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An Abstract of the Thesis of

Sara Hajj Ibrahim for Master of Science
Major: Computer Science

Title: Security of Abstraction based Novelty Detection in Deep Learning

Deep learning is a type of machine learning that adapts a deep hierarchy of
concepts. Deep learning classifiers link the most basic version of concepts at the
input layer to the most abstract version of concepts at the output layer, also
known as a class or label. However, once trained over a finite set of classes, a
deep learning model does not have the power to say that a given input does not
belong to any of the classes and simply cannot be linked. Correctly invalidating
the prediction of unrelated classes is a challenging problem that has been tackled
in many ways in the literature.

Novelty detection gives deep learning the ability to output ”do not know” for
novel/unseen classes. Still, no attention has been given to the security aspects of
novelty detection. In this thesis, we study the case of abstraction-based novelty
detection in deep learning in particular. We show that abstraction-based novelty
detection is not robust against adversarial attacks.

We formulate three types of attacks against novelty detection: (1) passing a valid
sample as invalid, (2) passing an invalid sample as valid, and (3) passing an
adversarial sample as valid. We experiment different optimisers for solving our
formulated attacks (1 & 2) on multiple neural network architectures. For attack
(3), we show the feasibility of an adversarial sample that fools the deep learning
classifier to output a wrong class. We follow existing adversarial attacks by our
proposed optimisation attack to bypass the novelty detection monitoring at the
same time.

In other words, we show that we can break the security of novelty detection. We
call for further research on novelty detection from a defender’s point of view. We
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adapt a suitable defense mechanism against such attacks and assess its perfor-
mance.

The thesis suggests that more attention could be paid in novelty detection systems
to make them more secure against attacks. Especially in critical-decision making
systems that are based on artificial intelligence and machine learning, for example
self-driving cars, automated medicine or cybersecurity. To our knowledge, our
work is the first to address the security limit of novelty detection in deep learning.
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Chapter 1

Introduction

1.1 Deep learning

Machine learning algorithms are excellent at analyzing data and finding interest-

ing patterns. However, they give up to the so-called dimensionality curse. Neural

networks are wildly successful today [1]. Neural networks bypass the traditional

machine learning algorithms in most learning tasks and can help combat the

problem of this ”curse” [2].

1.2 Challenges in deep learning

While deep learning yields remarkable results in the field of raw data represen-

tation and classification, neural networks are sub-optimal when: (1) explaining

decisions or (2) recognizing a novel class of input. Deep learning does not really

give clear insights about the process of its decision making. Moreover, deep neu-

ral networks never say ”I don’t know”, they can be just less or more confident
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about an outcome or a decision. In supervised learning, a deep learning classifier

is trained over a set of classes. The classifier always outputs that a given sample

is more likely to belong to one of the classes, never to any of them.

1.3 Novelty detection

The goal of novelty detection is to decide whether a given input sample really

belongs to one of the classes or is completely drawn from a statistical distribution

that was unseen during the training phase. Novelty detection can output: ”I

don’t know the class of this sample, it is not among the classes supported by this

classifier” or ”I have seen this class before and the classifier decision is valid”.

In other words, the novelty detection decision may invalidate the neural network

decision.

1.4 Security of novelty detection

Though novelty detection is receiving a good deal of coverage in the literature, its

performance is usually measured by its accuracy on detecting novel inputs under

a benign threat model. However, the security of novelty detection however seems

not to have received much attention in literature.

1.5 Thesis contributions

The subject of this thesis is to undertake a systematic study of security aspects

of novelty detection. We test the robustness of novelty detection systems against
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adversarial attacks. We propose attacks that do slight modifications of the testing

input samples.

1. We design 2 optimisation based attacks capable of generating adversarial

samples: (1) passing a valid testing sample as invalid and (2) passing an

invalid testing sample as valid.

We test and compare different optimisers for solving the attack formula-

tions and conclude that SHGO optimiser is the best solver. We experiment

with two basic neural networks as well as a convolution neural network for

MNIST classification. We conduct an extensive set of experiments to show

that the generated attack samples can be perceived as normal samples by

a human observer.

2. We consider another type of attack that passes an adversarial testing sample

as valid. An adversarial sample is a valid sample of some class A that has

been modified to fool the neural network into deciding it as a class other

than A. One may assume that adversarial samples should be detected as

novelties. We show that this is not always true, (1) adversarial samples

may be detected as not novel and (2) we can circumvent the decision of the

novelty detector to make adversarial samples appear as not novel.

We show the feasibility of crafting adversarial samples that fool the deep

learning classifier and bypass the novelty detection monitoring at the same

time. Such samples are constructed in two steps: (1) a classical adversarial

attack followed by (2) our proposed optimisation attack suggested in 1.

In other words, we show that novelty detection can be hackable. We demonstrate
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that novelty detection itself ends up as an attack surface. Finally, we propose

to adapt denoising auto-encoders as an efficient defense mechanism against such

attacks and assess its performance.

This thesis is an attention call for raising awareness of security aspects in artificial

intelligence and machine learning. Security design is required when integrating

artificial intelligence into critical decision making systems such as self-driving

cars, automated medicine or cyber security. Our work is the first to address the

security of novelty detection in deep learning.

1.6 Broader impacts

We estimate that novelty detection will play a significant role in monitoring

neural networks and discovering new classes unseen during training time. Of

course, attackers will not cooperate with us in this task. Attackers may take steps

to evade novelty detection systems and avoid notice. The question of security

is extremely crucial in critical systems that involve healthcare assessments or

hospital services, IT security systems or tech companies, self driving cars, etc.,

systems where the error cost is very expensive. We expect attackers to come up

with several strategies to make these systems less effective. Hence, the security

of novelty detection systems is a useful and important topic. We should make

it difficult for attackers to cause harm and take control using efficient defense

mechanisms. In this sense, the very success of a novelty detection approach

depends on its security against attacks.
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1.7 Roadmap of thesis

In chapter 2, we differentiate novelty detection as a new domain compared to

classical anomaly detection and outlier detection domains. Moreover, we sur-

vey different examples of anomaly, novelty and outlier detection and address

approaches that mainly convey novelty detection. Then, in chapter 3, we try to

explore the limits of novelty detection security. We conduct several experiments

of (1) optimisation based attacks and (2) adversarial neural network attacks. In

chapter 5 and 6, we report the results and findings of our attack experiments. A

good idea is then to adapt a defense mechanism in response to attacks. Next, we

show that using a denoising auto-encoder hinders the effect of attacks in chapter

7. We finally conclude the thesis and sketch future work.
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Chapter 2

Literature Review

In this chapter, we distinguish between three interrelated and very close concepts,

namely anomaly detection, outlier detection and novelty detection. These terms

are sometimes interchangeably used in literature, but we suggest that they mean

different things. We need to be more precise about what is novelty detection and

how it differs from outlier and anomaly detection. So we highlight the difference

between outlier, anomaly and novelty detection early before we proceed.

2.1 Outlier vs. Anomaly detection

An outlier is an ”Observation which deviates so much from other observations

as to arouse suspicion it was generated by a different mechanism” [3]. Outlier

detection is the process of detecting an observation that significantly deviates

from the majority of data. Unsupervised algorithms extract statistical informa-

tion indicating how unlikely a certain observation is, for example, finding a point

deviating far from the statistical means of other points as illustrated in figure 2.1.
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Figure 2.1: Outlier detection definition

An anomaly however is a special case of outliers which is usually tied to special in-

formation or reasons [4]. Anomalies indicate significant and rare events that may

prompt critical actions in a wide range of application domains [5]. Such triggers

are considered malicious and should be directly rejected by the system. Anomaly

detection may require labeled data and employ supervised algorithms as illus-

trated in figure 2.2. As an example, we consider the problem of malware/benign

classification as a form of anomaly detection.

Figure 2.2: Anomaly detection definition
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2.2 Novelty detection

Novelty detection is the process of identifying inputs that belong to unknown

classes not seen during training time. Assume we have c classes during training

time, c + u classes appear at testing time. The goal of novelty detection is to

invalidate the output of the classification when samples from the u classes are

presented. Novelty detection is different than the previously described anomaly

and outlier detection for two main reasons: (1) training data have labels, and (2)

the learner itself is an input to the detector algorithm.

(a) Abstraction phase

(b) Monitoring phase

Figure 2.3: Novelty detection definition

Novelty detection can be achieved in white-box mode by taking the model ob-
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tained after training and building a monitor on top of it. The monitor fingerprints

the behaviour of the model when training data are presented. For the special case

of deep learning, such a monitor can register the values of hidden nodes given by

forward-propagating the training samples. The monitored values are abstracted

into statistical constructs. Later, outlier detection flags inputs having finger-

prints that largely deviate from these constructs. In other words, this approach

transforms the novelty detection problem into an outlier detection problem by

projecting the data into a different hyper-dimensional space. This projection is

parameterized by the neural network model itself. Different types of abstractions

are proposed in [6] before evaluating box abstractions in particular. Figure 2.3

shows an example of a box abstraction-based novelty detection system.

2.3 Approaches addressing novelty detection

We categorise the main approaches that address novelty detection. These meth-

ods also apply for classical anomaly and outlier detection. For our study, we group

approaches into distance based, statistical based, auto-encoding & reconstruction

based, bayesian and abstraction based approaches.

Distance based methods These methods compute novelty values or confidence

scores based on distance metric functions. In [7], data is first embedded as

derived from the penultimate layer of the neural network. The confidence

score is based on the estimation of local density. Local density at a point is

estimated based on the Euclidean distance in the embedded space between

the point and its k nearest neighbors in the training set. A similar approach

based on learning a local model around a test sample is proposed on [8] for

9



Multi-class novelty detection tasks in image recognition problems.

Statistical based methods Novelties are caused by differences in data distri-

butions at training and prediction time. Some of these methods require

sampling the distribution at run-time or an online adaptation of classifiers.

In [9] the underlying structure of the inlier distribution of the training data

is captured. The novelty is detected by the means of a hypothesis test or

by computing a novelty probability value.

