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An Abstract of the Thesis of

Abdul Rehman Hassan El Bsat for Master of Engineering
Major: Mechanical Engineering

Title: Segmentation and Motion Analysis of Textured Three-dimensional Scans of Teeth

Teeth movement is an important process for a dentist that helps in gaug-
ing the progress of the treatment. However, the lack of a stable reference with
respect to which one could measure the teeth movement makes this a challeng-
ing problem. In this work, the Rugea are used as stable reference on which a
segmentation and motion measurement of all individual teeth in the upper jaw
is performed. The approach in this work is to utilize deep learning Convolu-
tional Neural Networks (CNNs) to segment the rugae and the individual teeth.
Building upon the robustness of two-dimensional image semantic segmentation,
this work develops a method to convert three-dimensional textured scans of the
upper palate to two-dimensional data on which the semantic segmentation is ap-
plied. Moreover, the achieved two-dimensional segmentation is pulled-back to
segment the original three-dimensional textured mesh. After the segmentation of
two three-dimensional scans of the same patient before and after an orthodontic
treatment, an algorithm is developed to match the scans at the stable rugae re-
gion from which the three-dimensional, translation and rotation, motion of the
individual teeth is computed.
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Chapter 1

Introduction

Digital dentistry has been evolving in recent years. The main goal of digital
dentistry is to segment 3D teeth models for treatment planning and tooth move-
ment measurement for orthodontic diagnosis. However, there is no general robust
model that can define the parameters of teeth for all humans due to the high
variability in teeth appearance between people. This document intends to use
the robustness of two-dimensional image semantic segmentation to segment 3D
texture-colored models of teeth followed by tooth measurement with respect to
a stable reference.

In [1], using the integral intensity profile from 2D X-ray images, a dental arch
represented as a four-degree polynomial is created to separate tooth region in the
image. This is done by placing orthogonal planes drawn in the local minima of
the intensity profile along the arch curve to separate the teeth. This method was
implemented on both the upper and lower jaws, and was validated on segmenting
teeth on 2D X-rays. This method requires intervention to refine the placement
the planes which separate the teeth and additionally, it does not semantically
segment the teeth. In other words, the regions bounded by the separation planes
include both teeth and gingiva regions.

Oktay [2] implemented object detection machine learning algorithms on panor-
amic X-ray images. Pre-processing had to be performed on the X-ray imaged to
identify the mouth gap. This was done iteratively to identify regions in X-ray im-
ages where teeth were expected to be found. The located mouth gap area, that is,
the area of high probability of teeth being there, was split into three sub-regions:
molars, premolars, and anterior teeth (canines and incisors). Then, within each
region, each tooth was labeled by a bounding box belonging to a specific class.
The union of the similarly labeled regions was used to define a bounding area for a
certain label which in turn was used during the training processes. Additionally,
a data augmentation procedure was employed. It involved using the horizontal
and vertical symmetry to divide the image into four quadrants. The individual
quadrants were then mirrored and rotated to match up the bounding region for
the different labels. In this work, the Alexnet network architecture was used and

1



trained to perform the object detection task. Note that, the object detection was
performed on the three bounding subregions defined earlier. Beyond the required
pre-processing need in this method, object detection identifies whether a tooth
exists in the X-ray image and highlights it with an encompassing rectangular
shape. Again, there rectangular area includes both teeth and gingiva regions.

Other machine learning methods which are more relevant to our proposed
methods focused on teeth segmentation rather than teeth detection. Mikia et al.
[3] applied deep learning to classify teeth. The input to the network consisted of
the two-dimensional X-ray images of pre-segmented teeth which was done man-
ually. The networks were trained to classify the segmented teeth. The authors
acknowledged that their dataset consisted of 52 images was insufficient for train-
ing the network. Hence, the authors implemented data augmentation such as
image rotation and light intensity manipulation to address the sample size limi-
tation. Note that, this approach classified the pre-segmented X-ray images rather
than semantically segmenting the teeth.

Switching from two-dimensional to three-dimensional images, minimum cur-
vature was used to initiate the segmentation process of teeth in [4]. While this
method was able to segment the individual teeth ins three-dimensions, it required
user interaction at multiple stages to exclude the undesirable areas picked by the
curvature-based algorithm.

Similarly, Raith et al. [5] classified teeth features in three-dimensional scan,
using an Artificial Neural Network (ANN). Note that ANN’s are typically em-
ployed in tasks involving pattern recognition in digital image analysis. In this
work, cusps of the teeth are the desired features to be detected. According, the
locations of these cusps were manually labeled and fed to the as an input to the
ANN as a feature vector. The ANN as trained to identify and located the cusps..
Three cusp detection approaches were evaluated and compared. The first relied
on the “Cusp Distance”, in reference to the distance between each cusp with the
neighboring cusps. The second was the “range image” approach, whereby images
required additional range data; the cusps were uniquely manually labeled, and
used in a post-processing algorithm to classify the teeth. The third approach was
a combination of the above two methods. This method only classifies the cusps
of the teeth and does not segment the individual teeth.

Another machine learning approach was adopted by Xu et al. [6] who per-
formed segmentation directly on a three-dimensional model. They classified mesh
faces on a two-level segmentation, the first separates the teeth from the gingiva
and the second segments individual teeth. The input to their network was a 600-
dimensional feature vector which was defined [7]. A label optimization methods
was additionally employed to correct wrongly predicted labels. Even with label
optimization, “sticky teeth”, that is, pairs of adjacent teeth similarly labeled after
optimization, were sometimes falsely predicted. Principal Component Analysis
was implemented to address the problem of sticky teeth. The authors reduced the
number of faces in the model through mesh simplification to reduce the required
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processing power needed to train the network. This method required pre- and
post-processing step.

Another relevant prior work is done by Cui et al.[8] who performed 3D seg-
mentation using CBCT images that are regressed back into the dental model from
the scan. Their process involved having the CBCT image go through edge ex-
traction via deep network as a pre-processing step to the segmentation network.
The resulting image contained only the boundaries at which the teeth are located
in the CBCT image. The next step involved concatenating the original CBCT
image with the segmented edges into a similarity matrix of the region proposal
network. This network then branched into four segments: classification, segmen-
tation, 3D box regressor and identification. The segmentation and classification
branches were applied onto the CBCT image. Using the help of the edges of
teeth that were extracted, the teeth in the image were segmented and classified
into their respective classes. The identification branch helped with the spatial
relation that was needed for the 3D box regressor to regress the segmentation
onto the dental model.Hence, a 3D model with segmented teeth was generated
using the 4 branches. This method required pre-processing methods to facilitate
the segmentation process of the 3D model.

Another work done by Tian et al. [9] involved performing 3D segmentation
using three-level hierarchical deep learning along with pre-processing and post
processing to the data. Their process started by performing pre-processing on
the dental model to enhance the resolution of it by generating an octree model
before being inputed into the three-level hierarchical neural network. The input
goes through the first level of the hierarchy which focused on separating the gin-
giva from the teeth. This was followed by boundary refinement using dense-CRF
technique as post processing to the data. Following that, the teeth were inputted
into a 4-label classification network that classifies teeth into incisors, canines,
premolars, and molars. Finally, the third level was a 2- label network that sep-
arated incisors to central and lateral, separated premolars into first and second,
and separated molars into first and second. Finally, point cloud reconstruction
was done to recombine the segmented gingiva with the classified teeth recreating
the dental model with segmented teeth. This method required multiple pre- and
post processing steps to enhance the segmentation results achieved.

