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Abstract

Bachir Hicham El Masry for Master of Science
Major: Computer Science

Title: Optimizing sparse matrix multiplication for sparse deep neural networks on GPUs

Deep Neural Networks (DNNs) require a huge amount of computational power
and memory storage. Hence, sparsifying the neural network was proposed as a
technique to help reduce the computational complexities of DNNs. However,
when dealing with parallelization, we face multiple challenges like load balanc-
ing, memory management, and many others. Many studies have tackled these
problems, some using CPUs, and more recent studies using GPUs. Since mod-
ern GPUs, compared to the CPUs, promise a much higher peak floating-point
performance and memory bandwidth, we based our study on running DNNs on
GPUs. Many works have proven the efficiency of GPUs in dealing with sparse
matrices. Our aim is to further explore the effects of applying a combination of
various storage formats on the GPU while testing different tiling strategies. We
would also be proposing a technique for better memory utilization.
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Chapter 1

Introduction

Deep learning (DL), a subset of Machine Learning (ML), is a technique that
achieves Artificial Intelligence (AI) through algorithms trained with data. It has
seen great progress over the last decade and has been targeted by a wide com-
munity since it can be used in all sorts of applications such as Natural Language
Processing (NLP), computer vision, speech-audio recognition and many others.
A deep neural network consists of a cascade of interconnected neurons. These
neurons, as shown in Figure 1.1, are organized into layers where each neuron from
one layer is connected to all the neurons of the next layer. This could also be
referred to as fully-connected or dense DNN.

Figure 1.1: DNN representation

Increasing the amount of training data was proven to be an effective approach
for improving the model accuracy over a range of machine learning tasks such as
object recognition, image classifications and others. However, deep neural net-
works, given their structure, require a huge amount of data where a noticeable
increase in the network size will result in a massive increase in both computa-
tional power and memory storage requirements. This has quickly lead the latest
DNNs to outgrow the memory limitations of currently available accelerators. In
order to address this issue, the DL community attempted to convert the dense
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DNNs into sparse DNNs using algorithmic approaches such as pruning.

(a) Fully connected Neural Network (b) Partially connected Neural Network

Figure 1.2: Every node is connected to all the nodes of the next layer in (a) where
only some are connected to the next layer in (b)

Sparse neural networks have been proposed as an approach for solving the
growing computational complexities of DNN multiplications. Sparsifying the net-
work, as shown in Figure 1.2b, mainly consists of ignoring nodes with negligible
or zero weights, given that loss of accuracy can be tolerated/controlled. This
will reduce inference computational complexity, increase throughput and will im-
prove the network quality. However, this solution also presents unique scalablity
challenges, like load balancing, memory management and data partitioning.

Many studies were conducted in order to tackle these problems. Some tech-
niques involved using custom accelerators (like FPGAs [16]), but we aim to have a
more general approach. Other studies utilized the CPUs, mainly using OpenMP,
and running on either a single or a multi-CPU system. However, since mod-
ern graphics processing units (GPUs), compared to the CPUs, promise a much
higher peak floating-point performance and memory bandwidth, the more recent
researches started integrating GPUs in their work. Hence, many libraries have
been created/tested that have proven their efficiency when dealing with a sparse
DNN like GraphBLAS [SuiteSparse [15] , and GraphBLAST [18]] and Kokkos
kernels [14].

Most of the prior approaches encountered many problems, some of which were
left as future work, which opens the door for optimizations. These problems in-
clude memory bottlenecks, choosing the storage formats and problems with load
balancing and data partitioning. In this thesis, and in order to further accel-
erate these models, we aim to test a variety of storage formats for storing and
traversing the neural network layers like CSR, CSC and ELLPACK. Depending
on the properties of the matrix at each layer, we might choose between storing it
as a dense matrix or as a sparse matrix. We also aim to use 2D-tiling techniques
along both columns and rows in order to better divide our computations across
the available computational units.
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Some optimization techniques that we do per iteration will include: buffering,
load-balancing, memory management to reduce memory access overhead, filter-
ing the data and pruning the edges. We will be testing different storage formats
in both a 1D tiling and 2D tiling implementation in order to validate/highlight
the importance of 2D tiling. It should be noted that some strategies could be
device specific. Hence, throughout this study, we will be focusing on the best
strategies for running a sparse DNN on the GPU. Finally, we’ll compare our ob-
tained results and conclude.

In Section 2, we elaborate on the sparse formats and some proposed problems
regarding Sparse matrix multiplications. Then, in Section 3, we will be listing
some related research conducted on either generally handling a sparse matrix
multiplication on the GPUs or studies that has tackled running SpNN on a variety
of devices, where some of which utilized the GPU. After that, in Section 4, we
will divide our implementations into different steps, where we will be introducing
our proposed approaches done at each step. The later Section 5, provides the
specifications of the devices and the environments that are used throughout this
study. Finally, we will evaluate our approaches in Section 6 and conclude in
Section 7.
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Chapter 2

Background

2.1 GPU Overview

First, we introduce the architecture of a modern GPU [2]. Unlike the CPU that
exhibits a relatively small number of threads, the GPU accommodates tens of
thousands of concurrent threads while keeping in mind that the GPU threads
have higher latency than the CPU threads. In comparison to CPUs, GPUs
are throughput-oriented rather than latency-oriented. This offers a theoretically
higher peak floating point performance and memory bandwidth. Modern GPUs
are organized into tens of Streaming Multi-processors (SMs). Each SM consists
of multiple cores and is capable of executing hundreds of hardware-scheduled
threads. Threads are grouped into warps which are in turn are grouped into
blocks. At the next level in the hierarchy, blocks are grouped into grids. Grids
are launched by a host thread and execute a specialized GPU function known as
a kernel. In some cases, grids can also be launched by GPU threads [3], but we
do not leverage this feature in our work.

Warps represent the finest granularity of scheduled computational units on
each multiprocessor, where the number of threads per warp is defined by the
underlying hardware. The GPU’s threads can communicate and cooperate with
each other within the memory hierarchy depending on their position/groups.
This is divided into three layers (ordered from fastest to slowest): ”intra-warp”,
”intra-block” and ”intra-grid”. In the first layer, the ”intra-warp”, the threads
within a warp can communicate by accessing the adjacent threads registers. For
the ”intra-block” layer, threads withing a block can cooperate throughout the
shared memory. On the last layer, all the threads in the GPU have access to the
device global memory.

Execution across a warp of threads follows a data-parallel single instruction,
multiple data (SIMD) model. Performance penalties occur when this model is
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violated, as happens when threads within a warp follow separate streams of ex-
ecution — divergence — or when atomic operations are executed in order —
serialization. Also, some of the main issues encountered on the GPUs are con-
trol divergence, accessing memory in a un-coalesced manner, expensive write to
random position in memory making it memory intensive rather than the desired
computational expensive, hardware limitations like limited main memory and
shared memory sizes, overhead of allocating and re-allocating memory on the
GPU since the size of the resulting matrix isn’t known before hand.

Within our work, we aim in properly utilizing the memory hierarchy for bet-
ter performance, and to tackle these issues mentioned above by analysing and
proposing different optimizations strategies.

2.2 GEMM

General matrix–matrix multiplication (GEMM) is one of the most essential oper-
ations in computational science and modeling. The operation multiplies a matrix
A with a matrix B producing a resulting matrix C, where A ∈ Rm x k, B ∈ Rk x n

and C ∈ Rm x n. The matrix product is defined as ci,j =
∑K

k=0 ai,k ∗ bk,j where
i ∈ [0,m−1] and j ∈ [0, n−1]. Hence, and as shown in Algorithm 1, each output
ci,j is the result of the dot product of ai,∗b∗,j, where ai,∗ denotes the row-vector
from A and b∗,j denotes the column-vector from B, requiring a time complexity
of O(M ∗N ∗K).

Algorithm 1 GEMM multiplication

Input: A ∈ Rm x k,B ∈ Rk x n

Output: C ∈ Rm x n

1: procedure GEMM(C, A, B)
2: for i in M do
3: for j in N do
4: for k in K do
5: ci,j += ai,k ∗ bk,j

6: return

However, encountering zero-values in either the rows of A or columns of B
within the computation have no effect on the resulting matrix C. Hence, wast-
ing the computational and memory resources. This waist overhead is correlated
with the sparsity level of the input matrices. A matrix is often called sparse
if its number of non-zeroes is relatively small enough compared to its dimen-
sions/storage requirements. Furthermore, an interesting dependency is shown in
the dot product where the columns of A are mapped to their corresponding rows
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from B. Therefore, building on that dependency, and in order to take advantage
of sparsity, a SpGEMM was proposed.

Algorithm 2 SpGEMM multiplication

Input: A ∈ Rm x k,B ∈ Rk x n

Output: C ∈ Rm x n

1: procedure SpGEMM(C, A, B)
2: for i in M do
3: for k in ai,∗ do
4: for j in bk,∗ do
5: ci,j += ai,k ∗ bk,j

6: return

The SpGEMM, as shown in Algorithm 2, is adjusted to only take into con-
sideration the non-empty values within A and B while computing C. An early
description of this algorithm was given by Gustavson [1]. This algorithms iter-
ates over the rows of A and maps the non-empty values column indices to the
non-empty values in the corresponding row indices from B which could explain
why the CSR format is the most commonly used format. However, this algorithm
could be tailored depending on the storage formats used which open the door for
many optimizations.

2.3 Sparse Storage Formats

Upon dealing with sparse matrices, storing them as Dense can be very wasteful in
terms of the amount of unused allocated memory and computational resources.
Hence, many formats were created in order to tackle these issues, from which we
will be considering the following: (D)CSR, (D)CSC and ELL. We will also be
using a form of Doubly-compressed storage formats discussed below. It should
be noted that the storage requirements will also differ depending on the type of
the values stored [float, double,...]. Our examples will be based on given a sparse
matrix A of size MxN .

2.3.1 Coordinate list format (COO)

The Coordinate list format (COO), as shown in Figure 2.1, is composed of 3
arrays: RowIdxs, ColIdxs and V alues that store the triplets (i, j, v) respectively.
These values represent the coordinates and the value of an element from a matrix
where i is the row index, j is the column index and v is the value of ai,j. Each
array has nnz(A) elements, hence require O(3∗nnz(A)) total storage space. The
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Figure 2.1: COO format

elements are sometimes sorted by row or column. By default, we assume that
the elements aren’t sorted unless stated otherwise.

2.3.2 Compressed sparse row format (CSR)

Figure 2.2: CSR format

The compressed sparse row format (CSR), as shown in Figure 2.2, is composed
of 3 arrays: RowPtrs, colIdxs and values. The RowPtrs, of size O(NbrRows+
1), keeps track of the number of non-zero values at each row where the pairs
(col, val) of ai∗ are stored in an incremental manner at ColIdxs and V alues re-
spectively starting at the index RowPtrs[i]. Hence, to get the number of nonzero-
elements on row r we calculate nnz(ar∗) = RowPtrs[r+1]−RowPtrs[r]. There-
fore, CSR require O((NbrRows+1)+2nnz(A)) total storage space. It should be
noted that the elements within a row don’t have to be sorted by column unless
specified otherwise.

