critical points. In fact 9 critical

points could be attained for a suitable choice of a; e.g. a = 3.

Lemma 6.3. Let b ∈ R∗, and let f : C4 → R be defined as f(x, y, z, w) = |x|2 +

|y|2 + |z|2 + |w− b|2, and f̃ : X → R be the restriction of f to X. Then f̃ has at

least 3 critical points, and for b = 2, f̃ has exactly 3 critical points.

Proof. As in the proof of Lemma 6.2, ζ is a critical point of f̃ if and only if

ζ = (x, y, z, w) solve the following system:


h(ζ) = 0

df |ζ = λ dh |ζ + λ̄ dh̄ |ζ
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equivalently 

x2y + x+ z2 + w3 = 0

x̄ = λ(2xy + 1)

ȳ = λx2

z̄ = 2λz

w̄ − b = 3λw2

Note that λ 6= 0, otherwise we get that x = y = z = 0 and w = b, substituting in

the defining equation we get that b = 0. Multiplying the first equation by λ, the

second equation by x, the third by y, the forth by z, and the fifth by w we get



λx2y + λx+ λz2 + λw3 = 0

|x|2 = 2λx2y + λx

|y|2 = λx2y

|z|2 = 2λz2

|w|2 − bw = 3λw3

note that |x|2 − |y|2 = λx2y + λx, so substituting in the first equation we get

|x|2 − |y|2 +
|z|2

2
+
|w|2

3
− bw

3
= 0

so that

bw

3
= |x|2 − |y|2 +

|z|2

2
+
|w|2

3

b ∈ R∗, hence w ∈ R, and w 6= 0, since otherwise the equation w̄ − b = 3λw3
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would imply that b = 0. Solving for λ we get that

λ =
w̄ − b
3w2

=
w − b
3w2

so λ is real. Note that |x|2 − 2|y|2 = λx, and λ ∈ R∗, so x ∈ R, and thus y ∈ R,

since ȳ = λx2. Now the equation z̄ = 2λz implies that z2 =
|z|2

2λ
, so z2 is real

and thus one of the following holds:

1. z ∈ R∗ and λ = 1
2

2. z ∈ iR∗ and λ = −1
2

3. z = 0

If (1) holds: Substituting for λ = 1
2

in w − b = 3λw2, we get the following

quadratic equation:

3

2
w2 − w + b = 0

whose discriminant is ∆ = −6b+ 1 so that

b >
1

6
⇔ ∆ < 0⇔ the above equation has no real solutions

If (2) holds: Substituting for λ = −1
2

in w − b = 3λw2, we get the following

quadratic equation:

3

2
w2 + w − b = 0

whose discriminant is ∆ = 6b+ 1 so that

b < −1

6
⇔ ∆ < 0⇔ the above equation has no real solutions

We will show that for b = 2, there are no critical points with z 6= 0. Set b = 2
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and assume z 6= 0, thus (1) is an impossible case, and so case (2) holds. λ = −1
2
,

so substituting for λ in the equations with x, y and λ we get that


y = −1

2
x2

x = −1
2
(2xy + 1)

which reduces to a third degree polynomial in x:

x3

2
− x− 1

2
= 0

which factors into

1

2
(x+ 1)

(
x−
√

5 + 1

2

)(
x− 1−

√
5

2

)
= 0

for each value of x we obtain one value of y, using the equation y = −1
2
x2,


x = −1, y = −1/2

x =
√
5+1
2
, y = −

√
5−3
4

x = 1−
√
5

2
, y =

√
5−3
4

For each couple (x, y) of the solutions above, the value of (−x2y− x)
1
3 is strictly

greater than 22
25

. Now from the defining equation, w3 + x2y+ x+ z2 = 0, we have
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that z ∈ iR∗, so z2 < 0, so that

w3 + x2y + x > 0

w3+ > −x2y − x

w > (−x2y − x)
1
3

w >
22

25

Now solving the quadratic equation in w, for b = 2, we get that w =

√
13− 1

3

or w =
−
√

13− 1

3
, both of which are less than 22

25
. Thus for b = 2, there are no

critical points with z 6= 0, and so the least possible number of critical points is 0

so far.

