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Condition monitoring is increasingly being considered a necessity to ensure the safe use 

of our structures and to extend their lifetime. Lamb waves (LWs) are ultrasonic guided 

waves (GWs) that are widely used for damage detection, towards integration in 

structural health monitoring of mechanical, aerospace, and civil structures. 

 

The growing mechanical and economical demands in modern systems and structures are 

forcing an inevitable need for joining dissimilar materials, thus creating the challenge of 

establishing a process to inspect and monitor dissimilar joints. Friction stir welding 

(FSW) has emerged as one of the most promising and successful methods for producing 

sound dissimilar-metallic joints. This work is an extensive investigation of LWs’ 

potential for the nondestructive evaluation of dissimilar FSW. 

 

As a prior step, the propagation behavior of the fundamental symmetric (S0) and anti-

symmetric (A0) LW modes, upon interaction with welded joints of dissimilar materials, 

was investigated. A plate with an intact AA6061-T6/AZ31B dissimilar joint was 

employed, and the interaction of the propagating wave with the material interface was 

scrutinized numerically and validated experimentally. Plane-wave approximation 

(PWA) analytical solution was also adopted to investigate the behavior of the 

symmetric modes, and its performance was compared to the numerical and 

experimental results. The effect of the angle of incidence on the reflection, transmission, 

and mode conversion of the incident modes was analyzed. The transmission coefficients 

of the S0 and A0 modes were found to be almost constant until reaching very steep 

incidence angles (𝑖̂ > 78°). Further, the fundamental shear-horizontal (SH0) GW mode 

has evolved upon the interaction of the obliquely-incident S0 mode with the interface. 

The experimental results from an intact AA6061-T6/AZ31B FSW joint showed very 

good agreement with both the analytical and numerical ones. PWA was shown to be a 

very good approximation to determine the transmission and reflection coefficients of the 

in-plane symmetric modes for a certain frequency range. The importance of the 

obtained findings for the implementation of LW sensor networks in structures 

containing dissimilar-material joints was finally explained. 
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In the next step, a novel Bayesian-based framework for full damage identification was 

proposed. Simulated damage within a dissimilar-material joint was identified, in six 

parameters of damage extent and location (length, width, thickness, and 𝑥-, 𝑦-, and 𝑧- 

positions), using only one actuator and one sensor. Surrogate models that can predict 

LW sensor measurements, given the damage size and position, were developed. The 

surrogate models were based on artificial neural networks (ANNs) trained using finite 

element (FE) simulations of the monitored plate, with a pre-allocated sensor network. 

The ANNs were utilized to perform a statistical damage inference based on 

Approximate Bayesian Computation by Subset Simulation (ABC-SubSim). Data fusion 

for ABC-SubSim inference using multiple sensor measurements was successfully 

employed. The results showed that damages of different sizes and locations were 

identified with a high level of resolution and with quantified uncertainty. A precise and 

robust damage inference was achieved using a minimal sensing set-up based on one 

PZT actuator and two sensors. These findings are very promising for damage detection 

and assessment and form a step forward towards online/onboard monitoring 

applications. 

 

Furthermore, the potential of LWs for the detection and evaluation of micro-scaled 

intermetallic compounds (IMCs) at the weld interface was examined. Intermetallic 

regions are common in welded joints of dissimilar materials, and their presence leads to 

weakness of the joint (due to their brittle behavior). FSW lap joints, between AA5052-

H32 aluminum and ASTM 516-70 steel, with various intermetallic conditions, were 

simulated using the Murnaghan nonlinear-elastic model. The synchronism and non-zero 

power flux conditions between higher-order symmetric LW modes (S1 and S2) were 

used to determine the needed LW excitation frequency. Symmetric LWs were 

selectively generated and the collected signals were analyzed in the time, frequency, and 

time-frequency domains. It was found that the relative acoustic nonlinearity parameter 

varies linearly with the thickness of the IMC layer, where variations down to 2 𝜇𝑚 are 

easily differentiated. The attained results prove the sensitivity of LW nonlinear features 

to microstructural variations, within dissimilar FSW joints, and demonstrates the 

capability of LWs in accurately scrutinizing their strength. Such novel findings would 

open the way towards the quantitative nondestructive assessment of intermetallic 

compounds using LW-based techniques. 
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CHAPTER 1 

1. INTRODUCTION 
 

1.1 Dissimilar Friction Stir Welding 

The increased demand for higher fuel efficiency in all kinds of mobile vehicles 

has led to a greater interest in using lightweight materials in their structures [1, 2]. 

Variants of aluminum and magnesium alloys are being widely used in transportation 

and aerospace industries due to their light weight and attractive properties, including 

high specific strength, corrosion resistance, and good formability [1, 3]. Different 

materials, and due to their specific properties (mechanical, thermal, physical, chemical, 

etc.), may be more advantageous than others for specific applications or locations 

within the structure [4]. For this reason, combinations of dissimilar materials are being 

inevitably used together to optimize the design from both mechanical and economical 

perspectives [2, 4]. While fasteners are widely utilized for dissimilar-material joining, 

welding is still preferred, in the case of metals, to achieve higher productivity and lower 

costs [4]. Further, due to the low ductility of magnesium alloys, riveting may induce 

cracks in the material [1]. 

Attempts to joining alloys of dissimilar materials using conventional welding 

techniques were not very successful [5]. This is mainly due to the difference in the 

mechanical, physical, and chemical properties between the two alloy families [1]. Using 

conventional fusion welding techniques leads to the formation of a thick layer of 

intermetallic compounds between the two joined materials. This layer is usually brittle, 

thus leading to considerable weakness in the weld [2, 5]. 
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However, friction stir welding (FSW) has proven to be very efficient in joining 

dissimilar metals [4, 6]. FSW is a modern environment-friendly solid-state welding 

technique [7]. It was invented and validated by W. Thomas and his colleagues at The 

Welding Institute (TWI) in the UK in 1991 [8, 9]. FSW is performed at a temperature 

below the melting points of the joined metals [10, 11] and does not involve bulk 

material melting, thus exposing the joined metals to less heat. This improves the 

mechanical microstructure and properties of the weld and provides several advantages 

over other welding techniques [12, 13]. FSW has made a large impact on the welding 

community for the past three decades and has attracted the attention of many people in 

research and industry. It is heavily used in many applications including automotive, 

marine, railway, and aerospace industries [14]. Some advantages of FSW over other 

conventional welding techniques are summarized in Table 1.1 [7, 15]. FSW has found 

its way into high production since 1996, however, this does not eliminate some of the 

disadvantages of the process. Disadvantages include leaving a hole behind when the 

tool is withdrawn, requiring a large downforce, and being less flexible than manual and 

arc welding processes [16]. 

FSW is performed using a non-consumable cylindrical tool including a pin and 

a shoulder. In the case of a butt weld, the rotating tool’s pin is plunged into the adjacent 

edges of the sheets/plates to be joined (or into the surface of the top plate in the case of 

a lap joint) and then traversed along the line of the joint (Figure 1.1). The pin is slightly 

shorter than the required weld depth, and the shoulder is pushed down on the plates’ 

surfaces causing a high frictional force while rotating. In this way, the tool provides the 

heating to the workpiece, and at the same time, ensures the flow of the material to 

produce the joint. 
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Table 1.1. Advantages of friction stir welding over conventional welding techniques [7, 15]. 

Advantages of friction stir welding 

Metallurgical 

advantages 

• Good steadiness in dimensions; 

• Potential for being repeatable; 

• No need for filling materials; 

• Exceptional mechanical properties in the weld region; 

• Avoiding some welding imperfections as porosity and solidification 

cracking. 

Environmental 

advantages 

• No grinding wastes; 

• No harmful emissions; 

• Minimum need for surface cleaning. 

 

 

 

Figure 1.1. A Schematic of the friction stir welding process [17]. 

 

 

Defects, that FSW is susceptible to, differ from those of fusion welding. 

Different factors, including welding parameters, tool geometry, working piece 

temperature, and thermal conductivities of the involved metals, may all affect the 

quality of the weld. The wrong selection of process parameters may cause one or more 
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types of defects such as wormhole, scalloping, ribbon flash, surface lack of fill, nugget 

collapse, and surface galling [18]. Figure 1.2 shows surface and cross-sectional images 

of different friction stir welds showing examples of the aforementioned defects. 

Welding parameters include the tool’s rotational and feed speeds, its tilt angle, its pin’s 

insertion depth into the workpiece [17], and the shift in the tool’s insertion location 

towards one of the sub-plates being joined together (in the case of a butt weld) [19]. 

 

 

   

   

Figure 1.2. FSW defects, from the left to the right, top then bottom row: worm hole, 

scalloping, ribbon flash, surface lack of fill, nugget collapse, and surface galling [18]. 

 

 

Invisible or buried defects within welded regions, if remained undetected, may 

develop into bigger cracks, compromising the safety of the whole structure, and leading 

to catastrophic failures [20]. Several common nondestructive evaluation (NDE) 

methods are available for quality control of welds, including visual inspection, acoustic 
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emission, Eddy current, and traditional ultrasonics. As visual inspection cannot detect 

possible buried defects of FSW, the other techniques are capable of providing only local 

inspections. A wide range of ultrasonic NDE techniques has been developed in the last 

few decades [21, 22], and they have proven to provide precise and reliable results, 

ranging from local and simple contact A-, B-, and C-scan techniques to global and non-

contact air-coupled and laser ultrasound [23, 24]. Local techniques can be very time-

consuming and labor-intensive, and may not even be feasible in the case of complicated 

structures. Consequently, a more effective solution is needed for the condition 

assessment of structures containing FSW joints to improve their integrity and extend 

their life span. 

 

1.2 Structural Health Monitoring of Friction Stir Welding 

Structural health monitoring (SHM) is the act of monitoring a structure 

periodically or continuously for assessing its technical condition. It aims for the early 

detection of any damage that may appear in the structure to prevent sudden failure. 

SHM of critical structures, such as aerospace vehicles, is of high importance to provide 

continuous evaluation and ensure their integrity. This topic has attracted the attention of 

many researchers for more than three decades, where the use of ultrasonic guided waves 

(GWs) has emerged as a promising solution, for both composite and metallic structures 

[12, 25, 26]. 

GWs are capable of propagating for long distances in simple and complex 

curvatures [27-29]. In particular, Lamb waves (LWs) are GWs that propagate in plate-

like structures. LWs can be employed to monitor large sections of structures using 

distributed transducer networks, without the need for tiresome local examinations [26]. 
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This provides a time and cost-effective inspection solution when dealing with 

components that are difficult to disassemble for conventional NDE or in-situ inspection 

of inaccessible regions of the structures [26, 30]. The fundamental symmetric (S0) and 

anti-symmetric (A0) LW modes were proved to be highly sensitive to surface and 

internal cracking in plates [31-33]. They have been widely used to develop damage 

identification algorithms for assessing fatigue cracking [34, 35], delamination [36, 37], 

fiber breakage [38, 39], debonding [40, 41], cracks/notches [42-44], and corrosion [45]. 

As a result, LWs have been considered as an essential tool to be implemented in SHM 

systems towards continuous monitoring of structures. 

Santos et al. [46] have investigated the ability of LWs to assess FSW in 

aluminum plates in comparison to x-ray and C-scan inspection methods. The authors 

have used a pitch-catch setup accompanied by mechanical scanning along the line of the 

weld, in an aqueous medium. They have found that the LW technique was more 

efficient than x-ray and C-scan, in the qualitative classification of FSW, in terms of 

simplicity, time, and expenses. The authors have noticed, however, that this technique 

still gives uncertain discrimination for very small weld flaws. Delrue et al. [47] have 

also used an immersion setup and a pitch-catch technique to capture the nonlinear 

features, that occur in the reflected signals, due to FSW kissing bond defects. The 

authors have used Fermat design transducers to focus and receive ultrasonic shear 

waves in aluminum welded plates. The signals were then analyzed by means of pulse 

inversion, and the results were numerically and experimentally validated. In another 

work [48], and employing an immersion setup as well, the same authors have used an 

angle-beam technique for ultrasonic inspection of  FSW aluminum butt-joints. After 

scanning the whole weld in the cross-sectional and longitudinal directions, the authors 
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could detect and qualitatively identify the kind and severity of root flaws by looking at 

the backscattered energy from the bottom of the weld. 

LWs’ potential for assessing defects in FSW has been examined by Fakih et al. 

[12, 33, 49]. The assessment of flaws in similar AZ31B FSW magnesium plates was 

scrutinized both experimentally and numerically [12, 49]. LWs were excited and 

received using Lead Zirconate Titanate (PZT) transducers placed on both sides of the 

weld line. After separating the S0 mode from the complex signals, it was successfully 

employed to classify wormholes of various severities using an attenuation-based 

damage index. In [33], LWs were excited using PZT wafers and received using a 

scanning laser Doppler vibrometer (LDV). The frequency-wavenumber filtering 

technique was implemented to separate the wave reflected from the welded joint. The 

reflection of the A0 mode from the material interface in an intact dissimilar AA6061-

T6/AZ31B FSW was found to be minimal, while this reflection has become significant 

in the presence of a wormhole within the welded joint.  

The objectives of this dissertation and chapter summaries are presented in 

Section 1.3. 

 

1.3 Thesis Overview 

1.3.1 Research Objectives 

This work explores key aspects of Lamb-wave propagation behavior in 

dissimilar friction-stir-welded joints and their interaction with material discontinuity, 

damage, and intermetallic compounds within the welded region. Such understanding, 

along with the proof of LWs’ potential for the precise assessment of macro-sized 

damage and micro-scale intermetallic layers, ultimately aims to the development of a 
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reliable framework for the condition assessment of structures including dissimilar FSW 

joints. 

The main research objectives are to: 

1. Understand the interaction of the fundamental LW modes with material 

discontinuity defined by the change in the material of the propagation medium, namely 

in an AA6061-T6/AZ31B dissimilar welded plate. 

i. Theoretically explore the available GW modes and their propagation 

directions based on the governing propagation phenomena (transmission, 

reflection, and mode conversion), at different incidence angles between the 

excited LW and the joint. 

ii. Analytically calculate the transmission and reflection coefficients of 

the fundamental symmetric GW modes using plane-wave approximation. 

iii. Develop and/or employ signal processing techniques to extract the 

fundamental wave modes and separate reflection and transmission wavefields 

from numerical and experimental three-dimensional (3D) measurements. 

iv. Determine the transmission and reflection coefficients of the 

propagating wave modes, at different incidence angles, across the material 

discontinuity (numerically and experimentally). 

v. Compare analytical and numerical results with experiments for 

validation. 

vi. Analyze the obtained results and recommend efficient practices for 

LW data analysis and sensor placement on structures including dissimilar-

material joints. 
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2. Develop a novel and robust Bayesian-based damage identification 

framework using LWs, with application on wormhole defects in dissimilar FSW joints. 

i. Achieve the three damage identification objectives (detection, 

localization, and assessment) using a minimal sensing configuration. 

ii. Develop a surrogate model for the prediction of LW propagation using 

artificial intelligence (AI) techniques, trained using data from finite element 

(FE) simulations. 

iii. Use the surrogate model to perform probabilistic damage inference 

using an Approximate Bayesian Computation (ABC) algorithm, in particular, 

ABC by Subset Simulation (ABC-SubSim). 

iv. Apply data fusion for damage inference using multiple sensor 

measurements. 

v. Evaluate the performance of the proposed damage identification 

framework on a big enough testing dataset for validation and analysis. 

 

3. Prove the capability of nonlinear LW feature(s) to assess micro-scaled brittle 

intermetallic layers formed in dissimilar-material joints. 

i. Numerically simulate 2nd harmonic generation and the accumulation 

of the relative acoustic nonlinearity parameter (RANP) in the targeted material 

using a nonlinear-elastic material model. 

ii. Examine the 2nd harmonic generation and the accumulation of RANP 

when the aforementioned material is welded to a different material. 
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iii. Introduce micro-scaled intermetallic layers within the welded region 

with a variable thickness and scrutinize the sensitivity of RANP to their 

existence. 

iv. Analyze the potential of LWs for the detection and quantitative 

assessment of intermetallics in dissimilar FSW joints. 

 

1.3.2 Chapter Summaries 

This dissertation includes five chapters, where the rest of the text is organized 

as follows: 

Chapter 2 focuses on understanding LW propagation through material 

discontinuity. A comprehensive analysis of the interaction of the fundamental LW 

modes (S0 and A0) with a dissimilar welded joint is performed. An intact AA6061-

T6/AZ31B joint is considered, and a theoretical, numerical, and experimental 

investigation is presented. Mode conversion, transmission, and reflection are all 

quantified versus the angle of incidence of the excited LW. The study is conducted as 

the excited wave propagates from AA6061-T6 to AZ31B, and when the propagation 

direction is reversed. Different techniques are developed to identify the in-plane and 

out-of-plane modes from the 3D measurements and to separate wave-joint reflections 

and transmissions. Finally, analytical, numerical, and experimental results are compared 

and analyzed. 

Chapter 3 proposes a novel approach for damage detection, localization, and 

assessment through Bayesian inference using LW surrogate models. More specifically, 

the proposed framework provides a full identification of damage, within a dissimilar-

material joint, by inferring six parameters of damage extent and location, namely the 
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length, width, thickness, and 𝑥-, 𝑦-, and 𝑧-positions. Surrogate models that can predict 

LW propagation in presence of damage are developed based on Artificial Neural 

Networks (ANNs). Finite element simulations are performed to simulate the measured 

LWs and generate the data required to train the ANNs. Each ANN serves as a surrogate 

model that can predict the signal at a certain measurement point, with reduced 

computational cost, given the damage size and position. Probabilistic inference of 

damage is further performed using the surrogate models, based on Approximate 

Bayesian Computation. Data are fused from multiple sensor measurements to provide a 

more reliable damage inference. High inference precision and low uncertainty are 

attained using only one PZT actuator and two sensors, thus providing a promising 

solution for condition evaluation and online monitoring applications. 

In Chapter 4, the capability of LWs in the evaluation of micro-scaled 

intermetallic compounds (IMCs) is demonstrated. The appearance of brittle 

intermetallics in the microstructure of dissimilar welds is correlated to their weakness. 

A dissimilar FSW lap joint, between AA5052-H32 aluminum and ASTM 516-70 steel, 

is numerically modeled using nonlinear-elastic material properties, and IMC layers of 

various thicknesses are introduced. A proper excitation frequency is chosen based on 

the synchronism and zero-flux conditions between the symmetric S1 and S2 LW modes. 

Symmetric LWs are selectively excited in the aluminum plate, and measurements from 

several sensing positions are analyzed in the time, frequency, and time-frequency 

domains. The relative acoustic nonlinearity parameter is determined at multiple sensing 

locations and for different IMC conditions. A linear relation between RANP and the 

thickness of the IMC layer is observed. Variations in the order of two micrometers are 



40 
 

clearly detected and distinguished, proving the potential of nonlinear LW features for 

strength inspection of dissimilar FSW joints. 

The closing chapter, Chapter 5, concludes the dissertation with a final 

summary and recommendations for future work.  
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CHAPTER 2 

2. THE INTERACTION OF THE FUNDAMENTAL LAMB-

WAVE MODES WITH MATERIAL DISCONTINUITY 
 

2.1 Introduction 

The increasing availability of structures containing dissimilar joints between 

different metallic alloys necessitates finding effective technological solutions to 

guarantee their structural integrity. However, the interaction of GWs with a material 

discontinuity is not yet well understood. 

Previous work by Fakih et al. [50, 51] aimed at understanding LWs’ 

propagation through similar and dissimilar welds. Results have indicated that the wave 

behavior is only affected by the change in elastic properties between the two joined 

metals, irrespective of the thermo-mechanical changes. Different similar and dissimilar 

intact FSW plates were used for the study, namely AA7020-T651/AA7020-T651, 

AA6060/AA7020-T651, and AA6061-T6/AZ31B welded plates. LWs were actuated 

and received in the normal incidence direction (perpendicular to the weld interface). No 

reflections were noticed in both the similar and dissimilar aluminum/aluminum welded 

plates, while clear reflections were observed in the case of the aluminum/magnesium 

(AA6061-T6/AZ31B) welded plate. At 200 𝑘𝐻𝑧, the average reflection was calculated 

to be around 27% of the incident wave, when the wave propagated from AA6061-T6 to 

AZ31B, and about 35% for the opposite propagation direction. The results were 

correlated with the measurements obtained from a nano-indentation experiment, where 

a sharp change in the elastic properties of the base metals was detected in the AA6061-

T6/AZ31B welded joint, unlike the other two plates that showed constant elastic 

properties across the weld zones. 
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The assessment of FSW joints using LWs requires a thorough understanding of 

the interaction of the wave modes with the material discontinuity at different incidence 

directions. This includes reflection, scattering, refraction, and mode conversion. As an 

example, the amplitude of a transmitted LW through features, such as welds, stiffeners, 

and bends, can be used to indicate its sensitivity to defects beyond or within those 

features [52]. This clear understanding would allow the integration of LW-based 

techniques in SHM systems and sensor-network designs in structures containing 

combinations of dissimilar materials. 

Intensive work has been done over the years to understand the propagation 

behavior of bulk waves [53-59]. Analytical solutions providing the reflection and 

transmission coefficients of bulk waves, at normal and oblique incidence and between 

different types of materials, can be readily found in textbooks [30, 60]. The problem 

becomes more complex when dealing with GWs due to the need for numerical methods 

for solving the governing equations [52]. Gregory and Gladwell [61] have developed an 

analytical solution to determine the reflection of a normally-incident symmetric 

Rayleigh-Lamb wave from a fixed or free edge of a semi-infinite plate. The energy 

distribution between the various reflected wave modes was then numerically 

determined, for a fixed Poisson ratio, and was analyzed for a range of wavenumbers. 

Scandrett and Vasudevan [62] have addressed an in-depth theoretical study on the 

propagation behavior of normally-incident Rayleigh-Lamb waves in perfectly bonded 

dissimilar materials. Using a similar approach as in [61], the authors have presented and 

analyzed the energy distributions of the reflected and transmitted wave modes over a 

range of excitation frequencies. Symmetric and anti-symmetric incident fields were 

studied for different material combinations. 
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Unlike normal incidence problems, Lamb waves and shear-horizontal waves 

cannot be separately analyzed in oblique incidence problems due to the existence of 

mode conversions between them [63]. Gunawan and Hirose [63] analyzed the edge-

reflection problem of obliquely-incident GWs in a plate using the mode decomposition 

semi-analytical method. Reflection coefficients of different wave modes were plotted 

against non-dimensional frequency for various cases of symmetric and anti-symmetric 

incident Lamb modes. Experimental validation was performed on a steel plate with 

different incidence angles showing very good agreement with the numerical results. 

Wilcox et al. [52] have used a semi-analytical finite element (SAFE) method to model 

the scattering of obliquely-incident GWs from an infinitely-long feature in a waveguide. 

Transmission and reflection coefficients were calculated for different incidence angles 

and frequencies. The authors compared their simulation solutions to the experimental 

data for an adhesively-bonded stiffener. Santhanam and Demirli [64] have also 

addressed the reflection of obliquely-incident LWs from the free edge of a plate. 

Symmetric and anti-symmetric LW incident modes were considered, and the problem 

was analyzed by orthogonal mode decomposition and by enforcement of traction-free 

boundary conditions using the collocation method. Energy-based reflection coefficients 

were determined for different frequency-thickness values. A qualitative experimental 

validation was performed using PZT transducers, while the authors have commented 

that only order-of-magnitude estimates of the energy coefficients can be determined 

using such transducers. 

On the other hand, several researchers have tackled the problem of LW 

scattering and mode conversion from damage and geometric discontinuities. Shen and 

Giurgiutiu [65] have developed an analytical predictive tool for GW propagation and 
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damage interaction. A framework for an exact two-dimensional (2D) LW solution in the 

frequency domain was proposed. Wave-damage interaction coefficients (WDICs), 

determined from a local FE model with non-reflective boundaries, are used to describe 

scattering and mode conversion from the existing damage. Those WDICs are then 

coupled with the analytical solution to solve for the total wavefield at the needed sensor 

location. The solution is finally transformed back into the time domain to provide the 

predicted sensor measurement. Limiting the needed FE calculations to the local region 

of the damage bypasses the computational and time demands of a full FE model, for 

large-scale problems, while still benefitting from FE capabilities for modeling complex 

damage geometries. Poddar and Giurgiutiu [66] suggested a new analytical method to 

compute the scattering of straight-crested LWs from geometric discontinuities, which 

they called complex modes expansion with vector projection (CMEP). The authors 

applied CMEP to the problem of a step-like change in the plate’s thickness. They 

verified their results by comparison to the axial-flexural model at low frequencies and to 

2D FE analysis at higher frequencies. CMEP achieved a perfect agreement with FE 

results up to 1.5 MHz.mm with 200-times less computational time. Finally, the authors 

have suggested techniques for the application of CMEP to damages such as notches, 

cracks, and delamination. As a continuation of the work, Haider et al. [67] used CMEP 

in a global-local analytical method to analyze the scattering of A0 incident waves from 

an intact and a damaged stiffener within the plate. By comparing the resultant 

waveforms between the two cases, the crack within the stiffener could be detected. 

Experiments with selective excitation of straight-crested anti-symmetric LWs were 

conducted for validation, and good agreement in results was attained. 
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A lot of work, available in the literature, tackles the scattering and interaction 

of LWs with geometric or structural discontinuity, but there exists very little work 

tackling their interaction with dissimilar welds. 

This chapter presents an in-depth analysis of the behavior of the S0 and A0 

LWs, upon the normal and oblique interaction with a dissimilar solid joint. An intact 

AA6061-T6/AZ31B joint is considered,  and different wave-joint interactions are 

investigated numerically and experimentally. Transmission, reflection, and mode 

conversion are determined for different incidence angles at which the excited LW 

interacts with the dissimilar-material joint. The results of the in-plane symmetric modes 

are also compared to PWA analytical solution. 

Section 2.2 introduces a general theoretical background about the problem. 

Identification of the involved GW modes, namely S0, A0, and SH0 modes, based on their 

oscillation directions and group velocities is explained. Wave-joint interactions 

including mode conversion, reflection and transmission directions, and critical-angle 

calculations are investigated. An analytical solution of the in-plane modes based on 

plane-wave approximation is introduced. Section 2.3 describes the FE model and 

measurement details. Section 2.4 describes the samples used for experimental 

validation, the experimental setup, and data acquisition. Section 2.5 presents the results 

and discussion. Finally, concluding remarks are presented in Section 2.6. 

 

2.2 Theoretical Background and Analytical Approximation 

2.2.1 Fundamentals of Lamb Waves 

Lamb waves are elastic waves guided by the free top and bottom surfaces of 

thin plates [26]. They were discovered by Horace Lamb and published in one of his 
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publications in 1917 [68]. In thin plates, the in-plane dimensions are much larger than 

the thickness and the wavelength is in the order of the thickness, which provides upper 

and lower boundaries to guide continuous propagation of the waves [30]. The general 

description of LWs in a homogeneous plate is given as follows [30]: 

 
tan(𝑞ℎ)

tan(𝑝ℎ)
=

4𝑘2𝑞𝑝𝜇

(𝜆𝑘2 + 𝜆𝑝2 + 2𝜇𝑝2)(𝑘2 − 𝑞2)
 (2.1) 

 𝑞2 =
𝜔2

𝑐𝑇
2 − 𝑘

2  

 𝑝2 =
𝜔2

𝑐𝐿
2 − 𝑘

2  

 𝜔 = 2𝜋𝑓  

where: 

• ℎ: is half the plate’s thickness = 𝑑/2; 

• 𝑘: is the wavenumber; 

• 𝜆 and 𝜇: are the material’s Lamé elastic constants; 

• 𝜔: is the angular frequency; 

• 𝑐𝑇: is the shear bulk-wave velocity; 

• 𝑐𝐿: is the longitudinal bulk-wave velocity; 

• 𝑓: is the frequency. 

 

After simplification, equation (2.1) can be split into two parts with solely 

symmetric and anti-symmetric properties, implying that LWs in a plate consist of 

symmetric and anti-symmetric modes [30]: 

 
tan(𝑞ℎ)

tan(𝑝ℎ)
= −

4𝑘2𝑞𝑝

(𝑘2 − 𝑞2)2
 (2.2) 

for symmetric modes, and 
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tan(𝑞ℎ)

tan(𝑝ℎ)
= −

(𝑘2 − 𝑞2)2

4𝑘2𝑞𝑝
 (2.3) 

for anti-symmetric modes. 

 

Equations (2.2) and (2.3) are known as the Rayleigh-Lamb equations and can 

be used to compute the velocity/velocities at which a wave of a certain frequency (𝑓. ℎ 

or 𝑓. 𝑑 product) propagates within the plate. Such equations are known as dispersion 

relations and can only be solved using numerical methods [30]. Sj and Aj ( j = 0, 1, 2, 

...) are used to denote the symmetric and anti-symmetric Lamb modes, respectively. The 

schematics of particle motions in the symmetric and anti-symmetric LW modes are 

plotted in Figure 2.1 (exaggerated thickness cross-section). A symmetric wave mode is 

usually known as “compressional”, presenting a bulging and contracting thickness, and 

an anti-symmetric wave mode is described as “flexural”, showing a flexing but constant 

thickness, with more complex through-thickness displacements for higher-order anti-

symmetric modes. For the same excitation condition, the magnitude of the symmetric 

modes is usually smaller than that of the anti-symmetric modes [26]. 

 

 

(a) Symmetric modes 
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(b) Anti-symmetric modes 

Figure 2.1. Particle motions for the symmetric and anti-symmetric LW modes [26]. 

 

 

2.2.2 Wave Modes Identification 

The fundamental LW modes are distinguished by their predominant 

longitudinal and shear-vertical vibrations of particles. A longitudinal wave oscillates the 

plate particles back and forth in the direction of wave propagation, while a shear-

vertical wave oscillates the particles vertically (normal to the plate surface) and 

perpendicular to the direction of wave propagation. Based on its predominant in-plane 

longitudinal particle displacement, the fundamental symmetric mode (S0) can be 

referred to as the fundamental longitudinal LW mode. Similarly, the fundamental anti-

symmetric mode (A0) can be referred to as the fundamental shear-vertical LW mode. 

On the other hand, the fundamental shear-horizontal mode (SH0) is a guided-wave mode 

that also propagates in thin plates, with the particles purely vibrating in the horizontal 

plane (parallel to the plate’s surface) and perpendicular to the wave propagation 

direction. While in-depth analyses of guided-wave modes’ displacements and shapes 

can be found in comprehensive textbooks [26, 30, 69], Figure 2.2 illustrates the 

predominant vibration directions of the S0, A0, and SH0 modes with respect to their 

propagation direction. In addition to their particle-oscillation directions, different 
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guided-wave modes can be also identified in the measured wavefields based on their 

group velocities (𝑐𝑔). 

 

  

(a) S0 mode (b) A0 mode 

 

  

(c) SH0 mode 

 
Figure 2.2. Illustrations of the predominant oscillation directions of the fundamental 

guided-wave modes. 

 

 

Considering two aluminum-alloy (AA6061-T6) and magnesium-alloy (AZ31B) 

plates of 3-𝑚𝑚 thickness joined together, the theoretical group and phase-velocity 

dispersion curves of the propagating LW modes (mainly A0 and S0) were determined 
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using Wavescope [70]. Since SH0 is a non-dispersive mode and based on its theoretical 

formulation [71], both the group and phase velocities of the SH0 mode were found to be 

equal to the shear bulk-wave velocity (𝑐𝑇). The material properties of the joined 

materials are summarized in Table 2.1 [72]. The velocities should be determined for 

each of the joined materials separately, as the wave modes will be expected to propagate 

at their corresponding group velocities in each of the materials either before or after 

interaction with the joint. 

The obtained group-velocity dispersion curves of the LW modes are shown in 

Figure 2.3. A typical central frequency of 200 𝑘𝐻𝑧 was chosen for LW excitation. The 

frequency was chosen so that only the fundamental modes (A0 and S0) are excited in the 

plate. Table 2.2 shows the theoretical group velocities of the modes of interest at 200 

𝑘𝐻𝑧. The group velocities of the A0 and S0 modes are very different, which assures 

well-separated modes after propagating for some distance. The phase velocities of the 

fundamental modes at 200 𝑘𝐻𝑧 are listed in Table 2.3. 

 

Table 2.1. Physical and mechanical properties of the used materials. 

Material Density (𝐷) in 𝑘𝑔/𝑚3 Young’s modulus (𝐸) in 𝐺𝑃𝑎 Poisson’s ratio (𝜈) 

AA6061-T6 2700 69 0.33 

AZ31B 1770 45 0.35 
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(a) 

 

(b) 

Figure 2.3. Group-velocity dispersion curves for a plate of 3-𝒎𝒎 thickness: (a) AA6061-

T6 and (b) AZ31B. 
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Table 2.2. Theoretical group velocities of the existing guided-wave modes at 200 𝒌𝑯𝒛. 