In the work of Ashmore et al. [10], the authors first defined a coordinate
frame to create a reference coordinate system to evaluate motion of molar tooth
throughout a headgear treatment. To reproduce the coordinate frame in a con-
sistent manner, certain points of reference in each cast were taken to generate it.
The points include: a single point where the median raphe meets incisive papillae,
set of points traced along the median raphe, 4 unique anatomic rugae points on
each side of the palate, 4 unique anatomic points on the first permanent molar
of each side, 3 points where the mandibular teeth meet with the maxillary teeth
(usually cusp of molar and cusp of incisor) to be used to estimate the occlusal
plane. The 4 points selected on each molar were averaged to create a centroid,
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which was used to examine translations along the X, Y, and Z axes. Rotation
was calculated by applying Procrustes onto the 4 point pairs selected on each
molar tooth. In this process, the authors had to pre-select points representing
the molar tooth (manually segment) on a cast. The number of points is small
and the distance between the selected points is small as well since they are based
on unique details in the occlusal anatomy. Due to the proximity of the 4 points,
minor measurement errors could have a large impact on the calculated rotations.
In our process, the method utilizes the entire body instead of using a handful
of points and that removes the error of selection of points from the process and
provides more accurate rotational measurements of teeth.

This thesis work proposes a completely autonomous system for teeth seg-
mentation in two-dimensional color images without any manual intervention or
pre-processing. Deep learning was implemented through a Fully Convolutional
Neural Network (F-CNN) architecture to semantically segment individual teeth
and palatal rugae in color images. A benchmark using different architectures was
done to assess the effect of data augmentation on the semantic segmentation of
teeth. Accuracy and associated metrics were defined to identify the best network
architecture for semantic segmentation of maxillary teeth and rugae. Then, a
labeled dataset consisting of 800 photographic images of actual patients taken at
the occlusal view will be made publicly available along with the trained network.

Furthermore, this thesis work proposes 3D tooth segmentation that requires
no pre- or post- processing of the data to further enhance the prediction results.
A dataset consisting of 100 3D texture-colored models of actual patients with
their projections is collected. The 3D meshes were cleaned, segmented manually,
and labeled. An algorithm is developed to produce 100 2D projections of each
scan with various lighting and perspective parameters. The generated 10,000
image set is labeled automatically using the projected anti-aliases coloring. Deep
learning was implemented using a Fully Convolutional Neural Network (F-CNN)
architecture designed for two-dimensional images to utilize its robustness on se-
mantic segmentation. Utilizing the trained model, 2D segmentation of projections
of unseen model is achieved. These segmented 2D images are used to back the
segmented region on the 3D mesh, thus achieving 3D segmentation. Finally, mo-
tion measurement was performed on each individual tooth using rugae as a novel
stable reference from which motion can be measured.
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Chapter 2

Semantic Segmentation of
two-dimensional Images

2.1 Dataset Collection

The proposed dataset consists of images compiled by the Orthodontics and Dento-
facial Surgery Department at the American University of Beirut Medical Center
(AUBMC). Two-dimensional (2D) images of the maxillary palate were taken at
the occlusal plane with a single-lens reflex camera using a mirror as shown in
Fig. 2.1. A typical image highlighting the palatal rugae is depicted in Fig. 2.2.
The images were taken at different distances to generate diversity in the dataset
and make the training more robust. Moreover, images with dental appliances
were included in the data set to robustify the training as shown in Fig. 2.3. Fi-
nally, images of the same patient before and after treatment were also included
to validate the network capability to segment teeth before and after treatment.

In contrast to previous related work, the images used in the paper not X-ray
images, but RGB colored images. The images were saved in the PNG file format
and with 480x320 pixel resolution. Two datasets were acquired, one original and
one expanded.

Figure 2.1: Acquiring image of the maxilary teeth.
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Figure 2.2: Image taken at occlusal view showing the rugae

The original dataset comprised 797 images. This set was split into two subsets
719 images and 78 images. The first subset was used to train a network to
semantically segment family teeth, whereas the entire set of 797 images was used
to semantically segment individual teeth. Note that, both networks were also
trained to segment palatal rugae.

An additional image dataset composed of 47 pair of images is utilized solely
to test the robustness of the trained network. Each pair of images is taken from
the same patient before and after an orthodontic treatment as shown Fig. 2.6.

Figure 2.3: First two columns depict the original dataset while the last column
depicts a pair of images from the expanded dataset.

6



2.2 Dataset Labeling Methods

Image labels serve as the ground truth for the training, validation, and testing of
various neural networks architectures. The proposed labeling method labels the
pixels in an image in the form of polygons drawn by the user to fit the shape of
the object of interest as show shown in Fig. 2.4a. The labeling was applied to
the entire data set of (797 + 2*47 = 891) images.

2.2.1 Semantic Labeling

Labeling for semantic segmentation is done by assigning a class to every pixel in
an image. The labeling of all the pixels in an image was performed in Matlab ap-
plication [11] by creating polygons manually following the contour of the regions
of interest. For each image in the dataset similar to the one shown in Fig. 2.4a,
an associated image of similar dimensions was created to identify the labels by
assigning different color to each label (Fig. 2.4b). In Figure 2.4c, the label is
superimposed on the original image to shown how the labels capture the family
teeth. All labels and contours of the teeth and the rugae area were verified by
orthodontists.

In this paper, two labeling schemes were used. The first scheme is comprised
of 5 labels label to segment the rugae and the family of teeth: molars, premolars,
canine, and incisors. The second labeling scheme consists of 23 defined labels:
the rugae and the individual teeth number 1 through 22. Figure 2.4 depicts both
labeling schemes.

(a) Original image (b) Family of teeth image
label

(c) Label super imposed
on image

(d) Original image (e) Individual teeth im-
age label

(f) Label super imposed
on image

Figure 2.4: Labeling for semantic segmentation and the two labeling schemes.
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2.2.2 Label Statistics

Semantically segmenting teeth and rugae is challenging due to variability in the
size of the labels. It is clear from Fig. 2.4, that the typical size of the rugae label
is substantially larger than the labels of individual teeth.

To gauge the variability of size of the labeled, the reader is referred to Fig. 2.5.
For each labeling scheme and dataset combination, the number of pixels associ-
ated with each label were tallied. A bar chart depicting the count of pixels for
each label is shown in Fig. 2.5. In Fig. 2.5a, the statistics of the family of teeth
labeling scheme clearly shows rugae labels are the highest whereas the canine
labels were the lowest. The number of labeled pixels of the molars, premolar,
and incisors were comparable. In Fig. 2.5b, the statistics of the individual la-
beling scheme is depicted. Again, it’s clear that the number rugae pixels is the
most, however, the number of pixels associated with individual adult teeth were
comparable. One can also note that, the number of pixels associated with pri-
mary teeth and third molars are insignificant. Accordingly, one should expect
low accuracy in segmenting the primary teeth and the third molars. Finally, in
Fig. 2.5c, the statistics of the 47 pairs of images which was used for testing only
is depicted. It is evident that the distribution of the teeth labels is similar to the
training dataset in Fig. 2.5b. This will eliminate any possible data bias towards
any label.

(a) Family of teeth label-
ing scheme

(b) Individual teeth la-
beling scheme

(c) Paired teeth labeling
distribution

Figure 2.5: Statistics of the labeling schemes

2.3 Machine learning and Semantic Segmenta-

tion

Deep Learning is a model that is designed to analyze data similar to how a human
would draw conclusions. Humans can identify features and patterns from huge
amounts of data. The deep learning model aims to imitate that ability by using a
layered structure of algorithms called an artificial neural network. The design of
such networks were inspired by the biological neural network of the human brain.
Using such networks, the algorithms are trained to find and identify patterns and
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Figure 2.6: First two columns depict the original dataset while the last column
depicts a pair of images from the expanded dataset.

features in massive amounts of data which allows it to make predictions on its
own.