If (3) holds: In this case z = 0, then the system becomes:



x2y + x+ w3 = 0

x = λ(2xy + 1)

y = λx2

w − b = 3λw2

Substituting λx2 for y and
w − b
3w2

for λ, we get:


x =

w − b
3w3

(
2

(
w − b
3w3

)
x3 + 1

)
(
w − b
3w3

)
x4 + x+ w3 = 0

This system has at least 3 solutions, and for b = 2, the system has exactly 3

solutions (xi, wi), each of which determines exactly one critical point. This shows
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that f̃ has at least 3 critical points, and for b = 2, we obtain the optimal case.

Remark 6.4. The functions |x|2+|y−a|2+|z|2+|w|2 and |x|2+|y|2+|z−b|2+|w|2

have more than 3 critical points when restricted to X for any a, b ∈ R∗. In none

of the 2 cases one can conclude that w should be real.

Remark 6.5. We will fix b = 2 and consider the function defined in Lemma 6.3.

Throughout the chapter, f will denote the smooth map f : C4 → R defined by

f(x, y, z, w) = |x|2 + |y|2 + |z|2 + |w − 2|2, and by f̃ its restriction to X. In

fact f̃ is a strongly plurisubharmonic function, so by Theorem 4.1.10, the index

of f̃ at any non-degenerate critical point is at most 3. We will call the three

critical points of f̃ , p1, p2 and p3, such that f(p1) < f(p2) < f(p3). Numer-

ically, the approximate solutions to the last system of equations in Lemma 6.3

are (1.2320, 0.7570),(−0.5995, 0.8721),(0.6539,−0.6161), hence the three critical

points are numerically approximated by

p1 ≈ (−0.5995,−0.1776, 0, 0.8721) and f(p1) ≈ 1.6630

p2 ≈ (1.2320,−1.0974, 0, 0.7570) and f(p2) ≈ 4.2699

p3 ≈ (0.6539,−0.9822, 0,−0.6161) and f(p3) ≈ 8.2365

Lemma 6.6. The function f̃ : X → R is a Morse function, and the index of f̃

at each of p1, p2, p3 is 0, 2 and 3 respectively.

Proof. We will define local coordinate charts, and calculate the Hessian of f̃ in

those charts at p1,p2 and p3. For ζ = (x, y, z, w) ∈ X such that x 6= 0, let U

be an open neighborhood of ζ in X away from x = 0. For (x, y, z, w) ∈ U write

y =
x+ z2 + w3

−x2
. In real coordinates, x = x1 + ix2, y = y1 + i y2, z = z1 + i z2,
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w = w1 + iw2, we have

y =
x̄

−xx̄
+

z2x̄2

−x2x̄2
+

w3x̄2

−x2x̄2

=
x1 − ix2
−x21 − x22

+
(z1 + i z2)

2(x1 − ix2)
2

−x41 − 2x21x
2
2 − x42

+
(w1 + iw2)

