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An Abstract of the Thesis of

Elissar Tarek Al Aawar for Master of Engineering
Major: Mechanical Engineering

Title: Development of a Smart Algorithm for Air Pollution Sources
Identification using Physical Dispersion Modeling and Bayesian Inference

Air pollution plumes are commonly observed in the atmosphere above many
cities and residential areas. These plumes may be the result of either a normal
operation or an accidental release from certain sources. In both cases, it is of
great importance to identify and characterize these sources for the assessment of
the harmful effects of their resulting pollution fields and for the proper construc-
tion of an emergency response plan in case of accidental releases. This involves
the inverse problem, from destination of pollution back to its source, and the in-
ference of the different parameters characterizing this source given certain known
or measured sets of observations.

The aim of this thesis work is to introduce and develop a smart algorithm that
is able to identify and characterize an air pollution source that is responsible for
an observed concentration field of pollutants in a specific urban location. As an
application, we will infer several parameters of an active source that is releasing
air contaminants into the atmosphere of a selected domain around KAUST (King
Abdullah University for Science and Technology) in the region of Thuwal, KSA.
These parameters include the source geographic location, emission strength and
emission duration. A stochastic approach using Bayesian inference and Monte
Carlo sampling will be implemented to solve the ill-posed inverse problem and
characterize the emitting source. In this scope, the forward Lagrangian model
will be adopted to study the atmospheric dispersion of pollutants and resolve the
urban characteristics of the domain. The implementation of this model will be
done while considering the prevailing wind field as the main driving source and
based on the well known urban configuration of buildings (serving as obstacles)
and the natural topographic features of the location.
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Chapter 1

Introduction

Air pollution is one of the main issues posing threats to the health, environ-
ment and global climate. Environmental monitoring is excessively being oriented
towards examining and studying the different atmospheric dispersion patterns of
the different air contaminants including any chemical, biological or radiological
compounds.These contaminants can be the result of either normal operations
or accidental events. Normal operations include conventional human activities
that can deliberately release pollutants into the atmosphere. On the other hand,
accidental releases can be attributed to leaks that may occur due to low main-
tenance, fugitive emissions, human error or ignorance, terrorist attacks, system
failures, super natural events, fires, explosions... In both cases, there is an in-
sisting need to find the sources of such dispersion patterns for proper mitigation
strategies, risk assessment and emergency responses during accidents. This need
comes as environmental monitoring is being a main field for extensive research
and remarkable advancements. This includes progress in both sensing networks
and remote techniques coupled with significant progress in modeling and compu-
tations.These two growing domains convey the basic fundamentals that can be
used to simulate atmospheric dispersion and to reinforce the simulated results
with the proper measurements and observations.

However, in the backward approach of estimating the source parameters re-
sponsible for an observed set of concentration values, the challenge lies in the ill-
posed nature of the question at hand. The main issue is in the non-uniqueness of
the obtained solution as there may be a set of various possible source parameters
that would fit the observation. Another issue rises at the level of the observa-
tion itself where an observation revealing the concentration values of a pollutant
or set of pollutants in a certain spatial or temporal reference can frequently be
non-representative of the real case. This is mainly referred to the errors in the
acquisition phase due to the noise introduced by the sensing network or the re-
mote measurement instrument and in the data treatment phase. Coming into the
dispersion modeling itself, an additional key factor is the complexity of the phys-
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ical mechanism relating the source parameters to the observations and its high
dependence on meteorological, topographic and urban features at the mesoscale
and mircoscale. Variations in these inputs introduce an additional source of un-
certainty that may affect the output of the model and hence the source term
estimation.

Several approaches were used to implement methods that are able to solve
the problem of source term estimation. These are mainly divided into determin-
istic and probabilistic approaches. To overcome the problem of uniqueness of
solution, the former searches for an optimal best-fit solution that minimizes a
certain cost function. In this scope, the most intuitive approach is the inverse
transport where the dispersion model is integrated backward from the observa-
tion time to the emission time [1]. This approach was implemented in a study
that used the solution of the adjoint tracer transport to characterize the air pol-
lution sources responsible for a certain contamination [2]. That is by which a
backward integration in time of the adjoint of a linear dispersion model was done
using the Lagrange duality relation. This particular study predicted the source of
a large-scale radioactive tropospheric contamination of nuclear tracers based on
atmospheric measurements. Other studies used the evolutionary computations of
the genetic optimization algorithm to combine the forward dispersion model with
a backward receptor model. Both the puff and the Gaussian plume models were
tested using synthetic data and resulted in successful solutions [3, 4]. In addition
to this method, different optimization approaches are implemented while relying
on regularization to buildup a unique well-posed solution that minimizes the cost
function obtained from the original ill-posed inverse problem [5, 6, 7].

On the contrary, instead of searching for one optimal combination of source
parameters, the probabilistic approach characterizes an ensemble of source pa-
rameters configurations. Such an approach provides purely probabilistic indica-
tions about the solution and hence allows for the quantification of uncertainty
which is not achieved by the first approach. In this scope, the inverse problem is
regarded as a Bayesian problem to be dealt with stochastically [8]. This is being
favored over the optimization approach due to the various advantages provided
by the Bayesian framework [9, 10, 11, 12]. This framework is then able to find
the probability distribution of each of the source parameters under inspection
and hence the most probable configuration of source parameters leading to the
observation at hand. To do so, the Bayesian inference is usually coupled with a
stochastic sampling tool to fully study the possible combinations of source param-
eters and quantify the relative uncertainties. The most frequently used sampling
tool is the family of Markov Chain Monte Carlo (MCMC) algorithms [13]. This
combination between Bayesian inference and MCMC sampling was used to recon-
struct an emission source from synthetic data [10] or real measurements [11, 9]
and to optimally define characteristics of a newly developed air pollution sens-
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ing network or to estimate the costs and benefits of an existing network [14].
Another study applied this approach to real accidental nuclear release at a con-
tinental scale based on some measurements from an existing sensing network [15].

In this research work, we will solve the ill-posed air pollution source determi-
nation problem using a Bayesian inference framework coupled with the of MCMC
sampling and a Lagrangian atmospheric dispersion model in an urban environ-
ment. Several natures of observations including concentration fields, contours
and point-wise values, will be tested. Section 2 represents the scientific back-
ground of the different theories used to fulfill the aim of our research. Section
3 provides detailed description of our methodology including an overview about
the used dispersion model, the studied domain, the Bayesian settings and the
algorithm. Section 4 is dedicated to define the numerical experiments and the
settings of their conduction based on synthetic observations of different natures.
Finally, section 5 will represent the obtained results of these experiments along
with their interpretaions.
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Chapter 2

Literature Review

The objective of this literature survey is to provide an overview of the differ-
ent concepts, theories and methodologies that are used as a basis for the current
study and to present previous work related to source reconstruction problem.
The main concepts to be covered are related to pollution dispersion modeling,
Bayesian inference, Monte Carlo sampling techniques, optimal transport theory
and environmental monitoring. These concepts will guide the work into fulfilling
our main aim that is the inverse approach of identifying and characterizing the
sources that are responsible for an air contamination field in a certain region.

2.1 Problem Statement

Atmospheric dispersion modeling stands for the set of mathematical com-
putations that aim to understand how pollutants or contaminants are traveling
in the atmosphere. In this scope, there are two directions of in-time approaches
for dispersion modeling. The first approach is by computing the concentrations
of a certain pollutant which is transported downwind of a known source. This
is known as the forward approach and it requires basic knowledge of the char-
acteristics of the source and the parameters governing its emissions. However,
a backward approach also exists and it is done from destination back to source.
That is trying to reconstruct the locations of sources contributing to a field of ob-
served or measured concentrations in a certain region. This approach has little or
no information about the source and is directed towards computing its different
parameters with a certain level of uncertainty. These approaches are very useful
in the different research domains including air pollution analysis [16, 17, 18], ma-
rine transport [19, 20], oil and gas studies [21, 22] and many other domains.

