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An Abstract of the Dissertation of

Chadi Hanna Trad for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Automated Program Repair Using Flow Alteration

Program bugs are notorious for their cost when discovered late in the Software
Development Life Cycle (SDLC). When a bug is discovered in the production
environment, the cycle is restarted, which often takes at least one or two weeks
before the fix is pushed to production. To mitigate the increasing cost of delayed
bug resolution, several families of techniques were developed such as Automated
Program Repair (APR), and Failure Detection. In this thesis, we propose two
variants of these techniques. To perform a program repair, most approaches
apply methods based on Satisfiability Modulo Theorem (SMT) or on Generate-
and-Validate (G&V) techniques. However, these approaches are computationally
complex. SMT-based methods can suffer from path explosion for large programs
and may require the programmer to write assertions and specifications, while
G&V methods tend to have a huge search-space and may over-fit the test suite.
Our first proposed method, CFAAR, is a test-based repair technique that operates
by selectively altering the outcome of suspicious control statements in order to
yield the expected program behavior. CFAAR targets defects that are repairable
by altering the execution of control statements under specific conditions. Unlike
other test-based repair techniques that mine for patches in other parts of the
program or in various artifacts, CFAAR relies on the program’s state to determine
when a candidate control statement should be negated to yield a correct behavior.
Then, the captured state is further analyzed to synthesize a patch in the form of
a conditional that guards the candidate control statement. Our second proposed
method, D-FUSE, is a failure detection method that uses both structural and
substate profiles. While structural profiles estimate the various path components
visited in each run, substate profiles characterize the various values taken by a
variable for a given run. Furthermore, a substate descriptor embeds statistical
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information about these values, and how they cluster among all test cases. In
this thesis, we leverage both types of profiles to enhance failure detection. After
showing that the two profile types are complementary for detecting failure, we
propose an optimization technique that selects a set of profile elements that
predicts failure, while minimizing the profiling cost. Finally, an augmented set
of instrumentation probes are selected to reproduce the selected profile elements,
while maintaining a low resource overhead.
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Chapter 1

Introduction

Software defects are abundant. On a large scale, the cost of repairing bugs in 2013

was 312 billion dollars, according to a report published in [1]. Debugging, testing,

and verification can add up to around 75% of the cost of a software development

project [2]. On a smaller scale, software developers spend around 80% of their

time finding and fixing bugs. Due to the time-consuming nature of manual fault

localization and repair, it is common practice to have software products shipped

with pre-identified low-priority bugs. While some defects can be harmless, others

can cause applications to crash, hundred-million-dollar space missions to fail, and

death in some cases [3]. On the other hand, a long Software Development Life

Cycle (SDLC) can often result in increasing costs before a vulnerability is fixed.

Due to all of these factors and more, there is a pressing need for automated tools

to help identify, localize, repair, or mitigate the costs of software defects.

According to the PIE model [4], a failure occurs when a defect is executed,

when the state of the program is infected and when this infection propagates to

the output of the program. Our thesis studies and enhances two failure mitiga-

tion techniques. The first technique that we study is Automated Program Repair
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(APR). For a given defect, an APR technique characterizes the bug and generates

a fix such that the program produces the expected output for both the passing

and the failing runs. The second technique that we study is Failure Detection.

With Failure Detection, a signal can be raised to invalidate or revert the transac-

tion and potentially signal operators and developers about the execution of the

vulnerability. Each of the studied techniques can be used in its own context,

depending on the vulnerability type, severity, and the system architecture.

The next two sections detail our contribution to each of the proposed tech-

niques. In the last section, we outline the rest of the dissertation.

1.1 CFAAR: An Automated Program Repair

technique

APR investigates the repair of software by either modifying its source code or

bytecode (known as Program Repair) or by fixing its state (known as State Re-

pair). While the purpose of the former method is to correct a software on the

source-code level, the purpose of latter is to allow continued execution when run-

time errors occur. Recent techniques have shown significant progress in Program

Repair, using evolutionary techniques, and specification-based synthesis. Evolu-

tionary techniques focus on modifying the program randomly with the purpose

of making all test cases pass. On the other hand, specification-based synthesis

make use of developer-written specifications to guide the repair process.

Most approaches apply computationally expensive methods. Specification-

based methods can suffer from path explosion on large programs and may require

the programmer to write assertions, while evolutionary methods tend to have a

huge search-space and often overfit the test suite. In this thesis, we focus on us-
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ing a combination of machine-learning, instrumentation and run-time monitoring

techniques to guide test-case-driven techniques in program repair.

In the remainder of this section, we present an overview of our work published

in [5]. We propose an automated repair technique that functions by Control Flow

Alteration to Assist Repair (CFAAR). CFAAR is a test-based repair technique

that operates by selectively altering the outcome of suspicious control statements

in order to yield expected program behavior, and subsequently provide a syn-

thesized patch that can be used directly or assist the programmer in the repair

process. It focuses on the category of defects that are repairable by negating

control statements under specific conditions. Unlike many test-based repair tech-

niques that mine for patches in other parts of the program [6, 7] or in various

artifacts, CFAAR relies on the program’s state to determine when a candidate

control statement should be negated to make failures pass. The captured state

information is further analyzed to synthesize a patch in the form of a conditional

that guards the candidate control statement. Specifically, given a test suite in

which the test cases are classified as failing or passing, CFAAR operates as fol-

lows:

Step 1. It identifies a set of failure-causing control dependence chains that are min-

imal in terms of number and length. This is achieved by using an improve-

ment of an existing CBFL technique [8], as described in Section 2.3.

Step 2. Using a heuristic search, it identifies a set of predicates within the chains

along with associated execution instances, such that negating the predicates

at the given instances would make some (but not necessarily all) of the

failing tests exhibit correct behavior.

Step 3. For each candidate predicate, a classifier is built whose purpose is to dictate
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when the predicate should be negated to yield correct behavior. The train-

ing output data for the classifier (to negate vs. not to negate) is deduced

from the execution instances identified in Step 2. The training input data

is derived from the program state captured at the point of predicate execu-

tion. It is worth pointing out that, in several cases we encountered, if Step

2 was only able to make part of the failing tests exhibit correct behavior,

the built classifier might compensate for that shortcoming, as discussed in

Section 2.2.3.

Step 4. For each classifier, CFAAR leverages a Decision Tree in order to synthesize

a corresponding patch deployable in the form of a conditional statement

guarding the candidate predicate. It should be noted that the user has the

option to discard the synthesized patch and instead rely on the classifier to

enable correct behavior at run-time; this might be a sensible option if the

patch was deemed unmaintainable.

In this work, we make the following contributions:

1. An effective program repair approach that is centered on selectively altering

control flow, with specific focus on defects that are repairable by negating

control statements under specific conditions.

2. A CBFL component that identifies failure-causing control dependence chains.

3. A supporting toolset that targets the Java platform.

4. An evaluation of the toolset demonstrating its effectiveness at generating

synthesized patches for the Introclass [9] benchmark and part of the Siemens

benchmark [10].
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5. Due to Java’s Class Reloading capability, the synthesized patch or the cor-

rective classifier could be dynamically deployed without requiring the ap-

plication to be restarted

6. The current focus of CFAAR is seemingly narrow; however, we believe

that the essence of the approach is extendable to address defects that are

repairable by a variety of alterations to a program’s control flow and even

data flow.

1.2 D-FUSE: A Failure Detection Technique

When compared to Automated Program Repair, failure detection is considered

a relatively conservative technique that can be used to produce a defensive fix.

After detecting that a bug is executed, a system can be configured to revert the

current transaction, or send a critical warning to the development and operational

teams. While both APR and Failure Detection techniques can use common fea-

tures and tools, the end resolution is different. One attempts to fix the problem

at the application level by producing a correct output, while the other relies on

other parts of the system and reports the failure.

A baseline failure detection technique can be built using simple structural

profile elements. For instance, if an if-statement branch is directly associated

with a vulnerability, the program run can be declared as failing when the branch

is visited at runtime. By analyzing structural profiles for failing and passing

runs, determining the branch associated with the vulnerability is straightforward.

Also, by building custom instrumenters and profilers, it is also straightforward to

generate a modified executable that raises a signal when the suspicious branch

is executed. More sophisticated approaches such as [11] or [12] can make use
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of a combination of structural profile elements to detect if the vulnerability was

executed.

However, structural profiles are not always sufficient in identifying when a

defect/vulnerability is executed. The contributing factors to a failure can lie in

the state of the program. Unlike strucural profiles, which usually have a limited

number of elements, state information can be an unlimited number of possibili-

ties. However, substate profiling is a recent technique that reduces the unlimited

vector space of the program state to a limited subspace. It was shown to be

effective in Test Suite Reduction [13] and Fault Localization [14]. In this disser-

tation, we propose Detecting Failure Using Substate Profile Elements (D-FUSE ),

a novel approach that enables Failrue Detection using both structural and sub-

state profiles. The approach works as follows:

Step 1. We first generate structural and substate profiles for the subject program

for all test cases. In the case of substate profiles, the profiles are clustered

into distinct profile elements.

Step 2. The resulting profiles for each test case along with its failure information

are used in an Integer Programming (IP) optimization engine. The target of

the optimization is to select a combination of elements that predicts failure,

while minimizing the profiling cost. Multiple weighing techniques can be

used to perform this minimization.

Step 3. By customizing the structural and substate instrumenters, we generate a

minimally augmented set of probes to accurately detect when the profile

element is satisfied.

(a) For structural profiles, compound profile elements that depend on a

sequence of events A and B require that no event C can invalidate
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the sequence. For example, to validate that a variable is defined at

location l1 and used in location l2, we need to validate that the variable

is not redefined at a third location l3. This would increase the number

of probes. On the other hand, combining multiple profile elements can

make use of common probes, thus reducing the set of probes. Our aim

is to use a minimal set of probes without sacrificing accuracy.

(b) For substate profiles, we augment the descriptor with the cluster in-

formation to accurately detect if the run belongs to the appropriate

cluster.

Step 4. As a final step, a guard code is added to the subject program to apply the

rules generated in Step 2. This code throws an error if a failure is imminent.

We tested our proposed method on the Defects4J framework [15] and showed

the complementary nature of structural and substate profiles for failure detection.

The results show that the proposed approach detects failures with an accuracy

superior to the baseline approach. The methodology and results are further

detailed in Chapter 3.

1.3 Dissertation Outline

The rest of the document is organized as follows. Chapter 2 presents our APR ap-

proach and its results. In Chapter 3, we illustrate our failure detection approach.

Chapter 4 summarizes the related literature, and Chapter 5 concludes.
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Chapter 2

Control Flow Alteration to Assist

Repair

In this chapter, we present CFAAR, a program repair assistance technique that

operates by selectively altering the outcome of suspicious predicates in order to

yield expected behavior. CFAAR is applicable to defects that are repairable by

negating predicates under specific conditions.

