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ABSTRACT 
OF THE THESIS OF 

 
 
 

Salma Ahmad Ajour  for  Master of  Science 
      Major: Ecosystem Management 
 
 
 
 
Title: Evaluation of FAO’S Water Productivity Portal (WaPOR) Yield over the Beqaa 

Valley, Lebanon 
 
 
With the increasing pressure of agriculture on water and land, achieving high water 
productivity is essential. Models such as FAO’s Water Productivity Portal (WaPOR) 
aim to estimate water productivity by providing yield and evapotranspiration. In this 
study, the aim was to validate the yield product of WaPOR in the Beqaa Valley, 
Lebanon. The study was focused in two main fields. Yield of Potato and wheat, planted 
during 2017-2018, was validated in one field. In addition, the yields of barley, vetch, 
barley/vetch mixed fields and vetch/oat mixed fields, planted during 2012-2019,were 
validated in the other field by comparison against farmer reported yields. Statistical 
Indicators such as percentage relative error (RE), Root Mean Square Error (RMSE),R2, 
correlation (r), and bias were used for this validation. 
Wheat yield showed better results at a resolution of 30 m than that at a 100 m where 
recorded RE% of 1.14% < 20%, R2 of 0.38, RMSE of 0.71 ton/ha, r of 0.61 and a bias 
of 0.68 ton/ha versus an RE%|-12.43%| <20%, R2 of 0.38, RMSE of 1.2 ton/ha, r of 
0.62, and a bias of 0.73 ton/ha respectively. For the other crops, level consistency could 
not be tested for since not all crops where equally identified at the different levels. 
Potato yield was considerably accurate at a 100m resolution with RE% of 
19.55%<20%, an R2 of 0.22 and RMSE of 9.31 ton/ha, r of 0.47, and a bias of 2.39 
ton/ha. As for barley,vetch,barley/vetch and vetch/oat mixed fields results were 
considered to be poor with a RE% > 20% for all crops at both levels 2 and 3. This 
inaccuracy in crop yield estimations was attributed to inaccuracy in farmer reported 
yields which was detected in both fields, the standardized LUE max, harvest Index and 
moisture content. 
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CHAPTER I 

INTRODUCTION 
 

A. Background 

With population growth, climate change, and economic growth worldwide, 

agricultural management is becoming of higher importance to ensure food security. By 

2030, the global population is estimated to reach between 8.4 and 8.6 billion as reported 

by the United Nations Department of Economics and Social Affairs (FAO, 2017). 

Hence, food demand is estimated to increase by 60 % as early as 2025 (FAO, 

2017; OECD et al., 2012). Since agriculture is the primary source of food globally 

(Agriculture, food and water, 2003), the challenge of reaching up to the continuously 

increasing food demands by agriculture remains a food security challenge (Glotter et 

al., 2016). Nevertheless, the increase in agricultural production has a direct effect on the 

availability of land and water. According to FAO (2014), irrigated agriculture is among 

the most water-intensive sectors using up to 70% of water worldwide. Today, 

agricultural lands are estimated to take up to 11% of the globe’s land surface, which 

represents approximately 36% of all land suitable for agriculture (OECD., 2019). 

Optimizing water use depending on crop requirements can help achieve 

sustainable water resources management (Khan & Walker, 2015). Therefore, 

agronomic research aims at finding agricultural management strategies that increase 

agricultural production in a way that is sustainable to both land and water resources 

(Duda, 2017). 

To track down agricultural production, evaluate management practices, and 

draw out future projections, agricultural models are developed to ensure sustainable 

agricultural practices (Jones et al., 2017b) .Often, understanding crop yield and the 
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different interactions between soil, water, and the atmosphere helps to achieve 

sustainable development (Khan & Walker, 2015). Various factors could be tracked 

down using agricultural models, including biomass, evapotranspiration, and water 

productivity. Tracking biomass and primary productivity is essential to understand 

energy flows in ecosystems (Pan et al., 2014). 

 

B. Research Problem and Objectives 
 
1. Problem Statement 

FAO’s Water Productivity Portal (WaPOR) is the only open-access data portal 

providing remote-sensing based water productivity in Africa and the MENA region. It 

is the first portal to provide, at a continental level, comprehensive datasets combining 

biomass and AETI information near real time covering the period between 2009 to 

date, especially for the African continent (Delft, 2019). In order to evaluate water 

productivity, both AETI and NPP require evaluation and validation. At levels 2 (100m) 

and 3 (30m) , WaPOR covers the Beqaa Valley for the years 2009 forward. However, 

validation in the Beqaa was only done for grapes during 2015 and for wheat and potato 

during 2016-2018 at level 3 but not for level 2. 

 

2. Research Objectives 

The objective of this work is to validate the yield of an agricultural model 

namely WaPOR, which is a portal of Water Productivity through Open access of 

remotely sensed derived data. WaPOR was developed in order to estimate crop water 

productivity, an agricultural performance indicator, at different levels and providing 

different layers. In this study, the Net Primary Production and Above Ground Biomass 
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Production was validated by comparing values to observed crop yields for wheat and 

potatoes in Skaff during the 2017-2018 seasons and for barley, vetch, barley/vetch and 

vetch/oat mixed fields in AREC between 2012 and 2019 in the semi-Arid Beqaa Valley 

in Lebanon. 

 

3. Research Questions 

- Is the WaPOR NPP for wheat, potato, barley, and vetch valid in comparison to field 

yield in the Beqaa Valley in Lebanon? 

- What are possible causes of inaccuracy in WaPOR’s modeled yield estimations? 

WaPOR yield calculated based on AGBP and NPP for wheat and potato for the years 

2017-2018 do fall within the acceptable range of the Reported yield at levels 2 and 3 

for wheat and level 2 of potato . Nevertheless, WaPOR yield calculated based on 

AGBP and NPP for barley, vetch, barley/vetch and vetch/oat mixed fields in Beqaa for 

the years 2012-2019 do not fall within the reported yield acceptable range for these 

fields. Inaccuracies could be stemming out from inaccurate farmer reported yields, or 

inaccurate parameters used such as Light Use Efficiency, harvest Index and moisture 

content. 
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CHAPTER II 

LITERATURE REVIEW 

 
A. Models 

Agricultural Models were first developed in the 1950’s through the 1970’s 

(Jones et al., 2017a). Models have different applications including the simulation of 

geophysical, atmospheric, and oceanic processes (Willmott et al., 1985), the 

quantification of crop physiological and phenological processes (Zhang et al., 2018), 

the evaluation of different agricultural management strategies (Choruma et al., 2019), 

the evaluation of the implications of these practices on the environment (Zhang et al., 

2018), and the estimation of futuristic food production (Glotter et al., 2016). Crop 

growth models facilitate decision making (Di Paola et al., 2016) for farmers and 

landowners where they provide a more comprehensive view of the state of agriculture 

in the land leading to refining the application of fertilizers, optimizing water usage 

(Choruma et al., 2019; Di Paola et al., 2016), and formulating policies even at national 

and subnational scales (Glotter et al., 2016). 

Crop models can have different uses and are applied at different scales. 

Examples of crop models that are used at farm level include: The Agricultural 

Production Systems Simulator (APSIM), Environmental Policy Integrated Climate 

(EPIC), Dynamic Land Ecosystem Model (DLEM), Decision Support System for Agro 

technology Transfer (DSSAT), YIIELDSTAT, and CROPWAT. Other models, such as 

the Hadley Centre Atmosphere Model are used at a global level (Zhang et al., 2018). It 

is important to note that, spatial and temporal factors are taken into consideration in 

different models. Also, models might depend on different differential equations over 

time or various locations because of differences in weather, soil conditions, and crop 
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management from the time of plantation to harvest (Khan & Walker, 2015). One crop 

model named APSIM consists of biophysical and crop management modules in the aim 

to reach accurate crop yield estimations while considering different economic and 

ecological outcomes of agricultural management practices (Keating et al., 2003). 

Besides, different management practices are integrated in order to predict consequences 

of certain farming practices on soil resources on the long term (Keating et al., 2003), 

and their association with climate risk (Holzworth et al., 2014). EPIC also simulates 

chemical processes that occur within the plant under different agricultural management 

practices. Even though EPIC was mainly developed to study soil erosion in the USA, it 

was also used in various geographical locations (Choruma et al., 2019). Another crop 

model, DLEM, aims to estimate the effects of environmental factors and stressors on 

agricultural yield and production. DLEM 2.0 takes into consideration multi-soil layer 

processes, coupled carbon, water, and nitrogen cycles; and many GHG emissions and 

simulates agricultural yield accordingly (Zhang et al., 2018). YIELDSTAT is another 

model developed to detect the spatial distribution of crops and crop yields for various 

crops in Germany, taking into account different factors that affect crop growth, such as 

weather variations and soil types (Mirschel et al., 2014). Not only were crop models 

used to detect crop yield and land productivity, other models such as CROPWAT 

provide crop evapotranspiration based on soil, climate, and crop information. It helps 

agronomists calculate water requirements, irrigation scheduling and total water 

withdrawal for irrigation based on the provided crop evapotranspiration (Khan & 

Walker, 2015). 

Even though models based on remote sensing were developed in the 1980’s 

(Running et al., 1989), most studies using models tackling environmental factors did 

not have enough ground observations, which made distinguishing whether errors 
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resulted from the climate inputs or troubles with the model itself problematic (Glotter et 

al., 2016). 

Zhang et al. (2018) identified gaps in existing models such as the absence of 

long-term data on the large-scale, the disregard of some environmental factors, and the 

lack of a holistic model that combines the various land ecosystem models. In addition, 

micronutrients, pests, and diseases cannot be simulated by most crop models (Ahmad et 

al., 2018). Therefore, new models should consider these gaps. 