In typical semantic segmentation machine learning applications, a labeled
dataset comprised of images and their associated labels are needed. These labeled
images are fed into the chosen network with a specific architecture as input. The
network in turn will produce a prediction of the label as an output. To assess the
accuracy of the network, the predicted label is compared to the input label which
is considered as ground truth. In most cases, the training process starts with
initial values or what is referred to as a pre-trained network. This was the case
for the semantic segmentation application Siam et al [12] and [13]. However, in
our case, these exist no pre-trained network that is relevant to teeth segmentation.
Accordingly, the main architecture is trained from scratch and without using any
pre-trained front-end architectures.

Typical network architectures used for semantic segmentation comprise of
encoding and decoding layers. The encoding layers are utilized for the feature
extraction from the input image while the decoding layers are utilized for the
pixel-wise predictions. Since to the best of the authors knowledge, no prior
semantic segmentation for teeth exits, multiple architectures were investigated to
determine the best performing semantic segmentation teeth.

2.3.1 Dataset Split

In typical machine learning applications, the data is split into three categories.
Most of the data is used for training the network, that is, solving for the inter-
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nal network parameters. Then, throughout the training process, the algorithm
validated the training progress against a validation set which is disjoint from the
training set. Finally, after the training is done, the trained network is testing
against a verification set with is also disjoint from the previous two sets. Ac-
cordingly, the data is typically split into three sets: training, validation, and
testing.

In this paper, the dataset with the family of teeth labeling scheme was split
into 89% for training and validation (639 images) and 11% for testing (80 im-
ages). Moreover, the training and validation sets were split into 92% for training
(586 images) and 8% for validation (53 images), respectively. As for the dataset
with the individual teeth labeling scheme, it was split into 88% for training and
validation (705 images) and 12% for testing (92 images). Moreover, the training
and validation were split into 91% for training (641 images) and 9% for validation
(64 images), respectively. This dataset split statistics are depicted in Table 2.1.
Note that the dataset comprised of 47 pairs of before and after images of patients
was entirely used for testing to assess the robustness of the trained model.

Table 2.1: The image count and labeling scheme of the original and expanded
datasets.

Train Validate Test Total
Family of teeth labeling scheme

Semantic Segmentation
Count 586 53 80 719
Percent 82% 7% 11% 100%

Individual teeth labeling scheme
Semantic Segmentation

Count 641 64 92 797
Percent 80% 8% 12% 100%

2.3.2 Network Architectures

Up to our knowledge, there has been no network that was solely trained on se-
mantically segmenting teeth. Hence, multiple architectures were tested to find
the most suitable for our dataset. Our approach is similar to the network archi-
tecture study which was performed for urban scenes in [14].

The first architecture candidate was MobileUnet. This network is comprised
of a small number of layers and hence it is relatively fast to train. This network
has been wildly in many medical applications.

The second architecture which was tested is AdapNet. The architecture of
this network designed to adapt to the environmental changes and focus less on the
environment when predictions are made. For example, images taken in different
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lighting conditions would not affect the predictive ability of this network. Hence,
this architecture was a good candidate to include in the pool of networks to test.
This network could give good results on our dataset since the images are taken
at varying proximity which could be interpreted as changes in the environment
with respect to the rest of the classes.

The third architecture to be considered was DenseNet. It is a model that
uses features of various complexity levels. This architecture predicts smooth
boundaries which enables the network to deal with limit datasets. The dataset
used in this paper is not a large dataset when compared to known datasets which
could include up to hundreds of thousands of images.

The final architecture which was considered is Segnet. The architecture of the
Segnet that is designed to be efficient and to use a limited amount of memory.
The network was designed primarily for understanding road scene understanding
which requires the ability to perceive spatial-relationships. This capability is
important in our case since our dataset has a variety of proximity from which the
teeth are captured.

A brief description of the network architectures can be found in the Appendix.

2.3.3 Network Assessment

Semantic segmentation predictions are typically evaluated using Average mean
Intersection over Union (Average mIoU). Note that for semantic segmentation,
given two images representing ground truth and its associated prediction, one
can define the IoU for a given class c such that

IoU(c) =

∑
i oi == c ∧ yi == c∑
i oi == c ∨ yi == c

, (2.1)

where oi is for predictions pixels, yi for targets or labels pixels, ∧ is a logical
and operation, and ∨ is a logical or operation. This is summed over all the pixels
i of the image pair. This is similar to how it was defined in [15]. The equation
is also visually represented in Fig. 2.7a. The mean IoU averages the values of all
the IoU’s for all the classes in an image pair. For a dataset comprised of several
image pairs, the Average mIoU is the average of the mean IoU for all image pairs.

In addition to the Average mIoU, several other metrics were computed to
assess the accuracy of the trained model. These metrics are: pixel accuracy, and
pixel precision. Pixel accuracy is the percentage of pixels in an image that are
correctly classified with respect to the input ground truth pixels. This measure
can be evaluated for specific classes or averages for all classes in an image or
averages for a single for the entire dataset. Note that, per-class pixel accuracy
can provide more information on the ability of the network to accurately segment
especially for classes that occupy small regions in the image. Finally, precision is
defined by the ratio of all the correctly detected pixels with respect to predicted
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pixels. This metric describes how many correct predictions are compared to total
predictions generated by the model.

Note that for semantic segmentation, given two images representing ground
truth and its associated prediction, one can define the pixel accuracy for a given
class c such that

Accuracy(c) =

∑
i oi == c ∧ yi == c∑

i yi == c
, (2.2)

where oi is for predictions pixels, yi for targets or labels pixels, ∧ is a logical
and operation, and ∨ is a logical or operation. This is summed over all the pixels
i of the image pair. The equation is also visually represented in Fig. 2.7b 7b.

Similarly, given two images representing ground truth and its associated pre-
diction, one can define the precision for a given class c such that

Precision(c) =

∑
i oi == c ∧ yi == c∑

i oi == c
, (2.3)

where oi is for predictions pixels, yi for targets or labels pixels, ∧ is a logical
and operation, and ∨ is a logical or operation. This is summed over all the pixels
i of the image pair. The equation is also visually represented in Fig. 2.7c.

(a) IoU (b) Pixel Accuracy (c) Precision

Figure 2.7: IoU, Accuracy and Precision Representation

It is worth noting that since the dataset exhibits class imbalance, that is,
dissimilar class sizes, the Average mIoU is a better metric to assess the network
prediction accuracy than the pixel accuracy and pixel precision. The class im-
balance is exaggerated by the fact that the background (gingiva and non-teeth
regions) and the rugae labels cover relatively larger areas than the rest of the
classes, that is, the teeth; hence, as expect the high pixel accuracy does not
translate to a more accurate semantic segmentation as was explained [16].
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2.4 Results

2.4.1 Semantic Segmentation Training Results

Family of teeth labeling scheme

The four network architectures were trained on the original dataset with the fam-
ily of teeth labeling scheme. In this case, not data augmentation was performed.
The training results are depicted in Table 2.2. The SegNet and DenseNet exhib-
ited the highest accuracy in terms of Average mIoU. The Average mIoU is 55.99
and 54.95 for the Segnet and DenseNet, respectively. Prediction results on the
actual test images are shown in Fig. 2.8. The first row depicts the prediction
using DenseNet, whereas the second row depicts the prediction by SegNet. For
both networks, the predicted labels exhibited spatial shifts. This is an indication
that the network model memorized the spatial position of the teeth rather than
segmenting them. To mitigate this issue, data augmentation was employed.