2.3.3 Compressed sparse column format (CSC)

The compressed sparse column format (CSC), as shown in Figure 2.3, is composed
of 3 arrays: ColP trs, RowIdxs and V alues. The ColP trs, of size O(NbrCols+
1), keeps track of the number of non-zero values at each column where the pairs

7



Figure 2.3: CSC format

(row, val) of a∗j are stored in an incremental manner at RowIdxs and V alues re-
spectively starting at the index ColP trs[i]. Hence, to get the number of nonzero-
elements on column c we calculate nnz(a∗c) = ColP trs[c + 1] − ColP trs[c].
Therefore, CSC require O((NbrCols + 1) + 2nnz(A)) total storage space. It
should be noted that the elements within a column don’t have to be sorted by
row unless specified otherwise.

2.3.4 ELLPACK (ELL)

ELLPACK (ELL), as shown in Figure 2.4, is composed of 3 arrays: rownnz,
ColIdxs and V alues. The rownnz, of size O(NbrRows + 1), keeps track of the
number of non-zero values at each row where the pairs (col, val) of ai∗ are stored
at ColIdxs and V alues respectively starting at the index i. However, unlike CSR,
the elements within the same row aren’t stored successively. Rather, the elements
within the same row are stored Nbr rows apart each other as if they are stored
in column major matrix. Hence, ELL require O(NbrRows ∗ (max(ai) + 1) + 1)
storage space. It should be noted that in some cases where some of the rows
are (somewhat) dense, ELL could end-up allocating as much space as a Dense
matrix.

2.3.5 Doubly Compressed format (DCSR, DCSC)

In our implementation, we applied a form of compression to CSR and CSC de-
noted as DCSR and DCSC by adding a 4th array that keeps track of the non-
empty row and column indices respectively.

This doubly compressed format will be used in order to distribute the GPU’s
computational units across the non-empty (rows | columns) to attain better load
balancing. Further details are discussed in Section 4.4.1.

8



(a) ELLpack 1D representation

(b) ELLpack 2D representation

Figure 2.4: Ellpack sparse format representation.

2.4 Estimating the output size

In a sparse matrix multiplication, and depending on the characteristics of the
input matrices, storing the results as a Dense matrix offers a significant memory
overhead that could lead to poor performance and it can also be a main factor
in preventing the computations to be done on some devices with limited on-chip
memory such as the GPUs. Hence, one of the main issues posed by a SpGEMM
is adequately estimating the size of the resulting matrix C. As a solution, the
common practices for tackling this issue are listed below, each offering some
advantages and disadvantages.

• Precise method: pre-computes the sparse matrix multiplication, that is
usually done in boolean form instead of actual arithmetic operations, to
generate the precise size of C. This method is consider expensive since it
dictates the necessity of executing the SpGEMM twice.

• Probabilistic method: generates an inaccurate estimation of the nnz(C)
based on some probabilistic analysis done on the input matrices. Since this
method isn’t practical, it was mainly used in order to estimate the execution
time of the multiplication.
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(a) DCSR

(b) DCSC

Figure 2.5: Representation of both a Doubly compressed CSR and CSC.

• Upper bound method: computes the upper bound of nnz(C) such that
nnz(C) =

∑m
i=0

∑nnz(ai∗)
j=0 nnz(bj∗) where bj∗ is the corresponding row of

ai,j. However, this method doesn’t take into account zero values generated
by the arithmetic operations and almost always allocate excessive amount
of memory.

• Progressive method: allocates memory of a certain size for C and re-
allocates it as the nnz(C) increases. This is the most commonly used
method on CPUs but isn’t supported on GPUs.

• Dense method: allocates the resulting matrix C as a dense matrix. This
method eliminates the need to conduct any computations to estimate or re-
allocate C. However, this is the most expensive method in terms of memory
and is primarily used for focusing on execution time.

These techniques offers a non-negligible overhead. Therefore, we will be split-
ting our computations into batches and allocate a single buffer. Before flushing
the buffer to our output matrix, we will be re-allocating our matrices accordingly.
This technique is discussed in details in Section 4.2.1.
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2.5 Partitioning

Upon dealing with parallel computing, one of the main focuses is achieving good
load-balancing. This is done by equally distributing the work-load across all the
available computational units. The partitioning strategy could be considered an
essential factor in assessing the overall efficiency of an algorithm. Our work will
cover some common sparse matrix computation’s partitioning schemes. Given T
computational units, the most common partitioning strategies used are:

• 1D partitioning: the computational units are each assigned to a single
row/col per iteration.

• 1D tiling: the computational units are each assigned to Tsize consecutive
rows/cols per iteration.

• 2D partitioning: the computational units are each assigned to a single
element per iteration.

• 2D tiling: the computational units are each assigned to a single sub-matrix
with Trow and Tcol consecutive rows and columns respectively per iteration.

Note that 2D tiling of sparse matrices has also been applied in the context of
graph algorithms such as k-truss decomposition [12].

For further illustration of tiling, assume that we are tackling a sparse matrix
multiplication of the form CM,N = AM,K ∗BK,N .

Tiling is necessary to reuse on-chip memory space and improve the processing
efficiency. The combination of tiling along multiple dimensions at multiple levels
enables high flexibility of the design. Assuming that the matrices are divided
into K tiles, the resulting matrix is calculated by:

Ci,j =
K∑

k=0

Ai,kBk,j

The example shown in Figure 2.6 illustrate the partitioning for K = 2. It
should be noted that for 1D partitioning, either i or j is 0.

2.6 SpGEMM Algorithms

Many storage formats combinations could be utilized upon tackling a SpGEMM
multiplication. Each combination offers different advantages and disadvantages
that might also depend on the underlying hardware. Throughout this section,
we will be listing some of the most commonly used storage format combinations
with their corresponding serial pseudo-code implementation. Also, it should be
noted that some combinations could dictate certain preferred storage formats for
the resulting sparse matrix C.
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(a) 1D Row Tiling on A (b) 1D Column Tiling on B

(c) 1D Tiling on A by Col or B by Row (d) 2D Tiling

Figure 2.6: Different Tiling schemes representations on A, B and C.

2.6.1 CSR-CSC

As illustrated in the Algorithm 3, a direct conversion of the GEMM Algorithm
1, would store the input matrix A as CSR and the weight matrix B as CSC. This
offers some improvements in term of time complexity shifting from O(M ∗ N ∗
K) to O(M ∗ N ∗ max(nnz(A), nnz(B))). However, although this approach is
embarrassingly parallel, it still suffers a high overhead since each row needs to
iterate over all the columns of B in order to produce a resulting row.

2.6.2 CSR-CSR

The most commonly used algorithm for tackling sparse-sparse matrix multiplica-
tion is the CSR-CSR algorithm. The input and weight matrices are both stored
in CSR format. As illustrated in Algorithm 4, and following the SpGEMM men-
tioned in Algorithm 2, this implementation will iterate over the rows of A and
maps the column indices to their corresponding row indices from B. Each non-
empty value ai,k will iterate over the elements of bk,∗ to compute the results of ci,∗.
Hence, it is preferred to store the output matrix C as CSR. This implementation
requires a single access to the rows of A and multiple access to the rows of B.
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Algorithm 3 CSR-CSC multiplication

Input: Amxk in CSR, Bkxn in CSC
Output: Cmxn

1: procedure SpGEMM(C,A,B)
2: for r in A.rowPtrs do
3: for c in B.colP trs do
4: a← A.rowPtrs[r]
5: b← B.colP trs[c]
6: while a < A.rowPtrs[r + 1] & b < B.colP trs[c+ 1] do
7: ka← A.colIdxs[a]
8: kb← B.rowIdxs[b]
9: if ka < kb then
10: a++
11: else if ka > kb then
12: b++
13: else
14: C[r][c] += A.values[a]*B.values[b]

15: a++, b++

16: return

Algorithm 4 CSR-CSR multiplication

Input: Amxk in CSR, Bkxn in CSR
Output: Cmxn

1: procedure SpGEMM(C,A,B)
2: for r in A.rowPtrs do
3: nnza← A.rowPtrs[r + 1]−A.rowPtrs[r]
4: for i in nnza do
5: idxA← A.rowPtrs[r] + i
6: k ← A.colIdxs[idxA]
7: va← A.values[idxA]
8: nnzb← B.rowPtrs[k + 1]−B.rowPtrs[k]
9: for j in nnzb do
10: idxB ← B.rowPtrs[k] + j
11: c← B.colIdxs[idxB]
12: vb← B.values[idxB]
13: C[r][c] += va ∗ vb

14: return
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2.6.3 CSC-CSC

Similarly to the CSR-CSR multiplication, the CSC-CSC multiplication is consid-
ered to be the transpose of the later. The main difference here, is that instead
of iterating over the rows of A, we are iterating over the columns of B and map-
ping them to their corresponding columns of A. As shown in Algorithm 5, each
non-empty value bk,j will iterate over the elements of a∗,k to compute the results
of c∗,j. Hence, it is preferred to store the output matrix C as CSC. This imple-
mentation requires a single access to the columns of B and multiple access to the
columns of A.

Algorithm 5 CSC-CSC multiplication

Input: Amxk in CSC, Bkxn in CSC
Output: Cmxn

1: procedure SpGEMM(C,A,B)
2: for c in B.colP trs do
3: nnzb← B.colP trs[c+ 1]−B.colP trs[c]
4: for i in nnzb do
5: idxB ← B.colP trs[c] + i
6: k ← B.rowIdxs[idxB]
7: vb← B.values[idxB]
8: nnza← A.colP trs[k + 1]−A.colP trs[k]
9: for j in nnza do
10: idxA← A.colP trs[k] + j
11: r ← A.rowIdxs[idxA]
12: va← A.values[idxA]
13: C[r][c] += va ∗ vb

14: return

2.6.4 CSC-CSR

Inspired by the dependency between the columns of A and the rows of B, this
approach, illustrated in Algorithm 6, stores the input matrix A in CSC format
and the weight matrix B in CSR format. The main advantage offered by this
implementation is that it require a single access to the elements in both A and
B. However, the main disadvantage is the random write-memory accesses to C
which could drastically hinder performance if not dealt with properly, especially
on a GPU.
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Algorithm 6 CSC-CSR multiplication

Input: Amxk in CSC, Bkxn in CSR
Output: Cmxn

1: procedure SpGEMM(C,A,B)
2: for k in A.colP trs do
3: nnza← A.colP trs[k + 1]−A.colP trs[k]
4: for i in nnza do
5: idxA← A.colP trs[k] + i
6: r ← A.rowIdxs[idxA]
7: va← A.values[idxA]
8: nnzb← B.rowPtrs[k + 1]−B.rowPtrs[k]
9: for j in nnzb do
10: idxB ← B.rowPtrs[k] + j
11: c← B.colIdxs[idxB]
12: vb← B.values[idxB]
13: C[r][c] += va ∗ vb

14: return

2.6.5 CSR-ELL

As an optimization of the CSR-CSR approach, this technique, illustrated in 7, is
used to ensure coalesced and (semi-)coalesced memory access pattern to A and
B respectively.