 

B. Remote-Sensing 

Remote Sensing is a technology that depends on the sampling of reflected and 

emitted electromagnetic radiation from Earth’s surface. It uses images from satellites 

and airplanes to understand features present on the surface of the Earth (Horning et al., 

2010). Remote sensing techniques have been used in the systematic monitoring and 

estimation of water productivity (FAO, 2018) and crop yield since the 1980’s (Kern et 

al., 2018) to identify gaps and propose appropriate solutions . 

Different remote sensing biophysical parameters such as Leaf Area Index (LAI) 

and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) act as 

significant indicators for plant status and productivity, and hence are used in crop yield 

estimations (Kern et al., 2018). Other remote-sensing parameters such as the 

Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) 

can be used to monitor vegetation stress (Friedl et al., 2002). Several studies have 

showed that the assimilation of remotely-sensed data into crop models can lead to 

accurate crop yield estimation (Sivarajan, 2011), where Kern et al. (2018) showed 

that incorporating weather data with remote sensing vegetation indices helped improve 

crop yield predictions in models. Also, Al-Gaadi et al. (2016) showed that these 
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advancements have been beneficial to monitor crop growth, health, and yield 

development in near real-time joined with actual meteorological conditions (Baruth et 

al., 2008). 

 

C. Net Primary Production 
 

Net Primary Production (NPP) is one of the most commonly modeled variables 

due to its significance in determining multiple factors such as water use, water 

productivity, crop response to weather conditions (Jones et al., 2017a), and the 

functioning of the ecosystem. Theoretically, NPP quantifies the conversion of carbon 

into plant biomass during photosynthesis (Pan et al., 2014; Running et al., 2004). 

Nevertheless, part of the carbon captured by plants is spared for plant use and 

not converted into biomass. Based on that, Running et al. (2004) defined NPP as the 

sum of daily net photosynthesis minus the cost of growth and maintenance of living 

cells in permanent woody tissue. Since NPP is directly correlated with carbon, it gives 

us insight into the carbon intake by plants, which is later made partially available as 

food, fuel, and feed (Pan et al., 2015). 

NPP can be monitored either using ground-based field measurements, satellite- 

based observations, or modeling (Pan et al., 2014). NPP models could either be 

statistical, parameter-based, or process-based (Hua et al., 2014). Statistical models 

calculate NPP based on a simple relationship between vegetation and climate factors 

whereas process-based models depend on multi-layer databases of climate, soil, and 

vegetation types (Churkina et al., 2003; Hua et al., 2014). Early on, scientists depended 

on ground observations of canopy heights on small scales to quantify production. Then, 

 NPP’s first model was put together by Lieth and Whittaker (1975). In the 1980’s, NPP 

was modeled as the product of actual Evapotranspiration using meteorological data 
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(Running et al., 2004). Modeling NPP is crucial since it helps us simulate production 

over a large area, which is not possible using regular ground-based monitoring (Xiaobin 

et al., 2016). NPP models help us understand and quantify the effects of different 

environmental factors such as Climatic variability, precipitation, atmospheric CO2 

concentrations, changes in land cover and nitrogen deposition in the determination of 

NPP (Pan et al., 2015). Nevertheless, ground and satellite based observations remain 

essential for the validation and calibration of models (Pan et al., 2014). Since, net 

primary production data are required on vast spaces and very accurately, satellites are 

considered a good way to derive NPP (Running et al., 1989). 

Several models aim to simulate NPP using remote sensing based on the theory 

of light use efficiency, known as Production Efficiency models (PEM). This theory 

states that there is a constant relationship between photosynthetic carbon uptake and 

radiation receipt at the canopy level (McCallum et al., 2009). PEMs depend on two 

sources of input: meteorological data and satellite-derived data. PEM’s use these data in 

a two-step equation for the calculation of NPP. The first formula calculates gross 

primary production (GPP) from which autotrophic respiration (Ra) is subtracted to 

calculate NPP (McCallum et al., 2009). Ra encompasses three factors in this equation 

summed as autotrophic respiration: growth respiration, maintenance respiration, and 

respiratory cost of ion uptake. GPP is calculated as a function of photosynthetically 

active radiation (PAR), a fraction of absorbed PAR (FPAR), Light use efficiency 

(LUE), and other scalars that include temperature and vapor pressure deficits 

(McCallum et al., 2009). 

  One of the process-based, Production Efficiency models is Carnegie-Ames- 

Stanford-Approach (CASA). CASA estimates terrestrial NPP based on satellite 

observations separately calculating NPP without calculating GPP (McCallum et al., 
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2009). According to CASA, NPP is the product of two factors mainly: absorbed 

photosynthetically active radiation (APAR) and a light use efficiency factor (ε). In this 

equation, APAR is calculated as a function of total solar radiation per pixel per month 

(Rs), the absorbed fraction of photosynthetically active radiation of vegetation (FPAR), 

maximum light use efficiency (ε*) which varies with the type of vegetation, stress 

factor temperatures (T(ε1),T(ε2)), and finally, water stress factor W(ε) (Xiaobin et al., 

2016). APAR can be affected by the type of plant, plant size, and climatic conditions 

(Running et al., 2004). In the WaPOR model, NPP is the GPP without autotrophic 

respiration, Net Ecosystem Production (NEP) is NPP minus soil respiration, and Net 

Biome Production (NBP) is NEP minus the loses due to anthropogenic removals and 

disturbances (FAO, 2020). 

 

D. Crop Yield Remote-Sensing Based Modeling 

Many studies have aimed to estimate potato yield since it’s considered the 

fourth major staple crop globally (Haverkort & MacKerron, 2012). A study performed 

by Bala et al. (2007) aimed to estimate the yield of potato in Munshigonj, Bangladesh, 

for 2006. 

Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) 

were calculated using 8 -Tera MODIS images and then analyzed spatially using 

ArcGIS 9.0. Regression analysis showed a good correlation between potato yield data 

and 16-day average NDVI data when the image is taken during an active time of plant 

growth (Bala et al., 2007). Potato yields were also estimated in another study by Al-

Gaadi et al. (2016) in three 30-ha irrigated fields in the Eastern Region of Saudi Arabia. 

NDVI and 



 

19 

 SAVI were calculated based on Landsat-8 and Sentinel-2-satellite images. The 

regression analysis showed difference in estimated yield predictions between the two 

sensors, with better estimated results by Sentinel-2-satellite images. 

Wheat yield was also studied by many models. A study by Fahad et al. (2019) 

estimated the yield of wheat using the CERES-Wheat model in Faisalabad. Estimation 

of the wheat yield depended on remotely-sensed soil moisture. Then, the modeled yield 

was validated and compared to observed yield in 25 random farms. A close association 

appeared between the estimated yield (2979 kg/ha) and the reported observed yield 

(1500-3593 kg/ha) (Fahad et al., 2019). Another model known as WOFOST, the World 

Food Studies simulation model, was used in order to estimate wheat yield in China by 

Yuping et al. (2008). WOFOST and SAIL models were coupled through LAI to 

simulate soil adjusted vegetation index (SAVI) derived from MODIS images. Yield 

data were compared to those extracted from WOFOST with no remote-sensing data. 

This study showed that combining remote-sensing data for yield estimation decreased 

the relative error of maximum LAI from 31.6 % to 15.8%, and the relative error of 

above-ground dry matter weight at maturity from 24.4% to 15.3%, showing the 

importance of combining remote-sensed data in models (Yuping et al., 2008). 

 

E. WaPOR Model 

WaPOR is a portal of Water Productivity through Open access of remotely 

sensed derived data. This portal came as an output of a project titled: ‘Using Remote 

Sensing Support of solutions to reduce agricultural water productivity gaps. This 

project was funded by the government of the Netherlands, and developed by FAO and 

other project partners: FRAME consortium, IHE Delft and IWMI in 2017(FAO and 

IHE Delft, 2019). In order to monitor land and water productivity, identify gaps, and 
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propose the appropriate solutions, this portal was developed as a contributor to 

achieving a sustainable increase in agricultural production. FAO’s WaPOR provides 

access to spatial data layers related to water and land use for agricultural production in 

addition to several time series analyses and area statistics (FAO, 2018). WaPOR was 

launched as WaPOR 1.1, and later a modified WaPOR 2.1 was added and is currently 

available. 

The WaPOR model covers a time period of almost 12 years between 2009 until 

today, covering the whole of Africa and the Near East Region (FAO, 2018).It provides 

real- time accurate estimation which is very important for consequent decision-making 

(Ahmad et al., 2018). WaPOR is available at three different spatial resolution levels: 

level 1(L1) is a continental layer at a 250m resolution, level 2 (L2) is a national layer at 

a 100m resolution, and level 3 (L3) is a subnational layer at a 30m resolution. In 

specific, level 1 covers all of Africa and the Near East, while level 2 covers certain 

countries including Morocco, Tunisia, Egypt, Ghana, Kenya, South Sudan, Mali, 

Benin, Ethiopia, Rwanda, Burundi, Mozambique, Uganda, West Bank and Gaza Strip, 

Yemen, Jordan, Syrian Arab Republic and Lebanon, and level 3covers Irrigation 

schemes and rain-fed areas in Egypt, Ethiopia (2 areas), Mali and Lebanon (FAO, 

2018). 

Originally derived from freely available remote sensing satellite data, common 

standardized input was produced and used in WaPOR in the form of intermediate data 

that ensures consistency between the different data components produced as the final 

outputs (FAO, 2018). Layers in the WaPOR model are represented within different 

thematic areas which are: climate, water, land, and water productivity (WP). Two major 

components are included in the Climate Theme; namely precipitation (PCP) and 

Reference Evapotranspiration (RET). The Water Theme includes the components: 
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Actual Evapotranspiration and Interception (AETI), Transpiration (T), Evaporation (E), 

and Interception (I). The land Theme includes: Above ground biomass production 

(AGBP), Land cover classification (LCC), Phenology, and net primary production 

(NPP). Finally, the water productivity thematic area includes two components: Gross 

WP and Net Water productivity (Net WP). All mentioned layers are produced at the 3 

different resolutions except Reference evapotranspiration and precipitation which are 

only available at level 1, and Phenology is only available at levels 2 and 3. At different 

levels, layers are available as either annual, seasonal, monthly, decadal, or daily data. 