The problem of interest in this thesis work is the source inversion problem
commonly referred to as source term determination. This approach consists of
characterizing a source or a group of sources along with their corresponding pa-
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rameters based on a set of known observations or measured data. The parameters
of interest studied in this work are the source location (x and y coordinates or
latitude and longitude), the source height, the emission rate and the emission
duration. It is worth noting that the inverse approach of source characterization
is getting more and more important. This is basically due to the fact that ob-
taining knowledge about the sources is a basic and fundamental requirement for
risk assessment, risk mitigation and emergency response plans.

2.2 Air Pollution Dispersion Modeling

As air pollution imposes serious threats at different levels, it is of great inter-
est to monitor the levels of pollutants in the atmosphere. The most effective way
of such a task is by installing a well designed network of sensors that could give
real time measurements of the concentrations of the different pollutants present
in a certain region. These networks can measure the concentrations of different
pollutants by using different techniques that serve one goal: air quality monitor-
ing [23, 24, 25, 26]. However, a major problem could make the usage of sensing
networks limited; that is their high costs and continuous need for maintenance.
Therefore, many governments, agencies or research centers are using dispersion
modeling as an alternative.

Dispersion modeling involves the tracking of pollutants in the atmosphere
that are driven by the prevailing wind conditions and redirected by the different
surface features. These features include the surface topographic geometry and
the different man made structures [27]. So, dispersion models usually require a
certain set of inputs including wind characteristics, atmospheric stability classes,
ambient temperatures, emission patterns and characteristics, terrain features and
elevations, obstructing man made structures characteristics...

There are several types of dispersion models including box, Gaussian, La-
grangian and Eulerian models [28, 29]. The box model is a very simple model
that assumes that the domain under investigation is in the form of a box. It
also considers the air pollutants to be homogeneously distributed in this box
and performs computations accordingly [30]. These assumptions disregard many
essential factors affecting the pollution pattern; thus, making the box model im-
practical in realistic settings. On the other hand, the Gaussian model is the oldest
and most common model used for studying continuous and non-continuous puff
emissions. It usually assumes that the plume follow a Gaussian distribution in the
vertical and crosswind directions. It also considers the effect of ground reflection
of the plume and performs computations accordingly [31]. As for Lagrangian
models, these are used to track the parcels as they move in the atmosphere
through a moving reference frame. They compute the trajectories along which
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these parcels move based on the prevailing meteorological conditions and domain
features. Similarly, the Eulerian models handles the computations as Lagrangian
models do, but in a fixed grid as a reference [32, 33].

Based on the previous, as the characteristics of the landscape get more hetero-
geneous, it becomes more challenging to explicitly execute dispersion models [34].
That is the case of urban environment where the abundance of buildings and on-
surface structures should be resolved by the model; however, not all models are
able to handle such environments. For instance, the Gaussian plume model can
not handle the street canyons and surface features in urban environments [35].
On the contrary, Lagrangian models could handle three dimensional domains that
can properly resolve the urban environments and their complex features [36].

Despite the differences in assumptions and conditions used in the different
dispersion models, the air pollution sources are similarly classified. This classi-
fication can be on the basis of the shapes of the sources i.e. point, line or area
sources. For instance, an emitting stack is considered a point source, cars along a
road are considered line sources and a fire is referred to as an area source. These
sources can also be classified based on their emission duration to puff sources
or continuous sources. Puff sources refer to short term and accidental emissions
unlike normal activities having continuous sources.

These dispersion models are highly used in researches and studies by many
governmental agencies and environmental organizations. They are used as tools
for air pollution control, assessing human activities impact on air pollution, epi-
demiological studies, managing air quality, compliance testing [37, 38]...

2.3 Solutions for the Inverse Problems of Atmo-

spheric Contamination

Several approaches and algorithms were investigated by researchers in order
to reconstruct the air pollution sources responsible for a certain contamination.
These approaches are divided into two main categories: deterministic optimiza-
tion methods and stochastic Bayesian approaches.

2.3.1 Deterministic Optimization

2.3.1.1 Definition

Deterministic solutions are those unique solutions that are found in math-
ematical modeling for a well-posed problem; that is a problem that have three
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basic conditions: existence, uniqueness and stability of the solution(s) [39, 40].
However, the backward inverse problems are usually ill-posed problems where
most often the condition of stability is violated. In such problems, a small vari-
ation in the initial data can cause a larger variation in the obtained solution(s).

Based on that, deterministic optimization methods are used in the inverse
problems. These methods aim to select the optimal solution to the problem at
hand, out of an infinite set of solutions. The selected solution is the one that best
fits the data and that minimizes the residuals between the obtained and observed
data. These residuals are obtained from an objective function that we aim to
minimize by the selection of the best fit solution without any quantification of
the resulting uncertainty.

These methods usually use the different principles of linear algebra as they
use gradients of the objective function to solve the minimization problem. The
objective function to be minimized is the sum of residuals between modeled and
real data. A residual R can be represented by Equation 2.1:

Ri = yi − f(xi) (2.1)

where yi is the ith observed value of the dependant variable under inspection
and f(xi) is the model function that is predicting the observed value based on the
independent variable x.

2.3.1.2 Deterministic Optimization Methods

There are several methodologies that are used in this scope. These include
the least square method, genetic algorithm, maximum entropy...

a. Least Square Method

This is the most basic approach to reduce residuals. It minimizes an objective
function that can be stated as a sum S of residuals R for n data points:

S =
n∑
i=1

R2
i (2.2)

In this case, we are minimizing the sum of the squares of the residuals that is
expressed in Equation 2.3.

‖Ri‖2 = ‖yi − f(xi)‖2 (2.3)

where ‖.‖ is the Euclidean norm.
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The simplicity and reliability of this method depends on the nature of problem
at hand. If the problem is linear, then the solution converges in a straightforward
manner. However, many problems are non linear and require further approxi-
mations and assumptions. The approximations depend on using Jacobians and
Taylor’s series expansion up to a certain order. This results in a reordering of the
residual expression. Also, certain iterations must take place to specify a suitable
initial point. The inadequate choice of the initial point can negatively affect the
solution where it will converge to local minima rather than finding the global
solution.

b. Regularization of Least Square Method

In ill posed problems, as it is the case of inverse problems, the ordinary least
square method results cannot always obtain a unique solution where the system
of equations is either over determined or under determined. That is why this
method aims to regularize the previous method by constraining the resulting so-
lution. This regularization process adds a cost term to the objective function
in order to find an optimal solution and reduce the probability of overfitting.
This regularization term holds some prior knowledge about the problem. The
objective function CF can the be stated as shown in Equation 2.4:

CF (x) = ‖y − f(x)‖2 + αγ(x) (2.4)

where CF is the cost function, y is the observed value of the dependant vari-
able, f(x) is the model function that is predicting the observed value based on the
independent variable x, α is a parameter reflecting a certain weight between the
regularization function γ representing the constraint and the original residuals.

The different regularization methods vary based on the choice of the regular-
ization function used. Two main popular regularization methods are Tikhonov
and LASSO (least absolute shrinkage and selection operator) methods. The reg-
ularization function used in Tikhonov method is an L2 norm whereas that of
LASSO method is an L1 norm. Another difference lies in the feature selection
that results from each process, where some methods can select all features of a
problem; while others discard some and consider the rest [41, 42, 43].

c. Genetic Algorithm

This is one global search approach that is classified within the evolutionary al-
gorithms which are highly used in the artificial intelligence domain. These algo-
rithms are named evolutionary due to the fact that they are inspired from natural
biological evolution processes [44]. The genetic algorithm (GA) is mainly inspired
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from genetic processes including chromosomal mutations, crossover and selection.

