

AMERICAN UNIVERSITY OF BEIRUT

MACHINE LEARNING MODELS AND
RESOURCES FOR TASK-ORIENTED
CHATBOTS IN ARABIC

by
NOUR GHASSAN EL DROUBI

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering
of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
August 2021

AMERICAN UNIVERSITY OF BEIRUT

MACHINE LEARNING MODELS AND
RESOURCES FOR TASK-ORIENTED
CHATBOTS IN ARABIC

by
NOUR GHASSAN EL DROUBI

Approved by:

Dr. Hazem Hajj, Associate Professor Advisor

Electrical and Computer Engineering W/‘

Dr. Mazen Saghir, Associate Professor Member of Committee

Electrical and Computer Engineering QMC -

[8)

Dr. Wassim El Hajj, Associate Professor Member of Committee
/

Computer Science M

Date of thesis defense: August 16, 2021

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

El Droubi Nour Ghassan
Student Name:
Last First Middle
M Master’s Thesis O Master’s Project O Doctoral Dissertation

D I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

M I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One ___ year from the date of submission of my thesis, dissertation or project.
Two ___ years from the date of submission of my thesis, dissertation or project.
Three \V years from the date of submission of my thesis , dissertation or project.

Nou ;2’0;55 September 5, 2021

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

Acknowledgements

The work done in this thesis would not have been possible without the
continuous support of my advisor, Dr. Hazem Hajj. His support, motivation,
and guidance throughout my research helped me tremendously in completing
this thesis. I would like to also thank my thesis committee members, Dr. Mazen
Saghir and Dr. Wassim El Hajj for their support. Also, thanks to my family and
friends who supported and motivated me throughout this thesis work. Finally, I
would like to thank the American University of Beirut for all the opportunities
offered and knowledge and experiences I acquired during my undergraduate and
graduate studies.

An Abstract of the Thesis of

Nour Ghassan El Droubi for Master of Engineering
Major: Electrical and Computer Engineering

Title: Machine Learning Models and Resources for Task-Oriented Chatbots in
Arabic

Recent developments enabled chatbots to be an essential part of people’s
daily lives from asking general questions about the weather to booking movie
tickets. Chatbots can be classified into open-domain bots or task-oriented bots.
Open domain chatbots can have engaging conversations in any domain. On the
other hand, task-oriented chatbots, which are the focus of this thesis, aim at
handling specific tasks such as booking movie tickets. While task-oriented chat-
bots have seen significant advances in English, task-oriented chatbots in Arabic
remain limited in their capabilities mainly due to the scarcity of the available
datasets and resources for training task-oriented dialogue systems in Arabic. To
overcome these challenges, we have explored two state-of-the-art strategies for
task-oriented bots: End-to-end models and pipeline models that consist of Nat-
ural Language Understanding (NLU) followed by the Dialogue Manager (DM)
and Natural Language Generation (NLG). For end-to-end, we proposed the use
of AraGPT2 and created a large multi-domain human-to-human conversational
dataset in Arabic by translating a large-scale English dataset. Our end-to-end
model achieved state-of-the-art results for Arabic and proved to be comparable
in performance to what has been achieved by state-of-the-art English end-to-end
models. For pipeline models, we addressed the NLU challenge by developing a
multi-task model that can simultaneously perform intent classification and slot
filling using AraBERT. To train the NLU model, we created a large dataset la-
beled for intents and slots by translating another large English dataset for training
task-oriented bots. The developed NLU model was able to achieve comparable
results with respect to the state-of-the-art results of pipeline models in English.

vi

Contents

Acknowledgements

Abstract

1

2

Introduction

Literature Review

2.1 English Task-Oriented Dialogue Systems
2.1.1 Pipeline Approach
2.1.2 End-to-End Approach

2.2 Arabic Task-Oriented Dialogue Systems

Methodology - End-to-End Approach

3.1 End-to-End Approach,
3.1.1 AraGPT2
3.1.2 AraGPT2 for End-to-End Task-Oriented Chatbots

3.2 Dataset Created
3.2.1 MultiWwOZ Dataset
3.2.2 Translation of the MultiWwOZ Dataset

Evaluation and Results - End-to-End Approach

4.1 Training Detailso oo

4.2 FError Measures

4.3 Results.
4.3.1 Response Generation
4.3.2 Policy Optimization
4.3.3 End-to-End System
4.3.4 Comparison of Results

Methodology - NLU Component of the Pipeline Approach

5.1 Background on the Pipeline Approach Architecture
5.1.1 Natural Language Understanding (NLU)
5.1.2 Dialog Manager (DM)
5.1.3 Natural Language Generation (NLG)

vii

vi

p—

— O Ol

5.2 Natural Language Understanding (NLU) Training
5.2.1 Approaches

5.2.2 Dataset Created

5.2.3 Evaluation and Results

6 Future Work
7 Conclusion

Bibliography

viil

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8

Example of GPT2 Training Sequence
AraGPT2 End-to-End Task Oriented Dialogue System Workflow .
Example of Response Delexicalization
Example Database Entry00
Example Dialogue from MultiWOZ dataset
Example Translated MutliWOZ Database Entry to Arabic
Example of MutliWOZ Goals Translation
Example of Translated User Utterance
Example of Alignment Results of the Translated User Utterance .
Example of creating the Delexicalized User Utterance in Arabic
Example of Replacing the placeholders in the Arabic Delexicalized
User Utterance
Example of Dialogue Act Translation
Example of System Act Translation
Example of System Response Translation
Example Translated Dialogue from MultiWOZ dataset

Response Generation Results - Example 1
Response Generation Results - Example 2
Policy Optimization Results - Example 1
Policy Optimization Results - Example 2
Database Results of Example 2
End-to-End System Results - Example 1
End-to-End System Results - Example 2
Comparison of Our Results with State-of-the-Art

Architecture of Task-Oriented Chatbots
Example NLU Output
Examples of Dialog Acts L.
Example Output of the Dialog State Tracker
Example Output of the NLG
AraBERT for Intent Classification
AraBERT for Slot Filling
AraBERT for Joint Intent Classification and Slot Filling

1X

15
16
17
19
20
20
21
22
22

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

ATIS Data Example 43

ATIS Sentence Translation Example. 43
ATIS Word Alignment Example 43
ATIS Slot Alignment Example 44
ATIS Translation Problem -1 44
ATIS Translation Problem -2 45
ATIS Translation Problem -3 45
AraBERT for Intent Classification - Train Results 47
AraBERT for Intent Classification - Test Results. 47
AraBERT for Slot Filling - Train Results 48
AraBERT for Slot Filling - Test Results 48
Joint AraBERT — No CRF - Train Results 49
Joint AraBERT — No CRF - Test Results 49
Joint AraBERT — With CRF - Train Results 50
Joint AraBERT — With CRF - Test Results 50
NLU Results Comparison 51
Intent Classification Results 52
Slot Filling Results -1 53
Slot Filling Results -2 53
Slot Filling Results -3 54
NLU Results Compared with SOTA 54

List of Tables

3.1

4.1
4.2
4.3
4.4

0.1

Domain Translation Mappings 20
Settings of Different Evaluation Scenarios 27
Response Generation Results 28
Policy Optimization Results 30
End-to-End System Results 31
NLU Training Parameters 46

x1

Chapter 1

Introduction

Chatbots have emerged to be an essential part of daily communication and inter-
action with technology nowadays. Chatbots are computer programs that receive
inputs from the user, process them, generate the appropriate responses and then
send them back to the user [1]. Chatbots can be classified into two main cat-
egories which are open domain and closed domain. Open domain chatbots are
capable of handling conversations in any domain such as social media conversa-
tions. However, closed domain or task-oriented chatbots are restricted to one or
multiple domains and can only handle conversations in those specific domains
[2]. Additionally, task-oriented chatbots have an end-goal to achieve depending
on the user requirements and their aim is to meet this goal successfully. This is
in comparison with open domain chatbots which their main goal is to respond
reasonably and enhance user engagement [3].

The traditional approach used to implement task-oriented chatbots is the
pipeline approach. Using this approach, task-oriented chatbots are divided into
three main components. The first component is the Natural Language Under-
standing component which receives the user utterance and extracts the required
information from it resulting in the belief state, then the Dialogue Manager com-
ponent receives the belief state and communicates with a database to decide
on the next action to be taken which is the system act. Finally, the Natural
Language Generation component receives the system act and generates the cor-
responding system response in natural language. Each component in the pipeline
approach is trained separately and then they are combined into one system [3].
Several work has been done on each of those components separately and on the
system as a whole. On the other hand, a recent approach was introduced which
is the end-to-end approach that treats the task-oriented dialogue system as one
block. This approach was introduced due to the limitation of the interdependence
between the components in the pipeline approach and the propagation of errors
[4].

The area of creating chatbots has been attracting huge focus in the past pe-
riod. Many chatbots were developed in the English language using both the

pipeline and the end-to-end approach. However, in the Arabic language sig-
nificantly less work has been done in this area. This is mainly due to several
challenges. The first challenge is that the Arabic language is a morphologically
rich language and it has different forms which are the Modern Standard Ara-
bic (MSA), the official written and read language, and the dialectal Arabic, the
spoken form of the language [5]. In addition to that, resources available for the
Arabic language are very scarce compared to the English language.

To address these challenges, an end-to-end approach is proposed for imple-
menting the task-oriented dialogue system which is based on fine-tuning the
AraGPT2 [6] pretrained language generation model. This approach was se-
lected as the AraGPT2 model was pretrained on huge amount of data and this
will help improve the performance of the model. In addition to that, a multi-
domain human-to-human conversational dataset was created by translating the
well-known MultiWOZ dataset [7] to Arabic. The MultiWOZ dataset is consid-
ered one of the largest datasets in English and it is now the first dataset available
in Arabic to train task-oriented dialogue systems. The developed Arabic end-to-
end task-oriented dialogue system was able to achieve comparable results with
the state-of-the-art results achieved in the English language.

In addition to the end-to-end approach, the Natural Language Understanding
(NLU) component which is part of the pipeline approach was also developed.
The proposed method for the implementation is the use of AraBERT [8] for the
joint implementation of both the intent classification and slot filling tasks of the
NLU component. Additionally, a dataset for training the NLU component was
created by translating the well-known ATIS [9] dataset. As there are no available
datasets for training the NLU component in Arabic, the created dataset is the
first available dataset.

As a summary, the contributions of this work are the following:

e The first task-oriented dialogue system in Arabic developed using the end-
to-end approach with fine-tuned AraGPT2

e A multi-task BERT-based language model to simultaneously predict slots
and intent for task-oriented chatbots in Arabic which is the objective of the
NLU component that is part of the pipeline architecture of chatbot models

e A large Arabic dataset of 10438 dialogues each comprised of multiple ut-
terances (4-10), labelled with user utterance, belief state, system act, and
system response covering multiple domains which are hotel, restaurant, at-
traction, hospital, train, taxi, and police. This dataset is useful for training
any task-oriented dialogue system in Arabic.

e A large Arabic dataset of 5871 user utterances comprised of users request-
ing flight reservations and information, labelled with intents and labels.
This dataset is useful for training the NLU component of the task-oriented
dialogue system.

The rest of this paper is structured as follows: Chapter 2 provides a literature
review on previous work done on task-oriented dialogues in both the English and
Arabic languages. Chapter 3 explains the methodology used for implementing the
end-to-end approach and translating the dataset used. Chapter 4 provides the
results achieved using the proposed end-to-end approach. Chapter 5 explains the
pipeline approach and the work done on the NLU component and the translation
of the dataset used. Chapter 6 provides the future work and finally Chapter 7
concludes the paper.

Chapter 2

Literature Review

Extensive work has been done in the development of task-oriented chatbots in
English. Recent advances in the field of natural language processing have been
implemented in the development of chatbots in English. However, the work in
this area is still very scarce for the Arabic language. We will go through the
advancements in the English and Arabic task-oriented chatbots in the following
sections.

2.1 English Task-Oriented Dialogue Systems

The strong interest for the development and improvement of English chatbots has
been increasing in the last few years. The first chatbot invented was ELIZA [10]
in 1966 which used keyword recognition in the text to ask questions to the user.
From that time, several chatbots were developed in the open and closed domains.
In this section, we will focus on the most recent advances in the development of
task-oriented chatbots in English.

Two main approaches have been used in the development of task-oriented
dialogue systems. The first approach is the Pipeline approach which divides the
system into several components which are the Natural Language Understanding
(NLU), the Dialog Manager consisting of the dialogue state tracker and the dialog
policy, and the Natural Language Generation (NLG). Each component in the
pipeline approach is trained separately and then they are combined together in
a pipeline manner [3]. On the other hand, the second approach is the end-to-end
approach. In this approach, the task-oriented dialogue system is trained in an
end-to-end manner where all the system is treated as one component. Previous
work done on these two approaches will be mentioned in the following sections.

4

2.1.1 Pipeline Approach
Natural Language Understanding

The Natural Language Understanding (NLU) component has two main tasks
which are the intent detection and the slot-value extraction [3]. The intent de-
tection task is formulated as an intent classification problem and the slot-value
extraction task is formulated as a slot filling problem and several approaches were
used to tackle these problems.

For the problem of intent classification, the work in [11] proposed the use of
Convolutional Neural Networks (CNNs). In this work, the proposed approach was
based on the use of CNNs on characters only. This proves that the knowledge of
the words or the semantic structure of the language is not required. Also the work
in [12] proposed the use of CCNs. In this work, the query vector representations
were used as features for the query classification. A vector representation was
used to be able to group queries which are similar semantically. In [13], the use of
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) were
proposed for the task of intent classification. It was shown that RNNs performed
better when the utterances were short, and LSTMs performed better when the
utterances were long. In [14], an adversarial multi-task learning framework was
introduced for text classification which trains the model on multiple tasks by
dividing the task-specific and the shared parameters more accurately. This helps
in creating a shared knowledge for all domains which can be transferred to any
new domain.

For the problem of slot filling, the work in [15] used Recurrent Neural Net-
works (RNNs) to train the Language Understating model. The RNN model was
trained using the words in the sentence as input and the semantic labels as out-
put. The work in [16] tackled the challenge of not taking previous context into
consideration when predicting the slots. The approach suggested was the use of
Convolutional Neural Networks (CNNs) which takes previous context into con-
sideration and adds attention to the current word and its surrounding words.
Also, the bi-directional sequential CNN architecture was introduced which takes
into consideration the previous and future words for the slot prediction. In [17],
the use of deep Long Short-Term Memory (LSTM) was introduced for the task
of slot filling. The deep LSTM is made up of several layers of LSTMs and a
regression model is added to the LSTM model to better model the relationships
between the semantic labels. Also, the unnormalized scores were used before the
Softmax layer to avoid the bias in slot labelling. Another approach introduced in
[18] is the use of a generative neural network model. In this work, the challenges
of having sentence-level annotations instead of word-level annotations and the
presence of out-of-vocabulary words in the slot values were tackled. These were
tackled by using both a sequence-to-sequence model and a pointer network in the
generative neural network.

In addition to the separate approaches for the intent classification and slot
filling, more recent approaches have proposed to model these two tasks jointly.
In [19], the use of bi-directional RNN with LSTM cells was proposed where one
RNN model jointly models the three tasks which are domain detection, intent
classification, and slot filling. The input to the model is the user utterances and
the output is a semantic frame which include the predicted domain, intent, and
slots. In [20], the use of a slot-gated modelling approach was proposed which
uses a slot gate to learn the relationships between the intent and the slots. This
approach tackles the challenge of modelling the relationships between intents
and slots as the slots are highly dependent on the intent. With the advancement
of pretrained language models, most recent approaches have been using them
to jointly model intent classification and slot filling. In [21], the use of BERT
[22] was proposed to jointly model the intent classification and slot filling. This
approach also tackled the challenge of scarcity of labelled data needed to train
the NLU component. It was shown that the proposed joint BERT was able
to generalize with less training data and was able to outperform previous work
specifically the attention-based RNN and the slot-gated models.