Auto-Encoding and reconstruction based methods One way to proceed is

to train a deep encoder-decoder network that outputs a reconstruction error

for each sample. The error is used to either compute a novelty score or

to train a one-class classifier. For example [10] introduces an unsupervised

model for novelty detection based on Deep Gaussian Process Auto-Encoders

(DGP-AE). The proposed auto-encoder is trained by approximating the

DGP layers using random feature expansions, and by performing stochastic

variational inference on the resulting approximate model. Their work can

be categorized under anomaly detection in our terminology.

Bayesian methods These methods use bayesian formalism to detect anoma-

lies and new classes in addition to classification [11]. The basic idea is

to add a ”dummy” class at the root node. The class is considered under-

represented in the training set. The classifier gives a strong a posterior of

being ”dummy” for unseen instances.

Abstraction based methods These methods consider a finite set of vectors X,

and construct a set Y that generalizes X to infinitely many elements and has

10



a simple representation that is easy to manipulate and answer queries for.

Examples of these methods are ball-abstraction such as one-class support

vector machines, one-class neural networks [12] and box-abstraction [6] that

we will describe later.

Next, we show examples of different approaches supporting some categories of

the preceding methods.

An example of statistical and auto-encoding/ re-

construction based method

[9] trains an auto-encoder network to derive a linearized manifold representation

of data. The manifold representation helps compute a novelty probability that

represents how likely it is that a sample was generated by the inlier distribution.

This is why we consider it as a statistical based method at the same time. We

train an auto-encoder using two steps:

1. Reconstruction step: Auto-encoders learn a representation over data by

training to copy inputs to outputs. First an encoder transforms an in-

put image from high into lower dimensional space, known as latent space

z. Then a decoder defining a surface manifold M reconstructs back the

original image according to information already learned. Once learned, a

discriminator is then able to distinguish reconstructed inputs as fake and

original samples as real (see figure 2.4 - a).

2. Generative step: Auto-encoders impose that a normal distribution and sam-

11



ples generated by z be as close to each other. We don’t want passed inputs

to be deviating far from the normal data. Once learned, a discriminator is

able distinguish samples generated from z as fake and inputs from normal

distribution as real (see figure 2.4 - b).

(a) Reconstruction Phase

(b) Generative phase

Figure 2.4: An example of outlier detection system with a statistical and recon-
struction based method
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Once the training phase ends, a manifold M gets learned. During testing phase,

we project testing samples into the latent space z and find local coordinates ”w”,

the new coordinates in latent space. At this step, we compute the novelty score

using the probability density function ”pw(w)” of w coordinates, the multiplica-

tion of pw(w||) and pw(w⊥), the probability density functions of w coordinates

parallel and orthogonal to the tangent space T in manifold. Once we compute

pw(w), we say that the input sample acts as an inlier or an outlier over a certain

threshold. We refer this approach as an example of outlier detection, as it doesn’t

require labels and spots outliers deviating from the normal distribution.

An example of a distance and probabilistic based

method

Another example tries to detect anomalies and well known attacks such as DOS,

Probe, U2R and R2L [13]. It involves the following steps: (a) data pre-processing

and feature reduction, and a two tier classifier: (b) Naive Bayes, defining the prob-

abilistic based characteristic, and (c) KNN-CF, making our algorithm distance

based. Figure 2.5 summarizes these steps.

(a) Upon passing the training inputs, and for better decision making, we apply

some transformation to the data: (1) convert categorical feature inputs into

numerical, (2) normalize data values and (3) perform feature reduction.

(b) Next, a Naive Bayes model is used to classify the data obtained in (a) as

anomalous or not. The Naive Bayes is known as a classification model that

calculates the probability that an input x belongs to particular class c [14].
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Figure 2.5: An example of anomaly detection system with a distance and prob-
abilistic based method

(c) Naive Bayes may lead sometimes to wrong decisions, so we pass normal

inputs again into a KNN classifier, the certainty factor version. The KNN-

CF classifier is same as the traditional KNN except we use the certainty

factor to balance the data.

This approach falls in context of anomaly detection and we stem as an example

of 2.2. It is a binary classification problem where we classify events as either

normal or abnormal.

An example of distance and kernel-space based

method

We propose in [8] an approach that recognizes a sample as novel if it is far away

from its nearest neighbors in the training set. This approach tries to map inputs

into null-space to compute its novelty score. We define null space as the space

that consists of vectors which under some linear transformation are mapped onto

zero [15].

Given training data with C classes, we map all given samples belonging to a class

14



ci into a single point in null subspace. So that we end up with a single point for

each class ci in null space, called the target point ti. We use one-class novelty

detection if all neighbors in training set belong to the same class, otherwise we

end up using multi-class novelty detector.

(a) Multi-classification

(b) One-classification

Figure 2.6: An example of novelty detection system with a distance and kernel-
space based approach

(a) In multi-classification (figure 2.6 - a), we test whether an input sample be-

longs to a certain class ci of the known C classes. To obtain the novelty

score of a test sample x∗, we project x∗ into null subspace and hence be-

comes the target point t∗. We use the smallest Euclidean distance between

t∗, and the other target points from the training set: t1, t2, .., tC to obtain

the novelty score of x∗:
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Min16i6C dist (t∗, ti) (2.1)

(b) In one class novelty detection (figure 2.6 - b), we test if a sample belongs

to a class c1 or not. Its not possible to use multi-class novelty detection

as it leads to zero projection direction in space. We use one-class methods

similar to one-class SVM [16]. All class samples will be then mapped into

a single target value t along a single null direction. We again set a certain

threshold to take the novelty decision:

|t− t∗| (2.2)

This approach checks if a sample belongs to a known category or class from the

training set or to a new, unseen class. We can refer to as a novelty detection

method. Similar to abstraction based novelty detection, it also transforms a

novelty detection problem into an outlier detection problem by projecting the

data into a different hyper-dimensional space, the null-kernel space. However, this

approach differs from our own term definition of novelty detection represented in

2.3. This approach focuses on a kernel-spaced method and is expected to follow

our term definition that focuses on abstraction based methods in particular.

An example of abstraction-based method

”Outside the box” is a white-box abstraction-based novelty detection method

proposed in [6]. Abstraction-based novelty detection involves 2 phases: (1) an
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(a) Abstraction Phase

(b) Monitoring phase

Figure 2.7: An example of novelty detection system with an abstraction based
approach

abstraction phase and (2) a monitoring phase. Constructing an abstraction at

layer l of the monitored network for class y works as follows (abstraction phase):

1. Collect outputs at layer l for inputs of class y.

2. Divide collected vectors into clusters.

3. Construct an abstraction for vectors in each cluster, e.g. an enclosing box.

A monitor then takes a one-by-one decision on each testing sample and identifies

17



it as either valid (i.e. the classifier prediction is correct on assigning the sample

to one the training classes), or invalid (i.e. the classifier prediction is rejected).

The monitor decision is based on verifying whether a special representation of

the sample falls within one of the boxes constructed during training or outside

these boxes. The monitoring stage at layer l hence works as follows (monitoring

phase):

1. Predict class of input x.

2. Collect output at layer l into a vector v.

3. Check if any abstraction belonging to the predicted class contains v.

4. The prediction is invalid if the check returns empty, otherwise valid.

We represent the 2 phases of the algorithm in figure 2.7. This approach uses

several benchmarks for testing. It also tunes different environments. At the

monitoring stage, it can include multiple layers rather than a single layer, by

constructing additional monitors; one for each layer, or concatenating all outputs

to pass into a single monitor. It’s also possible to shrink or enlarge boxes accord-

ing to a factor value α tolerance. This algorithm also considers other types of

abstractions, for example, balls and octagons.

2.4 Security risk

Results of all proposed approaches were proved to be very effective in terms of

accuracy or reliability. Despite this, it can be critical when used in the real

world setting. We can’t guarantee that these techniques are robust to attacks
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and always free of malicious attempts.

Little or none work has been conducted on the security of the aforementioned

approaches either in the presence of adversarial samples for fooling the classifier

or especially against crafted samples for fooling the novelty detector and the

classifier at the same time. We consider security an important factor, for our

study, we show the security use-case of ”outside the box” [6] technique and analyse

it in different ways.

We take abstraction based novelty detection (”outside the box”) as a case-study

in this thesis and show that: (1) its monitors are not efficient when adversarial

testing samples are presented, and (2) these monitors can themselves be attacked

by appending the adversarial generation process with new constraints. In other

words, these boxes could be penetrated. Moreover, we adapt a suitable defense

mechanism that seeks to minimize the risk posed by adversarial examples by

training on both adversarial and clean data.
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Chapter 3

Methodology

It was shown that ”outside the box” is an efficient novelty detection approach

used in many applications. However, we have already mentioned its weak security.

This approach can be exposed to adversarial attacks that lead the monitor to

output wrong decisions. We distinguish two types of attacks against this schema:

Attack 1 - from valid to invalid Consider a testing input x which would nor-

mally be identified as valid by the monitor and belongs to one of the training

classes. This attack modifies x in a slight and unperceivable way so that it

gets rejected by the monitor. An example of this attack, would be to imag-

ine a denial of service for a legitimate user in a face recognition system.

Attack 2 - from invalid to valid Consider a testing input x which would nor-

mally be rejected by the monitor as not belonging to any of the classes seen

during training. This attack modifies x in a slight and unperceivable way to

make it get accepted by the monitor. The attack can be targeting a preset

prediction, or just going with any prediction output by the neural network.
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As an example of such attack, we would imagine letting go an intruder in a

face recognition system. The intruder is identified as any of the legitimate

white-list users.

In terms of implementation, we propose to formulate each attack as an optimi-

sation problem that can be solved by an iterative optimisation algorithm. We

also experiment with off-the-shelf adversarial attacks against neural networks and

assess their efficiency, as well as augmenting them by an optimisation component

to target a specific attack and make them more efficient. We detail these two

approaches next.