CFAAR proceeds as follows: 1) It identifies predicates such that negating

them at given instances would make the failing tests exhibit correct behavior. 2)

For each candidate predicate, it uses the program’s state information to build

a classifier that dictates when the predicate should be negated. 3) For each

classifier, it leverages a Decision Tree to synthesize a patch to be presented to

the developer.

We evaluated our toolset using 149 defects from the IntroClass and Siemens

benchmarks. CFAAR identified 91 potential candidate defects and generated

plausible patches for 41 of them. Twelve of the patches are believed to be correct,

whereas the rest provide repair assistance to the developer.
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The main contributions highlighted in this chapter are:

1. A program repair assistance approach that is centered on selectively altering

control flow, with specific focus on defects that are repairable by negating

control statements under specific conditions.

2. A supporting toolset that targets the Java platform.

3. An evaluation of the toolset demonstrating its effectiveness at generating

synthesized patches for the Introclass benchmark and part of the Siemens

benchmark.

Section 2.1 provides an introductory overview to the CFAAR program repair

assistance technique. The detailed description of CFAAR is then provided in

section 2.2 and in [5]. Section 2.3 describes the CBFL component while focusing

on the proposed modifications. Section 2.4 presents the evaluation of CFAAR

when applied to the Introclass and Siemens benchmarks.

2.1 Overview

Once a failure is detected, it is typically handed over to the developers in order

to initiate the debugging process that involves: 1) identifying its root cause,

and 2) modifying the code to prevent it from recurring. Researchers working on

automating the debugging process refer to the first activity as fault localization,

and the second as program repair. For over three decades, researchers have

proposed a plethora of automated fault localization techniques and tools [16,

17, 18, 19, 20, 21, 22, 23, 24]. And in recent years, a number of automated

program repair techniques have been proposed that leverage varying approaches

such as evolutionary algorithms [9, 25], constraint solving [26, 27, 28, 29, 30],
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and program mutation [31]. Long and Rinard [32], Xiong et al. [33], Demarco

et al. [26], and Xuan et al. [34] proposed repair techniques that are focused on

condition synthesis, which pertains most to our work.

We present CFAAR (Control Flow Alteration to Assist Repair), a test-based

program repair assistance technique that operates by selectively altering the out-

come of suspicious predicates in order to yield expected behavior, and subse-

quently provide a synthesized patch. It focuses on the category of defects that

are repairable by negating control statements under some specific conditions. Un-

like most other test-based repair techniques that mine for patches in other parts

of the program [6, 35] or in various artifacts, CFAAR relies on the program’s state

to determine when a candidate control statement should be negated in order to

yield correct behavior. The captured state information is further analyzed in or-

der to synthesize a patch in the form of a conditional that guards the candidate

control statement. When presented with a patch, the developer would: 1) use it

as is, if deemed correct; or 2) use it as assistance during the debugging process.

Specifically, given a test suite in which the test cases are classified as failing

or passing, CFAAR operates as follows:

Step1. It identifies a set of suspicious predicates using an existing coverage-based

fault localization (CBFL) technique.

Step2. For each suspicious predicate, it uses a heuristic search to identify exe-

cution instances such that negating the predicates at the given instances

would make some (but not necessarily all) of the failing tests exhibit correct

behavior. Our repair assistance approach would be deemed to have failed

in case this step was unable to make any failing test case exhibit correct

behavior.
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Step3. For each candidate predicate, a classifier is built whose purpose is to dictate

when the predicate should be negated to yield correct behavior. The train-

ing output data for the classifier (to negate vs. not to negate) is deduced

from the execution instances identified in the previous steps.

Step4. The training input data is derived from the program state captured at

the point of predicate execution. It is worth pointing out that, in several

cases we encountered, if Step 2 was only able to make part of the failing

tests exhibit correct behavior, the built classifier might compensate for that

shortcoming, as discussed in Section 2.2.

Step5. For each classifier, CFAAR leverages a Decision Tree in order to synthesize

a corresponding patch deployable in the form of a conditional statement

guarding the candidate predicate. The developer might deem the patch

correct and adopt it as a fix, or simply use it to guide and assist the debug-

ging process.

2.2 CFAAR: Selective Control Flow Alteration

Our program repair approach is based on the premise that a measurable propor-

tion of the defects are likely to trigger erroneous branch executions within highly

suspicious control dependence chains. As such, we expect that properly altering

such chains at runtime is likely to cause the failure to disappear, and thus enable

us to synthesize a permanent code fix. This section describes CFAAR in detail.
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Figure 2.1: CFAAR Overview

2.2.1 Overview

Figure 2.1 provides an overview of our approach. Given a set of passing test cases

and another of failing test cases, the CBFL technique described in Section 2.3

is applied. The outcome is a set of highly suspicious control dependence chains

that are minimal in terms of number and length.

A Heuristic Search for Control Flow Alterations (see Section 2.2.2)

is applied on the suspicious chains to identify a minimal set of predicates whose

negation at proper instances causes the failure to disappear in some or all test

cases that were originally failing. CFAAR is deemed unsuccessful in case the

search failed to find any candidate predicates and associated execution instances.

The Build Classifiers phase creates for each candidate predicate p a clas-

sifier whose purpose is to dictate when the predicate should be negated to yield

correct behavior. This involves two steps:

1. Training Data Collection: the test suite is executed in order to capture the
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program states relevant to p, every time p is executed. The captured states

are labeled as those for when p needs to be negated and those for when a

negation is not required.

2. Classifier Training : involves using the collected states to train a Decision

Tree classifier that decides whether or not to negate p.

The Patch Synthesis phase generates a code fix by: a) building a Decision Tree

out of the classifier and b) converting the tree into a predicate that will guarantee

that the corresponding suspicious candidate predicate is negated appropriately.

That is, the synthesized patch should faithfully replace the classifier.

2.2.2 Heuristic CFA Search

We devised HeuristicCFASearch, a search algorithm that identifies which

predicates to negate and when to negate them. Specifically, the goal is to identify

according to which pattern of execution, picked from the list of pre-determined

patterns shown in Figure 2.2, a certain predicate should be negated. For exam-

ple, the “all” pattern means that the predicate should be negated all the time,

and the “first+last” patterns means that it should be negated only the first time

it executes and the last time.

Note how each of the supported patterns of execution are generic enough to

be matched across different test runs. Consider for example a predicate p that

executes 7 times in failing test case t1 and 8 times in t2. Now assume that we

discover that t1 passes if p is negated according to the pattern “0111110”. Finding

a matching pattern in t2 is possible and yields “01111110” according to the generic

pattern “all-(first+last)”. However, if the discovered pattern was “1101011” it is

not possible to find a unique match in t2. For that reason, we restrict our search
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Figure 2.2: Heuristic CFA Search Algorithm
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to patterns that are easily reproducible across different execution runs.

HeuristicCFASearch considers a single suspicious predicate p at a time

and a set of different patterns of negation. Specifically, it checks whether any of

the following actions would make some or all of the failing test cases succeed: 1)

negating p all the time within a given failing test case; 2) negating p the first

time; 3) negating p the last time; 4) negating p all the time except the first; 5)

negating p all the time except the last; and so on, as indicated on Line 1 of the

pseudo-code shown in Figure 2.2.

HeuristicCFASearch takes as input: 1) PredListsusp: the list of suspi-

cious predicates identified by the CBFL component; and 2) Tfail: the set of failing

test cases within the training set. Line 1 initializes Patterns with the execution

patterns to be matched. Note that the patterns are roughly ordered in terms

of their simplicity. On Line 2, PredListsolution is initialized to the empty set.

Its role is to store the suspicious predicates that are candidates for repairing one

or more failing runs. For every suspicious predicate p, every failing test tfail,

and every pattern pattern, Line 6 executes tfail while negating p according to

pattern. In case the execution succeeds, p is deemed to be a viable candidate for

repairing tfail according to pattern. Accordingly, Line 8 associates p with tfail

and pattern, and Line 9 adds p to PredListsolution.

Lines 10-13 order all of the (p, pattern) pairs based on the number of failing

test cases they fixed. The ordered list is stored in the priority queue PredPatternPQsolution,

and returned at Line 14.

2.2.3 Building the Classifiers

Training Data Collection - We train one classifier at a time for every pair (p,

pattern) in the ordered list identified by HeuristicCFASearch. The objective
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is to obtain one or more classifiers that can plausibly fix the subject program. If

multiple classifiers turn out to be plausible, the one that facilitates synthesis the

most will be considered.

Given a pair (p, pattern) we collect data to train a classifier that will guide

the execution by indicating when to negate p according to pattern. Two sets of

data are actually needed, one associated with when p needs to be negated and

another associated with when p should remain intact. In other words, we need

to capture the states induced by: 1) the failing test cases that were fixed using

(p, pattern); and 2) all the passing test cases.

The two sets are built by collecting the approximated state of the program

right before each execution of p. Specifically, on the onset of p executing, the

values of the following entities are collected:

1. Use(p), i.e., the local variables, static variables, array elements, instance

fields, and method return values, directly used in p.

2. Formal parameters of the method containing p.

3. Local and static variables that were used or defined within the method

containing p.

The values of the program variables are derived according to their types, as

follows:

1. Variables of type float and double have their values used as is, i.e., as scalars.

2. Variables of type int, long, char, byte, and short have their values used in

a dual manner, as scalars and categorical.
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3. java.lang.String objects are categorically represented within the classifier,

such that the categories are determined based on the java.lang.String.hashCode()

method.

4. Non-String objects are also categorically represented within the classifier.

However, the categories are determined based on a hash code computed

by considering the states of the objects’ attributes, and if need be, by

recursively considering the attributes of their attributes and so on. In other

words, to represent a non-String object, a hash code is first derived based

on all of its direct and indirect attributes.

Training the Classifiers - In this phase, a classifier is trained using the

previously collected training data. The outcome is a Decision Tree that tests

one variable at a time to determine if the candidate predicate should be negated.

Since the operations that process decision trees are greedy by nature, we expect to

have a small number of variables in the tree and consequently only few variables

in the resulting synthesized patch.

It is worth noting that during our work we encountered an unexpected but

serendipitous scenario related to classifier training. The following illustrates it:

1. HeuristicCFASearch was only successful at making part but not all the

failing test cases pass.

2. As a result of training the classifiers, one of the classifiers captured the

invariant “x > 5 when predicate p must be negated”.

3. When rerunning the program and negating p whenever x > 5; unexpectedly,

all (as opposed to part) of the test cases exhibited correct behavior. That is,

the captured invariant generalized to all failing test cases without affecting

17



Figure 2.3: Decision Tree Conversion Example

the passing test cases. In our experiments, this scenario occurred several

times.