3(x1 − ix2)
2

−x41 − 2x21x
2
2 − x42

=
x1

−x21 − x22
+
− ix2
−x21 − x22

+
z21x

2
1 − z21x22 + 4z1z2x1x2 − z22x21 + z22x

2
2

−x41 − 2x21x
2
2 − x42

+
−2 i z21x1x2 + 2 i z1z2x

2
1 − 2 i z1z2x

2
2 + 2 i z22x1x2

−x41 − 2x21x
2
2 − x42

+
w3

1x
2
1 − w3

1x
2
2 + 6w2

1w2x1x2 − 3w1w
2
2x

2
1 + 3w1w

2
2x

2
2 − 2w3

2x1x2
−x41 − 2x21x

2
2 − x42

+
−2 iw3

1x1x2 + 3 iw2
1w2x

2
1 − 3 iw2

1w2x
2
2 + 6 iw1w

2
2x1x2 − iw3

2x
2
1 + iw3

2x
2
2

−x41 − 2x21x
2
2 − x42

So we have

y1 =
x1

−x21 − x22
+
z21x

2
1 − z21x22 + 4z1z2x1x2 − z22x21 + z22x

2
2

−x41 − 2x21x
2
2 − x42

+
w3

1x
2
1 − w3

1x
2
2 + 6w2

1w2x1x2 − 3w1w
2
2x

2
1 + 3w1w

2
2x

2
2 − 2w3

2x1x2
−x41 − 2x21x

2
2 − x42

and

y2 = +
−x2

−x21 − x22
+
−2z21x1x2 + 2z1z2x

2
1 − 2z1z2x

2
2 + 2z22x1x2

−x41 − 2x21x
2
2 − x42

+
−2w3

1x1x2 + 3w2
1w2x

2
1 − 3w2

1w2x
2
2 + 6w1w

2
2x1x2 − w3

2x
2
1 + w3

2x
2
2

−x41 − 2x21x
2
2 − x42

So the representative of f̃ in the above chart is

f̃(x1, x2, z1, z2, w1, w2) = x21 + x22 + y21 + y22 + z21 + z22 + (w1 − 2)2 + w2
2

where y1 = y1(x1, x2, z1, z2, w1, w2) and y2 = y2(x1, x2, z1, z2, w1, w2) are the

smooth functions defined above. Letting u, v ∈ {x1, x2, z1, z2, w1 − 2, w2} be
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any of the coordinate maps, the first order partial derivatives of f̃ are:

∂f̃

∂v
= 2v + 2y1

∂y1
∂v

+ 2y2
∂y2
∂v

and the second order partial derivatives of f̃ are:

∂2f̃

∂v∂u
=


2 + 2

(
∂y1
∂v

)2
+ 2y1

∂2y1
∂v2

+ 2
(
∂y2
∂v

)2
+ 2y2

∂2y2
∂v2

if u = v

2∂y1
∂v

∂y1
∂u

+ 2y1
∂2y1
∂v∂u

+ 2∂y2
∂v

∂y2
∂u

+ 2y2
∂2y2
∂v∂u

if u 6= v

Note that the three critical points of f̃ have real x, y, w coordinates, and z = 0,

so they correspond to the points (xi1, 0, 0, 0, w
i
1, 0), for i = 1, 2, 3. Calculating the

Hessian of f̃ in the given coordinate charts and evaluating the matrix at the a

point of the form (x1, 0, 0, 0, w1, 0), we obtain the following matrix:



m11(x1, w1) 0 0 0 m15(x1, w1) 0

0 m22(x1, w1) 0 0 0 m26(x1, w1)

0 0 m33(x1, w1) 0 0 0

0 0 0 m44(x1, w1) 0 0

m15(x1, w1) 0 0 0 m55(x1, w1) 0

0 m26(x1, w1) 0 0 0 m66(x1, w1)



95



where

m11(x1, w1) =
2(10w6

1 + x61 + 12w3
1x1 + 3x21)

x61

m22(x1, w1) = −2(2w6
1 − x61 + 4w3

1x1 + x21)

x61

m33(x1, w1) =
2(x41 + 2w3

1 + 2x1)

x41

m44(x1, w1) = −2(−x41 + 2w3
1 + 2x1)

x41

m55(x1, w1) =
2(15w4

1 + x41 + 6w1x1)

x41

m66(x1, w1) =
2(3w4

1 + x41 − 6w1x1)

x41

m15(x1, w1) = −6w2
1(4w

3
1 + 3x1)

x51

m26(x1, w1) =
2w2

1

x41

It remains to evaluate the above matrix at each of the critical points, and find

the index of the real symmetric matrix obtained in each case. The three obtained

matrices are nonsingular, this shows that the three critical points are nondegen-

erate, and hence f̃ is a Morse function. Moreover for p1 the index is 0, for p2 the

index is 2, and for p3 the index is 3.