3.1 Optimisation based attacks

Attack 1: from valid to invalid

Consider a neural network that is trained over only two classes, where each class

is represented by the monitor under one box. As shown in figure 3.1 - a, we push

the images of valid points, as represented by the monitor, from both classes

and to fall outside their boxes and therefore be marked as novel exactly as for

the ? points. Note that points are still marked as their class symbols ( or )

after the attack just for a simpler representation. All samples that are located

outside their class abstraction boxes are rejected by the monitor and marked as

(?).

More generally, consider a point x0 such as monitor(x0, c) = 1 (accept as class c),

our goal is to find a point x as close as possible to x0 such that monitor(x, c) = 0

(reject). For measuring the distance between the two points we either use the
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L1 or L2 norm difference. In addition, we require that x preserves the same

prediction as of x0 via the monitored network: predict(x) = predict(x0) = c.

In case of the L1 norm, we replace the non-differentiable objective function by a

differentiable one through introducing a new vector z having the same dimension

as x. We now need to minimize the sum of z vector instead of minimizing L1

norm objective. Our non-differential problem hence becomes a linear differential

problem as follows:

Minimize
n∑

i=1
zi

Subject to zi + (xi − x0
i ) ≥ 0

zi − (xi − x0
i ) ≥ 0

monitor(x, predict(x)) = 0

predict(x) = predict(x0)

(3.1)

We next use the L2 norm (‖x− x0‖2) to formulate a second optimisation problem.

The constraints for L2 are same as for L1 except that L2 norm is already a

differential objective function and can be directly tuned by a linear solver. The

L2 norm attack focuses on minimizing the square root of the sum of squared

differences of (x0) and (x) elements. We then get a linear programming problem

as follows:
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(a) Attack 1

(b) Attack 2

Figure 3.1: Optimisation attack generalization

Minimize
√√√√ n∑

i=1
|xi − x0

i |
2

Subject to monitor(x, predict(x)) = 0

predict(x) = predict(x0)

(3.2)

Attack 2: from invalid to valid

In this attack, we push the images of invalid points ?, as represented by the

monitor, towards the boxes representing legitimate classes. The points will be

marked by the monitor as valid if, at the same time, the neural network predic-

tion matches the box owner, either as or . The 2d projection of the monitor

representation for a binary classifier is shown in figure 3.1 - b. Note again that
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points are still marked as invalid (?) after the attack just for an easier repre-

sentation. Any point that belongs to a box of its same class is accepted by the

monitor and marked as its class symbol ( or ).

Now given a point x0 where monitor(x0, c) = 0 (reject), our goal is to find a

point x as close as possible to x0 such that monitor(x, predict(x)) = 1 (accept

as same class of x0). For measuring the distance between the two points we also

choose the L1 norm or the L2 norm difference.

For the L1 norm, we formulate the following problem:

Minimize
n∑

i=1
zi

Subject to zi + (xi − x0
i ) ≥ 0

zi − (xi − x0
i ) ≥ 0

monitor(x, predict(x)) = 1

predict(x) = predict(x0)

(3.3)

For the L2 norm, we formulate the following problem:

Minimize
√√√√ n∑

i=1
|xi − x0

i |
2

Subject to monitor(x, predict(x)) = 1

predict(x) = predict(x0)

(3.4)

The four formulated problems can be efficiently solved by constrained optimisa-

tion numerical methods that are either local such as SLSQP [17] and COBYLA

[18] or global such as Differential Evolution (DE) [19] and SHGO [20].
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• Local optimisation: Search over a specific region

– SLSQP: Is a local optimisation method that focuses on minimizing a

scalar function of one or more variables using Sequential Least Squares

Programming (SLSQP) . SLSQP is gradient based (white-box) and

accepts both equality and inequality constraints. It finds a feasible

point by applying gradient steps along a positive direction. It performs

a local search. It requires an initial starting point and assumes the

solution is close in the local region.

– COBYLA: Is a local optimisation method that focuses on minimizing

a scalar function of one or more variables using the Constrained Op-

timisation BY Linear Approximation (COBYLA) algorithm . Unlike

SLSQP, it is gradient free (black-box) and only accepts inequality con-

straints. It finds a feasible point by evaluating the objective function

and constraints via a trust region. It also requires an initial guess and

considers the solution is present within a desired region.

• Global optimisation: Search over wider parameter space

– SHGO: Is a global optimisation method that focuses on finding the

global minimum of a function using SHGO optimisation (Simplicial

Homology Global Optimisation). It is gradient free (black-box) and

accepts both inequality and equality constraints. It uses methods that

detect the homological properties of the objective function. It is mainly

based on pure Combinatorial Theory. It is appropriate for computa-

tionally expensive black box functions. That is, for every input the
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output is evaluated and solution is given respectively.

– Differential Evolution (DE): Is a global optimisation method that fo-

cuses on finding the global minimum of a multivariate function, func-

tion who has multiple input outputs. It is gradient free (black-box) but

often requires many function evaluations than gradient based meth-

ods. It is a genetic population based method. It works via mutating

inputs with other input solutions to create other trial inputs.

We used implementations from SciPy library [21] to solve our formulated prob-

lem using methods proposed. We show-case the whole experiment of attacks as

detailed in chapter 5.

3.2 Adversarial attacks against neural networks

Another idea is to use known adversarial attacks against neural networks as a

starting point for attacking the monitor. Adversarial neural network attacks aim

at changing the prediction of an input x0 when replaced by a close point x as of

predict(x) 6= predict(x0). In their white-box primitive version, a step is taken in

the opposite direction of the gradient of the objective function at the point x0.

We use the implementation of both white-box and black-box adversarial attacks

from the Foolbox library [22]. We use different adversarial attacks and represent

the description of each using the table 3.1.

It is interesting to check whether adversarial samples would be detected as novel

by the novelty monitor. In case these samples are not, we may consolidate by

optimisation based methods to make them pass as valid points. In other words,
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we can take an adversarial sample as a starting point for our search for an attack

against both the neural network and the monitor.
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Attack Description

FGSM

This attack computes the gradient of loss

with order L∞. Gradient steps take the di-

rection that maximizes the loss of image.

L2PGD

This attack computes the gradient and takes

the direction of greatest loss, except it starts

at a random perturbation in the L2 ball.

L2BasicIterativeAttack
This attack applies the same FGSM algo-

rithm multiple times with smaller step size.

L2FastGradientAttack This attack extends the FGSM to L2 norm.

InversionAttack
This attack inverts negative images by in-

verting the pixel values.

BinarySearchContrastReductionAttack

This attack reduces the contrast of the input

using a binary search to find the smallest ad-

versarial perturbation.

L∞DeepFoolAttack

This attack takes gradient steps in the direc-

tion of the image class having the smallest

distance of L∞ norm.

SaltAndPepperNoiseAttack
This attack adds white or black pixels until

the input is mis-classified.

L0BrendelBethgeAttack

This attack follows the adversarial boundary

to find the minimum distance L0 to the clean

image.

Table 3.1: Foolbox neural network adversarial attacks and description
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Our goal here is to find a point x very close to x0 such that predict(x) 6=

predict(x0) and monitor(x, predict(x)) = 1 (accept). We assess the performance

of an abstraction based monitor to flag adversarial samples as novel. We study

the effect of tuning ”outside the box” parameters to enhance the robustness of the

monitor. In a second time, we use optimisation techniques to force adversarial

samples to bypass the monitor.

3.3 Defense mechanism against attacks

Defending adversarial attacks is a critical step towards reliable deep learning mod-

els. We aim to propose existing defense mechanisms that require appending noisy

data to an auto-encoder so that it reconstructs original samples. Experimental

results show that this approach could be successful at the first step and could

increase the robustness of the monitor against adversarial attacks. We provide

an analysis on a defense mechanism known as denoising auto-encoders.

Auto-encoders are some type of neural networks just like classifiers. Classifiers

condense all data of a single image into a single label, auto-encoders however

compress the data into a latent vector, known as z, as stated earlier the latent

space. Auto-encoders main goal is to preserve the opportunity to re-create same

exact images in the future. While re-creating again the same data may seem

an impossible task, auto-encoders can actually do this task. An auto-encoder

consists of two networks: an encoder and decoder, and a middle layer mapping

inputs into a lower dimension, called a bottle-neck layer. The role of encoders is

to compress a representation, for example an image, into a latent vector z, then

a decoder reconstructs back an image from a latent vector z, i.e., exactly the
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opposite.

We realize that optimisation or neural network adversarial attacks usually end up

producing noisy images. Noise can sometimes be catasrophic and it can lead to a

change in the validity or mis-classification of inputs. So we tend to use denoising

auto-encoders in specific. Denoising auto-encoders help to reconstruct the clean

version of an image from corrupted and noisy images (see figure 3.2). By feeding

the encoder noisy images and setting the original clean images as our desired

outputs, an auto-encoder learns to remove noise from these images. Images then

become clear and succeed to preserve the original class and validity of inputs,

hence hindering the effect of attacks.

Figure 3.2: Denoising auto-encoders architecture
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Chapter 4

Experimental setup

4.1 Attacks experimental setup

In optimisation solvers experiment, we test our proposed attacks with different

network architectures, namely two very simple neural networks and a MNIST

classifier. We construct network 1 as a modified version of a XOR network with

2 hidden layers A and B. We choose that network 1 is a two-class neural network,

that involves only 2 classes: classes 0 and 1. Figure 4.1 represents its network

architecture. We follow same abstraction based novelty detection procedure on

network 1 to build a monitor and construct the abstraction boxes using the

training inputs. Later during testing, inputs are accepted if they belong to a box

having same output class otherwise rejected accordingly.