To develop the afore-mentioned layers, satellite sensors, meteorological data and static 

data sources were used at different levels. In this study, we focused on NPP provided 

by WaPOR at the national and sub-national levels. 

 

F. WaPOR NPP Validation 
 

Different Earth Observation data validation techniques were used to validate 

WaPOR NPP including; rule- or model-based physical consistency evaluation, cross 

validation using inter-product comparison to reference datasets, internal validation of 

spatial and temporal consistency, direct validation against measured in-situ data and 

observations, and evaluation of the consistency of data components among the three 

spatial resolution levels (Delft, 2019; Mannaerts et al., 2020). 

Two quality assessment reports aimed to validate WaPOR‘s water productivity 

product (Delft, 2019; Mannaerts et al., 2020) by evaluating and validating both NPP 

and ET. It was reported by Mannaerts et al. (2020) that WaPOR NPP was validated at 

level 1 (250 m) using cross or inter-product validation on an annual scale against the 

average of MODIS Terra and Aqua NPP products, against IBIS model, against annual 
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MODIS/Terra 8-day L4 Global 500m Net Primary Productivity (GPP-MOD17) (Mu et 

al., 2011), and against Dekadal geostationary Meteostat GPP (GPP-MSG) product from 

 the EUMETSAT LandSAF (LSASAF) which also uses (Monteith, 1972). It was 

reported by Delft (2019) that WaPOR’s initial comparison against MODIS was done 

against the average of MODIS Terra and Aqua NPP products in 2011. This comparison 

showed an underestimation of WaPOR in the eastern part of Southern Africa and 

eastern Madagascar and an overestimation in the Central African Republic. NPP’s 

comparison against IBIS model by the Center of Sustainability and the Global 

Environment of the University of Wisconsin and showed a very similar trend with the 

WaPOR NPP with a lower spatial resolution as reported by Delft (2019). Even though 

the comparison against MODIS was done at level 1, average values were not for the 

entire continent but only averages of available data between 2009-2014. In this 

comparison, WaPOR showed higher high and lower low NPP, with a correlation that 

slightly improved across 2009 to 2014 as reported by (Mannaerts et al., 2020). This 

comparison showed existing variations between WaPOR and MODIS products in 

different land and climatic zones, and lower agreement between the two models for 

irrigated crops than rainfed crops. Upon further investigation, variations seemed to be 

correlated with land cover more than climate. Finally, it was suggested that the WaPOR 

NPP is within the adequate range at the continental, basin, land class scale and climate 

class, considering proven MOD17 underestimations. Hence, WaPOR NPP was 

generally overestimated in comparison to the MODIS NPP in arid and tropical climate 

classes whereas they were highly correlated in grasslands, shrublands, and croplands. 

The other comparison against MSG showed very good agreement where no significant 

bias was recorded for any of the dekads compared for the spatial NPP patterns. Some 
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differences recorded were attributed to the land cover classification, model 

parameterization of both products such as LUE assumptions. Spatial comparison was 

 also followed by a temporal comparison against MSG NPP over the African Continent 

for all its 3 climatic classes. In its temporal comparison, similarity between the two 

models was recorded to be positive. Nevertheless, it was noted that WaPOR NPP was 

higher in wetter climates and lower in more arid climates. NPP at L2 (100m) and L3 

(30m) were tested for level consistency against L1 NPP and validated directly to in-situ 

data as reported in WaPOR’s second quality assessment report (Mannaerts et al., 2020). 

Several direct validations against in-situ ground observations were done in both 

quality assessment reports (Delft, 2019; Mannaerts et al., 2020). Validation against in- 

situ ground data included comparing WaPOR NPP to decadal and monthly Eddy 

Covariance flux tower data at 14 locations. WaPOR NPP was also compared against 

field surveys and farmer reported data at level 3 for sugarcane, grapes, bananas, and 

rice in Wonji, Fayoum, Kpong, and the Beqaa Valley using point observations (Delft, 

2019). More in-situ observations were done at levels 1 and 3 in both the Litani Basin of 

the Beqaa Valley in Lebanon and the upper Awash river Basin in Ethiopia in the period 

between 2016-2018 (Mannaerts et al., 2020). In the validation against EC, it was shown 

that areas that showed high agreement between WaPOR NPP and EC NPP also showed 

a high correlation between the NPP-EC and the WaPOR NDVI, whereas in sites where 

WaPOR NPP was overestimated this correlation was less or non-existent which 

definitely affects WaPOR NPP. Nevertheless, seasonality was well captured in all 

fields. For further validation, MOD17A2 NCEP II GPP 8-day, 1km product was 

compared to EC at the sites showing low agreement with WaPOR. As with WaPOR, 

NPP during high vegetation peaks was underestimated by MOD17A2 by a similar 
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magnitude to WaPOR. Nevertheless, low vegetation period was captured better by 

MOD17A2. 
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Figure 1 WaPOR NPP Validations at level 1, 2 and 3 
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As for its comparison against in-situ data, WaPOR yield of sugarcane, grapes, 

bananas, rice, maize, oranges, and wheat in Wonji, Lebanon, Kpong and Egypt (Delft, 

2019) and that of potato, wheat, and sugarcane in Lebanon and Ethiopia (Mannaerts et 

al., 2020) was validated against ground data. In this validation, WaPOR sugarcane yield 

(100 tones/ha) in the Wonji Irrigation scheme located in the Awash Basin in Ethiopia 

was proven to be within the FAO reported ranges (50-150 tones/ha), the ranges given 

by Steduto et al. (2012) (70 tones/ha) and the ranges observed by Yilma (2017) (100 

ton/ha) as reported by Delft (2019). Another assessment of the sugarcane yield was 

reported in the Wonji and Metehara Irrigation Schemes in the Awash Basin in Ethiopia 

for the years 2009 to 2016 and for 2012,2014, and 2016 respectively by Mannaerts et al. 

(2020). WaPOR derived AGBP was recorded to be (150.6 ton/ha) at L3 and (141.1 

ton/ha) at L1 in Wonji lying slightly higher and slightly lower than AGBP reported by 

farmers in Wonji (147.3 ton/ha). As for Metehara, the WaPOR AGBP was reported to 

 be (92.9 ton/ha) at L3 and (76.5 ton/ha) at L1 lower than the reported AGBP (173.5 

ton/ha). Results were considered “ highly promising” (Mannaerts et al., 2020) and 

would only require adjustment of parameters such as moisture content to decrease error. 

Three yield validations were located in the Beqaa Valley, Lebanon. WaPOR average 

grapes yield obtained using shapefiles during 2015 (7.6 tones/ha) was compared against 

reported yield by Alvarez Carrion (2018) (7.5 tones/ha). WaPOR yield of potato and 

wheat using shapefiles were also validated in the Beqaa Valley and compared against 

farmer reported yield at both levels 1 and 3. Mannaerts et al. (2020) reported WaPOR 

mean potato yield to be (32.2 ton/ha) at L3 and (35.8 ton/ha) at L1 while the mean yield 

reported by the farmers was higher recording (39.5 ton/ha). As for wheat, WaPOR mean 

wheat yield was recorded to be (1.1 ton/ha) at L3 and (1.0 ton/ha) at L1 lower than the 
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mean reported yield reported by farmers (1.32 ton/ha) as reported by Mannaerts et al. 

(2020). Delft (2019) report more WaPOR yield validations at L3 including that of 

banana and rice in Kpong Irrigation Scheme in Ghana for 2015. WaPOR yield of 

banana (37.6 ton/ha) was lower than the reported yield by (GIDA, 2010) (40 ton/ha) but 

was considered to compare well as was that of rice in both its main and minor season 

was within the average range reported in the literature by (4-5 ton/ha) (GIDA, 2010). 

Finally, WaPOR NPP of wheat,, maize and oranges in 2015 was validated in the 

Fayoum irrigation Scheme in Egypt which is known for its non-uniform water 

distribution (Delft, 2019). WaPOR average yield for wheat (5.3 to/ha), maize (3.1 

ton/ha), and oranges (17.7 ton/ha) were considered close to the literature values reported 

by (Salvadore, 2019) (5 ton/ha), (4.4 ton/ha) and (20 ton/ha) respectively. According to 

the performed validations by (Mannaerts et al., 2020) , WaPOR NPP and NDVI showed 

very high agreement. 