Proposition 6.7. X has the same homotopy type as e6∪ϕe2∪ψe3 where ϕ : S1 →

e6 and ψ : S2 → e6 ∪ϕ e2 are the attaching maps.

Proof. f̃ has a global minimum at p1, f̃
−1[c1, c1+1] is a compact subset of X, then

by the Lemma of Morse and the proof of Theorem 4.2.4, there exists 0 < δ < 1

such that f̃−1[c1, c1+δ] is diffeomorphic to a 6-cell. Now f̃−1[c2−1, c2+1] is com-

pact, and contains no critical points of f̃ other than p2, then by Theorem 4.2.3,

for all sufficiently small ε > 0, f̃−1[c1, c2 + ε] has the same homotopy type as
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f̃−1[c1, c2 − ε] with a 2-cell attached (the index of p2 is 2). f̃−1[c1 + δ, c2 − ε] is

compact and contains no critical points of f̃ , thus by Theorem 4.2.2, f̃−1[c1, c2−ε]

is diffeomorphic to f̃−1[c1, c1 + δ], which is diffeomorphic to a 6-cell, so that

f̃−1[c1, c2 + ε] has the same homotopy type as a 6-cell with a 2-cell attached.

Now applying again Theorem 4.2.3 and Theorem 4.2.2, in a similar manner as

before, f̃−1[c1, c3 + ε] has the same homotopy type as a 6-cell with a 2-cell at-

tached, with a 3-cell attached. It remains to note that X deformation retracts to

f̃−1[c1, c3+ε] along the integral curves of − grad f̃ . Rigorously, define a homotopy

H : [0, 1]×X → f̃−1[c1, c3 + ε] that is the identity on f̃−1[c1, c3 + ε] for any time

t, and at any point x ∈ f−1(c3 + ε,+∞), H(t, x) is the integral curve of − grad f̃

starting at x and flowing to a point in f−1({c3 + ε}).

Figure 6.1: e6 with a 2-cell attached

Remark 6.8. Figure 6.1 shows a possible way to attach a 2-cell to e6, where e6 is

presented abstractly. Since X is contractible, see [Kaliman, 1993], the only way
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to attach a 3-cell to the above figure to obtain X, is by mapping the boundary of

e3 in such a way that e3 fills the hole. Note that the theorems used in the proof

of Proposition 6.7 are not enough to predict how the cells are attached. For that

we have to study the behavior of the integral curves of grad f̃ between the critical

points.

Remark 6.9. Writing the defining function of X as h = h1 + ih2, were h1 is the

real part of h, and h2 is the imaginary part of h, we get that

h1(x1, x2, y1, y2, z1, z2, w1, w2) = w3
1−3w1w

2
2 +x21y1−2x1x2y2−x22y1 +z21−z22 +x1

and

h2(x1, x2, y1, y2, z1, z2, w1, w2) = 3w2
1w2−w3

2 + x21y2 + 2x1x2y1− x22y2 + 2z1z2 + x2

so X can be described in real coordinates as

{ζ = (x1, x2, y1, y2, z1, z2, w1, w2) ∈ R8 : h1(ζ) = h2(ζ) = 0}

We will consider the usual Riemannian metric on R8, defined on TR8 by:

〈V,W 〉 =
8∑
i=1

viwi

where V,W ∈ TR8 and (vi), (wi) are smooth functions such that (vi(p)) and

(wi(p)) coordinates of V (p) and W (p), respectively, in the basis

(
∂

∂x1
|p,

∂

∂x2
|p,

∂

∂y1
|p,

∂

∂y2
|p,

∂

∂z1
|p,

∂

∂z2
|p,

∂

∂w1

|p,
∂

∂w2

|p
)
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of TpR8. Note by Remark 3.7.21 that for any smooth map f : R8 → R, the coor-

dinates of the vector field grad f (with respect to the usual Riemannian metric)

are

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂y1
,
∂f

∂y2
,
∂f

∂z1
,
∂f

∂z2
,
∂f

∂w1

,
∂f

∂w2

)
, so grad f will be identified by the

differential map, df , of f .