 

 

Figure 2.4 shows examples of simulated measurements for a 200-𝑘𝐻𝑧 guided 

wave propagating in the plate (details of the FE simulations are explained in Section 

2.3). The wave was excited using a PZT wafer placed on the AA6061-T6 sub-plate. The 

wave propagated through the intact dissimilar joint and then was captured in the AZ31B 

sub-plate (check Figure 2.11 for the detailed FE model). Two measurements, taken at 

two different sensing positions, are shown in Figure 2.4. The distance between the two 

sensing positions is 30 𝑚𝑚, which was used for group-velocity calculations. As the 

propagating modes have the same shape as the five-cycle Hann-windowed sinusoidal 

excitation signal, the first two wave packets in the signals were identified as the first 

transmission of the S0 and A0 LW modes, respectively. The group velocities of these 

two modes were calculated using the time-of-arrival of the wave packets, based on the 

highest peaks (marked in Figure 2.4). The calculated velocities of the S0 and A0 modes 

in the out-of-plane displacements (Figure 2.4(a)) were 5084.75 𝑚/𝑠 and 2884.62 𝑚/𝑠, 

respectively, and in the in-plane displacements (Figure 2.4(b)) were 5172.41 𝑚/𝑠 and 

2926.83 𝑚/𝑠, respectively. The results are in good agreement with the theoretical 

velocities listed in Table 2.2 (the values are compared to velocities in AZ31B since the 

two sensing positions lie within the AZ31B sub-plate). 

Wave mode 𝑐𝑔 (𝑚/𝑠) in AA6061-T6 𝑐𝑔 (𝑚/𝑠) in AZ31B 

S0 5268.7 5280.15 

A0 2980.32 2967.69 

SH0 3099.6 3068.6 
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Although A0 is the predominant mode in the out-of-plane displacements, the S0 

mode can still be captured, as shown in Figure 2.4(a), due to bending and mode-shape 

effects. However, this wave mode is more pronounced in the in-plane measurement 

(Figure 2.4(b)), which is the predominant oscillation direction of the S0 mode. 

Similarly, the A0 mode is more pronounced in the out-of-plane measurement (Figure 

2.4(a)) than it is in the in-plane measurement (Figure 2.4(b)). 

 

 

(a) Out-of-plane displacements 
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(b) In-plane displacements along the wave’s propagation direction 

Figure 2.4. Simulated signals at two different sensing positions to illustrate mode 

identification. 

 

2.2.3 Wave-Joint Interactions 

Assuming a perfect joint between dissimilar material, ideal transmissions and 

reflections are expected with no scattering. Upon interaction with the material interface, 

the energy of the incident modes is distributed among the reflected and transmitted (or 

so-called refracted) wave modes. Mode conversion is also expected to occur upon the 

wave interaction with the interface (i.e., the welded joint), thus producing additional 

modes in the reflected and transmitted portions of the incident wave [30]. The relation 

between the angles of the incident modes and their corresponding reflected or 

transmitted modes is defined by Snell’s law [60] (traction-free boundary condition at 

the material interface): 

 
𝑘1 sin(𝜃1) =  𝑘2 sin(𝜃2) 

 

(Snell’s law) 

 
 

𝜔

𝑐𝑝1
sin(𝜃1) =

𝜔

𝑐𝑝2
sin(𝜃2) 
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 sin(𝜃2) =

𝑐𝑝2

𝑐𝑝1
sin(𝜃1) 

 
 

  
𝑐𝑝1

sin(𝜃1)
=

𝑐𝑝2

sin(𝜃2)
 (2.4) 

 

where: 

• 𝑘1 and 𝑘2: are the wavenumbers of the incident and reflected/transmitted 

modes, respectively; 

• 𝜃1 and 𝜃2: are, respectively, the acute angles between the incident or 

reflected/transmitted modes’ propagation direction and the normal to the material 

interface; 

• 𝑐𝑝1 and 𝑐𝑝2: are the phase velocities of the incident and reflected/transmitted 

modes, respectively. 

 

To differentiate between different angles that will be used throughout the 

chapter, incidence angles will be defined as 𝑖̂ instead of 𝜃1, while reflection and 

transmission angles will be respectively named 𝑟̂ and 𝑡̂ instead of 𝜃2. 

2.2.3.1 Mode Conversion 

In the case of oblique incidence, incident wave modes may convert into other 

wave modes, at the level of the joint, while being transmitted to the other material or 

reflected into the same material. Figure 2.5 illustrates the concept of the mode 

conversion phenomenon in the case of an obliquely-incident longitudinal wave, 

presuming no reflection occurs. The in-plane longitudinal incident wave is expressed as 

a force acting at the interface between the two materials at an angle equal to the angle of 

incidence 𝜃1L. The incident force causes a complex wave propagation in the structure. 

This complex wave propagation can be considered as a superposition of two 
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propagating waves [30], a longitudinal wave, that is associated with the force along the 

transmission direction of the longitudinal mode (𝜃2L upon deviation according to Snell’s 

law), and an in-plane shear wave, which is associated with the shear force perpendicular 

to the transmission direction of the shear-horizontal mode (𝜃2S). The summation of the 

three forces should satisfy the force-equilibrium condition at the interface. A complete 

breakdown of the problem would also consider two other forces associated with the 

reflected longitudinal and in-plane shear modes. In such a case, both longitudinal and 

shear waves may be generated in both solid materials. The superposition of the side 

lobes of those waves may produce an interface wave, which propagates along the 

material interface [30]. 

 

 

Figure 2.5. Mode conversion at the interface assuming no reflection; L: longitudinal wave 

and S: shear wave. 

 

Based on the above discussions, a portion of the incident S0 wave mode will be 

converted into the symmetric SH0 mode when obliquely interacting with the joint [71]. 
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SH0 mode would also be generated upon the interaction of the S0 mode with the plate’s 

boundaries. This study will focus on the interaction of incident LW modes with 

dissimilar-material joints; thus, the studied SH0 mode will be only the mode converted 

from the incident S0 wave mode upon its interaction with the joint. This mode will be 

referred to as S0-SH0 mode in the rest of the chapter. 

On the other hand, since the predominant displacement of the A0 mode is 

parallel to the material interface (at both normal and oblique incidence), no other 

displacement component would be generated upon its interaction with the weld. Thus, 

the A0 mode should not undergo any mode conversion under the assumption of a perfect 

joint. 

 

2.2.3.2 Critical Angles 

The critical angle (𝜃𝑐) of a wave mode is defined as the largest incidence angle 

which still results in the refraction of this mode. Beyond this angle (𝜃1 > 𝜃𝑐), the mode 

would undergo total internal reflection after interacting with the interface [30]. If the 

wave mode is excited at its critical incidence angle (𝜃1 = 𝜃𝑐), it would refract along the 

material interface, i.e., with an angle of refraction 𝜃2 = 90°. Thus, the critical angle of 

each mode can be calculated using Snell’s law by replacing 𝜃2 by 90°: 

 

𝑐𝑝1

sin(𝜃𝑐)
=

𝑐𝑝2

sin(90°)
 

 

 

  𝜃𝑐 = arcsin [
𝑐𝑝1

𝑐𝑝2
]                ∀ 𝑐𝑝1 < 𝑐𝑝2 (2.5) 

 

If the incident wave mode undergoes conversion at the interface, two critical 

angles may exist [30]. Figure 2.6(a) illustrates the general case of an in-plane 

longitudinal mode (L1) incident at a solid-solid material interface. A portion of the 
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incident L1 converts into an in-plane shear mode (S) after interacting with the interface. 

This yields two in-plane modes (L1 and S1) reflecting into Material 1, and two other in-

plane modes (L2 and S2) transmitted into Material 2. Upon exciting at the first critical 

angle (𝜃𝑐L), L2 will be refracted along the material interface (Lint in Figure 2.6(b)). 

Beyond 𝜃𝑐L, the unconverted portion of the incident L1 would undergo total internal 

reflection within Material 1, while S2 keeps refracting into Material 2. If the incidence 

angle was increased up to the second critical angle (𝜃𝑐S), if exists, S2 will be refracted 

along the material interface (Sint in Figure 2.6(c)), which means no wave will be 

transmitted into Material 2 anymore. Beyond 𝜃𝑐S, the whole incident mode will undergo 

total internal reflection in Material 1. 

In particular, because the incident S0 mode within the current study may 

convert into the SH0 mode, two critical angles may exist. The first critical angle is for 

the transmitted S0 mode, while the second critical angle is for the transmitted S0-SH0 

mode. According to equation (2.5), the critical angle exists only if the phase velocity of 

the transmitted wave mode in Material 2 is greater than that of the incident mode in 

Material 1 (i.e., when propagating from a slower to a faster medium in terms of the 

phase velocities of the involved modes). 

Table 2.3 summarizes the theoretical phase velocities and critical angles of the 

modes considered in this study. The second critical angle does not exist for the S0-SH0 

mode since the phase velocity of the incident mode (S0) is always greater than that of 

the refracted mode (SH0). Similarly, no critical angle exists for the S0 mode when the 

wave propagates from AZ31B to AA6061-T6, as well as for the A0 mode when the 

wave propagates from AA6061-T6 to AZ31B. 
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Table 2.3. Theoretical phase velocities and critical angles of the existing guided-wave 

modes at 200 𝒌𝑯𝒛. 

Wave 

mode 

𝑐𝑝 (𝑚/𝑠) 

in AA6061-T6 

𝑐𝑝 (𝑚/𝑠) 

in AZ31B 

𝜃𝑐 
AA6061-T6 to AZ31B 

𝜃𝑐 
AZ31B to AA6061-T6 

S0 5327.06 5349.19 84.79° - 

A0 1990.08 1989.21 - 88.31° 

S0-SH0 

𝑐𝑝1(𝑆0) = 5327.06 𝑐𝑝2(𝑆𝐻0) = 3068.6 -  

𝑐𝑝2(𝑆𝐻0) = 3099.6 𝑐𝑝1(𝑆0) = 5349.19  - 

 

 

 

(a) General case of a longitudinal wave incident at a solid-solid material interface 
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(b) 1st critical angle (𝜽𝟏𝐋 = 𝜽𝒄𝐋) 

 

(c) 2nd critical angle (𝜽𝟏𝐋 = 𝜽𝒄𝐒) 

Figure 2.6. General case of a longitudinal incident wave and illustrations of the 1st and 2nd 

critical angles for a solid-solid material interface; L: longitudinal wave and S: shear wave. 
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2.2.4 Plane-Wave Approximation of In-Plane Modes 

According to Gunawan and Hirose [63], when 𝜔ℎ/𝑐𝑇 → 0, the S0 mode 

behaves as the longitudinal bulk wave with a constant through-thickness value and a 

zero out-of-plane value. Under the same condition, the SH0 mode is reduced to the shear 

bulk wave which is also constant through-thickness and null in the out-of-plane 

direction. In other words, when 𝜔ℎ/𝑐𝑇 → 0, the amplitudes of the fundamental 

symmetric modes (S0 and SH0 modes) can be determined under the assumption that the 

plate is in a 2D plane-stress state. This means that the transmission and reflection 

coefficients of the S0 and SH0 modes can be approximated by those of the longitudinal 

and shear bulk waves, respectively. The authors of [63] have studied the reflection of 

obliquely-incident guided waves from the free edge of a plate, where they have 

compared their semi-analytical results to the bulk-wave approximation results. This 

approximation was found to be accurate at a value of 𝜔ℎ/𝑐𝑇 = 1.96. 

Wilcox et al. [52] have also confirmed this concept justifying that the mode 

shapes of the symmetric S0 and SH0 modes are almost constant through the plate’s 

thickness at low frequency×thickness (𝑓. 𝑑) values, which makes their solutions 

analogous to longitudinal and transverse bulk waves. The authors have used this 

analogy as one of the validations of their SAFE approach. Similarly, they compared the 

results of their SAFE model, for the S0 and S0-SH0 reflections from the free edge of a 1-

𝑚𝑚 aluminum plate in the case of an incident S0 mode, to explicit analytical solutions 

of bulk waves [73]. The comparison was conducted both at different incidence angles 

and using a constant incidence angle with a variable excitation frequency. Very good 

agreement of the results was attained up to a 𝑓. 𝑑 value of 1.5 𝑀𝐻𝑧.𝑚𝑚. The authors 

have commented that such an agreement up to 1.5 𝑀𝐻𝑧.𝑚𝑚 cannot be attributed to the 
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plane-stress analogy because the mode shape of the S0 mode, at such frequencies, 

contains significant out-of-plane stress. On the other hand, the disagreement of the 

results at 𝑓. 𝑑 values lower than 0.2 𝑀𝐻𝑧.𝑚𝑚 was justified by the deterioration of a 

part of their model’s performance (absorbing region) at low frequencies.   

In the current work, and for ease of statement throughout the text, this analogy 

will be named as plane-wave approximation (PWA) since the S0 and S0-SH0 modes are 

approximated as plane waves propagating in a certain direction with constant mode 

shapes through the plate’s thickness. Based on the mentioned literature results [52, 63], 

PWA is expected to be valid for the used 𝑓. 𝑑 value (𝑓. 𝑑 = 200 𝑘𝐻𝑧 × 3 mm = 0.6 

𝑀𝐻𝑧.𝑚𝑚) and for both examined materials (𝜔ℎ/𝑐𝑇 ≈ 0.61 for both AA6061-T6 and 

AZ31B). It should be noted here that PWA can only be applied to the in-plane modes 

(assumed constant through-thickness, i.e., assumed in a 2D plane-stress condition) and 

cannot be applied to the case of an incident A0 mode. 

Joseph Rose, in his book “Ultrasonic Guided Waves in Solid Media” [30], 

provides a matrix formulation for the analytical calculation of transmission and 

reflection coefficients (vector {𝑋}), of a harmonic plane wave incident at a perfect solid-

solid interface, as follows: 

 [𝑀]{𝑋} = {𝑎} (2.6) 

 

 

[𝑀] =

[
 
 
 
 

− cos 𝑟L̂ sin 𝑟Ŝ −cos 𝑡L̂ sin 𝑡Ŝ
−sin 𝑟L̂ −cos 𝑟Ŝ sin 𝑡L̂ cos 𝑡Ŝ

−𝑘1L(𝜆1 + 2𝜇1) cos2𝑟Ŝ 𝑘1S𝜇1 sin2𝑟Ŝ 𝑘2L(𝜆2 + 2𝜇2) cos 2𝑡Ŝ −𝑘2S𝜇2 sin 2𝑡Ŝ
−𝑘1L𝜇1 sin2𝑟L̂ −𝑘1S𝜇1 cos 2𝑟Ŝ −𝑘2L𝜇2 sin 2𝑡L̂ −𝑘2S𝜇2 cos 2𝑡Ŝ]

 
 
 
 

 

 

 

{𝑋} = [

𝑅L
𝑅S
𝑇L
𝑇S

] ,      {𝑎L} = [

−cos 𝑟L̂
sin 𝑟L̂

𝑘1L(𝜆1 + 2𝜇1) cos 2𝑟Ŝ
−𝑘1L𝜇1 sin 2𝑟L̂

] ,      and       {𝑎S} = [

sin 𝑟Ŝ
cos 𝑟Ŝ

−𝑘1S𝜇1 sin 2𝑟Ŝ
−𝑘1S𝜇1 cos 2𝑟Ŝ

] 
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where: 

• 1 and 2: are the indices of Material 1 and Material 2, respectively; 

• 𝑅 and 𝑇: are the reflection and transmission (refraction) coefficients, 

respectively; 

• L and S: are the indices for longitudinal and shear (transverse) waves, 

respectively; 

• 𝑟̂ and 𝑡̂: are the reflection and transmission (refraction) angles, respectively; 

• {𝑎L} or {𝑎S}: are used if the incident wave is a longitudinal wave or a shear 

(transverse) wave, respectively; 

• 𝑐L and 𝑐S: are the velocities of the longitudinal and shear (transverse) waves, 

respectively. 

 

The relations between the material elastic constants and the bulk-wave 

velocities are given as follows [30]: 

 𝐷𝑐L
2 = 𝜆 + 2𝜇     and     𝐷𝑐S

2 = 𝜇 (2.7) 

 

Thus, the terms containing these constants in (2.6) can be replaced as such: 

 

{
 
 

 
 𝑘L(𝜆 + 2𝜇) =

𝜔

𝑐L
(𝐷𝑐L

2) = 𝜔𝐷𝑐L = 2𝜋𝑓𝐷𝑐L

𝑘S𝜇 =
𝜔

𝑐S
(𝐷𝑐S

2) = 𝜔𝐷𝑐S = 2𝜋𝑓𝐷𝑐S

𝑘L𝜇 =
𝜔

𝑐L
(𝐷𝑐S

2) = 2𝜋𝑓𝐷𝑐S
2/𝑐L

 
(2.8) 

 

where: 

• 𝐷: is the material’s density. 
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For an incident longitudinal wave, the 1st equation in (2.6) is derived from the 

1st boundary condition of particle displacements/velocities, at the interface, in the 

normal direction as follows [30]: 

−𝐴L
𝑟𝑒𝑓𝑙

cos 𝑟L̂ + 𝐴S
𝑟𝑒𝑓𝑙

sin 𝑟Ŝ − 𝐴L
𝑡𝑟 cos 𝑡L̂ + 𝐴S

𝑡𝑟 sin 𝑡Ŝ = −𝐴L
𝑖𝑛𝑐 cos 𝑟L̂ 

 −
𝐴L
𝑟𝑒𝑓𝑙

𝐴L
𝑖𝑛𝑐 𝑐𝑜𝑠 𝑟L̂ +

𝐴S
𝑟𝑒𝑓𝑙

𝐴L
𝑖𝑛𝑐 𝑠𝑖𝑛 𝑟Ŝ −

𝐴L
𝑡𝑟

𝐴L
𝑖𝑛𝑐 𝑐𝑜𝑠 𝑡L̂ +

𝐴S
𝑡𝑟

𝐴L
𝑖𝑛𝑐 𝑠𝑖𝑛 𝑡Ŝ = −𝑐𝑜𝑠 𝑟L̂ 

 −𝑅L 𝑐𝑜𝑠 𝑟L̂ + 𝑅S 𝑠𝑖𝑛 𝑟Ŝ − 𝑇L 𝑐𝑜𝑠 𝑡L̂ + 𝑇S 𝑠𝑖𝑛 𝑡Ŝ = −𝑐𝑜𝑠 𝑟L̂ 

  
𝑅L 𝑐𝑜𝑠 𝑟L̂

𝑐𝑜𝑠 𝑟L̂
−
𝑅S 𝑠𝑖𝑛 𝑟Ŝ

𝑐𝑜𝑠 𝑟L̂
+
𝑇L 𝑐𝑜𝑠 𝑡L̂

𝑐𝑜𝑠 𝑟L̂
−
𝑇S 𝑠𝑖𝑛 𝑡Ŝ

𝑐𝑜𝑠 𝑟L̂
= 1 (2.9) 

 

where: 

• 𝐴L
𝑟𝑒𝑓𝑙

: is the amplitude of the reflected longitudinal wave; 

• 𝐴S
𝑟𝑒𝑓𝑙

: is the amplitude of the reflected shear (transverse) wave; 

• 𝐴L
𝑡𝑟: is the amplitude of the transmitted (refracted) longitudinal wave; 

• 𝐴S
𝑡𝑟: is the amplitude of the transmitted (refracted) shear (transverse) wave; 

• 𝐴L
𝑖𝑛𝑐: is the amplitude of the incident longitudinal wave. 

 

To apply these formulations for the case of the incident longitudinal S0 mode, 

𝑐L will be replaced by the phase velocity of the S0 mode (𝑐𝑝(𝑆0)), and 𝑐S will be replaced 

by the phase velocity of the converted S0-SH0 mode (𝑐𝑝(𝑆𝐻0)). 

Figure 2.7(a) shows the results for the S0 incident wave propagating from 

AA6061-T6 to AZ31B, while Figure 2.7(b) shows the same results in the opposite 

propagation direction. The negative sign of the reflection coefficient indicates that the 

reflected mode is out-of-phase with respect to the incident mode (180°-phase 
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difference). The sum along the normal to the material interface is shown in the figures 

for verification; this sum should be equal to unity according to equation (2.9). 

Figure 2.7 can be obtained using equation (2.6) by calculating 𝑋. Each row 

gives one of the transmission and reflection coefficients, knowing the material 

properties and the angles. The angles, in turn, can be calculated using Snell’s law 

explained in equation (2.4). 

The transmission coefficient of the S0 mode stays almost constant from normal 

incidence (𝑖̂ = 0°) until reaching a steep angle (changes by less than 5% up to 𝑖̂ = 78°). 

The constant value when the wave propagates from AA6061-T6 to AZ31B is about 1.2, 

while it is about 0.8 in the other propagation direction. Both S0 transmission and mode 

conversion drop down to zero at 𝑖̂ = 90° (excitation along the interface), while the S0 

mode’s reflection coefficient gives a value of -1. This indicates that the waves will not 

be transmitted into the second material in this case. 

The abrupt changes in the reflection and transmission coefficients, in the 

AA6061-T6 to AZ31B propagation (Figure 2.7(a)), are because the incidence angle is 

close to the critical angle. The value of the critical angle in the figure is in good 

agreement with the value that was calculated in Section 2.2.3.2 (Table 2.3). The 

transmission coefficient of the S0 mode sharply drops to zero after the critical angle 

since no S0 mode will be refracted. Since the 2nd critical angle does not exist for the S0-

SH0 mode (Table 2.3), the total reflection of the incident wave does not occur. Smooth 

curves appear in Figure 2.7(b) since no critical angles exist when the S0 mode 

propagates from AZ31B to AA6061-T6. 



66 
 

The highest S0-SH0 mode conversion occurs around 𝑖̂ ≈ 45° in both 

propagation directions. While the transmitted S0-SH0 mode is extremely weak, its 

reflection reaches significant values of above 20% of the incident S0 amplitude. 

The results of the reflection and transmission coefficients, presented in Figure 

2.7, will be discussed in more detail and compared to the numerical and experimental 

results in Section 2.5.5. 

 

 

(a) AA6061-T6 to AZ31B 
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(b) AZ31B to AA6061-T6 

Figure 2.7. Transmission and reflection coefficients at 200 𝒌𝑯𝒛 of the S0 and S0-SH0 modes 

using PWA. 

 

 

FE analysis was conducted to extend on the application of PWA. The details of 

the FE model will be explained later (Section 2.3). For an excitation frequency of 200 

𝑘𝐻𝑧 and an incidence angle of 𝑖̂ = 20°, the amplitude of the 2nd peak of the refracted S0 

mode, after propagating from AA6061-T6 to AZ31B, was plotted versus the plate’s 

thickness in Figure 2.8. A measurement was taken at every 0.5 𝑚𝑚 in the through-

thickness direction after S0 has propagated for a distance of 85 𝑚𝑚 in AA6061-T6 and 

80 𝑚𝑚 in AZ31B. The amplitudes were normalized based on their highest value for 

easier analysis. It can be noticed that the maximum amplitude variation through the 

plate’s thickness is around 4%. This confirms the validity of the S0 mode’s 

approximation as a plane wave in both materials (AA6061-T6 and AZ31B) at the used 

𝑓. 𝑑 value. 
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FE simulations were also conducted at different excitation frequencies (50 𝑘𝐻𝑧 

to 400 𝑘𝐻𝑧) for a Lamb wave propagating from AA6061-T6 to AZ31B at a constant 

incidence angle (𝑖̂ = 20°). The transmission and reflection coefficients of the S0 and S0-

SH0 modes were determined and compared to those calculated using PWA (Figure 2.9). 

A good agreement between the FE results and PWA is observed over the studied range 

of 𝑓. 𝑑 values (0.15 𝑀𝐻𝑧.𝑚𝑚 to 1.2 𝑀𝐻𝑧.𝑚𝑚). Hence, the use of PWA to 

approximate the symmetric modes is valid within the excited frequency range. 

 

 

Figure 2.8. Through-thickness normalized amplitude of the refracted S0 mode for a wave 

propagating in the forward direction at 𝒊̂ = 20° (sensor position = 80 𝒎𝒎). 
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Figure 2.9. Transmission and reflection coefficients of the S0 and S0-SH0 modes at different 

excitation frequencies using PWA and FE simulations for a wave propagating in the 

forward direction at 𝒊̂ = 20°. 
 

 

The S0 mode shape through the plate’s thickness was also checked over the 

aforementioned excitation frequencies to ensure that the approximation of this mode as 

a plane-wave is still valid. Plots similar to that in Figure 2.8 are shown in Figure 2.10(a-

h) for all the used excitation frequencies. The variation in the S0 amplitude through-

thickness increases with the excitation frequency as can be observed from the 

comparison between different plots. While the maximum amplitude variation through 

the plate’s thickness was less than 0.3% at 50 𝑘𝐻𝑧 (𝑓. 𝑑 = 0.15 𝑀𝐻𝑧.𝑚𝑚), it reached a 

value of around 12% at 400 𝑘𝐻𝑧 (𝑓. 𝑑 = 1.2 𝑀𝐻𝑧.𝑚𝑚; 𝜔ℎ/𝑐𝑇 ≈ 1.22 & 1.23 for 

AA6061-T6 & AZ31B, respectively). Further increase in the 𝑓. 𝑑 value is expected to 

yield a deviation from the PWA solution until it becomes an invalid approximation at 

higher 𝑓. 𝑑 values. More analysis of Lamb-wave mode shapes through the plate’s 
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thickness both in the in-plane and out-of-plane directions can be found in 

comprehensive textbooks [30, 69]. 

 

  

(a) 50 𝒌𝑯𝒛 (b) 100 𝒌𝑯𝒛 

  

(c) 150 𝒌𝑯𝒛 (d) 200 𝒌𝑯𝒛 
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(e) 250 𝒌𝑯𝒛 (f) 300 𝒌𝑯𝒛 

  

(g) 350 𝒌𝑯𝒛 (h) 400 𝒌𝑯𝒛 

Figure 2.10. S0 mode shape across the thickness for different excitation frequencies. 

 

 

2.3 Finite Element Modeling 

2.3.1 Finite Element Method for Wave Propagation 

The finite element method (FEM) or finite element analysis (FEA) is a 

numerical approach that is widely used for solving wave propagation and vibration 

problems. If the physical problem is correctly modeled and an appropriate mathematical 

model is chosen, FEM can give accurate and computationally-efficient solutions for 

complex differential or integral equations [30, 74]. Since wave propagation is a 
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dynamic problem, the governing dynamic equation of FEM, representing a generalized 

Newton’s second law, is given as follows: 

 [M]{d̈} + [C]{ḋ} + [K]{d} = {F} (2.10) 

where: 

• [M]: is the mass matrix; 

• [C]: is the damping matrix; 

• [K]: is the global stiffness matrix; 

• {d}: is the nodal-displacement vector; 

• {ḋ}: is the nodal-velocity vector; 

• {d̈}: is the nodal-acceleration vector; 

• {F}: is the nodal-load vector. 

 

Equation (2.10) can be simplified, for a harmonic wave with an angular 

frequency 𝜔 in an undamped material, to be: 

 ([K] − 𝜔2[M]){d} = {F} (2.11) 

where: 

• [K] − 𝜔2[M]: represents the dynamic stiffness matrix. 

 

The dynamic problem can then be solved in both the time or frequency 

domains, where a numerical calculation method is needed to solve it in the time domain. 

The governing equation is solved while satisfying the loading and boundary conditions 

[75]. Direct integration methods can be used including the center difference, Newmark, 

and Wilson Theta methods, among others [30]. Several commercial FEM packages are 

usually utilized to simulate wave propagations, in both isotropic and composite 
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materials, from which Abaqus® and COMSOL® Multiphysics were used in the work 

presented in this dissertation. 

 

2.3.2 Problem Modeling 

COMSOL® Multiphysics FE software was used to create two adjoining metallic 

plates of 3-𝑚𝑚 thickness and the same size along the common interface (Figure 2.11). 

The two plates were joined together to represent a dissimilar-material welded plate 

assuming a perfect joint. The material properties assigned to each of the sub-plates are 

listed in Table 2.1. Homogeneous isotropic linearly-elastic materials were assumed. 

Circular piezoelectric (PZT-5H) transducers, 10 𝑚𝑚 in diameter and 1 𝑚𝑚 in 

thickness, were modeled based on a solid-mechanics/electrostatics multi-physics solver 

and were used to excite the Lamb waves. The actuator was placed at 115 𝑚𝑚 from the 

joint’s center, and nine incidence directions were used for excitation, namely, 0°, 10°, 

20°, 30°, 40°, 50°, 60°, 70°, and 80° with the normal to the material interface (as shown 

in Figure 2.11(a)). The width and length of the two sub-plates were changed, as 

convenient, based on the position of the transducer and the sensing points upon 

changing the angle of incidence and propagation direction. Five-cycle Hann-windowed 

sinusoidal signals, of 200-𝑘𝐻𝑧 central frequency and 240-𝑉 peak-to-peak voltage, were 

fed into the poles of the PZT wafer. Forward and backward directions were simulated 

(AA6061-T6 to AZ31B and reversed) for each incidence angle. A free tetrahedral mesh 

was used with a maximum element size of 2 𝑚𝑚 (Figure 2.11(b)). The outer side edges 

of the plate were assigned low reflecting boundaries to minimize the boundary 

reflections. Similar analyses were also completed for single-material plates (non-welded 

AA6061-T6 plate and AZ31B plate) to be used for the separation of interface reflection 
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and transmission wavefields from other wave superposition. The separation techniques 

are explained in Section 2.5.2 and Section 2.5.3. 

Measurements were taken on all transmission and reflection directions of each 

of the targeted wave modes. The angles defining those directions are denoted in Figure 

2.11(a) as 𝑖̂, 𝑟̂𝑚𝑜𝑑𝑒, and 𝑡̂𝑚𝑜𝑑𝑒 for the incidence, reflection, and transmission angles, 

respectively. The angles were derived based on Snell’s law as discussed in Section 

2.2.3. Using equation (2.4), given that the phase velocity of the incident modes is 

constant when propagating in the same material, then their reflecting angles are the 

same as their incidence angles. The incident wave excited by the PZT wafer contains 

both S0 and A0 modes, therefore, 𝑟̂𝑆0 = 𝑟̂𝐴0 = 𝑖̂ as designated on Figure 2.11(a). 

Fifty sensing points were chosen along each of the propagation directions and 

an additional measurement was taken on the material interface (central point). This 

resulted in a total of 301 sensing points that are allocated on the surface of the plate 

based on the incidence angle and propagation directions across materials. All the 

sensing points were placed at 2-𝑚𝑚 spacing (as seen in Figure 2.11(a)). They were 

distributed along a distance of 100 𝑚𝑚 before and 100 𝑚𝑚 after the interface and along 

the transmission and reflection directions of each mode. This will be indicated, later in 

this paper, as -100 𝑚𝑚 to 100 𝑚𝑚 in the spatial-time plots of the waves. 

Displacements, at the sensing points, in the x-direction (𝑈1), y-direction (𝑈2), 

and z-direction/out-of-plane (𝑈3) were extracted at a sampling rate of 20 𝑀𝐻𝑧. The 

collected data were then used to determine the wavefields related to each mode. The 

mode extraction, based on the FE and experimental measurements, is discussed in detail 

in Section 2.5.1. 
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(a) A schematic of the FE model (all dimensions are in 𝒎𝒎) 

 

(b) Top-view of the meshed FE model (𝒊̂ = 40°) 

Figure 2.11. Details and mesh of the FE model. 
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2.4 Experimental Validation 

2.4.1 Sample Preparations 

Two specimens were used for the experimental validation, one non-welded 

AA6061-T6 plate and another intact friction-stir-welded AA6061-T6/AZ31B plate. The 

two plates are of 250×250×3 𝑚𝑚3 dimensions, as shown in Figure 2.12. The 

measurements from the non-welded AA6061-T6 plate were used for the separation of 

reflection and transmission wavefields, as will be explained later in Section 2.5.2 and 

Section 2.5.3. 

Circular PZTs with wrapped electrodes, of 10-𝑚𝑚 diameter and 1-𝑚𝑚 

thickness, were placed in a circular pattern on the surface of the specimens. This has 

allowed the wave actuation at different incidence angles while keeping a constant 

distance (along the propagation direction) from the welded joint or the middle line of 

the plate. The distance from the center of the PZT actuators to the center of the joint 

was 90 𝑚𝑚. A special template was cut using a laser cutting machine to be used for 

fixing the PZTs at a constant radius with a 20°-angular distribution (Figure 2.12(a)). 

The PZTs were placed at both sides of the joint to excite Lamb waves in both the 

forward and backward directions. The plate edges were covered by several layers of 

gummy tapes to dampen the boundary reflections of the excited waves (Figure 2.12(b) 

to (d)). 

The scanning area was covered by a layer of retroreflective spray, as shown in 

Figure 2.12(b) and (d). The retroreflective effect reflects the laser beam back to the laser 

head with minimal scattering, which increases the laser focus and makes it more 

uniform among the scanned points. This would make the laser measurements less noisy 

and more reliable. 
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The healthy condition of the FSW plate was assured by performing a computed 

tomography (CT) scan of the plate and checking the weld for any damage. The CT scan 

was performed using a high-resolution CT scanner (Philips iCT 256). A through-

thickness cross-sectional CT image of the welded plate is shown in Figure 2.13. No 

voids can be seen through the material interface, indicating the intact condition of the 

joint. 

 

  

(a) The template used for proper PZT 

placement (dimensions are in 𝒎𝒎) 

(b) AA6061-T6 plate 
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(c) AA6061-T6/AZ31B plate’s front-side (d) AA6061-T6/AZ31B plate’s back-side 

Figure 2.12. Photographs of the specimens used in this study and a drawing of the 

template used for PZT placement. 