  Robustness analysis depends on the online available data and the will of partners 

to share their data (Delft, 2019). When testing for level consistency between L1 and L2, 

high consistency was noted for NPP especially before 2014 after which consistency 

decreased due to the use of (PROBA-V) as an additional satellite source. In comparison, 

the consistency between L1 and L3 was lower than that between L1 and L2 in the 

irrigation schemes tested. These results showed inconsistency in water productivity 

between L1 and L3 on a plot to plot basis for the years 2009-2018 but better consistency 

for a single plot showing good temporal consistency and low spatial consistency as 

Mannaerts et al. (2020) concludes. 
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Crop Type Location Lev
el 

Year 
Modeled 

yield 
(ton/ha) 

Reported yield (ton/ha) 

 
 
 
 
 
 

Sugar 
Cane 

 
 

Wonji 
Irrigation 
Scheme- 
Ethiopia 

 
 

3 

 
 

2015 

 
 

100 ton/ha 

FAO range: 50-
150 ton/ha 

70 ton/ha 
(Steduto,2012

) 

100 ton/ha 
(Yilma,2017) 

1  
2009-2016 

141.3 ton/ha 147.3 ton/ha 

farmer reported yield 
(Mannaerts et al., 2020) 

3 
 

150.6 ton/ha 

Metehara 
Irrigation 

Scheme- Ethiopia 

1  
2012-2014- 

2016 

76.5 ton/ha 173.5 ton/ha 
farmer reported yield 
(Mannaerts et al., 2020) 

 
3 

 
 

92.9 ton/ha 

Grapes 
 
 
 

Beqaa Valley- 
Lebanon 

3 2015 7.6 ton/ha 7.5 ton/ha 
(Alvarez-Carrion,2018) 

 
Potato 

1  
 
 

2016-2018 

35.8 ton/ha 39.5 ton/ha 
farmer reported yield 
(Mannaerts et al., 2020) 

3 
 

32.2 ton/ha 

 
 

Wheat 

1 1 ton/ha 1.32 ton/ha 
farmer reported yield 
(Mannaerts et al., 2020)  

3 
 

1.1 ton/ha 

 
 

Fayoum-Egypt 

 
 

3 

 

2015 
5 ton/ha 5.3 ton/ha 

(Salvadore, 2019) 

Oranges 20 ton/ha 17.7 ton/ha 
(Salvadore, 2019) 

Maize 2016 3.1 ton/ha 4.4 ton/ha 
(Salvadore, 
2019) 

 

Rice 

 
Kpong 

Irrigation 
Scheme - 

Ghana 

 
 

3 

 
 

2015 

main season: 4.2 
ton/ha 

 
4-5 

ton/ha 
(GIDA,20
10) 

minor season: 4.0 
ton/ha 

Banana 37.6 ton/ha 40 ton/ha 
(GIDA,2010) 

Table 1 WaPOR Yield Validation against In-situ Ground Data 
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CHAPTER III 

METHODOLOGY 
 

A. Study Site 

This study was conducted in the fertile semi-arid Beqaa Valley of Lebanon. 

Lebanon is a relatively small country in the Middle East with a total area of 10,452 km², 

64% of which is agricultural land (FAOSTAT, 2010). One of Lebanon’s main 

agricultural areas according to CDR (2005) is the Beqaa Valley, with a total agricultural 

area of 118,000 ha (Jaafar & Ahmad, 2020) holding 39% of the total cultivated areas in 

Lebanon (FAOSTAT,2010). In the Beqaa, potatoes, grains, fruits and vegetables are the 

main agricultural crops. Since Lebanon is attributed with a Mediterranean moderate 

climate, the winter season mainly has more rain than the summer season. This study 

focused on potato: Solanum tuberosum, a water-efficient winter crop which constitutes 

almost half of the vegetable production in Lebanon. In addition, the study focused also 

on wheat: Triticum aestivum, barley: Hordeum vulgare, vetch: Vicia Sativa, and oat: 

Avena Sativa, all all of which can tolerate poor soils and lower temperatures. Even 

though Lebanon is characterized with a moderate Mediterranean climate, variations in 

temperature and precipitation patterns are detected between different regions. The 

Beqaa valley lies between two mountains (which is why it is recorded to have the 

lowest rainfall average 200 to 450 millimeters of annual rainfall). This study was 

conducted in two fields: AREC of the American University of Beirut (figure 2), and 

Skaff farm (figure 4) in the West of Beqaa (figure 3). 
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Figure 3 Study Site in The Beqaa Valley, Lebanon 

Figure 4  Skaff Fields for 2017-
2018 

 

       

 

 

                                                                                     

                    

                                                                                                   

 

 

 

 

 

Figure 2 AREC Fields for 
2012-2019 
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As shown in figure (5), the studied crops at level 2 using point coordinates in 

AREC included 21 barley fields with an average area of 1.41 ha, 52 barley/vetch fields 

with an average area of 1.18 ha, 1 vetch field with an average area of 1.05 ha, and 5 

vetch/oat mixed fields with an average area of 1.45 ha .Only shapefiles were used for 

the studied crop in Skaff (Jaafar & Mourad, 2021). As for the studied crops at level 2 

using shapefiles (figure 5) , 15 barley fields with an average area of 1.84 ha were 

studied, 18 barley/vetch mixed fields with an average area of 1.96 ha, 1 vetch fields 

with an average area of 1.05 ha, 4 vetch/oat mixed fields with an average area of 1.59 

ha in AREC. Aa for the crops studied in Skaff, 31 potato fields with an average area of 

23 ha, and 20 wheat fields with an average area of 23.8 ha were studied. Finally, as 

shown in figure 6, the studied crops at level 3 using shapefiles included 29 barley fields 

with an average area of 1.47 ha,62 barley/vetch mixed fields with an average area of 

1.19 ha, 1 vetch field with an average area of 1.05 ha, 5 vetch/oat mixed fields with an 

average area of 1.45 ha in AREC. As for Skaff, the other studied area in the West Beqaa 

Valley,31 potato fields with an average area of 23 ha and 20 wheat fields with an 

average area of 23.8 ha were studied (Jaafar & Mourad, 2021). 
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Figure 5 Studied Crop types at level 2 using point coordinates, the count of fields and 
their average areas 
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Figure 6 Studied crop types at level 2 using shapefiles, the count of fields and their average 
areas 
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Figure 7 Studied crop types at level 3 using shapefiles, the count of fields and their 
average areas 

 
 
B. Data Sources 

Values were downloaded from WaPOR 2.1 available via 

(https://wapor.apps.fao.org/home/WAPOR_2/1). For the fields in AREC, Decadal NPP 

was downloaded from WaPOR v 2.1 using point time series at level 2 and area raster 

download from 2012 through 2019 at levels 2 and 3. In order to extract the NPP values 

for each field, Arc GIS 10.6 was used. NPP was extracted for Skaff farm at levels 2 and 

3 using Raster download for the years 2017-2018. Ground-based observations were 

collected from farmers of every land. At level 3, soil moisture stress is determined by 

Landsat-5 and 7 and the Modern-Era Retrospective analysis for Research and 

Applications incorporated with the Geostationary Operational Environmental Satellite 

(MERRA/GEOS-5). Land cover and fAPAR are also calculated by Landsat 5 and 7 

whereas precipitation is determined using CHIRPS V2. Finally, solar radiation is 

determined using MSG, MERRA/GEOS-5 sensor and SRTM data products. Other 
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 weather data such as temperature and humidity are determined by MERRA/GEOS-5 

(FAO, 2019). As for level 2, soil moisture stress is determined by MODIS, land cover 

by WaPOR LCC product, and fAPAR using PROBA-V only. Similar to level 3, solar 

radiation is determined by SRTM, precipitation by CHIRPS V2 and weather data by 

MERRA/GEOS-5 (FAO, 2018). 

 

C. WaPOR Model Method 

According to the WaPOR Level 3 Methodology for WaPOR V1 (FAO, 2018), 

WaPOR depends on two external sources in order to calculate NPP: Satellite imagery 

and meteorological data. WaPOR’s NPP is derived from a method retrieved from 

Veroustraete et al. (2002) along with its practical implementation retrieved from Eerens 

H (2004). This method was improved within the Copernicus Global Land Component 

framework. Therefore, WaPOR based its NPP calculations on the final output of the 

mentioned methodologies, and finally basing on an equation by (Monteith, 1972). 

Monteith (1972) is considered the first to propose the presence of a conservative linear 

relationship between the rate of NPP and the rate of solar energy absorption by foliage, 

known as the conversion efficiency of absorbed radiation into dry matter (McCallum et 

al., 2009). The equation is as follows (eq.1): 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆 × 𝑅𝑅𝑅𝑅 × 𝜀𝜀𝜀𝜀 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝑆𝑆𝑆𝑆 × 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 × 𝜀𝜀𝜀𝜀 × 𝜀𝜀 𝐶𝐶𝐶𝐶2 × 𝜀𝜀𝜀𝜀𝜀𝜀 × 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀   (1) 

Where: Sc stands for the Scaling factor from DMP (Dry mass productivity) to 

NPP, Rs stands for the Total shortwave incoming radiation in the form of solar energy 

(expressed in Wmˉ²dˉ¹), εp stands for the Fraction of PAR with fAPAR as the PAR- 

fraction absorbed (PA) by green vegetation [JPA/JP], 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 stands for the Soil moisture 

stress reduction factor, εlue stands for Light use efficiency (DMP=Dry Matter 
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 Production) at optimum [Kg DM/GJPA], εT stands for the Normalized temperature 

effect, ε CO2 stands for Normalized CO2 fertilization effect, ε AR stands for the 

Fraction kept after autotrophic respiration, and ε RES stands for the fraction kept after 

residual effects (including soil moisture stress). 

In the WaPOR model, 1 gC/m²/day of NPP is considered equal to 22.222 kg 

DM/ha/day of DMP. εp is taken as a constant at 0.48 [JP/JT]. In addition, fAPAR is 

estimated by using a direct relationship between the NDVI and a global fAPAR product 

where values range between 0 and 1. It is based on 3 factors: Latitudinal position, day 

of the year and topographical features which help determine the angle of incidence of 

the sun at specific locations. In addition, Transmissivity is calculated to avoid including 

scattered wavelengths that do not reach the Earth’s surface. Solar Radiation (Rs) is the 

amount of solar radiation that reaches land surface depending on local topography, 

location, date, and other atmospheric conditions 

As for SM, Soil Moisture is usually released from vegetation in the form of 

evaporation and transpiration. A stress factor calculates if soil moisture is reduced due 

to a shortage using the following equation adapted from the American Society of Civil 

Engineers (ASCE, 1996).  
 