Algorithm 7 CSR-ELL multiplication

Input: Amxk in CSR, Bkxn in ELL
Output: Cmxn

1: procedure SpGEMM(C,A,B)
2: for r in A.numRows do
3: nnza← A.rowPtrs[r + 1]−A.rowPtrs[r]
4: for i in nnza do
5: idxA← A.rowPtrs[r] + i
6: k ← A.colIdxs[idxA]
7: va← A.values[idxA]
8: for s in B.rownnz[k] do
9: idxB ← (B.numRows ∗ s)+j
10: c← B.colIdxs[idxB]
11: vb← B.values[idxB]
12: C[r][c] += va ∗ vb

13: return
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Chapter 3

Related Work

In this thesis, we aim to build an optimized GPU based implementation that
solves sparse deep neural networks. This challenge consists of optimizing the
sparse matrix-matrix multiplications performance on the underlying architecture.
Hence, we will be analyzing previous implementations that handles running gen-
eral sparse matrix-matrix multiplication on the GPU. Also, we will be viewing
some of the previous work that tackled running a sparse neural network on dif-
ferent devices (CPUs, GPUs and accelerators). We summarize these works in
Section 3.1, then cover them throughout the rest of the chapter.

Device Appl
Sparse matrix format

Partition Ref
Input Weight Buffer(s) Output

CPU

SpMSpV CSC bitVec Buk(xThds) Vec 1D col,row [5]

SpNN

CSC CSC - CSC 1D Tiling [13]
CSR CSR - CSR 1D row [14]
CSR CSR - CSR 1D row [15]

FPGA SpNN Dense CSC - Dense 1D Tiling (x3) [16]

GPU

SpMSpM

CSR CSR COOs CSR 1D row [6]
CSR CSR CSR(x2) CSR 1D row [7]
CSR CSR CSR CSR 1D row [9]
CSR CSR - CSR 1D row [10]

SpMM CSR Dense COO Dense 1D Tiling [11]

SpNN

CSR CSR CSR CSR 1D row [17]
CSR CSR CSR CSR 1D row [18]
Dense CSR - Dense 1D tiling (x2) [19]
Dense CSR - Dense 2D

partition
[20]

Dense ELL - Dense

Table 3.1: Table listing all the different approaches done in our Related Work
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This chapter is divided into four sections. Section 3.1 serves as a general
introduction to sparse matrix vector multiplications. Section 3.2 will cover some
prior research and libraries that deal with running a general sparse matrix mul-
tiplication on the GPU. This will give us a feel of the common issues faced with
sparse matrices and the common strategies used to deal with them. Section 3.3
and Section 3.4 will cover prior works that have tackled running a SpNN on both
the CPU and GPU respectively. The final Section, in order to assess our work, we
will be using some of the mentioned/created libraries as base cases for comparison.

3.1 Sparse Matrix Vector Multiplication

Before diving in the main task of solving sparse matrix multiplications, we start
with an overview of a general sparse matrix-vector multiplications. Our aim
is highlighting some correlations between both methods that could be useful in
solving our problem efficiently.

Algorithm
Sparse matrix format

Partition
Input Weight Buffer(s) Output

J. Serrano [5] CSC bitVec Buckets(xThreads) Vec 1D col,row

Table 3.2: Table listing general SpM(Sp)V approaches

3.1.1 Efficient implementation of sparse matrix-sparse vec-
tor multiplication for large scale graph analytics [5]

This work covers a general optimized SpMSpV implementation on the CPU.
Throughout their work, they address memory access efficiency, partitioning effi-
ciency, and synchronization, with the goal of exploiting the maximum memory
bandwidth that a system provides. It follows a 1D column-wise partitioning
scheme followed by a 1D row-wise tiling scheme discussed below. The input
sparse matrix A is stored as CSC while the sparse weight vector B is stored as
bitVector producing a Dense vector C. This algorithm also provided a SpMV
approach and employ some heuristic, that are based on the number of nonzeros
involved in the operation, in order to decide between applying a SpMSpV or
SpMV multiplication.

The proposed algorithm follows a two-phased approach that requires pri-
vate and global buckets/bins. Before launching the algorithm, the data is pre-
processed in order to determine the upper bound number of nonzeros involved.
Based on that and some given heuristics, it chooses between 2 partitioning strate-
gies across sockets (NUMA aware), decides whether to run a SpMSpV or SpMV
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algorithm, and allocates the needed sizes for the global bins in the global bucket.
Each thread gets assigned a private fixed size bucket partitioned into row-wise
bins. The first phase, the scaling phase, distributes the threads across the nonze-
ros of B where they compute and store the values in the private bins and copy
them to the corresponding global bins when they are either full or when the first
phase terminates. The second phase, the aggregation phase, re-distributes the
threads across the global bins to aggregate and to store the values in the resulting
vector C in a synchronous manner.

From their approach, they presented an interesting notion of choosing be-
tween sparse or dense formats given some heuristics. However, their methods are
CPU specific that focus on the CPU’s memory hierarchy. Hence, they cannot be
implemented efficiently on GPUs.

3.2 General Sparse Matrix Multiplication on the
GPU

This section covers some work that tackled running a sparse matrix-matrix mul-
tiplication on the GPU. In most of these papers, a wide variety of matrices were
used for testing, each with different shapes/sizes and sparsity structures. This sec-
tion allows us to have a better overview of the GPU’s architecture, from threads
to warps to blocks. It also sheds the light on different key features/issues that
affects performance that should be taken into consideration such as: memory
hierarchy, memory management, data management and load-balancing.

Algorithm Application
Sparse matrix format

Partition
Input Weight Buffer(s) Output

ESCop [6] SpMSpM CSR CSR COOs CSR 1D row
RMerge [7] SpMSpM CSR CSR CSR(x2) CSR 1D row

bhSPARSE [9] SpMSpM CSR CSR CSR CSR 1D row
kkSpGEMM [10] SpMSpM CSR CSR - CSR 1D row
Yang et al. [11] SpMM CSR Dense COO Dense 1D Tiling

Table 3.3: Table listing different SpMSpM & SpMM approaches

3.2.1 CUSP [21]

Cusp is a library for sparse linear algebra and graph computations based on
Thrust. Cusp provides a flexible, high-level interface for manipulating sparse
matrices and solving sparse linear systems. In comparison to the other methods,
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Cusp achieves very constant performance when dealing with sparse matrix mul-
tiplications and isn’t affected by their irregular sparsity structures. This can be
explained by the ESC (Expansion, Sorting, Compression) approach. However,
it pre-allocates an intermediate buffer with a size equal to the number of mul-
tiplications needed. The size is computed by using the ”upper bound method”.
The array is then sorted in O(n) using radix sort which dominates the compu-
tational cost. Since the algorithm doesn’t ignore the zero entries generated by
arithmetic operations, the resulting matrix is normally larger than the input ma-
trices. Hence, in some cases the intermediate matrix Ĉ maybe too large to fit
in the device global memory. Further explanation is done in the work discussed
below [6] since it follows the same approach with some optimizations.

3.2.2 cuSPARSE [22]

cuSPARSE is a CUDA library used for handling sparse matrices. It pre-computes
a simplified SpGEMM [boolean matrices] in the same computational pattern in
order to allocate sufficient memory for the output matrix C before the actual
computation takes place. The matrices could be stored in a bunch of supported
formats following a 1D scheme done on the GPU. Even though this method
generates precise size to the nnz(C) it is expensive. It also utilizes the GPU
hash-table for the insert operations. So time complexity of this approach is
O(flops) on average and O(flops nnzr(C)) in the worst case, where nnzr(C) is
defined as the average number of nonzero entries in the rows of the matrix C.
Because the algorithm allocates one hash table of fixed size for each row of C,
the space complexity is O(nnz(A)+nnz(B)+n+nnz(C)).

3.2.3 Optimizing Sparse Matrix—Matrix Multiplication
for the GPU [6]

This work covers a fully general optimized SpGEMM implementation on the
GPU. Their approach is based on the CUSP library with some improvements by
introducing some bandwidth saving operations. It follows a 1D row-wise par-
titioning scheme on a single GPU architecture while handling double precision
values. The matrices are stored in CSR format and a sorted COO format was
also used as an intermediate buffer in the computation. The approach used is
an optimization of the expand-sort-construct (ESC) algorithm that consist of 3
main phases: expansion, sorting and contraction. In general, the ESC algorithm
distills the computation into a small set of data-parallel primitives whose perfor-
mance characteristics are readily understood in order to eliminate any complexity
or unpredictable data-access patterns.

A high level overview of this algorithm follows 5 consecutive steps: ”slice,
expand, sort, contract, construct”. Initially, ”slice” will partition the input CSR
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matrix A into M sub-matrices Ak in a 1D row-wise where M is the number of
rows in A [each Ak represent a single row from A]. It will then iterate over the M
sub-matrices while applying the 3 intermediate steps. Each sub-matrix will be
called in ”expand” where the generated product between Ak and B will be stored
in a Buffer Ck in COO format that was allocated using upper bound method. The
values in Ck will be sorted in the ”sort” call by row indices and then by column
indices. Next, the ”contract” will eliminate any duplicates by accumulating their
values. Finally, after iterating, ”construct” will merge all the Ck producing the
output matrix C.

In their optimization, the paper highlighted the importance of utilizing shared
memory in order to reduce data-movement operations in global memory. Follow-
ing the memory hierarchy, each of the 3 intermediate steps were adjusted to better
utilise shared memory and register when possible. Due to the extreme variation
of the workload requirement per row, assigning a static computational unit per
row could lead to extreme deviation in load-balancing and poor performance.
Hence, as a solution, and since dynamic assignment of computational units per
row is difficult to implement, they proposed an interesting notion of reordering
the matrix rows by the amount of computational work. This permutation strat-
egy allows the grouping of rows given their workload and memory requirement.
These permutations were used to distribute the work across threads, Warps and
Blocks, depending on the number of non-zero elements per row, offering some
improvements in load balancing.

It should be noted that this work takes into consideration big row sizes that
don’t fit into the GPU’s shared memory. Upon dealing with this issue, the com-
putation of the rows that don’t fit into shared memory was done in the main
memory. Also, it emphasised on reducing the cost of the sorting phase. They
introduce an interesting notion of assigning computational units in a seemingly
dynamical fashion rather than statically that has proved to be an efficient ap-
proach for reducing load balancing. Hence, we decide to adopt a similar version
of this technique in our implementation. However, instead of deciding what mem-
ory to use depending on the nnz per row we wish to reduce the use of the GPU’s
main memory in our computation as much as possible.