Dialog Manager

Dialog State Tracking The dialog state tracking (DST) which is part of the
dialog manager component in the task-oriented dialog systems has the goal of
understanding the user’s utterances and to update the belief state accordingly
[23]. The belief state, which is the probability distribution over all the dialog
states, is then used by the Dialog Policy Learning component to decide on the
next action to take [24]. Consequently, since the results of the DST component are
then used to decide on the next action to take and the response generated, having
accurate results from the DST component is important for a good performance
for the whole system [25].

Initially, DST was implemented using traditional rule-based statistical ap-
proaches [26, 27, 28]. However, these approaches depend on manually created
semantic dictionaries which are used to link slots and values with generic tags
to have a generalized output [29]. This approach consequently faces the issue of
lexical and morphological variations in the user’s utterances [25]. Then after the
popularity of the use of deep learning, it was introduced in the implementation
of DST. In [30], Deep Neural Networks were used in belief tracking. The use of
Neural Networks enabled the inference of interactions found between features in
the conversation. This work used the method of sliding windows to learn the tied
weights of the neural network to output a sequence of probability distributions
over several possible arbitrary values. The training was done on a specific do-
main, but the trained models are domain independent, and the learning can be
transferred to new domains. The work in [23] tackled the problem of training the
DST on one specific domain which was a limitation in previous work by propos-

ing a multi-domain belief tracking method. Recurrent Neural Networks (RNNs)
were used for DST and were trained using data available from multiple domains
in order to train a general belief tracking model by learning the most general and
recurrent features. Then the model was tuned for every domain by learning the
specific domain features. This model was able to outperform the DST which was
trained on one specific domain only.

In [31], the Neural Belief Tracking (NBT) method was introduced and used
in the development of the DST. This work tackled the limitation of scaling in
DST since usually large amounts of annotated data are required for training the
language understanding models and also manually created lexicons are required
to handle linguistic variations in the conversation. The proposed NBT model
uses pretrained word vectors to capture linguistic variations. The model then
iterates over all the possible slot-value pairs to choose the one which was intended
by the user. Following the limitation of having to manually retune the NBT
model in [31] for every new domain, the work in [32] addressed this issue. In
this work, several mechanisms for automatic updating were used by learning
from the semantic decoding and context modelling of the NBT model. Another
limitation in previous work addressed in [29] is the failure to determine the rare
slot-value pairs which leads to the inability to determine the turn-level goal. This
work proposed the Global-Locally Self-Attentive Dialogue State Tracker (GLAD)
which uses global modules to learn shared parameters between the estimators of
the different slots of the dialog state and the local modules for the slot-specific
features. This proposed method was able to predict rare slot-value pairs by just
using few training examples.

The work in [33] also tackled several limitations present in previous work. The
limitations are the inability to dynamically change the domain ontology such as
the slot and values for the DST, the models for every slot being different, and the
difficulty in manually creating the semantic dictionaries for large scale domains.
The model proposed is a universal state tracker StateNet which compares the
distance between the representation of the dialog history and the vectors in the
possible set to make a decision and this possible set can be dynamically updated.
Also, the parameters of the model are shared across the slots which enables the
transfer of knowledge and the reduction in the number of parameters. Also the
work in [25] addressed the issue of scalability in domain wise training and in
the addition of new slot-values that are not part of the ontology. This work
proposed the slot-utterance matching belief tracking (SUBMT) approach which
is a scalable and universal belief tracker that is independent from the domain
and the slots. The model uses a non-parametric way to predict the slot-values
so that the structure is not dependent on the domains and the slots. The model
architecture also uses a shared knowledge across the domains and slots. SUMBT
uses a slot-word attention mechanism using BERT to learn the relationships
between dialog utterances and slots.

Additionally, the work in [34] tackles the challenges in tracking conversations

7

with long interaction and excessive information. The Slot Attention and Slot
Information Sharing (SAS) model is proposed which applies slot attention to
learn the features which are slot-specific from the original conversation and then
uses Slot Information Sharing to integrate the slot values to be able to determine
slots which are related. In [35] also the limitation of finding correlations among
slots is considered where the Slot self-attentive dialogue state tracking (STAR)
model is proposed. This model tackles the limitation of only considering the
slot names to find the slot correlations. Consequently, STAR uses both the slot
names and their values to find the slot correlations by using a slot-token attention
module to find slot-specific features and then uses a stacked slot self-attention
module to learn the correlations between the slots. This work was able to achieve
state-of-the-art results on both the MultiwOZ 2.0 and MultiWOZ 2.1 compared
to other DST models.

Policy Learning Based on the dialog state resulting from the DST, the goal
of the policy learning is to decide on the next system action [4]. To optimize
the policy learning, approaches used are either supervised learning approaches
or reinforcement learning [4]. Several supervised learning approaches have been
used which consider the agent utterances as labels and the model is trained to
predict the next utterance [36]. However, the problem faced by this approach is
that the model is trained to optimize the prediction of the next utterance and not
the whole dialog and this can eventually lead to accumulating errors especially
in multi-turn dialogues [37].

Other than the supervised learning approach, the policy learning problem is
usually formulated as a Markov Decision Process (MDP) since the dialog acts
are outputted sequentially and it is usually solved using Reinforcement Learning
[3]. However, training the environment requires a user for interaction and two
approaches are considered for this interaction which are training with real users
or with user simulators. Several approaches considered real users for the training
of the Reinforcement Learning models using Deep Q-Network (DQN) and Policy
Gradient methods [3, 36, 38]. In [39], Deep Reinforcement Learning was used
instead of the supervised learning and the traditional reinforcement learning ap-
proaches used in previous work. In this work Deep Reinforcement Learning was
used with a high-dimensional state space in the board game of Settlers of Catan
and results showed the improvement of the performance compared with other
approaches such as the rule-based and supervised-based approaches. In [38], the
work tackled the challenges faced in previous work implementing the DQN agents
using the e-greedy heuristic which failed when the rewards are sparse and the ac-
tion spaces are being large. As a solution for that, the Bayesian exploration
strategy is proposed to help the agent in the selection of the action when the
agent is uncertain by allowing it to explore the state-action regions.

The other approach which has been used as an alternative to real users is

the use of user simulators which act like the real users to train the environment
[3]. In [40], the challenges of requiring a task-specific corpus and the extensive
domain knowledge required to annotate human-to-human or human-to-machine
conversations are tackled. The approach proposed is the use of a user simulator
which is trained on example conversations. The use of user simulators to train
the Reinforcement Learning agents act a starting point for the environment and
then agents continue being trained by interacting with real users. However, using
user simulators instead of real users is still not the optimal way to imitate the
real human behaviours and this leads to having good performance when training
but poor performance when used in the real human conversations [3]. In [41],
an approach of integrating the Deep Dyna-Q (DDQ) with a switcher between
using real or simulated users for the Q-Learning is proposed. This approach was
proposed after the effectiveness of using DDQ in the training of Reinforcement
Learning models but required the addition of planning to set the ratio of real
users and simulators. The switcher used is implemented using an LSTM model
and is trained with the dialog policy. Additionally, an active sampling strategy
is used to generate the simulated experiences which are in the state-action space
and are not explored by the agent. In [42], an approach was proposed which
provides the agent with extra positive feedback. Also, user modelling was used
to train the agent from the simulated interaction experience. Additionally, a
meta-learning approach was proposed which allows the agent to learn from both
the simulated users and the hindsight experience. The proposed approach in this
work was able to achieve state-of-the-art results compared to other dialog policy
learning approaches.

Natural Language Generation

The main task of the Natural Language Generation (NLG) component is to gen-
erate the system response based on the system act generated by the Dialog Policy
component. The goal of the NLG component is to generate a natural language
response which satisfies the requirements of the dialog act and hence this task
is usually formulated as a conditioned language generation task [3]. Several ap-
proaches were proposed to train the NLG component. In [43], a forward RNN
generator, a CNN reranker, and backward RNN reranker were trained to generate
responses which are conditioned according to the dialog act. This approach is
based on the training without semantic alignments or predefined grammar trees.
In [44], the use of a Long Short-Term Memory (LSTM) recurrent network was
proposed. The proposed LSTM architecture is semantically controlled and is
trained using unaligned data. In [45], the challenge of training the NLG compo-
nent which can be used in multiple domains was tackled. The proposed approach
was the use of an RNN language generation model and first to train it using
out-of-domain data and then fine tune the model using in-domain data.

In [46], a Context-Aware Long Short-term Memory (CA-LSTM) architecture

9

was proposed. The inputs to the model are the question, semantic slot values,
and dialogue act and the output is the system response. An attention mechanism
is also used to attend to the key information in the question. Also, the dialogue
act type embedding is encoded to allow the generation of different responses
based on the dialogue act. In [47], the sequence-to-sequence generation approach
was proposed. This approach was used with the beam search and the n-best list
reranker in order to stop any irrelevant information in the output. In [48], the
challenge of limited data available to train the NLG component was tackled. To
tackle this challenge, the model SC-GPT was proposed. This approach is based
on first pre-training GPT using large datasets of plain text and then continuously
pre-training on dialogue-act labelled utterances. Then finally the model would be
fine-tuned on a specific domain using limited domain-specific data. This approach
was shown to outperform previous methods based on automatic metrics and
human evaluation.

2.1.2 End-to-End Approach

Following the pipeline approach explained earlier for the implementation of task-
oriented dialogue systems, several limitations were observed from this approach.
The main limitation observed is the interdependence between the components in
the process [4]. Since each component is trained separately and then all compo-
nents are combined, when one of the components is updated or retrained on new
data, all the other components need to be updated as well. As a result of this
limitation, the end-to-end approach was introduced to implement task-oriented
dialogue systems. The end-to-end approach is based on developing the task-
oriented dialogue system as one component that interacts with the knowledge
base.

Several methods were suggested in the end-to-end approach. In [49], a sin-
gle seq2seq model is proposed which is trained on both the task completion and
the response generation problems. This model is based on a two stage CopyNet
which has a smaller number of parameters compared with previous work. Sev-
eral recent approaches have suggested the use of the pretrained language model
GPT-2 [50] to train the end-to-end model. In [51], a single neural network model
is trained on the tasks of state tracking, dialogue policy, and response genera-
tion. The approach proposed is to pretrain the GPT-2 model to generate system
responses using large multi-domain data and then the model will be fine-tuned
on a specific domain. This approach outperformed previous work especially in
the case of having domains with a small amount of labelled data. In [52], GPT2
was fine-tuned to perform the functionalities of all the components present in the
pipeline approach. The challenge addressed in this paper is the issue of inter-
pretability present in previous work. Previously, only the system response would
be generated by the end-to-end system. In this paper, in addition to the system
response, the dialogue states and system acts are also generated which help in

10

understanding the model outputs and results. In [53], also the GPT2 model was
fine-tuned to perform the different functionalities of the task-oriented dialogue
system. The approach suggested in this work is the use of all the intermediate
outputs of the model such as the belief state, database results, and system act
instead of just having the user utterance and the system response. Based on this,
the GPT2 model would be fine-tuned on the entire dialogue session. The results
of this approach showed the importance of the added intermediate information
on the performance of the model as the results achieved outperformed previous
state-of-the-art models not having this added information.

2.2 Arabic Task-Oriented Dialogue Systems

Much less work has been done in the development of task-oriented chatbots in
Arabic. In [54], a question-answering chatbot was developed by retraining the
ALICE chatbot [55] using the Qur’an. The input of the user is a set of Arabic
words, and the output is the set of Ayahs from the Qur’an which contain the set
of words mentioned by the user. The approach used in this work is AIML-based
consisting of three steps which are creating the frequency list of the Qur’an first
and then creating the template files and finally applying, restructuring, and gen-
erating the AIML files. In [56], also a question-answering chatbot was proposed
by retraining the ALICE chatbot [55] using the Qur’an as the training data. The
input of the user is a set of words in English and the output is the set of Ayahs
in both the English and in Arabic languages which contain the input words. The
framework used was by first creating the frequency list, then creating patterns,
and finally rearranging the patterns and generating the AIML files. In [57], a
question-answering chatbot in the medical field was developed. The chatbot was
trained using a set of 412 Arabic questions and answers that cover five domains.
The methodology used in this work is matching the keywords in the user’s input
to the ones in the corpora. The first word and the most significant word approach
were used where the first word in the question is the classifier, and the most sig-
nificant word is the one with the smallest frequency in the question. Also, in
[58], the same approach was used but with retraining ALICE using a dataset of
the frequently asked questions in the School of Computing at the University of
Leeds.

In [59], a web-based Arabic Conversational Tutoring System named Abdullah
is proposed. This chatbot teaches children about Islam including the Qur’an
and the Hadith. The chatbot deals with different topics and asks and answers
questions. It also includes responses which are figures and sounds instead of only
text. The methodology used to develop the chatbot is based on pattern matching.
This consists of creating a knowledge base with all topics to be discussed, the
Conversational Agent to generate the responses and the Tutorial Knowledge Base
to manage the information between the learners. In [60], a question-answering

11

chatbot was developed to help the students in the Applied Science University in
Jordan. The chatbot was developed based on a scripting engine and a scripting
language which is rule-based. The chatbot can handle different topics which
are divided into context. Each context has its own rules, which are made up
of patterns, and responses, which are based on the user’s input. The chatbot
depends on the matching techniques which link the input of the user to the
scripted patterns. In [61], a mobile-based chatbot was developed for the Android
platform which is based on ArabChat [60]. In [62], an Enhanced ArabChat was
developed which is an enhancement of ArabChat [60]. This enhancement tackled
two issues that existed previously; the first issue was not being able to differentiate
between questions and non-questions and the second issue is not being able to
target several topics requiring several rules simultaneously. These issues were
fixed by performing changes in the scripting language and the knowledge base
used. In [63], an educational chatbot for tutoring children with ASD in Arabic
was developed. The methodology used is based on both the Arabic Pattern
Matching and the Arabic Short Text Similarity in order to match the question
to the responses from the database. This chatbot can respond in different ways
including visuals and sound effects based on the child’s specific needs. In [64],
an Arabic dialogue system was proposed that is composed of the parser and the
dialogue manager where the parser was implemented using the Government and
Binding theory.

Deep learning was also used in some recent work. In [65], the NLU component
of the Arabic task-oriented dialogue system was implemented for the task of
home automation. For the task of intent classification, CNNs and LSTMs were
used and for the task of slot filling the bidirectional LSTM was used. In [66], a
dialogue act recognition model was created for Levantine Arabic. The training
was done on a created dataset for the domains of restaurant ordering and airline
ticketing. Several classification models were implemented, and the best results
were achieved using the Support Vector Machine (SVM) model. In [67], a dialogue
act classification model was also implemented using the SVM classifier. The
model was trained using a dataset collected from Egyptian call centers. In [68], a
hybrid rule-based and data-driven approach was proposed for the implementation
of Arabic task-oriented dialogue systems for the flight booking domain. The
pipeline approach was used for the implementation of the dialogue system where
the hybrid approach was used for training the NLU component.

The main challenge facing the development of task-oriented chatbots in Arabic
is the scarcity of available datasets for training. However, what encourages the
work in this direction is the development of language models in Arabic such as
AraBERT [8] and AraGPT2 [6] that were trained on huge datasets and that
achieved results comparable to English. These language models can greatly help
in the development of Arabic task-oriented chatbots.