We prepare decision plots instead of abstraction box plot paradigm to evaluate

input samples. Decision boundary plots make it easier to notice the regions where

inputs get accepted or rejected. We first construct 2 decision boundary plots that
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distinguish the regions defining classification and validity of inputs, then combine

these plots to construct an additional plot that limits the boundaries of both

validity and classification. Figure 4.2 shows the decision boundary plot with the

training inputs projection.
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Figure 4.1: Network 1 architecture

(a) Classification & Validity Region
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(b) Classification Region (c) Validity Region

Figure 4.2: Decision Boundary plot for network 1

We consider another neural network, network 2, inspired from https://playground.

tensorflow.org/. Network 2 has multiple layers, however, for simplicity, we con-

sider outputs at layers A and B. Similar to network 1, network 2 is a two-class

neural network that involves only 2 classes. The network architecture of network

2 is represented in figure 4.3. We follow same abstraction based novelty detection

procedure on network 2 as for network 1.

We again construct the decision boundary plots that define the regions of classi-

fication and validity of inputs, in addition to projecting training inputs (figures

4.4). We also train a MNIST classifier once over 2 labels (0, 1) and once another

on 3 labels (0, 1, 2) to evaluate for our experiment.
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(b) Classification Region (c) Validity Region

Figure 4.4: Decision Boundary plot for network 2

However, in adversarial attacks experiment, we only test on a MNIST classifier.

We train the neural network of MNIST classifier over all the classes of the MNIST

benchmark.

4.2 Defense experimental setup

For the second experiment, we need then to defend against the preceding at-

tacks: optimisation and adversarial neural network based attacks. We first train

a denoising auto-encoder on noisy images obtained by attacks. Once again, we

consider a MNIST classifier trained over 2 labels and 3 labels, to protect against

optimisation based attacks. We also consider a MNIST classifier trained over all

the classes of the MNIST benchmark to test against adversarial neural network

attacks.
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Chapter 5

Optimisation solvers experiment

In this experiment, we evaluate the performance of different optimisation solvers

in solving the four proposed optimisation problems and successfully generating

adversarial samples. We evaluate four solvers from SciPy: COBYLA, SLSQP,

SHGO and DE. We experiment with 4 network architectures described in chapter

4.

5.1 Attacks on network 1

5.1.1 Attack 1 on network 1

We start by applying our attacks on network 1. As mentioned for attack 1, we

need to pass a valid entity as invalid. We experiment attack 1 using local and

global optimisation methods. We tested over 20 random x0 samples while using

L1 and L2 norm difference and counted the times where the optimiser found a

solution, i.e. generated an effective and successful attack point x. Results are
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shown in figure 5.1.

Figure 5.1: Success rate of different optimisation based methods for attack 1 on
network 1

(a) L1/L2 norm attack using SHGO
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(b) L1/L2 norm attack using DE

Figure 5.2: Decision boundary plot of attack 1 on network 1

Results show that DE and SHGO outperform other methods and succeed to

convert all inputs from valid to invalid, using both norms. We plot attack results

of DE and SHGO methods using the decision boundary plots established before

in chapter 4. Figure 5.2 shows attack 1 where valid inputs ( ) are pushed outside

their boxes to be treated as invalid ( ).

5.1.2 Attack 2 on network 1

We move now test attack 2, an invalid entity to act as valid. Similarly, we run

attack 2 using both L1 and L2 norms. We choose 20 arbitrary inputs to convert

into valid. We run the attack using the four optimisation methods. Results of

attack 2 are represented in figure 5.3.

The overall result shows that DE is the most effective method. We project the

attack attempts of DE method in figure 5.4. We see ( ) invalid inputs transform

to valid ( ). ( ) representation indicates the attack fails to find a solution.
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Figure 5.3: Success rate of different optimisation based methods for attack 2 on
network 1

(a) L1/L2 norm attack using DE

Figure 5.4: Decision boundary plot of attack 2 on network 1
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5.2 Attacks on network 2

5.2.1 Attack 1 on network 2

We experiment the same attacks on network 2 as on network 1. We test attack

1 over 20 random x0 samples and count the times where the optimiser found a

solution, i.e. generated an effective attack point x. We represent results in figure

5.5.

Results prove that all attacks are successful using all methods. However SLSQP,

DE and SHGO perform better than COBYLA as an overall result of 20/20 suc-

cessful samples, though there is a slight difference for COBYLA. We show the

projection of attacks using SLSQP, SHGO and DE methods in figure 5.6.

Figure 5.5: Success rate of different optimisation based methods for attack 1 on
network 2
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(a) L1/L2 norm attack using SHGO

(b) L1/L2 norm attack using DE

(c) L1/L2 norm attack using SLSQP

Figure 5.6: Decision boundary plot of attack 1 on network 2
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5.2.2 Attack 2 on network 2

We also test attack 2 over 20 random x0 samples and represent results in figure

5.7. We notice that local optimisation methods like COBYLA didn’t converge to

a single solution. SLSQP also proved poor results using L2 norm. However global

optimisation methods like SHGO and DE had better performance especially using

L1 norm. We represent attack attempts of SHGO and DE methods using figure

5.8. The figures show all invalid points transform into valid.

Figure 5.7: Success rate of different optimisation based methods for attack 2 on
network 2
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(a) L1/L2 norm attack using SHGO

(b) L1/L2 norm attack using DE

Figure 5.8: Decision boundary plot of attack 2 on network 2

5.3 Attacks on MNIST classifier

5.3.1 Attack 1 on MNIST classifier

We come to our main goal, to apply attacks on ”outside the box” MNIST classifier

to show its vulnerability to attacks. We follow the previous procedure of attacks

but on a MNIST classifier. In attack 1, we find an invalid input x, a perturbation
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of a valid input x0, while preserving the class of x0. We test attack 1 using the

four optimisation methods and using L1 and L2 norm attacks. We choose 20

arbitrary image samples for testing and represent successful attempts of attacks

in figure 5.9 while training the neural network on both 2 and 3 classes.

Figure 5.9: Success rate of different optimisation based methods for attack 1 on
MNIST classifier

We see a deteriorating performance of COBYLA and SLSQP methods while

testing on a MNIST classifier. These methods fail to converge to a feasible and

compatible point. Global optimisation methods (DE and SHGO) however achieve

very successful attempts. DE has better overall performance than SHGO when

evaluating L2 norm results. However, when comparing DE and SHGO optimisers,

we realize that images obtained by DE attack appear to be significantly noisy

unlike SHGO which kept the original pattern of an image still recognizable.
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(a) L1 norm attack using SHGO

(b) L2 norm attack using SHGO

Figure 5.10: 2d projection of attack 1 attempts on MNIST classifier: 2 classes
involved

We plot attack attempts using SHGO method in figure 5.10. The figure shows

the transformation of inputs after attack 1 while the neural network is trained on

2 classes. We see the transformation of valid points ( or ) deviate outside their

original box. The monitor now rejects these inputs and treats them as novel.

45



(a) L1 norm attack using SHGO

(b) L2 norm attack using SHGO

Figure 5.11: 2d projection of attack 1 attempts on MNIST classifier: 3 classes
involved

We again show attack 1 via SHGO method while training the neural network

on 3 classes (figure 5.11). We see valid inputs ( , & ) deviate outside their

original box class. The monitor now rejects these inputs and treats them as novel.

(?) represents that the attack fails to find a feasible solution. Despite that some

of these (?) attempts deviate outside their box class, they fail to preserve their

original class hence the attack represents a failure.
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5.3.2 Attack 2 on MNIST classifier

We also apply attack 2 on MNIST classifier, we find a valid input x, a perturbation

of an invalid input x0, while preserving the class of x0. We experiment on 20

arbitrary invalid inputs and represent the success rate of these attempts in figure

5.12 while neural network is trained once on 2 classes and once on 3 classes.

Figure 5.12: Success rate of different optimisation based methods for attack 2 on
MNIST classifier

Still, local optimisation attacks (COBYLA and SLSQP) went unsuccessful while

applying attack 2 on MNIST classifier. Global optimisation methods (DE and

SHGO) prevail over other methods and prove good performance. DE and SHGO

methods play a challenging role in attack 2. We stick to SHGO method as we

consider again that image details are obscure using DE method, as we need the

digit pattern to be still recognizable.
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(a) L1 norm attack using SHGO

(b) L2 norm attack using SHGO

Figure 5.13: 2d projection of attack 2 attempts on MNIST classifier: 2 classes
involved

We show the transformation of inputs using SHGO method while the neural

network is trained on 2 classes in figure 5.13. We see that the invalid points (?)

deviate inside the box of the same predicted class. Samples marked as (?) fail to

belong to their box classes hence the monitor rejects these inputs.
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(a) L1 norm attack using SHGO

(b) L2 norm attack using SHGO

Figure 5.14: 2d projection of attack 2 attempts on MNIST classifier: 3 classes
involved

We show the results when neural network is trained on 3 classes. Figure 5.14

shows the attack attempts where inputs are transformed from invalid (?) to

valid. Again, (?) represents that these points fail to exist inside their class boxes.

5.4 Discussion

In order to make it simpler for comparison, we combine the results of all men-

tioned attacks for all networks in figure 5.15.
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Figure 5.15: Success rate of different optimisation based methods for the four
proposed attacks on different network architectures.

Overall results completely show that local optimisation methods such as SLSQP

and COBYLA were unsuccessful when applied to the MNIST classifiers. We

attribute this to the 28 ∗ 28 dimensionality of the images. Changing many pixels

results in a relatively large distance from the original point, which made the

search very narrow around the given starting point. These methods converged

when applied on networks 1 and 2, where the input size was 2d. So we refer

dimensionality as our main trouble. Another factor that hinders the process

is non-smoothness of our problem. Note that even if our objective function is

linear, our constraints such as monitor(x) = 0/1 and predict(x) = predict(x0)

are strongly non-linear, which hinders the task of the used linear solvers. Maybe

when dealing with a simpler problem, dimensionality wouldn’t be a trouble and
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the problem could be solved by the local solvers such as COBYLA and SLSQP.

We could also make local optimisation attacks more successful by giving the

algorithm smarter starting points. Most algorithms guarantee convergence to

local optimums if they are given a compatible initial guess. This is an easy task

for networks 1 and 2 as we already know the validity and classification regions

using decision boundary plots. This means that we already have track of our

solution and we can easily impose a feasible start.