3.2.4 GPU-accelerated sparse matrix-matrix multiplica-
tion by iterative row merging [7]

This work presents a GPU-accelerated method for general sparse matrix-matrix
multiplication (SpGEMM). It follows a 1D row-wise partitioning scheme on a sin-
gle GPU architecture, where each row is assigned to a sub-warp of threads. The
matrices are stored in CSR format, with the assumption that the column indices
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are sorted, while handling double precision values. Similar to ”Merge Sort”, the
method used, denoted by ”RMerge”, computes and merges the rows on the GPU.
However, the elements with duplicate column indices are aggregated on the fly.
This early merger will reduce global memory access and is referred to in this work
as the ”compression effect”. The compression factor, defined as the ratio of the
number of nonzero multiplications to nnz(result), was later calculated and shown
to have an interesting correlation with the performance rate.

The proposed algorithm ”RMerge” require that the input matrix A has at-
most W non-zeros per row before performing the sparse matrix multiplication.
In order to satisfy this condition, the input matrix A is split into K matrices
A = GkGk−1...G1 such that each matrix Gi satisfy the condition. Each split will

reduce the maximum row length by a factor of W , hence, K =
⌈
max(nnz(a))

W

⌉
splits

are needed where a is a row from A. This split will transform our original C = AB
into a chain of sparse matrix multiplications C = GkGk−1...G1B. However, in
order to reduce memory consumption, the splitting was done iteratively K times.
At each iteration i, the current input matrix Ai will be split into Ai = Ai+1Gi

where Ai+1 doesn’t satisfy the condition and can be further split. The compu-
tation is done from right to left resulting in an intermediate result Bi+1 = GiBi

per iteration. Therefore at most 2 intermediate buffers are needed. Only the first
merging level require multiplication. Furthermore, the values of G2, ..., Gk are
guaranteed to be one which is used to reduce memory consumption and to avoid
trivial multiplications.

The GPU-accelerated function MulLimited() is called for computing the prod-
uct C = AB. This function is divided into 3 steps. It starts with computing the
structure of the result matrix C by calculating the rows lengths. Then, in order
to have an estimate of the required memory, the rowPtrs will be computed using
prefix-sum before allocating C. Finally, the values and column indices of C will
be computed and stored. It should be noted that the first and third step are
similar. As discussed above, A will consist of a limited number of non-zeros per
row W , where W represent the sub-warp size, which is passed as argument to the
function. The sub-warp size template of W could be either [2, 4, 8, 16, 32]. Each
sub-warp will be responsible for a single output row following c = aB where a
and c are corresponding rows of A and C. Each thread withing the sub-warp will
cover a single element ar,j that correspond to the row bj,∗ from B. Hence, this
approach allows the merger of up to W rows of the right-hand side B that were
selected and weighted by a.

This work focuses on increasing the number of arithmetic operations than that
of the memory transfer from and to global memory. Although they presented
a good use of computational resources with good caching and high occupency
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was achieved, their approach presents many restrictions and could be considered
somewhat wasteful. One of the main drawbacks is the high logarithmic depen-
dency on the sparsity structure of the input matrix A where the value of K,
number of splitting and memory overhead were all affected by the characteristics
of A. Also, throughout their work, the sub-warp size effected performance and
needed to be tailored. As an optimization, in the last multiplication, the lowest
sufficient sub-warp size was used. The work done only focused on registers and
didn’t use shared memory to fully benefit form the GPU’s memory architecture.
When dealing with irregular input matrices, load imbalance and large memory
allocation make it inefficient. In our implementation, we will be implementing a
somewhat similar approach in terms of sub-warps. However, we will be avoiding
splitting and will be utilizing shared memory. Our aim is having a dynamically
assigned thread distribution strategy that scales well from assigning sub-warps
to assigning full Blocks.

3.2.5 A framework for general sparse matrix–matrix mul-
tiplication on GPUs and heterogeneous processors
[9]

This work is an extended version of the paper ”An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data [8]”. Their algorithm, denoted
by ”bhSPARSE”, mainly focuses on improving the GPU SpGEMM performance
for matrices with arbitrary irregular sparsity structures. It follows a 1D row-wise
partitioning scheme where a non empty row from A is either assigned a single
thread or a Block of threads depending on the upper bound number of nonzeros
in the corresponding resulting row in C. The matrices are stored in CSR format,
with the assumption of sorted column indices, and can be in single or double
precision. The proposed framework is implemented on either a single GPU or
a CPU–GPU heterogeneous processor architecture. The later is composed of
CPU cores, GPU cores and shared virtual memory and promotes the use of re-
allocatable shared virtual memory. The SpGEMM posed three main problems:
(1) not knowing the size of the resulting matrix C in advance, (2) parallel insert
operations at random positions in C hinder performance and (3) Load balancing
when dealing with sparse data. These problems were handled in a unique manner
and are described below.

Their SpGEMM approach is implemented in four successive stages: ”upper
bound”, ”binning”, ”computing” and ”arranging memory”. The first stage, gen-
erates the upper bound number of nonzero entries in each row of the resulting
matrix C and stores them in an array U [1 GPU thread per row]. The second
stage, executed on the CPU, is responsible for allocating an intermediate ma-
trix Ĉ using a hybrid allocation method of both progressive and upper bound
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method. It allocates 38 bins and put them in five groups: G1 : [bin0], G2 : [bin1],
G3 : [bin2, ..., bin32], G4 : [bin33, ..., bin36] and G5 : [bin37]. Each row is assigned
to a corresponding bin according to its number of nonzero entries nnz(ur). The
size for the intermediate matrix Ĉ is computed as:

∑36
n=0 nnz(bini) ∗ nnz(ur) +∑

nnz(bin37) ∗ 256 where ur represent the row indices belonging to bini. Each
group has a different thread distribution strategy and computation method that
eliminates any duplicates. It should be noted that every bin, except for bin0 and
bin1, has its own kernel depending on its own characteristics and group.

The third stage consists of computing and storing the results in Ĉ, and up-
dating the number of nonzeros of the resulting matrix C. In G3, a single thread
was assigned per row and it uses a heap method. A single heap is created for
every row in this group and is located in the shared memory. In G4, a thread
block was assigned per row and it uses a bitonic ESC method. This method
collects the nonzeros entries in shared memory, sorts them using bitonic sort and
compresses the duplicate indices using prefix-sum scan. In both G3 and G4, after
the computation, the values were copied form shared memory to main memory.
However, in G5, since the expected number of nonzeros per row exceeded the
on-chip memory capacity, the computation was done by utilizing both the main
memory and the shared memory. The last group, G5, assigned a thread block per
row and used merge path algorithm. The proposed merge method is originally
done on shared memory and is split into four sub-steps: (1) binary search, (2)
prefix-sum, (3) copying and (4)merging. When the row exceeds the allocated
shared memory size, the kernel records the current position, dumps the values to
global memory, re-allocates global memory size [x2 each time] and re-lunch with
2x shared memory. In the event that a row is too large to fit in shared mem-
ory, the merger is done on 2 level: the shared memory and then on global memory.

The fourth and final stage sums the number of nonzeros from Ĉ and allocates
the resulting matrix C. It then copies the data to C, while ignoring G1, using a
single thread per row for G2, and using a thread block per row for the remaining
groups G3,G4 and G5. This work’s approach outperforms other known CPU
and GPU SpGEMM methods [including RMerge]. However, it is better suited
for heterogeneous CPU-GPU processors, especially when re-allocation is needed.
Their algorithm is build on the assumption of sorted sequences and present some
control divergence forG4 andG5. In our implementation, we divided the matrices
into 2D tiles, where each tile is guaranteed to fit in the GPU. Hence, pre-allocating
the resulting sparse matrix step could be completely ignored. We might consider
some similar tactics, while taking into account the event of non-sorted sequences,
with some of their merger methods depending on the number of nonzeros per
row. However, our computational thread distribution strategy doesn’t require
many kernels and kernel lunches.
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3.2.6 Multithreaded sparse matrix-matrix multiplication
for many-core and GPU architectures [10]

This work focuses on building an efficient muti-platform/portable SpGEMM im-
plementation. They aim on minimizing the need for revisiting algorithmic designs
upon shifting between different high performance computing architectures. Their
work builds on top of Kokkos [23], a C++ library providing an abstract data and
task parallel programming model. In their implementation, they developed many
algorithms for sparse matrix multiplication, each using different data structures
for the accumulator. They created a meta-algorithm denoted by ”kkSpGEMM”
that, based on some heuristics, chooses the optimal algorithm between them
depending on the problem being tackled. It follows a 1-D row-wise partitioning
scheme where each row is assigned a computational unit. The matrices are stored
in CSR format, and can be in single or double precision. The proposed framework
is implemented on either a single CPU, KNL or GPU architecture.

Their core implementation uses a two-phase approach with two thread-scalable
data structures: a memory pool and an accumulator. The first phase, denoted
as ”symbolic phase”, finds the structure of C by using an optimized ”precise
method” where the weight matrix B can be compressed. The second phase, de-
noted as ”numeric phase”, computes and stores the values in the resulting matrix
C. It should be noted that the following terminologies, referenced in this work,
that we will be using: ”Team, Thread, Vector” refers to ”thread block, warp,
thread” in GPUs and ”hyperthreads, thread, thread vectorization” in CPU/KNL
respectively. Both the Thread-Sequential and the Thread-Flat-Parallel scheme
were used on GPUs and the Thread-Sequential scheme was used on CPUs/KNLs.
The Thread-Sequential scheme follows a Thread per row approach that traverses
the corresponding rows from B sequentially while exploiting vector parallelism.
On the other hand, the Thread-Flat-Parallel scheme follows a Team per row ap-
proach that flattens the needed multiplications across the Threads in a Team
while exploiting vector parallelism.

Throughout their work, three different algorithms were proposed: KKMEM,
KKDENSE and KKLP. The kkSpGEMM meta-algorithm chooses between either
”KKMEM” or ”KKLP” or between either ”KKMEM” or ”KKDENSE” when run-
ning on the GPU or CPU/KNL respectively. The first algorithm, ”KKMEM”,
uses a Thread-Sequential approach with a two-level Linked-list based HashMap
accumulators (LL). It aims at minimizing the memory use and localizing memory
accesses at the cost of increased hash operations/collisions. The second algo-
rithm, ”KKDENSE”, uses a Thread-Sequential approach with dense accumula-
tors. Hence, it eliminates the overhead of hashing but was limited to CPUs and
KNLs only. The last algorithm, ”KKLP”, uses the Thread-Flat-Parallel parti-
tioning with two-level Linear probing HashMap accumulators (LP) and is limited
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to the GPUs. The two-level hash-maps used dictates the necessity of memory
pools in order to reduce the allocation and de-allocation overhead. Also, as an
optimization, a compression technique was proposed for the weight matrix B in
order to reduce the number of times it was accessed.

Throughout this work, cuda-streams weren’t used since they still aren’t sup-
ported in Kokkos. They listed different computational units distribution strate-
gies while presenting different accumulator data-structures and highlighted the
effects of each choice. However, running a two-phase approach with a ”precise
method” could be very costly and will most probably outweigh the benefits de-
spite performing some optimization. In our implementation, and since we are
allocating dense Buffers, we no longer have to worry about estimating C and can
completely ignore this step. We might also consider using pools in an effort of re-
ducing the number of re-allocation needed throughout the computation. Finally,
we might consider editing our dense accumulator to better utilize the limited
shared memory on the GPUs by using hashMaps and compression.