Table 2.2: Model Architecture Comparison on Tooth Family Labels

Model FC-DenseNet56 SegNet MobilUNet Skip AdapNet

Label Name Score Score Score Score
Incisor 70.23 71.32 69.15 69.7
Canine 56.14 55.66 51.65 49.59

Premolar 67.36 70.36 66.76 57.76
Molar 59.54 66.02 66.89 53.17
Rugae 82.92 82.67 80.17 81.12
Void 89.25 88.47 88.15 90.88

Average Accuracy 83.50 83.49 82.63 83.43
Average Precision 83.80 83.47 82.80 84.58

Average mean IoU score 54.95 55.99 53.68 53.23

Individual teeth labeling scheme

Given the networks trained using the family of teeth scheme exhibited spatial
memory, data augmentation is required to improve the network’s accuracy. In this
paper, two data augmentation methods were employed: the first involved rotating
images (and their labels) and then adding them to the original set (Fig. 2.9). The
second data augmentation targeted changing the perspective of the images (and
their labels) by shearing them as shown in Fig. 2.9e.

To assess the value of the data augmentation the top two performing archi-
tectures were re-trained on the full dataset. Recall that the training, validation,
and testing data split is shown in the last two rows of Table 2.1. The two sets of
data augmentation were tested individually and incrementally giving rise to six
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(a) Original image (b) Image label (c) Image prediction

(d) Original image (e) Image label (f) Image prediction

Figure 2.8: Family of Teeth average sample result for DenseNet in 2.8a, 2.8b, and
2.8c. Family of Teeth average sample result for SegNet in 2.8d, 2.8e, and 2.8f

(a) Original im-
age

(b) Rotated 90◦ (c) Rotated 180◦
(d) Rotated
270◦

(e) Perspective

Figure 2.9: Data augmentation via rotation and perspective shrinking.

training combinations which are shown in Table 2.3. The highest Average mIoU
was on the dataset that used rotation data augmentation only. The perspective
data augmentation did not improve the training accuracy. This could be pos-
sible due to the fact that the images already have perspective variability since
they were taking using actual cameras. Accordingly, only the rotation data aug-
mentation was used in the dataset for the final training. Consequently, the four
original architectures were retrained on the full dataset (including the rotation
data augmentation) using the individual teeth labeling scheme and.

The results of the trained architectures are shown in Table 2.4. SegNet re-
mained the best architecture with an Average mIoU of 86.66 and a 95.19% ac-
curacy. By using the per-class accuracy of teeth, we can deduce that on average
1/20th of a tooth will be miss-labeled.

The results of DenseNet and SegNet performed on the test dataset using the
rotation augmented dataset are shown in Figs. 2.10 and 2.11, respectively. In
both figures, the first row depicts the worst prediction, the middle row depicts an
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average prediction, and the best prediction result is displayed in the third row.

Table 2.3: Model Architecture Comparison on Specific Tooth Labels

Model Avg. Accuracy Avg. Precision Avg. mean IoU score

DenseNet 81.84 82.41 45.89
SegNet 82.32 81.93 49.53

DenseNet-Rotated 95.00 95.23 85.40
SegNet-Rotated 95.19 95.40 86.66

DenseNet-Rotation & Perspective 94.68 94.77 84.19
SegNet-Rotation & Perspective 65.09 81.28 7.90

2.4.2 Semantic Segmentation Application Results

Having identified that SegNet is the most accurate network to semantically seg-
ment images of teeth, the robustness of the trained model is testing on a third
dataset. Recall that this data set is comprised of 47 pairs of images that capture
the before and after treatment images of a patients.

Network Accuracy

Statistical analysis done on the labels of this third dataset similar to the analysis
don on the previous two datasets. The number of pixels per class in each is
computed as shown in Fig. 2.12a a for the Right Central Incisor class. The pixel
distribution of each class is in Fig. 2.12. It is evident that the primary teeth
and the third molars classes had the fewest pixels (close to 10% only) in all the
images as shown in Fig. 2.12o, 2.12p, 2.12q, 2.12r, 2.12s, and 2.12t.). Accordingly,
two Average mean IoU’s were computed, one that the included all classes and
the second that ignore the low-occurrence classes. Additionally, to focus on the
teeth segmentation accuracy of the network, the rugae class is not includes in the
second computation of the Average mean IoU. of the This second Average mean
IoU is referred to as the “Teeth Only IoU” in Table 2.5.

The Teeth Only IoU value for the 47 pair dataset is 86.2% which only includes
the teeth labels mentioned in Table 2.5. The average mean IoU of all teeth
(including primary and third molars) and rugae is 82.9%. This value is expected
to be lower due to the rugae boundaries not being consistently defined during the
labeling process.

Network Robustness

To validate the robustness of the trained network, the accuracy of prediction is
gauges for the pre-treatment and post treatment images separately. The two
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Table 2.4: Model Architecture Comparison on Specific Tooth Labels with Rota-
tion for all Architecture Candidates

Model FC-DenseNet56 SegNet MobilUNet Skip AdapNet

Right Central Incisor 94.12 93.75 93.45 93.27
Left Central Incisor 94.14 94.39 93.04 92.48
Right Lateral Incisor 91.42 91.61 91.02 90.99
Left Lateral Incisor 93.24 92.28 91.53 91.09

Right Canine 92.06 92.36 92.70 91.78
Left Canine 92.44 92.73 91.62 90.81

Right 1st Bicuspid 93.28 94.18 93.19 92.88
Left 1st Bicuspid 94.23 93.25 92.36 91.96

Right 2nd Bicuspid 88.86 91.49 89.84 90.87
Left 2nd Bicuspid 93.04 92.03 90.99 90.06
Right 1st Molar 93.29 94.58 94.20 92.80
Left 1st Molar 92.72 92.62 94.46 90.70

Right 2nd Molar 93.03 92.39 92.66 91.32
Left 2nd Molar 93.55 94.46 92.30 91.00
Right 3rd Molar 96.76 97.22 96.70 97.38
Left 3rd Molar 95.51 96.20 95.74 95.90

Right Primary Canine 98.09 99.68 97.83 99.77
Left Primary Canine 96.69 98.84 98.26 97.99

Right 1st Primary Molar 98.70 99.23 98.73 98.64
Left 1st Primary Molar 97.08 98.54 96.77 97.26

Right 2nd Primary Molar 98.61 99.58 98.76 98.17
Left 2nd Primary Molar 97.55 98.81 98.60 97.40

Rugae 88.65 88.77 89.36 88.08
Void 97.17 97.07 96.68 96.82

Average Accuracy 95.00 95.19 94.82 94.55
Average Precision 95.23 95.40 95.03 94.76

Average mean IoU score 85.40 86.66 84.92 84.42

results were check if they statistically different using is the chi-square goodness
of fit test.

Recall that, the chi-square goodness of fit test is a non-parametric test that is
used to compare the observed sample distribution with the expected distribution.
This test determines if the distribution of the accuracies between the set of pre-
treatment images and the set of post-treatment images are statistically similar
or not. The x2 test statistic is calculated by:

x2 =
∑ (O − E)2

E
, (2.4)

where O corresponds to the observed sample and E corresponds to the ex-
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(a) Original Image (b) Image Label (c) Image Prediction

(d) Original Image (e) Image Label (f) Image Prediction

(g) Original Image (h) Image Label (i) Image Prediction

Figure 2.10: Individual Teeth Labeling results for DenseNet including rotation
dataset displaying worst result in the first row of figures 2.10a, 2.10b, and 2.10c;
average result in the second row of figures 2.10d, 2.10e, and 2.10f ;and Best result
in the third row of figures 2.10g, 2.10h, and 2.10i

pected sample. This gives us the chi square statistic. Using the chi square statistic
and the number of the samples used, the p-value which is the probability that
any difference between the observed distribution and the expected distribution is
due to random chance can be calculated. The common acceptable threshold for
the p-value is 0.05. A value greater than 0.05 would mean that the difference is
not statistically significant, otherwise the two distributions are deemed different.