12

Chapter 3

Methodology - End-to-End
Approach

3.1 End-to-End Approach

To train an end-to-end task-oriented dialogue system, the use of the pretrained
language generation model AraGPT2 was proposed. We propose the development
of an Arabic Task Oriented chatbot using Cascade of Generative Pre-trained
End-to-End Language Model. In the following sections, an overview will be first
given on the AraGPT2 model and then the proposed end-to-end approach will
be explained.

3.1.1 AraGPT2

AraGPT2 [6] is a pretrained Arabic language generation model which has the
same architecture as GPT2 [50]. AraGPT2 is a Transformer-based model which
was trained on 77GB of Arabic data collected from several data sources. AraGPT?2
is available in different sizes and the available models are the Base, Medium,
Large, and Mega. The AraGPT2 used in this work is the Base model which
has a context size of 1024, an embedding size of 768, 12 heads, 12 layers, and
was trained using the LAMB optimizer. Training AraGPT2 followed the same
process as that used for training GPT2.

3.1.2 AraGPT2 for End-to-End Task-Oriented Chatbots
Fine-Tuning AraGPT2

The suggested approach for training an end-to-end task oriented chatbot is to
use AraGPT2. AraGPT2 is fine-tuned on a dialogue session level and hence each
input includes all the turns in the session. This approach is an interpretable
approach as it includes all the components which exist in the pipeline approach

13

which are the user utterance, the belief state, the database result, the system
act, and the system response. In this way, the results can be easily analyzed
and evaluated. In order to fine-tune AraGPT2 on the dialogue session data,
the training data should include the user utterance (U), the belief state (B), the
database result (D), the system act (A), and the system response (R) and this
different information should be separated by special tokens in order to distinguish
between them. The user utterance is surrounded by the tokens < sos_u > and
< eos_u >, the belief state by < sos_b > and < eos_b >, the database result by
< sos_.d > and < eos_d >, the system act by < sos_.a > and < eos_a >, and the
system response by < sos_.r > and < eos_r >. These tokens are then added to
the special tokens of the GPT2 tokenizer. An example of the format of the input
data is shown in Figure 3.1 where the different components are colored in different
colors.

Figure 3.1: Example of GPT2 Training Sequence

/ <sos_u> add o g giag ol 380 B i jaaldalay Ulceos_u> \,
<sos_b> 4 agad (35 ddhis [3238] <eos_b> <sos_db> [db_3] <eos_db>
<sos_a> e [wulb] L [E3] [ai¥]<eos_a>
<sos_u> Al Ll ags ¥
i) g g dilaa gl o) p A po il YL SLN) Jla®yl Atk o g gy
Gl funall c@os_u> <sos_b> an i 5l and o ga 4 2 gad (84 dilaia [3a]
z@os_b> <sos_db> [db_3] <eos_db> <sos_a> [<lb] s [Bo)] [t

i £ROS_A>

N /

Fine-tuning AraGPT2 is done based on the Language Modeling objective of
maximizing the probability of next word prediction:

L= Zlog P(wi|w1, ...,wi_l) (31)

After fine-tuning AraGPT2 using the training data of all the sessions, the
next step is the generation of these components. The generation process resem-
bles the process followed in the pipeline approach. The first step is to generate
the belief state (B) based on the user utterance (U). Then the generated be-
lief state is used to query the database and the results of the query generated
are the database results (D). Then based on the user utterance, the generated
belief state, and the database result, the system act and the system response
are generated. The context input of every turn also includes all the previ-
ous turns in the dialogue session. Hence, in general, the overall workflow is
as shown in Figure 3.2. For every dialogue turn T, the history of all the pre-
vious turns (Uy, By, D,, Ao, Ro, - .., Ur_1, Br_1, Dr_1, Ar_1, Rr_1) and the user

14

utterance (Ur) are used to generate the belief state (Br). Then the generated
belief state is used to query the database and based on the query results, the
database result (D7) is generated. Then based on the history of all previous
turns (Uy, Bo, Do, Ao, Ro, ..., Ur—_1, Br—1, Dr—1, Ar_1, Rr—1), the user utterance
(Ur), the generated belief state (Br), and database result (Dr), the system act
(Ar) and the system response (Rr) are generated.

Figure 3.2: AraGPT2 End-to-End Task Oriented Dialogue System Workflow
Dialogue Turn=T
Step 1 Step 2

DB Query Query Results

AraGPT2

AraGPT2

Up. By D, Ay Ry ..Uy . By_y. Dy Ar_y.Ry_y J Uy |Bp | Dr

Ug. Bo, Dy, Ag. Ry Up_y, By, Dy, Ar_q. Ry_y

Data Delexicalization

To train AraGPT2, it is essential to use delexicalized system responses in order
to train the model on value-independent parameters [53]. The delexicalization
process consists of replacing specific slot values by placeholders. For example, in

Figure 3. 3 the hotel name ” > & _ae§” Ol s!Adsa” was replaced by the placeholder
[f\. . This allows for generalization while training the model. The

eholders are then replaced by specific values based on the database results.
A domain-adaptive delexicalization method was used as the one suggested by
[53] which uses generalized placeholders instead of domain-specific ones. In ad-
dition to that, generalized slots are used instead of domain-specific ones in the

15

belief states and system acts which also helps the model learn value-independent
parameters.

Figure 3.3: Example of Response Delexicalization

. O e 5 Ja Sl Aplly s IS Jax Cagus zay_jualS) glaidpa 4S5 50
Original Response L
Delexicalized Saal O e i da Sl dally s (S8 Jand Cag [and) 3as 5] 4S5 5o
Response ealls

3.2 Dataset Created

As there are no resources available in the Arabic Language for training end-to-end
task-oriented dialogue systems, resources had to be created. For this purpose,
the MultiWOZ 2.0 dataset was translated to Arabic. In the following sections,
first an overview will be given on the MultiWOZ dataset and then the approach
used to translate the MultiWOZ dataset will be explained.

3.2.1 Multiw0OZ Dataset

The Multi-Domain Wizard-of-Oz (MultiWOZ) dataset [7] is a large-scale multi-
turn human-to-human conversational dataset which spans over multiple domains.
The dataset consists of 10438 dialogues which span over seven domains which are
hotel, restaurant, attraction, hospital, train, taxi, and police. The data split used
for the train, validation, and test sets is 8438, 1000, and 1000 respectively which
is the random split suggested in [7]. All the dialogues in the validation and test
sets were chosen to be fully successful dialogues in order to have a fair evaluation.

Dialogues in the MultiWOZ dataset vary in length and complexity as each
dialogue can cover between 1 to 5 domains. Hence each dialogue can be either
single-domain or multi-domain. There are 3406 dialogues which are single-domain
and 7032 dialogues which are multi-domain with the number of domains ranging
from 2 to 5 domains. The complexity and multi-domain nature of the MultiWOZ
dataset allows it to represent natural conversations where a user can ask questions
about several domains and request bookings in several domains. In addition to
the multi-domain aspect, the number of turns in the dialogue vary where more
than half of dialogues have more than 10 turns.

The MultiWOZ 2.0 dataset is used in the format suggested by [53] which
applies the domain-adaptive delexicalization explained in the previous section.
In addition to the dialogue data, the MultiWOZ dataset also includes database

16

files for every domain in the seven included domains in the dialogues. We will be
explaining the format of the database and dialogue data in the following sections.

Database

Each domain database contains several entries for possible available options in
the specific domain. In each entry, all the information related to it are available.
However, the included information varies between the domains as the information
required for hotels is different than the one required for hospitals, for example.
Figure 3.4 shows an example of one hotel available in the hotel database.

Figure 3.4: Example Database Entry

Entry Slot Entry Value
name alpha - milton guest house
postcode ch41xa
internet no
id 4
price Double: 80, Single: 45
address 63 milton road
area north
location [52.2173388888889, 0.127638888888889]
parking no
stars 3
pricerange moderate
type guest house
phone 1223311625
takesbookings yes

Dialogue Data

Each dialogue in the dataset consists of a goal and the turn logs. The goal includes
mainly the requestable and informable slots of the dialogue and any additional
information regarding the booking status in case the booking failed. On the other
hand, the dialogue turn logs include the user utterance, dialogue act, system act,
and response for every turn in the dialogue. Figure 3.5 shows three turns from
an example entry in the dataset showing how the dialogue act, system act, and
response are updated after every new user utterance and hence with the addition
of new constraints. The example also shows the hotel that was chosen from the
database which satisfies the constraints of the user in terms of the area, stars,
internet, and type. The format of each turn in the logs is as follows:

17

User Utterance The user utterance.

User Utterance Delexicalized The user utterance after applying delexical-
ization and replacing the specific slot values by placeholders. The placeholders
are added inside brackets.

Dialogue Act The dialogue act in the form of [domaini] slot value slot value. . .
[domain2] slot value slot value. . .

System Act The system act in the form of [domain1] [system_act] slot slot. . .
where the system act can be either request, inform, recommend, select, ...

System Response The system response based on the system act, and it is
also delexicalized with specific slot values replaced by placeholders in brackets.

3.2.2 Translation of the MultiWOZ Dataset

In order to translate the MultiWOZ dataset, the Microsoft Translator API was
used. However, a specific approach had to be used for translation since several
formats exist in the dataset.

Database

To translate the database, all the slots and values should be translated. Regarding
the slots, the translation should always be the same since they should be fixed.
For that, a fixed translation was added to the slots available. Regarding the
values, all values should be translated individually. However, some values should
not be translated and that is in case the values were numbers or a list of number
or a phone number. For example, Figure 3.6 shows an example of the translated
hotel entry shown previously in Figure 3.4 in English.

Dialogue Data

To translate the dialogue data, different approaches had to be implemented for
the goals and the logs.

Domains The names of the seven available domains are translated to Arabic
in a fixed way and replaced in all instances according to the mappings in Table
3.1.

18

Figure 3.5: Example Dialogue from MultiWOZ dataset

Dialogue ID: sng01669
Goals Hotels Database
Domain Hotel express by holiday inn
Name .
area east cambridge
Informable internet yes Phone 01223866800
Slots stars 2 Postcode ch13lh
type hotel Pricerange expensive
parking Stars 2
Req:::::ble address Type hotel
phone Area east
Internet yes
Parking yes
Dialogue Turn Logs
| am looking for a place to stay. the hotel should include free
User Utterance . .
wifi and should be in the type of hotel
User Utterance | am looking for a place to stay. the [value_type] should include
Turn 1 Delexicalized free wifi and should be in the type of hotel
Dialogue Act [hotel] internet yes type hotel
System Act [hotel] [inform] choice type [request] area price
there are [value_choice] [value_type] that fit that description.
System Response \
do you have a preference as to area or price range?
User Utterance | would like something in the east with 2 stars.
User Utterance | would like something in the [value_area] with [value_stars]
Delexicalized stars.
Turn 2 Dialogue Act [hotel] internet yes type hotel area east stars 2
System Act [hotel] [inform] name [offerbook]
it looks like [value_name] will work well for you. would you like
System Response
me to book that?
does it have free parking? can you provide me with the contact
User Utterance . .
details of this hotel?
User Utterance does it have free parking? can you provide me with the contact
Turn 3 Delexicalized details of this [value_type]?
Dialogue Act [hotel] internet yes type hotel area east stars 2
System Act [hotel] [inform] phone parking
System Response | yes, it offers free parking. the phone number is [value_phone].
Goals To translate the goals, the translation of the slots should be fixed and

hence a mapping of all available slots from English to Arabic was created to
translate each slot. Regarding the values, each value was then translated using
the Microsoft Translator API. Hence the translation was done word by word as

shown in Figure 3.7.

19

Figure 3.6: Example Translated MutliWOZ Database Entry to Arabic

Entry Value Entry Slot
L)l C Ogiduo - Wl o]
cb41xa Sdullie,dl
b Sl
4 ©3)
Double: 80, Single: 45 rw
@kl 09t 63 Olgis
Jlad daais
[52.2173388888889, 0.127638888888889] 2890
Y 2Bge
3 Py
Jliaal! FEPMIE]Y
ddluall can £
1223311625 asla
o ljglishy
Domain English | Domain Arabic
Restaurant ‘u‘.\u
Hotel R
Attraction NER S
Hospital siiline
Train a3
Police b

Table 3.1: Domain Translation Mappings

Figure 3.7: Example of MutliWOZ Goals Translation
English | ' Arabic

Slot | Value . . Slot | Value
area east dihie | B

[T]

20

Logs In the dialogue logs, the user utterance, user utterance delexicalized, di-
alogue act, system act, and system response should be translated and each one
of these requires a different translation method.

User utterance The user utterance is translated as a whole sentence and
the alignments resulting from the translation are saved to be used in the transla-
tion of the delexicalized user utterance. An example of a translated user utterance
is shown in Figure 3.8.

Figure 3.8: Example of Translated User Utterance

Original | would like something in the east with 2 stars
Translated pym 2 g Gl 3 LE o

Delexicalized user utterance To translate the delexicalized user utter-
ance, the alignments resulting when the user utterance was translated should be
used. In the delexicalized user utterance, some of the words in the sentence are
replaced by specific placeholders. In order to replace the Arabic words by place-
holders, these Arabic words should be linked with their English words. Then if
the word in English was replaced by a placeholder, its linked Arabic word should
be replaced by the same placeholder. To do that, the word alignment option
available in the Microsoft Translator API was used. This word alignment option
returns for every translated sentence, the link for every translated word with
the original word. An example of the alignment returned with the translated
sentence is shown in Figure 3.9. The alignment results include the link between
every word or entity in English with its translated word or entity in Arabic in
terms of index position. For example, the alignment 30:33-12:16 shows that the
word “east” which is in the index positions 30 to 33 in the English sentence is

the translation of the word (3 f.ﬂ which is in the index positions 12 to 16 in
the Arabic sentence. After getting the alignment results, the delexicalized user
utterance in English is used to replace the words in Arabic by placeholders. So,
in case a word in English is replaced by a placeholder, this same placeholder is
linked to this word’s translation in Arabic. An example of this replacement is
shown in Figure 3.10. In this example, as was shown in the alignment that the

21

word “east” is mapped to the word (9 J;"J‘, the placeholder of the word “east”

which is [value_area] replaced the word (3 &J1 in Arabic. All words which are
not replaced by placeholders in English were kept the same in Arabic. After the
Arabic delexicalized user utterance was created, the next step is to replace the
placeholders that are in English with their Arabic translation. This translation,
however, should be fixed since these are fixed slots used in the dataset. Hence,
a dictionary was used to map the English placeholders to Arabic placeholders.
After replacing the placeholders, the results will be as shown in Figure 3.11. The
same format used in English for the placeholders was used for Arabic which is
adding the placeholder inside brackets.

Figure 3.9: Example of Alignment Results of the Translated User Utterance

Alignment 0:0-0:2 13:21-4:7 23:24-9:10 30:33-12:16 35:38-18:19 40:40-21:21 42:46-23:26
0:0-0:2 13:21-4:7 23:24-9:10 | 30:33-12:16 35:38-18:19 | 40:40-21:21 | 42:46-23:26
I -2l something - Ll in- 4 east - G40 with - 2= 2-2 stars - psa0

Figure 3.10: Example of creating the Delexicalized User Utterance in Arabic

] pa 2 | & G) L 2
pat [value_stars]) [value_area] o Ll a4
'
rt e——
=
l r ilf ilf ' ¥

1 |would like | something in | the east with 2 stars
I would | like | something in the [value_area] | with | [value_stars] | stars

Dialogue Act The dialogue act is in the form [domain/ slot value... [do-
main/ slot value.... In order to translate this, the translation should be done word
by word. Then every word should be checked and in case the word was identified
to be one of the defined domains or slots, the translation should be done using
a dictionary mapping the English domains and slots to Arabic. On the other
hand, if the word was not identified to be a domain or slot, the translation using
the Microsoft Translator API should be done. An example of translating the

22

Figure 3.11: Example of Replacing the placeholders in the Arabic Delexicalized
User Utterance

English Placeholders a2 |[value_stars] o [value_area] = [T 3l
Arabic Placeholders | asai | [assd Sasg] &= [Aihic 5aag] | B Ll 3yl

dialogue act is shown in Figure 3.12. As shown in the example, the translation is
done word by word and depending on the word identification, the word is either
mapped to its specific translation in case of being a domain or slot or directly
translated in case it was a value. For example, the word “area” is a defined slot
and hence using the predefined map, the word was translated to dzlaws. However,
the word “east” is a value, and it was translated to Ji.l‘ using the Microsoft
Translator API.