Global optimisation methods (DE and SHGO) however were much more success-

ful. DE has more successful attempts than SHGO only in some few cases, but

generated sample images appear very noisy making the attack easily perceived

by a human observer. The reason behind this is the genetic based algorithm DE

follows and the mutation of inputs that leads to obscure image results. SHGO is

the best method in terms of success rate and preserving the original digit shape.

Figure 5.16 illustrates examples of MNIST images before and after ”Attack 1”.

The classifier and monitor were trained over 2 classes (0, 1) in this experiment

hence these digits are detected as valid.

(a) Before SHGO Optimisation Attack. Samples are decided as not novel.
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(b) After SHGO Optimisation Attack. Samples are decided as novel.

Figure 5.16: Attack 1 adversarial examples obtained by SHGO method

Figure 5.17 illustrates examples of MNIST images before and after ”Attack 2”.

Since the classifier and monitor were trained over the 2 classes (0, 1) in this

experiment, hence other labels (2, 3, 4, 5, 6, 7, 8 & 9) are detected as invalid.

(a) Before SHGO Optimisation Attack. Samples are decided as novel.
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(b) After SHGO Optimisation Attack. Samples are decided as not novel.

Figure 5.17: Attack 2 adversarial examples obtained by SHGO method

SHGO shined since it is a derivative-free optimiser that behaves in a black box

way and leverages input/output pairs. Another comparison factor is the opti-

miser runtime. We recorded large run-times (10− 18 hours) for most optimisers

during the experiment using a 16GB ram computer and a processor of 2.60 GHz

frequency. However, SHGO converged in matter of few minutes.
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Chapter 6

Adversarial attacks experiment

In this chapter, we show that adversarial neural network attacks are also effective

when targeting the monitor of a MNIST classifier. In principle, we don’t expect

the monitor to detect these adversarial images as valid. A perfect novelty detector

should flag adversarial samples as novel or anomalies rather than validate their

wrong predictions. ”Outside the box” novelty detection was not designed with

the goal of detecting adversarial samples. However, we need to make sure whether

such samples would be detected as novel or not.

In this experiment, We consider a neural network classifier trained over all the

classes of the MNIST benchmark. We test neural network attacks over 100 sam-

ples and represent the number of successful attacks (i.e., prediction was suc-

cessfully flipped) and the number of successful attacks considered as valid (i.e.

monitor validates the prediction considering samples as not novel) in figure 6.1.

Results show that most of these samples succeed into fooling the monitor and

classifier. Table 6.1 compares the success rate of these attacks and shows a per-
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turbation example. Note that in this experiment initial environment properties of

the detector were used, hence a single cluster box for each class and 0 tolerance.

Figure 6.1: Experiment measuring the number of successful and valid attack
attempts using neural network attacks

Attack Success rate Image

Original image -

FGSM 77%

L2PGD 100%
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L2BasicIterativeAttack 100%

L2FastGradientAttack 100%

InversionAttack 63%

BinarySearchContrastReductionAttack 86%

L∞DeepFoolAttack 77%

SaltAndPepperNoiseAttack 100%

L0BrendelBethgeAttack 100%

Table 6.1: Foolbox neural network adversarial attack result

We see that most adversarial samples are detected as valid by the monitor. These

attacks fool the monitor but not completely. We need the monitor not to recognize

any adversarial samples passed, hence we control some properties of ”outside the

box” to see its effect on validity of attack points.
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6.1 Tuning number of clusters

We first tune the number of clusters to 1, 2 and 3. We test on same 100 samples

and show the results in figure 6.2. Results show that there is no clear effect of

tuning the number of clusters on the tested samples.

Figure 6.2: Experiment measuring the number of successful and valid attack
attempts using neural network attacks while tuning different number of clusters

We analyze the effect of tuning the number of clusters visually. We show in figure

6.3 the 2d projection of inputs while we apply FGSM attack [23], using 1, 2 and

3 clusters.

From the 2d projection plot, we say that a single cluster has larger confidence
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of acceptance than 2 or 3 clusters. We conclude that increasing the number of

clusters per class from only one to 2 or 3 clusters per class has a positive impact

on invalidating adversarial samples.

(a) 1 cluster

(b) 2 clusters (c) 3 clusters

Figure 6.3: 2d projection of FGSM attack attempts while tuning different number
of clusters

6.2 Tuning tolerance factor

We then tune box tolerance factor that is responsible for enlarging the abstraction

boxes. We test on tolerance factor 0, 0.1 and 0.25. We test on same 100 samples

and represent the results of attack attempts in figure 6.4.
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The figure shows a proportional relation between validity and tolerance factor.

As we increase the tolerance factor, more inputs get accepted. We clearly see this

through multiple attacks.

Figure 6.4: Experiment measuring the number of successful and valid attack
attempts using neural network attacks while tuning different tolerance

We also analyze the effect of tuning the tolerance factor visually. We project

the FGSM attack attempts and show different tolerance tolerance in figure 6.5.

We see that more invalid inputs are being accepted and we have a wider range

of confidence acceptance while increasing the tolerance factor. Increasing the

tolerance factor from zero to 0.1 or 0.25 resulted in accepting more adversarial

samples.
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(a) 0 tolerance

(b) 0.1 tolerance (c) 0.25 tolerance

Figure 6.5: 2d projection of FGSM attack attempts while tuning different toler-
ance factor

However, enlarging the box by some factor, tuning the number of clusters, or

trying to control any other condition in ”outside the box” environment may not

always lead that inputs will 100% be detected as valid by the monitor. We

next improve the adversarial attacks represented in figure 6.1 further so that the

monitor is fooled completely. All adversarial samples need to bypass the monitor.
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6.3 Optimisation attack again!

For this experiment, we take a certain attack, for example the FGSM attack as a

first trial, and run the attack on 300 samples without any optimization technique.

We obtain adversarial samples that act either as valid or invalid. We then run

the optimization attack, ”attack 2” using L1 norm, only on invalid inputs so that

they get transformed into valid. Later, all inputs are passed into monitor and

get treated as valid. Note that in this example we omit the inputs where the

neural network attack fails to mis-classify. Figure 6.6 shows a 2d projection of

the adversarial samples as per the monitor definition. Before the optimisation

attack, there are still adversarial samples marked as ? points. After the attack,

all ? points disappear. The monitor now completely detects adversarial samples

as valid.

Figure 6.6: Fooling the classifier and the monitor together: FGSM adversarial
samples acceptance after optimisation

We repeat same experiment but with a different attack other than FGSM for a

different trial, we run the L2FastGradient Attack on 300 samples without any

optimization technique. Figure 6.7 shows a 2d projection of the adversarial sam-

ples as per the monitor definition. Before the optimisation attack, there are still

61



adversarial samples marked as ? points. After the attack, all ? points disappear.

The monitor now completely detects adversarial samples as valid.

Figure 6.7: Fooling the classifier and the monitor together: L2FastGradient ad-
versarial samples acceptance after optimisation

We show an image example obtained by the neural network attacks in figures 6.8

and 6.9. Images in figure 6.8 show first the image before the FGSM attack, after

FGSM attack, and after optimisation attack simulation. We also show image

results of L2FastGradientAttack while simulating adversarial attack with ”attack

2” in figure 6.9.

In conclusion, adversarial samples successfully detected as invalid can undergo

one of our optimisation attacks to pass the monitoring test. Of course, we had

to suppress the predict(x) 6= predict(x0) constraint. We see that optimisation

techniques succeed again to fool the monitor. SHGO method also remains a good

choice to control neural network attacks.
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(a) Before adversarial at-
tack

(b) After adversarial at-
tack

(c) After adversarial +
optimisation attack

(d) Before adversarial at-
tack

(e) After adversarial at-
tack

(f) After adversarial + op-
timisation attack

Figure 6.8: Image samples after dual attack (FGSM + attack 2)

(a) Before adversarial at-
tack

(b) After adversarial at-
tack

(c) After adversarial +
optimisation attack
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(d) Before adversarial at-
tack

(e) After adversarial at-
tack

(f) After adversarial + op-
timisation attack

Figure 6.9: Image samples after dual attack (L2FastGradient + attack 2)
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Chapter 7

Defense mechanism against

attacks

In this chapter, we study the effect of demonising auto-encoders against our at-

tacks. Images produced by optimisation and neural network attacks mainly are

mainly corrupted noisy images. And added noise usually changes the character-

istics of the original inputs completely; thus, the first idea that comes to mind

is to remove noise from adversarial examples and generate a mapping of these

examples to clean examples.

Denoising auto-encoders translate input images (such as adversarial examples)

into corresponding output images (aka. clean examples). We train the denoising

auto-encoder via feeding it clean and noisy inputs from MNIST data-set. The

denoising auto-encoder now learns to construct clean images from the noisy im-

ages. We show the impact of denoising auto-encoders against both optimisation

attacks and neural network attacks.
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7.1 Effect of denoising auto-encoders against op-

timisation attacks

We choose to test our defense mechanism against SHGO optimisation attack.

We run the same SHGO experiment using the L1 norm difference as in chapter

5, then run the defense mechanism on top of the 20 sample images obtained by

optimisation attack. Figure 7.1 shows that image reconstruction using denoising

auto-encoders hinders the effect of optimisation attacks where the number of

successful attack attempts drops.

Figure 7.1: Success rate of SHGO optimisation attack after defense

We show an image example where we defend an input sample against ”attack 1”
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in figure 7.2. The figure shows an image before the attack 1 detected as valid,

after attack 1 detected as invalid, and after reconstruction where it gets detected

again as valid. We show another example where we defend against ”attack 2”.

Figure 7.2 shows an image before attack 2 detected as invalid, after attack 2 and

detected as valid, and after defense where it turns as invalid. We see that the

denoising auto-encoders were able to recover the validity of the original image by

reconstruction.