This algorithm first requires a genetic representation of the space of candi-
date solutions over which genetic processes take place. These representation are
usually encoded in binary format i.e. a combination of 0’s and 1’s. Then, suc-
cessive processes are done and aim to evolve the whole genetic combination at
hand into a better one. In this scope, deciding whether a new population is
better or not depends on the fitness function of the problem. These processes
include initialization of the population to obtain a first generation from which
a certain combination having the best value of fitness is selected. Then, these
selected ”parent” solutions undergo breeding through mutations and crossovers
to produce ”child” solutions forming the second generation with better fitness.
This process is repeated iteratively until a certain number of iterations is reached
or until convergence is achieved. An illustration of the iterative process of the
GA algorithm is represented in Figure 2.1.

Many challenges are encountered in the GA including the formulation of a
fitness function, the population size, the choice of computational parameters and
the selection criteria of the new population, computational time [45]... In this
scope, many other optimization algorithms exist and are also inspired from nat-
ural behaviors or evolutionary processes. These methods include Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolu-
tion (DE)...

Figure 2.1: Illustration of genetic algorithm stages.
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2.3.2 Stochastic Bayesian Methods

The second class of methods to solve the inverse problem is the stochastic
probabilistic approach. This approach is expressed within a Bayesian reference
that represents the final solution as a posterior probability and that can deal with
the uncertainty of the input data, model and resulting solution.

On the other hand, unlike deterministic approaches, this approach overcomes
the limitation of convergence to a local minima; especially when equipped with
an efficient sampling tool. Such a tool will allow full exploration of the solution
space and will find the global solution of the inverse problem.

2.3.2.1 Bayesian Inference

Bayesian inference is an algorithm used in statistical inference. It was es-
tablished based on Bayes’ theorem named after Thomas Bayes who was the first
to employ conditional probability coupled with prior knowledge of conditions
leading to specific events; that is to obtain probabilities of certain aspects or
parameters of those events [46]. Bayes’ theorem is mathematically expressed in
Equation 2.5:

P (M |D) =
P (M)P (D|M)

P (D)
(2.5)

The left hand term of the equality P (M |D) is called the posterior. It is the
probability of a certain event M knowing the set of data related to the event D.
Usually, M refers to the model parameters and D refers to measured or calculated
quantities. Here, we can notice the inverse approach included in Bayes’ theorem
where M contains the parameters of a model whose results would be represented
in D. So, at the level of the model, we are calculating the probability of the input
knowing the output. This probability is our desired probability that contains the
solution to our inverse problem.

As for the right hand term, P(M) is known as the prior that is our knowledge
of the parameters of the model M before having the data of event D. Explicitly,
we have no prior knowledge about M reflecting our ignorance about the proposals
they convey. However, in most cases, the prior is assumed to follow a uniform
distribution for Cartesian variables.

The second term of the numerator P (D|M) is the likelihood probability. It
represents the probability of having a certain set of data D given a certain com-
bination of model parameters as defined by M. The likelihood is usually used to
measure the discrepancies between the synthetic obtained data and the original
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data.

The denominator term P(D) is the evidence or the marginal likelihood which
in other terms means the probability of obtaining the specific set of data D
for all possible combinations of parameters of the model. So, it is obtained by
integrating the likelihood over all the space of combinations of model parameters
represented in M (Equation 2.6).

P (D) =

∫
allM

P (M)P (D|M)dM (2.6)

. When the number of sources is known and finite, this probability is usually a
constant that is disregarded in the calculations. Having the denominator as a
constant, the posterior is then proportional to the product of the prior and the
likelihood. This leaves us with the reduced form of Bayes’ theorem in Equation
2.7:

P (M |D) ∝ P (M)P (D|M) (2.7)

The above theorem is then used iteratively in mathematical inference to dy-
namically update the probability of a certain hypothesis and gain more and more
knowledge reaching our target posterior. Hence, Bayesian inference constitutes a
logical framework that converges into the determination of parameters involved
in a certain model M and leading to a set of well known data D. This framework
is very popular and has been applied to a wide range of domains include earth
sciences, engineering, medicine and philosophy [47, 48, 12].

2.3.2.2 Markov Chain Monte Carlo Sampling

Monte Carlo sampling is a stochastic sampling technique that is used in com-
bination with Bayesian inference. This sampling method is very useful in high
dimensional parameter space where obtaining analytical solutions is not practi-
cal. The technique consists of sampling from a certain probability distribution
and creating a Markov chain of sampled states in an iterative manner until the
chain converges to the target distribution of parameters. This target distribu-
tion usually represents the posterior distribution of the inferred parameters. For
proper updating of the chains, an acceptance criteria should be established on
the basis of given proposal and likelihood distributions.

One popular algorithm of sampling used in this scope is Metropolis Hastings
algorithm. It obtains random samples of parameters from a certain probability
distribution and then creates a Markov chain based on a well known acceptance
criteria. The algorithm works as follows:
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1. Initialize a sample x0 out from the parameters’ space, where xi is a vector
with the same dimension as the parameters’ space.

2. Suggest a proposal distribution f(x), that is a distribution that describes
the choice of the new candidate point. Usually, this distribution is selected to be
a normal distribution centered at the current sample.

3. Start the iterative process. That’s for a certain number of iterations, do
the following:

i- Sample a new candidate point xi based on f(x). Usually, sample xi follows
a normal distribution having xi−1 as its mean.

ii- Sample a value of u from a uniform distribution between 0 and 1.

iii- Calculate the acceptance ratio r that is g(new)/g(xold), where g is a dis-
tribution that is proportional to the posterior’s distribution.

iv- Compare u to r to see whether to accept or to reject the candidate sam-
ple.
a) if u ≤ r, accept.
b) if u > r, reject.

v- Update the Markov chain accordingly. If the sample is accepted, the
new chain value is xnew. Otherwise, if the sample is rejected, the new chain value
remains xold.

2.4 Optimal Transport Theory

In this section, an overview about the optimal transport theory will be dis-
cussed. This theory has several applications and uses different metrics for its
computations. Among these metrics is the Wasserstein distance which will also
be introduced.

2.4.1 Definition and Purpose

The optimal transport theory is a mathematical theory that tackles the prob-
lem of transportation between different fields or functions. The history of this
theory started with Gaspard Monge in 1781 [49] for military uses. Monge was
trying to figure out the optimal and most economical way to transform a terrain
with an initial landscape into a new target landscape [50]. This should be done
by moving a certain amount of sand from a quarry to a construction location
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while minimizing the required amount of work or workers. Monge’s problem is
stated in Equation 2.8.

min
T :X−→X

∫
x

c(x, T (x))u(x)dx (2.8)

where T is a translation function or map (if it exists) that transforms u into v,
c is a convex distance (which is the Euclidean distance in Monge’s case) and u,v
are positive functions describing the problem at hand. This minimization pro-
cess is subjected to certain constraints that are mainly referred to conservation
of quantities [51]. For instance, Monge’s problem has the conservation of mass of
land to be moved as a constraint.

Generally, the optimal transport theory is a mathematical theory in the scope
of convex optimization that includes several schemes or sets of metrics that re-
late different distributions. It handles minimization problems and can be used
to make distance measurements between two functions or two fields [52]. This is
applied while enforcing a certain conservation property as a constraint. A set of
transformations can be found, yet, the main aim is to find the optimal transfor-
mation T i.e. the one that gives the minimal distance between the two functions
(Figure 2.2).