 

 

Figure 2.13. A through-thickness cross-sectional view of the welded test specimen, from a 

CT scan, showing its intact weld condition. Dimensions are in 𝒎𝒎. 

AA6061-T6 

AZ31B 
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2.4.2 Experiment Setup 

 

 

Figure 2.14. A photo of the experimental setup showing the Polytec PSV-400 3D SLV and 

its control box, the signal generator, the amplifier, and a testing specimen. The specimen 

shown in the figure is before using gummy tapes on its edges. 

 

 

Figure 2.14 shows a photo of the system used to acquire the ultrasonic guided 

waves. A Polytec PSV-400 3D SLV (with three separate laser heads and a data 

acquisition system) was used to measure the GWs in the testing specimens. Five-cycle 

Hann-windowed tone burst signals, of 200-𝑘𝐻𝑧 central frequency, were used to excite 

the Lamb waves in the plates. The tone bursts were generated via a signal generator 

(Tektronix AFG 3021B), amplified up to 240-𝑉 peak-to-peak voltage using a power 

amplifier (Krohn-Hite model 7500), then fed into the piezoelectric transducers. 
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Different incidence angles, varying from 0° to 80° with a step of 20°, were used to 

excite the LWs. Waves were actuated in the forward and backward directions for every 

incidence angle, while measurements for each actuation were taken using the 3D 

scanning laser vibrometer (SLV). 

The 3D velocity components were measured at all the reflection and 

transmission directions of the existing wave modes. Scanning points were defined along 

the propagation directions with a 2-𝑚𝑚 resolution. This is to ensure a high-quality 

resolution image of the wave propagation. A scanning point was placed at the center of 

the material interface, while 40 other scanning points were distributed along each of the 

propagation directions, thus covering a scanning distance of 80 𝑚𝑚 on either side of the 

weld. This is indicated as -80 𝑚𝑚 to 80 𝑚𝑚 in the spatial-time plots of the GWs. 

The 3D laser and the specimen were totally covered by a black cloth (check 

Figure 2.15) to minimize measurement variations or noise due to the change in ambient 

light conditions. To increase the signal-to-noise ratio, 200 time-response measurements 

were averaged at each scanning point. A low-pass filter was applied to remove the high-

frequency noise from the measurements. A sampling rate of 2.56 𝑀𝐻𝑧 was used in all 

experimental measurements. 
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Figure 2.15. The Polytec PSV-3D SLV with one of the testing specimens – the laser and the 

specimen were totally covered with the shown black cloth when performing the 

measurements. 

 

 

Figure 2.16 shows an example of the spatial-time plots of the in-plane 

normalized velocity fields (along the wave propagation direction) of a line scan from 

the AA6061-T6/AZ31B plate before and after using the gummy tapes and 

retroreflective spray. The line scan was made, along the central horizontal line while 

exciting the zero-incidence-angle PZT. A high percentage of the boundary reflections 

was absorbed by the gummy tapes, and focused measurements were obtained after using 

the retroreflective spray, as shown in Figure 2.16(b). 
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(a) Before using gummy tapes and 

retroreflective spray 

(b) After using gummy tapes and 

retroreflective spray 

Figure 2.16. Spatial-time plots of the in-plane normalized velocity field (along the wave 

propagation direction) measured from the FSW plate, for a wave propagating from 

AA6061-T6 to AZ31B at 𝒊̂ = 0°. 
 

 

2.5 Results and Discussion 

2.5.1 Mode Extraction 

The in-plane displacements/velocities in the 𝑥- and 𝑦-directions (𝑈1 and 𝑈2 

respectively), as well as the out-of-plane displacements/velocities in the 𝑧-direction (𝑈3) 

were recorded at all the sensing points. The displacements/velocities (𝑈3) correspond 

mainly to the A0 mode oscillations (Figure 2.17(a)). Referring to the schematic 

diagrams shown in Figure 2.17(b) and (c), the S0 and SH0 wavefields can be calculated 

according to equations (2.12) and (2.13) respectively: 

 𝑈𝑆0 = 𝑈1 cos(𝜙𝑆0) + 𝑈2 sin(𝜙𝑆0) (2.12) 

 𝑈𝑆𝐻0 = 𝑈2 cos(𝜙𝑆𝐻0) − 𝑈1 sin(𝜙𝑆𝐻0) (2.13) 

 

where: 

• 𝑈𝑚̃: is the displacement/velocity field of the mode “𝑚̃”; 
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• 𝜙𝑚̃: is the angle between the 𝑥-axis and the mode’s propagation direction 

(≠ oscillation direction); based on the quadrant in which the sensing points are located 

and the wave’s propagation direction, 𝜙 of a certain mode varies according to the 

following geometrical cases: 

- Geometrical case 1: 1st or 3rd quadrant, a wave propagating from left 

to right: 𝜙𝑚̃ = 𝜃𝑚̃; 

- Geometrical case 2: 1st or 3rd quadrant, a wave propagating from 

right to left: 𝜙𝑚̃ = 180° + 𝜃𝑚̃; 

- Geometrical case 3: 2nd or 4th quadrant, a wave propagating from left 

to right: 𝜙𝑚̃ = −𝜃𝑚̃; 

- Geometrical case 4: 2nd or 4th quadrant, a wave propagating from 

right to left: 𝜙𝑚̃ = 180° − 𝜃𝑚̃; 

• 𝜃𝑚̃: is the acute angle between the propagation direction of the mode “𝑚̃” 

and the normal to the material interface. 
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(a) 

 

(b) Geometrical case 1 (𝝓𝒎 = 𝜽𝒎) 
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(c) Geometrical case 4 (𝝓𝒎 = 𝟏𝟖𝟎° − 𝜽𝒎) 

Figure 2.17. (a) Sample out-of-plane displacements on the surface of the plate for a wave 

propagating in the forward direction at 𝒊̂ = 40°. (b) and (c) two illustrating examples of S0 

and SH0 wavefield calculations. 

 

 

Although circular-crested waves are obtained by PZT actuation, determining 

the modes of interest along one propagation direction, as illustrated in Figure 2.17, 

proved to be an efficient simplification of the problem to be similar to an obliquely-

incident straight-crested LW propagation. 

Signals collected from all the sensing points along a given measurement 

direction can be plotted in the spatial-time domain. This can be achieved by 

accumulating all the vertical time plots of the signals side-by-side along the spatial axis 

(horizontal axis). Figure 2.18(a), (c), and (e) show the wavefields obtained using the FE 

simulations for the wave propagating in the forward direction, at 𝑖̂ = 20°, for the S0, A0, 

and SH0 modes, respectively. Different modes were identified based on their 
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measurement directions and velocities as discussed earlier. Further, Figure 2.18(b), (d), 

and (f) show similar results obtained from the experimental analysis. A good agreement 

was evident between the results of the FE simulations and the experiments. The 

obtained average group velocities of the S0 and A0 modes are summarized in Table 2.4. 

 

Table 2.4. FE and experimentally obtained group velocities of the LW modes for a wave 

propagating in the forward direction at 𝒊̂ = 20°. 

Measurement  FE  Experimental 

Wave mode  
𝑐𝑔 (𝑚/𝑠) 

in AA6061-T6 

𝑐𝑔 (𝑚/𝑠) 

in AZ31B 
 

𝑐𝑔 (𝑚/𝑠) 

in AA6061-T6 

𝑐𝑔 (𝑚/𝑠) 

in AZ31B 

S0  5311.5 5335  5297.9 5311.5 

A0  2951.6 2975.9  3036.6 2829.8 

 

 

It was observed that there were some weak boundary reflections in the 

experimental measurements; however, they are almost fully suppressed in the FE results 

due to the use of low reflecting boundaries. 

The S0-SH0 transmission did not appear clearly in Figure 2.18(e) due to its low 

amplitude when compared to the other wavefields propagating in the plate (less than 

one-tenth of S0 amplitude). Experimentally, the S0-SH0 transmission did not appear in 

Figure 2.18(f) since it is extremely weak. The separation of the S0-SH0 transmission is 

discussed further in Section 2.5.3. 
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(a) FE 𝑼𝑺𝟎 (b) Experimental 𝑼𝑺𝟎 

  

(c) FE 𝑼𝑨𝟎 (d) Experimental 𝑼𝑨𝟎 

  

(e) FE 𝑼𝑺𝟎−𝑺𝑯𝟎 (f) Experimental 𝑼𝑺𝟎−𝑺𝑯𝟎 

Figure 2.18. Spatial-time plots of the simulated and experimental wavefields, along the 

incidence and transmission directions of different modes, for a wave propagating in the 

forward direction at 𝒊̂ = 20°. 
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The experimental measurements were collected using different actuators, 

therefore, experimental data were normalized.  The A0 wavefields (along the incidence, 

transmission, and reflection directions) were normalized to the peak value of the 1st 

transmission along the incidence direction (indicated by the red arrow in Figure 

2.18(d)). The S0 and the S0-SH0 measurements were normalized using the peak value of 

the 1st transmission of the S0 measurement along the incidence direction (indicated by 

the red arrow in Figure 2.18(b)). Figure 2.19 shows an example for the 𝑈𝐴0 signal 

(measured in the out-of-plane direction) at the 1st sensing point (sensor position = −80 

𝑚𝑚) and at another sensing point (sensor position = 24 𝑚𝑚). Both signals are part of 

the wavefield shown in Figure 2.18(d). The red arrow indicates the peak value in the 

𝑈𝐴0 wavefield, which was used to normalize all other signals of the wavefield of Figure 

2.18(d). 
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Figure 2.19. Typical normalized experimental raw signals for 𝑼𝑨𝟎 at two different sensing 

positions. 

 

 

2.5.2 Reflection Separation 

Figure 2.20(a) shows the FE simulation of the S0 wavefield measured along the 

reflection direction, for a wave propagating in the forward direction at 𝑖̂ = 20°. The 

waves measured at those sensing locations are the superposition of the direct 

transmissions from the actuator, boundary reflections, and reflections from the weld 

region. It is critical to separate the reflections caused by the presence of the material 

interface/discontinuity. 

To separate interface reflections, measurements from the same actuator-sensor 

configurations were recorded in a single material for the same plate size. The 

wavefields measured at the reflection directions (e.g., Figure 2.20(b)) were then 

subtracted from the dissimilar-material reflection wavefields (e.g., Figure 2.20(a)). The 

obtained fields are those resulting from the waves’ interactions with the dissimilar-
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material interface (e.g., Figure 2.20(c)). To isolate the reflections in AA6061-T6 to 

AZ31B measurements, AA6061-T6 single-material measurements should be subtracted. 

Similarly, to isolate reflections in the opposite propagation direction, AZ31B single-

material measurements are to be used. Equation (2.14) summarizes the followed 

reflection separation method for an incident wave propagating from Material X to 

Material Y: 

 𝑈𝑅(𝑋/𝑌) = 𝑈𝑅𝐷(𝑋/𝑌) − 𝑈𝑅𝐷(𝑋/𝑋) (2.14) 

 

where: 

• 𝑈𝑅(𝑋/𝑌): is the wavefield, reflected from the material interface, from an 

incident wave propagating from material X to material Y at an angle of incidence 𝑖̂; 

• 𝑈𝑅𝐷(𝑋/𝑌): is the wavefield, measured along the reflection direction, from an 

incident wave propagating from material X to material Y at an angle of incidence 𝑖̂; 

• 𝑈𝑅𝐷(𝑋/𝑋): is the wavefield, measured along the reflection direction, from an 

incident wave propagating from material X to material X at an angle of incidence 𝑖̂. 

 

Figure 2.20(c) shows a clear reflection field of the S0 mode. This reflection has 

an average group velocity of 5333 𝑚/𝑠, which is in good agreement with the AA6061-

T6 theoretical value presented in Table 2.2 (5268.7 𝑚/𝑠). The separated reflection 

fields of the other modes (A0 and S0-SH0) of the same simulated wave are presented in 

Figure 2.21. As mentioned earlier, SH0 was not significant before the wave interaction 

with the material interface; thus, its noticeable appearance in the reflection field is due 

to S0-SH0 conversion upon S0 interaction with the joint [71]. This is also clear based on 

the amplitude of the SH0 mode in the reflected field (Figure 2.21(b)), which is higher 
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than its amplitude in the incident field (Figure 2.18(e)). The average group velocities of 

the obtained A0 and SH0 reflections were determined to be 3062 𝑚/𝑠 and 3094 𝑚/𝑠, 

respectively, and they are both close to the theoretical values shown in Table 2.2 

(2980.32 𝑚/𝑠 and 3099.6 𝑚/𝑠, respectively). 

The same procedure was applied for the experimental measurements to 

separate interface reflections from other wave superposition. The separated reflection 

fields from experimental measurements were not as clear as those obtained from the FE 

simulations, which is expected. Figure 2.22 presents the experimental measurements of 

the S0 mode along its reflection direction for an incident wave propagating in the 

forward direction at 𝑖̂ = 20° (Figure 2.22(a)), and similarly in the AA6061-T6 single-

material plate (Figure 2.22(b)). After subtracting these two wavefields, the wavefield in 

Figure 2.22(c) was obtained. The reflection field of the S0 mode can be identified as 

shown in the figure. It has an average group velocity of 5120 𝑚/𝑠, which has good 

agreement with the AA6061-T6 theoretical value presented in Table 2.2 (5268.7 𝑚/𝑠). 

It should be noted here that several steps were taken during the experiments to 

minimize all possible differences between measurements from two different specimens 

including placement of PZTs, soldering, and connections. The retroreflective spray and 

gummy tapes were made as uniform and consistent as possible between the two plates. 

The two plates were placed at the same position and height with respect to the laser, and 

a precise and careful calibration of the 3D SLV was performed to have similar and 

accurate measurement positions. Data were normalized to account for differences 

between different actuator PZTs and bonding quality. Despite all this, errors still existed 

due to unavoidable operational and environmental variations. 
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(a) S0 reflection wavefield measured in the 

AA6061-T6/AZ31B plate 

(b) S0 reflection wavefield measured in the 

AA6061-T6 plate 

 

(c) S0 reflection computed by subtracting the wavefield shown in (b) from the wavefield 

shown in (a) 

Figure 2.20. Separation of the S0 reflection – FE simulation measurements along S0 

reflection direction, for a wave propagating in the forward direction at 𝒊̂ = 20°. 
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(a) A0 reflection (b) S0-SH0 reflection 

Figure 2.21. Separated A0 and S0-SH0 reflection fields – FE simulation measurements 

along their respective reflection directions, for a wave propagating in the forward 

direction at 𝒊̂ = 20°. 

 

  

(a) S0 reflection wavefield measured in the 

AA6061-T6/AZ31B plate 

(b) S0 reflection wavefield measured in the 

AA6061-T6 plate 
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(c) S0 reflection computed by subtracting the wavefield shown in (b) from the wavefield 

shown in (a) 

Figure 2.22. Separation of the S0 reflection – experimental measurements along S0 

reflection direction, for a wave propagating in the forward direction at 𝒊̂ = 20°. 
 

 

2.5.3 S0 -SH0 Transmission Separation 

The measured S0-SH0 transmission along its expected propagation direction 

was noticed to have a low amplitude when compared to the other measured wavefields 

on the same plate. It was found that this mode is masked by other transmissions and 

reflections, as shown in Figure 2.18(e) and (f). Therefore, a separation procedure was 

established to extract the transmitted/refracted S0-SH0 mode.  

In the reflection separation (Section 2.5.2), the wavefields measured along the 

reflection directions would have both propagated only in material X, which makes their 

direct subtraction a reasonable solution. The wavefield measured along the S0-SH0 

transmission direction, across a dissimilar joint, would have passed from material X to 

material Y, while in a single-material plate, it would have propagated only in material 

X. To account for the amplitude variation between different materials, the single-

material wavefield was normalized to that of dissimilar materials before subtraction. 
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Given that the first wave-pack was noticed to be common between the two subtracted 

wavefields (Figure 2.23(a) and (b)), the amplitude of the 3rd obvious peak in this wave-

pack was used for amplitude normalization (other peaks can be used for normalization). 

This procedure is described as follows: 

 𝑈𝑆0−𝑆𝐻0(𝑋/𝑌) = 𝑈𝑆𝐻0𝐷(𝑋/𝑌) − 𝑎 × 𝑈𝑆𝐻0𝐷(𝑋/𝑋) (2.15) 

 

where: 

• 𝑈𝑆0−𝑆𝐻0(𝑋/𝑌): is the refracted S0-SH0 wavefield, converted from the S0 mode 

of an incident wave propagating from material X to material Y at an angle of incidence 

𝑖̂; 

• 𝑈𝑆𝐻0𝐷(𝑋/𝑌): is the SH0 wavefield, measured along the S0-SH0 transmission 

direction, from an incident wave propagating from material X to material Y at an angle 

of incidence 𝑖̂; 

• 𝑈𝑆𝐻0𝐷(𝑋/𝑋): is the SH0 wavefield, measured in the same direction as 

𝑈𝑆𝐻0𝐷(𝑋/𝑌), from an incident wave propagating from material X to material X at an 

angle of incidence 𝑖̂; 

• 𝑎: is the coefficient that normalizes the amplitudes of 𝑈𝑆𝐻0𝐷(𝑋/𝑋) to those of 

𝑈𝑆𝐻0𝐷(𝑋/𝑌), determined from a chosen peak of the 1st wave-pack (3rd peak in this case) 

and at a chosen sensor position. 

 

Similarly, the time of arrival of the wave-pack, considered for normalization, is 

a bit different between the two wavefields due to propagation in different materials. 

This time-shift would have been more obvious if the group velocities of the studied 

materials were not close in values (refer to Table 2.2). The time-shift increases with the 
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propagation distance and, hence, differs from one sensor position to another. Therefore, 

time alignment should also be applied to 𝑈𝑆𝐻0𝐷(𝑋/𝑋), at each sensor position, before 

subtraction. 

Figure 2.23 illustrates the separation of the S0-SH0 transmission for the wave 

simulation of an incident wave propagating in the forward direction at 𝑖̂ = 20°. The 

average group velocity of the obtained S0-SH0 transmission is 3021 𝑚/𝑠, which is very 

close to the theoretical value presented in Table 2.2 (3068.6 𝑚/𝑠). 

When applying the same separation method to the experimental measurements, 

the refracted S0-SH0 mode was very weak to appear. This agrees with both the PWA 

results (Section 2.2.4) and the FE results. 

 

  

(a) SH0 transmission wavefield measured 

in the AA6061-T6/AZ31B plate 

(b) SH0 transmission wavefield measured 

in the AA6061-T6 plate 
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(c) S0-SH0 transmission computed by subtracting the wavefield shown in (b) from the 

wavefield shown in (a), based on equation (2.15) 

Figure 2.23. Separation of the S0-SH0 transmission – FE measurements along S0-SH0 

transmission direction, for a wave propagating in the forward direction at 𝒊̂ = 20°. 
 

 

2.5.4 Attenuation Curves 

The attenuation curve provides information about the change in the amplitude 

of the propagating wave with distance. The naming “attenuation” comes from the fact 

that as a wave mode propagates in a single material, its amplitude is attenuated or 

reduced with distance. Attenuation of Lamb-wave modes occurs due to multiple 

possible mechanisms including dispersion, beam divergence, material damping, 

scattering, and leakage into a neighboring medium [76]. Attenuation by dispersion is 

interpreted as the diffusion of the energy along the propagation direction, while beam 

divergence is considered as the energy diffusion in the perpendicular direction. Further, 

as the wave propagates within the material, part of its energy is dissipated into heat due 

to material damping, thus causing amplitude reduction; this effect was considered by 

Wilcox et al. [76] as minimal in metallic plates. Scattering is the reflection or 

dissipation of the considered wave mode in directions other than the direction of 
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interest. It also includes possible mode conversions into other modes. Scattering may 

occur due to the wave interaction with impurities, flaws, material discontinuities, rough 

surfaces, or any other features or inhomogeneities in the plate’s material. Finally, the 5th 

attenuation mechanism (leakage) is described as the possible radiation of the wave 

energy into a surrounding medium. This is usually significant if the metallic plate is 

immersed in water or embedded in another solid. However, this leakage is minimal for a 

metallic plate placed in the air because of the huge mismatch in the acoustic impedance 

between the metal and air [76]. Investigating the attenuation behavior across multiple 

media would allow for a better understanding of Lamb-wave propagation from one 

solid medium to another along with the underlying phenomena. 

Attenuation in single-material plates (isotropic and non-welded) is not affected 

by the incidence angle since the material interface does not exist. Thus, the curves 

determined from multiple experimental measurements (at multiple incidence angles) in 

the AA6061-T6 plate were averaged to have one single reference and avoid 

experimental variations between different single-material recordings. Figure 2.24 shows 

the experimental S0 attenuation curves when propagating in the AA6061-T6 plate and 

when propagating in the forward direction in the welded plate (𝑖̂ = 0°). The curves are 

presented for the 1st three positive peaks (check Figure 2.25(b)) to interpret the existing 

differences. 

A sinusoidal variation in the S0 amplitude is evident at the beginning of the 

attenuation curve of the 1st peak (Figure 2.24(a)), however, this variation increases 

significantly in the attenuation curves based on the 2nd and 3rd peaks (Figure 2.24(b) and 

(c)). This oscillation pattern indicates that the S0 mode was not fully converged. This 

instability can be explained by two interrelated phenomena, namely, LW dispersion into 
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two different modes of different velocities (A0 and S0), and the superpositions between 

the two modes before their complete separation. To understand these two phenomena, 

the S0 spatial-time plots, from which those attenuation curves were extracted, are shown 

in Figure 2.25. The two LW modes are identified on the figures, illustrating that the 

complete separation between the two modes did not occur before about 45 𝑚𝑚 from the 

center of the plate (dashed-red line). The separation of the two modes (dispersion) and 

the superposition between them while separating, have both led to the sinusoidal shape 

that can be seen in the attenuation curves. It can be also noticed from Figure 2.25 how 

the A0 mode separates from the 1st peak of the S0 mode first (sensor position ≈ −50 

𝑚𝑚), then it separates from the 2nd peak at a later stage (sensor position ≈ −25 𝑚𝑚), 

and finally from the 3rd peak approximately at the center of the plate. This explains why 

the sinusoidal variation lasts for different propagation distances between the attenuation 

curves of the three peaks (Figure 2.24). 

 Upon crossing the material interface (around sensor position ≈ 0), the wave 

amplitude experiences a sudden jump before it continues in the normal attenuation 

behavior. This increase in amplitude may indicate that the wavefield is amplified when 

passing from a stiffer medium (AA6061-T6) to a softer medium (AZ31B). Figure 2.26 

shows the FE results of the same case. Similar conclusions and observations can be 

drawn from Figure 2.26, while more data consistency is obvious, due to the absence of 

possible experimental errors and noise. 

It is worth mentioning that waves reflecting from the boundaries of the plate 

can also overlap with the transmitted modes causing some disturbance. For example, the 

sudden drop in amplitude at the end of the attenuation curves, which is more evident for 

the 2nd and 3rd peaks (Figure 2.24(b) and (c)), is due to the superposition between the S0 
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mode and its boundary reflection from the plate’s far side. Since low reflection 

boundaries were assigned to the plates’ edges in the FE simulations, the effect of 

boundary reflections on the attenuation curves is minimal in Figure 2.26.  

Further, the disturbance in the attenuation curves, just before the material 

interface (sensor position ≈ 0 𝑚𝑚), is due to the superposition of the incident S0 mode 

with its reflection from the material interface. This disturbance is more evident in the 

2nd and 3rd peaks’ attenuation curves in both experimental (Figure 2.24(b) and (c)) and 

FE results (Figure 2.26(b) and (c)). 

Figure 2.27 shows the experimental and FE attenuation curves of the backward 

propagation direction (3rd peak; 𝑖̂ = 0°) as compared to that in the AZ31B single-

material plate (non-welded). Unlike the amplitude amplification in the forward 

direction, the wavefield showed a sudden drop in amplitude upon passing from a softer 

medium (AZ31B) to a stiffer one (AA6061-T6). The variation between the 

experimental and FE attenuation curves at their start is because the sensing points in the 

FE model start at “sensor position = −100 𝑚𝑚”, while they start at “sensor position =

−80 𝑚𝑚” in the experiments (in addition to the difference in the actuator position). 
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(a) 1st peak 

 

(b) 2nd peak 
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(c) 3rd peak 

Figure 2.24. Experimental S0-mode attenuation curves in both the AA6061-T6 plate 

(averaged from all incidence angles) and the AA6061-T6/AZ31B plate (forward direction; 

𝒊̂ = 0°). 

 

  

(a) AA6061-T6 (b) AA6061-T6 to AZ31B 

Figure 2.25. Experimental S0-mode spatial-time plots in both the AA6061-T6 plate and the 

AA6061-T6/AZ31B plate (forward direction; 𝒊̂ = 0°). 
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(a) 1st peak 

 

(b) 2nd peak 
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(c) 3rd peak 

Figure 2.26. FE S0-mode attenuation curves in both the AA6061-T6 plate (𝒊̂ = 0°) and the 

AA6061-T6/AZ31B plate (forward direction; 𝒊̂ = 0°). 

 

 

Figure 2.27. S0-mode attenuation curves in both the AZ31B plate (FE result; 𝒊̂ = 0°; 3rd 

peak) and the AA6061-T6/AZ31B plate (FE and experimental results; backward 

direction; 𝒊̂ = 0°; 3rd peak). 
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2.5.5 Transmission and Reflection Coefficients 

The transmission and reflection coefficients of the wave modes were 

determined through a direct comparison of the amplitudes of the transmitted and 

reflected fields with the transmissions of the wave in the incidence medium (single-

material propagation). Equations (2.16) and (2.17) were respectively used to compute 

the transmission and reflection coefficients of both the A0 and S0 modes. The SH0 mode 

is a conversion from the S0 mode, therefore, the transmission and reflection coefficients 

of the S0-SH0 mode were determined using equations (2.18) and (2.19), respectively. 

 
𝑇(𝑆0 𝑜𝑟 𝐴0)
𝑖̂ =

𝐴𝑡𝑟 (𝑆0 𝑜𝑟 𝐴0)
𝑖̂

𝐴𝑡𝑟−𝑠 (𝑆0 𝑜𝑟 𝐴0)
 

 

(2.16) 

 

 
𝑅(𝑆0 𝑜𝑟 𝐴0)
𝑖̂ =

𝐴𝑟𝑒𝑓𝑙 (𝑆0 𝑜𝑟 𝐴0)
𝑖̂

𝐴𝑡𝑟−𝑠 (𝑆0 𝑜𝑟 𝐴0)
 

 

(2.17) 

 

 
𝑇(𝑆0−𝑆𝐻0)
𝑖̂ =

𝐴𝑡𝑟 (𝑆0−𝑆𝐻0)
𝑖̂

𝐴𝑡𝑟−𝑠 (𝑆0)
 

 

(2.18) 

 

 
𝑅(𝑆0−𝑆𝐻0)
𝑖̂ =

𝐴𝑟𝑒𝑓𝑙 (𝑆0−𝑆𝐻0)
𝑖̂

𝐴𝑡𝑟−𝑠 (𝑆0)
 

 

(2.19) 

 

 

where: 

• 𝑇(𝑚̃)
𝑖̂  : transmission coefficient of mode “𝑚̃” at an incidence angle 𝑖̂; 

• 𝑅(𝑚̃)
𝑖̂  : reflection coefficient of mode “𝑚̃” at an incidence angle 𝑖̂; 

• 𝐴𝑡𝑟 (𝑚̃)
𝑖̂ : amplitude of the transmitted mode “𝑚̃” after traveling a distance 𝑟 

from material X to material Y; incident wave propagating from material X to material Y 

at an angle of incidence 𝑖̂; 
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• 𝐴𝑟𝑒𝑓𝑙 (𝑚̃)
𝑖̂ : amplitude of the reflected mode “𝑚̃” after traveling a distance 𝑟 in 

material X; incident wave propagating from material X to material Y at an angle of 

incidence 𝑖̂; 

• 𝐴𝑡𝑟−𝑠 (𝑚̃): amplitude of the transmitted mode “𝑚̃” after traveling a distance 𝑟 

in a single material X. 

 

Amplitudes of the single-material propagations (𝐴𝑡𝑟−𝑠 (𝑚̃) appearing in the 

denominators of equations (2.16) to (2.19)) can be taken at any incidence angle since 

there is no material interface. For the FE calculations, it was preferred to take them at 

the same incidence angle as that of the dissimilar-material propagation (in the 

numerators) to eliminate the numerical discrepancies that may results from the mesh 

errors due to wave propagations in different mesh shapes. 

To minimize possible errors and variations in the experimental data, and to 

have only one reference, experimental single-material measurements (𝐴𝑡𝑟−𝑠 (𝑚̃)) were 

taken as an average combining all the tested incidence angles (as mentioned in Section 

2.5.4). Furthermore, given that the data normalization relied on the 3rd peak of the 

signal, the calculations of the coefficients were based on the 3rd peak, whenever 

possible, for consistency. 

Transmission and reflection coefficients can be calculated after the wave 

travels any distance 𝑟, as long as 𝑟 is kept constant between the dissimilar-material and 

single-material propagations (same 𝑟 for the numerator and the denominator). For 

example, the FE transmission coefficient of the S0 mode can be calculated using any of 

the attenuation curves presented in Figure 2.26(a),(b), or (c), by the division of the value 

of any blue point (propagation from AA6061-T6 to AZ31B) over the value of its 
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corresponding black point (AA6061-T6 single-material propagation) at the same sensor 

position. Calculations should be performed after the wave interacts with the material 

interface (sensor position > 0). Similarly, values from Figure 2.24(a), (b), or (c) can be 

used to calculate the experimental transmission coefficient of the S0 mode. Since 

experimental data show some perturbation, the transmission coefficient was calculated 

using all possible data points of each peak, then the average value was considered. 

Experimental coefficients were calculated using all the possible peaks, and the peaks 

with minimal variations were considered. This process was also applied to calculate all 

the transmission and reflection coefficients of the studied modes. 

Figure 2.28 and Figure 2.29 show the transmission and reflection coefficients 

of the symmetric (S0 and S0-SH0) and anti-symmetric (A0) wave modes, respectively, 

for both the forward and the backward propagation directions. 

The determination of all experimental coefficients was tedious due to the 

undesirable superpositions between the anticipated modes and other modes and/or 

boundary reflections. For this reason, some experimental data points are missing in 

Figure 2.29 (AA6061-T6 to AZ31B; A0 reflection at 𝑖̂ = 60° and 𝑖̂ = 80°). In addition, 

the experimental S0-SH0 transmission coefficients are not available in Figure 2.28 

because the transmission of this mode is extremely weak. The weak amplitude of the S0-

SH0 mode is also observed in the FE and PWA results (Figure 2.28). Further, the 

experimental results could not be determined for the backward direction because the 

single-material measurements from the AZ31B plate are not available. 

The FE and PWA results are in good agreement. Some variations exist when 

comparing to the experimental results. The variation is within the acceptable range 
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taking into consideration the sources of errors associated with the PZT placement, 

material properties, weld condition, and the operational conditions during the testing. 

The transmissions of the S0 and A0 modes remain approximately constant and 

unaffected by the change of the incidence angle until it becomes very steep (𝑖̂ ≈ 78°), as 

can be seen in the experimental, FE, and PWA results. At the S0 mode’s critical angle, a 

sharp peak appears in the transmission before it drops back to zero. Material properties 

and excitation frequencies would cause a change in the critical angles of the modes and 

their interaction behavior; this means that the constant trait among most of the 

incidence-angle range may not be generalized for other types of materials and other 

excitation frequencies. 

The values of the A0 and S0 transmission coefficients are above unity (≈ 1.2 

for both modes) when the wave propagates from AA6061-T6 to AZ31B. This means 

that the amplitude of the propagating wave is amplified by about 20% when it passes 

from AA6061-T6 to AZ31B. On the other hand, the transmission coefficients of the LW 

modes are about 0.8 when the wave propagates in the opposite direction. Thus, the wave 

amplitude drops by about 20% when passing from AZ31B to AA6061-T6. This 

indicates that the wavefield is amplified when passing from a stiff medium to a softer 

medium, while it is attenuated when the wave’s propagation direction is reversed. While 

energy is conserved, the energy of the wave mode propagating in a soft medium can 

oscillate the particles with higher amplitude than it can when propagating in a stiffer 

medium. 

The reflection coefficients of the three wave modes (S0, A0, and S0-SH0) are 

approximately equal for the forward and backward propagation directions, but they 

have opposite signs. The opposite signs mean that there is a 180°-phase difference 
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between the reflected modes among the two propagation directions. The similarity in 

the reflection coefficients, between the two propagation directions, vanishes in the 

vicinity of the critical angle where sudden sharp peaks appear in the forward direction. 

Considering the absolute values, the reflection of the A0 mode has shown a gradual 

increase with the increase in the incidence angle, with values between 6 and 20% 

(Figure 2.29). The reflection of the S0 mode decreases with the increase in the incidence 

angle until it reaches zero (at 𝑖̂ between 55.5° and 57.1°), after which it starts to 

increase. The reflected S0-SH0 mode increases with the increase in the incidence angle 

from zero (at 𝑖̂ = 0°) up to a certain angle (𝑖̂ ≈ 46.5°), after which it starts to decrease, 

with values varying between 0 and 30%. 