(a) Before optimisation
attack

(b) After optimisation at-
tack 1

(c) After defense against
attack 1

(d) Before optimisation
attack

(e) After optimisation at-
tack 2

(f) After defense against
attack 2

Figure 7.2: Defending an image sample against optimisation attacks
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7.2 Effect of denoising auto-encoders against neu-

ral network attacks

We next test our defense mechanism against neural network attacks. We run

again the experiment of adversarial neural network attacks in chapter 6, and

run the defense mechanism on top of 100 sample images obtained by neural

network attacks. Figure 7.3 shows that image reconstruction using denoising

auto-encoders has a positive impact to fail adversarial attacks hence the success

rate of attack attempts also drops.

Figure 7.3: Success rate of neural network adversarial samples after defense

We show examples where we defend a testing sample against several neural net-

work attacks. Figure 7.4 shows images before the attack belonging to class c,

after the adversarial attack where the image gets mis-classified, and after recon-
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struction where the image is classified again as c. We again see that denoising

auto-encoders are able to recover the class of the original image by reconstruction.

(a) Before adversarial at-
tack

(b) After FGSM adversar-
ial attack

(c) After defense against
attack

(d) Before adversarial at-
tack

(e) After L2FastGradient
attack

(f) After defense against
attack

(g) Before adversarial at-
tack

(h) After Inversion adver-
sarial attack

(i) After defense against
attack
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(j) Before adversarial at-
tack

(k) After SaltAndPepper-
Noise attack

(l) After defense against
attack

Figure 7.4: Defending an image sample against neural network attacks

We were not able to find a legitimate defense that always bypasses the monitor

attacks. We did not even test ”outside the box” against more sophisticated de-

structive attacks. Denoising auto-encoders seem a promising defense mechanism

and it is still important to develop as per our experiment results. It would be a

good idea to implement as a starting point in controlling adversarial attacks.
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Chapter 8

Conclusion

In conclusion, we demonstrate that novelty detection monitors are vulnerable to

fooling attacks. We were successfully able to mislead the monitor using multiple

methods. We formulated optimisation problems that can be solved efficiently to

find attack vectors. We also leveraged adversarial neural networks attacks from

the literature to fool the classifier. We have also shown that adversarial neural

network attacks combined with optimisation techniques make a deadly combo

and succeed to fool both the classifier and monitor at the same time.

Novelty detection systems are always going to be vulnerable against such types

of attacks as the field progresses. We must take into consideration that we will

never be completely immune to attacks. Once we’re is exposed to a certain risk,

many threat models can follow and be created.

We envision exploring more ways to help defend novelty detection against at-

tacks. We see that denoising auto-encoders did help in defending MNIST classi-

fiers against attacks, but not completely. The range of attacks is very expanding,
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and the process of detecting and defending against attacks became very challeng-

ing. Therefore, building an effective defense mechanism whether against neural

network attacks or optimisation attacks is crucial.

In summary, we hope to find a defense mechanism with better performance on

our proposed attacks, and that new novelty detection techniques would consider

security by design a main requirement, especially in decision-making critical sys-

tems.
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Appendix A

Research Article

This master thesis is summarized in a research paper and was submitted to

the workshop ”Artificial Intelligence for Anomalies and Novelties (AI4AN 2021)”

co-located with the conference ”International Joint Conference on Artificial In-

telligence (IJCAI 2021)”: https://sites.google.com/view/ai4an2021. This

workshop features the most recent artificial intelligence advances for recognition,

detection and adaption of anomalies & novelties. The research submission was

accepted for a full presentation slot. We include the reviewers comments and the

research paper submitted below.

Review Description
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Review 1 This manuscript considers the security of novelty detection and creates attack samples to

fool both the abstraction-based novelty detector and the classifier, which is a very novel

perspective as far as I know. Based on optimization methods and adversarial attacks, the

authors create high-quality samples to achieve successful and efficient attacks. However,

there are some issues that could be addressed:

1. Excessive discussion of anomaly detection/novelty detection/outlier detection in this

manuscript may be unnecessary. A clear introduction of novelty detection and attacks

is enough.

2. Why choose the abstraction-based novelty detector? Given that there are many other

detectors in Sec. 2, it would be great to know if the attack applies to other types of

detectors as well.

3. The solution process of the four optimization problems is not clear enough. A brief

introduction or supplement might be better. Besides, Fig. 6 shows the attack samples

from valid to invalid, how about the visualization of samples from invalid to valid?

Readers may wonder what they look like.

4. Last but not least, in Sec. 4.2 where 100% attack success over 300 MNIST samples

with suppressing the predict(x) not equal to predict(x0) constraint, which leads to a

puzzling problem: When the two predictions are the same, should x still be considered

a novelty or an adversarial sample? It might be reasonable to have the monitor accept

x in this case since x may be very close to x0 and thier predictions are the same. In

other words, in this case two different predictions are necessary, otherwise the attack

is meaningless. So it might make more sense to report the results with two different

preditions.
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Review 2 The authors combine two research directions, adversarial machine learning (AdvML) and

anomaly detection (AD). They show possible attacks on a recent AD method by Henzinger

et al., which analyses the hidden activations of neural networks for novel inputs. Generally,

the topic is of interest to the AD community as misclassifications due to attacks may be costly

in e.g. fraud or intrusion detection. It is a welcome step to see research in this direction.

There are some obvious weak spots of this paper:

1. The related work section is rather shallow and does not cover all relevant research

directions. It may give a first overview about AD methods, but omits AdvML entirely.

The authors conclude ”little or none work has been conducted on the security of the

aforementioned [AD] approaches” - there definitely is a lot of work on intrusion

detection attacked & hardened by AdvML [1,2,3,...] that should be considered.

2. There is no discussion why the AD method by Henzinger et al. is considered as

method under attack. I wish there were some hints why it may be an exemplar for

AD, or how the results could be leveraged to other methods. Otherwise, it would be

more beneficial to evaluate multiple methods.

3. There is no overview about the attacks & parameters used in 3.2/4.2. ”In their

white-box primitive version, a step is taken in the opposite direction of the gradient”

(p.4) makes me believe that the authors used FGSM - but what is the step size, what

is the attack budget? And above all: why using FGSM instead of state-of-the-art

attacks like PGD or C&W? This makes the research hard to follow & reproduce.

Furthermore, AD & AdvML may run in some contradictions: is a sample pushed from

anomalous to normal still anomalous? Or has it become normal as it now resides in the

vicinity of normal samples? I like the discussion the authors started in their introduction

about ”[novelty detection] is parameterized by both the data and the classifier” (p.1). In my

opinion, this demands at least a check in the evaluation whether the adversarial examples

may be shifted towards normal classes. Similiar intuition goes to chapter 4.2: ”a perfect

novelty detector should flag adversarial samples as novel” (p.6) - but should it? I see that

e.g. a F-MNIST sample should never be detected as normal for an novelty detector trained

on MNIST - but I doubt that AdvML will ever push an MNIST sample so far away that it

will not be close to an MNIST sample without losing any context features.

I cannot endorse the paper in its current form, but would like to encourage the authors

to follow the research they have started. The overlap of AD & AdvML is interesting and

demands new thoughts and thorough studies.

[1] ”Analyzing Adversarial Attacks against Deep Learning for Intrusion Detection in IoT

Networks” by Ibitoye et al. [2] ”Investigating Adversarial Attacks against Network Intrusion

Detection Systems in SDNs” by Aiken and Scott-Hayward [3] ”Launching Adversarial Attacks

against Network Intrusion Detection Systems for IoT” by Papadopoulos et al.
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Review 3 I recommend weak accept for this paper. The paper is centered on an interesting area,

specifically on attacks against novelty detectors (in this case, the authors mean the problem

of getting a neural network to predict when an input sample is from a novel/unseen class from

the ones used in training). The authors propose a reasonable strategy to attack one such

novelty detection approach which uses bounding boxes on layers, via an optimization problem

involving small perturbations to the input. I think the main gripe with this work is that it

misses a lot of related work and citations for relevant and pre-existing approaches, which is

especially crucial since this strategy of attack is quite common in prior literature, though

the application domain here seems new. I encourage the authors to revise appropriately to

better contextualize their contributions.

Comments:

1. ”However, once trained over a finite set of classes, a deep learning model does not

have the power to say that a given input does not belong to any of the classes and

simply cannot be linked” – this claim seems a bit strong. It seems this would be

achievable with an appropriate loss choice and heuristic. In fact, the next line says

”...has been tackled in many ways in the literature” implying the problem has been

worked on and solutions do exist.

2. The setting the authors discuss seems quite similar to zero shot learning (ZSL) in

the ML domain. Adding clarifications/distinguishing factors, as well as some related

work on this space could more appropriately contextualize the work.

3. This type of ”imperceptible” attack (i.e. perturbation within a small epsilon-

ball/budget to maximize confusion of a classifier) has been widely studied

(e.g. https://www.kdd.org/kdd2018/accepted-papers/view/adversarial-attacks-on-

neural-networks-for-graph-data is one example which does this, but there are many

others). It would be useful to contextualize the contribution in this work with respect

to these prior works (e.g. adding relevant citations after mentioning your proposal

to formulate each attack as an optimization problem in Sec 3).

4. Figure 4 caption could be better written (it’s currently all lower caps and not well-

explained).

5. Some examples of the discussed ”very noisy” adversarial generated samples from

methods like DE/SHGO could be interesting from a reader perspective (you might

be able to include these by using less space for other figures).