Figure 3.12: Example of Dialogue Act Translation

English Dialogue Act [hotel] | internet | yes | type | hotel | area | east | stars 2
Word Identification domain slot value | slot | value | slot | value | slot | value

Word by Word Translation [3] vt a g | G | A | 5,0 | e 2
Arabic Dialogue Act 2 psad (3 Akl (388 £ g aad N [(303)

System Act The system act is in the form [domainl] [system_act] slot
slot. ... Hence, the translation of the system act should be done word by word
and since all words are predefined slots or domains or system acts, translation
should be fixed and hence using a predefined mapping from English to Arabic.
An example of translating the system act is shown in Figure 3.13 where each
word in the English system act was mapped with a fixed translation in Arabic.

23

For example, the system act “inform” was mapped to the Arabic system act
°3U1 Also, the same format convention was used for adding the domain name
and system act in brackets.

Figure 3.13: Example of System Act Translation

English System Act [hotel] [inform] name [offerbook]

Arabic System Act [e] ¥ [E24]] [B24]

System Response The system response is delexicalized and hence to trans-
late it to Arabic, the sentence was partitioned based on the placeholders and dif-
ferent partitions were translated separately. An example of translating the system
act is shown in Figure 3.14. As shown, the system response was partitioned based
on the placeholders into three parts and each part is translated separately. How-
ever, the translation of the placeholders was done using predefined mappings to
make sure translations are always the same as these placeholders are fixed. Fi-
nally, all the partitions are combined into one sentence as shown in the last row
in Figure 3.14.

Figure 3.14: Example of System Response Translation

English System it looks like [value_name] will work well for you. would you like me to
Response book that?

Partitioned English
System Response

will work well for you. would you like
me to book that?

Of e 225 ol Ailly i I o g
fally jaall

it looks like | [value_name]

Partitioned Arabic

il N
System Response 5 [pe¥) Bas]

Arabic System Response | ey jaal of e s 55 s ol Aacils v JS05 Jand o pas [an) 5ans] 43S 5 jan

Figure 3.15 shows a completely translated dialogue from the MultiWOZ dataset
which is the translation of the previous example shown in Figure 3.5. It can be
seen that the translation is accurate and the same format and content were pre-
served after translation.

24

Figure 3.15: Example Translated Dialogue from MultiWOZ dataset

Dialogue ID: sng01669

Goals Hotels Database
Domain G Al i mlS J ke gy o) e
] Pre: [Ty 01223866800
Ak, 5yl el
Informable 8 A cb13lh
Slots p s 2 g !
¢ 5 o) ks l<a
L g | ,Ia_ggﬂ' 2
Requestable — £ > ik
Slots = -'Ey —
PEI Al S
i ga pe

Dialogue Turn Logs

User Utterance

AL ot Aens Gl Qe) o AL S e Saasl U
= a1l : . . P L \ o o e
Sl o g S ol Sy e g o) s Aam s o iyl

User Utterance

Juat¥l Aaas [E 2 gan] Jas o L e e S
£t oS ol s Alae gl)5 A e YL S

Delexicalized ,

Turn 1 [5 55
Dialogue Act G & g an i) [
System Act s Allaia [al] & 91 gl [E20)] [
chial Ja Caua gl 128 calsn) [E 51 saag] [lea taag] s
System Response ?é‘;h_” Gl f ATl Juns
User Utterance a3l 2 aa 3yl ALl 2 f

User Utterance . L iy L S
Delexicalized o [pmd Beny] g [l sing] A2
Turn 2 Dialogue Act 2 psad B ph Aihaie 38 £ g aat i) [3ad]
System Act [e ma] a) [E20] [3)]
g O ol Al de JS5 Jast i g [anl Bas g] S g gau
System Response | ¥ - - e s - s [t f_‘i‘.; ,;.i._f,}h?
Ol Jiallls 535 57 s Ja $:59 ol e ol Ll s
User Utterance ? ot e
User Utterance Joai) Jraldis g 0 i (o T el Anlag 8 ge Ll o
Turn 3 Delexicalized g saudll 12gs
Dialogue Act 2 pnd 5yl Allane A © g aat o g [Gad]
System Act e e [E 20 [

System Response

[Lia_sasg) Al b) ol el At il ga g1y pus

25

Chapter 4

Evaluation and Results -
End-to-End Approach

4.1 Training Details

The implementation of our model was done using the “aragpt2-base” model with
135M parameters. The model has 12 layers, 12 heads, and a maximum context
length of 1024. AdamW optimizer was used which is a stochastic optimization
method. The learning rate used is le-04, the seed used is 11, and the number
of epochs is 20. Data Pre-processing was done using the AraBERTPreprocessor
for aragpt2-base and tokenization was done using the GPT2Tokenizer. The data
split used was 8434 dialogues for training, 999 dialogues for validation, and 1000
dialogues for testing.

4.2 Error Measures

Several error measures were used to automatically evaluate the results of the
trained model. Evaluation is based on different criteria related to the response
generation quality, the policy optimization, and the performance of the complete
chatbot in an end-to-end way. In order to evaluate these different criteria, the
error measures used are Inform, Success, and BLEU. The Inform error measure
evaluates if the system has provided a correct entity. The Success error measure
evaluates if the system was able to answer all the requested information and if
all the answered information matches the user’s goal. The BLEU error measure
evaluates how natural and fluent are the generated responses. A combined score
is also used which was suggested in [7]. This combined score combines the three
mentioned error measures as follows:

CombinedScore = (Inform + Success) x 0.5+ BLEU (4.1)

26

4.3 Results

To evaluate the performance of the fine-tuned AraGPT2, the model was tested
in several scenarios. The difference between the testing scenarios is the use of
either the ground truth or the generated results for the different components. In
the real scenario, all the components used will be generated. However, to assess
the quality of the performance of the chatbot in a specific aspect such as response
generation, using the ground truth belief state and system act would result in a
better evaluation of only the response generation aspect. Three scenarios were
considered to evaluate the quality of the response generation, policy optimization,
and the end-to-end system. The different settings chosen for these scenarios are
shown in Table 4.1. The response generation aspect is evaluated by using the
ground truth values for the belief state, database result, and system act and
the generated system response is used in the context. For the evaluation of the
policy optimization, the ground truth values are used for the belief state and
database result and the generated values are used for the system act and the
system response. To evaluate the performance of the end-to-end system, all the
components used in the context are the generated ones. In the following sections,
the evaluation results of these three scenarios will be shown. The results shown
include the delexicalized responses which enables the evaluation of the system
in a generalized condition. However, these delexicalized responses in a natural
workflow will get filled before being sent to the user according to the database
results.

Scenario Belief State Database System Act oystem
Result Response

Respon;e Ground Truth Ground Ground Truth | Generated

Generation Truth

P(?hc¥ Opti- Ground Truth Ground Generated Generated

mization Truth

End-to-End Generated Generated Generated Generated

System

Table 4.1: Settings of Different Evaluation Scenarios

4.3.1 Response Generation

As mentioned previously, to evaluate the response generation quality of the model,
the ground truth values for the belief state, database result, and system act will
be used. However, the generated system response will be used in the dialogue
turn context. The model was tested on both the validation and test datasets and
the results are shown in Table 4.2. The model was able to achieve an inform
score of 79.2%, a success of 76.7%, a BLEU score of 23.6%, and a combined score

27

of 101.55%. Figures 4.1 and 4.2 show two examples of dialogues from the test
dataset. The example in Figure 4.1 shows a dialogue where the chatbot is helping
the user look for a hotel and a specific restaurant. The quality of the responses
achieved is very similar to those of the ground truth ones where all the required
information is available in the generated response. In Figure 4.2, the example
shows a case where the booking couldn’t be done based on the user constraints,
but the generated responses were of similar quality to the ground truth ones
which helped the user change the constraints and then successfully book a room

in the hotel.

Dataset | Inform | Success | BLEU | Combined Score
Validation | 77.38 76.38 23.15 100.03
Test 79.20 76.70 23.60 101.55

Table 4.2: Response Generation Results

Figure 4.1: Response Generation Results - Example 1

Gai e Gaadf U

User

;‘Qd._\:\...a: [e_g;j_SJ;J] e RIS Jlﬁ\i _903 [‘n-u:y‘_al;_g] La_‘..ﬂ [JL.\';_S..‘.;}] @w Lo Sllia
1508 53, 35 b psad

GT Response

fo2d (e 1 o Gileglrall (e 2y 5all oy

Generated Response

U sl A8 e YL SLLA Jlat) st 4l 3 S Y Aalay Dl bl
Al Ca il 5 B3 (56 G s Al o sl 6 5adl (8 al s Uilae

User

e e s dhAalall ppladl Gilday o3 Gaall LA Bas) Ja [Baa]
C413)

GT Response

Ja [ae¥) Basg] 5 [ae¥) Basg] b Aalall palaall o5 D Gaial) [l Bas 5] llia
028 (a1 el jmal o e a5

Generated Response

ASD Sl el al g asaill Caiat) Aalall o of 2l

User

s Ja [iils Bas 5] 58 agaila o 55 Saiall ani[asad Basg] 58 [l Bas o] Jlall.
4y inc e Aoy Al e ‘__51

GT Response

Aleh ol s Ja [ciils 3] 58 agiils 3 pga [agad 53] 38 [aul) Baa g
Sy fbine Lua S,

Generated Response

Dy Al) Sl ks e palas o giall) sl aa

User

Allia o [cails Bas 5] ageila &8 55 [()lsie Ban] o [d8hie Saa 5] 8 aabaall 1 a5y
fa dlinclie 384y AT 5 8 ‘__51

GT Response

Al ed gl dlta da [l sas 5] Wil &) [l sie Ban] A [Aihaie 3] 3 ks
§4y dliacliee S0y

Generated Response

S S8 anlind o8 U8 L el ol st

User

Nasbae Lags (558 dlaclus o Sy il s U

GT Response

o sl Liiead aladindy | S5

Generated Response

28

Figure 4.2: Response Generation Results - Example 2

sLtiall J gl CalSe guin andaa) dala i U

User

‘.’?_'e.hll (e dsa 9}9@ Q}SS |:J1 .J;l_j.idh ea.]n.o.h 1 Jia [_)1:15;_342._3] Sllia

GT Response

“uﬁyaﬁwl;}n%yd&aﬂ&@éﬁﬁb%[)g& E.J:.j]_ﬁ_\l

Generated Response

Al o el o8 o 25l (3 Al e e Ja 58 e e Y

User

Jeal O (Fe i Ja [aila Baa 5] b agdila o8 [au) Baa] gl ol Ul sl
fell 41 gl

GT Response

Sl gt ol Jaal o ey 55 [ala Bas] sn iilgll ol) [au) 3as]

Generated Response

Alps oy da g Y O Glg agad 3 Bai e Gaayl Ul gl s d Gl User
O e g o Sl (300 [aead Bas At i oBaa NI Baa o] Caaa g bl
O e i s U (538 [asat Basg] o8 (o [E 50 Bam o] [auV] Bang] Caag GT Response

el La jaal

el jaal O (e 2y e [58 Bang] aad [asad Sang] g8 [aud) Saag]

Generated Response

oS A50a8 g jeuall Gl Ll & JE5 g2 (28 ga Y1 Ll

User

[E58 Bang] [mms Sans] sa s el

GT Response

[£5 Bass] [onm Bang] 3o i

Generated Response

faaY) o ga e ol Oyl Bl el Bl A8 2 jaa oliSe; User
¢ puall 48] g AT agd Alglae e 5 s Saall maisal GT Response

RE AL VR I U\ F OV VR N LR [1 R SV S PR

Generated Response

Al e dgandls o jam (oa s dany Sl IS 1Y T50ad 5 AL LT, jo8 SliSay da
o=l

User

[l Bang] o8 oan sl BN ([3]) AL [RLlE]_Bas 5] J 2o sena JS S
O [asy Bans] J AT gdigndy ot e 5 da

GT Response

Lg‘_iﬂ:;] [L’j!_‘b’d;j] J.;1 e [L’\al._':s.:ﬂ_s_\a.j] = ‘;S.U'; j@a \;i.c 1)&& Iy
[aa ! Saa] 3o Gl paladl an yall A8 [a 5 S2a 5]

Generated Response

psdl gl o 5 S sa ey lelay User
SlEL At GT Response

ladac ?ﬁd_ﬁduﬁaﬁeldﬁuy'l)ﬂ

Generated Response

4.3.2 Policy Optimization

29

To evaluate the model performance on policy optimization, the ground truth
values for the belief state and database result were used. However, the system
act and the system responses used are the generated ones by the model. In this
way, the model’s ability on generating the system act based on the knowledge of
the belief state and the database result will be evaluated and also consequently
the generated response based on the system act. The model was tested on both
the validation and test datasets and the results are shown in Table 4.3. The

model was able to achieve an inform score of 76.8%, a success of 72.4%, a BLEU
score of 12.78%, and a combined score of 87.38%. An example of a successful
conversation is shown in Figure 4.3. The user’s goal in this example is to book a
taxi and the system was able to successfully request the destination from the user
when the origin and time were given. After the destination was given from the
user, the chatbot was able to successfully book a taxi and inform the user about
the taxi type and phone number. An example of an unsuccessful conversation is
shown in Figure 4.4. In this dialogue, the goal of the user is to book a table at a
restaurant. In the second turn of the dialogue, the user requests to book a table
in the recommended restaurant, the ground truth system act requests the day,
time, and number of people for the booking. However, our model doesn’t request
this information required for the booking and doesn’t book a table for the user
even though the user requested a booking. In order to show how the database
results which are queried with the results, the database results of the dialogue in
Figure 4.4 are shown in Figure 4.5. In the results, there are 4 chosen restaurants
which satisfy the requirements of the user regarding the price and the cuisine
type. If the user does not choose a specific restaurant, a random choice will be
suggested to the user.