When an ultrasonic wave encounters a tough interface/medium, the phase of its 

reflection is expected to change [77]. This is observed in the results for the AZ31B to 

AA6061-T6 propagation and is only applicable to the shear modes (negative reflection 

coefficients for the A0 and S0-SH0 reflections). On the contrary, S0 starts with a positive 

reflection coefficient (AZ31B to AA6061-T6), then it switches its phase at an incidence 

angle of around 57.2°, after crossing through the point of zero reflection. It was 

observed that the phase of the S0-SH0 reflection in the FE results was shifted from that 

of experimental and PWA results, this phase-shift was ignored in the reported findings. 

PWA has shown that the maximum S0-SH0 conversion occurs around 𝑖̂ ≈ 45°, 

as was discussed in Section 2.2.4. FE simulations and experiments were not performed 

at 𝑖̂ = 45°, however, this result is confirmed by the trend of the FE and experimental 

results. While the transmitted converted mode is extremely weak, a significant S0-SH0 

mode conversion appears as a reflection from the material interface, reaching values of 

above 20% of the incident wave amplitude. 
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Capturing reflections with higher values than what was obtained in this study 

may indicate the existence of a flaw or damage within the welded AA6061-T6/AZ31B 

plate. This applies also when capturing transmissions of lower values than the ones that 

were determined for an intact joint using the same excitation frequency. However, 

obtaining the same values of reflection and transmission coefficients does not reflect the 

intact condition of the plate, unless proper sensor placement and plate coverage were 

insured. This can be achieved by performing sensor-network optimization [25, 78]. 

It can be noticed that the FE results of the transmitted S0 mode and the 

experimental results of the S0 and S0-SH0 modes are a bit deviated from the PWA 

results at 𝑖̂ = 80°. The problem at this steep angle is the possible superposition of 

multiple wave lobes reflecting or transmitting from the weld line due to the wave 

propagation near the weld. Such superpositions are difficult to separate or identify in the 

measured signals, which may be the reason for the recorded deviation. Additionally, 

evanescent modes possibly existing near the PZT or the weld line may also interfere 

with the studied propagating modes [69]. This is in addition to the fact that this 

incidence angle is close to the critical angles of both LW modes. 

Based on the results presented in this section, mode reflections seem to be 

highly influenced by the excitation incidence angle. This fact should be taken into 

consideration by investigators before using wave reflections for NDE applications. 

Consequently, reflection-based sensor networks in structures containing an AA6061-

T6/AZ31B dissimilar joint could be complex to design and may not be efficient enough. 

The incidence angles and the amount of reflection expected to emerge from the joint 

toward each sensor should be taken into consideration while designing or optimizing a 

sensor network. A stronger reflection means a higher potential of this reflection to carry 
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information about flaws lying between the actuator and the joint or within the joint 

itself. 

On the other hand, Lamb-mode transmissions are almost constant up to a very 

steep incidence angle (𝑖̂ ≈ 78°) in both the forward and backward propagation 

directions. This means that transmission-based NDE and sensor networks could be 

easier to design and use efficiently without considering the complexities of many 

incident-wave angles. 

 

 

(a) AA6061-T6 to AZ31B 
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(b) AZ31B to AA6061-T6 

Figure 2.28. Transmission and reflection coefficients of the studied symmetric modes. 

 

 

Figure 2.29. Transmission and reflection coefficients of the A0 mode. 
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2.6 Summary 

The propagation behavior of the fundamental Lamb-wave modes, upon the 

oblique interaction with dissimilar solid mediums, was numerically and experimentally 

investigated. An intact AA6061-T6/AZ31B joint and non-welded plate(s) were used for 

this purpose. A technique was developed to identify in-plane and out-of-plane guided-

wave modes from the 3D-scanning-laser-vibrometer measurements and the 3D finite 

element simulations. Reflections from the material interface, as well as the converted 

S0-SH0 mode’s transmissions, were separated from other superpositions appearing in the 

measured wavefields. The transmission and reflection coefficients of the studied modes 

(S0, A0, and S0-SH0) were assessed and analyzed. The existence of an S0-SH0 mode 

conversion was verified when an obliquely-incident S0 mode interacts with the material 

interface. The transmission of the converted S0-SH0 mode was found to be extremely 

weak, while the amplitude of its reflection reaches values above 20% of the incident S0 

mode. Reflection amplitudes of the S0 and A0 Lamb-wave modes vary with the 

incidence angle and reach values up to around 20% of the incident waves. The 

transmission coefficients of the S0 and A0 modes are almost constant, with a variation of 

less than 5% until a very steep incidence angle (𝑖̂ ≈ 78°). The transmission amplitudes 

of both modes increase by around 20% when the wave propagates from AA6061-T6 to 

AZ31B, while they drop by the same percentage in the inverse propagation direction.  

The transmission and reflection coefficients of the symmetric modes were 

accurately predicted using plane-wave analytical solutions. It was confirmed that this 

approximation can provide good prediction, compared to finite element analysis and 

experimental investigations, over a range of frequency×thickness values. 
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CHAPTER 3 

3. A BAYESIAN DAMAGE IDENTIFICATION FRAMEWORK 
 

3.1 Introduction 

Many challenges still have to be addressed to guarantee a successful 

implementation and reliable application of SHM systems on real structures. Early 

damage identification is one of the main objectives that need to be met using a 

continuous SHM system. It includes early damage detection, localization, and 

assessment [26]. Achieving these three objectives with a minimal number of transducers 

is of high importance for the industrial community to move the developed technology 

from research into real-life applications. 

The design of the sensor network is one of the main bottlenecks for the 

successful implementation of SHM systems [79]. Even in an optimized sensor network, 

to maximize the coverage, a relatively large number of transducers is still required. 

Tarhini et al. [80] and Ismail et al. [25, 78] have worked on the optimization of sensor 

networks using a mixed-integer nonlinear program and genetic algorithm, respectively. 

The networks were aiming for damage localization in plate-like structures using LWs 

excited and received by dual-functional PZT transducers. In [80], a plate of 400×400 

𝑚𝑚2 surface area, required 14 PZTs to ensure a 95% coverage (of the area understudy). 

In [78], 14 PZTs were also needed to cover a plate of 500×500 𝑚𝑚2 with geometrical 

discontinuity (two circular holes). In [25], the coverage of a large metallic surface 

(2740×2385 𝑚𝑚2), of an Airbus A330 cargo door, required 48 PZTs in the study’s 

best-case scenario assuming a maximum effective actuator-sensor distance of 1.5 

meters. Using a Bayesian damage localization approach, Cantero-Chinchilla et al. [81] 
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have developed various frameworks for sensor-network optimization based on the 

value-of-information [82] and a convex cost-benefit optimization technique [83]. In 

[82], 6 transducers (1 actuator and 5 sensors) were needed to ensure decent coverage of 

a damage area of 200×400 𝑚𝑚2, while in [83], 6 dual-functional PZTs were shown to 

be enough to cover a damage area more than five times larger. Based on those numbers, 

covering the whole structure of an aircraft or a wind turbine, as typical engineering 

structures, would demand the employment of a significant number of transducers. This 

leads to many challenges in the design and integration of the network, besides the 

additional weight and high cost. 

Fakih et al. [12, 32, 84] have tackled the damage assessment problem based on 

several damage indices (DIs) extracted as metric comparisons between measurements 

from healthy and damaged structures. The extracted metrics proved to be useful for 

qualitative classification or comparison between several damage severities, assuming no 

other variables are affecting the measurements (e.g., measurements from different 

plates). However, an accurate or a quantitative assessment of the damage severity was 

not addressed.  

The current study aims at the development of a novel technique to tackle the 

three damage identification objectives (detection, localization, and assessment) using a 

minimal number of transducers. A model-driven inverse problem methodology 

embedded within different computational intelligence algorithms, including Artificial 

Neural Network (ANN) and Approximate Bayesian Computation (ABC) [85], is 

employed. 

 Damage detection and assessment models found in literature such as time of 

flight [86], time-reversal [28], probabilistic damage imaging [87], and tomographic 
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mapping [88] rely on the physical properties of the propagating wave. Extracting the 

physical properties (wave speed, amplitude attenuation, etc.) requires a deep 

understanding of the physics and the medium that the wave is propagating in [30], 

which adds complexity to the implementation of such techniques. An increasing amount 

of artificial intelligence techniques in application to structural or mechanical 

engineering, including SHM, can be found in the literature [89]. The studies addressed 

in this area were categorized as model-driven and data-driven approaches [90, 91]. 

Model-driven approaches are based on models that can mimic physical data coming 

from real measurements to be used as benchmarks for damage detection. These models 

include analytical and numerical models, such as FE or semi-analytical FE models, that 

can reflect the physics of the actual structure. On the other hand, data-driven approaches 

use real measurements from a known health condition of the structure for comparison 

with newly collected data. Authors in [89] highlight the drawbacks of model-driven 

approaches due to the inefficient computational demand and the possible inaccuracies of 

simulation data when compared to experimental data. Sbarufatti et al. [92], have 

developed a model-based diagnostic framework for damage localization and assessment 

using LWs. LWs recorded by a 6-PZT sensor network, attached to an aluminum skin of 

2-𝑚𝑚 thickness, were simulated for 516 damage cases of different crack lengths and 

positions. Cross-correlation DI was calculated for each actuator-sensor path of the 

sensor network, based on the healthy-baseline simulation. The DIs were used as inputs 

for training supervised learning regressors based on ANNs to output damage position or 

length. Sensitivity to input changes was evaluated by testing the algorithm on simulated 

inputs with added uncertainties, and experimental validation with a good precision was 

introduced. 
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The current work addresses the drawbacks mentioned in [89] by training a LW 

surrogate model, based on previously performed FE simulations, to efficiently replace 

the FE model during online SHM. Both the physics of the propagating wave (FE model) 

and the data-driven approach were combined for surrogate modeling. The surrogate 

model can predict LW measurements at a certain sensing point in almost real-time, 

given the damage size and position. This has allowed for the application of Bayesian 

damage inference which would have been computationally infeasible if the 

computationally-expensive physical model was directly employed. Six damage 

parameters of size and position are precisely inferred using a minimal actuator-sensor 

configuration. In fact, the proposed surrogate modeling approach can cater to different 

sources of information for training like analytical, numerical, and experimental data, 

which would allow for a more informed model. The proposed damage identification 

approach has also shown robustness against measurement noise expected in 

experimental data. 

Similar to the work by Sbarufatti et al. [92], most of the work found in 

literature uses DIs or features extracted from the waves as inputs for the ANN (or 

another machine-learning model), which in turn is used to predict the damage 

parameters [93-95]. On the contrary, the work in this dissertation will use ANN to 

produce LWs and not as a regressor of damage position and size. The inputs of the 

ANN will be the damage parameters (size and position), producing as output the 

predicted LW signal. Figure 3.1 shows a schematic illustrating the main steps of the 

proposed damage identification framework. 

The proposed methodology is generic; i.e., can be applied to any structure. The 

approach has been validated using welded joints between dissimilar metals, ultimately 
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to detect and quantify defects that may exist at the weld line. The dissimilar-material 

joint represents an FSW between AA6061-T6 and AZ31B alloys. Wormhole damage 

within the weld is investigated for detection, localization, and assessment. The training 

of the ANN is carried out based on the output of the FE simulations for a large enough 

number of damage cases (changing 6 damage parameters of size and position). After 

training and validation, the ANN is adopted as a surrogate model that serves as a data 

feeder for the Bayesian damage-inference problem. Signals from simulation damage 

cases, that are not used for ANN training, are corrupted with noise then fed to the ABC 

damage-inference algorithm to test its performance. ABC by subset simulation (known 

as ABC-SubSim [96]) algorithm is used due to its efficiency and accuracy. The 

algorithm yields probability density functions (PDFs) of the inferred damage 

parameters. The PDFs show the relative degree of confidence in the possible damage 

scenarios, considering both measurement and modeling uncertainties. 

The rest of the chapter is organized as follows. Section 3.2 introduces the FE 

model developed for generating sensor measurements of different damage cases. 

Section 3.3 presents the ANN-based surrogate modeling of the FE physical model. 

Section 3.4 introduces the application of ABC-SubSim to infer the damage parameters 

using single and multiple sensor measurements. Section 3.5 presents the inference 

results of selected test cases and assesses the prediction performance. Finally, 

conclusions are highlighted in Section 3.6. 
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Figure 3.1. A schematic illustrating the main steps of the damage identification framework 

proposed in this chapter. 

 

 

3.2 Finite Element Modeling 

FEM is used as a forward model to obtain physical simulations of Lamb-wave 

propagation through a metallic plate, including a dissimilar-material butt-welded joint, 

under different damage scenarios. The FE simulations are performed to generate a 

dataset of various damage cases and their corresponding ultrasonic measurements. The 

dataset can then be used for training a surrogate model that can replace the forward FE 

model. 

A dissimilar-material butt-welded joint is modeled using Abaqus®/CAE 

commercial software, where two AA6061-T6 and AZ31B plates, sized 250×125×3 
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𝑚𝑚3, are joined together assuming a perfect joint. The two sub-plates thus form a 

welded plate of 250×250×3 𝑚𝑚3 dimensions. The weld line lies along the 𝑋-direction 

as shown in Figure 3.2. Homogeneous isotropic linearly-elastic behavior is assumed for 

the constituent-metallic materials, whose physical and mechanical properties are listed 

in Table 2.1. 

The geometry is meshed using linear hexahedral elements with reduced 

integration through the element type C3D8R. The weld region (corresponding to 5 𝑚𝑚 

before and after the interface) is meshed using an element size of 0.5×0.5×0.5 𝑚𝑚3, 

which allows enough flexibility to represent a variety of damage extents and positions. 

The rest of the plate is meshed using elements of 1×0.5×0.5 𝑚𝑚3 size. This mesh 

configuration ensures the availability of more than ten elemental-nodes/wavelength in 

the in-plane dimensions, based on the used excitation frequency, as recommended in the 

literature for LW FE simulation [27, 36, 97-99]. Moreover, enhanced hourglass control 

is employed to avoid extreme element deformation upon using reduced integration 

elements. For the boundary conditions, the edges coinciding with the 𝑋-direction on the 

bottom surface of the plate are simply supported, whilst the lower-left corner is fixed to 

prevent the model from movement, as labeled on Figure 3.2.  

Abaqus®/Explicit solver is used to perform the wave simulations of 150 

𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝜇𝑠) each, with a maximum time step of 5×10-8 𝑠. A five-cycle Hann-

windowed sinusoidal wave of 300-𝑘𝐻𝑧 central frequency (chosen as a typical 

frequency) is excited through the plate by feeding radial in-plane point forces to the 

nodes representing a circular PZT actuator [12, 39]. The actuator, of 10-𝑚𝑚 diameter, 

is placed at 90-𝑚𝑚 center-distance from the weld line in the AA6061-T6 sub-plate, 

with its center located at the 𝑌𝑍-plane. A surface node, 80 𝑚𝑚 on the other side of the 
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weld line (in the AZ31B sub-plate), is used as a sensing point (referred to as S1). The 

in-plane displacements in the direction perpendicular to the weld line (𝑈2, along the 𝑌-

axis) and the out-of-plane displacements (𝑈3, along the 𝑍-axis) were recorded for S1 at 

a sampling rate of 20 𝑀𝐻𝑧. In real-life applications, measurements along multiple 

directions, from the same sensing point, can be taken using a 3D SLV, similar to what 

was done in Chapter 2. 

 

 

Figure 3.2. A view of the FE model showing the actuator model (inset) and the sensing 

point S1 (in red) on the other side of the weld line. Dimensions are expressed in 𝒎𝒎. 

 

 

As a typical damage type in FSW joints, wormhole damage of rectangular-

cuboid shape is assumed to exist within the weld region. Simulations were performed 

for a set of damage cases of variable damage sizes and positions of the wormhole. Six 

damage parameters were used to mathematically describe the damage extent and 
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position, namely, length (𝐿), width (𝑊), and thickness (𝑡ℎ), and 𝑥-, 𝑦-, and 𝑧-positions, 

respectively. A damage example is illustrated in Figure 3.3 indicating all the damage 

parameters. Note that the 𝑥-, 𝑦-, and 𝑧-positions were considered as the coordinates of 

the center of the damage with respect to the center of the plate. The damage was added 

to the model by deleting the damaged elements from the mesh using the Abaqus® 

INPUT file, before submitting the modified file for simulation. The automation required 

for modeling all the 10,800 damage cases, running their corresponding simulations, and 

extracting the results was performed using MATLAB®. The extraction of the results was 

carried out with the help of the Abaqus2Matlab MATLAB® software package [100]. 

For ANN training purposes, waves were excited from the AA6061-T6 to the 

AZ31B sub-plates using a variety of damage parameters, in addition to the intact state 

of the plate. The ranges of damage parameters were carefully chosen to ensure that the 

resulting simulated damage cases are a good representative of all possible damage 

scenarios. Table 3.1 lists the ranges of variation of the damage parameters along with 

their variation increments. Restricted by the model's geometrical constraints, 10,800 

possible damage cases were finally generated. 

 

Table 3.1. Ranges of the damage parameters used for the simulated damage cases. The 

third row shows the incremental step per damage parameter. 

Damage parameter 𝐿 𝑊 𝑡ℎ 𝑥 𝑦 𝑧 

Minimum value (𝑚𝑚) 25 1 0.5 -100 -1.25 -1.25 

Increment (𝑚𝑚) 25 1 0.5 25 0.25 0.25 

Maximum value (𝑚𝑚) 200 3 2.5 100 1.25 1.25 
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Figure 3.3. An illustration showing the welded plate containing a damage example (in red) 

and the six damage parameters. Position parameters are measured with respect to the 

center of the damage. 

 

 

Figure 3.4(a) and (b) respectively display the 𝑈2 displacements of the surface 

nodes of the whole FE model at time (𝑡 = 30 𝜇𝑠), for the intact weld and and a sample 

of a weld including damage (D1: 𝐿 = 50 𝑚𝑚, 𝑊 = 2 𝑚𝑚, 𝑡ℎ = 1.5 𝑚𝑚, 𝑥 = 0 𝑚𝑚, 

𝑦 = 0 𝑚𝑚, and 𝑧 = 0.25 𝑚𝑚). A stronger wave reflection, bouncing back from the 
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weld region, can be observed in the case of damage existence, accompanied by a weaker 

transmission of the wave through the weld (marked on the figures). 

 

 

(a) 𝑼𝟐 displacements (in meters) for the intact welded plate at 𝒕 = 30 𝝁𝒔 
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(b) 𝑼𝟐 displacements (in meters) for a sample damage case D1 at 𝒕 = 30 𝝁𝒔 

Figure 3.4. FE 𝑼𝟐 displacements for the intact weld and a sample damage case D1; 

D1: 𝑳 = 50, 𝑾 = 2, 𝒕𝒉 = 1.5, 𝒙 = 0, 𝒚 = 0, and 𝒛 = 0.25. 

 

 

3.3 ANN-Based Lamb-Wave Surrogate Modeling 

In this section, an ANN-based Lamb-wave surrogate model is proposed as an 

approximated fast-computing forward model replacing the FE model. The surrogate 

modeling process is composed of several steps including data preprocessing, balancing, 

reduction, and splitting, in addition to the ANN design, training, validation, then testing. 

These steps will be explained in the following subsections. 
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3.3.1 Data Preparation 

3.3.1.1 Exploiting the Entire Ultrasonic Signal 

Figure 3.5(a) shows the simulation results of the 𝑈2 displacements measured at 

S1 (𝑈2𝑆1), for both the intact weld and the sample damage case D1. Amplitude 

variations and changes in the signal’s shape are evident between the healthy and 

damaged case. The wave-packs corresponding to the first transmissions of the waves’ S0 

and A0 modes are marked on the figure. They correspond to the waves’ S0 and A0 

modes transmitted directly from the actuator to the sensing point. Mode identification 

was explained earlier in Section 2.2.2 (Chapter 2) of this dissertation, where a similar 

model and actuator-sensor configuration are used in the current study. Since the S0 

mode is considerably faster than the A0 mode (Table 2.2), A0’s first transmission is 

mixed with some S0 boundary reflections, as indicated in the figure. The other wave-

packs correspond to waves measured by the sensor after bouncing from the plate’s 

boundaries, the so-called boundary reflections. The first transmission of the S0 mode 

shows a significant amplitude drop (attenuation) due to the existence of the damage 

within the signal’s direct path between the actuator and S1 (sensing path). The boundary 

reflections were also affected by the presence of the damage. 

Similarly, Figure 3.5(b) shows the 𝑈2𝑆1 measurement comparing the intact 

weld to another damage case (D2), of the same size as D1, but located on the left side of 

the weld (D2: 𝐿 = 50 𝑚𝑚, 𝑊 = 2 𝑚𝑚, 𝑡ℎ = 1.5 𝑚𝑚, 𝑥 = -75 𝑚𝑚, 𝑦 = 0 𝑚𝑚, and 

𝑧 = 0.25 𝑚𝑚). It is observed that the first transmission was not affected by the damage, 

unlike what was seen in the case of D1. This is due to the shift of the damage location 

from the line of sight. However, it is evident from Figure 3.5(b) that the boundary 

reflections were affected by the existence of the damage D2. Hence, it is essential to 
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consider the entire signal (including both the direct transmissions and boundary 

reflections) in the current study. For further emphasis, Figure 3.16(a) will later illustrate 

two damage cases where the damage does not exist within the coverage of the sensing 

path, however, it can still be perceived by the sensor when considering the wave’s 

boundary reflections. 

 

 

(a) Intact weld versus D1 
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(b) Intact weld versus D2 

Figure 3.5. Raw signals of 𝑼𝟐𝑺𝟏 for the intact weld and two sample damage cases. Damage 

D1 lies within the coverage of the sensing path, while damage D2 lies outside the coverage 

of the sensing path; 

D1: 𝑳 = 50, 𝑾 = 2, 𝒕𝒉 = 1.5, 𝒙 = 0,     𝒚 = 0, and 𝒛 = 0.25; 

D2: 𝑳 = 50, 𝑾 = 2, 𝒕𝒉 = 1.5, 𝒙 = -75, 𝒚 = 0, and 𝒛 = 0.25; 

all parameters are in 𝒎𝒎. 

 

 

3.3.1.2 Data Preprocessing 

A total of 10,801 damage scenarios were simulated using the FE model (10,800 

damage cases plus one healthy weld), where both the 𝑈2 and 𝑈3 displacement 

measurements were recorded at the sensing point S1 (𝑈2𝑆1 and 𝑈3𝑆1). Hence, two 

ANNs will be trained for the prediction of 𝑈2𝑆1 and 𝑈3𝑆1, separately. 

To minimize the computational burden, data preprocessing was performed for 

all the available FE-wave simulations before being used as training or testing units. 

Data reduction was carried out by three different means: signal cutting, signal down-

sampling, and sample reduction, where the latter is explained in Section 3.3.2. The first 
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30-𝜇𝑠 signal-segment was cut out from all the signals since it does not carry any useful 

information, as can be seen in Figure 3.5. Further, all the signals were down-sampled 

from 20-𝑀𝐻𝑧 to 3-𝑀𝐻𝑧 sampling rate. After preprocessing, the length of each signal 

was reduced from 2,999 to 361 data points. Lowering the number of data samples in the 

signal lowers the size of the ANN’s output layer in the same manner and, thus, allows 

for a less complex ANN architecture. This would not only reduce the training and 

testing computational cost of the ANN, but would also lead to a much faster surrogate 

model. 

 

3.3.2 ANN Design and Performance 

3.3.2.1 Training and Testing Datasets 

The concept of overfitting is when the trained model learns the very details of 

the training data in such a way that it negatively affects the performance of the model 

on new data. When over-fitted, the trained model will fit too well to the training data 

that it would even learn the noise, errors, and outliers which are possibly available in the 

training dataset [101]. Such an over-fitted model would not fit for newly presented data, 

thus giving wrong or inaccurate predictions. This problem is called a generalization 

problem of the trained model. Generalization problems can also happen if the training 

dataset (i) is not large enough or not carefully chosen to represent the whole population 

of known and unknown samples, or (ii) is unbalanced in a way that makes the model 

learn about a part of the population more than it learns about other parts (so-called 

biased data). For instance, if one is training a model to differentiate between images of 

dogs and cats, he/she should provide the model with a balanced training set containing 

images of both dogs and cats. If the training data contains 90% images of dogs and only 
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10% images of cats, it will be expected from the model to overfit to dogs while not 

learning well the features of cats. At the same time, the model should also be provided 

with enough images to represent all kinds of dogs and all kinds of cats. If the model is 

given many images of the same kind of cats while not as many of the other kinds, it may 

overfit to this kind of cats while possibly missing the right classification of the other 

kinds. All such imbalance or bias in the training dataset would prevent the model from 

generalization when testing it over new data samples. 

In the current study, the training data come from FE simulations, which cancels 

the possibility of noisy or outlier data within the training set. Further, the geometry of 

the monitored structure (the welded region of the plate in this case) makes the universe 

of all possible damage scenarios finite and well-bounded. This makes it easy for the 

user to define a well-balanced and well-distributed training dataset that can be a good 

representative of the whole population of possible damages. These facts allowed the 

training of the ANNs down to extremely-low performance errors, without the concern 

of having generalization problems. Figure 3.6 displays an illustration of the rationale 

behind this concept. 
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Figure 3.6. An illustration showing a well-balanced and well-distributed training dataset 

which should be convenient for training down to extremely-low performance errors, 

without generalization concerns when seeing a real damage case. 

 

 

As mentioned earlier, 10,801 observations were collected, for each of the two 

ANNs. Out of these, 594 damage cases were chosen in a well-distributed manner to test 

the effectiveness of the approach over different ranges of damage sizes and positions. 

Thus, 10,207 cases were kept for training, including one healthy-weld case. To balance 

the training dataset and improve the results for small damages, the healthy case was 

repeated 1,859 times with different virtual damage positions (according to Table 3.2), 

thus increasing the total amount of observations in the training dataset to 12,065 cases 

for each of the two ANNs. Since selecting a random dataset from a large pool would 

keep a good data balance and distribution, the training dataset was reduced to half 

through a random sample reduction process. Finally, the training and testing datasets 

included 6,032 and 594 samples, respectively, for each of the two ANNs. 

Figure 3.7(a) and (b) show scatter plots of the damage parameters of the 

training and testing data, respectively. The training dataset is well-balanced and well-
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distributed over the universe of all possible damage cases, thus avoiding overfitting and 

generalization problems when training. The testing dataset is a good representative of 

all possible damage scenarios, which would provide a full picture of the methodology’s 

overall performance. 

 

Table 3.2. Range of virtual damage positions of the healthy signals added to the training 

dataset (for data balance). 1,859 healthy signals with different virtual damage positions 

were finally added. 

Damage parameter 𝐿 𝑊 𝑡ℎ 𝑥 𝑦 𝑧 

Minimum value (𝑚𝑚) 

0 0 0 

-125 -1.5 -1.5 

Increment (𝑚𝑚) 25 0.25 0.25 

Maximum value (𝑚𝑚) 125 1.5 1.5 

 

 

 

 

(a) 6,032-sample training dataset (after sample reduction) 



133 
 

 

(b) 594-sample testing dataset 

Figure 3.7. Scatter plots of the damage parameters of the training and testing datasets, 

chosen from the FE simulations. 

 

 

3.3.2.2 ANN Architecture and Training 

The inputs (predictors) of each ANN are the six damage parameters of the 

wormhole damage lying within the weld, namely 𝐿, 𝑊, 𝑡ℎ, 𝑥, 𝑦, and 𝑧, while the 

outputs are a set of 361 values representing the data points of the predicted LW signal 

received at the sensing point S1. After a trial and error process, an ANN architecture of 

two 200-neuron hidden layers plus a 361-neuron output layer was adopted, as shown in 

Figure 3.8.  

The training dataset was split using the typical ANN design procedure into a 

training set and a validation set. To ensure good data splitting and better model 

generalization, k-fold cross-validation of ten folds (10-fold cross-validation) [102] was 

applied. Scaled conjugate gradient backpropagation function [103] was used for 
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training the model, and the performance of the ANN, while training, was evaluated 

using the mean square error (MSE) function. To prevent overfitting, the maximum 

validation fails (𝑚𝑎𝑥𝐹𝑎𝑖𝑙𝑠 = 1000) early stopping criterion was used. The other 

stopping criteria were relaxed so that the training would not stop except when reaching 

the maximum validation fails. These include the maximum number of training epochs 

(𝑒𝑝𝑜𝑐ℎ𝑠 = 500,000), the best performance over the training data (𝑔𝑜𝑎𝑙 = 10-6), and the 

minimum performance gradient (𝑚𝑖𝑛𝐺𝑟𝑎𝑑 = 10-7). 

Besides being used for testing during the ANN-training process, the testing 

signals can be visually checked to be in good agreement with the signals predicted by 

the trained ANN models. A sample of the ANN predictions for two of the testing 

damage cases is shown in Figure 3.9(a) and (b), as compared to the signal obtained 

using FE simulation (𝑈3𝑆1 measurement). The two damage cases were randomly chosen 

to be, respectively, as follows (D3: 𝐿 = 25 𝑚𝑚, 𝑊 = 1 𝑚𝑚, 𝑡ℎ = 1 𝑚𝑚, 𝑥 = -75 𝑚𝑚, 

𝑦 = -1 𝑚𝑚, and 𝑧 = -1 𝑚𝑚; and D4: 𝐿 = 100 𝑚𝑚, 𝑊 = 3 𝑚𝑚, 𝑡ℎ = 1 𝑚𝑚, 𝑥 = 50 

𝑚𝑚, 𝑦 = 1 𝑚𝑚, and 𝑧 = 0 𝑚𝑚). The signals predicted by the ANN are very close to 

the real signals calculated using FEM. The signals predicted by the ANN match well 

with the simulated signals calculated using FE analysis. 
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Figure 3.8. The architecture of the used ANNs for Lamb-wave surrogate modeling, 

determined using a trial and error process. 

 

 

 

 

(a) D3 
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(b) D4 

Figure 3.9. Two sample results of the ANN prediction of LW sensor measurement, when 

given specific damage parameters, compared to the signals obtained using FE simulation; 

D3: 𝑳 =  25, 𝑾 = 1, 𝒕𝒉 = 1, 𝒙 = -75, 𝒚 = -1, and 𝒛 = -1;  

D4: 𝑳 = 100, 𝑾 = 3, 𝒕𝒉 = 1, 𝒙 =  50, 𝒚 =  1, and 𝒛 =  0; 

all parameters are in 𝒎𝒎. 

 

 

3.4 Damage Inference by Approximate Bayesian Computation 

Approximate Bayesian Computation is an efficient methodology for solving 

Bayesian inverse problems [96]. It is practically useful when the likelihood function of 

the model is unknown or difficult to compute. To apply ABC inference over a sensor 

measurement, a large set of ultrasonic signals, of known damage parameters, should be 

compared in a probabilistic manner to the reference signal measured from the real 

structure. The trained ANNs will serve as the forward models for LW prediction based 

on the input damage parameters. This makes possible the generation of a huge dataset of 

signals in a short period of time, rendering the ABC inference algorithm 

computationally applicable and suitable for onboard and/or online applications. 
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In this work, Approximate Bayesian Computation by Subset Simulation (ABC-

SubSim) [96] is used to infer six damage parameters (size and position) from ultrasonic 

signals measured by specific sensor(s). To confer the reader with a minimal background 

about the inference methodology, the standard ABC algorithm is first introduced under 

a unified notation, before explaining the more efficient ABC-SubSim variant applied in 

this work. 

 

3.4.1 Standard ABC for Damage Inference using One Sensor Measurement 

Figure 3.10 shows a flowchart that explains how a standard ABC algorithm can 

be applied to the current damage identification problem when using one sensor 

measurement. The algorithm compares a randomly-generated ultrasonic wave (𝑣) 

against the output (𝑢) of the model (real structure), for which the inference of model 

parameters (damage parameters in this case) is needed. A suitable comparison distance 

metric (𝜌) is chosen, and a threshold of acceptance or rejection is set using a tolerance 

parameter (𝜖). The algorithm then stochastically changes the values of the unknown 

parameters (𝜃𝑟) until the distance 𝜌 between the model’s output (𝑢) and the random 

signal (𝑣) lies within the set threshold (𝜌 ≤ 𝜖). This random sample (𝜃𝑟) is then called a 

matching sample. This process is repeated until the desired number of matching samples 

(𝑁) is attained. Finally, the set of all parameters passing this threshold condition (Θ𝑟), 

are selected to represent a sample approximation of the PDFs of the real model 

parameters, named as approximated posterior. The ranges that were used for the 

random generation of the six damage parameters are listed in Table 3.3. Problem 

geometric constraints are respected during the random parameter-generation process.  
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The number of generated samples (𝑁) is identified by the user. A higher 

number of samples would provide a better quality of the approximated posterior. 