The Average mean IoU was calculated for the Teeth labels for both groups,
pre and post treatment, separately and displayed them in Table 2.6. Given that
there are 14 classes, then there will be 14 values for each set. The pre-treatment
was considered to be as the observed set while the post-treatment as the expected
set. After applying the chi-square test and checking the p-value, the p-value was
calculated to be 0.9989 which is higher than the significance level chosen. Hence,
the prediction values in both sets are not statistically different. This shows that
our model is robust regardless of the input images were taken from pre-treatment
set or the post-treatment set.
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(a) Original Image (b) Image Label (c) Image Prediction

(d) Original Image (e) Image Label (f) Image Prediction

(g) Original Image (h) Image Label (i) Image Prediction

Figure 2.11: individual Teeth Labeling results for SegNet including rotation
dataset displaying worst result in the first row of figures 2.11a, 2.11b, and 2.11c;
average result in the second row of figures 2.11d, 2.11e, and 2.11f ;and Best result
in the third row of figures 2.11g, 2.11h, and 2.11i

2.4.3 Limitations

It is worth noting that the rugae label was the lowest in accuracy. This was
due to the fact that the rugae area is not well-defined area as opposed to the
teeth. This fact is a reason why the labels for the rugae class in every image
varies especially that several people performed the ground truth labels, and the
defining boundary can vary between individuals.

For the sample image exhibiting missing teeth, the trained model mislabeled
the existing teeth. Specifically, if one of the premolars is missing, the exiting
premolar could be mislabeled. For instance, in Fig. 2.14b the left premolar (sit-
uated on the right side of the image) is labeled correctly as the first premolar
and colored in blue while the right premolar (situated on the left) is labeled in-
correctly as a second premolar colored as brown. Orthodontists are able to label
these teeth correctly because of the small spacing between the left canine and
premolar, which hints that there was a premolar previously in that space and
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Table 2.5: Dataset Analysis Results

Name Value

Right Central Incisor mIoU 86.2%
Left Central Incisor mIoU 85.8%
Right Lateral Incisor mIoU 84.7%
Left Lateral Incisor mIoU 82.6%

Right Canine mIoU 86.5%
Left Canine mIoU 81.6%

Right 1st Bicuspid mIoU 90.6%
Left 1st Bicuspid mIoU 90.9%

Right 2nd Bicuspid mIoU 87.0%
Left 2nd Bicuspid mIoU 86.7%
Right 1st Molar mIoU 91.6%
Left 1st Molar mIoU 89.1%

Right 2nd Molar mIoU 81.4%
Left 2nd Molar mIoU 83.2%

Rugae mIoU 78.6%

Average Accuracy 93.8%
Average Precision 94.3%

All Teeth and Rugae Average mIoU 82.9%
Teeth Only Average mIoU 86.2%

has been removed as opposed to the right side. The prediction of both teeth is
depicted in Fig. 2.14c. The right premolar was predicted correctly owing to the
spacing; however, the left premolar was predicted falsely and was classified as a
second premolar.

The robustness check confirms that there is no bias of predictions towards
the post treatment. This is a valuable attribute of the trained model since most
of the images in the pre-treatment have misaligned and crowded teeth, yet the
trained model was able to correctly segment them.

2.5 Conclusion

In this document, a semantically labeled maxillary teeth dataset taken at the
occlusal view was introduced. The dataset consisted of colored images in contrast
to previous work that used X-ray images. Machine learning methods were applied
to identify the best network architecture to be used in semantically segmenting
these images. The best network to segment maxillary teeth and rugae is SegNet
which yielded and accuracy of 95.19% and an Average mIoU of 86.66%. It is worth
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Table 2.6: Pre and Post IoU Values for teeth

Labels Pre- Treatment Post Treatment
Average mIoU Values Average mIoU Values

Right Central Incisor 86.9% 85.5%
Left Central Incisor 86.0% 85.6%
Right Lateral Incisor 84.5% 84.9%
Left Lateral Incisor 82.2% 83.0%

Right Canine 84.5% 88.5%
Left Canine 78.4% 84.7%

Right 1st Bicuspid 89.3% 92.0%
Left 1st Bicuspid 90.7% 91.2%

Right 2nd Bicuspid 87.5% 86.5%
Left 2nd Bicuspid 89.3% 84.2%
Right 1st Molar 91.8% 91.4%
Left 1st Molar 87.5% 90.6%

Right 2nd Molar 79.1% 83.5%
Left 2nd Molar 78.1% 87.6%

noting that the developed method required no post-processing nor pre-training.
The model robustness was also verified by applying to a test set consisting of
pre-treatment images and post-treatment images. The robustness results yielded
an Average mIoU value of 86.2% for the teeth only classes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Figure 2.12: Graphs of the label distribution over the set analyzed
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Figure 2.13: The first column shows the original image from the pre-treatment
set followed by its ground truth label in the row below and its prediction from the
model in the final row. The second column shows the same order for an image
from the post-treatment of the same patient.

(a) Original image (b) Image label (c) Image prediction

Figure 2.14: Miss labeling due to missing teeth
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Chapter 3

Semantic Segmentation of
Three-dimensional Textured
Scans

3.1 Data collection, Annotation and Augmen-

tation

3.1.1 Dataset Collection

In this proposed work, a dataset is generated , labeled and augmented from the
set of texture-colored 3D meshes, see Fig. 3.1. Texture-colored 3D meshes are
provided by the Orthodontics and Dentofacial Surgery department at the Amer-
ican University of Beirut Medical Center (AUBMC). The 3D dataset consists of
3D scans of the upper maxillary jaw of patients, see Fig. 3.2. The scans were
taken using an orthodontic 3D scanner probe and amount to a total of 100 colored
meshes in the PLY format.

Figure 3.1: 3D scan samples
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Figure 3.2: Image of the maxillary teeth

3.1.2 Dataset Annotation

Annotating 3D mesh for semantic segmentation is done by assigning a class to
every vertex in the mesh. The three-dimensional meshes were segmented manu-
ally with the help of a program called Meshmixer. Using this program, the user
can select the vertices they desire to separate into a different component along
with the option of creating a smooth boundary separator, see Fig. 3.3. This was
done to every single group that is differentiated as a separate label in the next
step.

(a) Selection of vertices (b) Separation of selected
objects

(c) Segmented mesh

Figure 3.3: Meshmixer steps of selection of vertices on the left, single segmenta-
tion in the middle, and the final separation on the right

After having the mesh contain separated components, the vertices in each
component were assigned to a class using a program called Meshlab. Each label
group is identified by color using this method. This scheme consists of a total of
27 defined labels.

Statistics of the distribution of labels throughout the dataset are shown in
Fig. 3.4. A graph displaying the ratio of pixels to vertices is shown in Fig. 3.5
. This shows that the ratios are averaged at a value of 25. It is evident from
the ratio distribution that there is no misrepresentation of any label (ratio too
low compared to the other ratios) when projected from 3D to 2D. Finally, the
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varying ratios are due to the randomness of the projection viewpoints. It is also
evident that most of the labels that are low fall under the primary teeth category
and third molars. Hence, it is expected that these labels might generate lower
accuracy results than the rest of the labels.

Figure 3.4: Number of pixels for each label compared with number if vertices for
each label

3.1.3 Dataset Augmentation

The 3D textured mesh is transformed into 2D snapshots taken from various angles
using Mathematica. The rotation angle covers a span of 180 degrees that is
generated randomly at every iteration. Hence, it is restricted to the frontal face of
the teeth instead of taking snapshots of the back side of the mesh. This was done
so that the model goes through various angles and avoids learning predictions on
a set sequence of angles only.