𝑆𝑆𝑆𝑆 =  𝐾𝐾𝐾𝐾𝐾𝐾 × 𝑆𝑆𝑆𝑆  −  �
sin(2π × Se)

2π
� 

 
(2) 

In this equation (eq. 2), Ksf represents the tenacity factor for drought-sensitive 

plants, and Se represents soil moisture content. Se is calculated using three factors: 

Land Surface temperature (obtained from infrared imagery), vegetation cover (NDVI), 

and soil moisture content. It is calculated using the following equation (eq.3): 
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         Se =
b

( a +  b) 
 (3) 

In this equation (eq. 3): 
 

 

And 
 
 

b = (1 − Fc) × (Ts. max – Tc. max) + Tc. max – LST (5) 
  

 
LST (eq. 4) is derived from thermal satellite imagery and NDVI is used in the 

derivation of the vegetation cover (Fc). NDVI is used in WaPOR to determine the 

partitioning of the soil radiation (Rn) into Rn soil and Rn canopy, along with the 

interception, ground heat flux, and the minimum stomatal resistance (Mannaerts et al., 

2020) 

Since the land cover is available for the years 2009-2015, LUE values are 

accurate. Nevertheless, a LUE correction factor is needed for the years 2016 onwards 

due to the lack of the land cover. At level 3, crops are not identified. Therefore, a 

generic cropland value of 2.49 is used. Nevertheless, this value 2.49 was later adjusted 

to 2.7 to avoid double counting of moisture content. 

As for εT, it is derived using the following equation used from (Veroustraete et al., 

2002). 

a = LST −  Tmin     (4) 
  

𝑝𝑝 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =  
𝑒𝑒�𝐶𝐶1−∆𝐻𝐻𝐻𝐻. 𝑃𝑃

𝑅𝑅𝑅𝑅𝑅𝑅�

1 + 𝑒𝑒(∆𝑆𝑆𝑆𝑆−∆𝐻𝐻𝐻𝐻,𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅

 

 

 

 

(6) 
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In this equation (eq. 6), C1 is a Constant, ∆Ha.P is the Activation energy in (J/ 

mol), Rg is the Gas constant in J/ (K. mol), T is the Air temperature (K), ∆S is the 

Entropy of the denaturation equilibrium of CO2 in (J/k.mol), and ∆Hd.P is the 

Deactivation energy in (J / mol). 

The CO2 concentration is assumed to be constant over the globe, as well as 

within a year for the calculation of ε𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2. In addition, εAR is calculated for NPP 

using the following equation (eq. 7) (Veroustraete et al., 2002). 

In this equation (eq. 7), Ta represents the atmospheric temperature. 

Finally, ε RES is added in the above equation (eq. 1) to emphasize the fact that some 

potentially important factors, such as the effect of droughts, nutrient deficiencies, pests, 

plant diseases, and soil moisture stress influence NPP. Evidently, the calculation of NPP 

requires data from intermediate data sources such as weather data providing maximum 

and minimum temperature, soil moisture stress, decadal input from fAPAR, and solar 

radiation, and from indirect sources such as Land cover classification. 

 

 

 

𝜀𝜀𝜀𝜀𝜀𝜀 =
7.825 –  1.145𝑇𝑇𝑇𝑇

100
 

 

 

(4) 
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D. Yield Estimation 

After extracting the decadal Net primary production (NPP) values from WaPOR 

2.1 at level 3 (30 m) for the Skaff fields, NPP values were converted to yield. Two 

major crops are planted in Skaff; mainly potato during the summer and wheat during the 

winter season. Therefore, the actual planting and harvest dates of every field 

 for the start and end of growing season were used. Decadal NPP for potatoes for the 

different fields was extracted between March and August 2017, and between March and 

September 2018. For wheat, we extracted decadal NPP considering a crop growing 

period between November 2017 and September 2018. The studied crops in AREC were 

barley and vetch which were planted in the same field or in separate fields and oat/vetch 

mixed fields. Decadal NPP values were extracted from WaPOR 2.1 as raster images, 

and therefore a conversion factor of 0.001 was used to get the accurate numbers as 

noted in the online WaPOR database. Then, the decadal NPP values were converted to 

seasonal Above Ground Biomass Production (AGBP) according to the WaPOR version 

1 methodology for level 3. For the conversion, the following equation (eq. 8) was 

adopted from the WaPOR 1.0 Methodology at level 3 (FAO, 2019). 

 

AGBP s = ∑Nd (i) × DMP (i) × AOT      (8) 

 

In this equation (eq. 8), DMP refers to Dry Matter production in Kg DM/ha/day, 

𝑁𝑁d refers to the corresponding number of days in every decade which was calculated 

using the start and end of season determined by the farmers for each crop, considering 

the varying number of days per dekad. All dekads within the season period are then 

summed into a total NPP. In addition, AOT is the fraction between above and total 
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biomass. In order to calculate DMP (i), NPP (i) is converted to DMP (i) using a constant 

scaling factor of 0.45 gC/gDM (Ajtay et al., 1979). Therefore, NPP (i) was multiplied 

by a factor of 22.222 (1 gC/m²/day (NPP) = 22.222 kg DM/ha/day (DMP)), since dry 

matter is more suitable for yield comparison. For potato, the mentioned formula was 

used as is considering AOT to be a standard of 0.65 shoot to root ratio. Nevertheless, 

 AOT was taken as 1 for wheat grains, since grains grow entirely above ground. For 

barley, oat, vetch, and wheat planted in AREC, AOT is also considered to be 1. 

The Dekadal AGBP are then summed into a Total AGBP for the entire crop growth 

period. Then, the third Step was to convert the total AGBP to yield using the following 

equation (eq. 9) from (Das et al., 1993). 

 

Y =
TBP × HI ×  C4

(1 − mc)  

 

(9) 

In this equation ( eq. 9) for yield (Y), TBP refers to total Biomass Production, 

HI refers to the harvest Index, C4 refers to the conversion factor of C4 crops in (eq. 9), 

and mc is the crop moisture content. Nevertheless, all crops studied were C3 crops and 

the conversion factor was not used in the yield calculation. The Total Biomass 

Production (TBP) was calculated from the AGBP by multiplying it with the shoot-to-

root ratio of 0.65 for potatoes. The above ground biomass production includes the total 

weight of flowers, branches, stems, flowers and grains but not the weight of roots and 

tubers entirely above ground. The Harvest Index (HI) was calculated as 0.75 for 

potatoes, and 0.4 for wheat based on Jaafar and Mourad (2021). For the AREC crops, 

HI for barley, the oat/vetch mixed fields and barley/vetch mixed fields was used as 

0.49, yet the HI for vetch was considered as 0.38 (Rao, 2011). The crop moisture 
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content (mc) was considered as 0.75 for potato and 0.15 for wheat based on our own 

observations and testing. As for the AREC crops, mc was considered as 0.11 for vetch 

(Samarah et al., 2009), oat/vetch, barley, and barley/vetch fields (Unkovich et al., 

2010a). 

 

Table 2 Harvest Index and Moisture Content of studied Crops 

Crops Harvest Index (HI) Crop Moisture Content (MC) 

Barley 0.49 0.11 

Vetch 0.38 0.11 

Barley/vetch 0.49 0.11 

Vetch/oat 0.49 0.11 

Potato 0.75 0.75 

Wheat 0.4 0.15 

 

 

E. Accuracy Assessment 

The major Earth Observation data validation technique used in this study is 

direct validation against measured in-situ data and observations. Accuracy as defined by 

Blatchford et al. (2019) is “the closeness of a measurement, observation, or estimate to 

a true value.” In our NPP validation, yield assessment of WaPOR NPP was performed 

for each crop group during the 2017-2018 growing seasons in Skaff and during the 2012 

to 2019 growing seasons in AREC. This analysis aimed to evaluate the accuracy of 

WaPOR’s NPP layer as part of the validation of the water productivity layer of 

WaPOR. Statistical Analysis was performed based on the following indicators in this 
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assessment: RMSE (Root Mean Square Error) (eq.10), RE (Relative Error) (eq. 11-12) , 

R2 (coefficient of determination) (eq. 13), r (correlation) (eq. 14) and bias (eq. 15). 

Since RMSE is not able to calculate the average magnitude of the mean absolute 

difference between observed and Reported yield, it has been used predominantly with 

other statistical methods such as the absolute difference (da), correlation (r), or the 

coefficient of determination (R2 ) in most research aiming to validate crop models (Cao 

et al., 2012). Therefore, the analysis RMSE was integrated with R2 ,RE (%), r, and 

 Bias. The used statistical indicators were calculated according to the following 

equations (eq. 10,11,12,13,14,15): 

  

Root Mean Square Error (RMSE) 
 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = �∑ (𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲 −𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲)𝟐𝟐𝐧𝐧
𝐢𝐢=𝟏𝟏

𝐧𝐧
 

 

 
 

(10) 

Relative Error (RE):  
 
RE(%) = | 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬|

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀𝒀
  ×100     

 

 
 

(11) 

Absolute Error= Modeled Yield – Measured Yield 
 

(12) 

 

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 =
[∑(𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲 + 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲)]

𝒏𝒏
 

Coefficient of determination: 

(R2)�
n(Σmodeled yield×measured yield)−(∑modeled yield)(∑measured yield)

�[nΣ(measured yield)2−(Σmodeled yield)2][nΣ(modeled yield)2−(Σmodeled yield)2]�
2

 

 
Correlation (r):  
 r = n(Σmodeled yield×measured yield)−(∑modeled yield)(∑measured yield)

�[nΣ(measured yield)2−(Σmodeled yield)2][nΣ(modeled yield)2−(Σmodeled yield)2]
  

 

 
 
 

(13) 
 
 
 

(14) 
 
 
 

(15) 
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CHAPTER IV 

  RESULTS 
 
 

A. AREC 

Accuracy of WaPOR NPP predictions for the 5 oat/vetch mixed fields showed 

lower Relative Error percentages (RE) at level 3 (L3) (24.82%) than those at level 2 

(L2) using point coordinates (70.45%). RMSE was lower at L3 (1.94) than at L2 (3.44). 