Patch Synthesis

Given a classifier that makes all test cases pass, the Patch Synthesis phase

generates a synthesized patch by building a Decision Tree out of the classifier,

and then converting it into a predicate that guards the suspicious candidate

predicate. This process is detailed below and illustrated in Figure 2.3.

The computed decision tree serves as a blueprint of the patch. Its leaves indi-

cate whether the predicate should be negated or not. The tree is first converted

to a Boolean expression as follows (see Figure 2.3):

1. Every path from the root node to a leaf indicating a negation is transformed

into a rule comprising a conjunction of the conditions along the path.

2. The obtained rules are grouped using disjunctions.

3. The final expression is a DNF formula consisting of literal equalities and
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Figure 2.4: Instrumentation for Negating Predicates

inequalities. We note that the generated expression can be reduced through

various methods, but this doesn’t affect the correctness of the expression.

The resulting Boolean expression is transformed into bytecode following the

steps below:

1. The variables used in the patch are identified. Local variables and static

fields can be used directly in the patch. However, instance fields and method

returns cannot; they are stored in temporary local variables that the patch

will use.

2. Compatible bytecode operators for the equalities and inequalities in the

Boolean expression are identified. For example, a variable of type int will

require a different comparison operator than what a variable of type double

would require.
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3. The Boolean expression is transformed into a sequence of if statements

that determine if the condition is met or not.

4. A guard is created just before the candidate predicate. It executes an

alternative if bytecode with flipped targets when the condition is met. The

guard is identical to the one presented in Figure 2.4.

Implementation

Our implementation targeted the Java platform at the byte code level. Part of the

work that posed most implementation challenges included Heuristic CFA Search,

and Training Data Collection that both involved instrumenting and profiling Java

byte code using the Byte Code Engineering Library, BCEL.

Training Data Collection calls for developing a state profiling engine that cap-

tures a snapshot of the approximated program state at given code locations, as

described in Section 2.2.3. The profiling engine consists of two main subcompo-

nents: the Instrumenter and the Profiler. The preliminary step is to instrument

the target byte code class files using the Instrumenter which inserts a number of

method calls to the Profiler at given points of interest. At runtime, the instru-

mented application invokes the Profiler, passing it information that enables it to

log the approximated program states.

Heuristic CFA Search aims at identifying which predicates to negate and

following which pattern. In order to enforce a given pattern, the number of

occurrences of each suspicious predicate needs to be known a priori, thus requiring

each failing test to be executed twice. To support the conditional negation of

a given predicate (Line 6 of HeuristicCFASearch), each suspicious predicate is

augmented by byte code that enables the CFA Search profiler to negate the

predicate when needed.
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Figure 2.4 is an illustration of how a predicate would be instrumented. The

ID of the predicate is pushed on the stack (Line 8) and a method shouldNegate()

is invoked (Lines 9-10) right before the if statement executes. The returned value

is checked (Line 11). If the returned value is false, the code branches to the

original if statement (Line 14). If the returned value is true, a synthesized if

statement with swapped branches is executed (Lines 12-13). On the profiler side,

shouldNegate() logs the timestamp and the ID of the executed if statement, and

returns true or false according to HeuristicCFASearch.

2.3 CBFL: Identifying Failure-Causing Predicates

CFAAR requires a very small number of highly suspicious predicates to be first

identified. Using a traditional coverage-based fault localization technique that

uses simple profiling elements (e.g. branches) might not always be effective since

the defect might be too complex to be characterized by any set of elements;

thus, no suspicious predicates would be identified. Also, using structural profil-

ing elements that are more complex than the defect at hand might identify too

many suspicious predicates. In both cases the CFAAR requirement would not be

satisfied.

A CBFL technique most likely to satisfy the CFAAR requirement is one that

uses profiling elements that closely characterize the defect at hand, i.e., elements

that are structurally no less nor more complex than the defect. The CBFL tech-

nique presented in [8] seems most suitable. It uses program elements that vary

in complexity in order to better match the complexity of the defect of concern,

namely, dependence chains with varying lengths. In summary, the technique

operates as follows: 1) it starts by using the simplest profile elements, i.e., de-
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pendence chains of length one; 2) if one or more failure-correlated elements are

found, it stops; 3) otherwise it uses the next more complex profile elements, i.e.,

dependence chains of length two; and so on until a failure-correlated chain is

found or the resources are exhausted.

In order to make the above technique [8] suitable for CFAAR, we modified it

and extended it as follows:

1. We used control dependence chains only as opposed to data and control

dependence chains.

2. We improved its accuracy by considering the causal relationships amongst

program statements; thus enabling it to identify failure-causing as opposed

to failure-correlated predicates, as described next.

2.3.1 Causal Inference: Background

Causality [36, 37, 38] is clearly more desirable than correlation for the purpose of

fault localization, since the ultimate goal is to identify and repair the code that

caused the failure and not just any code that correlated with it. Early CBFL

technique erroneously used correlation to compute the suspiciousness score in

order to infer the causal effect of individual program elements on the occurrence of

failure. The scores they used suffer from confounding bias, which occurs when an

apparent causal effect of an event on a failure may actually be due to an unknown

confounding variable, which causes both the event and the failure. Confounding

bias might explain the high rate of false positives exhibited by such techniques

[39].

Given a program and a test suite, assume for example that all failing test

cases induce dependence chain e1 → e2 → ebug → e3 → e4 → efail and all
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passing test cases induce e1→ e2 only; where ebug exercises the fault and efail

indicates a failure. A correlation-based approach would determine that any of

ebug, e3, or e4 is equally suspect to be the cause of the failure, thus resulting in

two false positives. Whereas, a causation-based approach that considers depen-

dencies to have causal effect, would determine that e4 is the least suspect and

ebug the most suspect. This is because: 1) confounding bias weakens the causal

relationship; and 2) when computing the suspiciousness scores, the confounding

bias to consider for e4 would involve e3 and ebug, for e3 it would involve ebug, and

no confounding is involved when computing the suspiciousness score of ebug.

Confounding bias is a common phenomenon that needs to be identified, con-

trolled, and reduced. Baah et al. were the first to investigate the application of

causal inference in CBFL [40] [41].

Given a statement s in program P, the aim of their work is to obtain a causal-

effect estimate of s on the outcome of P that is not subject to severe confounding

bias, i.e., a causation-based suspiciousness score of s. They applied Pearl’s Back-

Door Criterion [36, 37] to program control dependence graphs in order to devise

an estimator based on the following linear regression model:

Ys = αs + τsTs + βsCs + εs

This model relates the event of program failure Ys with not just the event

of covering statement s (i.e., Ts), but also with the confounding events, listed in

Cs. The model is fit separately for each statement s, using statement execution

profiles that are labelled as passing or failing.

This work assumes that: 1) if s is faulty, covering it will cause a failure; and

2) if s is dynamically directly control dependent on statement s ′, s ′ causes the

execution of s and possibly the failure, i.e., s ′ is the only source of confounding

bias and Cs becomes a single indicator of whether s ′ was covered. More impor-
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tantly, since τs is the average effect of Ts on Ys, the work uses an estimate of τs

to quantify the failure-causing effect of s, i.e., the suspiciousness of s.

Note that neither of the above assumptions is sure to hold. For example, due

to coincidental correctness, covering a faulty statement will not necessarily cause

a failure; and due to the transitivity of control/data dependencies in programs,

direct control dependencies might not be the only source of confounding bias.

Nevertheless, using the above model is likely to yield more accurate suspiciousness

scores than simply relying on correlation.

2.3.2 From Failure-Correlated to Failure-Causing

Refining the failure-correlated chains into failure-causing chains is an important

step to arrive at a more accurate fault localization that eventually leads to a

more effective program repair. To do so, we first compute the causal effect for

each statement s appearing in the failure-correlated chains using the approach

adopted in [40] as follows:

1. Fit a linear regression model in the form of Ys = αs + τsTs + βsCs+ εs as

discussed in Section 2.3.1. In our case, Cs represents the statement upon

which s is directly control-dependent. That is, Cs would be 1 if a given

test cases covers the control predecessor of s and 0 otherwise. If s has no

control predecessor, the model to fit would be Ys = αs + τsTs + εs.

2. The causal effect of s is estimated via the coefficient τs. To refine the

failure-correlated chains, we sort them based on the maximum causal effect

per chain and select the top three.
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Table 2.1: Information about Subject Programs

Defects —T— —Tlarge— LOC
Siemens print tokens 4 4070 - 536

print tokens2 8 4055 - 387
replace 6 2843 - 554
schedule 4 2650 - 425
tot info 17 1052 - 494
tcas 18 1597 - 136

IntroClass digits 20 16 1000 15
grade 20 18 1000 19
median 20 13 1000 24
smallest 20 16 1000 20
syllables 4 16 1000 23
checksum 7 16 1000 13

2.4 Empirical Results

As our work in [5], this section tries to answer the following research questions:

1. RQ1: How Prevalent are the Defects that are Potentially Repairable by

CFAAR?

2. RQ2: How Effective is CFAAR at Synthesizing Plausible Patches?

3. RQ3: How Effective is CFAAR at Synthesizing Correct Patches?

In order to address these questions we applied our toolset to 12 Java programs

for a total of 148 defects. Next, we describe the used subject programs then

present and discuss our results.

2.5 Subject Programs and Test Suites

Our experiments involved 57 defective versions from the Siemens benchmark

(sir.unl.edu) and 91 versions from the Introclass benchmark [42]. The Siemens
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subjects, namely, 8 print tokens2 versions, 4 print tokens versions, 6 replace ver-

sions, 4 schedule versions, 1 schedule2 version, 18 tcas versions, and 17 tot info

versions were manually converted to Java in [8]. Note that we excluded irrelevant

bugs, those that could not be converted from C to Java, or those whose Java ver-

sions did not fail or caused exceptions to be thrown. The Introclass benchmark

is originally written in C, it contains 6 programs (digits, grade, median, smallest,

syllables, and checksum) and hundreds of related bugs. We opted to randomly

select 20 versions from each program and convert them to Java. As a result, we

used 20 digits versions, 20 grade versions, 20 median versions, 20 smallest ver-

sions, 4 syllables versions, and 7 checksum versions, for a total of 91 versions.All

subject programs are downloadable from [43].

Table 2.1 summarizes the information regarding the defective versions we

used in addition to the test suite sizes. Note that the original test suites for

the Introclass programs are very small; therefore, we randomly generated an

additional larger test suite for each, referred to as Tlarge in Table 2.1. However,

some versions did not fail using Tlarge, for those we used the original smaller test

suite, denoted by T in the table.

2.6 RQ1: How Prevalent are the Defects that

are Potentially Repairable by CFAAR?