Dataset | Inform | Success | BLEU | Combined Score
Validation | 72.77 70.17 12.80 84.27
Test 76.80 72.40 12.78 87.38

Table 4.3: Policy Optimization Results

4.3.3 End-to-End System

To evaluate the model performance as an end-to-end system, all the components
of the system to be used are the generated ones and not the ground truth. Hence,
the model will generate the belief state, and then query the database and get the
database results, then based on the results the system will generate the system
act and the system response. This workflow resembles the real workflow of a
task-oriented dialogue system. The model was tested on both the validation and
test datasets and the results are shown in Table 4.4. The model was able to
achieve an inform score of 79.6%, a success of 71.9%, a BLEU score of 12.26%,
and a combined score of 83.01%. An example of a successful dialogue is shown
in Figure 4.6 which is the same example shown previously in Figure 4.3 where
the ground truth belief state was used. It can be seen that the results are the
same because the belief state was accurately generated. Consequently, the system
act and system response were also accurately generated based on the generated
belief state and database results and hence the conversation was successful, and
the booking was done. An example of an unsuccessful dialogue is shown in Figure

30

Figure 4.3: Policy Optimization Results - Example 1

45 10 delud) axy s poleall LT otk 4 dadaia 6 el 6)l Zlia]

User

gl [colle] [s]

GT System Act

sl [lb] [8]

Generated System
Act

Sl of 3 55 ol Y

GT Response

Generated Response

) 2 padas M Jpea sl dnlas il

User

[a2 3] o] it 5 o [0] [t

GT System Act

a5 [£34] [S1]

Generated System
Act

5 sl 5)Ll & 58 ol 4 dlinclise 1Sy AT o8 ol el Ja 1 3aall)
[ila Bas 5] JlatV) A8 [5las 32s 4]

GT Response

[le Bas o] Juatl 8 5[5k 3o o] 8 saaall 3 jLudl & g3 1 3aall (L)

Generated Response

gt JE N 1S User
[2 =ldk] [ale] GT System Act
Generated System
1a o
[lt] [ole] Act
Liiga i€ 1)l jladll g cadall 3halia aa line b Lyl iS4 GT Response

Lilard Aladiay | K8

Generated Response

4.7 where in the first turn the model was able to correctly generate the belief state
and accordingly generate the system act and system response which includes a
request of the area and price range from the user. However, even after the user
mentions that there are no preferences on the area and price range, the system
keeps on asking about them in the next two turns. In the fourth turn, since the
true user utterance is asking to book a hotel, the true system response asks the
user regarding the number of days which is required to be able to book. However,
the model made the booking without asking this question to the user which is
by taking a random choice from the database results but without considering the
number of days to be booked which will result in a wrong booking.

Dataset | Inform | Success | BLEU | Combined Score
Validation | 76.28 70.57 12.06 85.48
Test 79.60 71.90 12.26 88.01

Table 4.4: End-to-End System Results

31

Figure 4.4: Policy Optimization Results - Example 2

loas I caall slalall a2as) aadas 223 ol 240 User
[oa e aa] aw) ddhic g [§30]] [axka] GT System Act
e o . : Generated System
i] s jaas el [E30] [prkad] et

fell o jaal o e 8 Ja I smas ang] ga g [Allal Bang] gy [ans) 5]

GT Response

‘“__._\’ll ;._‘\aj.qh O :\.‘ua.n dalai, ollia an ‘zl.Lln [‘aLl.]n_a.J;_g] [)LM_SJ;_;] [_;qu._é.\:.j] Sl
flead aladall Jolii & o

Generated Response

Ol giall sk Sl ela g la g saa g) ghoait aat User

salaldl i g o g [ll] ol sie [E20]] [arkad] GT System Act

. e Generated System
[] [ale] pleks) ¢ e [£30] [pnles] et

“de| e ‘aS $o \; e g?'_\]\ L:ﬁ).“} P_}__’m 94 L [L'J'h}:\c._;.‘.;}] 34 L'}'h}.'uﬂ

GT Response

AT sl gl lin a0l e 53] 8 0 gh 3 s [plake 53] o [pud]_50n]
04y tline e 30y

Generated Response

fellind (g dilaially g2 5al) el ga Leo jaaldalay cud U User
sl e)l [E3U0] [andad] GT System Act
. AL . Generated System
(g3l ol A ¥ [£34]] o] nt

[en ol el 3ang] o gyl Sl

GT Response

[gu ol el B0s 5] age palall (o) Gl g [Adhaie Bas 5] (8 a8y [an)) Bas]

Generated Response

2 5 1S4 User
[lehas] [hshal] [ae] GT System Act
[letas] [dtal] [oe] Genera’j::dt System
C

lehys labae a5 055 el b 5

GT Response

lehg ol b e

Generated Response

Figure 4.5: Database Results of Example 2

Database Results
Information Restaurant 1 Restaurant 2 Restaurant 3 Restaurant 4
alals il il il Al
el gl T s s)
auyl P WA 3N U5k Lglaa) ol aadll)

Overall, the results generated by the end-to-end system are accurate and in
most cases the belief state, system act, and system response are accurately gen-
erated. The current evaluation is on the true user utterances and not utterances

32

Figure 4.6: End-to-End System Results - Example 1

Generated Ground Truth

45 10 e ludl 22y 5 el 131 (308 i dadaiaV 8 5al 5l 7 Ua User
G L5 5 jalae 45 10 5k [uSl] G L1 5 jalae 45 10 5 alke [uSU] Belief State
dga sl [enlla] [l dga) [nll] [msl] System Act

Telign 5 Oyl feud o s)| System Response

Gl 2 axdae) Jgea sl dalas User

B8 (LA B 5lae 45 10 80 [(uSU] | G081 85000 45 10 Boie [(oSU] Belief State
GH 2 pakaedga O 2 pakae dga 5l

a5 s [0] [ornSU] [ple] 5 3t [@J['lgjﬁg System Act

5 sanall 5 L) £ 3 | aal) Jui)
[ails Bas o] Juat™) 8 [5 L Baa]

ey AT 5 gl dlia b 1 aall Jas)
8 saaall B Ll & 5 o gall 4y line Lina
[l Bas 5] Juail) a8, [B e 33a]

System Response

st JS s 1SS User
(B LG 3 jalas 45 10 8 yalae [oSU] B LS8 jalas 45 10 5 alie [nSU] Belief Stat
O 2 pnbaa dgn s O 2 anlae dgn sl eliet State
[lelas] [2le] [a=llli] [ale] System Act

Lilasd aladiul |82

aall 3hlie ae dlivelue Lagl S35

System Response

Laiga i€ 13) ol jLladll g

generated in response to the system response and hence this disables the evalu-
ation on the true flow of the conversation. However, even with the ground truth
system responses, the results are accurate.

4.3.4 Comparison of Results

The results of our model trained using AraGPT2 and the translated MultiWOZ
dataset are compared to the results achieved by UBAR [53] which was trained
using the same approach using GPT2 and the English MultiWOZ dataset and
shown in Figure 4.8. The results achieved using our model are comparable to
the English results. The results achieved using the English dataset are better
than the ones achieved using our translated dataset. However, considering that
the dataset was translated and hence contains some errors and inaccuracies, the
results are very close to the English ones. This shows that the quality of the
dataset is good, and the trained model achieved comparable results to state-of-
the-art in English.

33

Figure 4.7: End-to-End System Results - Example 2

Generated Ground Truth
b o) g A e YL SLOU Jlan) deas Ll A0 IS e Caf Ul L 5 e
Sl el Ao il ga 5 llas
pat) el L8 oo [(9238) axd] ant g [(3236] Belief State

et ol 5 i lSa ol sas o]
i dahia 5l g yau lai elal Ua

g omull GUail ol dlaiadl Joags olal Ja

System Response

Lo elall
Al Gl g B8y 81y Jamai gal User
(B & i and T aed il ga [(3000] (BB & g and T anl il ga [(3038) Belief State
. — < Teo 0] 1 Soeh
s [lh] £ 8 LA [E30)] [aad) S] ! o] [] System Act

[o2e a]

ol 5l [e 58 Sas o] [Jd Bas] cllia
fmad) Bl e Jusstolal Ja sulall)

gl Gaill 1aa Jia [LA Baag] cllia
ﬁu JA_"J ui ‘,Fh .3;1)5 dh [{u.uy_shj]

T 2

System Response

Ll O sSa a 33l User

o aiadl i [g 55 s [Dha sass] Gllia
$ee pad) Gl kil Lo Juads el

Qlilia 3 o5 S 0l (el aae oS

felad) deee il e oS

System Response

Gl o Joaai a5 Lo 3 llin User
S . 3 &l 3 el 24 w e 5 P — . em — g
i &yatm ij’: 52 ;ULL]; G i qad Qi l pnd i o [(35] Belief State
o] = g [l] [— —
(o] o= et [mns] [Al [l [System Act

[aludl]

c_j;),dl ‘33) [:a.uyl_'ﬁ..b.}] \; ;\A)E— il [GIREES
ol s o [an al) 3an] g0 ol alall
Sag clise L 384 AT 3

s s

System Response

Figure 4.8: Comparison of Our Results with State-of-the-Art

Model Scenario Inform Success BLEU Combined Score

Our Model Response 79.20 76.70 23.60 101.55
UBAR Generation 96.90 92.20 28.60 123.20

Our Model Policy 76.80 72.40 12.78 87.38
UBAR Optimization 94.00 83.60 17.20 106.00

Our Model End-to-End 79.60 71.90 12.26 88.01
UBAR System 95.40 80.70 17.00 105.10

34

Chapter 5

Methodology - NLU Component
of the Pipeline Approach

5.1 Background on the Pipeline Approach Ar-
chitecture

A typical architecture of task-oriented chatbots is as shown in Figure 5.1. The
architecture is made up of three main components which are the Natural Lan-
guage Understanding (NLU), the Dialog Manager which contains the Dialog state
tracker and the Dialog policy learning, and the Natural Language Generation
(NLG). These three components will be explained in the following sections.

Figure 5.1: Architecture of Task-Oriented Chatbots

35

5.1.1 Natural Language Understanding (NLU)

The Natural Language Understanding (NLU) component has two main objec-
tives. The first objective is Intent Classification and the second objective is Slot
Filling [69]. The intent classification task is to determine the goal of the user
from the utterance. For example, in the flight booking domain, the intent of the
user might be to Book a Flight or to Find a Flight. The slot filling task is to
extract the required slots from the user utterance which the user wants to send
to the chatbot and this is linked with the intent of the utterance. I:‘or example
in Figure 5.2, for a user utterance yU& JI &gny o0 85l 52 oy), the intent
of the user is to book a flight and the slots are extracted for each word in the
utterance that the user wants the chatbot to understand and that is related to
booking the flight. In this example, the user wants the chatbot to know that the

origin of the flight is & 9 s and the destination of the flight is)& and these two
words should be annotated in the user utterance.

Figure 5.2: Example NLU Output

User Utterance Olie Jd! Ca9 e 85U s | oWl
Slots Destination Origin
Intent Book a Flight

In datasets where multiple domains exist, an additional task for the NLU is
required which is the domain classification. This is necessary to classify to which
domain the utterance is referring before determining the intent of the user and
extracting the slots [69].

5.1.2 Dialog Manager (DM)

The Dialog Manager component is made of two main components which are the
Dialog state tracker and the Dialog policy learning. The input to Dialog State
tracker is the output of the NLU component and it is in the form of a dialog act
[70]. The next section will be explaining the form of the dialog act and the two
components of the Dialog Manager.

Dialog Act

The dialog act represents the interpretation of the user’s utterance. Dialog acts
have different forms but the most popular one is the CUED standard dialog act
[71]. The CUED form of the dialog act is represented in the form of dialog act
type followed by a list of act items:

ActType(a =z, b=vy,...) (5.1)

36

Where the ActType represents the type of the dialog act such as inform, re-
quest, confirm, and select. The act items a=x, b=y represent the attribute-value
pairs of the corresponding dialog act. For example, the dialog act can be IN-

FORM (destination=_¢&) which means that the type of the dialog act is to inform

and the attribute to inform is that the destination country is HU&.

The dialog acts depend on the dialog system and the task of the chatbot [69].
For example, the dialog acts of a chatbot for flight booking are different than the
ones for restaurant booking. Figure 5.3 shows examples of different dialog acts as
mentioned in [71]. The system and user columns indicate whether the dialog act
is applicable to the chatbot only, the user only, or to both. The dialog act items
a, b,.. are however task-dependent in which they can be destination country and
origin country in case of flight booking or cuisine type and price range in case of
restaurant booking.

Figure 5.3: Examples of Dialog Acts

Dialog Act System | User Description
HELLO() v v Start conversation
HELLO(a=x,b=y,... x v Start conversation and give information a =
x,b=y,..
INFORM(a=x,b=y,...) v v Give informationa=x, b=y,...
REQUEST(a, b =x,...) v v Request value fora given b =x ...

Dialog State Tracker

The main goal of the dialog state tracker is to determine the state of the user at
each turn of the conversation [4]. This is done by determining the current state
of the frame using the current slots from the user and also all the past constraints
given. Using an example conversation shown in Figure 5.4 | the output of the
dialog state tracker after every turn of the conversation will be as indicated in
the figure.

The task of predicting the dialog act type is usually performed as a supervised
classification task where the dialog act type is predicted using the current user
utterance and the previous dialog acts. Also, one of the tasks of the dialog state
tracker is to determine whether any of the values of the previously assigned slots
have been changed in the current utterance and to update it if necessary [69].
Another important part of the Dialog state tracker is to perform generalization

37

Figure 5.4: Example Output of the Dialog State Tracker

Dialog State Utterance

INFORM(destination="0las) Olas J1 8,5 jom) User

TEMBY!)8 9 Lo .Lw> | Chatbot

INFORM (destination="0las ”, origin="gn ”) g User

§yaull 73)G a0 | Chatbot

INFORM (destination="0las ”, origin="gn ”,

Bl 096
date="_3Wl 0336 20") Jul0gt 20 User

to the user constraints. For example, the words ja.s, and jaa>le =« both
refer to the same meaning of cheap and hence they should be linked with the
same output slot. This step is important to ensure a generalized Dialogue State
Tracker component.

Dialog Policy Learning

The main job of the dialog policy learning is to determine the next action that
the chatbot should do based on the current dialog state generated by the dialog
state tracker [4]. So, the aim of the dialog policy is to determine the next action
A; based on all the previous chatbot (A) and user (U) actions:

~

Ai = argmaXP(Ai|A1,U1,...,Ai_l,Ui_l) (52)
(A;€A)

One of the advanced approaches used in dialog policy learning is reinforcement
learning where the reinforcement learning systems gets rewarded at the end of
the conversation if the dialog acts taken were correct and the goal of the user was
achieved. However, a negative reward is given to the system in case the goal was
not achieved correctly.

5.1.3 Natural Language Generation (NLG)

The main objective of the Natural Language Generation (NLG) component is to
generate a natural system response based on the dialog act outputted from the
dialog policy learning component [69]. An example output of the NLG component
is shown in Figure 5.5 where the output of the dialogue act is to inform the user
of the origin and destination of the booked flight. The objective of the NLG
component is to generate a system response from the dialogue act as shown in
the second row in the figure. However, training an NLG component using this
data is hard as it is difficult to generate responses for all combinations of slots

38

in each of the different dialogue acts [69]. Consequently, it is recommended
to use delexicalized system responses to train the NLG component in order to
to train the NLG component using more generalized data. Delexicalization is
the replacement of specific words in the sentence by generic placeholders. For
example, the word &g is replaced by the generic placeholder 4= jJ\ in
the system response. In that way, the data becomes more generalized, and the
placeholder can be replaced by the actual values after the NLG component have
generated the generalized system response with the placeholder.

Figure 5.5: Example Output of the NLG

Dialogue Act INFORM (3ay/= " 7, dgz-gll="0las ")
System Response olie A g gedls) Cua g
Delexicalized System .
i M e dda
Response dgzo)l N (BN e dls) Dy

5.2 Natural Language Understanding (NLU)
Training

5.2.1 Approaches

The first component in the pipeline approach of the task-oriented dialog system is
the Natural Language Understanding (NLU) component and for that component
we propose the Multi-task Chat Understanding Towards a Pipeline Approach. As
mentioned earlier, the main tasks of the NLU component are the Intent Classifi-
cation and the Slot Filling. In order to train the NLU component, two approaches
are suggested. The first approach is training a separate model for each task and
hence training one model for Intent Classification and another model for Slot
Filling. The second approach is to jointly train one model on both tasks at the
same time. In both approaches the pretrained language model AraBERT [§] is
used. In the following sections, first the AraBERT pretrained language model
will be introduced and then the two approaches will be explained.