Nevertheless, R2 was higher at L2 (0.18) than at L3 (0.13). Nevertheless, a positive bias 

at l3 recording (1.68 ton/ha) higher than that at L2 recording 1 ton/h. Only 4 oat/vetch 

mixed fields were identified at L2 using shapefiles and showed a high RE (41.2%), an 

RMSE of (2.03) and an R2 of (0.06). A positive bias of 1.9 ton/ha was recorded at L2. 

Correlation (r ) could not be determined at any level due to the low number of fields. 

One vetch field was analyzed which also showed more accurate results at L3 according 

to both the RE(%) and RMSE. Results showed that the RE(%) at L3 (63.01%) were 

lower than those recorded at L2 calculated by point (78.86%) and those calculated using 

shape files (68.28%). Results of RMSE were also lower at L3 (3.27 ton/ha) than those at 

L2 using point coordinates (3.94) or using shape files (11.66). Positive Bias values were 

relatively close with the highest bias recorded at L3 as (6.73ton/ha), a lower value of 

(6.59 ton/ha) was recorded at L2 using shapefiles and the lowest value of 6.06 was 

recorded at L2 using point coordinates. Correlation (r ) was also not determined due to 

the low number of fields of vetch. 

Accuracy of WaPOR NPP Barley predictions for the 21 barley fields identified 

using point coordinates showed a RE (%) of (58.67%), a low R2 of (0.01) and an 

RMSE of (2.69 ton/ha). Low correlation was recorded as (0.08). Bias was recorded as 
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0.27 ton/ha. The NPP barley predictions at L2 using shape files were provided for 14 

barley fields, and a RE(%) of (61.97%) was recorded, an R2 of (0.04) and an RMSE of 

(2.92 ton/ha). A positive low correlation of (0.2) was recorded and a positive bias of 

(0.41 ton/ha). At L3 WaPOR NPP was estimated for the highest number of barley fields 

(29), a RE(%) of (44.4%) was recorded, an R2 of (0.00) and an RMSE of (0.17 ton/ha). 

A positive low correlation of (0.04) was also recorded with a positive bias of (0.22 

ton/ha). As for the barley/vetch fields, WaPOR NPP was calculated for 52 fields of 

barley/vetch at level 2 using point coordinates, a RE(%) of (55.52%) was recoded, an 

R2 of (0.08) and an RMSE of (3.07 ton/ha).A positive low correlation of (0.28) was 

recorded with a positive bias of (0.12 ton/ha). Estimations at L2 using shape files were 

calculated for 18 fields of barley/vetch and recorded a RE(%) of (37.19%), an R2 of 

(0.29) and an RMSE of (2.32 ton/ha). A medium correlation of (0.54) was recorded 

with a positive bias of (0.39 ton/ha).WaPOR NPP was estimated for 62 barley/vetch 

mixed fields at L3. RE(%), R2 and RMSE were recorded after the removal of two 

outliers to be (37.37%), (0.026) and (2.59 ton/ha) respectively. A low positive 

correlation of (0.24) was recorded with a positive bias of (0.12 ton/ha). 

 

B. Skaff 

Accuracy of WaPOR NPP predictions for the 31 potato fields was assessed 

against the actual yield reported by farmers in Skaff. An outlier was removed at L3 and 

therefore RE(%), R2 , and RMSE were recorded for 30 fields as (28.90%), (0.10) and 

(12.86 ton/ha) respectively. A close to moderate correlation was recorded as (0.47) with 

a positive bias of (2.39 ton/ha). As for L2, RE(%), R2 , and RMSE were also recorded 
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to be (19.55%), (0.22), and (9.31 ton/ha). A weak positive correlation of (0.37) and a 

positive bias of (2.34 ton/ha) were recorded. Comparison between the two levels is not 

 possible since the total number of fields is not the same between the two levels. As for 

wheat, the comparison of WaPOR NPP predictions against Reported wheat yields 

showed the lowest RE (1.14%) at L3 less than that shown at L2 (-12.43%). Analysis of 

the RMSE results showed lower and more accurate at level 3 (0.71) than those at level 2 

(1.2). R2 analysis validated the previous results showing higher values at L3 (0.380) 

than those at L2 (0.376). Hence, the most accurate wheat yield estimations were found 

at L3 according to RE, RMSE, and R2. At both levels, the RE(%) of wheat was found 

to be below 20% signifying relatively accurate results (1.14%<20%) and (|- 

12.43|%<20%). At both L2 and L3, a positive moderate correlation was recorded as 

(0.61) and (0.62) respectively with a slightly higher correlation at L3. Bias was positive 

and higher at L2 than at L3 recording (2.39 ton/ha) and (2.34 ton/ha) respectively. 
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Table 3 Reported and Modeled Yield for studied crops and used Statistical Indicators 

Crop Number 
of fields 

Level Location Year Reported 
Yield 

(ton/ha) 

Modeled 
Yield 
(ton/ha) 

% 
Relative 
Error 
(% RE) 

R² RMSE 
(ton/
ha) 

r Bias 
(ton/ 
ha) 

Oat/ 
vetch 

5 2 (By 
point) 

AREC 2012
- 
2019 

4.8 1.42 70.45 0.18 3.44 - 1 

Oat/ 
Vetch 

4 2 AREC 2012
- 
2019 

4.8 2.82 41.2 0.06 2.03 - 1.90 

Oat/ 
Vetch 

5 3 AREC 2012
- 
2019 

4.8 3.61 24.82 0.13 1.94 - 1.68 

Vetch 1 2 (by 
Point) 

AREC 2012
- 
2019 

5 1.06 78.86 - 3.94 - 6.06 

Vetch 1 2 AREC 2012
- 
2019 

5 1.59 68.28 - 11.66 - 6.59 

Vetch 1 3 AREC 2012
- 
2019 

5 1.73 65.31 - 3.27 - 6.73 

Barley      21 2 (By 
point) 

AREC 2012
- 
2019 

4.08 1.68 58.67 0.01 2.69 0.08 0.27 

Barley      14 2 AREC 2012
- 
2019 

4.19 1.59 61.97 0.04 2.92 0.2 0.41 

Barley      29 3 AREC 2012
- 
2019 

4.09 2.28 44.4 0 0.17 0.04 0.22 

Barley
/vetch 

     52 2 (By 
point) 

AREC 2012
- 
2019 

4.17 1.85 55.52 0.08 3.07 0.28 0.12 

Barley
/vetch 

    18 2 AREC 2012
- 
2019 

4.29 2.69 37.19 0.29 2.32 0.54 0.39 

Barley
/vetch 

    60 3 AREC 2012
- 
2019 

4.24 2.66 37.37 0.03 2.59 0.24 0.12 

Wheat     20 2 Skaff 2017
- 
2018 

6.86 7.71 -12.43 0.38 1.2 0.61   0.73 
 
  

Wheat     20 3 Skaff 2017
- 
2018 

6.86 6.78 1.14 0.38 0.71 0.62 0.68 

Potato     31 2 Skaff 2017
- 
2018 

41.06 33.04 19.55 0.22 9.31 0.47 2.39 

Potato    30 3 Skaff 2017
- 

41.1 29.22 28.9 0.1 12.96 0.37 2.34 
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Figure 8 Modeled Vs Reported yield (ton/ha) of 31 potato fields in Skaff at L2 for 
2017-2018 

2018 

 

 

 

 

 

Figure 9 Modeled Vs Reported Potato Yield (ton/ha) for 30 potato fields in Skaff at L3 
for 2017-2018 
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Figure 10 Modeled Vs Measured Wheat Yield (ton/ha) of  20 Wheat fields in Skaff  at 
L2 for 2017-2018 

 
 

 

Figure 11 Modeled Vs Reported Wheat Yield (ton/ha) of 20 Wheat fields in Skaff at L3 
for 2017-2018 
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Figure 12 Modeled Vs Reported Yield (ton/ha) of 18 Barley/vetch fields in AREC  at 

L2 for 2012-2019 

 

 

Figure 13 Modeled Vs Reported Yield (ton/ha) of  52 Barley/vetch Yield field in AREC 

at L2 (By pt) for 2012-2019 
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Figure 14 Modeled Vs. Reported Yield (ton/ha ) of 60 Barley/vetch fields in AREC at 

L3 

 

Figure 15 Modeled Vs Reported Yield (ton/ha) of 21 Barley fields in AREC at L2 (By 

pt) for 2012-2019 
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Figure 16 Modeled Vs Reported Yield (ton/ha) of 14 Barley fields at L2 for 2012-2019 

 

 

Figure 17 Modeled Vs Reported Yield (ton/ha) of 29 Barley fields in AREC at L3 for 

2012-2019 
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Figure 18 Modeled Vs Reported Yield (ton/ha) of  5 Oat/Vetch fields in AREC at level 

3 for 2012-2019 

 

 

Figure 19 Modeled Vs Reported Yield (ton/ha)  of  4 Oat/vetch in AREC at L2 for 

2012-2019 
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Figure 20 Modeled Vs Reported Yield (ton/ha)  of  5 Oat/vetch fields in AREC at L2 

for 2012-2019 
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CHAPTER V 

DISCUSSION 

 
A. Level Consistency 

Level consistency could not be studied for the AREC crops since not all fields 

were equally identified at the different levels or when shapefiles or point coordinates 

were used at level 2 as shown in figures 1,2 and 3.WaPOR was not able to detect all 

selected fields and many fields showed no input and noticeable difference exists 

between the reported number of fields and the fields with detectable yield by WaPOR. 