A defect that is potentially repairable by CFAAR is one that could be fixed by

negating one of its predicate statements at some instances during execution. In

the context of our work, in order to get an estimated answer, we will assume that

it is any defect for which HeuristicCFASearch makes at least one failing test

exhibit correct behavior. Clearly, this is not a very accurate estimate since (cur-
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Table 2.2: Summary of Results

Siemens IntroClass
(T) (T & Tlarge combined)

#Versions 57 91
Partially Fixed by HeuristicCFASearch 32 59
Fully Fixed by HeuristicCFASearch 20 25
Partially Fixed by Classifiers 31 59
Plausible Patches 20 17
Correct Patches (checked manually) 3 (at least) -
Correct Patches (checked via testing) - 4

rently) HeuristicCFASearch only explores a limited number of patterns, and

only considers one predicate at a time as opposed to combinations of predicates.

The second row in Table 2.2 shows for each benchmark the number of the

versions for which HeuristicCFASearch made some or all failing test cases

behave correctly.

The third row shows for each benchmark the number of the versions for which

HeuristicCFASearch made some or all failing test cases behave correctly.

The fourth row shows the numbers for which HeuristicCFASearch made

all failing test cases behave correctly. On average, 58% of the versions had some

or all of their failing test cases pass, and 30% had all of them pass. These findings

suggest that the applicability of CFAAR is not very narrow.

These findings suggest that the current focus of CFAAR is not as narrow as

we initially thought it would be.
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2.7 RQ2: How Effective is CFAAR at Synthe-

sizing Plausible Patches?

Whenever a given classifier was successful at making all failing test cases behave

correctly, CFAAR will synthesize a corresponding plausible patch. Recall that

a plausible patch is one that makes all the test cases pass (including those that

were failing before the patch). Note that in many cases, multiple plausible patches

could be generated for each defect, which calls for ranking them w.r.t likelihood

of correctness.

The fifth row in Table 2.2 shows for each benchmark the number of the versions

for which the classifiers fixed some or all of the failing test cases. The sixth row

shows the numbers for which the classifiers fixed all of the failing test cases. The

numbers shown in the sixth row also represent the number of plausible patches

synthesized by CFAAR. Therefore, CFAAR was successful at generating plausible

patches for 41 out of the 149 defects (i.e., 27.5%).

We now illustrate Patch Synthesis using a correct patch for one subject version

used in our study, namely, syllables v1, grade v13, and tcas v1.

Example 1 - The original code for syllables v1 is faulty as it fails to check

whether ch is equal to i :
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The above figure shows a decision tree associated with one of the plausible

patches for syllables v1.

The synthesized patch suggests replacing ch==‘y’ with:

This plausible patch happened to be correct as it can be shown that it is

semantically equivalent to the real fix:

Example 2 - The original buggy code for grade v13 is faulty because it

mistakenly checks if the score is greater than a and b, instead of between a and

b, as shown next:
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The decision tree consists of a single “negate” leaf node to be applied on

the clause (score > a). Therefore, the synthesized patch suggests replacing

(score > a) with !(score > a) or (score <= a).

Example 3 - The previous two example patches happened to be correct.

Applying CFAAR on tcas v1 below yields a plausible patch that is actually

incorrect:

Given the test suite associated with tcas, negating the faulty condition all the

time was enough to make all test cases pass, which is clearly not a correct fix.

To improve the quality of our fixes, complementary approaches can be con-

sidered:

1. Improving the test suite by having more test cases cover the suspicious

condition to help fine-tune the generated patches.

2. Ranking and prioritizing patches by looking at features such as syntactic/se-

mantic distance to the faulty code, and similarity with documentation [33]

and previous fixes [44].
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Table 2.3: Comparison to state-of-the-art results

ACS JGenProg Nopol CFAAR
Defects 224 224 224 149
Plausible 23 24 35 41
Correct 18 2 5 12
Incorrect 5 22 30 29
Precision 78.3% 18.5% 14.3% 29.3%
Recall 8.0% 2.2% 2.2% 8%

2.8 RQ3: How Effective is CFAAR at Synthe-

sizing Correct Patches?

In order to assess our confidence in the correctness of the patches synthesized by

CFAAR we follow two approaches. In case of IntroClass, we tested the patched

subjects using validation test suites that we generated. The validation tests were

programmatically created (rather easily) by generating random inputs. Out of

the 17 plausible patches in IntroClass, 13 failed. That is, we have high confidence

that 4 of our patches are correct.

Concerning the 20 Siemens plausible patches, using validation test suites was

not feasible since it is hard to generate additional tests for these programs (noting

that we used all existing tests for training). In this case, we opted to select a

subset of the plausible patches to examine manually. The subset included 7

patches, of which we believe that 3 are correct and 4 are incorrect.

In the Appendix, we show 8 of the correct program patches. Table 2.3 com-

pares our results to reported ACS, JGenProg, and Nopol results in [33]. In this

comparison, we consider the number of versions that are potentially fixable by

CFAAR as the total number of defects, which is 91.
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2.9 Threats to Validity

A major threat to the external validity of our approach is the fact that our

experiments involved a limited number of subject programs and faults; therefore,

it is not possible to draw broad conclusions based on our results. This could be

remedied by conducting further experiments involving a variety of other subject

programs from different domains and environments containing real and/or seeded

defects.

We recognize the following threats to the internal validity of our approach:

1. Our CBFL approach assumes that most defects could be characterized by

a few control dependence chains of some limited length. Actually, it is

plausible that some defects might not be characterized by any structural

profiling elements no matter how complex they are.

2. In its current state, CFAAR targets a rather narrow category of defects.

However, we believe that the basic approach behind CFAAR is extend-

able to address defects that are repairable by a variety of alterations to a

program’s control flow and even data flow; which we intend to address in

future work. Here we are referring to the methods adopted by CFAAR: a)

to heuristically search for instances for when an alteration should be ap-

plied; b) to build classifiers based on state information; and c) to synthesize

patches based on the classifiers.

As it is the case for most test-based fault localization and program repair tech-

niques, the effectiveness of our technique is greatly dependent on the quality of

the test suite. This applies to both, identifying the suspicious chains and to train-

ing the classifiers. One way to tackle the issue of test suite quality is to leverage

automated test case generation.
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2.10 Analysis

In this chapter, we presented CFAAR, a test-based repair technique that targets

defects that are repairable by negating control statements under some specific

conditions. CFAAR relies on the program’s state to determine when a candi-

date control statement should be negated in order to yield correct behavior. A

synthesized patch is generated based on the state information, in the form of a

conditional that guards the candidate control statement. Our experiments involv-

ing 149 defects revealed the following: 1) 91 defects were found to be potentially

repairable by CFAAR; 2) 41 plausible patches were generated by CFAAR; and

3) at least 12 plausible patches are believed to be correct.
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Chapter 3

Detecting Failure Using Substate

Profile Elements

The National Institute of Standards and Technology (NIST) estimates that the

cost of fixing a bug in production ranges between 30 and 60 times more than an

early detection and fix [2]. A portion of this cost can be attributed to unplanned

overhead to the development lifecycle, and to potential reputation loss before a

fix is produced. For reasons like these, tools that help produce faster code fixes

can help mitigate these costs.

Such tools often rely on analyzing the execution profiles of a subject pro-

gram through various runs. For instance, detecting which events are associated

with a defect or vulnerability can rely on profiles that are structural in nature,

which mainly include the statements and branches that were covered in the code.

However, some program defects cannot be characterized by structural informa-

tion alone. State information, such as the value of the program variables, can

complement the former profiles.

Recent advances in Software Engineering [13, 14] explored substate profiling, a
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technique that extracts compact information about the state of the program. This

technique has shown improvements to Software Engineering research problems

like Fault Localization, Test Suite Reduction and Test Suite Prioritization.

Failure detection can be a conservative technique that produces a temporary

fix to a known vulnerability before it is properly debugged. After detecting that

a failure has occurred, a system can be configured to cancel/revert the performed

transaction, or to raise a critical ticket to the appropriate teams for resolution.

Alternatively, for benign bugs, a warning can be produced instead.

In this chapter, we present our method, Detecting Failure Using Substate

Profiling Element (D-FUSE), which studies how substate profiling, a novel pro-

filing technique, can complement structural profiling in characterizing a defect

or vulnerability. After showing the complementary nature of substate profiles

and structural profiles for intrusion detection, we develop a framework to analyze

subject programs and generate intrusion detection rules that get triggered when

an intrusion occurs. Furthermore, we evaluate this framework on Defects4J [15],

a state-of-the-art collection of faulty software libraries. We show how substate

profiles complement structural profiles in detecting failing runs. Moreover, we

show that our developed framework successfully finds feasible rules that identify

failures in Defects4J subject programs. We also show that structural elements

can predict 75% of failures, whereas substate profiles can predict 86% of failures,

and using both element types can predict 93% of versions with defects. When

D-FUSE was applied to these programs, intrusion detection failed in only 4-5%

of the programs.

The rest of the chapter is structured as follows. We begin with some back-

ground on both structural and substate profiles in Section 3.1. We follow with

a motivating example in Section 3.2. An empirical study is presented in Section
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3.3 and the online failure detection approach is illustrated in detail in Section

3.4. Lastly, we provide a final analysis in Section 3.5.

3.1 Background

Profiling the faulty subject programs is a common preliminary step to many analy-

sis techniques such as Fault Localization, Automated Program Repair, Test Suite

Reduction, and Intrusion Detection Systems. The profiles are generated on an

associated Test Suite containing passing and failing test cases for this program.

Typically, the subject program is first run and profiled individually for each of

these test cases, then, all profiles are used to optimize for the latter problems. In

this section, we provide an overview of two types of profiling that are used in our

study, namely, structural profiling and substate profiling.

3.1.1 Structural Profiles

Structural profiling is a common type of program profiling used in software En-

gineering analysis. It tracks information about program elements that are struc-

tural in nature, such as whether basic-blocks were executed in each run. More

advanced profiling can track branching between pairs of basic-blocks that were

executed consecutively, and pairs of statements containing where each variable

is defined and used (i.e. def-use pair). These location pairs depend on the exe-

cution of the program, and can offer insights into the nature and location of the

bug. Formally, we define the following terms.

1. Basic-block : is a code sequence with no branching. We denote by BB a

feature type capturing if the basic block was visited at least once in a single

run.
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2. Basic-block edge: is the branching from one basic-block to another (e.g. en-

tering an if-statement branch). We denote by BBE a feature type capturing

if a basic-block edge was visited at least once in a run.

3. Def-use pair : is when a variable x is defined at statement s1 and its value

is used in statement s2 . We denote by DUP a feature type capturing if a

def-use pair occurs at least once in a run.

Note that the number of possible BB, BBE, and DUP features can be deter-

mined statically from the subject program.