AraBERT

The AraBERT [8] pretrained language model is based on the BERT model [22]
with both having the same base configuration which is 12 encoder blocks, 768 hid-
den dimensions, 12 attention heads, 512 maximum sequence length. The BERT
architecture is made up of multi-layer attention-based Bidirectional Transformer

39

Encoders. The AraBERT pretraining setup was based on the same setup used by
BERT which consists of two main steps which are the Masked Language Mod-
eling (MLM) and the Next Sentence Prediction (NSP). The MLM task helps in
capturing the language properties by randomly masking some tokens to avoid a
token observing itself. The NSP task is important to capture information in the
settings of having sentence pairs.

The input representation to AraBERT is the concatenation of word embed-
dings, positional embeddings, and segment embeddings. A special token is in-
serted as the first token for the input which is [CLS] and a special token is added
as the final token which is [SEP]. The AraBERT pretrained language model have
been evaluated on several NLU tasks such as classification and Named Entity
Recognition tasks and the model was able to achieve state-of-the-art results com-
pared to other approaches and language models [8].

AraBERT for Intent Classification

The first suggested approach is to train a separate model for each of the NLU
tasks which are the Intent Classification and Slot Filling. For that, the pretrained
language model AraBERT was fine-tuned on each of these tasks separately.

For the intent classification task, AraBERT was fine-tuned using user utter-
ances as input while adding the special token [CLS] as the first token and the
special token [SEP] as the last token. Then the output class label which is the
intent would be the final hidden state of the first token in the input sentence
which is the [CLS] token as shown in Figure 5.6.

Figure 5.6: AraBERT for Intent Classification

e

1
Lellnjlm] -

AraBERT
(Ewlle [e] ~ [&o]

[1 1
[cLs] || Tok1 [Tok2 | ..

AraBERT for Slot Filling

For the slot filling task, the same process of adding the first and final special
tokens was applied. The input sentence has the same format as the one used for

40

intent classification. The difference in this task is the output where the output
in this task would be the output of each token after the output vector passes
through a classification layer that predicts the required slot labels as shown in
Figure 5.7.

Figure 5.7: AraBERT for Slot Filling

il

e [ml[m]

AraBERT
[Eos [[& [E2 | = [& |

T 1t 1
[cLs] | Tok1 [Tok2 ...

Joint AraBERT for Intent Classification and Slot Filling

The second suggested approach is to train one model for both intent classification
and slot filling. For that, AraBERT was fine-tuned on these two tasks jointly as
shown in Figure 5.8. The input to the model is the user utterance with the special
token [CLS| added as the first token and the special token [SEP] added as the
final token. The predicted intent would then be the final hidden state of the first
special token [CLS]. For the slot filling task, the final hidden states of all the
tokens except the first token are fed into a softmax layer. The outputs would
then be the predicted slot labels for every token. In order to train the model
on both tasks of intent classification and slot filling, the total loss function to be
minimized while fine-tuning is chosen to be:

TotalLoss = IntentLoss + Coef ficient x SlotLoss (5.3)

Using this loss function, both the intent and slot loss are considered where the
weight of the slot loss can be altered using the coefficient in the equation. A
coefficient of 1 gives both the intent and slot loss equal weights.

In addition to the mentioned joint AraBERT architecture, another approach
used is the addition of a Conditional Random Fields (CRF) layer on top of the
joint AraBERT model. CRF's are structured prediction models and adding them
on top of the model can help in the prediction of slots from the predictions of the
surrounding words.

41

Figure 5.8: AraBERT for Joint Intent Classification and Slot Filling

| Intent || Slot1 || Slot2 |
1 1

[c][] -
AraBERT
[Eoa | E L&] ~ L&

[cis] | Tok1 || Tok2 ... Tok N

5.2.2 Dataset Created

As there are no resources available in the Arabic Language for training the NLU
component, resources had to be created. For this purpose, the ATIS dataset,
which is a well-known dataset for NLU, was translated to Arabic. In the follow-
ing sections, first an overview will be given on the ATIS dataset and then the
approach used to translate the ATIS dataset will be explained.

ATIS Dataset

The Air Travel Information System (ATIS) dataset [9] is a well-known dataset
used for training NLU models. The dataset includes user utterances of users
requesting flight reservations and information. There are a total of 5871 utter-
ances in the dataset where the same data division as [20] was used which divides
the data to 4478 utterances for train, 500 utterances for evaluation, and 893
utterances for test.

Figure 5.9 shows an example sample in the ATIS dataset. Each entry in the
dataset includes the user utterance, the intent of the utterance, and a slot for
every word in the utterance. There are a total 120 slot labels and 21 intent
types. The slots in the dataset are annotated based on the IOB (Inside, Outside,
Beginning) Tags. The IOB tagging is similar to the part-of-speech tagging where
it is used for tagging tokens in a chunking task. In this tagging format, the tag
(B-) represents the beginning of the chunk, the tag (I-) represents the inside of
the chunk, and the tag (O) represents no chunk.

Translation of the ATIS Dataset

In order to translate the ATIS dataset, the Microsoft Translator API was used.
However, a specific approach had to be used for translation. As was mentioned
in the previous section, each sample in the dataset includes three values which

42

Figure 5.9: ATIS Data Example

Sentence show me evening flights to baltimore
Slots 0] o] B-period_of_day 0 0] B-toloc.city_name
Intent atis_flight

are the actual utterance, an annotated slot for every word in the utterance, and
the intent for the whole utterance. A specific approach had to be implemented in
order to link every word in English with its translated word in Arabic and then
to assign that word in Arabic the same slot of the English word. To do that, the
word alignment option available in the Microsoft Translator API was used. This
word alignment option returns for every translated sentence, the link for every
translated word with the original word.

Figure 5.10 shows an example of an utterance in the dataset which is trans-
lated to Arabic. In Figure 5.11, the alignment returned with the translated
sentence is shown. In the alignment, each chunk represents an alignment. For
example, 0:3-0:1 indicates that the letters in index 0 to 3 in English are linked
with the letters in index 0 to 1 in Arabic. This indicates that the word “What”
in English is the translation of ” " in Arabic. In this way, all the words in

English are mapped to their translations in Arabic as shown in the last row in
Figure 5.11.

Figure 5.10: ATIS Sentence Translation Example

Original what is the meaning of meal code

Translation L9 30y (S0 90 Lo

Figure 5.11: ATIS Word Alignment Example

Alignment 0:3-0:1 5:6-3:4 12:18-6:9 23:26-15:18 28:31-11:13
0:3-0:1 5:6-3:4 12:18-6:9 23:26-15:18 28:31-11:13
what-le is- g meaning-a=s meal-d=9 code- 33

After the words have been aligned, the slots have to be mapped. In that way,
the assigned slot of the word in English will be assigned to its translated word

43

in Arabic. Figure 5.12 shows the slot alignment process done to assign the slot
for the Arabic words. This slot alignment is done based on the alignment found
before as shown previously in Figure 5.11.

Figure 5.12: ATIS Slot Alignment Example

Ay) (S0 3 b

I-meal_code | B-meal code 0 0 0
F 3 I‘ F F
l A4 & A 4

what is the meaning of meal code

0 @] 0 0 0 B-meal code | |-meal code

Using this approach, all the utterances in the ATIS dataset were translated.
However, there were several errors faced when using the word alignment option.
The first problem is that some words in Arabic had no alignment with any English
word in the returned word alignments. In this case, the slot of that word was
assigned to be “O” and then these results were checked again. Another problem
faced is when one word in English is translated to two words in Arabic. In that
case, the two Arabic words will be assigned the same slot. This is shown in Figure
5.13 where the word “early” is translated to the two words 7 Kw &a3y” in Arabic
and they are both given the slots “B-arrive_time.period_mod”. The problem here
is that these two words are considered one chunk and the second word in the
chunk should start with “I-".

Figure 5.13: ATIS Translation Problem - 1

el oo S g 3 Jad
B- B- B-
arrive_time.period_| 0 arrive_time.periodjarrive_time.period] 0
of_day _mod _mod
arrive early in the morning
B- B-
o arrive_time. 0 0] arrive_time.pe
period_mod riod_of_day

Another problem faced is having chunks which do not start with “B-”. This
also occurs when two words are aligned with one word in English and that word

44

is the second word in a chunk and hence starts with “I-”. This is shown in Figure
5.14 where both words in Arabic are aligned with the word “Petersburg” and
hence both are given the slot “I-fromloc.city_name”.

Figure 5.14: ATIS Translation Problem - 2

ks e o Dol =)l J o
I- -
fromloc.city_|fromloc.city (0] 0] 0] 0] 0]
name _name
show me the flights from st. petersburg
B- I-
0] 0 0 o] 0] fromloc.city_na [fromloc.city_na
me me

There are several other issues in alignments that can result in wrong slot
assignment. For this, the slots were checked for these issues to make sure all
chunks start with a “B-” and all other words in the same chunk start with an
“I-7.

Apart from these problems that could be solved automatically in the code,
there were other problems in the alignment that required a manual QC of the
results to be done. One of these problems is having wrong alignment results
which means wrong words are mapped to each other. This can be explained

using Figure 5.15 which shows that the word “Jo\i” 7 was mapped to the word
“February” which is a wrong mapping and hence the assigned slot is wrong.

Figure 5.15: ATIS Translation Problem - 3

2 S) ool g
B- B- B-
arrive_date.month_na | arrive_date.day_numb | arrive_date.month_na 0

me er me

on february twenty eighth
B- B- I-

0 arrive_date.month_na | arrive_date.day_numb |arrive_date.day_numb
me er er

Apart from the mentioned problems in alignment results, there were problems
in the translation of the sentences where some words were translated in a wrong
way. Consequently, a manual QQC was done on all the translations and all the
annotated slots to make sure that the data is translated correctly, and the slots are

45

assigned correctly. Following this, a clean Arabic ATIS dataset of 5871 utterances
is available which can be used to train the NLU component.

5.2.3 Evaluation and Results
Training Details

For training, the AraBERT Base model [8] was used which has 798 hidden states,
12 heads, and 12 layers. The model was pretrained using 200M sentences collected
from the OSCAR corpus, the Arabic Wikipedia dump, the 1.5B words Arabic
Corpus, the OSTAN Corpus, and the Assafir news articles. For training, 8 epochs
were used, and Adam was used for optimization. The batch size used for training
and evaluation is 16. Hyperparameter tuning was done on the learning rate, the
seed, and the number of warmup steps. The optimal parameters found for each
of the different approaches are shown in Table 5.1.

Parameter Intent Classi- | Slot Joint Intent Classifica-
fication Filling | tion and Slot Filling

Learning Rate 2e-05 5e-05 oe-05

Seed 42 42 42

Warmup Steps | 0 41 0

Table 5.1: NLU Training Parameters

Error Measures Used

The error measures used to evaluate the trained model are the F1, precision,
recall, and accuracy for both the intents and the slots predicted. An additional
error measure used to evaluate the Joint model is the semantic frame accuracy.
The semantic frame accuracy error measure is used to evaluate the performance of
the joint model by evaluating the accuracy of having both the intent and the slots
predicted correctly in one sentence. The formulas used for each error measure
are the following:

Precisi TruePositive (5.4)
recision = .
TruePositive + FalsePositive
TruePositt
Recall — ruePositive (5.5)

TruePositive + FalseNegative
TruePositive + TrueNegative
AllSamples

Pl 2 x Precision x Recall

(5.6)

Accuracy =

5.7
Precision + Recall (5.7)

SemanticFrameAccuracy = Accuracy(correctIntent + correctallslots) (5.8)

46

Results — AraBERT for Intent Classification

The training results on each epoch for fine-tuning AraBERT for Intent classifica-
tion are shown in Figure 5.16. The least errors were reached at epoch 8 where a
training loss of 0.0264, a validation loss of 0.197928, an F'1 of 83.26%, a precision
of 83.31%, a recall of 86.1%, and an accuracy of 96.8% were achieved. Results
on the test dataset are shown in Figure 5.17. The test results achieved are an F1
score of 88.947%, a precision of 92.33%, a recall of 89.795%, and an accuracy of

97.2%.

Figure 5.16: AraBERT for Intent Classification - Train Results

Epoch | Training Loss | Validation Loss F1 Precision Recall Accuracy
1 No log 0.310757 0.462724 0.475161 0.464243 0.932000
2 No log 0.200623 0.720932 0.729824 0.719652 0.962000
3 No log 0.190137 0.851363 0.860151 0.860760 0.966000
4 0.279100 0.194558 0.842653 0.834295 0.876503 0.968000
5 0.279100 0.192020 0.832550 0.833115 0.860947 0.968000
6 0.279100 0.195810 0.828559 0.832929 0.854280 0.966000
7 0.279100 0.198383 0.832550 0.833115 0.860947 0.968000
8 0.026400 0.197928 0.832550 0.833115 0.860947 0.968000

Figure 5.17: AraBERT for Intent Classification - Test Results

Error Measure Score (%)
88.947
Precision 92.330
Recall 89.795
Accuracy 97.200

Results — AraBERT for Slot Filling

The training results on each epoch for fine-tuning AraBERT for slot filling are
shown in Figure 5.18. The least errors were reached at epoch 8 where a training

47

loss of 0.0345, a validation loss of 0.110035, an F1 of 97.63%, a precision of
94.91%, a recall of 95.02%, and an accuracy of 94.96% were achieved. Results on
the test dataset are shown in Figure 5.19. The test results achieved are an F1
score of 97.040%, a precision of 93.471%, a recall of 93.768%, and an accuracy of
93.619%.

Figure 5.18: AraBERT for Slot Filling - Train Results

Epoch | Training Loss | Validation Loss F1 Precision Recall Accuracy
1 No log 0.215457 0.947930 0.884930 0.887522 0.886224
2 No log 0.130123 0.968541 0.933918 0.935559 0.934738
3 No log 0.106840 0.973965 0.938882 0.944933 0.941898
4 0.341000 0.100229 0.975954 0.943572 0.950205 0.946877
5 0.341000 0.106430 0.975773 0.947862 0.947862 0.947862
6 0.341000 0.107096 0.975592 0.946262 0.949033 0.947646
7 0.341000 0.109431 0.976135 0.949678 0.950791 0.950234
8 0.034500 0.110035 0.976315 0.949093 0.950205 0.945649

Figure 5.19: AraBERT for Slot Filling - Test Results

Error Measure Score (%)
F1 97.040
Precision 93.471
Recall 93.768
Accuracy 93.619

Results — Joint AraBERT for Intent Classification and Slot Filling

Joint AraBERT — No CRF The training results on each epoch for fine-tuning
AraBERT for joint intent classification and slot filling are shown in Figure 5.20.
The least errors were reached at epoch 8 where a training loss of 0.426, an intent
accuracy of 97.2%, an intent F1 of 86.9%, an intent precision of 86.8%, an intent
recall of 88.3%, a slot accuracy of 97.9%, a slot F1 of 95.5%, a slot precision

48

of 95.4%, a slot recall of 95.5%, and a semantic frame accuracy of 85% were
achieved. Results on the test dataset are shown in Figure 5.21. The test results
achieved are an intent accuracy of 97.648%, an intent F1 of 86.186%, an intent
precision of 88.114%, an intent recall of 86.953%, a slot accuracy of 97.107%, a
slot F1 of 93.699%, a slot precision of 93.666%, a slot recall of 93.732%, and a
semantic frame accuracy of 82.755%.