However, this is associated with higher computational demand. The quality of the 

approximated posterior also depends on a suitable selection of the distance metric (𝜌) 

and the tolerance parameter (𝜖). The distance metric can be any kind of evaluation of 

the difference between the real sensor measurement (𝑢) and that predicted by the ANN 

surrogate model (𝑣) based on the randomly-generated damage parameters (𝜃𝑟). The 

tolerance parameter (𝜖) accounts for how close the two signals are, through the chosen 

distance metric. The choice of 𝜖 is a matter of the amount of computational effort that 

the user wishes to expend, with a possible guiding principle [96]. For a sufficiently 

small value (𝜖 → 0),  𝑣 → 𝑢, hence all accepted samples come from the closest 

approximation to the required posterior. This desirable fact is at the expense of a high 

computational effort (usually prohibitive) to get 𝑣 = 𝑢 using the forward model, i.e., 

using the ANN surrogate model in this case. On the contrary, as 𝜖 → ∞, all accepted 

observations come from the prior (random samples). Therefore, the choice of 𝜖 reflects 

a trade-off between computability and accuracy. 
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Figure 3.10. A flowchart explaining ABC damage inference from one sensor measurement 

using an ANN Lamb-wave surrogate model. 

 

 

 

Table 3.3. Range of definition of the damage parameters when randomly generating 

damage cases (𝜽𝒓) for the application of ABC or ABC-SubSim. 

Damage parameter 𝐿 𝑊 𝑡ℎ 𝑥 𝑦 𝑧 

Minimum value (𝑚𝑚) 0 0 0 -125 -1.5 -1.5 

Maximum value (𝑚𝑚) 250 3.2 3 125 1.5 1.5 

 

 

3.4.2 ABC-SubSim for Damage Inference using One Sensor Measurement 

ABC-SubSim merges the ABC principle with the technique of Subset 

Simulation [104-106] to achieve computational efficiency in a sequential way. It was 

proposed by Chiachío et al. [96] as a combination between the ABC algorithm and a 

highly-efficient rare-event sampler that draws conditional samples from a nested 

sequence of sub-domains. Figure 3.11 provides a simplified flowchart explaining the 
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implementation of ABC-SubSim for LW-based damage inference using one sensor 

measurement. The algorithm is implemented such that a maximum number of 

simulation levels (𝑚) is allowed in case the specified final tolerance parameter (𝜖𝑓) is 

too small. 

The algorithm starts by generating 𝑁 samples of random damage parameters 

that satisfy the problem's geometric conditions (prior). Each random sample is denoted 

by 𝜃𝑟, and the set of all random samples is denoted by Θ𝑟. The ANN LW surrogate 

model is used to generate 𝑁 predicted sensor measurements from Θ𝑟. Each predicted 

sensor measurement is denoted by 𝑣, and the whole set of predicted measurements is 

denoted by 𝑉. The distance 𝜌 between each of the predicted sensor measurements and 

the real sensor measurement (𝑢) is calculated, giving a set (𝛲) of 𝑁 distances. Θ𝑟 is then 

sorted according to the obtained distances, and an amount of  𝑁𝑝0 samples of the lowest 

𝜌 values are chosen out of the 𝑁 available samples, where 𝑝0 is a user-defined 

conditional-probability value. The chosen samples are used as seeds from which new 

𝑁(1 − 𝑝0) samples closer to 𝑢 are generated. This finalizes one simulation level, where 

new 𝑁 samples, closer to 𝑢, are available for the next simulation level. The tolerance 

parameter (𝜖), attained at the current simulation level, is calculated as the average 

between the 𝑁𝑝0
𝑡ℎ  and the (𝑁𝑝0 + 1)

𝑡ℎ distance. If the stopping criterion (𝜖 ≤ 𝜖𝑓) is 

satisfied, the algorithm stops, otherwise, this process is repeated up to 𝑚 simulation 

levels, where 𝑚 is fixed after a trial and error process. 

For sample generation, the chosen 𝑁𝑝0 samples are used as seeds for 𝑁𝑝0 

Markov chains of length 1/𝑝0 each, where the new (1/𝑝0 − 1) samples in each chain 

are generated by the modified Metropolis algorithm (MMA) proposed in [104]. This 

process is explained in equation (3.1). 
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 𝜃𝑟(𝑖, 𝑝) = 𝜃𝑟(𝑖 − 1, 𝑝) + 𝑆𝑇𝐷𝑝𝑟𝑜𝑝(𝑗 − 1, 𝑝) × 𝑟𝑎𝑛𝑑 (3.1) 

 

where: 

• 𝑖: is the index of the sample within the Markov chain, ranging from 1 to 1/𝑝0; 

• 𝑝: is the index of the generated damage parameter, ranging from 1 to the 

number of inferred parameters (6 damage parameters in this case); 

• 𝑗: is the index of the current simulation level, ranging from 1 to 𝑚; 

• 𝑆𝑇𝐷𝑝𝑟𝑜𝑝: is the proposed standard deviation within which a new sample is 

generated around the parent sample; 

• 𝑟𝑎𝑛𝑑: is a standard normally-distributed random number; 𝑟𝑎𝑛𝑑 ∈ [0, 1]. 

 

Each one of the seeds is used as a “parent” from which (1/𝑝0 − 1) “children” 

samples are generated sequentially. The predicted sensor measurement (𝑣) of each 

newly-generated child (𝜃𝑟(𝑖)) is tested against the real sensor measurement (𝑢) utilizing 

the distance metric. If the distance between 𝑣 and 𝑢 is less than or equal to the current 

tolerance parameter (𝜌 ≤ 𝜖), the child is accepted, otherwise, the child is replaced by its 

previous parent sample (𝜃𝑟(𝑖 − 1)). For this process, the choice of 𝑆𝑇𝐷𝑝𝑟𝑜𝑝 is 

recommended to be such that the acceptance rate (𝑅𝑎𝑐𝑐) of the newly-generated samples 

is within a range of 20% to 40% of 𝑁 [107]. This choice is problem-dependent and may 

need the use of different 𝑆𝑇𝐷𝑝𝑟𝑜𝑝 values at each simulation level, based on the range 

and convergence of each damage parameter. This process depends on the experience 

and engineering common sense of the user and may include some trial and error. 

Another alternative is to adaptively choose 𝑆𝑇𝐷𝑝𝑟𝑜𝑝 [96, 108]. 

This sample generation process shows the strength that Subset Simulation adds 

to ABC, given that such a small probability (𝑁𝑝0) is converted into a sequence of larger 
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conditional probabilities. A new generation of samples is bred out of the best samples 

from the previous generation, where accepting new samples depends on their evaluation 

based on the proposed distance metric (𝜌). Repeating this process over several 

simulation levels leads to the convergence into a rich approximated posterior, while 

attaining a low enough tolerance parameter (𝜖). 

The choice of the conditional probability 𝑝0 has a significant influence on the 

number of intermediate simulation levels required by the algorithm. The higher 𝑝0 is, 

the greater is the number of simulation levels needed to reach the specified tolerance 𝜖𝑓. 

This necessarily increases the computational cost of the algorithm. Conversely, the 

smaller 𝑝0 is, the lower is the quality of the approximated posterior. The choice of 𝑝0, 

therefore, requires a trade-off between computational efficiency and the accuracy of the 

algorithm, in terms of the quality of the ABC posterior approximation. It is 

recommended in the literature [96, 104, 107] to use a value in the range of 0.1 ≤ 𝑝0 ≤

0.3. The values of ABC-SubSim control parameters that were used in this study are 

listed in Section 3.4.3. 

The well-known cosine distance was chosen as the distance metric for 

comparison between the real (𝑢) and predicted (𝑣) ultrasonic signals. The metric was 

used in absolute value to have a range of 0 ≤ 𝜌 ≤ 1, as shown in equation (3.2). 

 𝜌 = |1 −
𝑢𝑣′

√(𝑢𝑢′)(𝑣𝑣′)
| (3.2) 

 

where: 

• 𝑢′ and 𝑣′: are the transposes of the signals 𝑢 and 𝑣, respectively, treated as 

vectors of data points. 
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Figure 3.11. A flowchart explaining ABC-SubSim damage inference from one sensor 

measurement using an ANN Lamb-wave surrogate model. 

 

 

3.4.3 Data Fusion: Applying ABC-SubSim to Multiple Sensor Measurements 

To obtain an accurate and robust damage inference, more than one sensor 

measurement may be used. The application of ABC-SubSim using multiple sensor 

measurements requires the use of multiple LW surrogate models (i.e., trained ANNs), 

each for the prediction of one of the sensor measurements, as mentioned earlier in 

Section 3.3.1. Assuming the use of 𝑺 sensor measurements, the same procedure shown 

in the flowchart of Figure 3.11 is used. However, 𝑺 ANNs are employed to predict 𝑺 

sets of sensor measurements (𝑉1, 𝑉2, ..., 𝑉𝑺), each composed of 𝑁 predicted 

measurements of the same sensor, but corresponding to the 𝑁 different random damage 

parameters (Θ𝑟). The 𝑺 sets (𝑉1, 𝑉2, ..., 𝑉𝑺) are then compared to the 𝑺 real sensor 
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measurements (𝑢1, 𝑢2, ..., 𝑢𝑺). To this end, each single sample of random damage 

parameters 𝜃𝑟 will have 𝑺 distances corresponding to the 𝑺 sensor measurements. 

To proceed with the algorithm, data fusion of the 𝑺 sensors is proposed at this 

stage, where the 𝑺 distances are all merged into one distance metric. The combination of 

the distances is performed as a simple multiplication, accounting for a logical AND 

operator, according to equation (3.3). After the metric combination, each 𝜃𝑟 will have a 

single corresponding distance metric 𝜌 = 𝛲(𝑛), and the rest of the algorithm can then 

be continued similar to ABC-SubSim using a single sensor measurement (refer to 

Figure 3.11). 

 𝛲(𝑛) =∏𝜌𝑠(𝑛)

𝑺

𝑠=1

 (3.3) 

 

where: 

• 𝑛: is the index of the sample 𝜃𝑟 within the set Θ𝑟, ranging from 1 to 𝑁; 

• 𝑠: is the index of the corresponding sensor measurement, ranging from 1 to 𝑺. 

 

The values of all the ABC-SubSim control parameters that were used in this 

study are listed in Table 3.4. The number of simulation levels (𝑚) was limited up to 13, 

but was controlled by the acceptance rate of the newly generated samples. As 

mentioned earlier, an acceptance rate (20% ≤ 𝑅𝑎𝑐𝑐 ≤ 40%) is usually sought to have 

good breeding. Thus, all simulation levels with an 𝑅𝑎𝑐𝑐 < 15% were disregarded. 

Consequently, depending on the damage case and the used sensor measurement(s), 𝑚 

generally varied between 10 and 13 simulation levels. 
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Table 3.4. ABC-SubSim control parameters used in this study. 

 

 

3.5 Results and Discussion 

3.5.1 Damage Detection 

The inference results are visualized as scatter plots of the approximated 

posterior of the damage parameters (Θ𝑟) determined by ABC-SubSim. For example, 

Figure 3.12(a) shows the damage-inference results of the intact weld using 𝑈2𝑆1. Each 

scatter plot in the figure corresponds to two of the damage parameters plotted together. 

The plots on the diagonals are probability histograms representing the PDF of each of 

the damage parameters. While the size parameters of the damage are all successfully 

inferred to be null (1st three columns), the virtual position of the nonexistent damage can 

be anywhere as predicted in the scatter plots of the position parameters (the last three 

columns). 

Control parameter Value 

𝑁 8000 samples/simulation level 

𝑚 ≤ 13 simulation levels 

𝜖𝑓 10−6𝑺 

𝑝𝑜 0.25 

𝑆𝑇𝐷𝑝𝑟𝑜𝑝 

[
 
 
 
 
 
 
 
 
 
 
 
10 0.5 0.5 10 0.5 0.5
10 0.4 0.4 10 0.4 0.4
5 0.3 0.3 5 0.3  0.3
5  0.2  0.2  5  0.2  0.2
3  0.1  0.1  3  0.1  0.1
3  0.05  0.05  3  0.05  0.05
2  0.05  0.05  2  0.05  0.05
2  0.05  0.05  2  0.05  0.05
1  0.05  0.05  1  0.05  0.05
1  0.05  0.05  1  0.05  0.05
1  0.05  0.05  1  0.05  0.05
1  0.05  0.05  1  0.05  0.05]

 
 
 
 
 
 
 
 
 
 
 

 𝑚𝑚  
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To ensure the healthy case can still be captured in the presence of noise, the 

intact signal was corrupted with random colored noise of a frequency up to 450 𝑘𝐻𝑧. 

The maximum noise level (NL) is 3% of the healthy signal’s maximum amplitude 

(check Section 3.5.5 for the effect of sensing-noise level). Figure 3.12(b) shows the 

inference results after adding the sensing noise to the tested healthy signal. Damage is 

inferred by calculating the maximum a posteriori (MAP) of each damage parameter 

using its obtained PDF. A damage-detection rule was set such that all the three damage-

size parameters (𝐿, 𝑊, and 𝑡ℎ) should surpass their set thresholds (α, β, and γ, 

respectively) to indicate that a wormhole damage exists. Since the targeted damage type 

is the wormhole welding defect (a relatively macro-sized damage type), the thresholds 

were chosen to be α = 1 𝑚𝑚, β = 0.1 𝑚𝑚, and γ = 0.1 𝑚𝑚. Size thresholds are 

problem-specific and should be chosen carefully based on the problem at hand and the 

targeted damage types and shapes. 

MAP was calculated for the analyzed case (Figure 3.12(b)) to be 𝐿 = 25.2 𝑚𝑚, 

𝑊 = 0.02 𝑚𝑚 (< β), and 𝑡ℎ = 0.01 𝑚𝑚 (< γ). Even though the length parameter was 

not successfully inferred, it can still be concluded that there is no damage within the 

weld from the inference of the width (𝑊) and thickness (𝑡ℎ) damage parameters 

(second and third columns). 
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(a) Without sensing noise – 𝒎 = 10 simulation levels, 𝑹𝒂𝒄𝒄 = 22.1%. 

 

(b) With sensing noise – 𝒎 = 11 simulation levels, 𝑹𝒂𝒄𝒄 = 22.1%. 

Figure 3.12. ABC-SubSim damage-inference results of the intact weld using 𝑼𝟐𝑺𝟏: (a) 

without and (b) with adding sensing noise. 
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3.5.2 Damage Identification and Inference Evaluation 

This section presents the results of the damage parameter inference in the weld 

joint taken as a case study. Since many testing damage cases are available (namely 594 

cases), only 18 representative cases are chosen to be analyzed and discussed. The cases 

were chosen carefully to be representative of all the 594 testing damage cases. Table 3.5 

lists the nominal damage parameters of the chosen damage cases of which the simulated 

ultrasound signals were produced. To reproduce a more realistic sensor measurement, 

the FE data of each testing damage case was contaminated with random colored noise, 

as was done with the intact signals. 

Figure 3.13 and Figure 3.14 show the ABC-SubSim damage-inference results 

of two test cases using 𝑈3𝑆1. Figure 3.13(a) shows the scatter plots of all the Θ𝑟 samples 

starting from the prior at the first simulation level and until reaching the final 

approximated posterior at the final simulation level, which is marked in blue color. 

Samples of the intermediate simulation levels are drawn using increasing gray tones to 

show the strength in the algorithm’s convergence towards the final damage inference. 

The empty and less dense regions in the prior reveal the geometric constraints that were 

imposed by the problem at hand. 

Figure 3.13(b) displays only the final approximated posterior of the same 

damage case, along with the labels of the real damage parameters. The results show that 

the damage parameters are efficiently inferred using only one sensor measurement. The 

posterior PDF values are distributed in narrow regions, thus providing a good damage 

identification of the weld joint. However, this is not always the case when a smaller 

damage size is considered, as can be seen in Figure 3.14. When trying to capture small 

damage of 25-𝑚𝑚 length, some scatter plots appear to be more spread over the damage-
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parameter ranges. Although the highest probabilities (seen on the diagonal plots) are 

close enough to the actual values for all the damage parameters, the spread in the scatter 

plots shows that the inference is subject to higher uncertainty. Hence, a quantitative 

approach is used to evaluate the damage-inference results and make them more 

comparable and physically meaningful. 

 

Table 3.5. Damage parameters of the selected damage cases. 

Test case # 𝐿 (𝑚𝑚) 𝑊 (𝑚𝑚) 𝑡ℎ (𝑚𝑚) 𝑥 (𝑚𝑚) 𝑦 (𝑚𝑚) 𝑧 (𝑚𝑚) 𝜃 (𝑚𝑚) 

1 25 1 1 -75 -1 -1 [  25,    1,    1,  -75,    -1,    -1] 

2 25 1 2 0 1 0 [  25,    1,    2,     0,    1,       0] 

3 25 2 1 -50 0 -0.5 [  25,    2,    1,  -50,     0, -0.5] 

4 25 2 2 50 -1 -0.5 [  25,    2,    2,   50,    -1, -0.5] 

5 25 3 1 0 0 0 [  25,    3,    1,     0,      0,     0] 

6 25 3 2 50 1 -0.5 [  25,    3,    2,   50,     1, -0.5] 

7 100 1 1 -75 -1 -1 [100,    1,    1,  -75,   -1,     -1] 

8 100 1 2 0 1 0 [100,    1,    2,     0,    1,       0] 

9 100 2 1 -50 0 -0.5 [100,    2,    1,  -50,    0,  -0.5] 

10 100 2 2 50 -1 -0.5 [100,    2,    2,   50,   -1,  -0.5] 

11 100 3 1 0 0 0 [100,    3,    1,     0,     0,      0] 

12 100 3 2 50 1 -0.5 [100,    3,    2,   50,    1,  -0.5] 

13 200 1 1 0 -1 -1 [200,    1,    1,     0,   -1,     -1] 

14 200 1 2 0 1 0 [200,    1,    2,     0,    1,       0] 

15 200 2 1 0 0 -0.5 [200,    2,    1,     0,    0,  -0.5] 

16 200 2 2 0 -1 -0.5 [200,    2,    2,     0,   -1,  -0.5] 

17 200 3 1 0 0 0 [200,    3,    1,     0,    0,       0] 

18 200 3 2 0 1 -0.5 [200,    3,    2,     0,    1,  -0.5] 
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(a) All simulation levels superposed in the scatter plots (diagonal plots are excluded). Each 

scatter plot presents samples of 𝚯𝒓 at different simulation levels, where the final posterior 

samples are marked in blue. To reveal the uncertainty reduction, the intermediate 

posterior samples are superposed in increasing gray tones. Light gray dots correspond to 

prior samples (initial random 𝚯𝒓 at simulation level = 1). 

 

(b) Final simulation level. The real damage parameters are marked and labeled in red 

color. 

 

Figure 3.13. ABC-SubSim damage-inference results of test case 15 (refer to Table 3.5) 

using 𝑼𝟑𝑺𝟏 – 𝒎 = 13 simulation levels and 𝑹𝒂𝒄𝒄 = 22.9%. 
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Figure 3.14. ABC-SubSim damage-inference results of test case 5 (refer to Table 3.5) using 

𝑼𝟑𝑺𝟏 – 𝒎 = 12 simulation levels and 𝑹𝒂𝒄𝒄 = 17.9%. The real damage parameters are 

marked and labeled in red color. 

 

 

The prediction of the damage parameters was performed based on the MAP. 

The precision (𝑃𝑟) of damage prediction was calculated using equation (3.4), taking an 

acceptance threshold value of 90%. A value of 90% means that the error in predicting 

the damage parameter is 10% of the damage parameter’s range, imposed by the 

problem’s geometrical constraints. The ranges that were used for the six damage 

parameters being predicted are listed in Table 3.3. Note that equation (3.4) gives an 

array of six precision values, each corresponding to one of the predicted damage 

parameters. 

 
𝑃𝑟 (%) = 100 × [1 −

|𝜃 − 𝜃map
′ |

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛
] 

(3.4) 

 

where: 

• 𝜃: is the set of the real damage parameters; 𝜃 = [𝐿,𝑊, 𝑡ℎ, 𝑥, 𝑦, 𝑧] in 𝑚𝑚; 



152 
 

• 𝜃𝑚𝑎𝑝
′ : is the set of predicted damage parameters based on MAP; 

𝜃𝑚𝑎𝑝
′ = [𝐿′,𝑊′, 𝑡ℎ′, 𝑥′, 𝑦′, 𝑧′] in 𝑚𝑚; 

• 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛: are the set of maximum and minimum allowed values of the 

damage parameters, respectively, imposed by the geometrical constraints. 

 

On the other hand, the uncertainty (𝜉) in the damage inference is a measure of 

how unconfident the inference of each damage parameter is. This can be seen in the 

dispersion of the scatter plot of this specific parameter. If the scatter plot is narrow and 

definite (like those in Figure 3.13), then the inference is more confident, and the 

uncertainty is low. On the contrary, if the data are spread over a big scale of the damage 

parameter’s range (e.g., 𝑦-position in Figure 3.14), then the inference of this parameter 

is uncertain, and the uncertainty is high. The uncertainty was calculated based on 

equation (3.5), and a threshold 15% of the damage parameter’s range was adopted as 

the maximum acceptable value. 

 𝜉 (%) = 100 ×
2𝜃𝜎

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛
 (3.5) 

 

where: 

• 𝜃𝜎: is the standard deviation of the approximated posterior Θ𝑟. 

 

3.5.3 ABC-SubSim based on One Sensor Measurement 

Table 3.6 and Table 3.7 are summaries of the inference results of all the 18 

chosen testing damage cases using 𝑈2𝑆1 and 𝑈3𝑆1, respectively. Damage parameters that 

are inferred with a precision of less than 90% are marked in red color in the tables to 

indicate a lower precision. Uncertainties of values above 15% of the damage 
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parameter’s range are also marked in red color, signifying higher uncertainty. Values in 

the tables written in bold are not to be considered, at this level, due to a symmetry 

problem, related to S1, which will be discussed later. 

High uncertainty in the inference of at least one of the damage parameters is 

attained for 9 out of 18 damage cases when using the measurement 𝑈2𝑆1, and for 11 out 

of 18 damages cases when using the measurement 𝑈3𝑆1. Higher uncertainties and lower 

precision in the damage prediction are mostly associated with the 1st six damage cases, 

where the damage length is relatively small (𝐿 = 25 𝑚𝑚). On the other hand, the 

damage cases of 𝐿 = 200 𝑚𝑚 (test cases 13 till 18) are perfectly inferred, with high 

precision and low uncertainties for both sensor measurements. Damage cases of 𝐿 = 

100 𝑚𝑚 (test cases 7 till 12) are inferred with high precision as well, however, more 

uncertainties exist among their results. 
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Table 3.6. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟏 sensor 

measurement, for the selected damage cases. 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1,  -75,    -1,    -1] [  25.31, 1.00, 1.40,  77.40,  0.28, -0.32] [99.88, 99.93, 86.52, 39.04, 57.45, 77.36] [15.43, 19.37, 18.27, 39.77, 26.00, 27.83] 

2 [  25,    1,    2,     0,     1,      0] [  25.68, 0.89, 1.78,    6.89, -0.87,  0.17] [99.73, 96.69, 92.57, 97.24, 37.78, 94.37] [  9.95,   3.24,   9.07,   3.36, 12.97,   6.78] 

3 [  25,    2,    1,  -50,     0, -0.5] [  25.42, 1.90, 0.92, -48.55, -0.56, -0.43] [99.83, 96.97, 97.36, 99.42, 81.49, 97.73] [  4.13, 19.75,   9.57, 32.07, 21.13, 23.63] 

4 [  25,    2,    2,   50,    -1, -0.5] [  24.91, 1.79, 1.90, -50.17, -1.03, -0.33] [99.96, 93.46, 96.51, 59.93, 99.10, 94.45] [  0.36, 26.90, 10.20, 22.17, 10.84, 11.71] 

5 [  25,    3,    1,     0,     0,     0] [  25.30, 3.00, 0.65, -22.47, -0.01,  0.24] [99.88, 99.95, 88.20, 91.01, 99.57, 91.94] [18.45,   2.79,   8.07, 13.56, 11.56,   9.41] 

6 [  25,    3,    2,   50,     1, -0.5] [  24.88, 2.56, 2.00, -50.77,  1.36, -0.38] [99.95, 86.22, 99.90, 59.69, 88.00, 96.10] [  0.28,   6.29,   5.02,   8.88, 19.04,   5.45] 

7 [100,    1,    1,  -75,   -1,    -1] [  97.74, 0.89, 1.15,  76.37, -0.78, -0.86] [99.09, 96.61, 95.00, 39.45, 92.72, 95.47] [  1.75, 11.33,   5.66, 35.67,   8.20,   3.86] 

8 [100,    1,    2,     0,    1,      0] [100.53, 1.01, 1.98,   -1.11,  1.01,  0.00] [99.79, 99.58, 99.49, 99.56, 99.64, 99.84] [  2.87,   2.94,   3.71,   1.76,   7.59,   2.64] 

9 [100,    2,    1,  -50,    0, -0.5] [100.35, 1.97, 0.99,  45.27, -0.08, -0.52] [99.86, 99.01, 99.75, 61.89, 97.17, 99.33] [17.61,   4.66,   6.46, 35.30,   7.18,   6.82] 

10 [100,    2,    2,   50,   -1, -0.5] [100.84, 2.00, 1.88, -49.75, -0.98, -0.50] [99.66, 100.0, 96.16, 60.10, 99.37, 99.85] [  2.38, 18.18,   6.98, 39.80,   7.03,   3.79] 

11 [100,    3,    1,     0,     0,     0] [145.10, 2.99, 0.93,  25.01,  0.18, -0.04] [81.96, 99.65, 97.82, 90.00, 93.91, 98.61] [15.50,   1.17,   5.67, 15.59, 16.02,   3.37] 

12 [100,    3,    2,   50,    1, -0.5] [100.67, 2.94, 2.05, -51.15,  1.01, -0.45] [99.73, 98.24, 98.47, 59.54, 99.81, 98.28] [  2.87,   2.78,   6.79, 40.71, 10.68,   3.68] 

13 [200,    1,    1,     0,   -1,   -1] [200.80, 0.93, 1.06,   -2.15, -0.80, -0.95] [99.68, 97.76, 97.97, 99.14, 93.25, 98.28] [  6.08, 14.98,   4.35,   4.33,   8.26,   3.26] 

14 [200,    1,    2,     0,    1,     0] [200.62, 0.97, 2.03,    1.61,   1.09,  0.01] [99.75, 98.91, 98.96, 99.35, 97.01, 99.71] [  1.11,   3.89,   4.52,   4.56, 10.87,   2.97] 

15 [200,    2,    1,     0,    0, -0.5] [199.95, 2.03, 1.02,   -2.27, -0.02, -0.51] [99.98, 99.21, 99.46, 99.09, 99.34, 99.83] [  6.57,   3.34,   3.33,   5.12,   6.31,   2.29] 

16 [200,    2,    2,     0,   -1, -0.5] [200.16, 2.01, 1.95,   -2.46, -1.07, -0.50] [99.94, 99.57, 98.26, 99.02, 97.66, 99.95] [  0.88, 20.94,   5.39,   2.47,   5.69,   3.08] 

17 [200,    3,    1,     0,    0,      0] [195.37, 2.98, 1.08,   -5.51,  0.02,  0.05] [98.15, 99.46, 97.44, 97.80, 99.33, 98.41] [11.95,   1.15,   5.65, 10.59, 12.21,   2.79] 

18 [200,    3,    2,     0,    1, -0.5] [178.95, 2.98, 1.99,   -8.30,  0.84, -0.48] [91.58, 99.50, 99.62, 96.68, 94.64, 99.37] [  8.81,   2.12,   6.73,   5.63,   9.63,   3.60] 
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Table 3.7. A summary of the ABC-SubSim inference results using 𝑼𝟑𝑺𝟏 sensor 

measurement, for the selected damage cases. 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1,  -75,    -1,    -1] [  24.45, 1.02, 0.99, -74.49, -1.18, -0.98] [99.78, 99.33, 99.62, 99.80, 94.02, 99.35] [  0.49, 18.55,   7.50, 44.42, 26.56,   4.98] 

2 [  25,    1,    2,     0,     1,      0] [  25.36, 1.02, 1.74,    0.87, -0.46, -0.00] [99.86, 99.52, 91.19, 99.65, 51.28, 99.90] [  0.27, 17.19,   7.60,   1.50, 14.85,   3.77] 

3 [  25,    2,    1,  -50,     0, -0.5] [  24.47, 2.04, 0.96, -47.68,  0.16, -0.46] [99.79, 98.86, 98.75, 99.07, 94.76, 98.74] [  0.35, 19.79,   9.90, 34.16, 27.77,   6.95] 

4 [  25,    2,    2,   50,    -1, -0.5] [  25.21, 2.32, 2.11, -51.13, -0.73, -0.38] [99.92, 89.89, 96.30, 59.55, 90.94, 96.05] [  0.63, 25.69, 10.76, 40.97, 16.79,   5.54] 

5 [  25,    3,    1,     0,     0,     0] [  25.11, 2.68, 0.69,   -3.34,  0.33,  0.45] [99.95, 90.13, 89.67, 98.66, 88.92, 85.15] [  5.92,   8.23, 10.10,   3.21, 37.63, 13.98] 

6 [  25,    3,    2,   50,     1, -0.5] [  24.80, 1.58, 1.82, -49.56,  0.93, -0.48] [99.92, 55.60, 93.85, 60.18, 97.56, 99.48] [  0.29, 43.67, 12.26, 39.00, 14.32,   7.25] 

7 [100,    1,    1,  -75,   -1,    -1] [  97.07, 1.12, 0.96,  75.90, -1.05, -1.01] [98.83, 96.13, 98.70, 39.64, 98.46, 99.74] [  1.10, 34.18,   6.42, 59.15, 12.49,   4.29] 

8 [100,    1,    2,     0,    1,      0] [  99.54, 1.00, 1.97,   -2.29,  0.87, -0.00] [99.82, 99.97, 98.85, 99.08, 95.75, 99.85] [  8.21,   2.19,   2.65,   4.72, 26.81,   1.81] 

9 [100,    2,    1,  -50,    0, -0.5] [100.78, 1.84, 1.06,  49.99,  0.18, -0.40] [99.69, 94.96, 97.93, 60.00, 94.03, 96.51] [  1.36,   6.18,   5.06, 32.21,   9.81,   4.08] 

10 [100,    2,    2,   50,   -1, -0.5] [100.96, 2.08, 1.80,  49.78, -0.80, -0.57] [99.62, 97.39, 93.18, 99.91, 93.41, 97.67] [  1.79, 25.61,   9.31, 32.55, 17.36,   4.42] 

11 [100,    3,    1,     0,     0,     0] [  93.45, 3.01, 1.06,    2.19,  0.15, -0.01] [97.38, 99.74, 97.97, 99.12, 94.88, 99.77] [  8.11,   1.54,   4.68,   5.10, 11.49,   1.97] 

12 [100,    3,    2,   50,    1, -0.5] [102.81, 2.94, 1.95,  50.88,  1.04, -0.49] [98.87, 98.18, 98.44, 99.65, 98.62, 99.76] [  2.74, 14.85,   7.41, 39.79, 12.51,   3.91] 

13 [200,    1,    1,     0,   -1,   -1] [199.61, 1.20, 1.00,    2.11, -0.81, -0.97] [99.85, 93.71, 99.95, 99.16, 93.65, 99.10] [  1.79, 16.44,   3.85,   1.82,   9.21,   2.67] 

14 [200,    1,    2,     0,    1,     0] [199.71, 1.01, 1.96,    2.83,  1.23,  0.00] [99.88, 99.72, 98.75, 98.87, 92.39, 99.97] [  8.04,   2.85,   3.15,   8.43, 38.17,   1.92] 

15 [200,    2,    1,     0,    0, -0.5] [199.85, 2.12, 0.96,    0.82,  0.06, -0.54] [99.94, 96.32, 98.58, 99.67, 98.07, 98.59] [  0.79,   6.07,   4.19,   1.58,   7.07,   3.64] 

16 [200,    2,    2,     0,   -1, -0.5] [199.50, 2.38, 1.89,   -0.42, -0.92, -0.52] [99.80, 88.23, 96.39, 99.83, 97.47, 99.24] [  1.69, 14.09,   6.02,   1.60, 10.61,   2.82] 

17 [200,    3,    1,     0,    0,      0] [199.58, 3.01, 1.00,    0.08,  0.14, -0.02] [99.83, 99.56, 99.99, 99.97, 95.38, 99.38] [  1.22,   1.80,   4.38,   2.76, 14.93,   2.49] 

18 [200,    3,    2,     0,    1, -0.5] [201.15, 3.00, 1.97,    3.68,  0.94, -0.50] [99.54, 99.91, 98.85, 98.53, 98.06, 99.90] [  8.69,   9.69,   5.26,   8.75, 10.69,   2.72] 

 

 

Figure 3.15 shows ABC-SubSim damage-inference results of test case 12 using 

𝑈2𝑆1. While all damage parameters are perfectly inferred, two 𝑥-positions of opposite 

values are predicted. This is due to the symmetry associated with the sensing point S1, 

as both the actuator and S1 are located within the 𝑌𝑍-plane, the plane of symmetry of 

the plate. This is demonstrated in Figure 3.16(a) which illustrates an example of two 

identical damages, each having an opposite 𝑥-position with respect to the other. The two 

damages are symmetric with respect to the 𝑌𝑍-plane, where both the actuator and the 

sensor are located. Hence, assuming there is no noise or variation in the boundary 

conditions or any other factor affecting the measurements, the two damage cases yield 

the same LW measurements at the sensor. This fact should be taken into consideration 
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when trying to infer the damage parameters using measurements from a single sensor 

(S1). 