3.1.2 Substate Profiles

The tool first captures state information about three types of entities during a

program run. Namely, these entities are: (1) variable definitions – including

local variables, static variables, and fields, (2) return statements, and (3) formal

parameters at function entries. For the purpose of our setup, a capture point

(Cp) tracks the values of an entity at a unique program location. Note that a

variable has as many Cp’s as the number of times it was defined/assigned.

For a given test case, the tool tracks the values captured by each Cp. These

values are then reduced to 17 statistical metrics (e.g. mean, median, and isDe-

scending). Table 3.1 illustrates the collected features for a sample Cp after the

entire test suite is profiled. In this example, a number of test cases n interact

with this Cp, and each interaction can be characterized by 17 feature values.

For each Cp, the test cases are then clustered using k-means [45] based on their

feature values. We use a configuration similar to the one proposed in [14] to

automatically determine the optimum number of clusters for each Cp.
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Table 3.1: A sample of the features generated by one capture point

Not all test cases visit this Cp. For each test case i, the features fi1 - fi17 are generated from
the logged values. For every Cp, the test cases are clustered based on these feature values.

3.2 Motivating Example

We illustrate a sample program in the example in Table 3.2, showing how struc-

tural profiles do not capture any relevant information about the defect, while

substate profiles do. A similar program is illustrated in a previous work [14].

The program converts an eight-digit binary number to an integer. However, an

overflow occurs when the binary number starts with a 1.

A structural profile captures, for a given run, information related to basic

blocks that were visited, and def-use pairs. However, note that all test cases

execute all basic blocks and statements. Also, all def-use pairs are covered in

every test case. For instance, the value of the variable increment at S9 is defined

in both S6 and S8 for any given test case. Therefore, all structural profiles are

similar and cannot discriminate between passing and failing tests.

On the other hand, substate profiles capture partial information about the
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Table 3.2: Substate profiles and failure detection code

The left side illustrates a faulty program. The top right side shows multiple test cases t1 -t6
each comprising a binary input. Statement S8 is the faulty instruction that produces a wrong
output for test cases t5 and t6 . The observed values of each collection point (Cp) are clustered
into one or more cluster (e.g. Cp2 has two clusters e3 and e4 ). Each test case is associated
with (at most) one cluster per Cp. The lines in bold show the modifications needed to detect
a program failure.
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state of the variables in this program. Consider Cp7, which captures the val-

ues of the local variable increment. For each test case, the values of increment

were captured, and 17 features were calculated for Cp7. Then, the test cases

were clustered based on the feature values they were associated with. The same

calculations were done for all Cp’s.

Conveniently, one of the detected clusters (Cp7.e6) could directly predict fail-

ure. This can be attributed to features like isDescending, which becomes false

only when an overflow occurs. Alternatively, Cp8.e8 is another cluster that is

associated with failure.

To modify this program and enable it to detect when a fault occurs, we add

can a call right after S8 to update the value of increment, and another call to

validate the run right before the program exits. The program validation extracts

the features from the values of Cp7 and checks if they belong to cluster Cp7.e6.

When they do, the program signals that the run is faulty.

3.3 Empirical Study

As a preliminary study, we generated structural and substate profiles for 222

subject programs exhibiting a single fault. These subject programs are based on

4 libraries in Defects4J, namely, Chart, Time, Math, and Lang. The setups are

similar to the ones described in [13] and [14]. Structural profiles included BB,

BBE and DUP. For substate profiles, 17 metrics were generated for each location

point, which were later clustered into k clusters using k-means [45]. The value of

k was determined dynamically using the elbow method.

To assess if profiles can characterize a bug, our goal was to find a single

profile element that can discriminate between a failing or a passing test case.
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Table 3.3: Number of versions having at least one profile element associated with
failure

The profiling element needs to be covered only in a failing test case, and not in

a passing test case.

For every subject program, we collected the following values:

• C1: the number of structural profile elements identifying at least one failing

test case

• C2: the number of structural profile elements identifying all failing test

cases

• C3: the number of substate profile elements identifying at least one failing

test case

• C4: the number of substate profile elements identifying all failing test cases

The number of subject programs that have at least one discriminating profile

element is reported in Table 3.3. For instance, 55% or 122 versions have at least

one structural profiling element that is directly associated with failure, whereas

64% or 143 versions have a substate element that is directly associated with

failure.

A more detailed analysis shows that the failure of 42 versions, which was not

detectable by a single structural element, are detectable using a single substate

element. And vice-versa, the failure of 21 versions is detectable with structural

elements, but not substate elements. This finding confirms the theoretical com-
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plementary nature of substate profiles to structural profiles, and in this case, their

application to Intrusion Detection Systems.

3.4 Online Failure Detection

Our preliminary analysis in the previous section showed the complementary na-

ture of structural and substate profiles. To enable the subject program to detect

failures, we augment it in a way similar to the method described in Section 3.2

and Table 3.2. Namely, after determining which profile elements are correlated

with failure, we insert probes at the corresponding Cp locations to track their

values, then check which clusters these values match before the program exits

in order to determine if a failure occurred. Similarly, structural profiles can be

matched at runtime using a similar technique. We insert probes to track each

structural element associated with failure. Finally, we check if these probes were

triggered right before the program exits and send a failure signal, which would

trigger an appropriate action in the production environment.

In addition to the setup above, several challenges should be considered:

• The cost of profiling in the final production code needs to be minimized.

• Failure can be associated with multiple elements. It can occur when two

profiling elements are both covered together, or when either is covered.

• Tracking compound profile elements often require probing seemingly unre-

lated elements. For example, tracking when a variable is defined at location

A and used in location B requires detecting any redefinition of the variable

at other locations.
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The rest of this section is divided as follows. First, we detail these consider-

ations and how they affect our design choices in the various components of the

system architecture. Next, we present our experimental setup and findings.

3.4.1 Architecture

We describe the design choices in the two stages of our instrumentation:

1. Generating failure detection rules: Figure 3.1 shows how the detection

rules are generated. In this stage, the subject program is first profiled for

every test case. Next, the profiles are post-processed to characterize each

test case with the various structural and/or substate elements it covers.

Then, both coverage and failure information are processed by an Integer-

Programming-based optimization engine to determine a list of rules that

can detect failure. A list of weights (or costs) for the different types of

profiling elements is also passed to the optimization engine to define which

elements are less expensive to probe.

2. Instrumenting the subject program: The generation of the modified

subject program is described in Figure 3.2. Compound profiling elements

which are detected in the previous stage often require multiple probes to

profile and can sometime share some of these probes with another profiling

element. The process of determining the individual probes is described

in the following subsections. Figure 3.3 illustrates the modifications that

are made on the subject program. In addition to the probes, a verifier is

inserted to check if the run matches the generated rules.
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Figure 3.1: Generation of failure detection rules. After profiling all subject pro-
gram runs, clustering is performed, and each run gets associated with the clusters
it covers. Finally, an optimization engine determines which combination of clus-
ters can predict.

Figure 3.2: Generating the modified subject program. We extract a set of simple
profiling elements that can help generate these statistics. The information about
the profiling elements and the rules to be used for detection are passed to the
instrumenter, which in turn generates a modified subject program.
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Figure 3.3: Modified subject program with failure detection. The original subject
program logic is used, with two additional modifications: (1) probes are inserted
at selected locations, and (2) before exiting, the program checks if failure detec-
tion rules are met.

Full Instrumentation and Profiling

The subject programs are first instrumented in order to generate the profiles

needed to produce the failure detection rules. We provide in this subsection an

overview about structural profiling and substate profiling.

Simple structural elements can be detected using a simple probe. For instance,

BBs are detected by inserting a probe at the beginning of a basic block. On the

other hand, compound elements such as BBE are detected by tracking the order

in which the probes are triggered. Namely, the pair of the last two basic blocks

that are triggered identifies a BBE. Similarly, def-use pairs are determined by

keeping track of the last location each variable was defined in the program: this

instance is then combined with the location it was used in to form the def-use

pair. Further state information should be tracked as well such as the current

method under execution for every thread. We refer the reader to [13] and [14] for

further details about the methodology used.
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Likewise, substate information is determined by adding a probe at the defini-

tion of each variable (i.e. local variable, static field, and instance field). The probe

tracks the different values that the variable takes for a run and extracts a set of

17 statistical metrics (e.g. min, max, average, variance). Detailed information

can be found in [13] and [14].

Clustering and Membership

In the training stage, determining structural coverage for a test case is straight-

forward: the structural element is covered when a probe or a combination of

probes are visited. Each test case can then be associated with a binary vector,

where 1 indicates that the element was covered, and 0 indicates the converse.

On the other hand, determining substate coverage is more complicated. The

metrics that are generated for each Cp might be unique for each run (i.e. test

case). Instead, for a given Cp, the test cases are clustered into multiple clusters,

such that intra-cluster distances are minimized and inter-cluster distances are

maximized. The clustering technique used is k-means [45], with two additional

enhancements: (1) k-means++ [46] to select the initial cluster configuration,

and (2) the elbow method to determine the optimal value of K (i.e. number

of clusters). More details of the methodology can be found in [14]. Each test

case can now be associated with a single cluster for each Cp. This membership

information is captured in a binary vector similar to the one described above for

structural profiles.

Note that we do not use failure information to determine the clusters. This

prevents overfit associations between failures and the generated clusters in the

next stages. In other words, this process ensures that a substate descriptor is

general and robust enough to encompass multiple test cases, and unobserved
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data.

Both structural and substate vectors can be combined before the optimization

is performed. It should be noted that relevant cluster information needs to be

saved at the training stage to be retrieved at the detection stage.

Optimization

For each subject program, we attempt to associate failure with one or more

profiling elements. The binary feature vectors that were collected at the previous

stage can be combined to form a matrix M, where each row consists of the

profiling elements covered by a single test case. Each row is then associated with

the failure info of the test case: if it failed or not. Determining which elements

are associated with failure can then be reduced to a Machine Learning or an

Optimization problem. In this work, we consider Integer Programming.

Consider the example in Table 3.4 illustrating the membership matrix of a

subject program, along with the failure data for four test cases. In this example,

five profiling elements are considered (M.,1 – M.,5). Note that no single element

can fully predict a failure in this example. A possible way to predict failure is

determining when the elements M.,3 AND M.,5 are covered. To generate similar

solutions, consider the following Integer Programming rules.

For a given feature matrix M, we denote by Mtc,eid a matrix element, where

tc is the test case number, and eid is the profile element id. We denote by F the

failure data vector.

Also, consider a binary vector V describing which elements approximate the

failure data. In other words, Veid is 1 when the element eid should be selected.