Figure 5.20: Joint AraBERT — No CRF - Train Results

Semantic
Intent |Intent| Intent |Intent Slot Slot Slot Slot
Epoch| Loss L. . Frame
Accuracy| F1 | Precision | Recall [Accuracy [F1 | Precision | Recall

Accuracy

0.418 | 0970 |0.921| 00919 |0946| 0971 (0929 0.919 |0.938(0.792
0.405| 0972 |0.867| 0.871 |0.877| 0.975 |0.946| 0.944 |0.947(0.822
0.462 | 0966 |0.868| 0.881 |0.870| 0976 |0.946| 0.943 |0.948| 0.840
0.3% | 0972 |0.871| 0.871 |0.883| 0978 |0.952| 0951 |0.953| 0.844
0418 | 0972 |0.869| 0.868 |0.883| 0978 |0.953| 0.953 |0.954| 0.844
0.429| 0970 |0.867| 0.871 |0.877| 0979 |0.956| 0.956 |0.956| 0.854
0427 | 0972 |0.869| 0.868 |0.883| 0.979 |0.953| 0952 |0.954| 0.844
0.426| 0972 |0.869| 0.868 |0.883| 0979 |0.955| 0.954 |0.955| 0.850

Nk [WIN]|F-

Figure 5.21: Joint AraBERT — No CRF - Test Results

Error Measure Score (%)
Intent Accuracy 97.648
Intent F1 86.186
Intent Precision 88.114
Intent Recall 86.953
Slot Accuracy 97.107
Slot F1 93.699
Slot Precision 93.666
Slot Recall 93.732
Semantic Frame Accuracy 82.755

Joint AraBERT — With CRF The training results on each epoch for fine-
tuning AraBERT for joint intent classification and slot filling with the addition of
the CRF layer are shown in Figure 5.22. The least errors were reached at epoch 8

49

where a training loss of 1.850, an intent accuracy of 97.2%, an intent F1 of 85%),
an intent precision of 83.6%, an intent recall of 88.7%, a slot accuracy of 95%, a
slot F1 of 95.3%, a slot precision of 95.1%, a slot recall of 97.7%, and a semantic
frame accuracy of 84.4% were achieved. Results on the test dataset are shown
in Figure 5.23. The test results achieved are an intent accuracy of 96.865%, an
intent F1 of 86.205%, an intent precision of 91.730%, an intent recall of 86.248%,
a slot accuracy of 97.018%, a slot F1 of 93.728%, a slot precision of 93.794%, a
slot recall of 93.662%, and a semantic frame accuracy of 81.859%.

Figure 5.22: Joint AraBERT — With CRF - Train Results

Semantic

Intent |Intent| Intent |Intent| Slot Slot Slot Slot

Epoch| Loss . L. Frame
Accuracy| F1 | Precision |Recall | Accuracy | F1 | Precision | Recall

Accuracy

1.805 | 0.958 (0.728(0.726 |[0.740| 0.971 (0.936| 0.930 (0.941(0.796
1.738 | 0968 |(0.767| 0.779 |[0.794| 0.972 ([0.939| 0.937 [0.941(0.810
1.823 | 0966 (0.794(0.793 |[0.810| 0.972 (0.943| 0.943 [(0.943(0.822
1.696 | 0.970 |0.802(0.796 |[0.820(0.975 (0.947| 0.945 [0.948(0.824
1.640 | 0972 (0.812(0.817 |0.817| 0.977 (0.852| 0.951 [0.953(0.846
1.780 | 0.972 (0.811(o0.811 |(0.821| 0.977 (0.852| 0.950 [0.954(0.850
1.843 | 0970 (0.867| 0.868 |[0.880| 0.977 (0.951| 0.949 |[0.953(0.840
1.850 | 0.972 |0.850(0.836 |(0.887| 0.950 (0.953| 0.951 [0.977(0.844

o|lv|lo|lu|[sr|lw|Nn|~

Figure 5.23: Joint AraBERT — With CRF - Test Results

Error Measure Score (%)
Intent Accuracy 96.865
Intent F1 86.205
Intent Precision 91.730
Intent Recall 86.2438
Slot Accuracy 97.018
Slot F1 93.728
Slot Precision 93.794
Slot Recall 93.662
Semantic Frame Accuracy 81.859

20

Evaluation and Analysis of Results

Following the implementation of the two approaches of training separate models
for intent classification and slot filling and the training of a joint model for both
tasks, the results have to be compared to conclude on the best approach. Figure
5.24 shows the results of both approaches for comparison.

Figure 5.24: NLU Results Comparison

Intent Slot Semantic
Model Frame
Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy
AraBERT —
Intent 97.2% 88.947% | 92.330% | 89.795%

Classification

AraBERT —
. 97.040% | 93.619% | 93.471% | 93.619%

Slot Filling

Joint

A OI;:ZRT 97.648% | 86.186% | 88.114% | 86.953% | 97.107% | 93.699% | 93.666% | 93.732% | 82.755%
ra

Joint

AraBERT + 96.865% | 86.205% | 91.730% | 86.248% | 97.018% | 93.728% | 93.794% | 93.662% | 81.859%
CRF

Comparing the results with respect to the intent classification task, it can
be seen that fine-tuning AraBERT on the intent classification task only results
in better performance in terms of F1, accuracy, and recall compared with the
joint approach. The model for intent classification only was able to achieve
2.76% and 2.74% higher F1, 4.22% and 0.6% higher precision, and 2.84% and
3.55% higher recall compared with the joint AraBERT without CRF and with
CRF approaches, respectively. However, the joint approach is better in terms
of accuracy. Figure 5.25 shows examples of the predicted intents using each
approach using test samples. Each example is analyzed to better understand
the performance of each model. Analyzing the results achieved using the first
example where all the models predicted wrong results, the reason was that for
the intent “atis_aircraft”, all tPe sentences in the training dataset don’t contain
“>as”, they just contain “g gV or “s o7, The word “>as” is more linked to the
intent “atis_capacity” which is for questions about the capacity of airplanes and
the intent “atis_quantity” which is for questions about the number of flights. For
the second example, the reason for the wrong prediction is that the annotated
actual intent is wrong, and it should be “atis_quantity” as predicted. For the third
example, only the joint AraBERT without CRF predicted the intent correctly.

o1

After analyzing the results, it was observed that the word “_¢Js”, was not used in
the training dataset which made it difficult for the models to predict the intent,
but the joint model was able to correctly predict it. For the fourth example, both
joint models with and without CRF were able to correctly predict the intent but
the model fine-tuned on intent classification only was not able to correctly predict
it. The reason behind that might be a confusion in prediction as the sentence
contains some abbreviation but the question is not about it.

Figure 5.25: Intent Classification Results

e Sl e B[cdlallae Sl apn e e gl S .
- : . e ’ Nl ol es L
Model & N o ik gl gl | Lapha S Dsall | ey e g ¥ L‘“’u;fhif =

St ol e el iy 5) Lgal 1Sy Ll et

Actual atis_aircraft atis_flight atis_distance atis_capacity

No Joint atis_capacity atis_quantity atis_city atis_abbreviation

Joint — No CRF atis_quantity atis_quantity atis_distance atis_capacity
Joint — With - . :

CRE atis_quantity atis_guantity atis_city atis capacity

Comparing the results with respect to the slot filling task, it can be seen that
using the joint approach results in better performance in terms of all error mea-
sures compared with fine-tuning AraBERT on the slot filling task only. Results of
both joint approaches with and without CRF are very close. In terms of F1 and
accuracy, the joint model with CRF achieves 0.029% higher F1, 0.128% higher
precision, and 0.07% lower recall compared with the joint approach without CRF.
Figure 5.26 shows an example of the slots predicted for one of the sentences in

the test set. All the models predicted the wrong slot for the word * j”. After
analyzing the results, it was noticed that the annotated actual slot for that word in
the dataset is wrong and should be 'B-or’ as predicted by all the models. Another
example is shown in Figure 5.27 where both joint models with and without CRF
were able to correctly predict the slot for the word “N” which is the first word in

4

the airport name “(ysz3,9& Y¥”7. However, the model fine-tuned on the slot
filling task only had a wrong prediction for the slot of that word. A reason for
that wrong prediction might be the confusion between the slots “airport_name”
and “fromloc.airport_name” which both refer to airport names. However, the
joint model was able to distinguish between them and the reason behind that is
the strong link between the intents and the slots which is learned in the joint
model that helped predict the slots more accurately. Another example is shown
in Figure 5.28 where only the joint model without CRF was able to correctly

predict the slot for the word “lbglad|”. After analyzing the data, the reason

52

behind the difficulty in the prediction for other models might be the confusion in
the annotation as the word “lbglad I is sometimes annotated as the beginning of
the airline name chunk and sometimes not. However, the joint model was able
to correctly predict the slot and the main reason is the addition of both learnings
of intents and slots in the prediction of the slots.

Figure 5.26: Slot Filling Results - 1

Sentence oasadll lua g plag ¥ plsa o 5 s g olad 8 o)1 g) gilg 0 e dla)) dalay U
'0','0','0Y, 'O, '0", 'B-fromloc.city_name', 'O', 'B-toloc.city_name', 'B-round_trip',
Actual ‘l-round_trip', 'l-round _trip', 'O', 'B-depart_time.period of day', 'B-
depart_date.day_name', '0', 'B-depart_time.period_of day', 'B-
depart_date.day name'
‘0, '0', '0Y, '0Y, 'O, 'B-fromloc.city_name’, 'O', '‘B-toloc.city_name’, '‘B-round_trip',
No Joint ‘I-round_trip', 'l-round_trip’, 'O, 'B-depart_time.period_of_day', 'B-
depart_date.day name', 'B-or', 'B-depart_time.period of day', 'B-
depart_date.day_name'
'0','0', '0Y, 'O, '0Y, 'B-fromloc.city_name’, 'O', ‘B-toloc.city_name’, 'B-round_trip',
Joint— No ‘I-round_trip', 'l-round_trip', '0', 'B-depart_time.period_of_day', 'B-
CRF depart_date.day_name', 'B-or', '‘B-depart_time.period_of day', 'B-
depart_date.day_name'
‘0, '0', '0Y, '0Y, 'O, 'B-fromloc.city_name’, 'O', '‘B-toloc.city_name’, '‘B-round_trip',
Joint — With ‘I-round_trip', 'l-round_trip’, 'O, 'B-depart_time.period_of_day', 'B-
CRF depart_date.day name', 'B-or', 'B-depart_time.period of day', 'B-
depart_date.day_name'
Figure 5.27: Slot Filling Results - 2
Sentence O398 Y B on)sadll Aadd ga a<
Actual ‘0', '0", '0', 'B-transport_type', '0O', 'B-airport_name', 'l-airport _name'
No Joint ‘04, '0Y, '0Y, 'B-transport_type', '0', 'B-fromloc.airport_name’, 'l-airport_name'
Joint—No . X
e ‘0", '0', '0', 'B-transport_type', 'O', 'B-airport_name', 'l-airport_name'
Joint — With . i
CRF ‘0', '0Y, '0Y, 'B-transport_type', '0O', '‘B-airport_name’, 'l-airport_name'

Comparing the results in terms of the semantic frame accuracy which can only
be evaluated for the joint approaches, the joint model without CRF was able to

23

Figure 5.28: Slot Filling Results - 3

Sentence Sa) o lal) b ghil) o el N Alisaii o c3a) daile 2
'0','0', '0', '0', 'B-fromloc.city_name', '0', 'B-toloc.city_name', 'O', 'O", 'B-
Actual

airline_name’, 'l-airline_name'

'a','0', '0', '0', 'B-fromloc.city_name', 'O, 'B-toloc.city_name', 'O', 'B-

No Joint - i it P '
airline_name’, 'B-airline_name', 'l-airline_name
Joint - No ‘0, '0Y, '0Y, 'O, 'B-fromloc.city_name', 'O', 'B-toloc.city_name’, 'O, 'O’, 'B-
CRF airline_name’, 'l-airline_name'
Joint — With '0','0', '0', '0', 'B-fromloc.city_name', 'O, 'B-toloc.city_name', 'O', 'B-
CRF airline_name’, 'l-airline_name’, 'l-airline_name'

achieve 0.896% better accuracy compared with the joint model with CRF. Finally,
considering accuracy as the evaluation criteria for the intent classification task
and the F1 as evaluation criteria for the slot filling task, the joint AraBERT
without CRF is the best for intent classification and the joint AraBERT with
CRF is the best for slot filling. However, considering the very slight difference in
the F1 of the approaches with and without CRF (0.029%) and considering the
higher semantic frame accuracy of the joint AraBERT without CRF, this model
will be chosen to be the best one.

Following the comparison of the different approaches for both tasks, it is
essential to compare the results achieved in Arabic to the ones achieved in English
using the same joint approach and using the same ATIS dataset in English.
Figure 5.29 shows the results achieved using our approach compared with the ones
achieved in [21] using BERT and using the English ATIS dataset. Comparing

Figure 5.29: NLU Results Compared with SOTA

Intent Accura Sentence-level
Dataset Model (%) &y Slot F1 (%) semantic frame
accuracy (%)
Joint AraBERT 97.648 93.699 82.755
Arabic
Joint AraBERT + CRF 96.865 93.728 81.859
Joint BERT 97.5 96.1 88.2
English
Joint BERT + CRF 97.9 96 88.6

the results, it can be seen that our approach achieved comparable results with
the approach using BERT on the English ATIS dataset. This assures that the
translated ATIS dataset serves as a good dataset for NLU training and that the

o4

approach of using joint AraBERT achieves comparable results with the English.

95

Chapter 6

Future Work

In this work, two approaches were suggested which are the end-to-end approach
and the pipeline approach. For the pipeline approach, the Natural Language Un-
derstanding (NLU) component have been developed using AraBERT. However,
the remaining components of the pipeline approach still need to be implemented
and this will be part of the future work. In the future work, both the Dialogue
Manager and the Natural Language Understanding (NLG) components will be
implemented.

For implementing the Dialogue Manager component, the suggested method-
ology is to use reinforcement learning to train this component in an end-to-end
method. An approach similar to the one suggested in [70] could be implemented.
In this approach, a rule-based agent is used as a warm-start for the system, and
this is done using supervised learning. Then the Dialogue Manager component
is trained in an end-to-end way using reinforcement learning where the Deep
Q-network reinforcement learning method was used. Training in an end-to-end
way can be done by adding the NLU and NLG components trained separately
or without adding the NLU and NLG components and replacing them by an
error model controller. The error model controller can simulate and add noises
from the NLU and NLG components which exist naturally in any communication
between the user and the system.

For implementing the NLG component, the suggested methodology is to use
GPT2 as proposed in the work in [48]. In this work, GPT2 was pretrained
on large amounts of data containing dialogue acts and system responses. Then
the model was fine-tuned on data from specific domains to adapt the NLG to
domain-specific labels.

For the implementation of the Dialogue Manager and NLG components, data
is required which is different for each of these components. The translated Mul-
tiWOZ dataset done part of this work contains the required data needed to train
both the Dialogue Manager and NLG components and hence it can be used.

An additional step after training all the separate components is to integrate
them. This is a challenging part as the output of one component should be

o6

compatible with the input of the next component in terms of slots and domains
and hence all components have to be trained on data with the same ontology to
be able to integrate them or an additional integration component can be added
between each of the developed components to reformat the data as needed by the
next component.

After implementing and integrating the three components in the pipeline ap-
proach, the results would be compared to those generated using the end-to-end
approach to evaluate and conclude on the better approach to be used. As for
now, the two approaches could not be compared as only one component of the
pipeline approach was implemented. The two approaches will be compared as
part of the future work when the other components of the pipeline approach are
implemented and based on that the two approaches will be compared in terms of
performance.