Furthermore, the 2D generation process was augmented so that the code takes
the images under various lighting conditions. The lighting conditions included
natural default light by the software, ambient light which is a bright light onto
the mesh, and varying intensity with location change from which the light can
shine from. For the third choice of lighting, two positions were chosen for the light
location; however, the light intensity was randomly generated at every iteration.
This was decided to be done since each software renders the mesh differently.
Hence, disregarding this slight change in rendering could affect the results if the
model learns under a single rendered color. Therefore, this trained the model
on having different shadings and lighting of meshes from different softwares and
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Figure 3.5: Ratio of pixels to vertices for each label

makes it more robust and independent of the lighting from the rendering software.
(Fig. 3.6).

Figure 3.6: 3D Scan Samples showing different light conditions

Finally, another added augmentation was having the proximity of the camera
to the mesh also randomly generated with the camera angle. This would allow
the mesh to be taken at various distances in various angles for more randomness
and general robustness of the model (Fig. 3.7). For the dataset, the program
generated 100 two-dimensional images per mesh which counts for a total of 10000
images to be trained on.
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Figure 3.7: 3D Scan Samples showing different camera proximities

3.2 Deep Network Design and Training

3.2.1 Network Architecture

The architecture which was considered is Segnet. A brief description of the
network architectures can be found in the Appendix. This architecture was chosen
since it yielded the best results with our two-dimensional dataset. Hence, this
architecture was concluded to be suitable for segmentation of teeth. Building
upon the robustness of this network, the segmented two-dimensional images will
be back projected onto the three-dimensional mesh.

In addition, two attention layers were implemented which are channel atten-
tion and spatial attention. The effect of implementing these layers was compared
with the original network to check if the results are enhanced with their addition.
The channel attention aims to learn a one-dimensional weight and assign it to a
corresponding channel by going through the relationship between each channel
of the feature map. The spatial attention uses the relationships between different
spatial positions to learn and assign a two-dimensional spatial weight to a cor-
responding spatial position. This helps the model to learn more representative
features. Two different implementation augmentation were made and tested on.
The first one was in a way such that the feature map was fed initially into a
channel attention module to refine the features in channels. Following that, the
refined channel feature map was fed into the spatial attention module for spatial
axis refinement. In the end, the final layer layer processes (Softmax) are applied
and the predictions are generated.[17]. The second implementation was having
the attention layers at the transition between the encoding layers and decoding
layers (center of structure instead of at the end).
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Figure 3.8: Flow Chart of the Annotation and 2D projections

3.2.2 Training Process

Two separate training sets were done while testing for the effect of the attention
layers on the architecture. The training was done on a partial dataset of 5000
images that is part of the 10000 images dataset (the full dataset). This was done
to have faster training while comparing attention layer implementations. Once
the conclusion is reached, a final training with the full dataset was done on the
architecture best for the dataset.

For the training on the partial dataset, the dataset was split into 83% for
training and validation (4167 images) and 17% for testing (833 images). Fur-
thermore, the training and validation set were split into 92% for training (3819
images) and 8% for validation (348 images). The hyper parameters used for the
architecture training were 150 epochs, batch size of 1, learning rate of 0.0001,
and decay of 0.995.

For the training on the final dataset, the dataset was split into 80% for train-
ing (8000 images), 10% for validation (1000 images) and 10% for testing (1000
images). Furthermore, the test and validation sets were complete unseen scans.
In the previous training, the test and validation were unseen projections of scans
already in the training. However, the final training with the final dataset had
unseen mesh scans in the test and validation which is even harder for the model
to predict. The hyper parameters used for the architecture training were 120
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epochs, batch size of 1, learning rate of 0.0001, and decay of 0.995.

3.3 Rasterization

After generating the predictions from the trained model, the two-dimensional
predictions are back projected onto the three-dimensional mesh. Using a software
called Meshlab, 2D projections were generated from a fixed set of camera positions
that capture the entire mesh, see Fig. 3.9. The projections were entered into the
trained model to generate their two-dimensional segmented predictions on them.
The predictions on the images, known as rasters, can be back-projected onto
the mesh using the saved camera locations. The new generated mesh will be
segmented based on color, see Fig. 3.10. Each class can be identified using the
color designated to it.

Figure 3.9: Sample 3D mesh with Camera locations surrounding it

3.4 Results

To assess the value of all three architectures(original and both attention im-
plementations), the architectures were trained on the augmented dataset. The
training results are shown in tables 3.1 and 3.2. The first table shows results
done on unseen projections of scans already in the training. The architecture
that had the attention placed at the end had the best results with an average
accuracy of 99.37 % and an average mIoU of 88.45. The second table shows pre-
diction results done on unseen projections of unseen 3D scans. The architecture
that had the attention placed at the end had the best results as well with an
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Figure 3.10: Flow Chart of the 3D segmentation process

average accuracy of 98 % and an average mIoU of 79.01. Prediction results of
the first table are shown in Fig. 3.11. In these results, it is evident that in both
architectures that include attention the prediction result is enhanced. Prediction
results of the second table are shown in Fig. 3.12. In those results, it was within
our expectations that the predictions will not be fully accurate since the dataset
used for training was still insufficient in size. However, it can be seen that the
architecture that has the attention layers similar to paper [17] are showing more
promising results in terms of refinement of the labels. Hence, it was concluded
that the architecture that has attention layers included in the end was the best
one to be used for training the final dataset.

Table 3.1: Model Architecture Comparison on Test Set

Model SegNet Original Segnet with Segnet with
Attention Layers (End) Attention Layers (Centered)

Avg. Accuracy 99.29 99.37 99.34
Avg. mean IoU score 87.50 88.45 88.29

Table 3.2: Model Architecture Comparison on Unseen Scan set

Model SegNet Original Segnet with Segnet with
Attention Layers (End) Attention Layers (Centered)

Avg. Accuracy 97.80 98.00 97.60
Avg. mean IoU score 76.68 79.01 76.35

After identifying the best architecture to use, the final dataset was trained on
that architecture. The prediction results were displayed in Fig. 3.13. The first
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(a) Original Segnet (b) Segnet
Attention (End)

(c) Segnet
Attention (Center)

(d) Ground Truth

Figure 3.11: Attention Layer Comparison on Unseen Projection of a trained scan

(a) Original Segnet (b) Segnet
Attention (End)

(c) Segnet
Attention (Center)

(d) Ground Truth

Figure 3.12: Attention Layer Comparison on Unseen Projection of an Unseen
scan

row depicts the worst prediction, the middle row depicts an average prediction,
while the third row depicts the best prediction result. The training results were
shown in 3.3. It can be seen that there are certain labels that are of low value
compared to the rest. These labels are mostly the labels that were less commonly
found compared to other labels. Most of these labels fall under the category of
primary teeth and the third molars. Hence, an additional term was included in
the table which was the Adult Teeth Average Mean IoU Score which is similar
in calculation to the average mean IoU score but excludes third molars, primary
teeth, rugae and background from the calculation. This metric has a value of
84.26 and is close to the average mean IoU score of 85.41. The final training has
an average accuracy of 98.69 % and Average mIoU score of 85.41. It is important
to note that these results were done on unseen projection of unseen scans by the
model.