3.2.7 Design Principles for Sparse Matrix Multiplication
on the GPU [11]

Unlike the previous work, this work tackles a sparse-dense matrix multiplications
(SpMM) on the GPU. Their approach was the result of the combination be-
tween a key memory access pattern and recent advances in the SpMV. The input
sparse matrix A is stored in CSR and multiplied with a dense matrix B produc-
ing a dense resulting matrix C. Their implementation is composed of 2 separate
SpMM algorithms: ”Row-splitting” and ”Merge-based”. Both algorithms fol-
low a 1D tiling scheme. Their design focused on ”latency hiding” with thread-
and instruction- level parallelism (TLP and ILP), and efficient load-balancing.
The thread-level parallelism (TLP) was done by lunching a sufficient number of
warps to achieve high occupancy while the instruction-level parallelism focused
on ”threat coarsening”.

The first algorithm, Row-splitting SpMM, assigns a warp per row. The warp
iterates over the nonzeros of its row in batches of size 32 (WARPSIZE). In order
to access B in a coalesced manner, each thread will be responsible for loading a
column from B. The key component is warp broadcasts (“shuffle” warp intrinsic
–shfl) where each thread broadcasts the row index to read from B corresponding
to the column index read from A. The values are computed in registers before
written to C in a coalesced manner. On the other hand, the second algorithm,
Merge-based SpMM, evenly distributes the work across the blocks by equally
distributing the nonzeros across the threads. This require flattening the CSR
to COO. However, due its heavy register usage it can’t benefit from ILP. Also,
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it presents 2 memory access overhead when compared to Row-splitting: 1) the
additional kernel call for calculating the starting index of each block and 2) CTAs
writing to the same rows in C (boundaries).

Depending on the average nonzeros per row withing the matrix, and given
some heuristics, the most suitable algorithm from these 2 is chosen. However, in
their assumption, B was considered to be a ’tall-skinny’ dense matrix compared
to the sparse input matrix A. This work provided a very interesting approach
to utilizing registers to better benefit from the GPUs memory hierarchy and to
reduce constraints on shared memory while introducing the notion of ILP. Our
approach will aim in utilizing the warp intrinsics and the thread registers in a
different manner in the hope of reducing memory write access to C.

3.3 SpNN: non GPU-based

This section starts tackling our proposed problem. It sheds the light on the most
commonly used strategies for dealing with sparse neural networks. The papers
listed utilizes CPUs and FPGAs in their implementations.

Algorithm Device
Sparse matrix format

Partition
Input Weight Buffer(s) Output

Mofrad et al. [13] CPU CSC CSC - CSC 1D Tiling
KKSpDNN [14] CPU CSR CSR - CSR 1D row
GraphBLAS [15] CPU CSR CSR - CSR 1D row
Huang et al. [16] FPGA Dense CSC - Dense 1D Tiling (x3)

Table 3.4: Table listing SpNN approaches on devices other than the GPU (mainly
CPU)

3.3.1 Multithreaded Layer-wise Training of Sparse Deep
Neural Networks using Compressed Sparse Column
[13]

The proposed sparse matrix multiplication algorithm in this work follows a 1D
column-wise tiling strategy. The weight matrix B is split into vertical tiles where
each tile is assigned to a thread. Their work is based on a CPU architecture and
the matrices are stored in CSC format. At each layer, the storage space for C is
estimated using ”precise method” followed by a numerical multiplication. Also,
in their implementation each thread was assigned a sparse accumulator (SPA).
However, they didn’t use double-buffering. Hence, at each layer, they re-adjusted
C, computed the results and stored them in C and had to re-adjust and copy
the results to A. This presented a significant overhead while relying on many
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synchronization calls between threads. It should be noted that they didn’t take
into account load-balancing across the threads. We might consider creating an
approach that computes B instead of A.

3.3.2 Scalable Inference for Sparse Deep Neural Networks
using Kokkos Kernels [14]

This work developed a meta-algorithm, denoted as ”kkSpDNN”, that builds on
top of the ”kkSpGEMM [10]” algorithm from the Kokkos library. The proposed
meta-algorithm stores the matrices in CSR while running on either single or mul-
tiple CPU nodes. It introduced a 1D row-wise tiling across sockets where each
sockets receives the same number of rows from Y and a copy of the weight. How-
ever, they came across some load balancing issues which may prevent scalability.
Hence, they showed the necessity of implementing dynamic load balancing and
demonstrated the benefits of data-parallelism.

In their approach, the bias was added after the sparse multiplication in a
separate function call that could introduce zero values. These zero values could
result in wasting the computational resources and could transform the sparse
input into dense. Therefore, they implemented a trimming function that was
called on some specified heuristics. This algorithm could be somewhat wasteful
due to the overhead created by the symbolic phase and the trimming. Our study
wishes to further explore the performance on the GPU kernels while tackling the
load balancing issues and testing other storage formats.

3.3.3 Write Quick, Run Fast: Sparse Deep Neural Net-
work in 20 Minutes of Development Time via SuiteS-
parse: GraphBLAS [15]

This work demonstrated that GraphBLAS can be an efficient library that allows
end users to write simple yet fast code. By default, all matrices are held in CSR
format and can be executed on a single or multiple CPU architecture. It follows
a 1D row-wise partitioning scheme where the work is divided to a single task
per thread. The sparse multiplication in this library, called using ”GrBmxm”,
support three different forms of matrix-matrix multiply: Gustavson’s method,
a heap-based method, and a dot-product based method. The algorithm selects
automatically the algorithm given the input’s characteristics and can also be
specified at the user end. In this work, the sparse deep neural network solution
was done in the parallel Gustavson matrix-matrix multiplication.

Similar to Matlab, allocating the resulting matrix C was done in a ”progressive
method” which isn’t practical on GPUs. It should be noted that the sparse matrix
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computation, adding the bias, removing the zeros and adjusting the values to the
upper bound were done separately, each in an independent function call in that
order per iteration. Hence, this could be wasteful and might hinder performance.
The performance scales up well to the max number of hardware threads per node,
beyond which performance scales more modestly. This work also stated that they
are currently building libraries that support GPUs. Our study will tackle a GPU-
based parallel algorithm, a feature that isn’t yet supported in GraphBLAS.

3.3.4 Accelerating Sparse Deep Neural Networks on FP-
GAs [16]

This work showed the impact and importance of FPGAs as a platforms for DNN
acceleration. The input matrices are treated as dense while the DNN parameters
are stored in CSC formats. It follows a 3-level partitioning scheme. The first
level, groups the input feature vectors by rows of size Timages following 1D row
tiling. The second level, propagates each group throughout Tlayers layers of the
DNN at each iteration in a manner similar to a 1D column Tiling across layers.
This was applicable since the computation are independent across the rows. The
final level, is applied on the computational level where the weights are divided in
a 1D column partition of size Tneurons.

In their implementation, the groups are distributed across the pools of ac-
celerators in the FPGA-chip. Each accelerator is composed of 2 Buffers of size
Tneurons and Tneurons PEs are instantiated. The computations are done as
sparse vector dot products where each PE processes the vector dot product of
the same input feature vector, stored in one buffer, with one different column
in the parameter matrix. After the computation, the results are stored in the
second buffer that become the input to the second layer. Evaluation of the results
showed that the proposed design achieved x4.7 better energy efficiency compared
to CPU. However, the FPGA on-board memory bandwidth became the bottle-
neck of the whole system.

Although this work’s algorithm is applied on FPGAs, it presented some in-
teresting ideas on multi-level tiling. However, as we as we propagate throughout
the layers, more and more empty-rows are generates/appear that could hinder
performance. Also, they presented poor access patterns that should be avoided
when dealing with GPUs. If after each layer, we re-group the input while ignor-
ing the empty rows, we can dramatically reduce the number of tiles and hence
reducing the total number of iterations needed. Therefore, we will disregard the
tiling across layers process. We also aim to have a better dynamic distribution
strategy.
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3.4 DNN: GPU-based

This is the most relevant section for our work. It covers some papers that have
tackled running a sparse neural network on the GPUs. The work done can high-
light some key features that should be taken into consideration.

Algorithm
Sparse matrix format

Partition
Input Weight Buffer(s) Output

Wang et al. [17] CSR CSR CSR CSR 1D row
GraphBLAST [18] CSR CSR CSR CSR 1D row
Bisson et al. [19] Dense CSR - Dense 1D tiling (x2)

Hidayetoglu
et al.[20]

Dense CSR - Dense 2D partition
Dense ELL - Dense 2D partition

Table 3.5: Table listing SpNN approaches on GPUs

3.4.1 Performance of Training Sparse Deep Neural Net-
works on GPUs [17]

This work proposed a Fine-tune Structured Sparsity Learning (FSSL) method
to regularize the structures of DNNs and accelerate the training of DNNs. The
matrices are stored in CSR format running on a single GPU architecture. Their
sparse matrix multiplication is based on the ”CuSparse” library. They imple-
mented two baseline versions by utilizing ”CusparseDcsrgemm” on the first and
”cusparseDcsrgemm2” API on the second. They also introduced a filtering step
that filters the newly created zeros after each iteration. They concluded the effec-
tiveness of a well structured sparsity pattern especially when dealing with large
data.

3.4.2 Accelerating DNN Inference with GraphBLAS and
the GPU [18]

This work provided a GPU implementation of the GraphBLAS library that was
approximately two times faster. The matrices are stored in CSR format on a
single GPU architecture following a 1D partitioning scheme. Their algorithm,
denoted as GraphBLAST, executed the sparse multiplication using the ”cuS-
PARSE” library. However, due to its limitations and the limited on-chip GPU
memory, they weren’t able to run large matrices. As future work, they proposed
some solutions to the limited memory by either implementing data-parallelism,
dividing the task among multiple GPUs or developing their own kernels.
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Some steps, like adding bias, pruning, and filtering, were adjusted to better
suit the tackled problem that resulted in a noticeable speedup. They also in-
troduced an interesting notion of rank promotion (Numpy-style broadcasting).
Also, throughout their work they compared W TY T vs YW . The former gave
better results but this was due to the equal number of nonzeros per row in the
weights that assured load-balancing. We might build on this finding in order to
assess the most suitable storage formats for the matrices and deciding on either
executing the SpGEMM as W TY T vs YW .

3.4.3 A GPU Implementation of the Sparse Deep Neural
Network Graph Challenge [19]

This work was the 2019 Sparse Deep Neural Network Graph Challenge cham-
pion. It proved the suitability of GPUs to accelerate Deep Learning workloads
and reduced redundant memory traffic. Their code is capable of running the
computation in either single or double precision. The architecture tackled in this
work consists of multiple GPUs connected via NVLink and NVSwitch to a single
node (CPU). The input feature vectors Y is stored as a Dense matrix and the
weights W matrices were stored in CSR format. The input was partitioned as 1D
row-wise tiling (horizontal slabs) across the GPUs, each having the same number
of non-empty rows. Since the number of empty-rows varies after each iteration,
and since this study deals with a multi-GPU system, after each iteration they
re-calculated and re-partitioned the non-empty rows equally across the available
GPUs for better load-balancing [this is done by the OpenMP threads].