Figure 2.2: Representation of an optimal transport problem. In this example,
the optimal transformation T is found between two functions µ0 and µ1.

The modern optimal transport theory involves using Kantorovich duality for-
mulation that overcomes the difficulties in the ill-posed Monge’s formulation.
These difficulties can be witnessed at the level of the conservation constraint
and uniqueness of the solution [53]. This new formulation is a convex relaxation
of the initial Monge’s problem that introduces probability measures of u and v
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and minimizes the cost function over the set of transport plans between u and v.
This made the optimal transport theory applicable in different domains including
machine learning, fluid dynamics, statistics, optics [54, 55, 56]...

2.4.2 Wasserstein Metric

There are many metrics that we use to measure the distance between two
distributions. These distances include total variation, Hellinger, L2 and χ2 norms.

Despite being useful, such distances have certain drawbacks. One drawback
relies in the fact that we cannot use them to measure the distance between two
fields of different natures i.e. continuous and discrete fields. It also disregards the
geometry of the distributions over the multidimensional space. That is by which
such distances represent only a number disregarding any qualitative aspects of
the two distributions. This can be illustrated by considering one distribution that
we intend to interpolate into a new distribution as shown if Figure 2.3. The path
between the two distributions is computed using the Wasserstein distance in the
upper row and using the Euclidean L2 norm in the lower one. We notice that the
Euclidean path did not preserve the structure of the initial distribution [57].

Figure 2.3: Comparison between two different paths of two distributions: the
geodisc path in the upper row to a Euclidean path in the lower row.

This leads us to introduce the Wasserstein or KantorovichRubinstein metric.
It is the distance used to calculate the distance between probability distributions
in a certain metric space M. It can be expressed by Equation 2.9.
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Wp(P,Q) = ( min
JεJ(P,Q)

∫
‖x− y‖pdJ(x, y))1/p (2.9)

where Wp is the Wasserstein distance of order p, (x,y) ε Rd x Rd and J(P,Q)
is the joint probability for (x,y) having P and Q as marginals.

Going back to Monge’s problem, this metric calculates the minimum cost that
is needed to move a certain mass of sand from an initial location (quarry) to the
new location (construction cite). This cost is the product of the mass that we
have and the distance to be traveled. The whole computational process respects
the constraint of conservation of mass. The method is applied in many domains
including probabilistic studies, statistics, shape analysis, computer science, ma-
chine learning [58, 59, 60]...

GH1,2 = L2(LH1,2) (2.10)

where GH1,2 is the global Hausdorff distance between the two shapes in images
Im1 and Im2 and L2 denotes the L2 norm of LH1,2 is the local Hausdorff distance.
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Chapter 3

Methodology

The aim of this chapter is to illustrate the different steps of the proposed
framework that will be able to detect and characterize the pollution sources in
certain incidents. This framework will combine the different concepts discussed
in Chapter 2.

3.1 Dispersion Model

3.1.1 General Description

Our purpose is to study the relation between a certain set of proposed param-
eters describing a source of air pollution on one hand, and its resulting concen-
tration fields on the other hand. Based on that, we need a dispersion model that
is able to predict how the pollutants from a certain source would move and accu-
mulate in the surrounding environment and under the prevailing wind conditions.

This computational exercise is a major step in our main algorithm. For
this purpose, we use a software named ”GRAMM-GRAL” that stands for Graz
Mesoscale Model- Graz Lagrangian Model [61, 62]. As the name implies, the
software consists of two coupled models: GRAMM for the mesoscale wind field
computations and GRAL for the microscale wind field along with the Lagrangian
particle transport calculations. In fact, these two quantities are directly related
where the transport of particles in the atmosphere will be governed by the prevail-
ing wind field and will eventually lead to the creation a certain concentration field.

The software involves the creation of two nested domains that are defined as
two uniform rectilinear grids: a coarse resolution domain for GRAMM and a finer
resolution domain for GRAL. It also requires certain input data that properly
describes the domain. These include:
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- Domain topography.
- Shape files of buildings and their characteristics.
- Wind conditions: speed, direction, atmospheric stability class.
- Air pollution sources whether point, line or area sources, their locations, emis-
sion rates, stack properties...
- Surface properties including albedo, emissivity, heat conductivity...

After defining these inputs, a simulation could be done to obtain GRAM wind
field depending on the topography and a GRAL flow field that defines the wind
flow around the buildings at the urban scale. GRAL will also give us the resulting
concentration field within its domain.

3.1.2 Setting Up the Domain

In our case, the studied domain is KAUST university in Thuwal,KSA which
is located on the coast of the Red Sea at 80 kilometers north of Jeddah (Figure
3.1). Figure 3.3 represents the specific area of study where the prognostic GRAL
model is implemented. The location background image is extracted from Google
Earth and is georeferened using the software’s Graphical User Interface (GUI)
in a Universal Transverse Mercator (UTM) coordinate system of latitude and
longitude. This coordinate system divides the Earth’s sphere into 60 zones and
projects them into a plane. This projection makes our domain in UTM zone 37N
ranging between 501,200 and 523,700 towards the East and between 2,457,100
and 2,477,400 towards the North. Both domains constitute uniformly meshed
Cartesian grids such that the outer GRAMM domain has a resolution of 100
meters and the inner GRAL domain has a fine resolution that can be as high as
2 meters.

After setting up the domains’ borders and resolutions, it is necessary to define
the features of our location. Based on that, topography and land use input files of
our specific domain were extracted from global rasters. In case of topography, we
extracted the elevation at each center of each grid cell of the GRAMM domain to
create a topographic raster representation which is fed to the model. In addition,
the CORINE (Coordination of Infomation on the Environment) values of land use
were extracted at those same locations [63]. The corine value is a representative
number that implies a certain combination of albedo, soil moisture, emissivity,
surface roughness and conductivity. This combination of data is also fed to the
model; by that, we now have the natural surface features of our domain. Since
we are studying an urban domain, another major component is the man made
structures primarily including KAUST buildings. The shape file showing the
clear geometry of all 2,111 buildings is represented in Figure 3.2. This shape
file is also input into the model to setup a complete domain that is ready to be
studied. These buildings are georeferenced in the same coordinate UTM reference
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and imported over the base map as shown in black within GRAL domain in Figure
3.3.

Figure 3.1: Geographical location of our domain.
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Figure 3.2: KAUST buildings shape file.
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Figure 3.3: GRAL domain of study.
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3.1.3 Running the Model

After setting up the domain, we are now ready to run the model. Usually
GRAMM and GRAL models are run in series where we run GRAMM to get the
prevailing mesoscale wind field and then we run GRAL to get the microscale wind
field around the buildings and the resulting concentration fields in the presence
of certain pollution sources. To do that, we must input the meteorological data
at the boundary of our GRAMM domain. This data is in the form of a metfile
containing the day, time, wind speed, wind direction and atmospheric stability
class. In other words, this file contains the necessary boundary conditions that
are used to get the flow and turbulence fields around the buildings in our specific
topographic setup based on Navier Stokes equation and the k-ε turbulence clo-
sure model [61, 62].

The source(s) is defined as either point, line or area source. Its location, stack
height, type of released contaminants, emission rates and emission duration are
also all well defined. The final results that we get are average wind speeds and
concentration values at each grid cell. The software provides its computed results
in readable files that can be post processed and represented using other softwares
such as the wind field represented in Figure 3.4. Also, the GUI of the software
contains a post processing visualization tool where we can see its outputs as the
concentration field shown in Figure 3.5.