To verify this concept, 𝑈2𝑆1 simulation results of the damage case D2 were 

compared to those of the damage case having the same damage parameters but an 

opposite 𝑥-position; i.e., D2-sym: 𝐿 = 50 𝑚𝑚, 𝑊 = 2 𝑚𝑚, 𝑡ℎ = 1.5 𝑚𝑚, 𝑥 = 75 𝑚𝑚, 

𝑦 = 0 𝑚𝑚, and 𝑧 = 0.25 𝑚𝑚. The two signals overlap without any visible difference as 

can be seen in Figure 3.16(b). 

It is evident, in Table 3.6 and Table 3.7, that either of the symmetric 𝑥-

positions is successfully inferred in all of the test cases (values written in bold). The 

other symmetric values are also predicted but with a lower probability. This can be seen 

when visualizing the approximated posterior Θ𝑟, as was shown in Figure 3.15. 

To avoid the symmetry of S1, two additional sensing points were used as 

shown in Figure 3.17. The coordinates of the two added sensing points, with respect to 

the coordinate-axis defined at the center of the plate, are S2(-100, -80) and S3(-100, 80), 

expressed in 𝑚𝑚. Similar to S1, displacements in the 𝑈2 and 𝑈3 directions were 

recorded, and the same methodology was repeated for all the sensor measurements 

(𝑈2𝑆2, 𝑈3𝑆2, 𝑈2𝑆3, and 𝑈3𝑆3), including preprocessing, data balancing, sample reduction, 

ANN training, and ABC-SubSim damage inference. 
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Figure 3.15. ABC-SubSim damage-inference results of test case 12 (refer to Table 3.5) 

using 𝑼𝟐𝑺𝟏 – 𝒎 = 13 simulation levels and 𝑹𝒂𝒄𝒄 = 22.2%. The real damage parameters are 

marked and labeled in red color. The 𝒙-position, marked in black, is the symmetric value 

of the actual 𝒙-position. 

 

 

 

 

(a) 
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(b) 

Figure 3.16. (a) An illustration demonstrating the need for using the whole signal, 

including the wave’s boundary reflections, to perceive damages lying outside the coverage 

of the sensing path. The illustration also shows how two symmetric damage cases would 

yield the same LW measurement at a sensor located along the 𝒀-axis. The damages are 

drawn in red color. (b) FE results of symmetric sample damage cases; 

D2:         𝑳 = 50, 𝑾 = 2, 𝒕𝒉 = 1.5, 𝒙 = -75, 𝒚 = 0, and 𝒛 = 0.25; 

D2-sym: 𝑳 = 50, 𝑾 = 2, 𝒕𝒉 = 1.5, 𝒙 = 75,  𝒚 = 0, and 𝒛 = 0.25; 

all parameters are in 𝒎𝒎. 

 

  

Figure 3.18 shows the boxplots summarizing ABC-SubSim damage-inference 

results for the whole testing dataset (594 cases) using 𝑈2𝑆2. Results of different damage 

lengths are separated to investigate the effect of the damage size on the accuracy of 

prediction. The boxplot of each damage parameter consists of a box bounded by the 25th 

and 75th percentiles (lower and upper quartiles) of the 594 inferences, with a central 

mark representing the median. Hence, the interquartile range (IQR) represented within 

the box signifies 50% of the plotted inference cases. The fences/whiskers extend from 
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the box edges up to a maximum length of 1.5×IQR. Points lying outside this range are 

considered outliers and are plotted separately. 

Considering the inference of the 𝑥-position, very narrow IQRs are observed 

showing high precision (above 98%) and low uncertainty (below 4%). Few outliers lie 

within regions of precision below 90% or uncertainty above 15%. This confirms the 

resolution of the symmetry problem when using a sensing point outside the plane of 

symmetry. Moving the actuator to a position outside the plane of symmetry would have 

also solved the problem. 

Damage length (𝐿) is accurately identified, as well, in all the testing dataset 

with few outlier cases (Figure 3.18(a-c)). Wider IQRs and more outliers are observed 

for the other damage parameters in the case of 𝐿 = 25 𝑚𝑚 (Figure 3.18(a)). The 

damage width (𝑊) and 𝑦-positions are hardly differentiated between different cases, 

showing higher percentages within the unacceptable thresholds of precision (<90%) 

and uncertainty (>15%). Higher precisions and lower uncertainties are generally 

attained for 𝐿 = 100 𝑚𝑚 (Figure 3.18(b)), and very accurate predictions are achieved in 

the case of 𝐿 = 200 𝑚𝑚 (Figure 3.18(c)). 
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Figure 3.17. The FE model showing the two added sensing points S2 and S3 (in red). 

 

 

 

 

(a) 𝑳 = 25 𝒎𝒎 (270 testing cases out of 594) 
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(b) 𝑳 = 100 𝒎𝒎 (270 testing cases out of 594) 

 

(c) 𝑳 = 200 𝒎𝒎 (54 testing cases out of 594) 

Figure 3.18. Boxplots summarizing the precision and uncertainty of ABC-SubSim damage 

inference for the whole testing dataset (594 cases) using 𝑼𝟐𝑺𝟐. Results of different damage 

lengths are shown separately. 
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3.5.4 ABC-SubSim based on Multiple Sensor Measurements 

To overcome the shortages of using a single sensor measurement, data were 

fused based on two or more sensor measurements, eventually aiming to improve the 

robustness and accuracy of the inference results. ABC-SubSim results of only six test 

cases (cases 1 to 6 of 𝐿 = 25 𝑚𝑚 in Table 3.5) will be discussed as they showed the 

lowest precision and highest uncertainty when using a single sensor measurement 

(Table 3.6, Table 3.7, and Figure 3.18(a)). 

Combinations of 𝑈2 measurements from different sensing points were used 

together by employing the methodology explained in Section 3.4.3. Table 3.8 

summarizes the inference results when using 𝑈2𝑆1 and 𝑈2𝑆2 together, while Table 3.9 

summarizes those of fusing 𝑈2𝑆2 with 𝑈2𝑆3. Finally, Table 3.10 summarizes the results 

of fusing 𝑈2 measurements from all the three sensing points S1, S2, and S3. The results 

show that both damage length (𝐿) and 𝑥-position are inferred with a precision higher 

than 99% for all the shown cases and sensor combinations. Very low uncertainties are 

also attained for both damage parameters. This proves the high potential of the 

methodology for accurately assessing these two important parameters defining the 

length of the wormhole and its position along the weld. 

The best inference results are obtained when merging 𝑈2 measurements from 

S2 and S3 (Table 3.9). Damage parameters are inferred with a precision of above 95% 

for more than 83% of the cases. The only inference with a precision below 91% is for 

the damage width (𝑊) in test case 4, with an inference error < 0.9 𝑚𝑚. Moreover, only 

two uncertainty values above 15% are recorded and are also for the damage width (𝑊).  
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Combining 𝑈2 measurements from S1 and S2 does not show a significant 

improvement over inference using one sensor measurement (Table 3.8), however, 

combining the measurements of the three sensors shows better results, as depicted in 

Table 3.10. Damage is inferred with high precision (> 90%) for all the cases except two 

damage parameters (highlighted in red), with errors less than 0.6 𝑚𝑚. More than half of 

the other inference results are of precision above 99%, while being above 95% in most 

of the cases. 

In both Table 3.8 and Table 3.10, high uncertainties are noticed at four 

different places for 𝑊 and 𝑦-position, with two values exceeding 30%. 

 

 

Table 3.8. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟏 and 𝑼𝟐𝑺𝟐 sensor 

measurements, for the testing damage cases 1 to 6. 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1,  -75,    -1,    -1] [  25.26, 1.74, 1.10, -74.78, -0.89, -0.64] [99.90, 76.97, 96.56, 99.91, 96.49, 87.87] [  0.36, 17.57,   7.43,   0.64, 16.63, 11.11] 

2 [  25,    1,    2,     0,     1,      0] [  24.93, 0.96, 2.06,    1.26,  0.17,   0.01] [99.97, 98.62, 98.09, 99.49, 72.29, 99.69] [  0.22,   5.86,   9.12,   2.02, 14.84,   5.94] 

3 [  25,    2,    1,  -50,     0, -0.5] [  25.40, 2.06, 1.00, -50.15, -0.25, -0.58] [99.84, 98.05, 99.97, 99.94, 91.82, 97.42] [  0.42,   9.59,   6.21,   0.93, 10.55,   9.71] 

4 [  25,    2,    2,   50,    -1, -0.5] [  25.07, 2.45, 1.85,  50.78, -0.86, -0.47] [99.97, 86.05, 95.08, 99.69, 95.28, 98.91] [  0.24, 33.85,   9.09,   1.05,   9.73,   9.17] 

5 [  25,    3,    1,     0,     0,     0] [  25.33, 2.96, 0.96,    1.90,  1.31, -0.01] [99.87, 98.86, 98.83, 99.24, 56.43, 99.61] [  5.55,   2.11,   8.21,   3.57, 40.63,   5.42] 

6 [  25,    3,    2,   50,     1, -0.5] [  25.07, 2.82, 1.93,  48.42,  0.54, -0.19] [99.97, 94.48, 97.71, 99.37, 84.83, 89.62] [  0.26,   9.18,   4.96,   0.97, 14.58,   8.95] 

 

 

 

Table 3.9. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟐 and 𝑼𝟐𝑺𝟑 sensor 

measurements, for the testing damage cases 1 to 6. 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1,  -75,    -1,    -1] [  24.34, 0.97, 0.98, -75.74, -1.07, -0.94] [99.74, 99.12, 99.48, 99.70, 97.63, 98.15] [  0.75, 19.77,   6.30,   0.66,   7.50,   4.48] 

2 [  25,    1,    2,     0,     1,      0] [  25.11, 0.93, 2.10,   -0.15,  0.75, -0.11] [99.96, 97.86, 96.55, 99.94, 91.57, 96.30] [  1.18,   8.62, 10.04,   0.85,   9.86, 11.13] 

3 [  25,    2,    1,  -50,     0, -0.5] [  25.19, 2.10, 0.99, -50.24,  0.00, -0.56] [99.92, 96.81, 99.77, 99.90, 99.94, 98.15] [  0.48,   7.51,   4.89,   0.67,   7.14,   8.57] 

4 [  25,    2,    2,   50,    -1, -0.5] [  26.80, 1.12, 2.23,  51.07, -0.74, -0.32] [99.28, 72.55, 92.26, 99.57, 91.30, 94.06] [  0.72, 26.47, 11.32,   0.78, 12.93,   6.10] 

5 [  25,    3,    1,     0,     0,     0] [  23.72, 3.02, 1.10,   -0.22,  0.26, -0.09] [99.49, 99.35, 96.61, 99.91, 91.42, 97.11] [  0.97,   3.25,   8.56,   0.82, 14.62,   5.97] 

6 [  25,    3,    2,   50,     1, -0.5] [  25.11, 2.90, 2.13,  48.61,  1.00, -0.37] [99.96, 96.82, 95.53, 99.45, 100.0, 95.65] [  0.45, 10.95,   8.58,   0.91, 10.10,   7.13] 
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Table 3.10. A summary of the ABC-SubSim inference results using the three sensor 

measurements (𝑼𝟐𝑺𝟏, 𝑼𝟐𝑺𝟐, and 𝑼𝟐𝑺𝟑), for the testing damage cases 1 to 6. 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1,  -75,    -1,    -1] [  25.11, 1.15, 1.00, -74.83, -0.74, -0.93] [99.96, 95.17, 99.84, 99.93, 91.41, 97.62] [  0.34, 22.89,   6.72,   0.56, 11.31,   5.03] 

2 [  25,    1,    2,     0,     1,      0] [  25.18, 0.89, 1.85,    1.13,  0.44, -0.01] [99.93, 96.53, 95.12, 99.55, 81.21, 99.54] [  0.30,   5.39,   6.07,   1.13, 15.27,   6.48] 

3 [  25,    2,    1,  -50,     0, -0.5] [  25.09, 1.96, 1.00, -50.16,  0.10, -0.39] [99.96, 98.83, 99.92, 99.93, 96.77, 96.31] [  0.42,   7.37,   6.08,   0.79,   7.73,   8.23] 

4 [  25,    2,    2,   50,    -1, -0.5] [  25.06, 2.01, 1.91,  49.74, -1.09, -0.48] [99.98, 99.57, 97.11, 99.89, 97.00, 99.40] [  0.27, 31.07, 10.38,   1.04,   6.69,   9.73] 

5 [  25,    3,    1,     0,     0,     0] [  25.60, 2.97, 1.08,    1.15,  0.16, -0.11] [99.76, 99.08, 97.20, 99.54, 94.64, 96.48] [  0.56,   2.42, 10.08,   1.18, 30.07,   7.25] 

6 [  25,    3,    2,   50,     1, -0.5] [  25.14, 2.53, 1.95,  49.71,  0.96, -0.28] [99.94, 85.18, 98.32, 99.89, 98.53, 92.74] [  0.27, 11.63,   6.85,   0.81,   8.64,   7.97] 

 

 

3.5.5 Effect of Sensing Noise 

Noise of various levels was added to the testing data to investigate the effect of 

sensing noise on the proposed damage inference approach. As mentioned earlier, the 

NL is defined as the ratio of the noise’s maximum amplitude to that of the healthy 

signal of the corresponding sensor measurement. While a 3% NL was used throughout 

the chapter, damage was inferred for the 18 chosen test cases using a NL of 0% (no 

sensing noise), 2%, 5%, and 10% using 𝑈2S2 sensor measurement. A random colored 

noise of a frequency up to 450 kHz was used, as this can be well-controlled in current 

experimental setups (using built-in software or physical low-pass filters). Table 3.11, 

Table 3.12, and Table 3.13 summarize the results of the testing damage cases of 𝐿 = 25, 

100, and 200 𝑚𝑚, respectively. 

In most of the tested cases, inference precision is not affected by the addition 

of various levels of noise, showing evident robustness against sensing noise. Cases of 

big damage size (𝐿 = 200 𝑚𝑚; Table 3.13) show a negligible noise effect. On the other 

hand, cases of small and middle-sized damage (𝐿 ≤ 100 𝑚𝑚; Table 3.11 and Table 

3.12) are more affected, where the inference precision of few additional parameters has 

dropped below 90% for NLs of 5 and 10%. A maximum precision reduction of around 



165 
 

41% was recorded for one case. It was noticed that cases with higher uncertainty before 

adding noise are more susceptible to changes after adding noise. Due to the random 

nature of noise, it may occasionally lead sometimes to a better inference. 

The same NLs were also tested against the healthy weld signal using the same 

sensor measurement (𝑈2S2) and using 𝑈2𝑆1. Table 3.14 shows the inferred damage sizes 

for various sensing noise levels. For a sensing noise up to 5% NL, the inferred damage 

sizes do not pass the damage detection rule; i.e., at least one of the three damage-size 

parameters ([𝐿, 𝑊, 𝑡ℎ]; highlighted in green in Table 3.14) does not exceed its set 

threshold ([1, 0.1, 0.1] 𝑚𝑚). When adding a noise of 10% NL to the healthy 𝑈2𝑆2 

sensor measurement, a false positive is inferred. From a practical point of view, a NL 

reaching 10% of the signal’s maximum amplitude is considered non-realistic, especially 

with the availability of advanced experimental setups and sophisticated data acquisition 

technologies. 

Hence, the healthy state of the weld is proved to be successfully inferred even 

with the existence of realistic high levels of sensing noise. The obtained results 

demonstrate that the approach proposed in this paper shows good immunity against 

sensing noise, which is similar to what was concluded in the literature using data-driven 

models [109]. 
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Table 3.11. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟐 sensor 

measurement with variable sensing-noise levels, for the selected damage cases of 𝑳 = 25 

𝒎𝒎. 

Noise level = 0% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1, -75,   -1,    -1] [  24.45, 1.62, 0.98, -74.61, -0.78, -0.91] [99.78, 80.59, 99.38, 99.84, 92.58, 96.84] [  0.67, 15.15,   4.70,   0.51,   9.14,   5.74] 

2 [  25,    1,    2,    0,    1,     0] [  25.57, 1.02, 1.95,   -0.88,  1.20,  0.13] [99.77, 99.53, 98.42, 99.65, 93.32, 95.70] [  1.00,   5.49,   5.77,   0.75, 12.31, 13.87] 

3 [  25,    2,    1, -50,    0, -0.5] [  25.05, 2.03, 1.05, -49.78, -0.06, -0.47] [99.98, 99.03, 98.44, 99.91, 98.10, 98.92] [  0.50,   6.40,   4.45,   0.72,   7.87,   6.63] 

4 [  25,    2,    2,  50,   -1, -0.5] [  25.79, 1.99, 2.26,  52.44, -1.06, -0.34] [99.68, 99.57, 91.27, 99.02, 97.88, 94.59] [  0.77, 15.93,   7.22,   0.84, 16.16,   3.67] 

5 [  25,    3,    1,    0,    0,     0] [  24.57, 3.04, 1.56,   -0.13, -0.03,  0.06] [99.83, 98.68, 81.27, 99.95, 98.96, 97.92] [  1.25,   3.58, 21.80,   1.27, 33.54,   6.83] 

6 [  25,    3,    2,  50,    1, -0.5] [  25.42, 2.67, 1.90,  50.88,  0.48, -0.33] [99.83, 89.76, 96.70, 99.65, 82.55, 94.44] [  1.25, 12.66,   7.67,   1.12, 22.95,   9.37] 

Noise level = 2% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1, -75,   -1,    -1] [  24.29, 1.65, 0.98, -74.65, -0.93, -0.87] [99.72, 79.55, 99.27, 99.86, 97.57, 95.74] [  0.73, 16.10,   5.37,   0.60, 12.05,   6.03] 

2 [  25,    1,    2,    0,    1,     0] [  26.18, 1.01, 1.95,   -0.52,  1.09, -0.23] [99.53, 99.82, 98.49, 99.79, 97.15, 92.32] [  0.85,   4.95,   6.01,   0.65,   8.61, 11.50] 

3 [  25,    2,    1, -50,    0, -0.5] [  25.33, 2.01, 1.00, -49.71, -0.13, -0.46] [99.87, 99.78, 99.97, 99.88, 95.57, 98.51] [  0.54,   5.49,   4.30,   0.67, 10.97,   6.32] 

4 [  25,    2,    2,  50,   -1, -0.5] [  24.84, 2.12, 2.10,  53.00, -1.08, -0.38] [99.94, 96.20, 96.53, 98.80, 97.43, 95.90] [  0.85, 20.09,   5.82,   0.88, 11.17,   3.63] 

5 [  25,    3,    1,    0,    0,     0] [  23.92, 3.03, 1.35,   -1.15,  0.16, -0.07] [99.57, 98.98, 88.31, 99.54, 94.71, 97.81] [  1.36,   3.62, 20.94,   1.35, 37.67,   7.42] 

6 [  25,    3,    2,  50,    1, -0.5] [  25.53, 2.75, 1.92,  50.72,  0.43, -0.25] [99.79, 92.15, 97.23, 99.71, 81.04, 91.81] [  0.76,   7.72,   4.92,   0.93, 15.23,   7.83] 

Noise level = 3% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1, -75,   -1,    -1] [  24.20, 1.46, 1.02, -74.90, -0.96, -0.88] [99.68, 85.61, 99.45, 99.96, 98.54, 95.97] [  0.64, 20.23,   4.61,   0.50,   9.13,   5.61] 

2 [  25,    1,    2,    0,    1,     0] [  26.72, 1.01, 1.93,   -0.70,  1.25, -0.30] [99.31, 99.57, 97.82, 99.72, 91.75, 90.04] [  1.05,   7.09,   6.31,   0.84, 13.05, 14.34] 

3 [  25,    2,    1, -50,    0, -0.5] [  25.34, 2.01, 1.03, -49.85, -0.05, -0.41] [99.86, 99.73, 99.11, 99.94, 98.50, 96.94] [  0.49,   4.61,   3.67,   0.66,   8.58,   5.42] 

4 [  25,    2,    2,  50,   -1, -0.5] [  25.95, 1.96, 2.16,  52.79, -1.01, -0.35] [99.62, 98.68, 94.63, 98.88, 99.68, 95.07] [  0.82, 17.61,   7.46,   0.74, 13.71,   3.99] 

5 [  25,    3,    1,    0,    0,     0] [  24.41, 3.03, 1.41,   -1.17, -0.03, -0.04] [99.77, 98.91, 86.20, 99.53, 99.16, 98.73] [  0.77,   3.26, 13.08,   0.89, 10.97,   5.89] 

6 [  25,    3,    2,  50,    1, -0.5] [  25.45, 2.54, 1.90,  52.04,  0.17, -0.37] [99.82, 85.68, 96.59, 99.18, 72.43, 95.68] [  1.51, 10.49,   8.74,   1.02, 27.04, 12.35] 

Noise level = 5% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1, -75,   -1,    -1] [  24.98, 1.85, 1.04, -74.93, -0.65, -0.92] [99.99, 73.56, 98.68, 99.97, 88.34, 97.45] [  0.62, 20.14,   3.86,   0.49, 10.23,   4.40] 

2 [  25,    1,    2,    0,    1,     0] [  26.32, 1.15, 1.96,   -0.80,  1.02, -0.34] [99.47, 95.40, 98.55, 99.68, 99.17, 88.66] [  0.72,   7.03,   6.41,   0.62,   9.00,   8.50] 

3 [  25,    2,    1, -50,    0, -0.5] [  25.34, 2.14, 0.97, -49.46, -0.13, -0.61] [99.86, 95.62, 99.06, 99.78, 95.54, 96.40] [  0.71,   7.88,   6.22,   0.85,   7.30,   6.40] 

4 [  25,    2,    2,  50,   -1, -0.5] [  26.11, 1.92, 2.16,  52.96, -1.04, -0.32] [99.56, 97.36, 94.53, 98.81, 98.65, 93.89] [  0.83, 23.20,   8.72,   0.80, 16.14,   4.83] 

5 [  25,    3,    1,    0,    0,     0] [  26.62, 3.05, 2.20,  11.58,  1.22, -0.19] [99.35, 98.43, 60.12, 95.37, 59.44, 93.63] [  1.46, 27.08, 43.99,   5.06, 31.95,   8.96] 

6 [  25,    3,    2,  50,    1, -0.5] [  24.97, 2.66, 1.84,  53.88,  0.43, -0.48] [99.99, 89.45, 94.58, 98.45, 80.99, 99.41] [  2.55, 13.61, 14.27,   1.56, 38.15, 11.15] 

Noise level = 10% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

1 [  25,    1,    1, -75,   -1,    -1] [  25.19, 2.05, 1.09, -74.72, -0.40, -0.87] [99.92, 67.30, 96.99, 99.89, 80.02, 95.71] [  0.59, 15.14,   3.35,   0.47, 12.19,   4.26] 

2 [  25,    1,    2,    0,    1,     0] [  28.08, 1.05, 2.14,   -1.29,  0.64, -0.20] [98.77, 98.29, 95.49, 99.48, 87.87, 93.37] [  0.79,   5.64,   5.48,   0.62,   7.71,   6.24] 

3 [  25,    2,    1, -50,    0, -0.5] [  24.76, 1.98, 1.03, -49.27,  0.20, -0.34] [99.90, 99.34, 98.96, 99.71, 93.37, 94.54] [  0.57,   6.40,   5.30,   0.75, 12.16,   7.72] 

4 [  25,    2,    2,  50,   -1, -0.5] [  24.50, 1.97, 2.09,  51.23, -0.89, -0.41] [99.80, 99.20, 96.98, 99.51, 96.40, 97.04] [  0.84, 32.88,   7.98,   2.05, 17.46,   4.90] 

5 [  25,    3,    1,    0,    0,     0] [  23.37, 3.05, 1.04,   -1.58,  1.27, -0.09] [99.35, 98.40, 98.60, 99.37, 57.58, 96.92] [  1.89,   2.74, 14.22,   1.57, 31.39,   5.74] 

6 [  25,    3,    2,  50,    1, -0.5] [  26.09, 2.82, 2.11,  52.73,  0.77, -0.17] [99.56, 94.52, 96.34, 98.91, 92.31, 89.05] [  0.72,   7.31,   5.69,   0.99, 13.01,   7.56] 
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Table 3.12. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟐 sensor 

measurement with variable sensing-noise levels, for the selected damage cases of 𝑳 = 100 

𝒎𝒎. 

Noise level = 0% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

7 [100,    1,    1, -75,   -1,    -1] [101.50, 1.27, 0.98, -73.05, -0.84, -0.99] [99.40, 91.66, 99.28, 99.22, 94.79, 99.77] [  4.22, 12.50,   4.92,   2.09,   9.28,   3.59] 

8 [100,    1,    2,    0,    1,     0] [103.23, 0.98, 1.93,    1.04,  1.03, -0.01] [98.71, 99.27, 97.67, 99.58, 98.84, 99.62] [  4.39,   3.47,   3.58,   2.37,   7.04,   4.57] 

9 [100,    2,    1, -50,    0, -0.5] [111.47, 1.98, 1.01, -49.14, -0.04, -0.53] [95.41, 99.39, 99.60, 99.66, 98.79, 99.10] [  9.03,   3.52,   2.46,   4.26,   4.69,   4.21] 

10 [100,    2,    2,  50,   -1, -0.5] [101.44, 2.18, 1.92,  51.32, -1.04, -0.45] [99.42, 94.48, 97.43, 99.47, 98.77, 98.45] [  1.73, 33.54, 10.32,   0.71, 18.86,   6.02] 

11 [100,    3,    1,    0,    0,     0] [  50.71, 3.00, 1.01, -24.90, -0.06, -0.01] [80.28, 99.88, 99.79, 90.04, 97.89, 99.51] [23.77,   1.78,   4.13, 11.41, 12.36,   3.61] 

12 [100,    3,    2,  50,    1, -0.5] [101.38, 1.43, 2.04,  50.50,  1.23, -0.45] [99.45, 50.84, 98.69, 99.80, 92.31, 98.21] [  1.73, 31.42, 14.30,   1.22,   8.62,   9.10] 

Noise level = 2% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

7 [100,    1,    1, -75,   -1,    -1] [  97.65, 1.44, 1.00, -74.15, -0.86, -0.98] [99.06, 86.17, 100.0, 99.66, 95.34, 99.26] [  4.88, 15.68,   4.32,   2.41,   8.04,   3.11] 

8 [100,    1,    2,    0,    1,     0] [105.83, 0.99, 1.95,    3.13,  0.99, -0.00] [97.67, 99.79, 98.38, 98.75, 99.56, 99.97] [  5.01,   3.68,   3.98,   2.55,   7.84,   4.96] 

9 [100,    2,    1, -50,    0, -0.5] [119.68, 1.99, 0.98, -42.92, -0.06, -0.54] [92.13, 99.81, 99.36, 97.17, 97.96, 98.69] [  9.62,   3.55,   2.27,   4.40,   4.62,   4.00] 

10 [100,    2,    2,  50,   -1, -0.5] [101.11, 0.88, 1.98,  51.66, -1.10, -0.44] [99.56, 65.13, 99.49, 99.34, 96.79, 98.05] [  2.17, 41.54, 11.81,   0.96, 20.91,   7.94] 

11 [100,    3,    1,    0,    0,     0] [  85.43, 2.99, 0.98,   -9.82, -0.14, -0.04] [94.17, 99.80, 99.41, 96.07, 95.35, 98.80] [19.96,   1.82,   5.09, 10.07, 14.20,   4.24] 

12 [100,    3,    2,  50,    1, -0.5] [100.46, 1.36, 2.01,  50.87,  1.22, -0.47] [99.82, 48.61, 99.58, 99.65, 92.55, 99.07] [  1.43, 29.38, 12.78,   1.11,   7.05,   8.39] 

Noise level = 3% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

7 [100,    1,    1, -75,   -1,    -1] [  97.62, 1.12, 1.04, -75.11, -0.86, -0.95] [99.05, 96.24, 98.79, 99.95, 95.44, 98.36] [  5.05, 11.03,   4.17,   2.49,   9.28,   3.07] 

8 [100,    1,    2,    0,    1,     0] [107.41, 0.99, 1.96,    3.26,   0.97,  0.05] [97.04, 99.65, 98.61, 98.70, 99.12, 98.42] [  4.32,   3.18,   3.44,   2.18,   7.16,   4.36] 

9 [100,    2,    1, -50,    0, -0.5] [110.27, 2.01, 0.99, -47.19, -0.10, -0.54] [95.89, 99.78, 99.56, 98.88, 96.75, 98.72] [  9.59,   3.75,   2.47,   4.70,   4.59,   4.19] 

10 [100,    2,    2,  50,   -1, -0.5] [102.99, 0.92, 1.98,  52.28, -1.03, -0.44] [98.80, 66.21, 99.35, 99.09, 98.87, 97.87] [  1.85, 43.85,   9.24,   0.76, 12.45,   6.03] 

11 [100,    3,    1,    0,    0,     0] [  97.96, 3.00, 0.96,   -1.86,  0.12, -0.01] [99.18, 99.89, 98.65, 99.26, 95.88, 99.53] [14.82,   1.68,   4.87,   7.49, 13.22,   3.96] 

12 [100,    3,    2,  50,    1, -0.5] [100.91, 1.88, 1.82,  51.56,  1.26, -0.57] [99.64, 64.87, 94.14, 99.37, 91.20, 97.61] [  1.71, 27.48, 10.88,   1.29,   8.12,   6.25] 

Noise level = 5% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

7 [100,    1,    1, -75,   -1,    -1] [104.45, 1.38, 0.97, -72.28, -0.66, -1.00] [98.22, 88.27, 98.90, 98.91, 88.52, 99.85] [  4.73, 14.51,   4.35,   2.31, 10.18,   3.21] 

8 [100,    1,    2,    0,    1,     0] [104.99, 0.99, 1.91,    4.44,  1.01,  0.07] [98.00, 99.73, 96.99, 98.22, 99.83, 97.53] [  4.62,   3.43,   3.44,   2.27,   6.97,   4.34] 

9 [100,    2,    1, -50,    0, -0.5] [115.55, 2.02, 1.01, -45.46, -0.08, -0.51] [93.78, 99.37, 99.68, 98.19, 97.37, 99.62] [  8.94,   3.80,   2.31,   4.16,   4.85,   3.97] 

10 [100,    2,    2,  50,   -1, -0.5] [100.00, 0.99, 2.29,  51.01, -0.99, -0.27] [100.0, 68.35, 90.36, 99.60, 99.60, 92.22] [  1.85, 32.79, 10.60,   0.81, 21.73,   6.02] 

11 [100,    3,    1,    0,    0,     0] [  50.82, 3.00, 1.00, -24.86,  0.03, -0.00] [80.33, 99.94, 99.89, 90.06, 98.88, 99.90] [23.83,   1.92,   4.78, 11.56, 16.54,   3.72] 

12 [100,    3,    2,  50,    1, -0.5] [101.24, 1.61, 1.98,  50.49,  1.26, -0.62] [99.50, 56.70, 99.41, 99.80, 91.21, 96.15] [  1.94, 34.32, 12.61,   1.28,   8.08,   7.97] 

Noise level = 10% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

7 [100,    1,    1, -75,   -1,    -1] [106.43, 1.36, 0.96, -70.89, -0.81, -0.99] [97.43, 88.80, 98.83, 98.36, 93.82, 99.79] [  8.40, 12.77,   4.02,   4.16,   9.99,   2.73] 

8 [100,    1,    2,    0,    1,     0] [105.64, 0.93, 1.92,    1.68,  0.96, -0.03] [97.74, 97.88, 97.40, 99.33, 98.69, 98.93] [  4.40,   3.29,   3.59,   2.18,   6.69,   4.14] 

9 [100,    2,    1, -50,    0, -0.5] [152.04, 2.08, 0.98, -26.61, -0.04, -0.58] [79.18, 97.62, 99.44, 90.65, 98.67, 97.25] [18.18,   3.84,   2.73,   8.50,   3.89,   4.61] 

10 [100,    2,    2,  50,   -1, -0.5] [103.56, 1.77, 2.03,  50.76, -0.86, -0.43] [98.58, 92.91, 99.15, 99.70, 95.30, 97.57] [  1.43, 16.77,   5.98,   0.57, 10.23,   4.43] 

11 [100,    3,    1,    0,    0,     0] [  81.49, 2.99, 1.01, -10.82, -0.29,  0.02] [92.60, 99.73, 99.55, 95.67, 90.35, 99.32] [17.48,   2.16,   4.85,   8.76, 14.03,   3.71] 

12 [100,    3,    2,  50,    1, -0.5] [101.81, 2.03, 1.62,  52.31,  1.32, -0.65] [99.28, 69.62, 87.22, 99.07, 89.26, 94.92] [  1.55, 25.33,   7.96,   0.92,   8.15,   4.05] 
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Table 3.13. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟐 sensor 

measurement with variable sensing-noise levels, for the selected damage cases of 𝑳 = 200 

𝒎𝒎. 