As for the weights, they were partitioned in a 1D column-wise tiling (vertical
slabs). One of the main reason behind this partitioning was to be able to fit the
resulting values in the limited GPU’s shared memory capacity. Double buffering
was used on the weights where the memory copy times were completely hidden
by the inference computations having the kernel and the memory copy each being
executed on a different stream. All the layer matrices are read into pinned host
memory and allocate device memory on each GPU only for two of them. The
inference function is called by one OpenMP thread per GPU. Each GPU executes
two kernels, one for the multiplication+ReLU of its own part of Y and one to
compute the non-empty row indices in the resulting matrix.

In the inference computations, 2D Blocks were lunched of [dimX, dimY] di-
mensions that varies depending on the number of neurons. The number of 2D
Blocks lunched per GPU at each iteration is equal to the number of non-empty
rows of that GPU’s corresponding Y slab. Hence, each 2D Block will cover a
single non-empty row. The Blocks will be divided into dimY sub-CTAs each
consisting of dimX consecutive threads. Each sub-CTA will be responsible for
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the output of a single element. However, one of the drawbacks of this approach
was having to read each row number of slabs time. Therefore, in order to reduce
the number of access to the input matrix, the optimization made was reading the
row one time while storing the values in the threads registers where each thread
was responsible for NN/threads per block.

Our study aims in testing 2D-based partitioning along both row and column
while trying to overcome the size of the networks, which was discussed as the
limiting factor to the scaling. We will be dynamically dividing the work of the
threads in the Blocks unlike the work done in this work that was done statically
with the sub-CTAs. We will be using 2 layers of double-buffering (having more
than 2 streams) and we will be handling register-tiling in a different manner.

3.4.4 Efficient Inference on GPUs for the Sparse Deep
Neural Network Graph Challenge 2020 [20]

This work was the 2020 Sparse Deep Neural Network Graph Challenge champion.
It presents a GPU performance optimization and scaling results for SpDNN on
a single and multiple GPU architecture [up to 6 GPUs per node]. It solves a
sparsexdense matrix multiplication W TY T instead of YW where the dense ma-
trices are stored in column major order. It presents two different approaches:
a base-case and an optimized approach. The first method stores the weights as
CSR and follows a 2D partitioning approach where each thread is responsible for
a single output element of the resulting matrix C. On the other hand, the second
optimized method stores W as ELL(sliced) while following a 2D tiling approach
where each thread is responsible for MINIBATCH output elements of C.

The purposed of their initial base-case method was pinpointing the main defi-
ciencies from which they built their main contribution in the optimized method.
After analysing the first method, the main causes that hindered performance were
due to random memory access to Y and redundant memory access to W . Upon
tackling these issues, they proposed three performance optimizations:”register
tiling”, ”shared memory tiling”, and ”compact index representation”, and two
memory optimizations: ”Out-of-Core Storage and Overlapping Strategy” and
”Compact Representation and Batching”.

The tiling mainly targeted data reuse where both register tiling and shared
memory tiling help in reusing elements from W and Y respectively. This also
helps in reducing memory write access to C. Also, the W elements were sorted
and adjusted using maps, and stored in ELL(slices) with WARPSIZE in order
to assure warp granularity and efficient memory access to the weights. The mem-
ory optimizations used double-buffering to load the weights that was completely
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hidden by the computations. Finally, they used compact representation of the
maps for batching to reduce the memory footprint.

This work presented some interesting thread distribution approach while re-
formulating the weights to assure (semi-)coalesced [efficient] memory access and
memory reuse patterns. They respected and properly utilised the GPUs mem-
ory hierarchy. However, some minor overheads was detected by reformulating
the weights and adding zero values to the ELL representation to assure warp
granularity. We aim to have a similar approach in terms of memory hierarchy
while utilising some 2D tiling representations. However, we wish to have a more
dynamic thread distribution strategy.
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Chapter 4

Approach

In our work, we propose some optimizations and highlight their theoretical ef-
fects along the way. Throughout this chapter, and as shown in Table 4.1, we will
be comparing the performance with different data-partitioning strategies, storage
formats, and some proposed optimization approaches. We will also be referring to
previous work done for comparison and better understanding of some underlying
problems.

Sparse matrix format
Partition Approach

Input Weight Buffer(s) Output

CSC CSC Dense CSC
1D Tiling

1
2D Tiling

CSR CSR Dense CSR
1D Tiling

2
2D Tiling

CSR ELL Dense CSR
1D Tiling

3
2D Tiling

Dense
ELL - Dense 2D

partition
[20]

CSR - Dense
Dense CSR - Dense 1D tiling (x2) [19]

CSR CSR CSR CSR 1D row
[17]
[18]

Table 4.1: Table listing previous work and our approaches for a SpNN implemen-
tations on GPUs

4.1 General Flow

Our work is focused on the created sparseNN function and its kernel calls. The
naive sparseNN function, as shown in Algorithm 8, takes the input feature vec-
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tors Y 0 and the array of Weights W [L] with a bias as input and returns a vector
as output. This vector will contain the non-empty row indices of the resulting
matrix after propagating over the Neural Network. We will then compare the
produced output vector with the provided Categories vector to validate our re-
sults.

Algorithm 8 Naive sparseNN function

Input: Y 0mxn, Wnxn[L], bias
Output: vm

1: procedure sparseNN(Y 0, W [L], bias)
2: YMAX← 32
3: Y ← Y 0
4: for l in L do
5: nnz ← SpGEMM symbolic(Y,W [l])
6: if nnz ≥ sizeof(Z) then
7: resize(Z, nnz), resize(Y, nnz)

8: Z ← SpGEMM(Y,W [l])
9: Y ← addBias(Z, bias)
10: boundary check(Y, 0,YMAX)

11: v ← MatrixToVector(Y )
12: return v

Each iteration l could produce 0 or negligible values that should be pruned,
values greater than 32 (our upper limit) that should be adjusted, empty rows and
rows that could become more and more dense. Also, the number of non-empty
values could increase, by which we might have to increase the allocated size of our
matrices. Some implementations, like GraphBLAS, created function calls to han-
dle each of these issues separately. Similarly, our naive base-case implementation
starts by calculating the upper-bound size needed using the SpGEMM symbolic
kernel, and resizing the matrices accordingly. It will then compute Y ∗W [l] and
store our results in the temp buffer Z with the SpGEMM kernel call. After the
computation, a bias is added to the values of Z and copied back to Y . Finally, the
boundary check kernel call will remove the negative and zero-values and adjust
the values to be bounded by the upper limit YMAX.

4.2 General Optimizations

At first glance, our naive base-case implementation suffers from excessive ker-
nel calls that could be merged and lots of unnecessary memory transfers that
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could be avoided. Hence, our implementation is further refined by removing both
the addBias and boundary check kernel calls and integrating their functionality
within the SpGEMM kernel, reducing the total number of kernel calls per itera-
tion. Furthermore, when propagating in the Neural Network, and as illustrated
in Figure 5.2, the output of each iteration l will become the input of the next
iteration l + 1. Therefore, as shown in Algorithm 9, we utilized double-buffering
by creating 2 buffers and swapping between them, eliminating the copy overhead
of line 9 in Algorithm 8.

Algorithm 9 sparseNN function

Input: Y 0mxn, Wnxn[L], bias
Output: vm

1: procedure sparseNN(Y 0, W [L], bias)
2: YMAX← 32
3: Yinput ← Y 0
4: Youtput ← ∅

5: batchSize←< value > ! Set number of cols|rows per batch
6: Buffer ← initBuffer(Y |W, batchSize)
7: for l in L do
8: numBatchs← Yinput/batchSize
9: for b in numBatchs do
10: empty(Buffer)
11: Buffer ← SpGEMM(Yinput,W [l], b, bias,YMAX)
12: scan(Buffer)
13: expand(Youtput, nnz(Buffer))
14: flush(Youtput, Buffer, b)

15: swap(Youtput, Yinput)

16: v ← MatrixToVector(Yinput)
17: return v

The sparse matrix algorithm used withing the SpGEMM function will obvi-
ously vary depending on our desired storage formats used for each of the input,
weights and output matrices. Also, it should be noted that the expand() kernel is
only called when needed and it re-allocates the sparse matrix to the exact storage
requirement and doesn’t follow the convention of doubling its size.

4.2.1 Batching

Unlike CPUs, the process of re-allocating memory on the GPU is rather expensive.
Hence, and as mentioned in section 2.4, a general approach would be conducting
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a symbolic sparse matrix multiplication in order to estimate and allocate the
required size for the resulting matrix. However, this approach isn’t optimal since
we are essentially calling the sparse matrix multiplication 2 times at each layer.
In order to mitigate this bottleneck, and taking into consideration the limited on-
chip memory capacity of the GPU, we decided to allocate a Dense Buffer of size
BatchSize. Depending on the storage formats used, BatchSize could either refer
to a number of columns per batch colsPerBatch when dealing with Approach 1
or to a number of rows per batch rowsPerBatch when dealing with Approaches
2 and 3. Hence, BatchSize = (rowsPerBatch ∗ Y.numCols)|(colsPerBatch ∗
Y.numRows) where the value of rowsPerBatch|colsPerBatch is provided by the
user.

4.3 Sparse Storage Formats

One of the major improvements that could be done when tackling sparse matrix
multiplications is choosing the most suitable sparse storage formats for our input,
weight and output matrices. In this section we will be proposing and discussing
different sparse storage combinations while assessing their impact. The storage
formats that will be used or discussed in this study include (D)CSR, (D)CSC
and ELL.

4.3.1 Combinations

As listed in Table 4.1, we present three different storage format combinations,
each with two different tiling strategies (1D and 2D tiling). We aim at finding the
best approach among them by assessing and comparing them with each other.

• Approach 1 – CSC-CSC: Following the dependency between the columns
of the inputs with their corresponding rows from the weights, this imple-
mentation distributes the blocks across the columns of the weights in CSC
within the batch. The threads will iterate over the rows of the columns
from the weight matrix in a coalesced manner. Each thread will then map
to its corresponding column from the input matrix in CSC (not coalesced)
to perform the computation. The computations are done in shared-memory
before flushing to the Buffer (coalesced). In the 1D tiling, each blocks will
be in-charge of filling its corresponding columns unlike the 2D tiling where
columns could be filled by multiple blocks.

• Approach 2 – CSR-CSR: Similar to Approach 1, and following the de-
pendency between the columns of the inputs with their corresponding rows
from the weights, this implementation distributes the blocks across the rows
of the input stored in CSR within the batch. The threads will iterate over
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the columns of the rows from the input matrix in a coalesced manner. Each
thread will then map to its corresponding row from the weight matrix stored
in CSR (not coalesced) to perform the computation. The computations are
done in shared-memory before flushing to the Buffer (coalesced). In the 1D
tiling, each block will be in-charge of filling its corresponding rows unlike
the 2D tiling where rows could be filled by multiple blocks.