Figure 3.4: Instantaneous wind field computed by GRAMM-GRAL and visual-
ized by MATLAB-R2019b.
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Figure 3.5: Instantaneous concentration field computed and visualized by
GRAMM-GRAL.
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3.2 Bayesian Inference of the Source Parame-

ters

3.2.1 Background

Source detection is not an easy task as many processes are not directly re-
versible. In our algorithm, we intend to detect the source of air pollution and
characterize it in a Bayesian reference. This framework will use Baye’s rule to
model the parameters of our source as random variables as discussed in Equa-
tion 2.5 subsection 2.3.2. These random variables will have P(M) as their prior
probability distribution. In addition, the likelihood probability P (D|M) will be
used to have an idea about the discrepancies between the modeled and observed
data. The product of these two probability distributions represent the posterior
probability distribution P (M |D) that will imply how probable is for a certain
configuration of source parameters to be the true reference one.

3.2.2 The Prior Probability Distribution

The prior probability is expressed as the term P(M) in Equation 2.7. The
distribution of this probability represents our prior knowledge about the event M.
In our specific problem, the event M represents having a certain set of parameters
describing the emission process in our model. These parameters include source
location (latitude and longitude or x and y coordinates in UTM system), stack
height, emission rate and emission duration.

Since, the event M is mainly composed of having five different parameters; we
can say that M is the intersection of five different events (Equation 3.1).

M = M1 ∩M2 ∩M3 ∩M4 ∩M5 (3.1)

where Mi represents the event of having the parameter i in our emission pro-
cess.

In addition, we assume that the events Mi are independent which allows us
to express the prior probability as a product of the probabilities of having these
events as shown in Equation 3.2.

P (M) = P (M1 ∩M2 ∩M3 ∩M4 ∩M5) =
5∏
i=1

P (Mi) (3.2)

In order to preserve the generality of the problem, it is better to use uninforma-
tive prior distributions. This reflects our limited knowledge about the proposals
conveyed in event M. Based on that, we will use a uniform prior distribution over
pre-defined boundaries as shown in Equation 3.3.
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Parameter Minimum Bound Maximum Bound

X UTM Coordinate (in meters) 504600 521760
Y UTM Coordinate (in meters) 2459000 2475320

Stack Height (in meters) 2 80
Emission Rate (in kg/hr) 10 500

Emission Duration (in minutes) 0 360

Table 3.1: Bounds of the uniform prior probability of the five studied parameters.

P (Mi) =

{
1

xMi−yMi
if Mi ∈ [xMi

;yMi
]

0 otherwise
(3.3)

The bounds of the prior distribution of each parameter are represented in
Table 3.1. Since the value of P (Mi) is always a constant, the prior probability
will also be a constant and Equation 2.7 reduces to:

P (M |D) ∝ P (D|M) (3.4)

This implies that, in our case, the posterior probability and the likelihood
probability have directly proportional distributions.

3.2.3 Observations

In order to infer the different parameters responsible for a certain release,
we first need to obtain observations resulting from that release. The observations
can be obtained in different forms by using different techniques. These first form
of observation is a concentration field that gives an average concentration value
at the center of each grid cell of our uniform rectilinear domain. Such fields can
be obtained either from well established and rich sensing networks covering wide
regions or from images and remote sensing techniques. Another form of observa-
tions is concentration contours that delineate the polluted regions without any
indication of the concentration level at the indicated position. In addition, in
locations where complete sensing networks are hard to install or operate, we may
have a finite number of installed sensors. Thus, we can have an observation repre-
sented as concentration values at different scattered positions inside the domain.
In our case, we will use the first form of observations resulting from synthetic
data coming from GRAL model as described below:

Concentration Fields (denoted as F): This is a Cartesian grid having the
same size and resolution of the GRAL domain grid. It contains the value of con-
centration of a certain pollutant at the center of each grid cell. The GRAL model
allows us to extract 2D concentration grids from the original 3D Cartesian grid
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of the whole domain. The 2D extracted grids are obtained at selected elevations
above the ground. These grids are written in the form of ASCII files.

3.2.4 Quantifying the Discrepancies

The inference process is an iterative process that predicts a new concentra-
tion distribution at each iteration. It is now necessary to quantify the discrepan-
cies between every newly obtained model output and our reference observation.
The choice of a suitable metric to measure these discrepancies depends on the
nature of observations at hand. In our case, the below metric is a global metrics
used in case of concentration fields.

Wasserstein Distance: As defined in section 2.4.2, it is the distance used
to calculate the distance between two different distributions. It is obtained by
minimizing the path required to translate one distribution to the other. We will
be using this metric in order to get a measure of the discrepancies between two
fields, each represented in a concentration grid as discussed in section 3.2.3. The
dissimilarity is globally measured by using field displacement where each con-
centration grid is considered to be a density that can be displaced. This metric
can overcome the double penalty effect of a local discrepancy estimator and was
efficiently used to compare fields of accidentally released radioactive elements in
the Fukushima-Daiichi accident [64].

This global metric is expressed by Equation 3.5

δi = δ(λ, λi) (3.5)

where λ is the reference observation and λi the ith output of the model. When
an observation λ is a concentration field, δ represents the Wasserstein distance.

3.2.5 The Likelihood Probability

As mentioned in section 2.3.2, the likelihood probability P (D|M) is the prob-
ability of having a certain set of data D given a certain combination of model
parameters as defined by M. In other words, it is expresses how likely does the
model predict the observation at hand given a certain set M of parameters. So,
an indication about this probability needs a tool for the quantification of discrep-
ancies between the model output and the original reference observation.

In this scope, for an observation, we will use the global metric discussed
in section 3.2.4 in correspondence with the type of observation at hand and as
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expressed in Equation 3.5. The metric δi will decrease as the discrepancies be-
tween the two fields λ and λi decrease; in other words, as these two fields become
similar. In terms of likelihood probability, less discrepancies mean higher prob-
ability for the field λi at hand to similar to λ. Hence, the likelihood probability
distribution should increase as the value of the metric decreases and vice versa.
Based on that, we will set our likelihood distribution to an exponential distribu-
tion as defined by Equation 3.6:

P (D|M)δi =
1

β
exp

−δi
β (3.6)

where β is the scale parameter that we assume to be constant and known.
The value of β was selected to maximize the likelihood between the reference
observation and the model output obtained by having its input parameters very
close to the true ones. This distribution is defined for positive values of δi, which
is always true for our metrics. In addition, its value approaches 1 as the value of
δi goes to 0 and it approaches 0 as δi gets greater.

The likelihood probability represented in Equation 3.6 is used when we have
only one reference observation. However, when we have nC reference observations,
we will assume that these are independent from one another and their likelihood
probability will be expressed in Equation 3.7:

P (D|M)δi =

nC∏
i=1

1

β
exp

−δi
β (3.7)

3.2.6 Sampling the Posterior

To sample the posterior, we will use the Metropolis Hastings algorithm which
was described in section 2.3.2. The steps used in our case can be described as
follows:

1. Initialize the starting point s0 by randomly sampling a value for each
inferred parameter while respecting the pre-defined boundaries of our parameters’
space. In our case, s0 is a multi-dimensional vector having as components the
sampled values of the inferred parameters (Equation 3.8).

sn = sni ; i = 1, 2, ...,m (3.8)

where m is the number of inferred parameters.

2. Start the iterative process.
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a) Suppose that the current sample is sn, sample a new candidate point
sn+1 from a normal distribution centered at sn.

sn+1 ∼ N(sn, σ) (3.9)

b) Run GRAL model for the sampled set of source parameters sn+1 to
obtain its resulting concentration pattern.

c) Calculate the likelihood probability P (D|M) by measuring the distance
between reference observation and the concentration pattern obtained from the
sample of source parameters, sn+1. This will give us an indication about the
posterior probability P (M |D).

d) Calculate the acceptance probability given by:

a = min(1,
P (Mn|D)

P (Mn+1|D)
) (3.10)

e) Draw a random number α from the uniform distribution over the interval
[0,1].