The remaining step for the segmentation is applying the predictions onto the
3D mesh using the rasterization process. The needed projections are generated,
entered into the trained model and have the predictions applied on them. Fol-
lowing that, the predictions were back-projected on the mesh using the camera
locations linked to the images, see Fig. 3.14.
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Table 3.3: Model Training Results on the Final Dataset

Model Mean IoU Scores

right 3rd molar 70.91
right 2nd molar 68.22
right 1st molar 83.12

right 2nd biscuspid 89.52
right 1st bicuspid 89.19

right canine 81.47
right lateral incisor 83.72
right central incisor 94.76
left central incisor 94.12
left lateral incisor 78.93

left canine 87.23
left 1st bicuspid 85.71
left 2nd bicuspid 84.66

left 1st molar 86.26
left 2nd molar 72.72
left 3rd molar 66.16

right 2nd primary molar 77.25
right 1st primary molar 72.57

right primary canine 73.27
right primary lateral incisor 0.05
right primary central incisor -
left primary central incisor -
left primary lateral incisor 0.00

left primary canine 80.10
left 1st primary molar 59.21
left 2nd primary molar 77.51

rugae 85.87
background 99.34

Average Accuracy 98.69
Average Precision 98.71

Average mean IoU score 85.41
Adult Teeth Average Mean IoU Score 84.26

3.5 Conclusion

This document introduces a maxillary teeth dataset of 3D mesh projections and
motion measurement of tooth using the rugae as a stable reference. The dataset
consisted of 100 texture-colored scans which generated a total of 10,000 projec-
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(a) Original Image (b) Image Label (c) Image Prediction

(d) Original Image (e) Image Label (f) Image Prediction

(g) Original Image (h) Image Label (i) Image Prediction

Figure 3.13: Final Training results displaying worst result in the first row of
figures 3.13a, 3.13b, and 3.13c; average result in the second row of figures 3.13d,
3.13e, and 3.13f ;and Best result in the third row of figures 3.13g, 3.13h, and 3.13i

tions to be used for training. Attention layers were tested and added onto the
architecture enhancing the precision of the results. The best network yielded in
an accuracy of 98.69 % and Average mIoU of 85.41. It is also worth noting that
the developed method required no post-processing nor pre-training as compared
to related work in the 3D segmentation domain.
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Figure 3.14: 3D Scan Segmented on the left and a sample raster projection onto
the mesh on the right
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Chapter 4

Motion Measurement of Teeth

4.1 Coordinate Frame Definition

Before calculating the motion, a designated fixed coordinate frame was needed
to be established. This was needed since the 3D scans are not oriented or aligned
after each scan. Hence, a shared coordinate frame definition was required to have
a consistent coordinate frame reference for all scans in order to measure motion
with respect to it.

The coordinate frame was done using a placement of 6 spheres onto the mesh,
see Fig. 4.1a. Two planes can be generated with this set of spheres. The first
plane that defines the y-axis known as occlusal plane was generated using the
spheres located at the cusps of the molars and incisors. The second plane that
defines the z-axis known as saggital plane was generated using the spheres located
along the median raphae passing through the middle of rugae. Finally, the x-axis
was defined along the normal of both planes. The finalized coordinate frame
with the axis is shown in Fig. 4.1b with z-direction being along the sagittal
plane, y-direction along the occlusal plane, and x-along the normal between both
planes.

4.2 Motion Estimation

After performing the 3D segmentation, measuring the motion of the teeth be-
tween two related three-dimensional meshes becomes possible. In this process,
two meshes are required and have to be segmented scans taken from the same
patient. The first scan will be called pre-treatment scan and the second scan
will be post-treatment scan. Using a program called Polyworks, the complete
mesh representing pre-treatment is imported while the segmented teeth and ru-
gae from the mesh representing the post-treatment is imported, see Fig. 4.2a.
The process is composed of two main steps. First, the segmented objects from
the post-treatment scan are aligned with the pre-treatment scan using the trans-
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(a)

(b)

Figure 4.1: Mesh with sphere placement on the left and generated coordinate
frame on the right

formation from rugae alignment of both scans as a stable reference. This aligns
the segmented objects with their counterparts from the pre-treatment scan for
a more accurate motion estimation. This was possible since the rugae is known
for it’s unique shape for every patient and acts like a fingerprint. Hence, after
aligning the rugaes using ICP, the transformation is applied to the rest of the
teeth from the post-treatment mesh which will produce two sets of segmented
teeth that are aligned based on the palatal rugae region, see Fig. 4.3c.

The final step involves aligning separately every single tooth with its coun-
terpart from the other mesh. This process fixates both models with a reference
position from which the motion assessment can be performed with respect to.
Then, a second set of alignments are performed between each desired tooth from
one scan and its corresponding tooth from the second scan, see alignment of
Tooth 1 in Fig. 4.3d. The second set of alignments generate a set of transfor-
mation matrices. Using the set of matrices, the rotation and translation values
across each axis are calculated for every tooth. These values are in reference to
the stable palatal rugae region due to the first alignment performed.

(a) Scans Imported (b) Alignment on Palatal
Rugae

(c) Tooth 1 Alignment

Figure 4.2: Motion Measurement process applied on one tooth as an example
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4.3 Results

After 3D segmentation, motion measurement process becomes applicable. The
pre scan and the segmented parts from the post scan are imported. The post
scan imported was a scan which had its segmented parts manually shifted in
order to gain a ground truth for the movement and compare with the results
from the process using the software. This was done since the real pre-treatment
and post-treatment scans have no ground truth to compare which is needed to
assess the process’s accuracy.

A stable reference using alignment of the palatal rugae was done first. The
resulting transformation was applied onto the remaining teeth. At this point,
alignment of teeth could be done to measure the motion. Each tooth was aligned
individually and their resulting transformation was calculated.

The transformation was in the form

Transformation = TzTyTxRz(α)Ry(β)Rx(ζ) =


R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1


where angle β is found using − sin−1 (R31), angle ζ is found using − tan−1(R32

R33
)

, angle α is found using − tan−1(R21

R11
) . Rotation around y-axis has two solutions;

however, we can exclude second solution since it is large for the application of
orthodontics (greater than 90 degrees in value).

Using that information, the results for the motion estimation were generated.
Two tables were displayed showing the translation and rotation of the teeth with
respect to the ground truth, see Tab. 4.1 and 4.2. It can be seen that the results
from the process are almost identical except in two instances in the translation
part. The first instance is the model detecting movement in the Z direction when
there wasn’t ant. The second instance is the model detecting movement in the
X direction of a value that is negligible.

After performing the manually moved scans test successfully, the motion mea-
surement process was applied on a real pair of scans that represent pre-treatment
and post-treatment scans of the same patient, see Fig. 4.4. In addition, the
motion captured for each individual tooth was displayed in Table 4.3.

4.4 Conclusion

This work was able perform motion measurement successfully using our novel
rugae area as a stable reference on a manually moved model for comparison
purposes and a real pair of models that have undergone an orthodontic treatment.
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Table 4.1: Translation Motion Results comparing actual ground truth movement
with respect to the movement achieved from the software

Model Translation in X-
Axes(mm)

Translation in Y-
Axes(mm)

Translation in Z-
Axes(mm)

Tooth Number Actual Experimental Actual Experimental Actual Experimental
Tooth 1 -2 -2 0 0 0 0
Tooth 2 0 0 1 1 0 0
Tooth 3 2 2 0 0 0 0.07
Tooth 4 -2 -2 0 0 0 0
Tooth 5 1 1 2 2 0 0
Tooth 6 -1 -1 -1 -1 0 0
Tooth 7 0 0 0 0 0 0
Tooth 8 0 -0.00034 -3 -2.999 0 0
Tooth 9 0 0 -1 -1 0 0
Tooth 10 2 2 -2 -2 2 2
Tooth 11 0 0 -2 -2 0 0
Tooth 12 2 2 0 0 0 0
Tooth 13 2 2 0 0 0 0
Tooth 14 0 0 1 1 0 0

Table 4.2: Rotation Motion Results comparing actual ground truth movement
with respect to the movement achieved from the software

Model Rotation in X-Axes
(Deg)

Rotation in Y-Axes
(Deg)

Rotation in Z-Axes
(Deg)