Noise level = 0% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

13 [200,    1,    1,    0,   -1,    -1] [210.27, 0.99, 0.99,    3.14, -0.95, -0.98] [95.89, 99.78, 99.69, 98.74, 98.42, 99.47] [  5.33, 21.08,   3.40,   2.77,   6.68,   2.27] 

14 [200,    1,    2,    0,    1,     0] [200.37, 1.03, 1.97,    0.57,  0.89,  0.02] [99.85, 99.17, 99.06, 99.77, 96.35, 99.39] [  2.89,   1.96,   2.34,   1.46,   5.89,   3.26] 

15 [200,    2,    1,    0,    0, -0.5] [199.39, 2.06, 1.01,   -1.82, -0.04, -0.51] [99.76, 98.06, 99.70, 99.27, 98.54, 99.58] [  3.43,   3.13,   1.87,   2.10,   3.88,   3.73] 

16 [200,    2,    2,    0,   -1, -0.5] [199.76, 2.10, 1.95,    0.23, -1.04, -0.49] [99.91, 96.89, 98.45, 99.91, 98.57, 99.51] [  2.31, 11.11,   5.45,   1.29,   6.44,   3.41] 

17 [200,    3,    1,    0,    0,     0] [203.21, 3.00, 1.02,   -0.82,  0.07, -0.00] [98.72, 99.93, 99.30, 99.67, 97.70, 99.97] [  9.18,   1.56,   6.13,   3.99, 18.05,   4.49] 

18 [200,    3,    2,    0,    1, -0.5] [196.97, 3.00, 1.96,   -0.22,  0.98, -0.47] [98.79, 99.89, 98.62, 99.91, 99.32, 99.06] [  3.25,   3.15,   4.02,   1.58, 10.41,   2.80] 

Noise level = 2% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

13 [200,    1,    1,    0,   -1,    -1] [206.42, 1.49, 0.99,    2.70, -0.91, -0.98] [97.43, 84.76, 99.55, 98.92, 96.84, 99.31] [  4.25, 18.77,   3.70,   2.34,   6.99,   2.43] 

14 [200,    1,    2,    0,    1,     0] [204.45, 1.03, 1.97,    1.54,  0.94, -0.04] [98.22, 98.92, 98.90, 99.38, 97.97, 98.80] [  3.07,   2.17,   2.47,   1.65,   6.13,   3.39] 

15 [200,    2,    1,    0,    0, -0.5] [201.11, 2.06, 1.01,   -1.67, -0.08, -0.52] [99.55, 98.10, 99.77, 99.33, 97.45, 99.41] [  3.62,   3.43,   2.05,   2.17,   4.52,   4.14] 

16 [200,    2,    2,    0,   -1, -0.5] [196.11, 2.23, 1.97,    0.72, -1.04, -0.49] [98.44, 92.72, 98.92, 99.71, 98.51, 99.64] [  2.69, 10.50,   5.19,   1.28,   6.01,   3.34] 

17 [200,    3,    1,    0,    0,     0] [203.14, 3.01, 1.09,    1.72, -0.18,  0.04] [98.74, 99.66, 97.09, 99.31, 94.12, 98.70] [11.75,   1.70,   5.94,   5.25, 17.80,   4.92] 

18 [200,    3,    2,    0,    1, -0.5] [201.57, 3.00, 1.96,   -0.12,  0.88, -0.46] [99.37, 99.91, 98.69, 99.95, 96.09, 98.52] [  3.01,   3.15,   4.45,   1.65,   9.25,   2.91] 

Noise level = 3% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

13 [200,    1,    1,    0,   -1,    -1] [202.66, 0.94, 0.98,    2.52, -0.95, -0.96] [98.94, 98.13, 99.19, 98.99, 98.32, 98.63] [  4.76, 23.22,   4.07,   2.49,   6.35,   2.39] 

14 [200,    1,    2,    0,    1,     0] [200.52, 1.02, 1.96,    0.73,  0.91,  0.03] [99.79, 99.24, 98.56, 99.71, 97.00, 98.94] [  3.53,   2.20,   2.69,   1.75,   7.31,   3.69] 

15 [200,    2,    1,    0,    0, -0.5] [197.60, 2.06, 1.01,   -1.95, -0.08, -0.52] [99.04, 97.98, 99.66, 99.22, 97.41, 99.25] [  3.33,   2.90,   1.74,   2.05,   3.70,   3.49] 

16 [200,    2,    2,    0,   -1, -0.5] [198.36, 2.13, 2.00,    0.59, -1.05, -0.46] [99.35, 95.97, 99.92, 99.77, 98.17, 98.52] [  2.08,   7.75,   5.01,   1.05,   5.48,   3.21] 

17 [200,    3,    1,    0,    0,     0] [194.19, 3.00, 1.02,   -3.42,  0.24,  0.03] [97.68, 99.96, 99.44, 98.63, 92.03, 99.11] [10.16,   1.63,   5.75,   4.81, 20.26,   4.75] 

18 [200,    3,    2,    0,    1, -0.5] [199.99, 2.97, 1.99,   -0.12,  0.95, -0.44] [100.0, 98.96, 99.55, 99.95, 98.45, 97.98] [  2.86,   3.08,   4.07,   1.47,   9.33,   2.60] 

Noise level = 5% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

13 [200,    1,    1,    0,   -1,    -1] [205.65, 1.61, 0.98,    1.91, -0.94, -0.98] [97.74, 81.07, 99.29, 99.23, 97.84, 99.35] [  5.19, 21.68,   3.71,   2.62,   7.38,   2.36] 

14 [200,    1,    2,    0,    1,     0] [202.18, 1.02, 1.98,    1.52,  0.85,  0.00] [99.13, 99.42, 99.29, 99.39, 94.88, 99.88] [  2.76,   1.95,   2.34,   1.56,   5.90,   3.19] 

15 [200,    2,    1,    0,    0, -0.5] [200.78, 2.07, 1.00,   -1.21, -0.07, -0.53] [99.69, 97.85, 99.92, 99.51, 97.82, 98.85] [  3.06,   2.76,   1.72,   1.81,   3.29,   3.08] 

16 [200,    2,    2,    0,   -1, -0.5] [198.88, 2.18, 2.01,   -0.12, -1.03, -0.47] [99.55, 94.44, 99.58, 99.95, 98.87, 99.09] [  2.19,   7.12,   4.61,   1.13,   5.68,   2.80] 

17 [200,    3,    1,    0,    0,     0] [194.67, 3.02, 1.02,   -0.63,  0.12,  0.04] [97.87, 99.51, 99.27, 99.75, 96.02, 98.57] [10.25,   1.57,   5.53,   5.01, 19.15,   4.46] 

18 [200,    3,    2,    0,    1, -0.5] [197.34, 2.98, 1.94,    0.12,  0.93, -0.46] [98.94, 99.47, 98.10, 99.95, 97.82, 98.58] [  3.46,   3.24,   4.31,   1.77,   9.94,   3.06] 

Noise level = 10% 

Test case # 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) 𝑃𝑟 (%) 𝜉 (%) 

13 [200,    1,    1,    0,   -1,    -1] [198.58, 2.07, 0.92,   -0.06, -0.99, -1.00] [99.43, 66.67, 97.36, 99.97, 99.75, 99.91] [  6.87, 32.13,   4.06,   3.18,   5.81,   2.30] 

14 [200,    1,    2,    0,    1,     0] [202.96, 1.03, 1.98,    0.13,  0.90, -0.02] [98.82, 99.16, 99.34, 99.95, 96.65, 99.48] [  3.23,   2.18,   2.82,   1.84,   7.72,   3.42] 

15 [200,    2,    1,    0,    0, -0.5] [193.30, 2.10, 0.99,   -4.85,  0.03, -0.54] [97.32, 96.96, 99.52, 98.06, 98.86, 98.66] [  5.11,   2.64,   1.79,   2.73,   3.36,   3.00] 

16 [200,    2,    2,    0,   -1, -0.5] [198.35, 2.18, 2.00,   -0.08, -1.04, -0.47] [99.34, 94.30, 99.91, 99.97, 98.72, 98.83] [  1.86,   6.24,   4.10,   0.92,   5.26,   2.57] 

17 [200,    3,    1,    0,    0,     0] [195.92, 2.99, 1.01,    1.85, -0.10,  0.05] [98.37, 99.80, 99.69, 99.26, 96.75, 98.49] [  9.67,   1.71,   6.05,   5.11, 22.02,   4.47] 

18 [200,    3,    2,    0,    1, -0.5] [204.21, 2.98, 1.93,    1.54,  0.84, -0.48] [98.32, 99.36, 97.80, 99.38, 94.60, 99.28] [  2.98,   3.06,   4.20,   1.73,   9.82,   2.47] 
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Table 3.14. A summary of the ABC-SubSim inference results using 𝑼𝟐𝑺𝟏 and 𝑼𝟐𝑺𝟐 sensor 

measurements with variable sensing-noise levels, for the healthy-weld case. 

𝑈2𝑆1 

Noise level (%) 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) Damage detection thresholds (𝑚𝑚) Detection result 

0 

[0,    0,    0] 

[  1.91,    0.01,    0.00] 

[1,    0.1,    0.1] 

No damage (healthy weld) 

2 [18.92,    0.35,    0.04] No damage (healthy weld) 

3 [25.20,    0.02,    0.01] No damage (healthy weld) 

5 [11.22,    0.13,    0.03] No damage (healthy weld) 

10 [24.71,    1.62,    0.08] No damage (healthy weld) 

𝑈2𝑆2 

Noise level (%) 𝜃 (𝑚𝑚) 𝜃𝑚𝑎𝑝
′  (𝑚𝑚) Damage detection thresholds (𝑚𝑚) Detection result 

0 

[0,    0,    0] 

[  0.13,    0.01,    0.13] 

[1,    0.1,    0.1] 

No damage (healthy weld) 

2 [  0.10,    0.01,    0.11] No damage (healthy weld) 

3 [  0.64,    0.22,    0.23] No damage (healthy weld) 

5 [  0.90,    0.06,    0.47] No damage (healthy weld) 

10 [94.13,    2.21,    0.56] Damage exists (false positive) 

 

 

3.5.6 Discussion 

The suggested approach performs a probabilistic damage identification instead 

of a deterministic identification; i.e., it gives a PDF for each of the damage parameters 

(size and position parameters), which provides a complete uncertainty quantification of 

these parameters The lower the uncertainty, the greater our degree of belief about the 

damage parameters, as identified by ABC-SubSim. 

The proposed methodology is proved capable of inferring the intact state of the 

monitored weld using a single sensor measurement, despite its noisy condition. Using a 

single sensor measurement corrupted with noise, damage of significant size is also 

inferred with high precision and low uncertainty, while damage of smaller size shows 

less certain results. 

Two 𝑥-positions are inferred when using measurements from the central 

sensing point (S1), revealing a geometrical symmetry for both the actuator and the 

sensing point, which is expected. Nevertheless, the successful prediction of both the real 
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𝑥 and its symmetric value, by the developed algorithm, means that the ANN-based 

surrogate model has effectively learned this symmetry from the training data. This result 

is a validation of the ANN’s performance and of the methodology’s potential for 

detecting multiple possibilities of the available damage. 

The symmetry problem is resolved upon using measurements from another 

sensing point lying outside the plate’s plane of symmetry. Damage length (𝐿) and 𝑥-

position are precisely predicted even for small damage sizes, while for large damages, 

very accurate predictions are attained for all the damage parameters. This resolution in 

inferring a precise size and position of the damage, using only one single measurement, 

is considered an important achievement in the damage identification field. The 

symmetry of S1 is obvious in the problem under study; however, other non-trivial 

similarities of measurements from different damage cases may be faced in real-life 

situations. Hence, data fusion from multiple sensing points (at least two sensor 

measurements) is thought to be a necessity to avoid such issues and increase the 

reliability of the damage identification process. 

After fusing multiple sensor measurements (𝑈2𝑆1, 𝑈2𝑆2, and/or 𝑈2𝑆3) within the 

ABC-SubSim algorithm, higher precision and lower uncertainty are achieved for the 

cases of small damage size. More specifically, the best results are obtained when fusing 

data from S2 and S3. 

It is noticed in all the presented inference results, that the width (𝑊) and the 𝑦-

position show higher uncertainties accompanied sometimes with less inference 

precision than all the other damage parameters. This is most obvious when looking at 

damages of small size (𝐿 = 25 𝑚𝑚); i.e. for test cases 1 to 6 (Table 3.5). This may 
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mean an imperfect performance of the ANN surrogate model over the 𝑊 and 𝑦 

parameters when 𝐿 = 25 𝑚𝑚. 

If a better inference is desired in the case of small damages, an additional 

inference step may be added. This step is activated only if 𝐿 is inferred to be below a 

certain threshold in the first inference step. This would include the training of additional 

ANNs using training data of small damage lengths only, to help the ANNs learn more 

how to differentiate the other damage parameters. Such an improvement can lead to 

more accurate inference results whenever the application necessitates. ABC-SubSim 

parameters may also be tuned, in this case, to make the first inference faster but 

probably less accurate. 

In practice, the SHM system designer should be aware of types, shapes, and 

possible positions of damages, in the monitored structure, that should be considered and 

modeled in the finite element model for data generation. Thus, the architecture of the 

trained neural network should also be adapted to the new number of input variables 

(size, position, and probably orientation and shape parameters of the damage) and to the 

new signal length, as needed. More complex damage cases can be integrated by using 

multiple neural networks to cover different types of damage and sizes. The problem can 

be broken into a classification stage first, identifying the damage type using machine 

learning classifier(s), and then an identification stage, inferring the predefined damage 

parameters and using a specific surrogate model (based on the classified damage type). 

When implementing the proposed framework, calibration/normalization of the 

sensor measurements is required to make the experimental data comparable to the 

numerical data in terms of amplitude. A deviation in the placement of the actuators and 

sensors is not expected to cause a major difference in the collected responses; neither 
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will highly impact the coverage of the sensor network [25]. Also, slight misplacement 

of the PZT wafers may lead to small variations in the signals which are of the level of 

noise, however, it was demonstrated that damage inference is robust to such disparity. 

Non-contact sensing and actuation methods (e.g., air-coupled or laser-based 

transducers) would provide a better control and data-normalization ability when 

applicable. The FE modeling should be modified based on the used actuation and 

sensing methods to produce signals that are well-matching with the experimental 

measurements. 

The better the match is between the FE simulations and real experimental 

signals, the more robust is the inference when applied to real sensor measurements, with 

less yielded uncertainties. The differences in a signal that may arise due to noise or 

environmental changes (as temperature and pressure on an airplane structure) are 

expected to appear as small inference deviation rather than failure in prediction, which 

was demonstrated by adding different levels of sensing noise (Section 3.5.5). In 

addition, to account for environmental changes, they may be used as inputs to the FE 

model, and training data at variable conditions can be generated for the surrogate model. 

Those inputs should also be added to the inputs of the surrogate model, towards a better 

but more sophisticated condition-based damage identification. 

Further, a prognostics-based decision-making SHM system is envisaged as 

desirable future work, where the structure’s deterioration and remaining useful life are 

predicted to make informed decisions. A more intelligent system would also add self-

adaptation algorithms to dynamically account for environmental changes and 

operational conditions, therefore increasing both the structure’s integrity and efficiency. 
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Finally, time is a key factor when monitoring critical structures that, in case of 

failure, may endanger people’s lives. This factor is more important when such structures 

are subject to highly variable loads (e.g., an operating passenger airplane) or may be 

exposed to abrupt changes (e.g., severe impact damage). A successful SHM system 

should be able to detect any damage at the moment it happens or even have the potential 

for capturing the deterioration in the structure’s strength before damage occurs. The 

time elapsed to perform one FE simulation was, on average, around 4.75 minutes using 

an Intel® Core(™) i7-8750H CPU (parallel Abaqus® simulation over 8 CPUs). However, 

the ANN takes around 8 𝑚𝑠 to predict the signal using the same processor. This obvious 

advantage (more than 35,000 times faster) and the possibility to do the ANN prediction 

with minimal processing needs, both give the surrogate modeling its importance for 

applying a probabilistic damage-inference methodology in a real SHM system. On the 

other hand, the computational time needed to perform a damage inference considerably 

varies when using different numbers of sensor measurements. The time needed to apply 

the ABC-SubSim algorithm using 1, 2, 3, and 4 sensor measurements was respectively 

around 10, 24, 36, and 60 minutes using the same processor. Therefore, a trade-off 

between time and the advantages of adding more sensor measurements to the damage 

inference process should be considered. 

 The advantage of performing the damage inference through an ABC algorithm 

and using a surrogate model is that they do not require heavy computations, and thus a 

small lightweight processor can be used. The ultimate goal of the current study is to 

have smart sensors, that include microprocessors, or to have small processors aboard the 

monitored system which can infer damage in real-time. 
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3.6 Summary 

This chapter proposed a novel framework for damage detection, localization, 

and assessment using ultrasonic measurements. The framework allows for full 

identification, in size and position, of damage within a dissimilar-material joint using 

only one ultrasonic actuator and one sensor measurement. 

Surrogate models, based on Artificial Neural Networks (ANNs), were trained 

using finite element simulations to predict Lamb-wave sensor measurements when 

given specific damage. The ANNs were then employed to perform a probabilistic 

damage inference on simulated data corrupted with noise using Approximate Bayesian 

Computation, thus, providing posterior PDFs of six damage parameters (length, width, 

thickness, and 𝑥-, 𝑦-, and 𝑧-positions).  

The potential of the algorithm for detecting multiple damage scenarios that 

may lead to the same sensor measurement was proved. This made it advisable to fuse 

information from at least two sensor measurements to guarantee a more reliable damage 

identification. Upon data fusion of multiple sensor measurements, the length and 𝑥-

position of the damage were inferred with a precision higher than 99% in all the test 

cases. The inference of the other four damage parameters (width, thickness, and 𝑦 and 

𝑧-positions) was attained with an error of less than 0.9 𝑚𝑚, in the worst-case scenario. 

Damage parameters were inferred with a precision of above 95% for more than 83% of 

the cases when using a combination of two sensor measurements (𝑈2 from S2 and S3). 

The developed framework is computationally inexpensive, thus rendering the 

methodology suitable for online/onboard monitoring applications. The high resolution 

attained, inferring an accurate size and position of the damage by employing only one or 
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two sensor measurements, is considered a major advancement in the structural 

assessment field. 
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CHAPTER 4 

4. ASSESSMENT OF INTERMETALLIC COMPOUNDS WITHIN 

DISSIMILAR JOINTS USING LAMB-WAVE 

NONLINEARITY 
 

4.1 Introduction 

One of the major challenges in dissimilar welding processes is the formation of 

intermetallic compounds (IMCs) at the level of the joint [110, 111]. The availability of 

such compounds, appearing at the microstructural level, is associated with brittleness 

and weakness in the weld [112]. Various welding techniques, including diffusion, 

friction, electron beam, and laser welding, have led to joints weaker than both base 

materials, due to the development of IMCs across the joint [113, 114]. Though 

explosive welding could avoid the formation of intermetallics at low loads [115], 

however, it leads to poor corrosion resistance [116]. The lower heat input in friction stir 

welding, which is also controllable through the welding parameters, made FSW a 

promising alternative for producing reliable dissimilar joints [17, 117, 118]. In 2010, 

Fazel-Najafabadi et al. [119] studied the joining of pure titanium (CP-Ti) to 304 

stainless steel in a lap joint by friction stir welding using different process parameters. 

The strongest achieved joint had a maximum failure load of 73% of that of pure 

titanium. Liao et al. [113] have also used friction stir welding to join a commercially 

pure titanium plate to a structural steel plate in a lap joint. The obtained microstructure 

at the interface of the joint was intensively examined and the different phases and grain 

sizes were identified. The joint was found to be stronger than the base metals even with 

the existence of IMCs. This might be due to the distribution of small intermetallic 

particles and the formation of β titanium at the interface. Many other examples of 
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successful dissimilar friction stir welding are reported in literature [120-123]; however, 

the welding process parameters play a critical role in dictating the joint’s quality and 

microstructural condition [117, 124, 125]. The problem of IMC formation is still 

present, especially when there is a major physical differences between the welded 

materials (e.g., melting intervals, thermal conductivity, and thermal expansion) or due 

to the low solubility of one material within the other (e.g., steel in aluminum) [111, 

121]. Yamamoto et al. [125] have shown that the tensile strength of the dissimilar FSW 

joint decreases significantly with the increase in the IMC layer’s thickness. It is 

therefore of great importance to be able to detect and quantitatively assess the amount 

of IMCs within the joint to evaluate/predict its strength. 

Using the standard linear features of ultrasonic waves (e.g., amplitude 

attenuation, time-of-flight, transmission and reflection coefficients, and various distance 

metrics between time-domain signals) is usually restricted to detecting/assessing 

changes within a certain order of magnitude of the probing wave’s wavelength [126, 

127]. On the other hand, nonlinear ultrasonic features have demonstrated high 

sensitivity to micro changes in materials [128]. These features include sub-harmonics 

[129, 130], higher harmonics [131, 132], nonlinear resonance [133, 134], and nonlinear 

modulation [135, 136], among others. Fukuda et al. [137, 138] have used the second-

harmonic and sub-harmonic features to detect plastic deformation in metallic rods. Two 

designs of double-layered piezoelectric transducers (DLPT) were proposed to enhance 

the receiver’s sensitivity to the targeted harmonic components in the measured signals. 

The ratio between the amplitudes of the sub-harmonic and fundamental wave 

components was observed to increase with the increase in the plastic strain. Zhang et al. 

[139] have investigated the effect of nonlinear boundary conditions, of an aluminum 
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plate, on fatigue-crack detection using the sub-harmonic resonance of LWs. It was 

experimentally verified that the sub-harmonic component can be used to both detect the 

fatigue crack and differentiate it from nonlinear boundary conditions. Yang et al. [35] 

have performed a parametric study addressing the effects of fatigue-crack opening (due 

to loading) and the incidence angle of excitation on the second-harmonic generation 

(SHG) in LWs. Numerical and experimental results showed the significant importance 

of considering the loading conditions and excitation angles during fatigue-crack 

inspection using SHG. A similar study was also introduced in [140], addressing the 

effect of different fundamental LW excitations at low frequencies, and more physical 

insights were provided on the SHG due to contact nonlinearity at fatigue cracks. The 

same authors [41] have numerically studied the SHG due to the interaction of LWs with 

crack-induced debonding in an aluminum plate strengthened by fiber-reinforced 

polymer (FRP). Different damage scenarios were considered including cracks and 

debonding of different sizes. It was found that exciting using the S0 or A0 LW modes 

shows different sensitivities of the SHG to different kinds and sizes of damage. Cao et 

al. [141] have used both S0-S0 and S1-S2 synchronism of LWs in the low- and high-

frequency ranges, respectively, to characterize pitting damage in an aluminum plate. 

After a theoretical insight of SHG due to pitting damage, a SAFE method was employed 

to perform a numerical investigation, and an experimental validation was also carried. A 

nonlinearity index was utilized for a successful damage imaging using a dense PZT 

sensor network. Belanger and Jahazi [142] have explored the evaluation of aluminum 

FSW lap joints using the S0 LW mode. Welds were manufactured using different tool 

rotational speeds, and both linear and nonlinear (second-harmonic) LW-based 

examinations were performed. A strong correlation was found between the transmission 
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coefficient of the S0 mode and the width of the friction-stir zone; however, no clear 

correlation could be established for the SHG. 

There is no work found in the literature studying the effect of intermetallic 

compounds, formed in dissimilar welds, on guided waves. In this chapter, the 

assessment of IMCs, within dissimilar FSW, using LW nonlinearity is explored. The 

analysis is performed on simulated dissimilar FSW lap joints, between AA5052-H32 

aluminum and ASTM 516-70 steel, containing intermetallic layers of variable thickness. 

Nonlinear FE modeling is utilized to account for the nonlinear-elastic characteristics of 

the materials. Micro-scaled intermetallic regions are imitated in 2D FE models with 

different scenarios (thickness and material properties). Symmetric Lamb waves are 

excited in the models, using PZT transducers, with a central excitation frequency of 

1,785 𝑘𝐻𝑧 to meet the synchronism and zero-flux conditions of SHG. Afterward, the 

effects of IMCs on the nonlinear features of LWs, namely the relative acoustic 

nonlinearity parameter, are investigated. 

Section 4.2 introduces a theoretical background about nonlinear ultrasound. 

Sources of nonlinearity and ways of evaluation and enhancement of the second-

harmonic modes are presented. Section 4.3 describes the FE modeling process, based on 

the available specimens, including the preliminary single-material model and the 

dissimilar-FSW lap-joint model. Section 4.4 shows the signal processing methodology 

and discusses the results of the FE investigation. Finally, concluding remarks are 

presented in Section 4.5. 
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4.2 Theoretical Background 

As an ultrasonic wave propagates through an elastic medium, it is distorted by 

the intrinsic nonlinearities within the medium itself and by nonlinearities that may arise 

from other disturbing features [87, 143]. This can lead to a set of various nonlinear 

components in the probing wave including those generated at fractional multiples (e.g., 

half) of the excitation/fundamental frequency, also known as sub-harmonics; at twice, 

thrice, or a higher multiple of the fundamental frequency, so-called higher-order 

harmonics or super-harmonics (first pointed out by L. Rayleigh in 1896 [144]); or at 

other mixed frequencies, induced by another excitation, to modulate the interrogating 

wave [87]. Closed cracks [145-148], voids [141], and even dislocations [149, 150] were 

all identified as potential sources of nonlinearities that can be detected or even assessed 

by different nonlinear features of ultrasonic waves. Due to their proven sensitivity to 

different microstructural changes and degradation in both composite and metallic 

structures, second-order harmonics of LWs, in particular, have attracted the attention of 

many researchers in the last few decades [151-155].  

The acoustic nonlinearity parameter, designated as 𝛽, is a term used to express 

the nonlinearity of LWs and other ultrasonic waves. It can be derived from the nonlinear 

stress-strain relation of the medium [143, 156], and is stated as follows [156, 157]: 

 𝛽 =
8

𝑘2𝑟

𝐴2

𝐴1
2 . 𝛿 (4.1) 

where: 

• 𝐴1: is the amplitude of the fundamental probing wave mode; 

• 𝐴2: is the amplitude of the second-harmonic wave mode paired to the 

fundamental probing mode; 

• 𝑘: is the fundamental wavenumber; 
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• 𝑟: is the wave’s propagation distance; 

• 𝛿: is a scaling function for LWs, independent of the propagating medium’s 

health condition [156]. 

 

To detect damage or microstructural changes, the variation in 𝛽 is of one’s 

interest, rather than its real value; thus, 𝛽 is normalized, for a fixed wavenumber (𝑘) and 

propagation distance (𝑟), to give the so-called relative acoustic nonlinearity parameter 

(RANP), denoted by 𝛽′ [143, 157]: 

 𝛽′ =
𝐴2

𝐴1
2 (4.2) 

 

Due to the weak amplitudes of the second-harmonic modes, it is desirable to 

excite LWs at specific frequencies to attain a cumulative second-harmonic generation 

with an acceptable signal-to-noise ratio (SNR). This is achieved if (1) the phase velocity 

of the fundamental wave mode at the excitation frequency is equal (or approximately 

equal) to the phase velocity of another mode at double the excitation frequency 

(synchronism condition; check Figure 4.1), (2) accompanied with non-zero power flux 

between the modes [152, 158]. The synchronism and non-zero power flux conditions 

lead to internal resonance between the two modes, where energy is effectively 

transferred from the fundamental mode to the second-harmonic mode during the wave 

propagation. This ensures the accumulation of this specific second-harmonic mode, 

while other double-frequency modes would rapidly vanish due to their amplitude 

attenuation over the propagation distance (explained in Chapter 2, Section 2.5.4) [157, 

158]. The synchronism condition between the fundamental mode and its paired second-

harmonic mode is usually accompanied by similar group velocities as well [30]. 
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As an application on the 2-𝑚𝑚 thick AA5052-H32 aluminum plate used in the 

current study, Figure 4.1 shows its theoretical phase- and group-velocity dispersion 

curves determined using Wavescope [70]. The two conditions of internal resonance are 

satisfied between the first-order and second-order symmetric modes (S1 and S2) at a 

fundamental excitation frequency of around 𝑓𝐸 = 1,785 𝑘𝐻𝑧. It can be noticed from 

Figure 4.1(b) that S1 and S2 have, respectively, the highest group velocities at 𝑓𝐸  and 

2𝑓𝐸 , which makes them easily distinguished from other propagating wave modes. This 

excitation frequency will therefore be used to ensure proper SHG within the upper sub-

plate of the examined joints, as will be explained further in the subsequent sections. 

 

 

(a) Phase velocities 
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(b) Group velocities 

 

Figure 4.1. Dispersion curves of LW modes in a 2-𝒎𝒎 thick AA5052-H32 aluminum plate. 

 

 

4.3 Finite Element Modeling 

4.3.1 Available Specimens 

This study was inspired by the work by Ibrahim et al. [159], where the 

microstructural and mechanical properties of friction stir diffusion cladding (FSDC) 

samples were extensively examined. FSDC is a new cladding technique that is 

performed in a way similar to FSW lap welding, where the whole cladding surface is 

processed. Figure 4.2 shows photos of the top and cross-sectional views of a cut FSDC 

specimen including two cladding passes. Six specimens of one-pass FSDC joints 

(resembling FSW lap joints) between 2-𝑚𝑚 AA5052-H32 aluminum and 7-𝑚𝑚 ASTM 

516-70 steel were received from the research group at the King Fahd University of 

Petroleum and Minerals (KFUPM) [159]. Their dimensions and varied FSDC process 

parameters are listed in Table 4.1. Figure 4.3 shows the top and side photos of one of 
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the six available samples, which all share the same geometrical shape. The diffusion 

zone, which defines the interface between the two materials, was characterized using 

energy dispersive spectroscopy (EDS) line-scan analysis, and the interface thickness 

was measured through the composition variation technique. Different process 

parameters have led to a variation in the interface thickness between the specimens, as 

shown in Figure 4.4 [159]. The interface thickness can be correlated to the amount of 

IMCs available within the weld region. 

This work focuses on the numerical modeling of the problem, while an 

experimental investigation will be the subject of future work. Thus, a numerical FE 

model mimicking the available samples is used, while varying the thickness and 

composition of the interface layer based on the performed characterization [159]. 

 

 

Figure 4.2. Two photographs of the top and cross-sectional views of a cut FSDC specimen 

with two cladding passes [159]. 
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Table 4.1. Geometry and variable welding parameters of the available FSDC specimens. 

Name 
Number of 

available specimens 

Length 

(𝑚𝑚) 

Width 

(𝑚𝑚) 

Tool’s 

rotational speed 

(𝑅𝑃𝑀) 

Tool’s 

feed speed 

(𝑚/𝑠) 

A50 2 80 12-12.5 1000 50 

A100 1 80 11 1000 100 

B100 1 80 19 500 100 

B150 2 80 12.3-15 500 150 

 

 

 

 

(a) Top view 

 

(b) Side view 

Figure 4.3. Top and side photos of one of the available FSDC samples. 

 

 

 

 

Figure 4.4. The interface-layer thickness (in 𝝁𝒎) of different specimens [159]. 
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4.3.2 Single-Material Model 

To have a better insight into the SHG and accumulation in the upper plate of 

the FSW lap joint, the nonlinear behavior of the wave was examined in a single-material 

model before modeling the complete welded specimens. 

A 2D plane-strain model of an AA5052-H32 plate of 2-𝑚𝑚 thickness and 300-

𝑚𝑚 length was built in COMSOL® Multiphysics (Figure 4.5) using Murnaghan 

nonlinear-elastic material model [160, 161]. The used material properties, including 

Lamé second-order elastic (SoE) constants [159] and Murnaghan third-order elastic 

(ToE) constants [162], are listed in Table 4.2. The model’s width was set to be 12 𝑚𝑚 

based on the width of the available specimens (Table 4.1). Two PZT actuators (of 7-

𝑚𝑚 length and 0.5-𝑚𝑚 thickness) were placed on the opposite surfaces of the same 

edge of the plate and were modeled based on a solid-mechanics/electrostatics multi-

physics solver. The two PZTs (PZT-5H) were excited simultaneously using the same 

input signals to selectively excite the symmetric LW modes and suppress/weaken the 

anti-symmetric modes [163]. The 15.5-cycle Hann-windowed sinusoidal excitation 

signals, of 1,785-𝑘𝐻𝑧 central frequency and 240-𝑉 peak-to-peak voltage, were fed into 

the outer (symmetric) poles of the PZT wafers. 

A free quadrilateral mesh was used with a maximum element size of 0.125 

𝑚𝑚, allowing around 10 elements per wavelength of the second-harmonic S2 mode. 

The plate was made long enough to prevent reflections, from the plate’s far side, from 

interfering with the propagating wave modes; where the total simulation time was set to 

be 𝑡 = 65 𝜇𝑠 based on the highest group velocities of the excited modes (propagating 

distance 𝑟 = 𝑐𝑔 × 𝑡 = 4352.64 𝑚/𝑠 × 65 × 10-6 𝑠 ≈ 0.283 𝑚 = 283 𝑚𝑚 < 300 𝑚𝑚). 

Waves were received (as in-plane displacements (𝑈1) along the plate’s length), at a 
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sampling rate of 100 𝑀𝐻𝑧, from a set of 15 sensing points uniformly distributed on the 

upper surface of the plate. The sensing points were placed at 10-𝑚𝑚 spacing along a 

distance of 50 to 190 𝑚𝑚 from the plate’s left edge. The plate’s bottom right corner 

was fixed to prevent model movement. 

 

 

Figure 4.5. Geometry and mesh of the single-material (AA5052-H32) 2D plane-strain FE 

model. 