α ∼ U(0, 1) (3.11)

f) Compare a and α to update the Markov chain accordingly. In the below,
we denote by cn+1 the new element of the Markov chain.

cn+1 =

{
sn+1 if α < a

sn otherwise
(3.12)
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Chapter 4

Numerical Experiments

In this section, we will define the implementation of a smart algorithm con-
veying the previous methodology. We will then represent the different numerical
experiments conducted using this smart algorithm in a variety of experimental
settings.

4.1 Smart Algorithm

The prior bounds represented in Table 3.1 state that the area of the domain
containing the investigated probable location of the emission source is 17160m
along the x direction and 16320m along the y direction. This means that we
should run GRAL over a domain having an identical area as the one stated here.
However, the challenge rising at this level is the high computational cost repre-
sented by the relatively long computational time required by GRAL to perform
computations over such a domain. This time is estimated to be in the order of
60 seconds. In this scope, running GRAL model over a domain with a smaller
area would definitely reduce the required computational time; hence, making our
algorithm more feasible.

Moreover, based on some prior knowledge, our emission source lies in a smaller
domain D1 comprising a subset of the original prior bounds denoted as D2. These
two domains are represented in Figure 4.1.The properties of these two domain
are represented in Table 4.1.

Having that said, we propose a smart algorithm that will utilize this prior
knowledge in a computationally efficient manner. The smart algorithm works as
follows:

1) Localize the proposed sample: Check whether the proposed sample at an
iteration i lies inside D1 or outside D1.
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Figure 4.1: The geographic locations of the two domains D1 and D2 used by the
smart algorithm.

Parameter Domain D1 Domain D2

Minimum X UTM Coordinate (in meters) 508920 504600
Maximum X UTM Coordinate (in meters) 514680 521760
Minimum Y UTM Coordinate (in meters) 2464840 2459000
Maximum Y UTM Coordinate (in meters) 2470180 2475320

Area (in km2) 31 280
GRAL run time (in seconds) 20 60

Table 4.1: Properties of the domains used in the smart algorithm.
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2) Accordingly, decide where to run GRAL model:
- If the sample lies inside D1, run GRAL model over D1.
- If the sample lies outside D1, run GRAL model over D2.

After discovering the properties of the two domains D1 and D2, the smart
algorithm is expected to make the framework more feasible, especially as our
iterations come closer to a steady state. In such case, the bulk of the proposed
samples will lie inside D1; hence, only 20 seconds will be required to run the
GRAL domain.

4.2 Experimental Settings

In order to infer for the emission parameters, several numerical experiments
will be conducted based on the concepts presented in Sections 3.1 and 3.2 and
by using the smart algorithm proposed in Section 4.1. The experimental sce-
nario assumes that a point source is located at x=513295m and y=2467205m
in the UTM coordinate system. This source has a stack height of z=10 meters
above the sea level and emits for d=240 minutes at an emission rate of q=100
kg/hr. To mimic real observations, all our synthetic observations are perturbed
by an observational error of the form of an unbiased normal distribution having
a standard deviation 500 µ.g/m3 which is around the mean concentration of the
reference observation.

Our numerical experiments are designed in order to utilize one or more forms
of observations that are explained in section 3.2.3. In each experiment and as
described in section 3.2.4, a corresponding metric that suits the nature of the
observation at hand is used to quantify the discrepancies between this reference
observation and the predicted concentration pattern at each iteration. The same
selectivity is applied at the level of the used likelihood expression out of those
listed in section 3.2.5. Moreover, each experiment will be oriented towards infer-
ence of a certain set of source parameters. The numerical experiments carried
out are listed below in Table 4.2.

Experiments 1,2 and 3 use a concentration field as its reference observation.
This synthetic field is obtained above the urban environment represented in D1
(Figure 4.1) at an elevation of 10 meters above the ground and at a time instant
T=360 minutes, that is two hours after the emission stops. This observation
is represented below in Figure 4.2. The inference towards a different set of pa-
rameters is done in each experiment. At this level, we introduce an additional
parameter m representing the mass of the release in kg. In fact, this parameter
is the product of two of our main five parameters, the emission rate q (in kg/hr)
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Experiment Type of Used Metric Likelihood Parameters
Observation Expression Inverting for

Set I 1 F Wasserstein distance Equation 3.6 x,y,h
2 F Wasserstein distance Equation 3.6 x,y,h,m
3 F Wasserstein distance Equation 3.6 x,y,h,q,d

Set II 4 F Wasserstein distance Equation 3.7 x,y,h
5 F Wasserstein distance Equation 3.7 x,y,h,m
6 F Wasserstein distance Equation 3.7 x,y,h,q,d

Table 4.2: Settings of the numerical experiments conducted using the smart algo-
rithm. The information listed in the second and fourth column are in accordance
with sections 3.2.3 and 3.2.5 respectively.

and the emission duration d (in hr).

Experiments 4, 5 and 6 use observations having the same nature, a concen-
tration field. More specifically, these experiments use two synthetic observations
obtained at two different elevations of 10 meters and 25 meters above the ground
at a time instant T=360 minutes. These two observations are represented below
in Figure 4.3. The main difference between these experiments is the set of source
parameters that we are inverting for. Experiment 4 inverts for the location of the
point source expressed as x and y coordinates and the stack height h. Moreover,
Experiment 5 inverts for the location of the point source as well as its strength
represented by the mass of the release m (in kg). Then, Experiment 6 inverts
for the location of the point source in addition to the emission rate, q and the
emission duration, d.
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Figure 4.2: Concentration field used as reference observations for Set I collected
at an elevation of 10 meters above the ground.
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Figure 4.3: Concentration fields used as reference observations for Set II collected
at an elevation of a) 10 meters above the ground b) 25 meters above the ground.
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Chapter 5

Results and Discussion

This section is dedicated to show the results of the different experiments listed
in section 4.2 and to analyze the performance of our proposed smart algorithm.
Each subsection reveals the obtained Markov chain in each of the experiments.
Moreover, the posterior probability distributions were extracted from these by
using a kernel density estimator and their results are shown in a corner plot. In
this corner plot, the off-diagonal subplots represent the joint posterior probability
of each two corresponding parameters. In addition, the diagonal subplots show
the posterior probability distribution of each parameter. The performance of the
smart algorithm is analyzed by referring to the percentage of samples that lie
inside D1 every 1,000 iterations.

5.1 Set I

5.1.1 Experiment 1

The smart algorithm was run over 20,000 iterations based on the experimental
settings of experiment 1 in Table 4.2. The scale parameter of the likelihood
expression, β, is set to 50. The trace plot of the Markov chain obtained from
each of the three inferred parameters is shown in Figure 5.1 with an acceptance
rate of 32%. The kernel density estimator resulted in a 3 dimensional matrix
that was processed by 2D and 1D slicing to obtain the corresponding posterior
probability distributions shown in the corner plot of Figure 5.2. Moreover, the
step plot of the percentage of samples lying inside D1 is represented in Figure 5.3.

We notice that the our algorithm successfully inverted for the location of
the emission source represented by its x and y coordinates. That is by which we
obtained a narrow posterior distribution with its maximum being at the reference
values of the two parameters x and y. At the level of h, we obtained a flat
distribution over the range between 0 and 40 meters with several similar maximal
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values at heights that are away from our reference value. Regarding the smart
algorithm, a gradual increase in the percentage of samples inside D1 occurs until
reaching a plateau after 12,000 iteration. This plateau has a maximum of 69%
indicating that the majority of our samples lies in D1, around the reference
location of the emission source. The reduction of time achieved by the efficiency
smart algorithm is shown in Table 5.1. It is worth noting that in addition to the
time required by GRAL computations, an extra 20 seconds are needed at each
iteration in order to compute the Wasserstein distance as discussed in section
3.2.4.