6. Figure 7 axes are unmeaningful/hard to interpret.

7. FGSM is introduced without any citation or explanation on page 6.

Table A.1: Reviewers comments
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Abstract
Deep learning is a type of machine learning that
adapts a deep hierarchy of concepts. Deep learning
classifiers link the most basic version of concepts
at the input layer to the most abstract version of
concepts at the output layer, also known as a class
or label. However, once trained over a finite set of
classes, a deep learning model does not have the
power to say that a given input does not belong
to any of the classes and simply cannot be linked.
Correctly invalidating the prediction of unrelated
classes is a challenging problem that has been tack-
led in many ways in the literature. Novelty detec-
tion gives deep learning the ability to output ”do not
know” for novel/unseen classes. Still, no attention
has been given to security aspects of novelty detec-
tion. In this paper, we consider the case study of
abstraction-based novelty detection and show that
it is not robust against adversarial samples. More-
over, we show the feasibility of crafting adversarial
samples that fool the deep learning classifier and
bypass the novelty detection monitoring at the same
time. In other words, these monitoring boxes are
hackable. We demonstrate that novelty detection
itself ends up as an attack surface.

1 Introduction
Machine learning algorithms are excellent at analyzing data
and finding interesting patterns. However, they give up to the
so-called dimensionality curse. It was shown that deep learn-
ing bypasses the traditional machine learning algorithms in
most learning tasks in the literature [Nassar, 2020]. While
deep learning yields remarkable results in the field of raw data
representation and classification, it suddenly becomes sub-
optimal when explaining decisions or recognizing a novel
class of input. Supervised deep neural networks never say
”I don’t know”, they can be just less or more confident about
an outcome or decision. The necessity of monitoring deep
learning for novelty and anomaly detection is directly visible.

Novelty detection can play a significant role and be lever-
aged for monitoring and discovering new classes that were
unseen during training time. However, most work on nov-
elty detection give no attention to its security aspects. In this

paper, we show that from a security perspective, novelty de-
tection can be easily attacked and may augment the attack
surface of deep learning based systems.

We distinguish between three interrelated and very close
concepts, namely anomaly detection, outlier detection and
novelty detection. These terms are sometimes interchange-
ably used in literature, but we suggest that they mean differ-
ent things and it is time to give each an appropriate definition.
In our terminology, anomaly detection stems from unsuper-
vised one-class modeling or supervised binary classification
into normal and abnormal. Outlier detection stems from un-
supervised learning and consists on finding points that likely
not belong to any clusters found in unlabeled data. Novelty
detection is the process of distinguishing between data inputs
belonging to one of the classes encountered during the train-
ing time and data inputs belonging to classes that are previ-
ously unseen. It is different than outlier detection since data
have labels. It is also different from anomaly detection since
it is parameterized by both the data and the classifier whereas
anomaly detection is usually solely parameterized by the data.
Novelty detection in deep learning is a new and active re-
search area. Abstraction-based novelty detection is one of the
main proposed approaches. This approach summarizes train-
ing input and intermediate data representations into statistical
constructs that makes it easy to detect novelty at testing stage.

A white-box abstraction-based novelty detection method
is proposed in [Henzinger et al., 2020]. A monitor takes
a one-by-one decision on each testing sample and identifies
it as either valid (i.e. the classifier prediction is correct on
assigning the sample to one the training classes), or invalid
(i.e. the classifier prediction is rejected). The monitor deci-
sion is based on verifying whether a special representation of
the sample falls within one of the boxes constructed during
training or outside these boxes. This special representation
is based on values taken from internal neural nodes at hidden
layers. Each class has its own box or set of boxes. We take
these monitors as a case-study in this paper and show that:
(1) these monitors are not efficient when adversarial testing
samples are presented, and (2) these monitors can themselves
be attacked by appending the adversarial generation process
with new constraints. In other words, these boxes are hack-
able.

The remaining of this paper is organized as follows: Sec-
tion 2 summarizes our terminology and literature review. Our
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Figure 1: An example of an outlier detection system

Figure 2: An example of an anomaly detection system

attack methodology is presented in section 3. Section 4 eval-
uates our experiments and findings. Finally Section 5 con-
cludes the paper and sketches future work.

2 Background & Literature Review
First let’s be more precise about what is novelty detection and
how it differs from outlier and anomaly detection. An outlier
is an ”Observation which deviates so much from other obser-
vations as to arouse suspicion it was generated by a differ-
ent mechanism” [Hawkins et al., 1980]. Outlier detection is
the process of coining observations that significantly deviate
from the majority of data. Unsupervised algorithms extract
statistical information indicating how unlikely a certain ob-
servation is to occur, for example, finding a point deviating
far from the statistical means of other points as illustrated in
Figure 1.

An anomaly is a special case of outliers which is usu-
ally tied to special information or reasons [Aggarwal, 2015].
Anomalies indicate significant and rare events that may
prompt critical actions in a wide range of application domains
[Ahmed et al., 2016]. Anomaly detection may require la-
beled data and employ supervised algorithms as illustrated
in Figure 2. For example, we consider the problem of mal-
ware/benign classification as a form of anomaly detection.

Novelty detection is the process of identifying inputs that
belong to unknown classes that were not provided during
training time. Consider a supervised learner having c classes
at training time but c + u classes appear at testing time. The
goal of novelty detection is to invalidate the output of the
classification when samples from the u classes are presented.
Novelty detection is different than the previously described

(a) Abstraction phase

(b) Monitoring phase

Figure 3: An example of novelty detection system based on box
abstractions

anomaly and outlier detection for two main reasons: (1) train-
ing data have labels, and (2) the learner itself is an input to the
detector algorithm.

Novelty detection can be achieved in white-box mode by
taking the model obtained after training and building a moni-
tor on top of it. The monitor fingerprints the behaviour of the
model when training data are presented. For the special case
of deep learning, such a monitor can register the values of
hidden nodes given by forward-propagating the training sam-
ples. The monitored values are abstracted into statistical con-
structs. Later, outlier detection flag inputs having fingerprints
that largely deviate from these constructs. In other words,
this approach transforms the novelty detection problem into
an outlier detection problem by projecting the data into a dif-
ferent hyper-dimensional space. This projection is parame-
terized by the neural network model itself. Different types of
abstractions are proposed in [Henzinger et al., 2020] before
evaluating box abstractions in particular. Figure 3 shows an
example of a box abstraction-based novelty detection system.

Next we summarize the main approaches for addressing
novelty detection in deep learning from the literature.

Distance based methods These methods compute novelty
values or confidence scores based on distance metric
functions. In [Mandelbaum and Weinshall, 2017] the
data are first embedded as derived from the penultimate
layer of the neural network. The confidence score is
based on the estimation of local density. Local density
at a point is estimated based on the Euclidean distance in
the embedded space between the point and its k nearest
neighbors in the training set. A similar approach based
on learning a local model around a test sample is pro-
posed on [Bodesheim et al., 2015] for Multi-class nov-
elty detection tasks in image recognition problems.

Statistical Based Methods Novelties are caused by differ-
ences in data distributions at training and prediction
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time. Some of these methods require sampling the distri-
bution at run-time or an online adaptation of classifiers.
In [Pidhorskyi et al., 2018] the underlying structure of
the inlier distribution of the training data is captured.
The novelty is detected by the means of a hypothesis
test or by computing a novelty probability value.

Auto-Encoding and Reconstruction Based Methods One
way to proceed is to train a deep encoder-decoder
network that outputs a reconstruction error for each
sample. The error is used to either compute a novelty
score or to train a one-class classifier. [Pidhorskyi et al.,
2018] also uses an auto-encoder network but to derive a
linearized manifold representation of the training data.
The manifold representation helps compute a novelty
probability that represents how likely it is that a sample
was generated by the inlier distribution. This is why
we consider it as a statistical based method in the same
time.
[Domingues et al., 2018] introduces an unsupervised
model for novelty detection based on Deep Gaussian
Process Auto-Encoders (DGP-AE). The proposed auto-
encoder is trained by approximating the DGP layers
using random feature expansions, and by performing
stochastic variational inference on the resulting approx-
imate model. Their work can be categorized under
anomaly detection in our terminology.

Bayesian methods These methods use Bayesian formalism
to detect anomalies and new classes in addition to clas-
sification [Roberts et al., 2019]. The basic idea is to add
a ”dummy” class at the root node. The class is consid-
ered under-represented in the training set. The classifier
gives a strong a posterior of being ”dummy” for unseen
instances.

Abstraction based methods These methods consider a fi-
nite set of vectors X , and construct a set Y that general-
izes X to infinitely many elements and has a simple rep-
resentation that is easy to manipulate and answer queries
for. Examples of these methods are ball-abstraction such
as one-class support vector machines, one-class neural
networks [Chalapathy et al., 2018] and box-abstraction
[Henzinger et al., 2020].

However, little or none work has been conducted on the
security of the aforementioned approaches either in the pres-
ence of adversarial samples for fooling the classifier or
against especially crafted samples for fooling the novelty de-
tector and the classifier at the same time. For our study, we
consider the use-case of ”outside the box” [Henzinger et al.,
2020] and analyse its security in different ways.

3 Methodology
In [Henzinger et al., 2020], constructing an abstraction at
layer l of the monitored network for class y works as follows:

1. Collect outputs at layer l for inputs of class y
2. Divide collected vectors into clusters
3. Construct an abstraction for vectors in each cluster, e.g.

an enclosing box.

Monitoring at layer l works as follows:

1. Predict class of input x

2. Collect output at layer l into a vector v

3. Check if any of the abstraction of the predicted class
contains v

4. The prediction is rejected if the check returns empty.

We distinguish two types of attacks against this schema:

Attack 1 - from valid to invalid Consider an input x which
would normally be identified as valid by the monitor and
belongs to one of the training classes. This attack mod-
ifies x in a slight and unperceivable way to make it get
rejected by the monitor. As an example of application of
this attack, we would imagine a denial of service for a
legitimate user in a face recognition system.

Attack 2 - from invalid to valid Consider an input x which
would normally be rejected by the monitor as not be-
longing to any of the classes seen during training. This
attack modifies x in a slight and unperceivable way to
make it get accepted by the monitor. The attack can be
targeting a preset prediction, or just going with any pre-
diction output by the neural network. As an example of
application, we would imagine letting go an intruder in
a face recognition system. The intruder is identified as
any of the legitimate white-list users.