We now wish to study the flow of grad f̃ . The local coordinate charts in-

troduced in Lemma 6.6 are only defined when x = x1 + ix2 6= 0, so we would

not be able to study the flow of grad f̃ globally in those coordinates. Instead we

will work with the coordinates of R8. Since h1 and h2 are nonsingular, X is an

embedded submanifold of R8, and at every point p ∈ X, TpX can be viewed as

the 6-dimensional subspace of TpR8:

ker(dh1|p) ∩ ker(dh2|p) = {V ∈ TpR8 : dh1(V ) = dh2(V ) = 0}

or in terms of the usual Riemannian metric:

{V ∈ TpR8 : 〈dh1|p, V 〉 = 〈dh2|p, V 〉 = 0}

where dh1 and dh2 are identified with gradh1 and gradh2, respectively.

By the Cauchy–Riemann equations, since h is holomorphic, dh1 and dh2 are

orthogonal. df̃ |p is the projection of df |p on TpX, so df̃ |p = df |p − α(p)dh1|p −

β(p)dh2|p, with

α =
〈df, dh1〉
〈dh1, dh1〉

and β =
〈df, dh2〉
〈dh2, dh2〉

Letting ψ be the flow of df̃ ,
dψ

dt
= df̃ |ψ(t), and expressing ψ in the coordinates

of R8, ψ = (x1, x2, y1, y2, z1, z2, w1, w2) we get a system of ordinary differential

equations, with ψ(0) to be precised.
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In what follows we will calculate and visualize the flow by solving numerically

the above system using the Runge–Kutta method, for particular choices of ψ(0).

The index of p3 is 3, so the Hessian of f̃ at p3 has 3 negative eigenvalues. We will

consider the eigenvectors corresponding to those eigenvalues, namely v1, v2 and

v3. From the proof of the Morse Lemma, we see that f decreases its value when

flowing from p3 along these directions. For that we take ε > 0, and we set each

of the six points p3± εvi, i = 1, 2, 3, as a starting points for the flow. For ε small

enough, the flow must converge to either p1 or p2. The figures below represent

the variation of the x1,y1, and w1 coordinates of the flow given numerically by

the the Runge–Kutta method, with time steps τ = 0.0002 and ε = 0.1, in each

of the six cases:

Figure 6.2: flowing from p3 + εv1

100



Figure 6.3: flowing from p3 − εv1

Figure 6.4: flowing from p3 + εv2
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Figure 6.5: flowing from p3 − εv2

Figure 6.6: flowing from p3 + εv3
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Figure 6.7: flowing from p3 − εv3

Figure 6.2 shows that the point p3 + εv1 flows directely to p2. Figures 6.3, 6.4

and 6.5 show that the points p3− εv1, p3 + εv2, p3− εv2 flow to p1. For the points

p3 ± εv3, Figures 6.3 and 6.4 show that the flow approaches p2, then converges

to p1. We can not be certain in this case that the flow should converge to p1. It

is possible due to a numerical error that the numerical solution misses p2, and

converges along some other flow to p1.

Remark 6.10. If with further numerical assertions one can show that the flow

starting from each of the points p3 ± εv3 converges to p1, then we would have

good numerical evidence that for some ε > 0, ∂Dl(p3) and ∂Du(p2) intersect

transversely at a single point in the level surface f̃−1(c2 + ε), so that p2 and

p3 satisfy the assumptions of Theorem 4.2.9, and thus obtain a Morse function

g : X → R that coincides with f̃ near the boundary and outside of f̃−1[c1+ε, c3+ε]

and has no critical points in the interior of f̃−1[c1+ε, c3+ε]. Hence g has a global

minimum at p1, and has no other critical points. So any point in X, other than

p1, flows to∞ along the integral curves of grad g, as the parameter t tends to +∞,
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and flows to p1 as t tends to −∞. This allows us to construct a diffeomorphism

between X and R6, and thus reprove that the Koras–Russell cubic threefold is

diffeomorphic to R6.
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