• Approach 3 – CSR-ELL: An optimization to Approach 2, this imple-
mentation distributes the blocks across the rows of the input stored in CSR
within the batch. The threads will iterate over the columns of the rows from
the input matrix in a coalesced manner. Each thread will then map to its
corresponding row from the weight matrix stored in ELL ( (semi-)coalesced
depending on the input rows) to perform the computation. The computa-
tions are done in shared-memory before flushing to the Buffer (coalesced).
In the 1D tiling, each blocks will be in-charge of filling its corresponding
rows unlike the 2D tiling where rows could be filled by multiple blocks.

4.4 Partitioning

Parallelizing any application on the GPU involves distributing the work across the
number of available computational units, where the overall execution time of the
application will be dependent on the time taken by the last unit to terminate. By
ensuring load-balancing, such that the workload is properly/equally distributed
among these units, we can increase scalability and improve performance. When
dealing with a dense matrix, load-balancing could be easily achieved by simply
distributing the units following various partitioning strategies since the workload
will almost be the same.

However, when dealing with sparse matrices, we face 2 main problems lead-
ing to poor load-balancing. The first problem is encountering empty rows and
columns, resulting in control divergence. The second problem is the extreme
variation of the workload distribution across the computational units, resulting
in inactive threads. These problems are caused by the matrix’s random sparsity
patterns. If not handled properly, they could hinder performance and waste com-
putational resources. Hence, in order to tackle these 2 problems, we proposed
2 approaches: doubly-compressed row or column format, and 2D tiling. Theses
approaches will be carried out with our proposed various sparse storage formats
combinations discussed above.

4.4.1 Doubly-Compressed format

Assuming an input sparse matrix consisting of M rows and N column where
we wish to assign T rows per B blocks. As shown in Figure 4.1, each block
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Figure 4.1: Work distribution using CSR

could encounter different number of empty rows. The number of iteration needed
per block will be (M/T )/B. Also, tacking into consideration the possibility of
newly formed empty-rows when propagating in a Neural Network, this will lead
to extreme load-imbalances across the blocks. Hence, as shown in Figure 4.2,
we decided to disregard the empty-rows and only partition the non-empty rows
among the blocks. By this reasoning, we shifted from (M/T )/B iterations/block
to (nnz(M)/T )/B iterations/block where nnz(M) represents the non-empty rows
of our input matrix.

Figure 4.2: Work distribution using DCSR

In our implementation, and since some rows could become empty after each
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iteration, we decided to re-identify the non-empty rows and re-distribute them
accordingly across the blocks after each iteration. This is also applied to the
columns when dealing with CSC. It should be noted that this strategy isn’t only
limited to the input matrix and could also be implemented on the weight matrix
resulting in a 2-level compression effect. However, this could also offer some over-
head that could negate its benefits since we have different weights per iterations.
This strategy could dictates either the use of the DCSR‖DCSC formats or by
simply creating an array that keeps track of the non-empty row‖column indices
respectively. This is applied at line 8 in our Algorithm 9 where the numBatchs
is calculated by dividing the number of non-empty (rows | columns) over the
batchSize.

4.4.2 2D Tiling

Our 1D-tiling used initially helps in attaining better partitioning of the input
matrices row-wise or column-wise depending on our approach. However, the
workload done per block is also correlated to the number of non-zero elements
within its assigned tile. Hence, in order to limit the extreme workload variation,
we decided to add another layer of partitioning to attain a 2D tiling representa-
tion of our input and weight sparse matrices as shown in Figure 2.6d. Therefore,
each block would get assigned to a Trow by Tcolumn tile in Y denoted as a sub-
matrix of Y .

This could add a non-negligible overhead, however we wish to prove that the
advantages offered out-weights the disadvantages. Assuming that our input ma-
trix Y is divided into R byK tiles and that the weight matrix is divided intoK by
C tiles. Having B blocks, each block would need to access on average (R ∗K)/B
tiles from Y presenting more work per block. Furthermore, each block would
only need to access a portion of W , by accessing the corresponding C tiles from
W . For further illustration, in Figure 2.6d, the block assigned to A1,1 would only
need to access the tiles B1,1 and B1,2 from B and only writes to the tiles C1,1 and
C1,2 from C.

The number of blocks launched will be equal to the number of tiles within our
batch, where each block will be responsible of computing its own tile. This will
increase parallelism by increasing the number of blocks needed while limiting the
overall work required per block depending on the tile dimensions.
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Chapter 5

Methodology

The datasets [4] used in this work originates from the MNIST (Modified Na-
tional Institute of Standards and Technology) database. This database consists
of a large collection of handwritten images that are widely used for training and
testing DNN image processing systems. Our initial input matrix Y 0 is com-
posed of a constant 60,000 handwritten digit images, of 28x28 pixel each. All the
images have been resized to 3232(1024 neurons), 6464 (4096 neurons), 128128
(16384 neurons), and 256256 (65536 neurons). As visualized in Figure 5.1, the
input Y 0 was produced by flattening each image to a single row and stacking
them together where each row Yi∗ represents an image. It should be noted that
the images have been thresholded so that all values are either 0 or 1.

The provided Weight matrices were modeled following the images sizes, where
the number of neurons is either NN = [1024, 4096, 16384, 65536]. In this work,
we will be only using NN = [1024, 4096, 16384] since they are enough to give a
good estimate of our overall performance. The non-zero values of the matrices are
written as triples (i, j, v) representing the row index, column index and the value
respectively. These values are stored in a .tsv file with a single non-zero value per
line. The input was propagated across L layers where L = [120, 480, 1920]. Hence,
this amounts to 12 different DNNs [(1024, 4096, 16384, 65536)x(120, 480, 1920)].
At each layer l, the resulting matrix was computed along the following inference
computation:

Yl+1 = ReLU(YlWl + bl)

where Yl and Yl+1 are MxN matrices of M input features of length N , respec-
tively, Wl is an NN matrix of activation weights, bl is an Mx1 bias vector for
each output, and ReLU is the activation function defined as

ReLU(x) = max(0,min(x, 32))

.

40



Figure 5.1: SpDNN initial input representation

Resizing our images dictates different storage requirements that varies from
176MB (for the 1024 neurons) up to 16.3GB (for the 65536 neurons) of storage.
Thus, depending on our GPU version, we might encounter problems while fitting
the data on the GPU due to the limited hardware (limited main memory space).

Figure 5.2: SpDNN representation

Throughout the evaluation, we will be testing our approaches on 9 different
sparse neural networks [(NN: 1024, 4096, 16384)x(NL: 120, 480, 1920)]. The large
sparse DNNs are synthetically generated by a RadiX-Net sparse DNN generator
[24], where the number of connections per neuron is uniformly distributed such
that the number of non-zeros per row is always 32 in all the weights.
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Also, upon propagating in the neural network, we notice a huge decrease in
the number of non-empty rows of our input matrix where the number of non-
empty rows decreases from 60000 to 1812 (an approximate 97% decrease). By
addressing this, we decided to store our inputs in the doubly compressed CSR
format in some of our approaches. This format will only target the non-empty
rows hence offering a considerable optimization.

Furthermore, and as depicted in Figure 5.3, the remaining non-empty rows
are becoming fully dense after the first few layers. Therefore, and since we are
only distributing our blocks on the non-empty rows, the computations are shift-
ing from a sparse-sparse matrix multiplication to a dense-sparse matrix multi-
plication. For each layer, the non-zeros tend to be evenly distributed across the
non-empty rows. As such, we also consider storing our inputs in the ELL format
that is better suited for handling this when compared with other sparse storage
formats. An interesting workaround would be switching between a SpGEMM
and GEMM depending on a threshold, however this wasn’t addressed withing
the scope of this study.

Our kernels are implemented using CUDA and our experiments are performed
on a single Nvidia V100 GPU. The number of blocks launched and their cor-
responding dimensions and distributions within the grid varies depending on
the chosen TILE SIZE, the amount of shared memory available in the De-
vice and the provided batch size. Throughout our experiments, we allocated
a Dense buffer of size equal to 10% of that of a fully dense buffer such that
sizeof(Buffer) = 10%(Y.numRows ∗ Y.numCols). The TILE SIZE = 512 re-
sulting in an average of 16 blocks launched per SM with dimensions (64 x 2)
threads each. Different parameters yields different results and hence opens the
door for further optimizations with hyper-parameter tuning. However, this wasn’t
tackled since it is outside the scope of this study and is added to future works.
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Figure 5.3: Partial representation of the variation in the number of non-zeros per
row of our Input matrix in the 1024 neurons by 120 layers SpNN
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Chapter 6

Evaluation

Throughout this chapter we will be comparing our proposed approaches in terms
of the storage formats and partitioning strategy used. We will then show the
effects of different buffer sizes before finally comparing our top approach with
other works tackling the same problem and running within the same environment.
It should be noted that our evaluations are specific/limited to the dataset used
and could vary accordingly.

6.1 Comparing Storage Formats and Partition-
ing

Figure 6.1: Comparing the execution time of our approaches, each along both 1D
and 2D partitioning, on our 9 datasets.
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CSC*CSC->CSC CSR*CSR->CSR CSR*ELL->CSR
Neurons Layers 1D 2D 1D 2D 1D 2D

5.94 2.25 0.31 0.29 0.149 0.14
21.64 7.9 0.93 0.97 0.41 0.41024 120
84.58 30.74 3.56 3.64 1.47 1.47
24.37 7.9 1.07 1.22 0.44 0.38
91.3 29.1 3.67 4.3 1.45 1.264096 120

360.13 114.05 14.1 16.76 5.49 4.7
96.8 35.95 4.9 5 3.35 2.35

370.35 141.11 17.56 18.72 11.5 8.6416384 120
1467.28 561 68.35 73.5 45.44 33.8

Table 6.1: Experimental results of the total execution time, in seconds, of our
approaches. The red values represent our best results.

CSC*CSC->CSC CSR*CSR->CSR CSR*ELL->CSR
Neurons Layers 1D 2D 1D 2D 1D 2D

1.45 3.827 27.78 29.7 57.8 61.5
1.42 3.88 32.96 31.6 74.77 76.641024 120
1.4 3.86 33.37 32.645 80.83 80.83
1.34 4.15 30.7 26.92 74.64 86.83
1.32 4.14 32.82 28.02 83.1 95.624096 120
1.31 4.13 33.4 28.1 85.8 100.2
1.37 3.7 27.14 26.6 39.7 56.6
1.36 3.6 28.8 27.04 44.03 58.616384 120
1.36 3.56 29.25 27.2 44 59.16

Table 6.2: Experimental results of the GFLOPS of our approaches. The red
values represent our best results.