To satisfy the AND constraints, the following inequations should hold.
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Table 3.4: Table illustrating when AND can be used to detect failure

 M×V > |V|× F

M×V 6 (2F− 1)ε+ |V|
(3.1)

, where ε is an infinitesimally small positive number. Consider the two in-

equations for a single test case. The product Mtc × V evaluates to the number

of selected profile elements that were covered in a single test case. The product

Mtc × V to be greater or equal to the weight of V when the test case fails, and

strictly smaller than the weight of V when the run is passing. The first inequation

achieves the former goal, while the second one achieves the latter goal. The entity

(2Ftc−1)ε is equal to ε when Ftc = 1, and −ε otherwise. These two inequations,

along with the fact that Veid ∈ {0, 1} ensures that M×V is equal to |V| only for

failing test cases, and is necessarily smaller than |V| for passing test cases.

A similar analysis can be made for the OR operator. In the example in Table

3.5, note how M.,3 and M.,5 can predict failure together. A test case failure occurs

when any one of these elements is covered.

The constraints can be represented in the following inequations.

 M×V > F

ε×M×V 6 F
(3.2)
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Table 3.5: Table illustrating when OR can be used to detect failure

The first inequation ensures that Mtc × V is strictly greater than zero, when

Ftc = 1, whereas the second inequation ensures that Mtc × V < 1 (effectively

equal to 0) when Ftc = 0.

In addition to the feasibility constraints, we aim to minimize the number

of elements selected in V (formally, min
∑

Vi). More elaborate objectives can

consist of minimizing the estimated number of probes, or to favor simple profiling

elements. For instance, compound structural elements need more probes than

simple structural elements.

Without loss of generality, the improved objective function is to minimize

the scalar product V.W, where W is a weighted vector that specifies the cost of

each profiling element. If all elements are equally expensive to profile, then W =

[1, ..., 1]T . In the experimental setup, we denote by EqualWeight the configuration

where the cost of all elements is equal to one, and we denote by PreferBB the

configuration where the cost of DUP and BBE elements is equal to 4, and the

cost of BB elements is equal to 1.

Selective Instrumentation and Profiling

To enable fast online failure detection, the profiling cost should be minimized.

Therefore, we make some changes to the instrumenters/profilers to profile only

the elements discussed above. Each substate and simple structural element is

associated with one probe. Therefore, determining which probes to insert is
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straightforward when these types of elements are included in the generated de-

tection rules.

For compound structural elements, which consist of a (source, destination)

pair, two probes are usually not enough to characterize the element. Consider

the following two examples: (1) on BBE and (2) on DU.

Consider the basic blocks A, B and C, and consider the following possible

edges: A-B, A-C and B-C. To detect when the edge A-C occurs, inserting probes

at A and C is not enough. If A was visited first, followed by B then C, the probes

would show that A-C was covered, when, in fact, A-B and B-C were covered.

A similar scenario can occur with def-use pairs. To detect when a variable, v

is defined at location l1 and used at location l3, the variable v should not have

been redefined at other locations. To guarantee that, we need to insert probes

at all the possible definition locations of v that can be used at the destination

location.

In summary, a compound structural element consisting of a (source, destina-

tion) pair (i.e. BBE or DU ) require more than two probes to capture events

that invalidate this pair. On the other hand, a probe can serve to detect multiple

compound profile elements. The combination of these two conditions is used to

minimize the number of probes inserted for failure detection.

3.4.2 Experimental Setup and Results

We evaluate our proposed method on Defects4J [15], a Java framework used

extensively in software research. Six open-source libraries with their various

versions were used in our evaluation. Each library version is associated with a

single bug and has a Test Suite that consists of thousands of passing test cases

and a very small number of failing test cases. The libraries and the number of
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versions used are described below.

• JFreeChart with 26 versions

• Joda-Time with 27 versions

• Commons Lang with 65 versions

• Commons Math with 106 versions

• Closure Compiler with 133 versions

For a given version, substate and structural profiles are generated for each test

case. Then, the test suite profiles are analyzed using the Integer Programming

approach described in Section 3.4.1 for either the OR or the AND operator and

a selected W vector. When not defined explicitly, the W vector is the identity

vector.

The results are illustrated as follows. First, we present an analysis about

the number of subject programs with a feasible solution. Next, we analyze the

number of profiling elements necessary in the trained model. Then, we discuss

the resources required by our method and some of the additional optimizations

performed. Afterwards, we analyze the performance of the trained models when

the Test Suite is re-run. Finally, we analyze the performance of our proposed

method when we vary the arithmetic operator or we select a different weight W.

Training the Failure Detection Model

We profiled each subject program and generated matrices based on its structural

and substate profiles, as described in Section 3.4.1. Table 3.6 shows the number

of versions per library that ended in a successful failure detection training, using
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Table 3.6: Failure detection accuracy for different profile types

the OR operator. The first two columns list the libraries and the number of

faulty versions that were tested. Versions that failed during testing due to lack

of resources during profiling or training were ignored completely for the purpose

of this experiment. The remaining columns show the number of faulty versions

with a feasible solution, given the type of profiles used. Namely, the types that

were considered were: structural profiles, substate profiles, and the combination

of both, hybrid. On the right, we present the number versions where training

was successful for a given profiling type, but not the other. Last, we show the

number of versions where the optimization failed to generate a valid solution.

These results show that structural and substate profiles can characterize fail-

ure in 75% and 86% of versions respectively, and combining both profiles can

characterize 93% of versions. This result confirms the complementary nature of

these profiling types. A deeper analysis shows that, in Chart and Time, the fea-

sibility rate was higher for structural profiles, whereas Lang and Math showed a

higher accuracy for substate profiles. Additionally, for these two libraries, sub-

state profiles exclusively contributed to 21% and 29% of all solutions, in contrast

to 4% and 5% for Chart and Time. This result indicates that the faults present

in the first two libraries are structural in nature, while the faults in the remaining

libraries are data dependent. A similar result was found when performing Fault
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Localization using structural profiles in [14].

Considering all programs, failures could be characterized with feasible models

in 14 versions when structural profiles was used exclusively, and in 37 versions

when substate was used exclusively, which highlights a complementary nature of

substate and structural profiles. A large number of versions had feasible solutions

for either profile types, which indicates that failures in these versions leave distinct

profiles in both data and structural subspaces.

Number of Profiling Elements

The number of profile elements can indicate the health of the trained models. In

Table 3.7, we report the number of profile elements, which, when merged using

the OR operator, can detect failure at runtime. For instance, in 20 versions

of Chart, detecting failure can be performed using a single structural profiling

element. Only 4 versions require more than one structural profiling element to

detect failure. The remaining libraries show one or two elements required to

predict failure in any of their versions. This shows that the suggested profile

element likely does not overfit the test suite.

Note that the reported numbers do not necessarily correspond to the number

of probes. While a simple structural profile element such as a basic block or

a substate profile element only require one probe, compound structural profile

elements can require multiple probes. To effectively minimize the number of

probes, additional modifications should be added to the optimization model.

These modifications are presented in the experiments’ discussion section.
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Table 3.7: Distribution of the number of profile elements to be combined with
the OR operation

For each program, and profiling type, the number of profile elements, which are combined with
the OR operator at runtime, is reported.

Resource Usage

We ran our experiments on a Windows 10 Virtual Machine with 100 GB of RAM

and 12 vCPUs of 2.0 GHz each, and an SSD disk. Many of these experiments

were run in parallel, while maintaining non-saturated CPU and RAM usages to

ensure reliable timing and resource usage metrics.

The profiling time, which was reported in [14], ranges between a couple of

minutes for small programs like Chart and more than 3 hours for programs like

Math or Closure. Although these numbers are high, profiling can be parallelized

and further optimized if needed in a real-life scenario.

However, the time taken during failure detection training, which cannot be

easily parallelizable, is reported in Table 3.8. As can be seen, the time taken

ranges between a minute and 280 minutes for all programs. On the other hand,

Table 3.9 shows the required memory for each version. Closure had the highest
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Table 3.8: Range of time taken during the optimization process per program
version (in minutes)

Table 3.9: Average memory used in megabytes during the optimization process

memory and time requirements and consumed more than 100 GB of RAM, which

called for additional optimizations.

To minimize the time and resources required during the optimization of Clo-

sure versions, the following feature pruning was performed. Before performing

an OR optimization, profile elements that clearly do not contribute to the final

solution were deleted. Formally, all profile elements that were covered during a

passing test case are removed. A solution that uses these elements cannot ex-

ist, since it would erroneously classify a passing test as failing. Similarly, for

AND combinations, any profile elements that are not covered in a failing run

are removed. A solution that includes such elements cannot exist, since it would

wrongly classify a failure to be a passing test.

After performing these additional optimizations, the number of profile el-

ements was reduced from the range of tens of thousands to hundreds. This

marginally reduced the time and memory required to perform training to under

two hours and 1 GB. We consider these values acceptable for the scope of our
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method.

Testing the model

For each library version that resulted in a feasible model, we store in a definitions

file the operator used (OR or AND) and explicit details about the profile elements

determined in the optimization. Namely, for structural elements, we extract the

descriptors of the BB, BBE, or DU, which are determined to be predict failure,

along with the descriptors of complementary BBE s and DU s that can invalidate

these elements, as described in Section 3.4.1. Similarly, for substate profiles, each

profile element refers to one of many clusters belonging to a single Cp. Therefore,

the following information needs to be saved for each profiling element:

• Cp information, namely, the definition location of a variable

• The minima and maxima vectors used in the normalization of the features

before clustering

• All centroids belonging to this Cp

In the selective instrumentation phase, we determine the probes needed for

each profile element. Each substate profile element is associated with a single

probe and is straightforward to profile. On the other hand, the structural in-

strumentation algorithm was modified as follows. The addition of each probe

was guarded by a set of rules to judge if a probe should be added or not. Some

complex rules included complicated tests such as the ones for adding a probe at

the entry of a method. Determining which method the program is currently in is

essential to all three types of structural profiles studied. To determine if a method

should be probed, the method should have at least one of the following: a BB

determined to predict failure inside that method, a BBE within that method or
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that has this method as a source or destination, a DUP that has either its Def

or Use within that method, or if it is part of a DUP or BBE invalidator.

In addition to the above, the program is augmented to load the rules at the be-

ginning and test them before exiting, as discussed in Figure 3.2. When tested on

3 libraries, Chart, Time, and Lang. Out of 83 versions that had feasible solutions

from structural profiles, 79 versions accurately predicted failure without any false

positives or false negatives. These numbers were the same for both EqualWeight

and PreferBB weights, although different versions missed. For substate profiles,

out of 91 versions having feasible solutions, 90 had no False Positive and no False

Negative. These numbers give confidence in the modifications performed on the

instrumenters and profilers, and in the detection approach in general.