In addition, for the year 2019, no NPP results appeared for the fields at both levels 2 

and 3. As for potato and wheat, all fields were commonly identified at levels 2 and 3, 

which could be attributed to the higher field size of the Skaff fields(Jaafar & Mourad, 

2021). Notably, wheat and potato fields in Skaff have a greater area than the AREC 

fields. Potato and wheat have average areas of 23 ha and 23.8 respectively whereas the 

average areas of the barley, vetch, barley/vetch mixed fields, and oat/vetch mixed fields 

are 1.84 ha, 1.96 ha, 1.05 ha and 1.59 ha respectively. Nevertheless, only 30 potato 

fields  were analyzed at L3 due to the presence of an outlier, and therefore level 

consistency could not be tested for. Nevertheless, wheat yields for the  20 fields showed 

more accurate yields at L3 than those at L2. 

 

B. Sources of Uncertainty 

Even though remote-sensing has been widely used for different applications in 

agriculture, accuracy standards that set the quality standards of these datasets have not 

yet been established (Blatchford et al., 2019). NPP considers CO2 that has been used by 
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the plant but converted to biomass such as losses due to autotrophic respiration, 

conversion of basic products to higher-level photosynthetic products and the respiration 

required by the standing biomass. Nevertheless, contribution of soil respiration and the 

disturbance and anthropogenic removals are only counted within the net biome 

production (FAO, 2020) which could be behind some of the discrepancies in modeled 

NPP. 

 

1. Reported Yield 

 Inaccuracies in yield estimations may be due to the inaccuracy of self-reported 

yields or model-estimated yields (Paliwal & Jain, 2020). In this study, measured crop 

yields in Skaff were based on farmer recall which has been considered to have higher 

accuracy than farmer predictive yields (Blatchford et al., 2019). However, measured 

yield in AREC was measured using whole-plot harvest, dried and weighed post-harvest. 

According to (Blatchford et al., 2019), lowest percentage relative error of yield was 

denoted for whole-plot harvests, with the relative error being considered in the expert 

error range category which refers to the maximum  error derived from scientific 

literature as defined by AllenRG (2011). Nevertheless, farmer recall surveys recorded 

percentage relative errors up to (45%) in the typical error range; which as defined by 

AllenRG (2011) as the error associated with larger studies where scientific experts were 

not present during the collection of data. The farmer reported yield was based on one 

survey reported for each field and could not be compared to yields reported by other 

farmers to determine discrepancies. Nevertheless, Mannaerts et al. (2020) reported that 

farmers yield reports in the Beqaa Valley had very low precision for plot- by-plot 
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comparison, where 3 different values were reported for potato tubers and the final 

comparison was done against the mean yield reported for both crops. 

  Uncertainties in model estimations of yield may be due to uncertainties in 

parameters, weather inputs, model structure and natural variability (Ramirez-Villegas et 

al., 2017). The increase in the number of crops occurring per pixel, decreases the 

accuracy of the model applied to 1.1 km pixels (Bastiaanssen & Ali, 2003).  Moreover, 

variations in the sizes of fields of every crop could be behind some discrepancies in 

yield results(Mannaerts et al., 2020). In addition, as humidity increases as it is higher 

during the summer than winter season in the Beqaa, it is difficult to distinguish between 

natural vegetation and irrigated or agricultural areas by remote-sensing which might 

cause discrepancies which is why accurate land use maps are required (Delft, 2019). 

This was shown in WaPOR’s second assessment report where WaPOR was not able to 

differentiate between potato and wheat fields in the Beqaa Valley where NPP values for 

both crops were within the expected range for C3 crops but with no distinction between 

those crops(Mannaerts et al., 2020).  

Since the yield calculation is based on three major equations, large uncertainties 

might lie in the intermediates that convert GPP to yield. To start with, NPP is generated 

from GPP by subtracting a constant autotrophic plant respiration fraction for all 

crops(Mannaerts et al., 2020). In WaPOR, (Monteith, 1972) was used to calculate NPP 

(eq. 1). The scaling factor (SC), the fraction of photosynthetically active radiation (εp), 

light use efficiency (εlue), and the Normalized CO2 fertilization effect (εCO2) are all 

taken as constants in the calculation of NPP. The Scaling factor used to convert DMP to 

NPP is a constant where 1 g C/m2/day= 22.222 Kg DM/ha/day. Ep, the fraction of PAR 

received (0.4-0.7μm), is also used as a constant= 0.48 [JP/IT]. In addition, the 
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Normalized CO2 fertilization effect (εCO2) is an important factor in the calculation of 

NPP. Yet, εCO2 is used as a constant of 1 all over the globe all over the year. Increasing 

CO2 is taken into consideration using an increasing function over time. Even though 

LUE max and HI are essential factors in yield calculation, it is difficult in areas with 

small plot sizes and mixed cropping patterns (Blatchford et al., 2019).  

 

2. Light Use Efficiency 

Many remote-sensing models depend on the Normalized Difference Vegetation 

Index (NDVI) to drive LUE models. Nevertheless, these indices in different models are 

affected by several factors (Potter et al., 1993). Most remote-sensing models are based 

on the principle that there is a constant relationship between absorbed light and the 

carbon assimilation in plants, a ratio termed as Light Use Efficiency (LUE). Monteith 

(1977) incorporated LUE as LUE max which commonly accounts for the discrepancies 

caused by environmental stress considering optimal water conditions. Several factors 

affect LUE max of vegetation including: chlorophyll content, vegetation species, leaf 

age, light intensity, and growth stages at the leaf scale. In addition, leaf area index 

(LAI), solar zenith angle, leaf inclination angle, observation angle and canopy structure 

(Chen et al., 2008) , soil moisture and land cover (Blatchford et al., 2019) affect LUE 

max. In addition, the pixels mixed by different vegetation types increase the uncertainty 

of LUE as was recorded in the CASA model (Potter et al., 1993). Hence,  LUE varies 

for different crops and is affected by climatic variations.  

 Several studies have identified the source of error in yield to the inaccuracy of 

LUE max. A study by(Wang et al., 2013) in China showed an underestimation of yield 

for both maize and orchard by MOD17. These values varied significantly upon the 
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calibration and adjustment of LUE max and the relative error was reduced. A study by 

(Xin et al., 2015) suggested that parametrization of maximum LUE in the MOD17 

model require readjustment in order to decrease uncertainties in cropland GPP in 

Midwestern US. According to Delft (2019), variations between MODIS and WaPOR 

NPP at L1 could  be attributed to choices of parameters including LUE causing 

considerable variations in products. Hence, treating LUE as a constant for all crops, as 

is in most models is behind several discrepancies in production estimation (Xin et al., 

2015; Yuan et al., 2016).   

WaPOR considers a constant LUE value of 2.7 MJ/gr for all crops in the region 

it covers. This value was considered at optimal water availability conditions for 

cropland, since a soil moisture stress factor is already included in the calculation of 

NPP. Hence and to avoid double counting of soil moisture stress, this LUE correction 

factor was implemented in V2 after the standardized LUE was 2.49 MJ/gr for total 

biomass produced and C3 crops in WaPOR V1  (FAO and IHE Delft, 2019). Even 

though WaPOR V1 considered that different LUE max values exist for trees, savannah 

and pasture, these values were not provided in the methodology(FAO, 2020) and further 

explanation of information is required. 

Since LUE max is affected by land cover, several scientists have worked on 

identifying LUE max specific for every crop. Several studies including that of  Yuan et 

al. (2015) showed that C3 and C4 crops  have different LUE max and thus result in 

significant errors in GPP and thus yield estimations. Typical Maximum Light Use 

Efficiency values range between 2.4 to 4.24 g C/MJ for C4 crops and 1.41 to 1.96 g 

C/MJ for C3 crops (Xin et al., 2015).As for WaPOR, the used LUE values were the 

same for C3 and C4 crops. Nevertheless, a correction factor to differentiate between C3 
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and C4 crops is incorporated in the calculation of the yield, where the yield of C4 crops 

is multiplied by 1.8 (FAO,2018).  

 Bastiaanssen and Ali (2003) identified a LUE range for barley, cotton, rice, 

sunflower, wheat, corn, maize, and sugarcane from the literature. According to this 

study’s findings, the maximum LUE for barley ranged between 1.64 and 3.37 g/MJ and 

between 1.03 and 3.0 g/MJ for Wheat. Even though LUE max=2.7 lies within the 

reported range for both barley and wheat, LUE max differs for different crops and for 

different strains of the same crop. According to Mannaerts et al. (2020), a LUE 

correction factor was used to determine the yield of wheat, potato tubers and sugarcane 

AGBP during WaPOR yield validation. This correction factor is a fraction of actual 

LUE/ WaPOR LUE (2.7 gDM/MJ ), which was determined as 0.93 for wheat, 0.96 for 

potato tubers and 2.15 for the sugarcane AGBP (table 4).  

 

3. Above Ground Biomass Production 

In order to calculate AGBP , the number of days per dekad, dry matter 

productivity and the fraction between above and total biomass production are 

incorporated as stated in (eq.7). According to equation (eq. 7) to calculate AGBP from 

NPP, the conversion factor from total to above ground biomass is incorporated as a 

constant of 0.65. Nevertheless, the ratio of above and below ground biomass production 

has been proven to vary across different landscapes which causes some variations to 

this ratio (Delft, 2019).It is important to note that in WaPOR V 1.0, AGBP considered 

crops as C3 not accounting to any variations in land use or crop types to determine 

actual AGBP with respect to the total biomass (Delft, 2019). For barley, vetch, oat and 

wheat AGBP=TBP and do not pose a problem.  



 

58 

4. Harvest index and Moisture Content 

Since several factors affect the harvest index, it was reported to be behind the 

inaccuracy of estimated yields in different models. The Harvest Index (HI) varies in 

different environments (Prihar & Stewart, 1990) for every crop type and the different 

varieties (Delft,2019;Hay,1995). Harvest Index is also affected by  nitrogen supply 

especially in wheat and barley (Unkovich et al., 2010b). In addition, the proportion of 

harvestable yield, lodging due to weakness in the stem, delay in sowing damages by 

insects and storms and extreme weather conditions, difference in temperature at the time 

of flowering, sampling time, and the extent of leaf drop (Unkovich et al., 2010b). 