In terms of implementation, we propose to formulate each
attack as an optimisation problem that can be solved by an
iterative optimisation algorithm. We also experiment with
off-the-shelf adversarial attacks against neural networks and
assess their efficiency, as well as augmenting them by an opti-
misation component to target a specific attack and make them
more efficient. We detail these two approaches next.

3.1 Optimisation based attacks

Attack 1: from valid to invalid

Consider a neural network that is trained over only two
classes, where each class is represented by the monitor un-
der one box. As shown in figure 4(a), we push the images of
valid points, as represented by the monitor, from both classes

and to fall outside their boxes and therefore be marked as
novel exactly as for the ? points.

More generally, consider a point x0 such as
monitor(x0, c) = 1 (accept as class c), our goal is to find a
point x as close as possible to x0 such that monitor(x, c) = 0
(reject). For measuring the distance between the two points
we either use the L1 norm or the L2 norm. In addition, we
require that x preserves the same prediction as of x0 via the
monitored network: predict(x) = predict(x0) = c.

In case of the L1 norm, we replace the non-differentiable
objective function by a differentiable one through introducing
a vector z having the same dimension as x. We get a linear
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(a) Attack 1

(b) Attack 2

Figure 4: optimisation attack generalization

programming problem as follows:

Minimize
n∑

i=1

zi

Subject to zi + (xi − x0
i ) ≥ 0

zi − (xi − x0
i ) ≥ 0

monitor(x, predict(x)) = 0

predict(x) = predict(x0)

(1)

We next use the L2 norm (
∥∥x− x0

∥∥
2
) to formulate a sec-

ond optimisation problem. The constraints for L2 are same as
for L1 except that L2 norm is already a differential objective
function and can be directly tuned by a linear solver. The L2

norm attack focuses on minimizing the square root of the sum
of squared differences of (x0) and (x) elements. We then get
a linear programming problem as follows:

Minimize

√√√√
n∑

i=1

|xi − x0
i |

2

Subject to monitor(x, predict(x)) = 0

predict(x) = predict(x0)

(2)

Attack 2: from invalid to valid
In this attack, we push the images of invalid points ?, as rep-
resented by the monitor, towards the boxes representing le-
gitimate classes. The points will be marked by the monitor
as valid if, at the same time, the neural network prediction
matches the box owner, either as or . The 2d projection of
the monitor representation for a binary classifier is shown in
figure 4(b).

Given a point x0 where monitor(x0, c) = 0 (reject), our
goal is to find a point x as close as possible to x0 such that
monitor(x, predict(x)) = 1 (accept as same class of x0). For
measuring the distance between the two points we choose the
L1 norm or the L2 norm.

For the L1 norm, we formulate the following problem:

Minimize
n∑

i=1

zi

Subject to zi + (xi − x0
i ) ≥ 0

zi − (xi − x0
i ) ≥ 0

monitor(x, predict(x)) = 1

predict(x) = predict(x0)

(3)

For the L2 norm, we formulate the following problem:

Minimize

√√√√
n∑

i=1

|xi − x0
i |

2

Subject to monitor(x, predict(x)) = 1

predict(x) = predict(x0)

(4)

The four formulated problems can be efficiently solved by
constrained optimisation numerical methods that are either
local such as SLSQP [Kraft and others, 1988] and COBYLA
[Powell, 1994] or global such as Differential Evolution (DE)
[Price, 2013] and SHGO [Endres et al., 2018]. We used im-
plementations from the SciPy library [Virtanen et al., 2020]
to show case these attacks as will be detailed later in section
4.

3.2 Adversarial attacks against neural networks

Another idea is to use known adversarial attacks against neu-
ral networks as a starting point for attacking the monitor. Ad-
versarial neural network attacks aim at changing the predic-
tion of an input x0 when replaced by a close point x as of
predict(x) 6= predict(x0). In their white-box primitive ver-
sion, a step is taken in the opposite direction of the gradi-
ent of the objective function at the point x0. It is interest-
ing to check whether adversarial samples would be detected
as novel by the novelty monitor. In case these samples are
not, we may consolidate by optimisation based methods to
make them pass as valid points. In other words, we can take
an adversarial sample as a starting point for our search for
an attack against both the neural network and the monitor.
Our goal here is to find a point x very close to x0 such that
predict(x) 6= predict(x0) and monitor(x, predict(x)) = 1
(accept).

We use the implementation of adversarial attacks from the
Foolbox library [Rauber et al., 2020]. We assess the per-
formance of an abstraction based monitor to flag adversarial
samples as novel. We study the effect of tuning ”outside the
box” parameters to enhance the robustness of the monitor. In
a second time, we use optimisation techniques to force adver-
sarial samples to bypass the monitor.
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Figure 5: Success rate of different optimisation based methods for
the four proposed attacks with different network architectures.

4 Experiments
4.1 Optimisation solvers experiment
In this experiment, we evaluate the performance of differ-
ent optimisation solvers in solving the four proposed opti-
misation problems and successfully generating adversarial
samples. We evaluate four solvers from SciPy: COBYLA,
SLSQP, SHGO and DE. We experiment with different net-
work architectures, namely two very simple neural networks:
a XOR-like circuit and a tangent hyperbolic circuit, and
MNIST classifier once trained over two classes, another
trained over three classes. The novelty monitor follows ”out-
side the box” paradigm. For each network, we tested over
20 random x0 samples and counted the times where the opti-
miser found a solution, i.e. generated an effective attack point
x. Results are shown in Figure 5.

Results show that local optimisation methods such as
SLSQP and COBYLA were unsuccessful when applied to
the MNIST classifiers. We attribute this to the 28 ∗ 28 di-
mensionality of the images. Changing many pixels result
in a relatively large distance from the original point, which
made the search very narrow around the given starting point.
Global optimisation methods (SHGO, DE) were much more
successful. DE has more successful attempts than SHGO in
some cases, but the generated image samples appeared very
noisy making the attack easily perceived by a human ob-
server. SHGO is the best method in terms of success rate and
preserving the original digit shape. Figure 6 illustrates exam-
ples of MNIST images before and after ”Attack 1” type (from

(a) Before SHGO Optimisation Attack. Samples are decided as
not novel.

(b) After SHGO Optimisation Attack. Samples are decided as
novel.

Figure 6: Adversarial image examples obtained by SHGO method

(a) Attack 1

(b) Attack 2

Figure 7: L1-norm optimisation attacks using SHGO method

valid to invalid). The classifier and monitor were trained over
the ten classes in this experiment.

Note that even that our objective function is linear, our
constraints such as monitor(x) = 0/1 and predict(x) =
predict(x0) are strongly non-linear, which hinders the task of
the used linear solvers. SHGO shined since it is a derivative-
free optimiser that is most appropriate for black box func-
tions and leverages input/output pairs. Another comparison
factor is the optimiser runtime. We recorded large run-times
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Figure 8: Experiment measuring the number of successful and valid
attack attempts using neural network attacks.

(10 − 15 hours) for most optimisers during the experiment
using a 16GB ram computer and a processor of 2.60 GHz
frequency. However, SHGO converged in matter of few min-
utes. Figure 7 shows a 2d projection of successful generated
examples using SHGO and the L1-norm formulation for both
types of attacks.

4.2 Adversarial attack experiment
In principle, a perfect novelty detector should flag adversar-
ial samples as novel or anomalies rather than validate their
wrong predictions. In this experiment, we consider a neural
network classifier trained over all the classes of the MNIST
dataset. ”Outside the box” novelty detection was not designed
with the goal of detecting adversarial samples. However, we
check whether such samples would be detected as novel or
not. Over 100 MNIST samples, figure 8 shows the num-
ber of successful attacks (i.e., the prediction was successfully
flipped) and the number of successful attacks considered as
valid (i.e. the monitor validates the prediction considering the
sample as not novel). Results show that most of these sam-
ples succeeded into fooling the monitor in addition to fooling
the classifier. The initial environment properties of the detec-
tor were used, hence a single cluster/box for each class and
0 tolerance. Increasing the number of clusters per class from
only one to 2 or 3 clusters per class has a positive impact on
invalidating adversarial samples. Conversely, increasing the
tolerance factor from zero to 0.1 or 0.25 resulted in accepting
more adversarial samples.

Furthermore, the adversarial samples that were success-

(a) Adversarial samples acceptance before op-
timisation

(b) Adversarial samples acceptance after opti-
misation

Figure 9: Fooling the classifier and the monitor together.

fully detected as invalid can undergo one of our optimisation
attacks to pass the monitoring test. For instance, we ran the
L1 norm ”Attack 2” using SHGO on top of FGSM to achieve
100% attack success over 300 MNIST samples. Of course,
we had to suppress the predict(x) 6= predict(x0) constraint.

Figure 9 shows a 2d projection of the adversarial samples
as per the monitor definition. Before the optimisation attack,
there are still adversarial samples marked as ? points. After
the attack, all ? points disappear.

5 Conclusion and Future Work

In this paper, we demonstrated that novelty detection moni-
tors are vulnerable to fooling attacks. We were successfully
able to mislead the monitor using multiple methods. We for-
mulated optimisation problems that can be solved efficiently
to find attack vectors. We also leveraged adversarial neural
networks attacks from the literature to fool the classifier and
the monitor at the same time. Adversarial neural network at-
tacks combined with optimisation techniques are shown to be
a deadly combo.

The message of the paper is that security by design should
be a requirement for new novelty detection systems in deep
learning, especially in critical systems. We envision explor-
ing ways to defend novelty detection against adversarial at-
tacks. In future work, we aim at proposing efficient defense
mechanisms for novelty detection monitors against both mon-
itor fooling and classifier-monitor fooling attacks.
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Appendix B

Abbreviations

SLSQP Sequential Least Squares Programming

SHGO Simplicial Homology Global Optimization

COBYLA Constrained Optimization By Linear Approximation

DE Differential Evolution

FGSM Fast Gradient Sign Method

L2PGD L2ProjectedGradientDescentAttack

KNN-CF K-nearest neighbors certainty factor

U2R User to root

R2L Remote to local
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