At runtime, we collect the increased times during failure detection for all

profiling types. The program augmented with failure detection capabilities using

Substate profiles had a negligible increase in elapsed time (less than 1%), whereas

structural profiles with weights EqualWeight and PreferBB were 12 and 8 times

slower, respectively. Although these numbers are high, note the time decrease

for the PreferBB method, which selects BB in favor of compound structural el-

ements with 4:1 odds. Note that these high timing values can be contributed

to multiple factors, including the type of probes we used, which rely on expen-

sive Java constructs, such as Throwable’s to determine the stack trace, and the

high number of probes per profile element, especially for def-use profile elements.

Several techniques can be used to marginally reduce these numbers.
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3.5 Analysis

In this chapter, we presented D-FUSE, Detecting Failure Using Substate Profile

Elements, a technique to detect failures using substate and structural profiles.

Our framework enables a subject program to signal when a failure is imminent. In

the experimental section, we show that substate profiles complement structural

profiles in vulnerability detection. Our proposed method relies on an Integer

Programming optimization technique to select a combination of profiling elements

that detects the execution of a vulnerability, while minimizing the total number

of profiling elements. We tested our framework on Defects4J and showed that our

proposed method characterized a vulnerability in 93% of the profiled programs.

Out of these versions with characterized vulnerabilities, only 4.8% showed an

incorrect classification. These cases can be mainly attributed to the randomized

data in the Test Suites. Furthermore, we show that our method is robust both

quantitatively and qualitatively. Quantitatively, the number of profile elements

involved in a single version is limited to 1 or 2 for the majority of versions. On the

other hand, favoring simple structural elements and clustering substate elements

without access to failure prevents overfitting.

Moreover, our framework has flexible parameters used in the objective func-

tion. We showed how the framework can be used to promote simple profiling

elements over compounded elements. Other objective functions can be explored.

Advanced weighting can include assigning effective weights relative to the number

of probes or to the number of times these probes would be triggered on average.

Other directions that this work can take is to favor elements that occur earlier in

the program, and promote early detection. This can be achieved by calculating

the average execution distance from each probe to the entry point of a library.
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Chapter 4

Related Work

4.1 Related to Repair

We present in this chapter our preliminary literature review, as it will appear

in [5]. Zhang et al. [47] presented a fault localization technique that is very

relevant to our patch generation approach. It entails switching the valuation of

the program’s predicates, each one at a time for the purpose of producing the

correct behavior. A predicate switch that yields a successful program completion

can be further analyzed in order to identify the cause of the defect. Our approach

differs in that: 1) due to our accurate CBFL technique, only few predicates need

to be explored for switching; 2) predicate switching is considered at execution

instances discovered by our approach; and most importantly, 3) a code patch is

provided.

SPR [32] performs staged program repair. It performs fault localization using

frequency analysis of positive and negative test case coverage. It leverages a set

of parameterized transformation schemas (PTS) each of which targets a class of

defects. For each PTS, SPR searches for an evaluation of schema parameters that
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allow the schema to produce a successful repair. It dismisses the transformation

schemas (and their repairs) that fail the target value search and proceeds. For

example

PTS “if(cond || abstract cond())” refines predicate “if(cond)” and “abstract cond()”

can return either true or false.

If both target values do not fix the defect, the PTS dismisses. The last stage is

condition synthesis where SPR uses the constraints obtained from the target value

search to synthesize a condition. In particular, SPR selects states of program

variables that are invariant for positive test cases (PPred), and states of program

variables that were invariant for negative test cases (NPred). The latter are

invariants that hold while the target value succeeds at fixing program behavior.

The PTS synthesizes the condition such that the target values are obtained when

NPred hold and PPRed don’t - “(!PPred) implies NPred”. CFAAR is similar to

SPR in that it uses both positive and negative test cases to synthesize a fixing

condition. However, SPR performs a search for fixes matching existing schemas

and consequently it has to use the values to determine the search rather than

guide the search. CFAAR uses a classifier to determine whether a predicate

needs to be changed and then uses the successful sequence of modified values to

deploy a dynamic fix and synthesize a patch.

Precise condition synthesis [33] presents ACS to solve the overfitting problem

in automatic defect repair. ACS splits the problem into (1) selecting the variables

to be included in the precise condition, and (2) selecting the predicate from a

set of existing predicates. It uses dependency order and analysis of API com-

ments provided in javadocs to rank and select the variables, and uses predicate

frequency in similar contexts to rank and select the predicates. CFAAR shares

with ACS that it looks for more precise predicates to solve the overfitting prob-
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lem. However, CFAAR inspects an infinite possible search space and uses tests

to guide the search while ACS is restricted to existing code fragments. Genesis

[48] infers new patches from existing patches to fix (1) null pointer, (2) out of

bounds, and (3) class cast defects. In a sense it refines the search space of [6]

and [49] to concentrate on successful human patches instead of general code frag-

ments, then it expands the potential search space by inferring transforms that

generate defect patches from the existing patches. A transform is specified with

two abstract syntax trees; one matches the faulty fragment in the original code,

and the second specifies the replacement code. Generators allow introducing new

logic and design elements in the fix specifically for template variables that are not

matched in the code. Integer linear programming (ILP) is used to limit the search

space to a reasonable number of patches by maximizing the number of training

patches that cover the inferred search space. Unlike ACS and SSCR, Genesis is

not limited to existing code fragments. However, it is limited to patches that

are syntactically related to the existing patches through an AST. CFAAR dif-

fers in that it inspects a search space that is related semantically to the defect

and uses the test cases to guide the search. Semantic search for code repairs

(SSCR) [6] characterizes a large set of code fragments with FOL constraints and

considers those potential fixes, relates a fault in a program to fragments of code

in the program and characterizes these fragments with fault FOL constraints,

then it uses constrain solvers to match the fault constraints with the potential fix

constraints. The technique finally integrates the selected fix by syntactic modi-

fications such as renaming variables. CFAAR is similar in the sense that it also

performs a semantic search, it differs in the sense that it is not limited to a large

set of existing code fragments. CFAAR searches an infinite space of potential

fixes that is the composition of modifications of failing control statements and
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uses test cases to guide the search. While the work in [6] relies heavily on com-

putationally expensive SMT solvers, CFAAR leverages decision tree algorithms

as heuristics to construct the fix. Le Goues et al. [7] proposed GenProg, a repair

technique based on genetic programming. They assume that repairing a fault in

one function can make use of snippets of code appearing in other functions in the

program. For example, several existing functions in a program might implement

checks for whether a pointer is null, the corresponding code can then be inserted

in the function under repair in the aim of repairing it. The technique explores

different variations of the defective program such as those resulting from inserting

statements, deleting statements, and swapping statements. Also, mutation and

crossover operators are applied and guided using a fitness function that evaluates

the generated program against the test suite. Once a repair is found, it is further

refined using delta debugging by discarding the unnecessary statements within.

Our repair technique is very different in terms of its underlying approach and

the nature of the produced solution. Assiri and Bieman [8] evaluated the impact

of ten existing CBFL techniques on program repair. Specifically, they measured

their impact on the effectiveness, performance, and repair correctness of a brute

force program repair tool, i.e., a tool that exhaustively applies all possible changes

to the program until a repair is found. A brute-force repair tool is guaranteed

to fix a fault if a repair is feasible. Therefore, a failure to find a potential repair

would likely be related to the selected CBFL technique. Including our proposed

CBFL technique in their comparative evaluation would be valuable, as it could

help justify its cost. Martinez and Monperrus [50] presented Astor, a library

comprising the implementation of three major program repair approaches for the

Java platform. The library is also meant to be extended by the research commu-

nity by adding new repair operators and approaches. The currently supported
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approaches that originally targeted C programs are: 1) jGenProg2: an imple-

mentation of GenProg for Java [25] [7] in which repair operators only consider

nearby code, and not the whole codebase as it is the case in GenProg. 2) jKali:

an implementation of the Kali approach [51] for Java, which performs repair

by exhaustively removing statements, inserting return statements, and switch-

ing predicates. Our approach is far from being exhaustive since the predicate

switching is highly targeted in terms of location and time. 3) jMutRepair: an

implementation of the approach presented by Debroy and Wong [31] for the java

platform. jMutRepair mutates the relational and logic operators in suspicious

if condition statements. Since our approach negates predicates at the byte code

level (single clause predicates), it practically also mutates relational and logic

operators. However, unlike jMutRepair, our approach negates the predicates at

specific execution instances.

Nopol [26, 34] uses angelic fix localization to locate faulty if-then-else condi-

tions, execute passing test cases to compute a model of the correct behavior of

the program, abstract the values of the variables in the model to FOL constraints,

and uses SMT solvers to compute a fix to the condition. The technique targets

buggy if conditions and missing preconditions. CFAAR is similar to Nopol in

that it uses both the passing and the failing test cases to compute a model for

the fix. CFAAR differs in the abstraction techniques as it is variable specific

while Nopol creates SMT statements to model the execution. Finally, CFAAR

uses decision trees to compute a potential code fix, while Nopol uses SMT solvers.

An influencing precursor of Nopol is SemFix, an approach presented by Nguyen

et al. [52]. SemFix is based on symbolic execution, constraint solving, and pro-

gram synthesis. Given a candidate repair location l, SemFix derives constraints

on the expression to be injected at l in order to make the failing test case pass.
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Symbolic execution is used to generate the repair constraints, and program syn-

thesis is used to generate the repair patch. Similar to SemFix, DirectFix [30]

and Angelix [29] also aim at synthesizing repairs using symbolic execution and

constraint solving; but are more scalable. Tan and Roychoudhury [53] presented

relifix an approach for repairing regression bugs. The mutation operators con-

sidered are derived by manually inspecting real regressions bugs. The potential

repair locations were identified by differencing the current version of the defective

program with its previous version, and by considering the Ochiai suspiciousness

of the locations. Pei et al. [54] proposed an approach that exploits contracts such

as pre/post-conditions to localize faults and generate repairs in Eiffel programs.

Elkarablieh and Khurshid [27] developed a tool called Juzi, within which the

user provides a Boolean function that checks whether a given data structure

is in a good state. The function is invoked at runtime, and in case a corrupt

state is detected, the tool performs repair actions via symbolic execution. One

of the authors later targeted the repair of the selection conditions in SQL select

statements [55].

4.2 Failure Detection as an Intrusion Detection

System

Our work, D-FUSE, which was presented in Chapter 3, extends the work in [11]

and [56] with substate profiles. The original techniques applied in these works

perform signature matching using different types of structural profiles, whereas

our novel technique combines both structural profiles and substate profiles for

intrusion detection. It also enables the developer to prioritize certain types of

profile elements over others for more robustness, better interpretability and lower
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resource overhead. The rest of this subsection discusses related work on Intrusion

Detection Systems (IDS), which can be divided into the following categories,

by decreasing order of relevance to our work: Profile-based, Pattern-matching,

Taint-based, and Anomaly-based.