6.1.1 Storage Formats

From Figure 6.1 and Table 6.1, and although the CSC-CSC multiplication is
considered as the inverse of the CSR-CSR multiplication, having similar advan-
tages and disadvantages, it offers very poor performance in comparison where
the CSR-CSR approach is up to (6x) faster. This is due to the huge difference
in dimensions between the number of rows and columns of our resulting matrix
where the number of rows (60000) is up to (58.5x) larger than that of the number
of columns.

On the other hand, the CSR-ELL multiplication offered the best results
throught all the 9 datasets where it gave up to (25.6x) and (2.7x) speedup in
comparison with that of Approaches 1 and 2 respectively. This is due to the
(semi-) coalesced data access pattern offered while accessing the weights in ELL
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format. Therefore, it is safe to deduce that Approach 3 is the best approach out
of the three.

6.1.2 1D Vs 2D Tiling

From Figure 6.1 and Table 6.1, the 2D tiling approach offers, in most of the cases,
some (noticeable) improvements in the sparse matrix multiplications execution
time. This is especially apparent within the CSC-CSC approach, were the 2D
strategy offers between (4x) up to (9x) speedup over that of 1D. However, this
speedup isn’t very prominent in the CSR-ELL approach, were the speedup reaches
up to (1.18x) speedup over that of the 1D partitioning. Also, the 2D partitioning
actually resulted in sligthly worse performance for the CSR-CSR multiplication
approach. Again, as previously stated, since our input matrix is becoming dense
as we are propagating within the neural network, it might be negating the benefits
of 2D tiling.

Figure 6.2: Comparing the execution time of the CSR-CSR multiplication with
the total execution time.

Figure 6.3: Comparing the execution time of the CSR-ELL multiplication with
the total execution time
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Figure 6.4: Comparing the execution time of the CSC-CSC multiplication with
the total execution time

Finally, and as shown in the Figures 6.2, 6.3 and 6.4, the 2D partitioning
slightly decreases the overall execution percentage of the sparse multiplications
[This is especially apparent in 6.4 with 1024 neurons]. Therefore, the benefits
of 2D tiling out-weights that of 1D tiling since it increases the parallelism by
providing more work in smaller quantities (limiting the negative effects of load-
imbalances).

Neurons Layers
CSR*CSR->CSR [1D] CSR*CSR->CSR [2D]

10% buffer 25% buffer 50% buffer 10% buffer 25% buffer 50% buffer
spmm total spmm total spmm total spmm total spmm total spmm total

1024
120 0.23 0.31 0.21 0.27 0.21 0.27 0.21 0.29 0.23 0.3 0.23 0.28
480 0.73 0.93 0.73 0.93 0.73 0.91 0.76 0.97 0.77 0.97 0.75 0.93
1920 2.83 3.56 2.82 3.53 2.81 3.52 2.9 3.64 2.89 3.6 2.89 3.6

4096
120 0.93 1.07 0.92 1.04 0.9 1.02 1.08 1.22 1.07 1.19 1.07 1.2
480 3.23 3.67 3.22 3.65 3.23 3.66 3.9 4.3 3.92 4.32 3.92 4.32
1920 12.44 14.1 12.43 14 12.43 14 15.2 16.76 15.2 16.74 15.22 16.79

16384
120 4.47 4.9 4.38 4.79 4.36 4.76 4.6 5 4.64 5.04 4.63 5.03
480 16 17.56 21.4 24.65 15.97 17.44 17.3 18.72 17.3 18.7 17.3 18.7
1920 62.57 68.35 62.44 68.25 62.4 68.2 68 73.5 68.17 73.84 68.13 73.6

Table 6.3: Variation of the execution time depending on the buffer size for the
CSR multiplications.

Our approaches exhibits linear scaling behaviour as our data gets larger.This
is apparent from the Table 6.1, where increasing our dataset size by 4 resulted
in a (4x) increase of our execution time. Therefore, our implementation could be
considered as a good benchmark for comparison between different data storage
formats.
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Neurons Layers
CSR*ELL->CSR [1D] CSR*ELL->CSR [2D]

10% buffer 25% buffer 50% buffer 10% buffer 25% buffer 50% buffer
spmm total spmm total spmm total spmm total spmm total spmm total

1024
120 0.065 0.149 0.063 0.124 0.062 0.11 0.062 0.14 0.063 0.13 0.062 0.119
480 0.198 0.41 0.196 0.38 0.19 0.38 0.198 0.4 0.2 0.4 0.198 0.379
1920 0.75 1.47 0.74 1.45 0.74 1.42 0.75 1.47 0.75 1.46 0.76 1.46

4096
120 0.3 0.44 0.289 0.41 0.288 0.4 0.24 0.38 0.24 0.37 0.23 0.35
480 1 1.45 1 1.44 0.99 1.42 0.84 1.26 0.83 1.25 0.83 1.23
1920 3.83 5.49 3.83 5.49 3.8 5.44 3.23 4.7 3.23 4.79 3.23 4.76

16384
120 2.93 3.35 2.69 3.1 2.67 3 1.93 2.35 1.93 2.34 1.93 2.32
480 10 11.5 10.18 11.6 10.4 11.9 7.22 8.64 7.22 8.63 7.23 8.67
1920 39.69 45.44 41 46.8 42.45 48.16 28.3 33.8 28.4 33.82 28.39 33.8

Table 6.4: Variation of the execution time depending on the buffer size for the
ELL multiplications.

Neurons Layers
CSC*CSC->CSC [1D] CSC*CSC->CSC [2D]

10% buffer 25% buffer 50% buffer 10% buffer 25% buffer 50% buffer
spmm total spmm total spmm total spmm total spmm total spmm total

1024
120 5.17 5.94 2.51 2.94 1.26 1.52 1.22 2.25 1.18 1.63 1.17 1.47
480 18.63 21.64 9 10.7 4.52 5.52 3.95 7.9 3.8 5.5 3.8 4.95
1920 72.5 84.58 35.22 41.89 17.56 21.52 14.95 30.74 14.29 21.18 14.13 18.69

4096
120 21.29 24.37 3.93 4.6 - - 6.54 7.9 6.54 7.32 - -
480 79.26 91.3 14.6 17.2 - - 23.68 29.1 23.78 26.86 - -
1920 312.1 360.13 57.32 67.67 - - 92.32 114.05 92.55 104.65 - -

16384
120 84.38 96.8 - - - - 32.72 35.95 - - - -
480 321.6 370.35 - - - - 128.23 141.11 - - - -
1920 1272.24 1467.28 - - - - 510 561 - - - -

Table 6.5: Variation of the execution time depending on the buffer size for the
CSC multiplications.

6.2 Data Sets and Buffer Size

We aim at showing the effects of different buffer sizes over the overall execution
time of the SpDNN. Upon testing, changing the buffer size showed negligible
speedups for both the CSR-CSR and the CSR-ELL approaches as shown in Tables
6.3 and 6.4. However, the buffer size had an extreem effect in the CSC-CSC
approach, where we obtained up to (2x) speedups. By analysing the input data,
the total number of non-empty rows drop from 60000 to 1812 (a 97% drop) after
a few layers. The remaining number of non-empty rows is less than our smallest
buffer size (10%) which could explain the negligible speedups.

6.3 Comparison with other implementations

6.3.1 Execution time

In order to properly evaluate our work we decided to compare our best approach
with other implementations covering the same datasets running within the same
environment. The 2 previous implementations chosen were to most prominent
having top results. Upon comparing our results and as shown in Figure 6.5, we
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Figure 6.5: Comparing the execution time of our top approach, the 2D CSR-ELL
multiplication, against both Hidayetoglu et al.[20] and Bisson et al. [19]

Neurons Layers Bisson et al. [19] Hidayetoglu et al.[20] Approach 3 [2D]
120 0.086s 0.225s 0.14s
480 0.306s 0.073s 0.4s1024
1920 1.143s 0.264s 1.47s
120 0.321s 0.1s 0.38s
480 1.068s 0.322s 1.26s4096
1920 4.069s 1.08s 4.7s
120 1.695s 0.614s 2.35s
480 5.352s 2.027s 8.64s16384
1920 20.012s 7.704s 33.8s

Table 6.6: Comparing our top approach with previous implementations

were approximately (1.5x) slower than Bisson et al. [19] and (4.3x) slower than
that of Hidayetoglu et al.[20]. Their work stored the input matrices as Dense and
tailored their implementations accordingly, therefore eliminating the overheads
of maintaining a sparse matrix. Furthermore, the output of their computations
is directly flushed to their output buffer unlike our implementations that needs
to pass through an intermediate buffer dictating an increase in the total amount
of needed memory transfer. However, our strategy enabled us to only utilize 25%
memory footprint for the inputs as we show in the next section.
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6.3.2 Memory footprint

Neurons Bisson et al. [19] & Hidayetoglu et al.[20] Our Implementation

1024 491.52 MB 123.36 MB
4096 1966.08 MB 492 MB
16384 7864.32 MB 1966.56 MB

Table 6.7: Comparing the memory footprint of the input matrices of previous
implementations with our own using a 10% buffer size while disregarding the
weights.

Depending on the sparsity of the inputs and the weights matrices, the process of
batching with certain batch-sizes allows us to potentially obtain a significantly
less memory footprint than that of previous work done that allocated 2 fully dense
buffers ([20] and [19]). The amount of storage required by the previous imple-
mentations, while disregarding some vectors due to their negligible memory foot-
print in comparison, is approximately equal to 2 ∗ (Y.numRows ∗ Y.numCols) +
sizeof(W [l]) + sizeof(W [l + 1]). In contrast, our implementation requires ap-
proximately sizeof(Yinput) + sizeof(Youtput) + sizeof(W [l]) + sizeof(W [l+1])+
sizeof(Buffer). As shown in Table 6.7, while disregarding the memory allo-
cated for the weights since they are almost the same, for a 10% buffer size our
implementation only utilizes 25% of the memory footprint allocated by other im-
plementations. These values were calculated using the max number of non-zeros
obtained within the neural network with single precision data type.
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Chapter 7

Conclusion

In this thesis we implemented and compared the performance of multiple sparse
matrix multiplications within a sparse deep neural network on a GPU using dif-
ferent combinations of sparse storage formats. From our experiments, we were
able to deduce the best suited format to our given problem. We also evaluated
the effects of 2 partitioning strategies where we proved the advantages of 2D
partitioning over that of 1D. Finally, we compared our top approach with other
implementations running on the same environment and using the same datasets.
Our comparison showed slower execution time but offered better memory effi-
ciency, demanding less storage requirements.

Our evaluation showed the advantages of having coalesced memory access
withing the GPU. Therefore, as future work, we can focus on testing other
storage formats that offer better coalesced memory access patterns. It should
be noted that, since our implementations have many parameter dependencies,
applying some parameter tuning could increase our overall execution efficiency.
Also, since our work focuses on a specific dataset, we aim in testing a variety of
datasets in order to obtain a more proper evaluation of our approaches. Finally,
an interesting feature to add is shifting from a SpMSpM (sparse-sparse) ma-
trix multiplication to SpMM (sparse-dense) matrix multiplication given a certain
threshold of the input sparsity.
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