A study by (Yuan et al., 2016) compared GPP and Yield calculated after adding 

correction factors between remote-sensing model (EC-LUE model) and GPP from 

Eddy-Covariance flux towers (EC). GPP values had a good agreement with an R2 of 

0.9, RMSE ranging between 0.02-0.11 ton/ha/day, and a RE= 0.5-88%. Nevertheless, 

yield values showed a lower agreement with an R2 = 0.61 and a Relative Error= 30-

61%. In this study yield was reported to have a significantly poorer performance. 

Usually, GPP and NPP are validated at the image return period and often using EC 

towers with a point-to-pixel comparison. However, crop yield is validated at a seasonal 

or annual scale and compared to in-situ data at the field or plot scale (Blatchford et al., 

2019). The study by (Yuan et al., 2016) attributed the significant reduction in certainty 

between GPP and Yield estimates to HI. 

According to WaPOR Methodology (FAO, 2020), the harvest index of wheat, 

rice, maize and sugarcane at level 3 was adapted from Villalobos and Fereres (2016). In 

WaPOR, calculation of harvest Index considered soil moisture stress only at level 3, 

disregarding all other factors that affect Harvest index due to the complexity of 
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incorporating all factors. Neither the WaPOR website nor methodology (V1 and V2) 

provide the used HI and MC values for all different crops or at level 2. Nevertheless, HI 

used by WaPOR for wheat and potato were  0.48 and 0.7 respectively. These values are 

very close to the measured values of 0.4 and 0.75 and hence, the low RE (%) for wheat 

at L3 (1.14%). The RE for potato at L3 (31.01%). Generally, WaPOR uses an HI range 

between 0.25 and 0.4 for all grain crops which include barley, vetch and oat. The 

harvest index was used from the literature for these crops is higher than the upper bound 

of the mentioned range. Nevertheless, WaPOR methodology V2 (2020) mentions that 

the reference HI can be 50% or slightly higher for modern high-yielding cultivars of 

grain crops.  

Potato yield showed a relative error (RE) of 31.01% at level 3 and 19.55% at 

level 2. Accuracy is high at level 2 where RE= 19.55% < 20%. Higher relative error at 

level 3 might be a caused by several factors. One factor would be NPP values calculated 

during early and late stages of crop life. A study in Saudi Arabia by Al-Gaadi et al. 

(2016) showed that the vegetation cover is highly noised during early stages of crop 

growth and that potato leaves turn yellow during late stages of crop growth all of which 

reduce chlorophyll reflectance. Therefore, lower correlation of NPP values were 

attributed to these phases. 

This study does not enable us to compare between results at level 2 (100m) and 

those found at level 3 (30m) except for wheat. For barley, oat/vetch, and barley/vetch 

fields, we noticed that the number of identified fields by WaPOR was not the same at 

the different levels. Even though the input was the same, yield results available at level 

3 were more than those available at level 2. In addition, more fields were identified 

when fields were by point than when  shapefiles were used at level 2, and the highest 
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number of identified fields for most crops and yields was at level 3 for most AREC 

crop.  As for potato and wheat, yield was studied at both levels 2 and 3 for the same 

number of fields; 20 and 31 respectively. For wheat, yield found at level 3 showed 

higher accuracy with a RE of only 1.14% and RMSE of 0.17 in comparison to those 

calculated at level 2 with a RE of -12.43% and an RMSE of 1.2. However, the estimated 

yield was lower at level 2 than at level 3 for wheat . It is important to note that wheat 

plantation was done in the winter where lower solar radiation, more clouding, and rain 

exists in the studied area which could be behind the minor difference in yield 

estimations. On the other hand, potato was planted during the summer where more solar 

radiation exists with less precipitation and less clouding. 

As for the soil moisture content (SM) used by WaPOR for every crop, SM is 

considered as an intermediate data component that is not available by the portal 

(Mannaerts et al., 2020) and hence might be behind some discrepancies since the soil 

moisture values used cannot be validated against actual soil moisture (SM) in the fields 

of study. Soil Moisture Content was not validated at levels 2 and 3, and was only 

validated at L1 by direct validation to in-situ data and by internal or intra-product 

validation. NDVI and SR are also intermediate components that are incorporated in the 

determination of NPP and were validated at level 1 using internal or intra -product 

validation, in addition to the direct validation of NDVI to in-situ data (Mannaerts et al., 

2020).  

For the crops in Skaff, the moisture content (MC) for both potato and wheat was 

measured and thus was more accurate than those used for barley, vetch, barley/vetch,  

vetch/oat fields which were based on the literature.  
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As shown in table (4), in WaPOR’s second quality assessment report by 

Mannaerts et al. (2020), the producer suggests a few crop specific parameters for wheat 

and potato yields  validated in the Beqaa Valley including LUE max correction factor, 

HI, MC, and the above ground biomass fraction (AGBF). Upon the incorporation of 

these factors suggested by the producer, as suggested, minimum RMSE recorded was 

1.22 ton/ha with a maximum of 12.21 ton/ha while the minimum R2 recorded was 0.12 

with a maximum of  0.6 in the Beqaa.  The correction factors suggested by the producer 

in Mannaerts et al. (2020) included a crop specific LUE max which was calculated by 

dividing the actual LUE by the WaPOR LUE. This correction factor was equal to 0.93 

and 0.96  for wheat and potato respectively and was multiplied to the WaPOR LUE max 

(2.7 MJ/gr).  According to the latest WaPOR methodology report (FAO, 2020),the 

WaPOR HI was based on Aqua Crop version 6.0 (Villalobos & Fereres, 2016). This 

report notes that HI used from the literature were chosen from the middle high-end HI 

values reported and could be within 50% or higher for high yielding grains. The harvest 

Index of wheat used at level 3 is HI=0.48. However, the  HI suggested by the producer  

Crops Wheat Potato 
LUE max correction factor 0.93 0.96 

LUE WaPOR 2.7 2.7 
HI suggested by producer 0.37 0.8 

Measured HI 0.4 0.75 
WaPOR HI 0.48 0.75 

MC suggested by producer 0.15 0.8 
Measured MC 0.15 0.75 

AGBF suggested by 
producer 

0.86 0.2 

Measured AGBF 1 0.65 

Table 4 Parameters suggested by producer vs measured and WaPOR parameters for 
wheat and potato 
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for wheat grown in the Beqaa  (HI=0.37) was based on literature values and was less 

than the measured HI used for the  analysis (HI=0.4). As for the potato tubers, the 

reference HI used by WaPOR  (HI= 0.75) was equal to the measured HI. However, the 

producer suggested a value of HI=0.8 which is slightly more than the previous value for 

the validation done in Beqaa by (Mannaerts et al., 2020). The assessment by Mannaerts 

et al. (2020) showed a fluctuation in NDVI and MC along the course of the growing 

season where the MC is not constant all season long. For wheat, the SM was high for 

most of the season and only showed a minor dip between late February and early March 

aligned with the beginning of spring and irrigation after the wet Winter season. NDVI 

drops at the end of the season which is associated with tuber maturation for potato 

where leaves turn yellow and absorb less light and with the graining phase of wheat. 

Therefore, the suggested MC for wheat MC=0.15 was equal to the measurements, and 

that for potato tubers MC=0.8 which was slightly higher than the measured MC=0.75. 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

 
Since the importance of WaPOR lies in its ability to predict crop water 

productivity, validation and calibration is required to accurately estimate water 

productivity especially in semi-arid areas such as the Beqaa Valley which holds a great 

portion of the Lebanese agricultural sector. Hence, validation of yield and 

evapotranspiration is required. 

In this validation of crop yield in the Beqaa Valley; the aim was to validate the 

yield of potato and wheat for the year 2017-2018 which showed generally good results 

RE<20% with R2 of 0.38 and an RMSE below 2 ton/ha at levels 2 and 3 for wheat and 

an RE< 20% with R2 between 0.22 and RMSE of 9.31 to/ha at level 2 for potato. In 

addition, the aim was to validate the yields of barley, vetch, barley/vetch mixed fields, 

and vetch/oat mixed fields between 2012 and 2019 at levels 2 and 3. At level 3, the 

highest number of fields was identified for all crops showing a % RE for barley, 

barley/vetch, and vetch/oat between 25-66%, R2 between 0.0-0.13, and an RMSE 

between 0.17-3 ton/ha. At level 2 using point coordinates, % RE ranged between 55 - 

80% , an R2 between 0.01-0.18, RMSE between 2.69-3.94 for all crops and between 

30-70%, an R2 between 0.04-0.3 and an RMSE between 2-11.66 ton/ha at level 2 using 

shapefiles when the number of identified fields was the lowest. Correlation was 

considered to be moderate or close to moderate for potato and wheat but low for all 

other studied crops. Bias was positive and high for all studied crops. 

Validation of other layers or parameters between different models is required in 

some cases for better understanding of model accuracy. In other cases, such as the 
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 validation in the Fayoum fields reported by (Delft, 2019), Actual evapotranspiration 

and Interception (AETI) was also compared between MODIS and WaPOR to better 

understand discrepancies between the two models. 

Future recommendations would include the validation against measured yield 

instead of farmer reported yield that is highly based on predictions, the investigation of 

more LCC specific parameters instead of some constant parameters such as AGBF and 

autotrophic plant respiration. In addition, more crop and land specific HI and MC could 

increase accuracy of NPP. Nevertheless, the effect of different parameters would require 

a sensitivity analysis for WaPOR. Future work would include the evaluation of crops 

considering accurately measured reported yield and land-specific measured parameters. 
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