Profile-based techniques include PQL [57], which derives a vulnerability sig-

nature with the assistance of the developer. The proposed system enables the

developer to generate the signature by inspecting the subject program code and

by providing a combination of events that characterize the vulnerability. ASP

[58] is used to instrument the subject program and to generate the execution

traces. Events can include combinations of method invocations, field accesses

and error descriptions. The system then monitors if these events are executed at

runtime. Another profile-based technique is the one proposed by Lorenzoli et al.

[59], which allows the developer to instrument relevant program points in order

to abstract invariants using Daikon [60] and characterize the vulnerability. These

program points are then monitored at runtime, and an intrusion is detected when

these invariants are violated.

Less relevant techniques for vulnerability detection include pattern-matching,

taint-based, and anomaly-based techniques. Pattern-matching techniques orig-

inally focused on characterizing exploits (payloads that exploit a vulnerability)

[61], but shifted towards characterizing the vulnerability itself, such as in [62],

to avoid polymorphic attacks. Brumley et al. [63] proposed to use formal static

analysis to generate a vulnerability signature. Data mining techniques such as

Classification, Association Rules, and Frequent Episodes were used in [64] to

analyze the vulnerabilities.

Taint-based techniques such as TaintCheck [65] and Panorama [66], allow

the user to mark (taint) inputs and track them using dynamic data-flow anal-
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ysis. Anomaly-based techniques, which intend to generalize to novel attacks,

characterize normal behavior and detect deviations from that behavior. Some of

these techniques rely on analyzing calls (stack calls[67] or system calls [68][69]).

Other approaches proposed static analysis such as in [63] and [62]. Contrary to

anomaly-based approaches, our suggested approach closely relates to signature-

based approaches, which focus on detecting known types of vulnerabilities.
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Chapter 5

Conclusion

In this thesis, we introduced two novel methods that can be used to mitigate

the costly effect of discovered bugs in production, before a fix is released. Both

methods leverage the existing Test Suite associated with the subject program

to create a patch. In the first method, which is an Automated Program Repair

method, we attempt to produce a patch that makes the Test Suite pass. We also

proposed D-FUSE, which is a failure detection technique that produces a patch

that detects when a failure is imminent and sends a signal to a controller that

takes the appropriate measure, such as reverting a transaction, disconnecting the

user, or raising a critical ticket to the operations and development teams.

The proposed APR method, CFAAR, works as follows. It is a test-based repair

assistance technique that targets defects that are repairable by negating control

statements under some specific conditions. CFAAR relies on the program’s state

to determine when a candidate control statement should be negated in order to

yield correct behavior. Namely, for a given subject program, it determines if

switching an if-statement makes one of the failing test cases pass. If it does,

CFAAR profiles all accessible state and applies a Decision Tree algorithm to
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determine the proper rules and conditions to switch the value of the if-statement.

The synthesized patch can be presented to the developer for further evaluation,

or applied directly to the program at the bytecode level, if deemed correct.

Our experiments involving 149 defects revealed the following: 1) 91 defects

were found to be potentially repairable by CFAAR; 2) 41 plausible patches were

generated by CFAAR; and 3) at least 12 plausible patches are believed to be

correct. In the future, experiments can be conducted to assess the level of repair

assistance our plausible patches provide to the developer.

Our second proposed method, D-FUSE, relies on both structural and substate

profile information to generate a minimally sufficient set of profiling probes that

can predict when a failure is imminent. The process relies on a Machine Learning

model that optimally selects a combination of profile elements. We also proposed

proof-of-concept extensions to our work:

• Using a different operator (AND and OR) to combine profile elements

• A cost-per-element-type weighting, which can favor certain types of probes

that are inexpensive to profile

• A cost-per-element-instance weighting, which can favor probes at known

locations that are inexpensive to profile

When tested on a major library, we were able to generate accurate failure

oracles for 93% of the versions, compared to only 74.5% when using structural

profiles. Furthermore, our method was associated with an acceptable overhead.
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Appendix A

Complementary Material for the

Repair Method

This appendix complements the evaluation section of the repair method. This

document is a work in progress, and is divided as follows. The first section

presents an analysis of a sample of patches generated by testing all negation

patterns on predicates identified as suspicious using CBFL, whereas the second

and last section presents an analysis of the patches generated by considering

predicates that we manually identified as suspicious. Out of the 28 programs that

we manually selected from the Siemens dataset, 1 still require further analysis.

Out of the remaining 27 programs, we found a plausible patch for 24 programs,

a correct fix for 8 programs, and a near-correct fix for 2 programs. Out of the

programs considered in both datasets, we verify manually that we generated 12

correct patches:

• For Siemens, we generated 8 correct patches for print tokens2 v7, print tokens2

v8, print tokens2 v9, schedule v4, replace v7, replace v16, replace v28, and

replace v30.

69



• For IntroClass, we generated 4 correct patches for syllables v1, syllables v2,

grade v13, and digits v19.

Please note that ∧ indicates an XOR operation.

A.1 Analysis of the Patches Generated on Sus-

picious Predicates

A.1.1 Sample Correct Patch 1: print tokens2 - v8

Original Buggy Code

boolean is_token_end(int id,char ch) {

if (id == 1) {

...

} else if (id == 2) {

...

} else {

if(ch ==’ ’ || ch==’\n’ || ch==59 || ch == ’\t’)

return T;

//fault -- added "|| ch == ’\t’"

...

}

}
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...

while (is_token_end(id,ch) == F) {

...

}

...

Patched Code

...

while ((is_token_end(id,ch)) == F ^ (id <= 0 && ch = 9)) ...

Discussion (show decision tree).

The corrected code will negate (xor) the condition provided by is token end

when: id ¡= 0 and ch = 9 (which is ’

t’). Although Fault Localization did not label the predicate ch == ”

t” as suspicious, the classifier detected that negating the output of is token end

when id ¡= 0 and ch = ’

t’ fixes the output.

A.1.2 Sample Correct Patch 2: syllables - v1 (v2 is very

similar)

Original Buggy Code

if(ch==’a’ || ch==’e’ || ch==’o’ || ch==’u’ ||ch==’y’){

vowels++;

}

// fault --- missing || ch==’i’
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if(ch==’a’ || ch==’e’ || ch==’o’ || ch==’u’ || ch==’y’ ^ (ch!=’y’

↪→ && ch==’i’)){

vowels++;

}

The patch will negate the clause ch==’y’ only when it’s valuation is false and

ch= ’i’. This patch is equivalent to the correct code.

A.1.3 Sample Correct Patch 3: grade - v13

Original Buggy Code

if (score >= a){

result += ’A’;

}

else if ((score >= b) && (score > a)){

// Fault can be fixed by removing score > a

// or by putting score < a

result += ’B’;

}

else if ((score >= c) && (score < b)){

...

Patched Code

else if ((score >= b) && ( (score > a) ^ true))

The patch will negate the clause (score ¿ a) which is always false, and there-

fore, the clause is bypassed.
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A.1.4 Sample Correct Patch 4: digits- v19

Original Buggy Code

while (Num < 0)

{

X = Num % 10;

NewNum = (Num - X)/10;

if ((X<0)) //Can be fixed by replacing with NewNum != 0

{

result += (X*-1);

result += "\n";

}

if (Num < 0 && Num > -10)

{

result += X;

result += "\n";

}

Num = NewNum;

}

Patched Code

if( (X < 0) ^ (X > -1 || NewNum > -1) )

In the context of this program, the following properties always hold:

X <= 0

NewNum <= 0

Therefore, the patched code is equivalent to:
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if( (X != 0) ^ (X == 0 || NewNum == 0) )

\rightarrow ((X == 0) && (X == 0 || NewNum == 0)) || ((X != 0) &&

↪→ (x != 0 && NewNum != 0))

\rightarrow (X == 0) || (X != 0) && NewNum != 0)

\rightarrow (X == 0) || (NewNum != 0)

\rightarrow (NewNum != 0) || (NewNum == 0 && X == 0)

\rightarrow (NewNum != 0)

since (NewNum == 0 && X == 0) → Num = 0 which is impossible since

Num ¡ 0 is a precondition.

Therefore the patch is equivalent to replacing X¡0 by NewNum != 0. (correct

fix)

A.1.5 Sample Incorrect Patch - tcas - v1

Original Buggy Code

//In: main() ->alt_sep_test() -> Non_Crossing_Biased_Climb():

...

if (upward_preferred == 1)

{

result = !(Own_Below_Threat()) || ((Own_Below_Threat()) &&

↪→ (!(Down_Separation > ALIM()))); //fault: should have

↪→ >=ALIM

}

Patched Code
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//In: main() ->alt_sep_test() -> Non_Crossing_Biased_Climb():

...

if (upward_preferred == 1)

{

result = !(Own_Below_Threat()) || ((tmp = Own_Below_Threat()

↪→ ^ tmp > 0) && (!(Down_Separation > ALIM())));

}

This patch is likely to be incorrect.

A.1.6 Sample Undecided Patch

Original Buggy Code

switch(next_st)

{

default : break;

case 6 : /* These are all KEYWORD cases. */

case 9 :

case 11 :

case 13 :

case 12 : //fault -- added case

case 16 : ch=get_char(tstream_ptr.ch_stream);

if(check_delimiter(ch)==T)

{

token_ptr.token_id=keyword(next_st);
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unget_char(ch,tstream_ptr.ch_stream);

token_ptr.token_string[0]=’\0’;

return token_ptr;

}

unget_char(ch,tstream_ptr.ch_stream);

break;

Patched Code

if((tmp = check_delimiter(ch))==T ^ (cu_state <= 0 && tmp > 0)) {

token_ptr.token_id=keyword(next_st);

unget_char(ch,tstream_ptr.ch_stream);

token_ptr.token_string[0]=’\0’;

return token_ptr;

}

Discussion This is equivalent to say that the if statement block is not executed

if cu state is ¡= 0. In that case, get char then unget char will be executed, which

is equivalent to the fix. To verify that this fix is correct, we need to prove that

cu state ¡= 0 is equivalent to next st = 12 or next st != 6 , 9 , 11, 13, 12, 16.

We need formal verification to test if this is correct.

A.2 Patches generated on manually specified pred-

icates

By manually specifying the suspicious predicate to negate, we obtained the results

presented in the following 3 tables.
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Table A.1: Summary of the patches generated for print tokens, print tokens2,
schedule, schedule2

Based on our analysis, some programs are most likely suffering from an in-

correct or undecided patch due to the lack of diversity in the behaviors provided

in the test suite. A good example illustrating this issue is tcas for which the

code patches that were generated were plausible. While the code patches were

compact, the patch consisted of removing or always negating the predicate in

most cases, which fixed and preserved all available test cases.
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Table A.2: Summary of the patches generated for tot info
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Table A.3: Summary of the patches generated for tcas and replace
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