 

 

Table 4.2. Physical and mechanical properties of the used sub-plate materials. 

Material 
Density 

(𝒌𝒈/𝒎𝟑) 

 Lamé parameters (𝑮𝑷𝒂)  Murnaghan ToE constants (𝑮𝑷𝒂) 

 𝝀 𝝁  l m n 

AA5052-H32 2680  51.3 26.43  -252.2 -325 -351.2 

ASTM 516-70 7800  107.05 77.52  -248 -623 -714 
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4.3.3 Dissimilar Lap-Weld Model with Variable IMCs  

Similar to the single-material model, a 2D plane-strain model was built using 

COMSOL® Multiphysics for the AA5052-H32/ASTM 516-70 lap weld. An AA5052-

H32 plate of 2-𝑚𝑚 thickness and 56-𝑚𝑚 length was placed on top of an ASTM 516-70 

plate of 7-mm thickness and 55-mm length, assuming a perfect joint, as can be seen in 

Figure 4.6. Murnaghan's nonlinear-elastic material model was used to model both the 

aluminum and steel sub-plates [160, 161]. The material properties assigned to the steel 

sub-plate, including Lamé constants [159] and Murnaghan ToE constants [164], are 

listed in Table 4.2. The model’s width was also set to be 12 𝑚𝑚 based on the width of 

the available specimens (Table 4.1). The same actuator-PZT configuration and 

excitation was used on the left edge of the aluminum plate. Intermetallic regions were 

mimicked in the FE model by varying the material properties of several interface sub-

layers (each of 2-𝜇𝑚 thickness and 21.5-𝑚𝑚 length) within the welded region between 

the two materials. Figure 4.6 includes insets of zoomed-in portions of the weld region 

showing the used interface sub-layers. Six different scenarios of IMC existence were 

built in six different models, namely, a model with no IMCs and five other models 

including 2-, 4-, 6-, 8-, and 10-𝜇𝑚 IMC layers. A free quadrilateral mesh was used with 

a maximum element size of about 0.135 𝑚𝑚 in the aluminum sub-plate, to guarantee a 

minimum of 9 elements per wavelength of the S2 mode (propagating in the upper sub-

plate). Rectangular elements, of 0.002 × 0.02 𝑚𝑚2 size, were used to ensure proper 

meshing of the micro-sized interface sub-layers. This has generated a very fine mesh 

within the weld region, with element sizes in the order of a few 𝜇𝑚 (Figure 4.6). The 

mesh size was relaxed, after around 3.5 𝑚𝑚 below the weld interface, up to a maximum 

element size of about 1.35 𝑚𝑚 at the bottom edge of the steel sub-plate. The total 
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simulation time was set to be 𝑡 = 50 𝜇𝑠, and 𝑈1 displacements were measured, at a 

sampling rate of 100 𝑀𝐻𝑧, from a set of 24 sensing points uniformly distributed on the 

upper surfaces of both sub-plates. The sensing points were placed at 3-𝑚𝑚 inter-

distance along a range of 9 to 78 𝑚𝑚 from the model’s left edge. The model’s bottom 

right corner was fixed to prevent its movement. 

Due to the ambiguity about the exact composition and material properties of 

the interface layers, and since the nonlinear-elastic properties of IMCs can hardly be 

obtained, the interface layers were modeled as homogeneous isotropic linear-elastic 

materials. The EDS characterization of interface layers, presented in Figure 4.7 [159], 

shows that the composition fraction of steel versus aluminum (and vice-versa) varies in 

a relatively linear manner within the interface layer, showing a smooth transformation 

from steel to aluminum composition. Therefore, the IMC layer was divided into 

multiple sub-layers, each of 2-𝜇𝑚 thickness, and the material properties of the sub-

layers were assumed through linear interpolation between those of aluminum and steel. 

Table 4.3 shows an example of the case of a 6-𝜇𝑚 interface layer, where three sub-

layers were assigned different material properties (linearly interpolated between the 

properties of aluminum and steel). This was applied to all the five models including 

variable-thickness (2 to 10 𝜇𝑚) IMC layers. 
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Figure 4.6. Geometry and mesh of the AA5052-H32/ASTM 516-70 lap-weld 2D plane-

strain FE model. 

 

 

 

 

Figure 4.7. EDS line scan analyzing the interface layer of a selected A50 sample [159]. 
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Table 4.3. Physical and mechanical properties of the 6-𝝁𝒎 IMC layer, divided into three 

sub-layers whose properties were determined via linear interpolation between the material 

properties of AA5052-H32 and ASTM 516-70. 

Material Density (𝐷) in 𝑘𝑔/𝑚3 Young’s modulus (𝐸) in 𝐺𝑃𝑎 Poisson’s ratio (𝜈) 

AA5052-H32 2680 70.3 0.33 

IMC sub-layer 1 3960 102.73 0.32 

IMC sub-layer 2 5240 135.15 0.31 

IMC sub-layer 3 6520 167.58 0.30 

ASTM 516-70 7800 200 0.29 

 

 

4.4 Results and Discussion 

4.4.1 Time-Domain Mode Identification 

Figure 4.8 shows the two time-domain signals measured in the single-material 

model at sensor positions of 50 and 160 𝑚𝑚 from the plate’s left edge. The signals 

show a gradual separation between two main propagating modes of different speeds, 

where their group velocities were calculated to be around 3,191.2 𝑚/𝑠 and 2,782.7 

𝑚/𝑠). The maximum peaks of the apparent wave packets were used for group-velocity 

calculations (marked on Figure 4.8), where the two modes were not yet separated at 50 

𝑚𝑚. Both calculated group velocities do not match with the theoretical group velocity 

of the S1-S2 mode-pair at 𝑓𝐸  (𝑐𝑔 ≈ 4,350 𝑚/𝑠; Figure 4.1(b)). Based on Figure 4.1(b), 

the velocity of the slower mode (𝑐𝑔 = 2,782.7 𝑚/𝑠) is close to that of the S0 mode 

(𝑐𝑔 ≈ 2,460 𝑚/𝑠). However, the high-velocity mode (𝑐𝑔 = 3,191.2 𝑚/𝑠) may 

correspond to the A0 or A1 modes (𝑐𝑔 ≈ 3,000 𝑚/𝑠) which could be still be excited at 

1,785 𝑘𝐻𝑧, even though a symmetric excitation was employed in the FE model [163]. 
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On the other hand, a faster but extremely weak mode is detected at the 

beginning of each signal. Due to the low amplitudes of the mode, some peaks vanished 

after propagating for some distance, which led to difficulty in accurately identifying its 

peaks. The group velocity was calculated, using the time-of-arrival of the fourth 

appearing peaks (marked on Figure 4.8), to be about 3,811.5 𝑚/𝑠, which is closer to 

that of the S1-S2 mode-pair than to any other mode indicated in the dispersion curves 

(Figure 4.1(b)). This suggests that the S1-S2 mode-pair is weakly appearing in the 

measured waves while being partially or totally covered by other stronger propagating 

modes; thus, it can hardly be identified in the time-domain signals. 

Similarly, Figure 4.9 shows the two time-domain signals measured in the 

dissimilar lap-weld model at sensor positions of 9 and 24 𝑚𝑚 from the model’s left 

edge. Both measurements are taken before the steel plate begins. Larger signal 

amplitudes are evident in the measurement at 24 𝑚𝑚, which is caused by the 

superposition with different reflections after the wave interacts with the steel plate. The 

fourth peak of each of the signals (marked on the figure) was used for calculating the 

group velocity of the fastest appearing mode. A value of 3,926.7 𝑚/𝑠 was obtained 

which is relatively close to the group velocity of the S1-S2 mode-pair in the aluminum 

sub-plate. Complex shapes are observed in the measured signals, including 

superpositions with multiple possible reflections and converted modes. 

The measured signals are analyzed in both the frequency and time-frequency 

domains in the subsequent sections. 
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Figure 4.8. Time-domain signals from the single-material AA5052-H32 model, measured 

at sensor positions = 50 and 160 𝒎𝒎. 

 

 

 

 

Figure 4.9. Time-domain signals from the dissimilar lap-weld model with no IMCs, 

measured at sensor positions = 9 and 24 𝒎𝒎. 
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4.4.2 Spectral and Nonlinearity Analysis 

4.4.2.1 Fast Fourier Transform 

The measured time-domain signals were transformed to the frequency domain 

using the fast Fourier transform (FFT) to investigate their frequency content and 

analyze the second-harmonic generation. Figure 4.10(a) shows a sample measurement, 

from the single-material model at sensor position = 100 𝑚𝑚, with its obtained 

frequency content. Due to the big difference between the amplitudes of the fundamental 

and second-harmonic frequencies, the FFT plot was divided into two plots showing the 

𝑓𝐸  and 2𝑓𝐸  domains separately. The fundamental frequency captured by FFT (𝑓𝑛(𝐹𝐹𝑇); 

marked on its corresponding FFT plot) is in the vicinity of 𝑓𝐸  (1,785 𝑘𝐻𝑧) but not 

exactly equal to it. The second-harmonic component is evident in the wave, showing 

multiple peaks around 2𝑓𝑛(𝐹𝐹𝑇), where the nearest peak is marked. FFT was also 

performed for the first 20 and 30 cycles of the signal, and the results are shown in 

Figure 4.10(b) and (c), respectively. It can be observed that the SHG is building up with 

the length of the signal until having multiple noisy peaks when using the complete 

signal. This means that the SHG is being superposed from different double-frequency 

modes and not only from the internal resonance of the S1-S2 mode-pair (available within 

the first 20 cycles); however, this may affect the linear shape of SHG accumulation. 

This is discussed further in Section 4.4.2.3. On the other hand, Figure 4.11 shows a 

sample measurement, from the dissimilar lap-weld model with not IMCs at sensor 

position = 54 𝑚𝑚, with its obtained frequency content. Similar observations can be 

made as those from the single-material model. 

The amplitudes corresponding to 𝑓𝑛(𝐹𝐹𝑇) and 2𝑓𝑛(𝐹𝐹𝑇), obtained from the FFT 

analysis, will be later used to calculate the relative acoustic nonlinearity parameter.  
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(a) Complete signal 

 

(b) First 20 cycles of the signal 
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(c) First 30 cycles of the signal 

Figure 4.10. A sample raw signal and its FFT, measured at sensor position = 100 𝒎𝒎 in 

the single-material AA5052-H32 model. 

 

 

 

 

(a) Complete signal 
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(b) First 20 cycles of the signal 

 

(c) First 30 cycles of the signal 

Figure 4.11. A sample raw signal and its FFT, measured at sensor position = 54 𝒎𝒎 in the 

dissimilar lap-weld model with no IMCs. 
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4.4.2.2 Short-Time Fourier Transform 

In parallel to the FFT analysis, a more comprehensive examination of the 

signals’ time-frequency content is presented in the next section. The spectrograms of the 

waves measured in both FE models were determined using the short-time Fourier 

transform (STFT) to analyze the signals in the time-frequency domain. 

As an example, Figure 4.12(a) shows a sample raw time-domain signal, 

measured at sensor position = 70 𝑚𝑚 from the single-material model, along with its 

STFT spectrograms. The second-harmonic components are obvious in the spectrogram, 

but with much weaker amplitudes than the fundamental components. The time-domain 

signals corresponding to both frequency components (𝑓𝐸  and 2𝑓𝐸) were extracted from 

the spectrogram (along the marked white dashed lines) and plotted on the right within 

the same figure. Based on the internal-resonance conditions, the generated second-

harmonic mode should have the same velocity as that of the fundamental mode; 

however, a time shift is observed between the 1st peaks of both modes in Figure 4.12(a) 

(peaks marked using red circles). Figure 4.12(b) shows the STFT spectrogram and 

reconstructed time-domain signals for the wave measured from the same model at 

sensor position = 150 𝑚𝑚. Based on the 1st peak’s arrival time of the fundamental and 

second-harmonic modes at 70 and 150 𝑚𝑚 (Figure 4.12(a) and (b), respectively), the 

group velocities were calculated to be, respectively, 2,779.7 and 4,550.6 𝑚/𝑠. This 

confirms that the S1 mode is dominated by other stronger fundamental-frequency modes 

in the propagating wave. However, the 1st peak of the second-harmonic wave is 

identified to be corresponding to the S2 mode which is the only mode having such a 

high group velocity at 2𝑓𝐸  (Figure 4.1(b)). 
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Similarly, Figure 4.13(a) and (b) show the raw time-domain signals, measured 

respectively at 9 and 54 𝑚𝑚 in the dissimilar lap-weld model, with their STFT 

spectrograms and reconstructed waves at 𝑓𝐸  and 2𝑓𝐸 . The group velocities of the 

fundamental and second-harmonic modes in the aluminum sub-plate (sensor position = 

9 to 54 𝑚𝑚) were calculated, based on the 1st peaks in the reconstructed signals, to be 

2,962.2 and 2,502 𝑚/𝑠, respectively (average values from all sensing positions). A 

faster but weak second-harmonic peak is observed at some sensing positions while it 

vanishes at others (an example is shown in Figure 4.13(c) at sensor position = 15 𝑚𝑚). 

Its group velocity was calculated to be around 3,114.2 𝑚/𝑠. The three velocity values 

show that the 1st appearing peaks, in the reconstructed signals, do not correspond to the 

S1-S2 mode-pair. This confirms that there exist other double-frequency modes that are 

contributing to the SHG in the propagating wave. 

The amplitudes of the 1st peaks in the reconstructed time-domain signals, 

determined by STFT (exemplified by those marked on Figure 4.12 and Figure 4.13), 

were used to calculate 𝛽′ according to equation (4.2). 
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(a) Sensor position = 70 𝒎𝒎 

 

(a) Sensor position = 150 𝒎𝒎 

Figure 4.12. Sample raw signals, their STFT spectrograms, and their reconstructed time-

domain signals at the fundamental (1,785 𝒌𝑯𝒛) and second-harmonic (3,570 𝒌𝑯𝒛) 

frequencies – measured at different sensor positions in the single-material AA5052-H32 

model. 
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(a) Sensor position = 9 𝒎𝒎 

 

(b) Sensor position = 54 𝒎𝒎 
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(c) Sensor position = 15 𝒎𝒎 

Figure 4.13. Sample raw signals, their STFT spectrograms, and their reconstructed time-

domain signals at the fundamental (1,785 𝒌𝑯𝒛) and second-harmonic (3,570 𝒌𝑯𝒛) 

frequencies – measured at different sensor positions in the dissimilar lap-weld model with 

no IMCs. 

 

 

4.4.2.3 Cumulative Second-Harmonic Generation 

RANP, or 𝛽′, was plotted versus the sensor positions to visualize the 

cumulative SHG over the propagation distance in the two models. Figure 4.14 and 

Figure 4.15 show the plots for the single-material and dissimilar lap-weld models, 

respectively, when using both FFT and STFT. 

Considering the single-material model, linear growth of 𝛽′ over the 

propagation distance was obtained only when using FFT over the first 20 cycles of the 

measured waves (Figure 4.14(a)). This verifies that the S1-S2 mode-pair was 

successfully excited and is contained within the first 20 cycles of the signals. On the 

other hand, using more wave cycles to calculate FFT leads to the disturbance of this 

linear trend in the accumulation of the SHG (Figure 4.14(b) and (c)). This reconfirms 
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that other double-frequency modes also exist within the signals, which adds to the SHG 

of the S1-S2 mode-pair and randomly changes its trend. 𝛽′, determined using STFT, was 

plotted versus the sensor positions at which the peaks of both the fundamental and 

second-harmonic modes were clearly identified (i.e., sensor position = 60 to 170 𝑚𝑚; 

Figure 4.14(d)). A trend comparable to that determined from FFT of the complete signal 

is observed. Even though the S2 mode was successfully identified as the 1st peak in the 

reconstructed time-domain signal at 2𝑓𝐸 , it’s amplitude was divided by that of the 1st 

appearing fundamental mode (according to equation (4.2). However, this mode is not 

the S1 mode, as was explained in section 4.4.2.2; thus, a linear accumulation of 𝛽′ was 

not attained. 

Regarding the dissimilar lap-weld model, three regions can be differentiated 

when using FFT over the first 20 wave cycles (Figure 4.15(a)). 𝛽′ increases in a 

relatively linear manner from 9 to 24 𝑚𝑚 (just before the beginning of the steel plate), 

after which the linear SHG accumulation is interrupted due to the wave’s interaction 

with the steel plate. A sharp variation is then noticed beyond 54 𝑚𝑚 after the end of the 

aluminum plate, where the waves were measured on the surface of the steel plate. 

However, this trend is not observed when using the complete signal for computing the 

FFT or STFT (Figure 4.15(b) and (c)), where random variations of 𝛽′ versus the sensing 

position are attained. In addition to the reasons mentioned for the single-material plate, 

the absence of a clear trend for 𝛽′ in the welded model can be attributed to its complex 

geometry and small size, which cause wave interactions with various features and 

interference with reflections from multiple boundaries. 
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(a) Based on FFT using the first 20 cycles of the signal (50 to 110 𝒎𝒎) 

 

(b) Based on FFT using the first 30 cycles of the signal (50 to 110 𝒎𝒎) 
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(c) Based on FFT using the complete signal (50 to 190 𝒎𝒎) 

 

(d) Based on STFT using the complete signal (60 to 170 𝒎𝒎) 

Figure 4.14. 𝜷′ versus the sensor positions in the single-material model. 

 

 

 



206 
 

 

(a) Based on FFT using the first 20 cycles of the signal 

 

(b) Based on FFT using the complete signal 
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(c) Based on STFT using the complete signal 

Figure 4.15. 𝜷′ versus the sensor positions in the dissimilar lap-weld model with no IMCs. 

 

 

4.4.3 Assessment of Intermetallic Compounds 

Measurements were taken at chosen sensing positions from the six dissimilar 

lap-weld models with variable IMC-layer thickness (ranging from zero to 10 𝜇𝑚 with a 

step of 2 𝜇𝑚). RANP, or 𝛽′, was then calculated using, both FFT (complete signal) and 

STFT, for all the models at each sensing position. The plots showing 𝛽′ variation versus 

the IMC-layer thickness are presented in Figure 4.16, for four sensing positions, 

namely, 24 𝑚𝑚 (just before the lap joint), 54 mm (last point on the aluminum sub-

plate), 57 𝑚𝑚 (first point on the steel sub-plate), and 75 𝑚𝑚 (just before the end of the 

steel sub-plate). 

Regardless of the different possible sources of the second-harmonic generation 

in the measured waves (whether including the S1-S2 mode-pair or not), the SHG could 

detect the very minimal variations in the thickness of the intermetallic compounds 

within the welded joint. A linear correlation is evident between 𝛽′ and the thickness of 
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the IMC layer, irrespective of the sensing position or the used signal processing 

approach. Further, considering different peaks for 𝛽′ calculation from the STFT second-

harmonic component did not affect the linear variation of 𝛽′, as long as the same peak is 

being used for all the IMC-varied models. This linear trend is a very important trait that 

confirms the possibility of a quantitative assessment of such microstructural features, 

within dissimilar welded joints, using Lamb waves. 

On the other hand, no clear understanding could be established of the reason 

behind the decreasing or increasing monotone of 𝛽′ versus IMC-layer thickness. Such 

understanding is desirable when a quantitative assessment of IMCs is to be 

implemented. 

 

 

  

(a) Based on FFT (complete signal) 

sensor position = 24 𝒎𝒎 

(just before the joint) 

(b) Based on STFT 

sensor position = 24 𝒎𝒎 

(just before the joint) 
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(c) Based on FFT (complete signal) 

sensor position = 54 𝒎𝒎 

(last point on the aluminum sub-plate) 

(d) Based on STFT 

sensor position = 54 𝒎𝒎 

(last point on the aluminum sub-plate) 

  

(e) Based on FFT (complete signal) 

sensor position = 57 𝒎𝒎 

(first point on the steel sub-plate) 

(f) Based on STFT 

sensor position = 57 𝒎𝒎 

(first point on the steel sub-plate) 
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(g) Based on FFT (complete signal) 

sensor position = 75 𝒎𝒎 

(just before the end of the steel sub-plate) 

(h) Based on STFT 

sensor position = 75 𝒎𝒎 

(just before the end of the steel sub-plate) 

Figure 4.16. The linear trend between 𝜷′ and the IMC-layer thickness – shown for four 

different sensor positions on the aluminum and steel sub-plates, based on both FFT (left) 

and STFT (right). 

 

 

4.5 Summary 

This chapter investigated the potential of Lamb-wave nonlinear features, 

namely the second-harmonic generation, for the quantitative assessment of micro-scaled 

intermetallic compounds within the interface region of a dissimilar welded joint. Two 

finite element models were built (a single-material AA5052-H32 plate and an intact 

AA5052-H32/ASTM 516-70 lap-weld), and Murnaghan’s nonlinear-elastic properties 

were assigned to the materials. Symmetric Lamb waves were selectively excited within 

the model, based on the internal-resonance conditions of the S1-S2 mode-pair. Waves 

were measured at different sensing positions and were extensively analyzed in the time, 

frequency, and time-frequency domains. The relative acoustic nonlinearity parameter 

(𝛽′) was calculated based on multiple signal processing approaches including the fast 

and short-time Fourier transforms. The cumulative second-harmonic generation was 
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then interpreted in regards to the propagating modes. Intermetallic compounds, of 

thickness varying between 2 and 10 𝜇𝑚, were modeled within the interface layer of the 

dissimilar lap-joint, based on already available specimens. The variation of 𝛽′, upon the 

introduction of the IMC layers (of various thickness and material properties) into the 

lap-weld interface, was then scrutinized. It was demonstrated that the nonlinearity 

parameter varies linearly with the increase of the IMC-layer thickness, where 2-𝜇𝑚 

variations were easily distinguished. This proves the capability of nonlinear Lamb-wave 

features, and specifically the second-harmonic generation, of the quantitative evaluation 

of micro-scaled damage or microstructural variations within dissimilar welded joints. 

Further, physical insights into the second-harmonic generation phenomenon in 

dissimilar lap-welded joints, as well as in single-material plates, were gained. 
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CHAPTER 5 

5. CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Introduction 

Using different materials in specific locations of structures is an advantageous 

strategy to optimize designs, from both mechanical and economical perspectives, by 

fully exploiting the materials’ native properties (e.g., mechanical, thermal, physical, and 

chemical). This imposes the joining of dissimilar materials and necessitates the 

establishment of powerful SHM techniques to monitor structures including dissimilar 

joints. 

The presented work provided a better understanding of Lamb-wave interaction 

with intact dissimilar-material friction stir welding based on analytical, finite-element, 

and experimental investigations. In addition, an efficient methodology for detecting and 

accurately identifying buried weld defects, in size and position, was proposed. The 

sensitivity of nonlinear LW features to microstructural variations within the dissimilar-

material interface was also confirmed, and their potential for the quantitative assessment 

of micro-scaled intermetallic compounds was demonstrated. 

This chapter reiterates the concluding remarks of the conducted research and 

discusses the achieved contributions. Finally, recommendations are provided, based on 

the obtained results, and future work improvements are proposed. 

 

5.2 Concluding Remarks 

The introductory chapter of this dissertation justified the need for dissimilar-

material joining and listed the advantages of using friction stir welding over other 
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conventional welding techniques. FSW was briefly introduced, and its potential defects 

were presented, which included possible buried or invisible defects that may 

compromise structural safety and risk people’s lives. The importance of LW-based 

inspection techniques as compared to traditional nondestructive evaluation methods was 

discussed, and the significant advantage of using LWs for SHM of structures containing 

dissimilar FSW was highlighted. This explained the motivation of the work presented in 

this dissertation 

LW-based assessment of FSW between dissimilar materials requires a prior 

understanding of the wave’s interaction with the material interface. Upon propagation 

through a material discontinuity, a LW may encounter reflection, refraction, and/or 

mode conversion. Background knowledge about the fundamental guided-wave modes 

and their possible interactions with a dissimilar-material joint was presented, after 

which a numerical and experimental study was conducted to calculate their transmission 

and reflection coefficients. Different signal processing methods were developed to 

extract the existing wave modes (S0, A0, and converted S0-SH0) from 3D measurements 

along their propagation directions, and to separate the reflection and transmission 

wavefields from other wave superpositions. Results showed that the symmetric S0 mode 

is partially converted into the fundamental shear-horizontal (SH0) GW mode when 

obliquely interacting with the material interface. While the reflection of the S0-SH0 

mode from the joint was found to be well-pronounced (reaching amplitudes above 20% 

of the incident S0), its transmission to the other material is extremely weak. The 

transmissions of the S0 and A0 modes were found to be almost constant except for very 

steep incidence angles (> 78°). The transmission amplitudes of both modes increase by 

around 20% when the wave propagates from AA6061-T6 to AZ31B, while they drop by 
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the same percentage in the inverse propagation direction. On the other hand, the 

reflection coefficients of the propagating modes varied with the angle of incidence, with 

values up to 35%. Despite the peaks appearing at the critical angle, the absolute values 

of the reflection coefficients of each of the modes have shown similar trends between 

the forward (AA6061-T6 to AZ31B) and the backward (AZ31B to AA6061-T6) 

propagation directions. The total reflection of the excited wave, from the material 

interface, was not observed in any condition. Further, an analytical solution, based on 

plane-wave approximation, was shown to be accurate for predicting the behavior of the 

in-plane modes (S0 and S0-SH0 modes) over a range of low frequency×thickness values. 

Furthermore, a new framework for damage identification using ultrasonic 

measurements was developed. Wormhole damage within a dissimilar-material joint 

could be fully identified, in size and position, using only one ultrasonic actuator and 

one/two sensors. Finite-element simulations were performed, on a model of the 

monitored structure, to simulate the measured LWs from a pre-allocated sensor 

network. The simulation data were then used to train several artificial neural networks. 

Each ANN served as a surrogate model that can predict a sensor measurement upon a 

given damage within the monitored structure. Finally, the surrogate models were 

employed to perform a statistical damage inference, using the ABC-SubSim algorithm, 

on simulated sensor measurements corrupted with noise. The inference outputs were the 

posterior PDFs of six damage parameters (length, width, thickness, and 𝑥-, 𝑦-, and 𝑧-

positions), which also provided the level of uncertainty in the prediction. Different 

sensing-noise levels were tested, showing high robustness of the proposed method 

against noise; accurate damage inference persisted, and healthy welds could still be 

differentiated from the damaged ones. It was proved that the algorithm can detect 
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multiple damage scenarios that may produce the same sensor measurement. Thus, it was 

advised to fuse data from at least two sensors to guarantee reliable and accurate results. 

A successful data fusion method was applied leading to accuracies higher than 99%, for 

all the tested cases, when inferring the damage length and 𝑥-position. The other four 

damage parameters (width, thickness, and 𝑦 and 𝑧-positions) were predicted with a 

maximum error of 0.9 𝑚𝑚. A combination of only two sensor measurements has led to 

an inference precision of above 95% for more than 83% of the performed predictions. 

This high resolution in predicting the 3D dimensions and coordinates of damage, using 

only one or two sensor measurements, is considered a major improvement in the field of 

condition assessment. Another important feature of the developed methodology is being 

computationally inexpensive, which makes it convenient for online/onboard monitoring 

applications. 

In addition, the sensitivity of LW nonlinear features, namely the second-

harmonic generation, to micro-scaled intermetallic compounds in dissimilar joints was 

examined. Nonlinear-elastic FE simulations were performed for an aluminum plate and 

a dissimilar aluminum/steel FSW lap joint. Symmetric LWs were selectively excited, 

obeying the S1-S2 internal resonance conditions, and multiple measurements were taken. 

The measured signals were interpreted in the time, frequency, and time-frequency 

domains, and SHG was extensively analyzed. The relative acoustic nonlinearity 

parameter was determined using both the fast and short-time Fourier transforms, and its 

cumulative generation over the propagation distance was scrutinized. Intermetallic 

regions were then introduced into the interface of the dissimilar lap weld, and the 

interaction of LWs with different scenarios of their existence was investigated. The 

thickness of the introduced intermetallic layers varied between zero and 10 𝜇𝑚 with a 
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step of 2 𝜇𝑚, and the nonlinearity parameter was compared over various sensing 

locations within the model. RANP showed high sensitivity to this minimal variation and 

revealed a linear correlation with the IMC-layer thickness. This important outcome 

confirms the capability of such nonlinear LW features in detecting microstructural 

changes, and proves the potential of LWs for a quantitative evaluation of IMCs in 

dissimilar welds. Physical insights about the SHG in single-material plates and 

dissimilar lap-welded joints were also gained. 

 

5.3 Recommendations for Future Work 

A framework for experimental and 3D-FE transmission/reflection coefficient 

determination was proposed, and an accurate approximation methodology for the in-

plane modes was validated. This is thought to be of importance to the NDE and SHM 

community, while further studies may consider implementing these calculations within 

sensor-network optimization problems for structures containing dissimilar-material 

joints. When designing sensor networks, actuator-sensor paths across a dissimilar joint 

should not be considered as straight lines; however, sensing-path deviations should be 

considered based on the excitation incidence angles (with respect to the joint) and the 

transmission angles (calculated based on the involved material properties). 

While the amplitudes of reflected guided-wave modes showed high 

dependence on the incidence angle of excitation, constant transmissions of the S0 and 

A0 modes were obtained up to very steep angles. This is an important feature that 

should be investigated for combinations of materials other than the one used in this 

study (AA6061-T6/AZ31B). Plane-wave approximation can be easily employed for this 

purpose when the S0 mode is to be used. PWA has also shown that the transmission of 
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the S0 mode is constant over a wide frequency range. Therefore, it would be 

recommended to use transmission-based inspections across dissimilar joints or, 

otherwise, beware of the expected reflection coefficients according to the incidence 

angle of excitation. On the other hand, it would be very useful if a handy solution, 

similar to PWA, could be found for a fast prediction of the transmission and reflection 

coefficients of the A0 mode across intact dissimilar joints. 

The proposed Bayesian damage inference methodology is very promising 

based on the achieved results, but it opened the door for new questions and research 

ideas. As a successful and accurate diagnostics framework, it forms a first step towards 

lifetime predictions and prognostics to plan maintenance and optimize inspections, 

which would also necessitate the development of a damage evolution model. The 

advantage of performing the damage inference using an ABC algorithm is that it doesn’t 

require heavy computations, and thus a small processor of lighter weight can be used. 

The ultimate goal, of the current study, is to have smart sensors that include 

microprocessors or to have small processors onboard that can infer damage in a real-

time manner. For application on large structures, the structure can be subdivided into 

smaller regions which can be modeled more easily for simulations. The level of 

accuracy needed (based on the criticality of each subdivision and its susceptibility to 

damage) would then dictate how accurate should be the modeling and how much data is 

needed for the ANN training. Common transducers can be used between different 

regions to optimize the number of used transducers for the whole structure. Engineering 

common sense and previous experience of possible damage occurrences and/or the most 

vulnerable regions would help in optimizing the process, in terms of time and 

computational demands. 
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A further improvement may include adding nonlinear ultrasound features as 

additional outputs of the ANN to provide the capability of assessing extremely small 

damage and detect damage in its early stage. Future work may also include the 

consideration of variable environmental and operational conditions within the surrogate 

modeling process; different surrogate models may be used for different conditions, or 

such conditions would be added as additional inputs of the trained ANNs (e.g., 

temperature and pressure). Hence, the ANN would predict different LW signals, for the 

same damage case, based on the operational and environmental conditions. Towards the 

application on real structures, the enrichment of the training data by experimental/real 

data is also worth investigation. Calibration/normalization methods that would allow for 

the fusion or comparison of data from both sources (FE simulations and real 

measurements) should be explored. Further, several developments within the 

implementation of the damage-identification algorithm may be explored (e.g., automatic 

hyper-parameter tuning, distance metric improvement, and other means of data fusion 

between multiple sensors, metrics, and/or LW features).  

On the other hand, more analysis can be put into the big amount of available 

simulation results that were used for training and testing the surrogate models. The 

sensitivity of different LW modes to various damage parameters and sizes may be 

examined. Such an understanding is very critical for choosing frequencies and both 

excitation and sensing technologies in SHM applications. Moreover, damage imaging 

algorithms may be developed by making use of the available simulation data. 

Concerning the assessment of IMCs, an experimental investigation, using the 

already available specimens, may be the subject of future work. Proper LW excitation 

and sensing techniques should be explored to ensure minimal variations while testing on 
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different samples (e.g., using noncontact transducers). An appropriate normalization 

technique should be also employed to account for possible variations that may still 

arise. The effect of geometrical differences between the specimens on different 

nonlinear LW features should be studied, and a practical methodology for the 

application of such a sensitive method among multiple specimens should be 

investigated. Information from multiple nonlinear LW features may be fused to make 

more accurate and reliable assessments. Further, the reason behind the increase or 

decrease in RANP versus IMC-layer thickness, depending on the sensing location, 

needs to be understood. Tackling all these challenges would eventually lead to the 

establishment of a robust algorithm for intermetallic-region detection and assessment 

within FSW joints, towards a predictive model of the joint strength. 

To sum up, the work presented in this dissertation provides better knowledge 

and potent techniques that can serve as tools for SHM systems of structures containing 

joints between dissimilar materials. The application of such research outcomes in 

complete and comprehensive strategies, on real SHM systems, remains the ultimate 

goal. The goal aiming to improve the safety margins and extend the life span of our 

assets, and most sacredly, to secure people’s lives. 
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