Figure 5.1: Markov chains obtained in Experiment 1. The horizontal black lines
refer to the reference value of each parameter.

5.1.2 Experiment 2

The smart algorithm was run over 20,000 iterations based on the experimental
settings of experiment 2 in Table 4.2. Similarly, the scale parameter of the like-
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Figure 5.2: Corner plot of the obtained posterior probability distributions in
experiment 1.The red lines represent the reference value of each of the inferred
parameters.

Inside D1 Outside D1

Time required per iteration (in seconds) 40 80
Average Percentage of samples in each domain 51.2 48.8

Original Time required (in hours) 444.4
Time required by smart algorithm (in hours) 330.68

Percentage reduction in time 25.6

Table 5.1: Analysis of the computational time of the smart algorithm in Experi-
ment 1.
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Figure 5.3: Step plot of the percentage of samples lying inside D1 in experiment
1.
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Inside D1 Outside D1

Time required per iteration (in seconds) 40 80
Average Percentage of samples in each domain 42.2 57.8

Original Time required (in hours) 444.4
Time required by smart algorithm (in hours) 350.67

Percentage reduction in time 21.1

Table 5.2: Analysis of the computational time of the smart algorithm in Experi-
ment 2.

lihood expression, β, is set to 50. In this experiment, we are inverting of the
location of the source as well as the emission strength. The location is defined by
the three parameters inverted for in Experiment 1 and the strength is defined by
the mass of the release, m. The trace plot of Markov chain obtained from each of
the four parameters is shown in Figure 5.4 with an acceptance rate of 36.58%. The
kernel density estimator resulted in a 4 dimensional matrix that was processed by
2D and 1D slicing to obtain the corresponding posterior probability distributions
shown in the corner plot of Figure 5.5. At the level of the smart algorithm, the
step plot of the percentage of samples lying inside D1 is represented in Figure 5.6.

Our algorithm successfully inverted for the location of the emission source
represented by its x and y coordinates, as well as for the released mass m. That
by which we obtained a posterior distribution with its maximum being at the
reference values of the three parameters x, y and m. At the level of h, we
obtained a flat distribution over the prior bounds between 0 and 80 meters, but
with its maximum being deviated from 10 meters, our reference value. Regarding
the smart algorithm, a gradual increase in the percentage of samples inside D1
occurs until reaching a steady state after 15,000 iteration with a maximum of 59%.
The improvement in computational time accomplished by the smart algorithm is
shown in Table 5.2.

5.1.3 Experiment 3

In this experiment, we inverted for each of the five parameters under inspection
by running the smart algorithm over 20,000 iterations. The scale parameter of
the likelihood expression, β, is set to 50. The source location is similarly defined
by x, y and h, whereas, the emission strength is now defined by the emission rate
q and the emission duration d. Figure 5.7 represents the trace plot of the Markov
chain obtained with an acceptance rate of 34%. Similarly, the kernel density
estimator gave us a 5 dimensional matrix to which we applied 2D and 1D slicing.
The resulting corner plot of the posterior probability distributions is represented
in Figure 5.8. A step plot of the percentage of samples inside D1 is shown in

38



Figure 5.4: Markov chains obtained in Experiment 2. The horizontal black lines
refer to the reference value of each parameter.
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parameters.
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Figure 5.6: Step plot of the percentage of samples lying inside D1 in experiment
2.
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Inside D1 Outside D1

Time required per iteration (in seconds) 40 80
Average Percentage of samples in each domain 35.5 64.5

Original Time required (in hours) 444.4
Time required by smart algorithm (in hours) 365.55

Percentage reduction in time 18

Table 5.3: Analysis of the computational time of the smart algorithm in Experi-
ment 3.

Figure 5.9. In addition, the effect of the smart algorithm on computational time
is represented in Table 5.3.

Just like the previous experiments, we got a good prediction of the source
location in the 2D plane at the level of the two parameters x and y. The pos-
terior probability of the stack height h remains to be a flat distribution with its
maximum being over the range between 0 and 40 meters. At the level of the
emission strength, presented by q and d, we notice that both posterior probabil-
ities of these parameters have flat distributions over their bounds. Moreover, at
the level of q, this distribution has its maximum value around the reference value
unlike q whose posterior probability has its maximum deviated from the reference
value. Moving to analyze the smart algorithm performance, we notice that the
percentage of samples inside D1 increases gradually until reaching a steady state
after around 13,000 iterations. This steady state is in the range between 40%
and 50% with its maximum being 49%. This resulted in 18% reduction of the
required computational time compared to the original required time.

5.1.4 Discussion of Results in Set I

After presenting the different results obtained in each of the first three exper-
iments, we can say that our algorithm is accurately predicting the location of
the emission source in the 2D plane; that is a good prediction of x and y. The
third parameter defining the source location, h, is always having a flat posterior
probability distribution. So, we have a weak indication about the reference value
of the stack height. Coming to the emission strength studied in experiments 2
and 3, apparently the emission mass m was predicted in a better manner than
its elementary components q and d. That is the bulk of accepted samples in the
corresponding experiments may have their values of q and d away from the ref-
erence ones. However, their resulting product lies around the reference value of m.

On the other hand, the smart algorithm made our framework more compu-
tationally feasible. The efficiency of this algorithm increases as the number of
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Figure 5.7: Markov chains obtained in Experiment 3. The horizontal black lines
refer to the reference value of each parameter.
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experiment 3.The red lines represent the reference value of each of the inferred
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Figure 5.9: Step plot of the percentage of samples lying inside D1 in experiment
3.
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iterations increases reaching a steady state which gives us an indication about a
similar quasi-steady state of convergence of the corresponding Markov chains.

In order to improve the performance of our algorithm, we will try to obtain
better predictions of all studied parameters and particularly of the emission stack
height h by using observations F at different elevations.

5.2 Set II

5.2.1 Experiment 4

The smart algorithm was run over 20,000 iterations based on the experimental
settings of experiment 4 in Table 4.2. The scale parameter of the likelihood ex-
pression, β, is set to 50. The trace plot of the Markov chain obtained from each
of the three inferred parameters is shown in Figure 5.10 with an acceptance rate
of 33.72%. The kernel density estimator was similarly used to post process the
results and obtain the corresponding posterior probability distributions shown
in the corner plot of Figure 5.11. In addition, a step plot of the percentage of
samples lying inside D1 is represented in Figure 5.12.

The inference towards the source location in the 2D plane, represented by the
x and y coordinates, resulted in an accurate prediction of the reference values. A
narrow posterior distribution with its maximum being at the reference values of
these two parameters is obtained. At the level of h, we obtained a flat distribution
over the prior bounds between 0 and 50 meters with its maximum being at 14
meters, slightly away from our reference value. The smart algorithm resulted in
a gradual increase in the percentage of samples inside D1 occurs until reaching a
plateau after 15,000 iterations with its highest values in the range between 70%
and 80%. Hence, the vast majority of our samples lies in D1, around the reference
location of the emission source. The reduction of time achieved by the efficiency
smart algorithm is shown in Table 5.4. It is worth noting that in addition to the
time required by GRAL computations, an extra 40 seconds are needed at each
iteration in order to compute the Wasserstein distance as discussed in section
3.2.4 at the level of each of the observations.