Tooth Number Actual Experimental Actual Experimental Actual Experimental
Tooth 1 0 0 0 0 0 0
Tooth 2 0 0 0 0 0 0
Tooth 3 0 0 -2 -2 0 0
Tooth 4 3 3 0 0 0 0
Tooth 5 0 0 0 0 0
Tooth 6 0 0 0 0 0 0
Tooth 7 0 0 0 0 20 20
Tooth 8 0 0 0 0 -20 -20
Tooth 9 0 0 3 3 0 0
Tooth 10 0 0 0 0 0 0
Tooth 11 0 0 0 0 0 0
Tooth 12 0 0 0 0 0 0
Tooth 13 0 0 0 0 0 0
Tooth 14 0 0 0 0 0 0
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(a) Scans Imported (b) Alignment on Palatal
Rugae

(c) Teeth aligned based on
Rugae

(d) Tooth 1 Alignment (e) Tooth 2 Alignment (f) Tooth 3 Alignment

(g) Tooth 4 Alignment (h) Tooth 5 Alignment (i) Tooth 6 Alignment

(j) Tooth 7 Alignment (k) Tooth 8 Alignment (l) Tooth 9 Alignment

(m) Tooth 10 Alignment (n) Tooth 11 Alignment (o) Tooth 12 Alignment

(p) Tooth 13 Alignment (q) Tooth 14 Alignment (r) Full Alignment

Figure 4.3: This is a diagram showing the process of alignment being done on
a manually changed scan. Scans are imported, aligned on the reference rugae,
followed by individual alignment of every tooth with respect to the rugae aligned
reference for measurement purposes
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Table 4.3: Translation Motion Results comparing actual ground truth movement
with respect to the movement achieved from the software

Model Trans in X(mm) Trans in Y(mm) Trans in Z(mm) Rot in X(Deg) Rot in Y(Deg) Rot in Z(Deg)

Tooth Number Value Value Value Value Value Value
Tooth 1 4.066 -0.366 6.514 -3.036 -5.325 2.494
Tooth 2 -0.122 -2.948 4.505 -8.474 80.83 1.5
Tooth 3 0.698 -0.588 -1.006 5.734 1.756 0.337
Tooth 4 0.490 -0.016 2.312 -1.09 -3.18 0.379
Tooth 5 -0.079 0.241 -0.143 -0.13 3.6 1.25
Tooth 6 0.461 0.270 0.460 1.37 -1.1 0.277
Tooth 7 0.192 0.689 0.127 2.68 -0.21 0.675
Tooth 8 0.068 0.916 0.035 3.55 0.75 -0.070
Tooth 9 -0.107 0.381 0.111 2.4 0.489 0.43
Tooth 10 0.306 -0.062 0.099 0.792 -2 0.796
Tooth 11 -0.946 0.914 2.110 -0.77 2.758 -2.76
Tooth 12 -1.027 0.223 -0.954 4 -3 -2.5
Tooth 13 -1.500 -0.901 2.235 -5.1 -6.769 -3
Tooth 14 -4.035 0.035 5.653 -3.18 2.9 -3.7
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(a) Scans Imported (b) Alignment on Palatal
Rugae

(c) Teeth aligned based on
Rugae

(d) Tooth 1 Alignment (e) Tooth 2 Alignment (f) Tooth 3 Alignment

(g) Tooth 4 Alignment (h) Tooth 5 Alignment (i) Tooth 6 Alignment

(j) Tooth 7 Alignment (k) Tooth 8 Alignment (l) Tooth 9 Alignment

(m) Tooth 10 Alignment (n) Tooth 11 Alignment (o) Tooth 12 Alignment

(p) Tooth 13 Alignment (q) Tooth 14 Alignment (r) Full Alignment

Figure 4.4: This is a diagram showing the process of alignment being done on
a pre-treamtn and post-treament scans of a real patient. Scans are imported,
aligned on the reference rugae, followed by individual alignment of every tooth
with respect to the rugae aligned reference for measurement purposes
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Chapter 5

Conclusion

This work was able to produce a method that segments individual teeth in three-
dimensional textured scans using the robustness of two-dimensional semantic
segmentation. Furthermore, this method required no pre- or post- processing of
the data to enhance the segmentation of the three-dimensional prediction result
as compared to previous related work in the three-dimensional segmentation.
Additionally, motion measurement was performed using our novel rugae area
as a stable reference on a manually moved model for comparison purposes and
a real pair of models that have undergone an orthodontic treatment. In both
measurement processes, the method utilized the entire body instead of using a
handful of points which removed the error of selection of points from the process
and provided more accurate rotation and translation measurements of teeth.
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Appendix A

Network Architectures

In this work, four main architectures were included in our benchmark analysis.
All of the network architectures share the same down-sampling factor of 32 which
ensures a unified down-sampling factor that allows the proper assessment of the
decoding method. The networks include:

(a) FC-DenseNet Architecture [15].

(b) MobileUNet Architecture [18].

Figure A.1: The DenseNet and MobileNet architectures are depicted.

1. FC-DenseNet56[15]: This network uses a downsampling-upsampling style
encoder-decoder network. As the name suggests, it consists of 56 layers. In
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this architecture, denseblocks (DB) consisting of 4 layers are used. Each
layer consists of a batch normalization, followed by ReLU, a 3× 3 convolu-
tion, and dropout with probability p = 0.2. The DB has a growth rate of
12 as shown in Fig. A.1a. In addition, on the downsampling side, each DB
is followed by a Transition Down (TD) block that consists of batch normal-
ization, followed by ReLU, a 1×1 convolution, a dropout with p = 0.2, and
a non-overlapping max pooling of size 2× 2. On the upsampling side, each
DB is preceded by a Transition Up (TU) layer that has 3 × 3 transposed
convolution with stride of 2 to compensate for the pooling operation. The
network is terminated by a 1× 1 convolution and a softmax layer.

2. MobileUNet-Skip[18]: This architecture is comprised of 28 layers such
that we have two types of convolution layer blocks. The first type is a
convolution layer that consists of a regular convolution followed by batch
normalization and ReLU. The second type consists of a depth wise convolu-
tion followed by batch normalization and ReLU. Then, the layer is followed
by 1 × 1 point-wise convolution, batch normalization, and ReLU. Finally,
the architecture goes through a fully connected layer that feeds into a soft-
max layer for classification as shown in Fig. A.1b.

3. Encoder-Decoder-Skip based on SegNet[19]: This network uses a
VGG-style encoder-decoder, where the upsampling in the decoder is done
using transposed convolutions. The encoder network consists of 13 con-
volutional layers. For each encoder layer there exists a convolution with
a filter bank to produce a set of feature maps. This is followed by batch
normalization and an element-wise ReLU. Then, max-pooling with a 2× 2
window and stride of 2 is performed. For every encoder layer there exists
a decoder layer; hence, the decoder network consists of 13 layers similar to
the encoder layers but differ in replacing the maxpooling by upsampling
the input feature map followed by batch normalization. The architecture
is shown in Fig. A.2a. In addition, the architecture employs additive skip
connections from the encoder to the decoder.

4. Adapnet[20]: This architecture is a modified version of ResNet50 that uses
bilinear upscaling instead of transposed convolutions as shown in Fig. A.2b.
In addition, lower resolution processing is performed using a multi-scale
strategy with atrous convolutions.
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(a) Segnet architecture [19].

(b) Adapnet architecture[20].

Figure A.2: The Segnet and AdapNet architectures are depicted.
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Appendix B

Abbreviations

Average mIoU Average mean Intersection over Union
ANN Artificial Neural Network
CBCT Cone Beam Computed Tomography
CNN Convolutional Neural Network
F-CNN Fully Convolutional Neural Network
ICP Iterative Closest Point
IoU Intersection over Union
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