57

Chapter 7

Conclusion

In this work, we have proposed the development of an end-to-end task-oriented di-
alogue system in Arabic using the pretrained language generation model AraGPT2.
A multi-domain human-to-human conversational dataset was created by trans-
lating the MultiWOZ to Arabic and it was used for fine-tuning AraGPT2. The
developed model was able to achieve results comparable with the state-of-the-art
results in English. The developed end-to-end task-oriented dialogue was eval-
uated on three different aspects which are the response generation, the policy
optimization, and a whole end-to-end system. Results were analyzed and the
chatbot was able to achieve accurate results in terms of translating the user ut-
terance to a belief state, and then generating the system act and system response
based on the resulting belief state and database results. This proves that the
proposed approach achieves good results on the Arabic language and also that
the created conversational dataset is of good quality and can be used to train
task-oriented dialogue systems.

We also proposed the development of the NLU component, which is one of
the components in the pipeline approach, using the pretrained language model
AraBERT. A dataset for training the NLU component was created by translating
the ATIS dataset to Arabic and it was used to fine-tune AraBERT on joint intent
classification and slot filling. Results achieved were analyzed by comparing the
results achieved using the joint approach and using separate models for each task
and it was concluded that the joint results were better as the intents and slots
are highly correlated and modeling them jointly helps in sharing the information
between them. In addition to that, the achieved results prove the high quality
of the created dataset which is the first Arabic dataset which can be used for
training the NLU component.

As part of the future work, the dialogue manager and NLG components have
to be developed and combined with the NLU component to implement the com-
plete pipeline approach. Results achieved using the pipeline approach have to
be compared with the ones achieved using the developed end-to-end approach to
conclude on the better approach.

o8

Bibliography

1]

2]

R. Khan and A. Das, “Introduction to chatbots,” in Build better chatbots,
pp. 1-11, Springer, 2018.

K. Ramesh, S. Ravishankaran, A. Joshi, and K. Chandrasekaran, “A sur-
vey of design techniques for conversational agents,” in International confer-
ence on information, communication and computing technology, pp. 336-350,
Springer, 2017.

7. Zhang, R. Takanobu, Q. Zhu, M. Huang, and X. Zhu, “Recent advances
and challenges in task-oriented dialog systems,” Science China Technological
Sciences, pp. 1-17, 2020.

H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems: Recent
advances and new frontiers,” Acm Sigkdd Explorations Newsletter, vol. 19,
no. 2, pp. 25-35, 2017.

D. A. Ali and N. Habash, “Botta: An arabic dialect chatbot,” in Proceed-
ings of COLING 2016, the 26th International Conference on Computational
Linguistics: System Demonstrations, pp. 208-212, 2016.

W. Antoun, F. Baly, and H. Hajj, “Aragpt2: pre-trained transformer for
arabic language generation,” arXiv preprint arXiw:2012.15520, 2020.

P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes,
O. Ramadan, and M. Gasi¢, “Multiwoz—a large-scale multi-domain
wizard-of-oz dataset for task-oriented dialogue modelling,” arXiv preprint
arXiw:1810.00278, 2018.

W. Antoun, F. Baly, and H. Hajj, “Arabert: Transformer-based model for
arabic language understanding,” arXiv preprint arXiv:2003.00104, 2020.

C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The atis spoken
language systems pilot corpus,” in Speech and Natural Language: Proceedings
of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990, 1990.

29

[10]

[11]

[12]

[13]

[18]

[19]

[20]

[21]

J. Weizenbaum, “Eliza—a computer program for the study of natural lan-
guage communication between man and machine,” Communications of the

ACM, vol. 9, no. 1, pp. 36-45, 1966.

X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” Advances in neural information processing systems,
vol. 28, pp. 649-657, 2015.

H. B. Hashemi, A. Asiaee, and R. Kraft, “Query intent detection using
convolutional neural networks,” in International Conference on Web Search
and Data Mining, Workshop on Query Understanding, 2016.

S. Ravuri and A. Stolcke, “Recurrent neural network and Istm models for
lexical utterance classification,” in Sixteenth Annual Conference of the In-
ternational Speech Communication Association, 2015.

P. Liu, X. Qiu, and X. Huang, “Adversarial multi-task learning for text
classification,” arXiw preprint arXiv:1704.05742, 2017.

K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding.,” in Interspeech, pp. 2524-2528, 2013.

N. T. Vu, “Sequential convolutional neural networks for slot filling in spoken
language understanding,” arXiv preprint arXiv:1606.07783, 2016.

K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken language
understanding using long short-term memory neural networks,” in 2014
IEEE Spoken Language Technology Workshop (SLT), pp. 189-194, IEEE,
2014.

L. Zhao and Z. Feng, “Improving slot filling in spoken language understand-
ing with joint pointer and attention,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 426-431, 2018.

D. Hakkani-Tiir, G. Tiir, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng, and
Y.-Y. Wang, “Multi-domain joint semantic frame parsing using bi-directional
rnn-lstm.,” in Interspeech, pp. 715-719, 2016.

C.-W. Goo, G. Gao, Y.-K. Hsu, C.-L. Huo, T.-C. Chen, K.-W. Hsu, and Y .-
N. Chen, “Slot-gated modeling for joint slot filling and intent prediction,”
in Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,

Volume 2 (Short Papers), pp. 753-757, 2018.

Q. Chen, Z. Zhuo, and W. Wang, “Bert for joint intent classification and
slot filling,” arXiv preprint arXiv:1902.10909, 2019.

60

[22]

[23]

[24]

[25]

[26]

[32]

[33]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiw:1810.04805, 2018.

N. Mrksi¢, D. O. Séaghdha, B. Thomson, M. Gasi¢, P.-H. Su, D. Vandyke,
T.-H. Wen, and S. Young, “Multi-domain dialog state tracking using recur-
rent neural networks,” arXiv preprint arXiw:1506.07190, 2015.

P.-H. Su, M. Gasic, N. Mrksic, L. Rojas-Barahona, S. Ultes, D. Vandyke,
T.-H. Wen, and S. Young, “Continuously learning neural dialogue manage-
ment,” arXiw preprint arXiv:1606.02689, 2016.

H. Lee, J. Lee, and T.-Y. Kim, “Sumbt: Slot-utterance matching for univer-
sal and scalable belief tracking,” arXiv preprint arXiv:1907.07/21, 2019.

D. Goddeau, H. Meng, J. Polifroni, S. Seneff, and S. Busayapongchai, “A
form-based dialogue manager for spoken language applications,” in Proceed-

ing of Fourth International Conference on Spoken Language Processing. 1C-
SLP’96, vol. 2, pp. 7T01-704, IEEE, 1996.

Z. Wang and O. Lemon, “A simple and generic belief tracking mechanism
for the dialog state tracking challenge: On the believability of observed in-
formation,” in Proceedings of the SIGDIAL 2013 Conference, pp. 423-432,
2013.

J. D. Williams, “Web-style ranking and slu combination for dialog state
tracking,” in Proceedings of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL), pp. 282-291, 2014.

V. Zhong, C. Xiong, and R. Socher, “Global-locally self-attentive encoder
for dialogue state tracking,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1458-1467, 2018.

M. Henderson, B. Thomson, and S. Young, “Deep neural network approach
for the dialog state tracking challenge,” in Proceedings of the SIGDIAL 2013
Conference, pp. 467-471, 2013.

N. Mrksi¢, D. O. Séaghdha, T.-H. Wen, B. Thomson, and S. Young, “Neu-
ral belief tracker: Data-driven dialogue state tracking,” arXiv preprint
arXiw:1606.03777, 2016.

N. Mrksi¢ and I. Vuli¢, “Fully statistical neural belief tracking,” arXiv
preprint arXiw:1805.11350, 2018.

L. Ren, K. Xie, L. Chen, and K. Yu, “Towards universal dialogue state
tracking,” arXiv preprint arXiw:1810.09587, 2018.

61

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[44]

J. Hu, Y. Yang, C. Chen, L. He, and Z. Yu, “Sas: Dialogue state tracking
via slot attention and slot information sharing,” in Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pp. 6366—
6375, 2020.

F. Ye, J. Manotumruksa, Q. Zhang, S. Li, and E. Yilmaz, “Slot self-
attentive dialogue state tracking,” in Proceedings of the Web Conference
2021, pp. 1598-1608, 2021.

L. Zhou, K. Small, O. Rokhlenko, and C. Elkan, “End-to-end offline
goal-oriented dialog policy learning via policy gradient,” arXww preprint
arXiv:1712.02838, 2017.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” in Proceedings of the

fourteenth international conference on artificial intelligence and statistics,
pp. 627-635, JMLR Workshop and Conference Proceedings, 2011.

Z. Lipton, X. Li, J. Gao, L. Li, F. Ahmed, and L. Deng, “Bbg-networks: Ef-
ficient exploration in deep reinforcement learning for task-oriented dialogue
systems,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, 2018.

H. Cuayahuitl, S. Keizer, and O. Lemon, “Strategic dialogue management
via deep reinforcement learning,” arXiv preprint arXiv:1511.08099, 2015.

X. Li, Z. C. Lipton, B. Dhingra, L. Li, J. Gao, and Y.-N. Chen, “A user
simulator for task-completion dialogues,” arXiv preprint arXiv:1612.05688,
2016.

Y. Wu, X. Li, J. Liu, J. Gao, and Y. Yang, “Switch-based active deep dyna-
q: Efficient adaptive planning for task-completion dialogue policy learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 7289-7296, 2019.

K. Lu, Y. Cao, X. Chen, and S. Zhang, “Efficient dialog policy learning with
hindsight, user modeling, and adaptation,” IEEFE Transactions on Cognitive
and Developmental Systems, 2021.

T.-H. Wen, M. Gasic, D. Kim, N. Mrksic, P.-H. Su, D. Vandyke, and
S. Young, “Stochastic language generation in dialogue using recurrent
neural networks with convolutional sentence reranking,” arXiv preprint
arXiw:1508.01755, 2015.

T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young, “Se-
mantically conditioned Istm-based natural language generation for spoken
dialogue systems,” arXiv preprint arXiw:1508.01745, 2015.

62

[45]

[46]

[53]

[54]

[55]

T.-H. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, P.-H. Su,
D. Vandyke, and S. Young, “Multi-domain neural network language gener-
ation for spoken dialogue systems,” arXiv preprint arXiw:1603.01232, 2016.

H. Zhou, M. Huang, and X. Zhu, “Context-aware natural language genera-
tion for spoken dialogue systems,” in Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers,
pp. 2032-2041, 2016.

O. Dusek and F. Jurcicek, “Sequence-to-sequence generation for spoken di-
alogue via deep syntax trees and strings,” arXiv preprint arXiv:1606.05491,
2016.

B. Peng, C. Zhu, C. Li, X. Li, J. Li, M. Zeng, and J. Gao, “Few-
shot natural language generation for task-oriented dialog,” arXiv preprint
arXiv:2002.12328, 2020.

W. Lei, X. Jin, M.-Y. Kan, Z. Ren, X. He, and D. Yin, “Sequicity: Simpli-
fying task-oriented dialogue systems with single sequence-to-sequence archi-
tectures,” in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1437-1447, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAlI blog, vol. 1,
no. 8, p. 9, 2019.

B. Peng, C. Li, J. Li, S. Shayandeh, L. Liden, and J. Gao, “Soloist: Few-shot
task-oriented dialog with a single pretrained auto-regressive model,” arXiv
preprint arXiv:2005.05298, 2020.

D. Ham, J.-G. Lee, Y. Jang, and K.-E. Kim, “End-to-end neural pipeline
for goal-oriented dialogue systems using gpt-2,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 583—
592, 2020.

Y. Yang, Y. Li, and X. Quan, “Ubar: Towards fully end-to-end task-oriented
dialog systems with gpt-2,” arXiww preprint arXiv:2012.03539, 2020.

A. Shawar and E. Atwell, “An arabic chatbot giving answers from the
qur’an,” in Proceedings of TALNO4: XI Conference sur le Traitement Au-
tomatique des Langues Naturelles, vol. 2, pp. 197-202, ATALA, 2004.

B. A. Shawar and E. Atwell, A comparison between Alice and Elizabeth
chatbot systems. University of Leeds, School of Computing research report
2002.19, 2002.

63

[56]

[57]

[58]

[59]

[61]

[62]

[63]

[65]

[66]

B. A. Shawar and E. Atwell, “Accessing an information system by chat-
ting,” in International Conference on Application of Natural Language to
Information Systems, pp. 407-412, Springer, 2004.

B. A. Shawar, “A chatbot as a natural web interface to arabic web qa,”
International Journal of Emerging Technologies in Learning (iJET), vol. 6,
no. 1, pp. 37-43, 2011.

B. A. Shawar and E. Atwell, “Arabic question-answering via instance based
learning from an faq corpus,” in Proceedings of the CL 2009 International
Conference on Corpus Linguistics. UCREL, vol. 386, pp. 1-12, 2009.

O. G. Alobaidi, K. A. Crockett, J. D. O’Shea, and T. M. Jarad, “Abdul-
lah: An intelligent arabic conversational tutoring system for modern islamic

education,” in Proceedings of the World Congress on Engineering, vol. 2,
2013.

M. Hijjawi, Z. Bandar, K. Crockett, and D. Mclean, “Arabchat: An arabic
conversational agent,” in 201/ 6th International Conference on Computer
Science and Information Technology (CSIT), pp. 227-237, IEEE, 2014,

M. Hijjawi, H. Qattous, and O. Alsheiksalem, “Mobile arabchat: An ara-
bic mobile-based conversational agent,” Int. J. Adv. Comput. Sci. Appl.
IJACSA, vol. 6, no. 10, 2015.

M. Hijjawi, Z. Bandar, and K. Crockett, “The enhanced arabchat: An arabic
conversational agent,” International Journal of Advanced Computer Science
and Applications, vol. 7, 2016.

S. S. Aljameel, J. D. O’Shea, K. A. Crockett, A. Latham, and M. Kaleem,
“Development of an arabic conversational intelligent tutoring system for ed-
ucation of children with asd,” in 2017 IEEE International Conference on

Computational Intelligence and Virtual Environments for Measurement Sys-
tems and Applications (CIVEMSA), pp. 24-29, IEEE, 2017.

A. Moubaiddin, O. Shalbak, B. Hammo, and N. Obeid, “Arabic dialogue sys-
tem for hotel reservation based on natural language processing techniques,”
Computacion y Sistemas, vol. 19, no. 1, pp. 119-134, 2015.

A. M. Bashir, A. Hassan, B. Rosman, D. Duma, and M. Ahmed, “Imple-
mentation of a neural natural language understanding component for arabic
dialogue systems,” Procedia computer science, vol. 142, pp. 222-229, 2018.

A. Joukhadar, H. Saghergy, L. Kweider, and N. Ghneim, “Arabic dialogue
act recognition for textual chatbot systems,” in Proceedings of The First
International Workshop on NLP Solutions for Under Resourced Languages
(NSURL 2019) co-located with ICNLSP 2019-Short Papers, pp. 43-49, 2019.

64

[67]

[68]

[69]
[70]

[71]

A. Elmadany, S. Abdou, and M. Gheith, “Improving dialogue act classifica-
tion for spontaneous arabic speech and instant messages at utterance level,”
arXw preprint arXiw:1806.00522, 2018.

A.-H. Al-Ajmi and N. Al-Twairesh, “Building an arabic flight booking di-
alogue system using a hybrid rule-based and data driven approach,” IFEFE
Access, vol. 9, pp. 7043-7053, 2021.

C. Parsing, “Speech and language processing,” 2009.

X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “End-to-end task-
completion neural dialogue systems,” arXiv preprint arXiw:1703.01008,
2017.

7

S. Young, “Cued standard dialogue acts,” Report, Cambridge University
Engineering Department, 14th October, vol. 2007, 2007.

65