5.2.2 Experiment 5

Based on the experimental settings of experiment 5 in Table 4.2, the smart al-
gorithm was run over 30,000 iterations. The scale parameter of the likelihood
expression, β, is set to 50. The trace plot of the Markov chain obtained from
each of the three inferred parameters is shown in Figure 5.13 with an acceptance
rate of 30%. The kernel density estimator resulted in the posterior probability
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Figure 5.10: Markov chains obtained in Experiment 4. The horizontal black lines
refer to the reference value of each parameter.

Inside D1 Outside D1

Time required per iteration (in seconds) 60 100
Average Percentage of samples in each domain 63 37

Original Time required (in hours) 555.5
Time required by smart algorithm (in hours) 415.55

Percentage reduction in time 25.2

Table 5.4: Analysis of the computational time of the smart algorithm in Experi-
ment 4.
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Figure 5.11: Corner plot of the obtained posterior probability distributions in
experiment 4.The red lines represent the reference value of each of the inferred
parameters.
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Figure 5.12: Step plot of the percentage of samples lying inside D1 in experiment
4.
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distributions shown in the corner plot of Figure 5.14. Moreover, a step plot of
the percentage of samples lying inside D1 is represented in Figure 5.15.

The inference towards the four studied parameters, represented by the x, y, h
and m, resulted in an accurate prediction of our reference values. All the posterior
distributions have their maxima at the reference values of these four parameters.
Furthermore, the smart algorithm resulted in a gradual increase in the percentage
of samples inside D1 occurs until having a steady state after 12,000 iterations.
This steady state lies in the range between 60% and 70% giving an indication
that our algorithm has its vast majority of our samples inside D1, around the
reference location of the emission source. The reduction of time achieved by the
efficiency smart algorithm is shown in Table 5.5.

Figure 5.13: Markov chains obtained in Experiment 5. The horizontal black lines
refer to the reference value of each parameter.
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Figure 5.14: Corner plot of the obtained posterior probability distributions in
experiment 5.The red lines represent the reference value of each of the inferred
parameters.

Inside D1 Outside D1

Time required per iteration (in seconds) 60 100
Average Percentage of samples in each domain 54.5 45.5

Original Time required (in hours) 833.34
Time required by smart algorithm (in hours) 651.67

Percentage reduction in time 21.8

Table 5.5: Analysis of the computational time of the smart algorithm in Experi-
ment 5.
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Figure 5.15: Step plot of the percentage of samples lying inside D1 in experiment
5.
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Inside D1 Outside D1

Time required per iteration (in seconds) 60 100
Average Percentage of samples in each domain 55 45

Original Time required (in hours) 833.34
Time required by smart algorithm (in hours) 650

Percentage reduction in time 22

Table 5.6: Analysis of the computational time of the smart algorithm in Experi-
ment 6.

5.2.3 Experiment 6

Referring to the experimental settings of experiment 6 in Table 4.2, the smart
algorithm was run over 30,000 iterations. The scale parameter of the likelihood
expression, β, is set to 50. The trace plot of the Markov chain obtained from
each of the three inferred parameters is shown in Figure 5.16 with an acceptance
rate of 31%. The kernel density estimator resulted in the posterior probability
distributions shown in the corner plot of Figure 5.17. Moreover, a step plot of
the percentage of samples lying inside D1 is represented in Figure 5.18.

Our algorithm accurately inverted for the source locations represented by x,
y and h as well as the emission duration d. All the posterior distributions have
their maxima at the reference values of these four parameters. However, we
obtained a flat distribution of the posterior probability of q with several maxima.
Furthermore, the smart algorithm resulted in a gradual increase in the percentage
of samples inside D1 occurs until having a steady state after 13,000 iterations
within the range between 60% and 70%. The reduction of time achieved by the
efficiency smart algorithm is shown in Table 5.6.

5.2.4 Discussion of Results of Set II

Based on the obtained results in this set of experiments, the produced results
give us good indications about the different parameters under inspection. The
location of the emission source in the 2D plane, referred to as x and y, is being
properly identified in all three experiments. In addition, the definition of the
location in the 3D plane, characterized by h, is also being well predicted. At
this level, a remarkable improvement is noticed in comparison to the results in
Set I, i.e. after using two observations F at two different elevations instead of
using a single observation F. Regarding the emission strength, the released mass
m and emission duration d are also being properly identified unlike the emission
rate q. Hence, we can say that although the accepted samples of q may be away
from the reference value, the product of the proposed q and d at each iteration
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Figure 5.16: Markov chains obtained in Experiment 6. The horizontal black lines
refer to the reference value of each parameter.
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Figure 5.17: Corner plot of the obtained posterior probability distributions in
experiment 6.The red lines represent the reference value of each of the inferred
parameters.
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Figure 5.18: Step plot of the percentage of samples lying inside D1 in experiment
6.
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is around the reference value of m. That is why the parameter m is being well
predicted. Another aspect that is noticed in the Markov chains is simultaneous
fluctuations in those of h and m in Experiments 5 and those of h and q in Ex-
periment 6. This indicates the dependence between these two parameters where
a larger stack height and a higher emission rate, eventually a higher emission
mass, than our reference values will produce similar concentration fields as our
reference observations.

At the level of the smart algorithm, it is worth noting that we achieved higher
percentage of samples inside D1 in Set II than that in Set I. This reveals the rela-
tion between using two observations F and enhancing the efficiency of our smart
algorithm and hence the feasibility of the framework.

After finishing these two sets of experiments, we can now proceed to test the
reliability of our smart algorithm when using other forms of observations.
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Chapter 6

Conclusion and Future Work

Air pollution is a common aspect witnessed in the different countries around
the world. It harmfully affects all the living creatures in rural and urban environ-
ments as well as the natural habitats of the different animals. In this scope, it is
very crucial to find the source or sources responsible for an observation indicat-
ing the presence of air pollution in a certain region. Characterizing the emission
sources will allow agencies and governments to deal with the resulting pollution
and mitigate its harmful effects. Also, it can serve as a tool to build a proper
emergency plan in case of accidents and terrorist incidents.

In this research work, we developed a smart algorithm that is able to identify
and characterize an emission source releasing air contaminants into the atmo-
sphere. This framework uses Lagrangian atmospheric dispersion modeling along
with Bayesian inference and stochastic Monte Carlo sampling. The iterative pro-
cess will result in a Markov chain from which can extract the posterior probability
distributions at the level of each inferred parameter. We implemented this smart
algorithm over then domain of the urban environment of KAUST, KSA while
inferring for five different parameters that reveal the emission source location
and strength. The parameters include the x and y coordinates in the UTM co-
ordinate system, the stack height, the emission rate and the emission duration.
The observation used is in the form of a concentration field obtained at different
elevations above the ground. The location in the 2D plane was properly identified
in all experiments. However, the height prediction was properly done when using
observations at two different elevations instead of one, that is in Set II instead
of Set I. Good indications of the mass were also obtained in both Experiments 2
and 5, unlike its elementary components the emission rate and emission duration.

The framework is then efficient at predicting the different emission parame-
ters. The smart algorithm is also efficient in terms of reduction computational
time required by the basic framework where it reduced around 20% of the original
required time making our algorithm more feasible. The increasing percentage of
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samples inside D1 was an additional factor indicating the quasi steady state of
chain convergence.

Based on these results, many additional experiments can be done. These
may consider different types of observations including concentration contours
and concentration point-wise values. These may be obtained either from sensors
or remote sensing equipment. Additionally, observations made be obtained at
different times to check the effectiveness of our framework for such observations.
Additionally, at the level of computational times, we may use a moving domain
D1 instead of fixed one as we did in our work. The new position of D1 will
depend mainly on the location of the sample itself. This algorithm may also be
expanded to check uncertainty of the model meteorological boundary conditions
responsible for driving the pollutants in the urban area at hand.
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